1/******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 19 20 The full GNU General Public License is included in this distribution in 21 the file called "COPYING". 22 23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 24 25 Documentation available at: 26 http://www.stlinux.com 27 Support available at: 28 https://bugzilla.stlinux.com/ 29*******************************************************************************/ 30 31#include <linux/clk.h> 32#include <linux/kernel.h> 33#include <linux/interrupt.h> 34#include <linux/ip.h> 35#include <linux/tcp.h> 36#include <linux/skbuff.h> 37#include <linux/ethtool.h> 38#include <linux/if_ether.h> 39#include <linux/crc32.h> 40#include <linux/mii.h> 41#include <linux/if.h> 42#include <linux/if_vlan.h> 43#include <linux/dma-mapping.h> 44#include <linux/slab.h> 45#include <linux/prefetch.h> 46#include <linux/pinctrl/consumer.h> 47#ifdef CONFIG_DEBUG_FS 48#include <linux/debugfs.h> 49#include <linux/seq_file.h> 50#endif /* CONFIG_DEBUG_FS */ 51#include <linux/net_tstamp.h> 52#include "stmmac_ptp.h" 53#include "stmmac.h" 54#include <linux/reset.h> 55 56#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x) 57 58/* Module parameters */ 59#define TX_TIMEO 5000 60static int watchdog = TX_TIMEO; 61module_param(watchdog, int, S_IRUGO | S_IWUSR); 62MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 63 64static int debug = -1; 65module_param(debug, int, S_IRUGO | S_IWUSR); 66MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 67 68static int phyaddr = -1; 69module_param(phyaddr, int, S_IRUGO); 70MODULE_PARM_DESC(phyaddr, "Physical device address"); 71 72#define DMA_TX_SIZE 256 73static int dma_txsize = DMA_TX_SIZE; 74module_param(dma_txsize, int, S_IRUGO | S_IWUSR); 75MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list"); 76 77#define DMA_RX_SIZE 256 78static int dma_rxsize = DMA_RX_SIZE; 79module_param(dma_rxsize, int, S_IRUGO | S_IWUSR); 80MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list"); 81 82static int flow_ctrl = FLOW_OFF; 83module_param(flow_ctrl, int, S_IRUGO | S_IWUSR); 84MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 85 86static int pause = PAUSE_TIME; 87module_param(pause, int, S_IRUGO | S_IWUSR); 88MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 89 90#define TC_DEFAULT 64 91static int tc = TC_DEFAULT; 92module_param(tc, int, S_IRUGO | S_IWUSR); 93MODULE_PARM_DESC(tc, "DMA threshold control value"); 94 95#define DEFAULT_BUFSIZE 1536 96static int buf_sz = DEFAULT_BUFSIZE; 97module_param(buf_sz, int, S_IRUGO | S_IWUSR); 98MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 99 100static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 101 NETIF_MSG_LINK | NETIF_MSG_IFUP | 102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 103 104#define STMMAC_DEFAULT_LPI_TIMER 1000 105static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 106module_param(eee_timer, int, S_IRUGO | S_IWUSR); 107MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 108#define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 109 110/* By default the driver will use the ring mode to manage tx and rx descriptors 111 * but passing this value so user can force to use the chain instead of the ring 112 */ 113static unsigned int chain_mode; 114module_param(chain_mode, int, S_IRUGO); 115MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 116 117static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 118 119#ifdef CONFIG_DEBUG_FS 120static int stmmac_init_fs(struct net_device *dev); 121static void stmmac_exit_fs(struct net_device *dev); 122#endif 123 124#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 125 126/** 127 * stmmac_verify_args - verify the driver parameters. 128 * Description: it checks the driver parameters and set a default in case of 129 * errors. 130 */ 131static void stmmac_verify_args(void) 132{ 133 if (unlikely(watchdog < 0)) 134 watchdog = TX_TIMEO; 135 if (unlikely(dma_rxsize < 0)) 136 dma_rxsize = DMA_RX_SIZE; 137 if (unlikely(dma_txsize < 0)) 138 dma_txsize = DMA_TX_SIZE; 139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 140 buf_sz = DEFAULT_BUFSIZE; 141 if (unlikely(flow_ctrl > 1)) 142 flow_ctrl = FLOW_AUTO; 143 else if (likely(flow_ctrl < 0)) 144 flow_ctrl = FLOW_OFF; 145 if (unlikely((pause < 0) || (pause > 0xffff))) 146 pause = PAUSE_TIME; 147 if (eee_timer < 0) 148 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 149} 150 151/** 152 * stmmac_clk_csr_set - dynamically set the MDC clock 153 * @priv: driver private structure 154 * Description: this is to dynamically set the MDC clock according to the csr 155 * clock input. 156 * Note: 157 * If a specific clk_csr value is passed from the platform 158 * this means that the CSR Clock Range selection cannot be 159 * changed at run-time and it is fixed (as reported in the driver 160 * documentation). Viceversa the driver will try to set the MDC 161 * clock dynamically according to the actual clock input. 162 */ 163static void stmmac_clk_csr_set(struct stmmac_priv *priv) 164{ 165 u32 clk_rate; 166 167 clk_rate = clk_get_rate(priv->stmmac_clk); 168 169 /* Platform provided default clk_csr would be assumed valid 170 * for all other cases except for the below mentioned ones. 171 * For values higher than the IEEE 802.3 specified frequency 172 * we can not estimate the proper divider as it is not known 173 * the frequency of clk_csr_i. So we do not change the default 174 * divider. 175 */ 176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 177 if (clk_rate < CSR_F_35M) 178 priv->clk_csr = STMMAC_CSR_20_35M; 179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 180 priv->clk_csr = STMMAC_CSR_35_60M; 181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 182 priv->clk_csr = STMMAC_CSR_60_100M; 183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 184 priv->clk_csr = STMMAC_CSR_100_150M; 185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 186 priv->clk_csr = STMMAC_CSR_150_250M; 187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 188 priv->clk_csr = STMMAC_CSR_250_300M; 189 } 190} 191 192static void print_pkt(unsigned char *buf, int len) 193{ 194 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 195 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 196} 197 198/* minimum number of free TX descriptors required to wake up TX process */ 199#define STMMAC_TX_THRESH(x) (x->dma_tx_size/4) 200 201static inline u32 stmmac_tx_avail(struct stmmac_priv *priv) 202{ 203 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1; 204} 205 206/** 207 * stmmac_hw_fix_mac_speed - callback for speed selection 208 * @priv: driver private structure 209 * Description: on some platforms (e.g. ST), some HW system configuraton 210 * registers have to be set according to the link speed negotiated. 211 */ 212static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 213{ 214 struct phy_device *phydev = priv->phydev; 215 216 if (likely(priv->plat->fix_mac_speed)) 217 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 218} 219 220/** 221 * stmmac_enable_eee_mode - check and enter in LPI mode 222 * @priv: driver private structure 223 * Description: this function is to verify and enter in LPI mode in case of 224 * EEE. 225 */ 226static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 227{ 228 /* Check and enter in LPI mode */ 229 if ((priv->dirty_tx == priv->cur_tx) && 230 (priv->tx_path_in_lpi_mode == false)) 231 priv->hw->mac->set_eee_mode(priv->hw); 232} 233 234/** 235 * stmmac_disable_eee_mode - disable and exit from LPI mode 236 * @priv: driver private structure 237 * Description: this function is to exit and disable EEE in case of 238 * LPI state is true. This is called by the xmit. 239 */ 240void stmmac_disable_eee_mode(struct stmmac_priv *priv) 241{ 242 priv->hw->mac->reset_eee_mode(priv->hw); 243 del_timer_sync(&priv->eee_ctrl_timer); 244 priv->tx_path_in_lpi_mode = false; 245} 246 247/** 248 * stmmac_eee_ctrl_timer - EEE TX SW timer. 249 * @arg : data hook 250 * Description: 251 * if there is no data transfer and if we are not in LPI state, 252 * then MAC Transmitter can be moved to LPI state. 253 */ 254static void stmmac_eee_ctrl_timer(unsigned long arg) 255{ 256 struct stmmac_priv *priv = (struct stmmac_priv *)arg; 257 258 stmmac_enable_eee_mode(priv); 259 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 260} 261 262/** 263 * stmmac_eee_init - init EEE 264 * @priv: driver private structure 265 * Description: 266 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 267 * can also manage EEE, this function enable the LPI state and start related 268 * timer. 269 */ 270bool stmmac_eee_init(struct stmmac_priv *priv) 271{ 272 char *phy_bus_name = priv->plat->phy_bus_name; 273 unsigned long flags; 274 bool ret = false; 275 276 /* Using PCS we cannot dial with the phy registers at this stage 277 * so we do not support extra feature like EEE. 278 */ 279 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) || 280 (priv->pcs == STMMAC_PCS_RTBI)) 281 goto out; 282 283 /* Never init EEE in case of a switch is attached */ 284 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed"))) 285 goto out; 286 287 /* MAC core supports the EEE feature. */ 288 if (priv->dma_cap.eee) { 289 int tx_lpi_timer = priv->tx_lpi_timer; 290 291 /* Check if the PHY supports EEE */ 292 if (phy_init_eee(priv->phydev, 1)) { 293 /* To manage at run-time if the EEE cannot be supported 294 * anymore (for example because the lp caps have been 295 * changed). 296 * In that case the driver disable own timers. 297 */ 298 spin_lock_irqsave(&priv->lock, flags); 299 if (priv->eee_active) { 300 pr_debug("stmmac: disable EEE\n"); 301 del_timer_sync(&priv->eee_ctrl_timer); 302 priv->hw->mac->set_eee_timer(priv->hw, 0, 303 tx_lpi_timer); 304 } 305 priv->eee_active = 0; 306 spin_unlock_irqrestore(&priv->lock, flags); 307 goto out; 308 } 309 /* Activate the EEE and start timers */ 310 spin_lock_irqsave(&priv->lock, flags); 311 if (!priv->eee_active) { 312 priv->eee_active = 1; 313 setup_timer(&priv->eee_ctrl_timer, 314 stmmac_eee_ctrl_timer, 315 (unsigned long)priv); 316 mod_timer(&priv->eee_ctrl_timer, 317 STMMAC_LPI_T(eee_timer)); 318 319 priv->hw->mac->set_eee_timer(priv->hw, 320 STMMAC_DEFAULT_LIT_LS, 321 tx_lpi_timer); 322 } 323 /* Set HW EEE according to the speed */ 324 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link); 325 326 ret = true; 327 spin_unlock_irqrestore(&priv->lock, flags); 328 329 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n"); 330 } 331out: 332 return ret; 333} 334 335/* stmmac_get_tx_hwtstamp - get HW TX timestamps 336 * @priv: driver private structure 337 * @entry : descriptor index to be used. 338 * @skb : the socket buffer 339 * Description : 340 * This function will read timestamp from the descriptor & pass it to stack. 341 * and also perform some sanity checks. 342 */ 343static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 344 unsigned int entry, struct sk_buff *skb) 345{ 346 struct skb_shared_hwtstamps shhwtstamp; 347 u64 ns; 348 void *desc = NULL; 349 350 if (!priv->hwts_tx_en) 351 return; 352 353 /* exit if skb doesn't support hw tstamp */ 354 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 355 return; 356 357 if (priv->adv_ts) 358 desc = (priv->dma_etx + entry); 359 else 360 desc = (priv->dma_tx + entry); 361 362 /* check tx tstamp status */ 363 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc)) 364 return; 365 366 /* get the valid tstamp */ 367 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 368 369 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 370 shhwtstamp.hwtstamp = ns_to_ktime(ns); 371 /* pass tstamp to stack */ 372 skb_tstamp_tx(skb, &shhwtstamp); 373 374 return; 375} 376 377/* stmmac_get_rx_hwtstamp - get HW RX timestamps 378 * @priv: driver private structure 379 * @entry : descriptor index to be used. 380 * @skb : the socket buffer 381 * Description : 382 * This function will read received packet's timestamp from the descriptor 383 * and pass it to stack. It also perform some sanity checks. 384 */ 385static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, 386 unsigned int entry, struct sk_buff *skb) 387{ 388 struct skb_shared_hwtstamps *shhwtstamp = NULL; 389 u64 ns; 390 void *desc = NULL; 391 392 if (!priv->hwts_rx_en) 393 return; 394 395 if (priv->adv_ts) 396 desc = (priv->dma_erx + entry); 397 else 398 desc = (priv->dma_rx + entry); 399 400 /* exit if rx tstamp is not valid */ 401 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts)) 402 return; 403 404 /* get valid tstamp */ 405 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 406 shhwtstamp = skb_hwtstamps(skb); 407 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 408 shhwtstamp->hwtstamp = ns_to_ktime(ns); 409} 410 411/** 412 * stmmac_hwtstamp_ioctl - control hardware timestamping. 413 * @dev: device pointer. 414 * @ifr: An IOCTL specefic structure, that can contain a pointer to 415 * a proprietary structure used to pass information to the driver. 416 * Description: 417 * This function configures the MAC to enable/disable both outgoing(TX) 418 * and incoming(RX) packets time stamping based on user input. 419 * Return Value: 420 * 0 on success and an appropriate -ve integer on failure. 421 */ 422static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 423{ 424 struct stmmac_priv *priv = netdev_priv(dev); 425 struct hwtstamp_config config; 426 struct timespec now; 427 u64 temp = 0; 428 u32 ptp_v2 = 0; 429 u32 tstamp_all = 0; 430 u32 ptp_over_ipv4_udp = 0; 431 u32 ptp_over_ipv6_udp = 0; 432 u32 ptp_over_ethernet = 0; 433 u32 snap_type_sel = 0; 434 u32 ts_master_en = 0; 435 u32 ts_event_en = 0; 436 u32 value = 0; 437 438 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 439 netdev_alert(priv->dev, "No support for HW time stamping\n"); 440 priv->hwts_tx_en = 0; 441 priv->hwts_rx_en = 0; 442 443 return -EOPNOTSUPP; 444 } 445 446 if (copy_from_user(&config, ifr->ifr_data, 447 sizeof(struct hwtstamp_config))) 448 return -EFAULT; 449 450 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 451 __func__, config.flags, config.tx_type, config.rx_filter); 452 453 /* reserved for future extensions */ 454 if (config.flags) 455 return -EINVAL; 456 457 if (config.tx_type != HWTSTAMP_TX_OFF && 458 config.tx_type != HWTSTAMP_TX_ON) 459 return -ERANGE; 460 461 if (priv->adv_ts) { 462 switch (config.rx_filter) { 463 case HWTSTAMP_FILTER_NONE: 464 /* time stamp no incoming packet at all */ 465 config.rx_filter = HWTSTAMP_FILTER_NONE; 466 break; 467 468 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 469 /* PTP v1, UDP, any kind of event packet */ 470 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 471 /* take time stamp for all event messages */ 472 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 473 474 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 475 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 476 break; 477 478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 479 /* PTP v1, UDP, Sync packet */ 480 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 481 /* take time stamp for SYNC messages only */ 482 ts_event_en = PTP_TCR_TSEVNTENA; 483 484 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 485 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 486 break; 487 488 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 489 /* PTP v1, UDP, Delay_req packet */ 490 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 491 /* take time stamp for Delay_Req messages only */ 492 ts_master_en = PTP_TCR_TSMSTRENA; 493 ts_event_en = PTP_TCR_TSEVNTENA; 494 495 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 496 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 497 break; 498 499 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 500 /* PTP v2, UDP, any kind of event packet */ 501 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 502 ptp_v2 = PTP_TCR_TSVER2ENA; 503 /* take time stamp for all event messages */ 504 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 505 506 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 507 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 508 break; 509 510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 511 /* PTP v2, UDP, Sync packet */ 512 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 513 ptp_v2 = PTP_TCR_TSVER2ENA; 514 /* take time stamp for SYNC messages only */ 515 ts_event_en = PTP_TCR_TSEVNTENA; 516 517 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 518 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 519 break; 520 521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 522 /* PTP v2, UDP, Delay_req packet */ 523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 524 ptp_v2 = PTP_TCR_TSVER2ENA; 525 /* take time stamp for Delay_Req messages only */ 526 ts_master_en = PTP_TCR_TSMSTRENA; 527 ts_event_en = PTP_TCR_TSEVNTENA; 528 529 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 530 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 531 break; 532 533 case HWTSTAMP_FILTER_PTP_V2_EVENT: 534 /* PTP v2/802.AS1 any layer, any kind of event packet */ 535 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 536 ptp_v2 = PTP_TCR_TSVER2ENA; 537 /* take time stamp for all event messages */ 538 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 539 540 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 541 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 542 ptp_over_ethernet = PTP_TCR_TSIPENA; 543 break; 544 545 case HWTSTAMP_FILTER_PTP_V2_SYNC: 546 /* PTP v2/802.AS1, any layer, Sync packet */ 547 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 548 ptp_v2 = PTP_TCR_TSVER2ENA; 549 /* take time stamp for SYNC messages only */ 550 ts_event_en = PTP_TCR_TSEVNTENA; 551 552 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 553 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 554 ptp_over_ethernet = PTP_TCR_TSIPENA; 555 break; 556 557 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 558 /* PTP v2/802.AS1, any layer, Delay_req packet */ 559 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 560 ptp_v2 = PTP_TCR_TSVER2ENA; 561 /* take time stamp for Delay_Req messages only */ 562 ts_master_en = PTP_TCR_TSMSTRENA; 563 ts_event_en = PTP_TCR_TSEVNTENA; 564 565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 567 ptp_over_ethernet = PTP_TCR_TSIPENA; 568 break; 569 570 case HWTSTAMP_FILTER_ALL: 571 /* time stamp any incoming packet */ 572 config.rx_filter = HWTSTAMP_FILTER_ALL; 573 tstamp_all = PTP_TCR_TSENALL; 574 break; 575 576 default: 577 return -ERANGE; 578 } 579 } else { 580 switch (config.rx_filter) { 581 case HWTSTAMP_FILTER_NONE: 582 config.rx_filter = HWTSTAMP_FILTER_NONE; 583 break; 584 default: 585 /* PTP v1, UDP, any kind of event packet */ 586 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 587 break; 588 } 589 } 590 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 591 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 592 593 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 594 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0); 595 else { 596 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 597 tstamp_all | ptp_v2 | ptp_over_ethernet | 598 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 599 ts_master_en | snap_type_sel); 600 601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value); 602 603 /* program Sub Second Increment reg */ 604 priv->hw->ptp->config_sub_second_increment(priv->ioaddr); 605 606 /* calculate default added value: 607 * formula is : 608 * addend = (2^32)/freq_div_ratio; 609 * where, freq_div_ratio = clk_ptp_ref_i/50MHz 610 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i; 611 * NOTE: clk_ptp_ref_i should be >= 50MHz to 612 * achieve 20ns accuracy. 613 * 614 * 2^x * y == (y << x), hence 615 * 2^32 * 50000000 ==> (50000000 << 32) 616 */ 617 temp = (u64) (50000000ULL << 32); 618 priv->default_addend = div_u64(temp, priv->clk_ptp_rate); 619 priv->hw->ptp->config_addend(priv->ioaddr, 620 priv->default_addend); 621 622 /* initialize system time */ 623 getnstimeofday(&now); 624 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec, 625 now.tv_nsec); 626 } 627 628 return copy_to_user(ifr->ifr_data, &config, 629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 630} 631 632/** 633 * stmmac_init_ptp - init PTP 634 * @priv: driver private structure 635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 636 * This is done by looking at the HW cap. register. 637 * This function also registers the ptp driver. 638 */ 639static int stmmac_init_ptp(struct stmmac_priv *priv) 640{ 641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 642 return -EOPNOTSUPP; 643 644 /* Fall-back to main clock in case of no PTP ref is passed */ 645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref"); 646 if (IS_ERR(priv->clk_ptp_ref)) { 647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk); 648 priv->clk_ptp_ref = NULL; 649 } else { 650 clk_prepare_enable(priv->clk_ptp_ref); 651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref); 652 } 653 654 priv->adv_ts = 0; 655 if (priv->dma_cap.atime_stamp && priv->extend_desc) 656 priv->adv_ts = 1; 657 658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp) 659 pr_debug("IEEE 1588-2002 Time Stamp supported\n"); 660 661 if (netif_msg_hw(priv) && priv->adv_ts) 662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n"); 663 664 priv->hw->ptp = &stmmac_ptp; 665 priv->hwts_tx_en = 0; 666 priv->hwts_rx_en = 0; 667 668 return stmmac_ptp_register(priv); 669} 670 671static void stmmac_release_ptp(struct stmmac_priv *priv) 672{ 673 if (priv->clk_ptp_ref) 674 clk_disable_unprepare(priv->clk_ptp_ref); 675 stmmac_ptp_unregister(priv); 676} 677 678/** 679 * stmmac_adjust_link - adjusts the link parameters 680 * @dev: net device structure 681 * Description: this is the helper called by the physical abstraction layer 682 * drivers to communicate the phy link status. According the speed and duplex 683 * this driver can invoke registered glue-logic as well. 684 * It also invoke the eee initialization because it could happen when switch 685 * on different networks (that are eee capable). 686 */ 687static void stmmac_adjust_link(struct net_device *dev) 688{ 689 struct stmmac_priv *priv = netdev_priv(dev); 690 struct phy_device *phydev = priv->phydev; 691 unsigned long flags; 692 int new_state = 0; 693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause; 694 695 if (phydev == NULL) 696 return; 697 698 spin_lock_irqsave(&priv->lock, flags); 699 700 if (phydev->link) { 701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 702 703 /* Now we make sure that we can be in full duplex mode. 704 * If not, we operate in half-duplex mode. */ 705 if (phydev->duplex != priv->oldduplex) { 706 new_state = 1; 707 if (!(phydev->duplex)) 708 ctrl &= ~priv->hw->link.duplex; 709 else 710 ctrl |= priv->hw->link.duplex; 711 priv->oldduplex = phydev->duplex; 712 } 713 /* Flow Control operation */ 714 if (phydev->pause) 715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex, 716 fc, pause_time); 717 718 if (phydev->speed != priv->speed) { 719 new_state = 1; 720 switch (phydev->speed) { 721 case 1000: 722 if (likely(priv->plat->has_gmac)) 723 ctrl &= ~priv->hw->link.port; 724 stmmac_hw_fix_mac_speed(priv); 725 break; 726 case 100: 727 case 10: 728 if (priv->plat->has_gmac) { 729 ctrl |= priv->hw->link.port; 730 if (phydev->speed == SPEED_100) { 731 ctrl |= priv->hw->link.speed; 732 } else { 733 ctrl &= ~(priv->hw->link.speed); 734 } 735 } else { 736 ctrl &= ~priv->hw->link.port; 737 } 738 stmmac_hw_fix_mac_speed(priv); 739 break; 740 default: 741 if (netif_msg_link(priv)) 742 pr_warn("%s: Speed (%d) not 10/100\n", 743 dev->name, phydev->speed); 744 break; 745 } 746 747 priv->speed = phydev->speed; 748 } 749 750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 751 752 if (!priv->oldlink) { 753 new_state = 1; 754 priv->oldlink = 1; 755 } 756 } else if (priv->oldlink) { 757 new_state = 1; 758 priv->oldlink = 0; 759 priv->speed = 0; 760 priv->oldduplex = -1; 761 } 762 763 if (new_state && netif_msg_link(priv)) 764 phy_print_status(phydev); 765 766 spin_unlock_irqrestore(&priv->lock, flags); 767 768 /* At this stage, it could be needed to setup the EEE or adjust some 769 * MAC related HW registers. 770 */ 771 priv->eee_enabled = stmmac_eee_init(priv); 772} 773 774/** 775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 776 * @priv: driver private structure 777 * Description: this is to verify if the HW supports the PCS. 778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 779 * configured for the TBI, RTBI, or SGMII PHY interface. 780 */ 781static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 782{ 783 int interface = priv->plat->interface; 784 785 if (priv->dma_cap.pcs) { 786 if ((interface == PHY_INTERFACE_MODE_RGMII) || 787 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 790 pr_debug("STMMAC: PCS RGMII support enable\n"); 791 priv->pcs = STMMAC_PCS_RGMII; 792 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 793 pr_debug("STMMAC: PCS SGMII support enable\n"); 794 priv->pcs = STMMAC_PCS_SGMII; 795 } 796 } 797} 798 799/** 800 * stmmac_init_phy - PHY initialization 801 * @dev: net device structure 802 * Description: it initializes the driver's PHY state, and attaches the PHY 803 * to the mac driver. 804 * Return value: 805 * 0 on success 806 */ 807static int stmmac_init_phy(struct net_device *dev) 808{ 809 struct stmmac_priv *priv = netdev_priv(dev); 810 struct phy_device *phydev; 811 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 812 char bus_id[MII_BUS_ID_SIZE]; 813 int interface = priv->plat->interface; 814 int max_speed = priv->plat->max_speed; 815 priv->oldlink = 0; 816 priv->speed = 0; 817 priv->oldduplex = -1; 818 819 if (priv->plat->phy_bus_name) 820 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 821 priv->plat->phy_bus_name, priv->plat->bus_id); 822 else 823 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 824 priv->plat->bus_id); 825 826 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 827 priv->plat->phy_addr); 828 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt); 829 830 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface); 831 832 if (IS_ERR_OR_NULL(phydev)) { 833 pr_err("%s: Could not attach to PHY\n", dev->name); 834 if (!phydev) 835 return -ENODEV; 836 837 return PTR_ERR(phydev); 838 } 839 840 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 841 if ((interface == PHY_INTERFACE_MODE_MII) || 842 (interface == PHY_INTERFACE_MODE_RMII) || 843 (max_speed < 1000 && max_speed > 0)) 844 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 845 SUPPORTED_1000baseT_Full); 846 847 /* 848 * Broken HW is sometimes missing the pull-up resistor on the 849 * MDIO line, which results in reads to non-existent devices returning 850 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 851 * device as well. 852 * Note: phydev->phy_id is the result of reading the UID PHY registers. 853 */ 854 if (phydev->phy_id == 0) { 855 phy_disconnect(phydev); 856 return -ENODEV; 857 } 858 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)" 859 " Link = %d\n", dev->name, phydev->phy_id, phydev->link); 860 861 priv->phydev = phydev; 862 863 return 0; 864} 865 866/** 867 * stmmac_display_ring - display ring 868 * @head: pointer to the head of the ring passed. 869 * @size: size of the ring. 870 * @extend_desc: to verify if extended descriptors are used. 871 * Description: display the control/status and buffer descriptors. 872 */ 873static void stmmac_display_ring(void *head, int size, int extend_desc) 874{ 875 int i; 876 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 877 struct dma_desc *p = (struct dma_desc *)head; 878 879 for (i = 0; i < size; i++) { 880 u64 x; 881 if (extend_desc) { 882 x = *(u64 *) ep; 883 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 884 i, (unsigned int)virt_to_phys(ep), 885 (unsigned int)x, (unsigned int)(x >> 32), 886 ep->basic.des2, ep->basic.des3); 887 ep++; 888 } else { 889 x = *(u64 *) p; 890 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x", 891 i, (unsigned int)virt_to_phys(p), 892 (unsigned int)x, (unsigned int)(x >> 32), 893 p->des2, p->des3); 894 p++; 895 } 896 pr_info("\n"); 897 } 898} 899 900static void stmmac_display_rings(struct stmmac_priv *priv) 901{ 902 unsigned int txsize = priv->dma_tx_size; 903 unsigned int rxsize = priv->dma_rx_size; 904 905 if (priv->extend_desc) { 906 pr_info("Extended RX descriptor ring:\n"); 907 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 908 pr_info("Extended TX descriptor ring:\n"); 909 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 910 } else { 911 pr_info("RX descriptor ring:\n"); 912 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 913 pr_info("TX descriptor ring:\n"); 914 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 915 } 916} 917 918static int stmmac_set_bfsize(int mtu, int bufsize) 919{ 920 int ret = bufsize; 921 922 if (mtu >= BUF_SIZE_4KiB) 923 ret = BUF_SIZE_8KiB; 924 else if (mtu >= BUF_SIZE_2KiB) 925 ret = BUF_SIZE_4KiB; 926 else if (mtu > DEFAULT_BUFSIZE) 927 ret = BUF_SIZE_2KiB; 928 else 929 ret = DEFAULT_BUFSIZE; 930 931 return ret; 932} 933 934/** 935 * stmmac_clear_descriptors - clear descriptors 936 * @priv: driver private structure 937 * Description: this function is called to clear the tx and rx descriptors 938 * in case of both basic and extended descriptors are used. 939 */ 940static void stmmac_clear_descriptors(struct stmmac_priv *priv) 941{ 942 int i; 943 unsigned int txsize = priv->dma_tx_size; 944 unsigned int rxsize = priv->dma_rx_size; 945 946 /* Clear the Rx/Tx descriptors */ 947 for (i = 0; i < rxsize; i++) 948 if (priv->extend_desc) 949 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic, 950 priv->use_riwt, priv->mode, 951 (i == rxsize - 1)); 952 else 953 priv->hw->desc->init_rx_desc(&priv->dma_rx[i], 954 priv->use_riwt, priv->mode, 955 (i == rxsize - 1)); 956 for (i = 0; i < txsize; i++) 957 if (priv->extend_desc) 958 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 959 priv->mode, 960 (i == txsize - 1)); 961 else 962 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 963 priv->mode, 964 (i == txsize - 1)); 965} 966 967/** 968 * stmmac_init_rx_buffers - init the RX descriptor buffer. 969 * @priv: driver private structure 970 * @p: descriptor pointer 971 * @i: descriptor index 972 * @flags: gfp flag. 973 * Description: this function is called to allocate a receive buffer, perform 974 * the DMA mapping and init the descriptor. 975 */ 976static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 977 int i, gfp_t flags) 978{ 979 struct sk_buff *skb; 980 981 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN, 982 flags); 983 if (!skb) { 984 pr_err("%s: Rx init fails; skb is NULL\n", __func__); 985 return -ENOMEM; 986 } 987 skb_reserve(skb, NET_IP_ALIGN); 988 priv->rx_skbuff[i] = skb; 989 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 990 priv->dma_buf_sz, 991 DMA_FROM_DEVICE); 992 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) { 993 pr_err("%s: DMA mapping error\n", __func__); 994 dev_kfree_skb_any(skb); 995 return -EINVAL; 996 } 997 998 p->des2 = priv->rx_skbuff_dma[i]; 999 1000 if ((priv->hw->mode->init_desc3) && 1001 (priv->dma_buf_sz == BUF_SIZE_16KiB)) 1002 priv->hw->mode->init_desc3(p); 1003 1004 return 0; 1005} 1006 1007static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i) 1008{ 1009 if (priv->rx_skbuff[i]) { 1010 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i], 1011 priv->dma_buf_sz, DMA_FROM_DEVICE); 1012 dev_kfree_skb_any(priv->rx_skbuff[i]); 1013 } 1014 priv->rx_skbuff[i] = NULL; 1015} 1016 1017/** 1018 * init_dma_desc_rings - init the RX/TX descriptor rings 1019 * @dev: net device structure 1020 * @flags: gfp flag. 1021 * Description: this function initializes the DMA RX/TX descriptors 1022 * and allocates the socket buffers. It suppors the chained and ring 1023 * modes. 1024 */ 1025static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1026{ 1027 int i; 1028 struct stmmac_priv *priv = netdev_priv(dev); 1029 unsigned int txsize = priv->dma_tx_size; 1030 unsigned int rxsize = priv->dma_rx_size; 1031 unsigned int bfsize = 0; 1032 int ret = -ENOMEM; 1033 1034 if (priv->hw->mode->set_16kib_bfsize) 1035 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu); 1036 1037 if (bfsize < BUF_SIZE_16KiB) 1038 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1039 1040 priv->dma_buf_sz = bfsize; 1041 1042 if (netif_msg_probe(priv)) 1043 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__, 1044 txsize, rxsize, bfsize); 1045 1046 if (netif_msg_probe(priv)) { 1047 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__, 1048 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy); 1049 1050 /* RX INITIALIZATION */ 1051 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n"); 1052 } 1053 for (i = 0; i < rxsize; i++) { 1054 struct dma_desc *p; 1055 if (priv->extend_desc) 1056 p = &((priv->dma_erx + i)->basic); 1057 else 1058 p = priv->dma_rx + i; 1059 1060 ret = stmmac_init_rx_buffers(priv, p, i, flags); 1061 if (ret) 1062 goto err_init_rx_buffers; 1063 1064 if (netif_msg_probe(priv)) 1065 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i], 1066 priv->rx_skbuff[i]->data, 1067 (unsigned int)priv->rx_skbuff_dma[i]); 1068 } 1069 priv->cur_rx = 0; 1070 priv->dirty_rx = (unsigned int)(i - rxsize); 1071 buf_sz = bfsize; 1072 1073 /* Setup the chained descriptor addresses */ 1074 if (priv->mode == STMMAC_CHAIN_MODE) { 1075 if (priv->extend_desc) { 1076 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy, 1077 rxsize, 1); 1078 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy, 1079 txsize, 1); 1080 } else { 1081 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy, 1082 rxsize, 0); 1083 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy, 1084 txsize, 0); 1085 } 1086 } 1087 1088 /* TX INITIALIZATION */ 1089 for (i = 0; i < txsize; i++) { 1090 struct dma_desc *p; 1091 if (priv->extend_desc) 1092 p = &((priv->dma_etx + i)->basic); 1093 else 1094 p = priv->dma_tx + i; 1095 p->des2 = 0; 1096 priv->tx_skbuff_dma[i].buf = 0; 1097 priv->tx_skbuff_dma[i].map_as_page = false; 1098 priv->tx_skbuff[i] = NULL; 1099 } 1100 1101 priv->dirty_tx = 0; 1102 priv->cur_tx = 0; 1103 netdev_reset_queue(priv->dev); 1104 1105 stmmac_clear_descriptors(priv); 1106 1107 if (netif_msg_hw(priv)) 1108 stmmac_display_rings(priv); 1109 1110 return 0; 1111err_init_rx_buffers: 1112 while (--i >= 0) 1113 stmmac_free_rx_buffers(priv, i); 1114 return ret; 1115} 1116 1117static void dma_free_rx_skbufs(struct stmmac_priv *priv) 1118{ 1119 int i; 1120 1121 for (i = 0; i < priv->dma_rx_size; i++) 1122 stmmac_free_rx_buffers(priv, i); 1123} 1124 1125static void dma_free_tx_skbufs(struct stmmac_priv *priv) 1126{ 1127 int i; 1128 1129 for (i = 0; i < priv->dma_tx_size; i++) { 1130 struct dma_desc *p; 1131 1132 if (priv->extend_desc) 1133 p = &((priv->dma_etx + i)->basic); 1134 else 1135 p = priv->dma_tx + i; 1136 1137 if (priv->tx_skbuff_dma[i].buf) { 1138 if (priv->tx_skbuff_dma[i].map_as_page) 1139 dma_unmap_page(priv->device, 1140 priv->tx_skbuff_dma[i].buf, 1141 priv->hw->desc->get_tx_len(p), 1142 DMA_TO_DEVICE); 1143 else 1144 dma_unmap_single(priv->device, 1145 priv->tx_skbuff_dma[i].buf, 1146 priv->hw->desc->get_tx_len(p), 1147 DMA_TO_DEVICE); 1148 } 1149 1150 if (priv->tx_skbuff[i] != NULL) { 1151 dev_kfree_skb_any(priv->tx_skbuff[i]); 1152 priv->tx_skbuff[i] = NULL; 1153 priv->tx_skbuff_dma[i].buf = 0; 1154 priv->tx_skbuff_dma[i].map_as_page = false; 1155 } 1156 } 1157} 1158 1159/** 1160 * alloc_dma_desc_resources - alloc TX/RX resources. 1161 * @priv: private structure 1162 * Description: according to which descriptor can be used (extend or basic) 1163 * this function allocates the resources for TX and RX paths. In case of 1164 * reception, for example, it pre-allocated the RX socket buffer in order to 1165 * allow zero-copy mechanism. 1166 */ 1167static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1168{ 1169 unsigned int txsize = priv->dma_tx_size; 1170 unsigned int rxsize = priv->dma_rx_size; 1171 int ret = -ENOMEM; 1172 1173 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t), 1174 GFP_KERNEL); 1175 if (!priv->rx_skbuff_dma) 1176 return -ENOMEM; 1177 1178 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *), 1179 GFP_KERNEL); 1180 if (!priv->rx_skbuff) 1181 goto err_rx_skbuff; 1182 1183 priv->tx_skbuff_dma = kmalloc_array(txsize, 1184 sizeof(*priv->tx_skbuff_dma), 1185 GFP_KERNEL); 1186 if (!priv->tx_skbuff_dma) 1187 goto err_tx_skbuff_dma; 1188 1189 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *), 1190 GFP_KERNEL); 1191 if (!priv->tx_skbuff) 1192 goto err_tx_skbuff; 1193 1194 if (priv->extend_desc) { 1195 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize * 1196 sizeof(struct 1197 dma_extended_desc), 1198 &priv->dma_rx_phy, 1199 GFP_KERNEL); 1200 if (!priv->dma_erx) 1201 goto err_dma; 1202 1203 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize * 1204 sizeof(struct 1205 dma_extended_desc), 1206 &priv->dma_tx_phy, 1207 GFP_KERNEL); 1208 if (!priv->dma_etx) { 1209 dma_free_coherent(priv->device, priv->dma_rx_size * 1210 sizeof(struct dma_extended_desc), 1211 priv->dma_erx, priv->dma_rx_phy); 1212 goto err_dma; 1213 } 1214 } else { 1215 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize * 1216 sizeof(struct dma_desc), 1217 &priv->dma_rx_phy, 1218 GFP_KERNEL); 1219 if (!priv->dma_rx) 1220 goto err_dma; 1221 1222 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize * 1223 sizeof(struct dma_desc), 1224 &priv->dma_tx_phy, 1225 GFP_KERNEL); 1226 if (!priv->dma_tx) { 1227 dma_free_coherent(priv->device, priv->dma_rx_size * 1228 sizeof(struct dma_desc), 1229 priv->dma_rx, priv->dma_rx_phy); 1230 goto err_dma; 1231 } 1232 } 1233 1234 return 0; 1235 1236err_dma: 1237 kfree(priv->tx_skbuff); 1238err_tx_skbuff: 1239 kfree(priv->tx_skbuff_dma); 1240err_tx_skbuff_dma: 1241 kfree(priv->rx_skbuff); 1242err_rx_skbuff: 1243 kfree(priv->rx_skbuff_dma); 1244 return ret; 1245} 1246 1247static void free_dma_desc_resources(struct stmmac_priv *priv) 1248{ 1249 /* Release the DMA TX/RX socket buffers */ 1250 dma_free_rx_skbufs(priv); 1251 dma_free_tx_skbufs(priv); 1252 1253 /* Free DMA regions of consistent memory previously allocated */ 1254 if (!priv->extend_desc) { 1255 dma_free_coherent(priv->device, 1256 priv->dma_tx_size * sizeof(struct dma_desc), 1257 priv->dma_tx, priv->dma_tx_phy); 1258 dma_free_coherent(priv->device, 1259 priv->dma_rx_size * sizeof(struct dma_desc), 1260 priv->dma_rx, priv->dma_rx_phy); 1261 } else { 1262 dma_free_coherent(priv->device, priv->dma_tx_size * 1263 sizeof(struct dma_extended_desc), 1264 priv->dma_etx, priv->dma_tx_phy); 1265 dma_free_coherent(priv->device, priv->dma_rx_size * 1266 sizeof(struct dma_extended_desc), 1267 priv->dma_erx, priv->dma_rx_phy); 1268 } 1269 kfree(priv->rx_skbuff_dma); 1270 kfree(priv->rx_skbuff); 1271 kfree(priv->tx_skbuff_dma); 1272 kfree(priv->tx_skbuff); 1273} 1274 1275/** 1276 * stmmac_dma_operation_mode - HW DMA operation mode 1277 * @priv: driver private structure 1278 * Description: it is used for configuring the DMA operation mode register in 1279 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1280 */ 1281static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1282{ 1283 int rxfifosz = priv->plat->rx_fifo_size; 1284 1285 if (priv->plat->force_thresh_dma_mode) 1286 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz); 1287 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1288 /* 1289 * In case of GMAC, SF mode can be enabled 1290 * to perform the TX COE in HW. This depends on: 1291 * 1) TX COE if actually supported 1292 * 2) There is no bugged Jumbo frame support 1293 * that needs to not insert csum in the TDES. 1294 */ 1295 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE, 1296 rxfifosz); 1297 priv->xstats.threshold = SF_DMA_MODE; 1298 } else 1299 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE, 1300 rxfifosz); 1301} 1302 1303/** 1304 * stmmac_tx_clean - to manage the transmission completion 1305 * @priv: driver private structure 1306 * Description: it reclaims the transmit resources after transmission completes. 1307 */ 1308static void stmmac_tx_clean(struct stmmac_priv *priv) 1309{ 1310 unsigned int txsize = priv->dma_tx_size; 1311 unsigned int bytes_compl = 0, pkts_compl = 0; 1312 1313 spin_lock(&priv->tx_lock); 1314 1315 priv->xstats.tx_clean++; 1316 1317 while (priv->dirty_tx != priv->cur_tx) { 1318 int last; 1319 unsigned int entry = priv->dirty_tx % txsize; 1320 struct sk_buff *skb = priv->tx_skbuff[entry]; 1321 struct dma_desc *p; 1322 1323 if (priv->extend_desc) 1324 p = (struct dma_desc *)(priv->dma_etx + entry); 1325 else 1326 p = priv->dma_tx + entry; 1327 1328 /* Check if the descriptor is owned by the DMA. */ 1329 if (priv->hw->desc->get_tx_owner(p)) 1330 break; 1331 1332 /* Verify tx error by looking at the last segment. */ 1333 last = priv->hw->desc->get_tx_ls(p); 1334 if (likely(last)) { 1335 int tx_error = 1336 priv->hw->desc->tx_status(&priv->dev->stats, 1337 &priv->xstats, p, 1338 priv->ioaddr); 1339 if (likely(tx_error == 0)) { 1340 priv->dev->stats.tx_packets++; 1341 priv->xstats.tx_pkt_n++; 1342 } else 1343 priv->dev->stats.tx_errors++; 1344 1345 stmmac_get_tx_hwtstamp(priv, entry, skb); 1346 } 1347 if (netif_msg_tx_done(priv)) 1348 pr_debug("%s: curr %d, dirty %d\n", __func__, 1349 priv->cur_tx, priv->dirty_tx); 1350 1351 if (likely(priv->tx_skbuff_dma[entry].buf)) { 1352 if (priv->tx_skbuff_dma[entry].map_as_page) 1353 dma_unmap_page(priv->device, 1354 priv->tx_skbuff_dma[entry].buf, 1355 priv->hw->desc->get_tx_len(p), 1356 DMA_TO_DEVICE); 1357 else 1358 dma_unmap_single(priv->device, 1359 priv->tx_skbuff_dma[entry].buf, 1360 priv->hw->desc->get_tx_len(p), 1361 DMA_TO_DEVICE); 1362 priv->tx_skbuff_dma[entry].buf = 0; 1363 priv->tx_skbuff_dma[entry].map_as_page = false; 1364 } 1365 priv->hw->mode->clean_desc3(priv, p); 1366 1367 if (likely(skb != NULL)) { 1368 pkts_compl++; 1369 bytes_compl += skb->len; 1370 dev_consume_skb_any(skb); 1371 priv->tx_skbuff[entry] = NULL; 1372 } 1373 1374 priv->hw->desc->release_tx_desc(p, priv->mode); 1375 1376 priv->dirty_tx++; 1377 } 1378 1379 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl); 1380 1381 if (unlikely(netif_queue_stopped(priv->dev) && 1382 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) { 1383 netif_tx_lock(priv->dev); 1384 if (netif_queue_stopped(priv->dev) && 1385 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) { 1386 if (netif_msg_tx_done(priv)) 1387 pr_debug("%s: restart transmit\n", __func__); 1388 netif_wake_queue(priv->dev); 1389 } 1390 netif_tx_unlock(priv->dev); 1391 } 1392 1393 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1394 stmmac_enable_eee_mode(priv); 1395 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1396 } 1397 spin_unlock(&priv->tx_lock); 1398} 1399 1400static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv) 1401{ 1402 priv->hw->dma->enable_dma_irq(priv->ioaddr); 1403} 1404 1405static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv) 1406{ 1407 priv->hw->dma->disable_dma_irq(priv->ioaddr); 1408} 1409 1410/** 1411 * stmmac_tx_err - to manage the tx error 1412 * @priv: driver private structure 1413 * Description: it cleans the descriptors and restarts the transmission 1414 * in case of transmission errors. 1415 */ 1416static void stmmac_tx_err(struct stmmac_priv *priv) 1417{ 1418 int i; 1419 int txsize = priv->dma_tx_size; 1420 netif_stop_queue(priv->dev); 1421 1422 priv->hw->dma->stop_tx(priv->ioaddr); 1423 dma_free_tx_skbufs(priv); 1424 for (i = 0; i < txsize; i++) 1425 if (priv->extend_desc) 1426 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 1427 priv->mode, 1428 (i == txsize - 1)); 1429 else 1430 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 1431 priv->mode, 1432 (i == txsize - 1)); 1433 priv->dirty_tx = 0; 1434 priv->cur_tx = 0; 1435 netdev_reset_queue(priv->dev); 1436 priv->hw->dma->start_tx(priv->ioaddr); 1437 1438 priv->dev->stats.tx_errors++; 1439 netif_wake_queue(priv->dev); 1440} 1441 1442/** 1443 * stmmac_dma_interrupt - DMA ISR 1444 * @priv: driver private structure 1445 * Description: this is the DMA ISR. It is called by the main ISR. 1446 * It calls the dwmac dma routine and schedule poll method in case of some 1447 * work can be done. 1448 */ 1449static void stmmac_dma_interrupt(struct stmmac_priv *priv) 1450{ 1451 int status; 1452 int rxfifosz = priv->plat->rx_fifo_size; 1453 1454 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats); 1455 if (likely((status & handle_rx)) || (status & handle_tx)) { 1456 if (likely(napi_schedule_prep(&priv->napi))) { 1457 stmmac_disable_dma_irq(priv); 1458 __napi_schedule(&priv->napi); 1459 } 1460 } 1461 if (unlikely(status & tx_hard_error_bump_tc)) { 1462 /* Try to bump up the dma threshold on this failure */ 1463 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 1464 (tc <= 256)) { 1465 tc += 64; 1466 if (priv->plat->force_thresh_dma_mode) 1467 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, 1468 rxfifosz); 1469 else 1470 priv->hw->dma->dma_mode(priv->ioaddr, tc, 1471 SF_DMA_MODE, rxfifosz); 1472 priv->xstats.threshold = tc; 1473 } 1474 } else if (unlikely(status == tx_hard_error)) 1475 stmmac_tx_err(priv); 1476} 1477 1478/** 1479 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 1480 * @priv: driver private structure 1481 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 1482 */ 1483static void stmmac_mmc_setup(struct stmmac_priv *priv) 1484{ 1485 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 1486 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 1487 1488 dwmac_mmc_intr_all_mask(priv->ioaddr); 1489 1490 if (priv->dma_cap.rmon) { 1491 dwmac_mmc_ctrl(priv->ioaddr, mode); 1492 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 1493 } else 1494 pr_info(" No MAC Management Counters available\n"); 1495} 1496 1497/** 1498 * stmmac_get_synopsys_id - return the SYINID. 1499 * @priv: driver private structure 1500 * Description: this simple function is to decode and return the SYINID 1501 * starting from the HW core register. 1502 */ 1503static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv) 1504{ 1505 u32 hwid = priv->hw->synopsys_uid; 1506 1507 /* Check Synopsys Id (not available on old chips) */ 1508 if (likely(hwid)) { 1509 u32 uid = ((hwid & 0x0000ff00) >> 8); 1510 u32 synid = (hwid & 0x000000ff); 1511 1512 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n", 1513 uid, synid); 1514 1515 return synid; 1516 } 1517 return 0; 1518} 1519 1520/** 1521 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors 1522 * @priv: driver private structure 1523 * Description: select the Enhanced/Alternate or Normal descriptors. 1524 * In case of Enhanced/Alternate, it checks if the extended descriptors are 1525 * supported by the HW capability register. 1526 */ 1527static void stmmac_selec_desc_mode(struct stmmac_priv *priv) 1528{ 1529 if (priv->plat->enh_desc) { 1530 pr_info(" Enhanced/Alternate descriptors\n"); 1531 1532 /* GMAC older than 3.50 has no extended descriptors */ 1533 if (priv->synopsys_id >= DWMAC_CORE_3_50) { 1534 pr_info("\tEnabled extended descriptors\n"); 1535 priv->extend_desc = 1; 1536 } else 1537 pr_warn("Extended descriptors not supported\n"); 1538 1539 priv->hw->desc = &enh_desc_ops; 1540 } else { 1541 pr_info(" Normal descriptors\n"); 1542 priv->hw->desc = &ndesc_ops; 1543 } 1544} 1545 1546/** 1547 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 1548 * @priv: driver private structure 1549 * Description: 1550 * new GMAC chip generations have a new register to indicate the 1551 * presence of the optional feature/functions. 1552 * This can be also used to override the value passed through the 1553 * platform and necessary for old MAC10/100 and GMAC chips. 1554 */ 1555static int stmmac_get_hw_features(struct stmmac_priv *priv) 1556{ 1557 u32 hw_cap = 0; 1558 1559 if (priv->hw->dma->get_hw_feature) { 1560 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr); 1561 1562 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL); 1563 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1; 1564 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2; 1565 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4; 1566 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5; 1567 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6; 1568 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8; 1569 priv->dma_cap.pmt_remote_wake_up = 1570 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9; 1571 priv->dma_cap.pmt_magic_frame = 1572 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10; 1573 /* MMC */ 1574 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11; 1575 /* IEEE 1588-2002 */ 1576 priv->dma_cap.time_stamp = 1577 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12; 1578 /* IEEE 1588-2008 */ 1579 priv->dma_cap.atime_stamp = 1580 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13; 1581 /* 802.3az - Energy-Efficient Ethernet (EEE) */ 1582 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14; 1583 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15; 1584 /* TX and RX csum */ 1585 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16; 1586 priv->dma_cap.rx_coe_type1 = 1587 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17; 1588 priv->dma_cap.rx_coe_type2 = 1589 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18; 1590 priv->dma_cap.rxfifo_over_2048 = 1591 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19; 1592 /* TX and RX number of channels */ 1593 priv->dma_cap.number_rx_channel = 1594 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20; 1595 priv->dma_cap.number_tx_channel = 1596 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22; 1597 /* Alternate (enhanced) DESC mode */ 1598 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24; 1599 } 1600 1601 return hw_cap; 1602} 1603 1604/** 1605 * stmmac_check_ether_addr - check if the MAC addr is valid 1606 * @priv: driver private structure 1607 * Description: 1608 * it is to verify if the MAC address is valid, in case of failures it 1609 * generates a random MAC address 1610 */ 1611static void stmmac_check_ether_addr(struct stmmac_priv *priv) 1612{ 1613 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 1614 priv->hw->mac->get_umac_addr(priv->hw, 1615 priv->dev->dev_addr, 0); 1616 if (!is_valid_ether_addr(priv->dev->dev_addr)) 1617 eth_hw_addr_random(priv->dev); 1618 pr_info("%s: device MAC address %pM\n", priv->dev->name, 1619 priv->dev->dev_addr); 1620 } 1621} 1622 1623/** 1624 * stmmac_init_dma_engine - DMA init. 1625 * @priv: driver private structure 1626 * Description: 1627 * It inits the DMA invoking the specific MAC/GMAC callback. 1628 * Some DMA parameters can be passed from the platform; 1629 * in case of these are not passed a default is kept for the MAC or GMAC. 1630 */ 1631static int stmmac_init_dma_engine(struct stmmac_priv *priv) 1632{ 1633 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0; 1634 int mixed_burst = 0; 1635 int atds = 0; 1636 1637 if (priv->plat->dma_cfg) { 1638 pbl = priv->plat->dma_cfg->pbl; 1639 fixed_burst = priv->plat->dma_cfg->fixed_burst; 1640 mixed_burst = priv->plat->dma_cfg->mixed_burst; 1641 burst_len = priv->plat->dma_cfg->burst_len; 1642 } 1643 1644 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 1645 atds = 1; 1646 1647 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst, 1648 burst_len, priv->dma_tx_phy, 1649 priv->dma_rx_phy, atds); 1650} 1651 1652/** 1653 * stmmac_tx_timer - mitigation sw timer for tx. 1654 * @data: data pointer 1655 * Description: 1656 * This is the timer handler to directly invoke the stmmac_tx_clean. 1657 */ 1658static void stmmac_tx_timer(unsigned long data) 1659{ 1660 struct stmmac_priv *priv = (struct stmmac_priv *)data; 1661 1662 stmmac_tx_clean(priv); 1663} 1664 1665/** 1666 * stmmac_init_tx_coalesce - init tx mitigation options. 1667 * @priv: driver private structure 1668 * Description: 1669 * This inits the transmit coalesce parameters: i.e. timer rate, 1670 * timer handler and default threshold used for enabling the 1671 * interrupt on completion bit. 1672 */ 1673static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 1674{ 1675 priv->tx_coal_frames = STMMAC_TX_FRAMES; 1676 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 1677 init_timer(&priv->txtimer); 1678 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); 1679 priv->txtimer.data = (unsigned long)priv; 1680 priv->txtimer.function = stmmac_tx_timer; 1681 add_timer(&priv->txtimer); 1682} 1683 1684/** 1685 * stmmac_hw_setup - setup mac in a usable state. 1686 * @dev : pointer to the device structure. 1687 * Description: 1688 * this is the main function to setup the HW in a usable state because the 1689 * dma engine is reset, the core registers are configured (e.g. AXI, 1690 * Checksum features, timers). The DMA is ready to start receiving and 1691 * transmitting. 1692 * Return value: 1693 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1694 * file on failure. 1695 */ 1696static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 1697{ 1698 struct stmmac_priv *priv = netdev_priv(dev); 1699 int ret; 1700 1701 /* DMA initialization and SW reset */ 1702 ret = stmmac_init_dma_engine(priv); 1703 if (ret < 0) { 1704 pr_err("%s: DMA engine initialization failed\n", __func__); 1705 return ret; 1706 } 1707 1708 /* Copy the MAC addr into the HW */ 1709 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0); 1710 1711 /* If required, perform hw setup of the bus. */ 1712 if (priv->plat->bus_setup) 1713 priv->plat->bus_setup(priv->ioaddr); 1714 1715 /* Initialize the MAC Core */ 1716 priv->hw->mac->core_init(priv->hw, dev->mtu); 1717 1718 ret = priv->hw->mac->rx_ipc(priv->hw); 1719 if (!ret) { 1720 pr_warn(" RX IPC Checksum Offload disabled\n"); 1721 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 1722 priv->hw->rx_csum = 0; 1723 } 1724 1725 /* Enable the MAC Rx/Tx */ 1726 stmmac_set_mac(priv->ioaddr, true); 1727 1728 /* Set the HW DMA mode and the COE */ 1729 stmmac_dma_operation_mode(priv); 1730 1731 stmmac_mmc_setup(priv); 1732 1733 if (init_ptp) { 1734 ret = stmmac_init_ptp(priv); 1735 if (ret && ret != -EOPNOTSUPP) 1736 pr_warn("%s: failed PTP initialisation\n", __func__); 1737 } 1738 1739#ifdef CONFIG_DEBUG_FS 1740 ret = stmmac_init_fs(dev); 1741 if (ret < 0) 1742 pr_warn("%s: failed debugFS registration\n", __func__); 1743#endif 1744 /* Start the ball rolling... */ 1745 pr_debug("%s: DMA RX/TX processes started...\n", dev->name); 1746 priv->hw->dma->start_tx(priv->ioaddr); 1747 priv->hw->dma->start_rx(priv->ioaddr); 1748 1749 /* Dump DMA/MAC registers */ 1750 if (netif_msg_hw(priv)) { 1751 priv->hw->mac->dump_regs(priv->hw); 1752 priv->hw->dma->dump_regs(priv->ioaddr); 1753 } 1754 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 1755 1756 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1757 priv->rx_riwt = MAX_DMA_RIWT; 1758 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT); 1759 } 1760 1761 if (priv->pcs && priv->hw->mac->ctrl_ane) 1762 priv->hw->mac->ctrl_ane(priv->hw, 0); 1763 1764 return 0; 1765} 1766 1767/** 1768 * stmmac_open - open entry point of the driver 1769 * @dev : pointer to the device structure. 1770 * Description: 1771 * This function is the open entry point of the driver. 1772 * Return value: 1773 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1774 * file on failure. 1775 */ 1776static int stmmac_open(struct net_device *dev) 1777{ 1778 struct stmmac_priv *priv = netdev_priv(dev); 1779 int ret; 1780 1781 stmmac_check_ether_addr(priv); 1782 1783 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 1784 priv->pcs != STMMAC_PCS_RTBI) { 1785 ret = stmmac_init_phy(dev); 1786 if (ret) { 1787 pr_err("%s: Cannot attach to PHY (error: %d)\n", 1788 __func__, ret); 1789 return ret; 1790 } 1791 } 1792 1793 /* Extra statistics */ 1794 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 1795 priv->xstats.threshold = tc; 1796 1797 /* Create and initialize the TX/RX descriptors chains. */ 1798 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize); 1799 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize); 1800 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 1801 1802 ret = alloc_dma_desc_resources(priv); 1803 if (ret < 0) { 1804 pr_err("%s: DMA descriptors allocation failed\n", __func__); 1805 goto dma_desc_error; 1806 } 1807 1808 ret = init_dma_desc_rings(dev, GFP_KERNEL); 1809 if (ret < 0) { 1810 pr_err("%s: DMA descriptors initialization failed\n", __func__); 1811 goto init_error; 1812 } 1813 1814 ret = stmmac_hw_setup(dev, true); 1815 if (ret < 0) { 1816 pr_err("%s: Hw setup failed\n", __func__); 1817 goto init_error; 1818 } 1819 1820 stmmac_init_tx_coalesce(priv); 1821 1822 if (priv->phydev) 1823 phy_start(priv->phydev); 1824 1825 /* Request the IRQ lines */ 1826 ret = request_irq(dev->irq, stmmac_interrupt, 1827 IRQF_SHARED, dev->name, dev); 1828 if (unlikely(ret < 0)) { 1829 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n", 1830 __func__, dev->irq, ret); 1831 goto init_error; 1832 } 1833 1834 /* Request the Wake IRQ in case of another line is used for WoL */ 1835 if (priv->wol_irq != dev->irq) { 1836 ret = request_irq(priv->wol_irq, stmmac_interrupt, 1837 IRQF_SHARED, dev->name, dev); 1838 if (unlikely(ret < 0)) { 1839 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n", 1840 __func__, priv->wol_irq, ret); 1841 goto wolirq_error; 1842 } 1843 } 1844 1845 /* Request the IRQ lines */ 1846 if (priv->lpi_irq > 0) { 1847 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 1848 dev->name, dev); 1849 if (unlikely(ret < 0)) { 1850 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1851 __func__, priv->lpi_irq, ret); 1852 goto lpiirq_error; 1853 } 1854 } 1855 1856 napi_enable(&priv->napi); 1857 netif_start_queue(dev); 1858 1859 return 0; 1860 1861lpiirq_error: 1862 if (priv->wol_irq != dev->irq) 1863 free_irq(priv->wol_irq, dev); 1864wolirq_error: 1865 free_irq(dev->irq, dev); 1866 1867init_error: 1868 free_dma_desc_resources(priv); 1869dma_desc_error: 1870 if (priv->phydev) 1871 phy_disconnect(priv->phydev); 1872 1873 return ret; 1874} 1875 1876/** 1877 * stmmac_release - close entry point of the driver 1878 * @dev : device pointer. 1879 * Description: 1880 * This is the stop entry point of the driver. 1881 */ 1882static int stmmac_release(struct net_device *dev) 1883{ 1884 struct stmmac_priv *priv = netdev_priv(dev); 1885 1886 if (priv->eee_enabled) 1887 del_timer_sync(&priv->eee_ctrl_timer); 1888 1889 /* Stop and disconnect the PHY */ 1890 if (priv->phydev) { 1891 phy_stop(priv->phydev); 1892 phy_disconnect(priv->phydev); 1893 priv->phydev = NULL; 1894 } 1895 1896 netif_stop_queue(dev); 1897 1898 napi_disable(&priv->napi); 1899 1900 del_timer_sync(&priv->txtimer); 1901 1902 /* Free the IRQ lines */ 1903 free_irq(dev->irq, dev); 1904 if (priv->wol_irq != dev->irq) 1905 free_irq(priv->wol_irq, dev); 1906 if (priv->lpi_irq > 0) 1907 free_irq(priv->lpi_irq, dev); 1908 1909 /* Stop TX/RX DMA and clear the descriptors */ 1910 priv->hw->dma->stop_tx(priv->ioaddr); 1911 priv->hw->dma->stop_rx(priv->ioaddr); 1912 1913 /* Release and free the Rx/Tx resources */ 1914 free_dma_desc_resources(priv); 1915 1916 /* Disable the MAC Rx/Tx */ 1917 stmmac_set_mac(priv->ioaddr, false); 1918 1919 netif_carrier_off(dev); 1920 1921#ifdef CONFIG_DEBUG_FS 1922 stmmac_exit_fs(dev); 1923#endif 1924 1925 stmmac_release_ptp(priv); 1926 1927 return 0; 1928} 1929 1930/** 1931 * stmmac_xmit - Tx entry point of the driver 1932 * @skb : the socket buffer 1933 * @dev : device pointer 1934 * Description : this is the tx entry point of the driver. 1935 * It programs the chain or the ring and supports oversized frames 1936 * and SG feature. 1937 */ 1938static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 1939{ 1940 struct stmmac_priv *priv = netdev_priv(dev); 1941 unsigned int txsize = priv->dma_tx_size; 1942 unsigned int entry; 1943 int i, csum_insertion = 0, is_jumbo = 0; 1944 int nfrags = skb_shinfo(skb)->nr_frags; 1945 struct dma_desc *desc, *first; 1946 unsigned int nopaged_len = skb_headlen(skb); 1947 unsigned int enh_desc = priv->plat->enh_desc; 1948 1949 spin_lock(&priv->tx_lock); 1950 1951 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) { 1952 spin_unlock(&priv->tx_lock); 1953 if (!netif_queue_stopped(dev)) { 1954 netif_stop_queue(dev); 1955 /* This is a hard error, log it. */ 1956 pr_err("%s: Tx Ring full when queue awake\n", __func__); 1957 } 1958 return NETDEV_TX_BUSY; 1959 } 1960 1961 if (priv->tx_path_in_lpi_mode) 1962 stmmac_disable_eee_mode(priv); 1963 1964 entry = priv->cur_tx % txsize; 1965 1966 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 1967 1968 if (priv->extend_desc) 1969 desc = (struct dma_desc *)(priv->dma_etx + entry); 1970 else 1971 desc = priv->dma_tx + entry; 1972 1973 first = desc; 1974 1975 /* To program the descriptors according to the size of the frame */ 1976 if (enh_desc) 1977 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc); 1978 1979 if (likely(!is_jumbo)) { 1980 desc->des2 = dma_map_single(priv->device, skb->data, 1981 nopaged_len, DMA_TO_DEVICE); 1982 if (dma_mapping_error(priv->device, desc->des2)) 1983 goto dma_map_err; 1984 priv->tx_skbuff_dma[entry].buf = desc->des2; 1985 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len, 1986 csum_insertion, priv->mode); 1987 } else { 1988 desc = first; 1989 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion); 1990 if (unlikely(entry < 0)) 1991 goto dma_map_err; 1992 } 1993 1994 for (i = 0; i < nfrags; i++) { 1995 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1996 int len = skb_frag_size(frag); 1997 1998 priv->tx_skbuff[entry] = NULL; 1999 entry = (++priv->cur_tx) % txsize; 2000 if (priv->extend_desc) 2001 desc = (struct dma_desc *)(priv->dma_etx + entry); 2002 else 2003 desc = priv->dma_tx + entry; 2004 2005 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len, 2006 DMA_TO_DEVICE); 2007 if (dma_mapping_error(priv->device, desc->des2)) 2008 goto dma_map_err; /* should reuse desc w/o issues */ 2009 2010 priv->tx_skbuff_dma[entry].buf = desc->des2; 2011 priv->tx_skbuff_dma[entry].map_as_page = true; 2012 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion, 2013 priv->mode); 2014 wmb(); 2015 priv->hw->desc->set_tx_owner(desc); 2016 wmb(); 2017 } 2018 2019 priv->tx_skbuff[entry] = skb; 2020 2021 /* Finalize the latest segment. */ 2022 priv->hw->desc->close_tx_desc(desc); 2023 2024 wmb(); 2025 /* According to the coalesce parameter the IC bit for the latest 2026 * segment could be reset and the timer re-started to invoke the 2027 * stmmac_tx function. This approach takes care about the fragments. 2028 */ 2029 priv->tx_count_frames += nfrags + 1; 2030 if (priv->tx_coal_frames > priv->tx_count_frames) { 2031 priv->hw->desc->clear_tx_ic(desc); 2032 priv->xstats.tx_reset_ic_bit++; 2033 mod_timer(&priv->txtimer, 2034 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2035 } else 2036 priv->tx_count_frames = 0; 2037 2038 /* To avoid raise condition */ 2039 priv->hw->desc->set_tx_owner(first); 2040 wmb(); 2041 2042 priv->cur_tx++; 2043 2044 if (netif_msg_pktdata(priv)) { 2045 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d", 2046 __func__, (priv->cur_tx % txsize), 2047 (priv->dirty_tx % txsize), entry, first, nfrags); 2048 2049 if (priv->extend_desc) 2050 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 2051 else 2052 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 2053 2054 pr_debug(">>> frame to be transmitted: "); 2055 print_pkt(skb->data, skb->len); 2056 } 2057 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { 2058 if (netif_msg_hw(priv)) 2059 pr_debug("%s: stop transmitted packets\n", __func__); 2060 netif_stop_queue(dev); 2061 } 2062 2063 dev->stats.tx_bytes += skb->len; 2064 2065 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2066 priv->hwts_tx_en)) { 2067 /* declare that device is doing timestamping */ 2068 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2069 priv->hw->desc->enable_tx_timestamp(first); 2070 } 2071 2072 if (!priv->hwts_tx_en) 2073 skb_tx_timestamp(skb); 2074 2075 netdev_sent_queue(dev, skb->len); 2076 priv->hw->dma->enable_dma_transmission(priv->ioaddr); 2077 2078 spin_unlock(&priv->tx_lock); 2079 return NETDEV_TX_OK; 2080 2081dma_map_err: 2082 spin_unlock(&priv->tx_lock); 2083 dev_err(priv->device, "Tx dma map failed\n"); 2084 dev_kfree_skb(skb); 2085 priv->dev->stats.tx_dropped++; 2086 return NETDEV_TX_OK; 2087} 2088 2089static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 2090{ 2091 struct ethhdr *ehdr; 2092 u16 vlanid; 2093 2094 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) == 2095 NETIF_F_HW_VLAN_CTAG_RX && 2096 !__vlan_get_tag(skb, &vlanid)) { 2097 /* pop the vlan tag */ 2098 ehdr = (struct ethhdr *)skb->data; 2099 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2); 2100 skb_pull(skb, VLAN_HLEN); 2101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid); 2102 } 2103} 2104 2105 2106/** 2107 * stmmac_rx_refill - refill used skb preallocated buffers 2108 * @priv: driver private structure 2109 * Description : this is to reallocate the skb for the reception process 2110 * that is based on zero-copy. 2111 */ 2112static inline void stmmac_rx_refill(struct stmmac_priv *priv) 2113{ 2114 unsigned int rxsize = priv->dma_rx_size; 2115 int bfsize = priv->dma_buf_sz; 2116 2117 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) { 2118 unsigned int entry = priv->dirty_rx % rxsize; 2119 struct dma_desc *p; 2120 2121 if (priv->extend_desc) 2122 p = (struct dma_desc *)(priv->dma_erx + entry); 2123 else 2124 p = priv->dma_rx + entry; 2125 2126 if (likely(priv->rx_skbuff[entry] == NULL)) { 2127 struct sk_buff *skb; 2128 2129 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 2130 2131 if (unlikely(skb == NULL)) 2132 break; 2133 2134 priv->rx_skbuff[entry] = skb; 2135 priv->rx_skbuff_dma[entry] = 2136 dma_map_single(priv->device, skb->data, bfsize, 2137 DMA_FROM_DEVICE); 2138 if (dma_mapping_error(priv->device, 2139 priv->rx_skbuff_dma[entry])) { 2140 dev_err(priv->device, "Rx dma map failed\n"); 2141 dev_kfree_skb(skb); 2142 break; 2143 } 2144 p->des2 = priv->rx_skbuff_dma[entry]; 2145 2146 priv->hw->mode->refill_desc3(priv, p); 2147 2148 if (netif_msg_rx_status(priv)) 2149 pr_debug("\trefill entry #%d\n", entry); 2150 } 2151 wmb(); 2152 priv->hw->desc->set_rx_owner(p); 2153 wmb(); 2154 } 2155} 2156 2157/** 2158 * stmmac_rx - manage the receive process 2159 * @priv: driver private structure 2160 * @limit: napi bugget. 2161 * Description : this the function called by the napi poll method. 2162 * It gets all the frames inside the ring. 2163 */ 2164static int stmmac_rx(struct stmmac_priv *priv, int limit) 2165{ 2166 unsigned int rxsize = priv->dma_rx_size; 2167 unsigned int entry = priv->cur_rx % rxsize; 2168 unsigned int next_entry; 2169 unsigned int count = 0; 2170 int coe = priv->hw->rx_csum; 2171 2172 if (netif_msg_rx_status(priv)) { 2173 pr_debug("%s: descriptor ring:\n", __func__); 2174 if (priv->extend_desc) 2175 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 2176 else 2177 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 2178 } 2179 while (count < limit) { 2180 int status; 2181 struct dma_desc *p; 2182 2183 if (priv->extend_desc) 2184 p = (struct dma_desc *)(priv->dma_erx + entry); 2185 else 2186 p = priv->dma_rx + entry; 2187 2188 if (priv->hw->desc->get_rx_owner(p)) 2189 break; 2190 2191 count++; 2192 2193 next_entry = (++priv->cur_rx) % rxsize; 2194 if (priv->extend_desc) 2195 prefetch(priv->dma_erx + next_entry); 2196 else 2197 prefetch(priv->dma_rx + next_entry); 2198 2199 /* read the status of the incoming frame */ 2200 status = priv->hw->desc->rx_status(&priv->dev->stats, 2201 &priv->xstats, p); 2202 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status)) 2203 priv->hw->desc->rx_extended_status(&priv->dev->stats, 2204 &priv->xstats, 2205 priv->dma_erx + 2206 entry); 2207 if (unlikely(status == discard_frame)) { 2208 priv->dev->stats.rx_errors++; 2209 if (priv->hwts_rx_en && !priv->extend_desc) { 2210 /* DESC2 & DESC3 will be overwitten by device 2211 * with timestamp value, hence reinitialize 2212 * them in stmmac_rx_refill() function so that 2213 * device can reuse it. 2214 */ 2215 priv->rx_skbuff[entry] = NULL; 2216 dma_unmap_single(priv->device, 2217 priv->rx_skbuff_dma[entry], 2218 priv->dma_buf_sz, 2219 DMA_FROM_DEVICE); 2220 } 2221 } else { 2222 struct sk_buff *skb; 2223 int frame_len; 2224 2225 frame_len = priv->hw->desc->get_rx_frame_len(p, coe); 2226 2227 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 2228 * Type frames (LLC/LLC-SNAP) 2229 */ 2230 if (unlikely(status != llc_snap)) 2231 frame_len -= ETH_FCS_LEN; 2232 2233 if (netif_msg_rx_status(priv)) { 2234 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n", 2235 p, entry, p->des2); 2236 if (frame_len > ETH_FRAME_LEN) 2237 pr_debug("\tframe size %d, COE: %d\n", 2238 frame_len, status); 2239 } 2240 skb = priv->rx_skbuff[entry]; 2241 if (unlikely(!skb)) { 2242 pr_err("%s: Inconsistent Rx descriptor chain\n", 2243 priv->dev->name); 2244 priv->dev->stats.rx_dropped++; 2245 break; 2246 } 2247 prefetch(skb->data - NET_IP_ALIGN); 2248 priv->rx_skbuff[entry] = NULL; 2249 2250 stmmac_get_rx_hwtstamp(priv, entry, skb); 2251 2252 skb_put(skb, frame_len); 2253 dma_unmap_single(priv->device, 2254 priv->rx_skbuff_dma[entry], 2255 priv->dma_buf_sz, DMA_FROM_DEVICE); 2256 2257 if (netif_msg_pktdata(priv)) { 2258 pr_debug("frame received (%dbytes)", frame_len); 2259 print_pkt(skb->data, frame_len); 2260 } 2261 2262 stmmac_rx_vlan(priv->dev, skb); 2263 2264 skb->protocol = eth_type_trans(skb, priv->dev); 2265 2266 if (unlikely(!coe)) 2267 skb_checksum_none_assert(skb); 2268 else 2269 skb->ip_summed = CHECKSUM_UNNECESSARY; 2270 2271 napi_gro_receive(&priv->napi, skb); 2272 2273 priv->dev->stats.rx_packets++; 2274 priv->dev->stats.rx_bytes += frame_len; 2275 } 2276 entry = next_entry; 2277 } 2278 2279 stmmac_rx_refill(priv); 2280 2281 priv->xstats.rx_pkt_n += count; 2282 2283 return count; 2284} 2285 2286/** 2287 * stmmac_poll - stmmac poll method (NAPI) 2288 * @napi : pointer to the napi structure. 2289 * @budget : maximum number of packets that the current CPU can receive from 2290 * all interfaces. 2291 * Description : 2292 * To look at the incoming frames and clear the tx resources. 2293 */ 2294static int stmmac_poll(struct napi_struct *napi, int budget) 2295{ 2296 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi); 2297 int work_done = 0; 2298 2299 priv->xstats.napi_poll++; 2300 stmmac_tx_clean(priv); 2301 2302 work_done = stmmac_rx(priv, budget); 2303 if (work_done < budget) { 2304 napi_complete(napi); 2305 stmmac_enable_dma_irq(priv); 2306 } 2307 return work_done; 2308} 2309 2310/** 2311 * stmmac_tx_timeout 2312 * @dev : Pointer to net device structure 2313 * Description: this function is called when a packet transmission fails to 2314 * complete within a reasonable time. The driver will mark the error in the 2315 * netdev structure and arrange for the device to be reset to a sane state 2316 * in order to transmit a new packet. 2317 */ 2318static void stmmac_tx_timeout(struct net_device *dev) 2319{ 2320 struct stmmac_priv *priv = netdev_priv(dev); 2321 2322 /* Clear Tx resources and restart transmitting again */ 2323 stmmac_tx_err(priv); 2324} 2325 2326/** 2327 * stmmac_set_rx_mode - entry point for multicast addressing 2328 * @dev : pointer to the device structure 2329 * Description: 2330 * This function is a driver entry point which gets called by the kernel 2331 * whenever multicast addresses must be enabled/disabled. 2332 * Return value: 2333 * void. 2334 */ 2335static void stmmac_set_rx_mode(struct net_device *dev) 2336{ 2337 struct stmmac_priv *priv = netdev_priv(dev); 2338 2339 priv->hw->mac->set_filter(priv->hw, dev); 2340} 2341 2342/** 2343 * stmmac_change_mtu - entry point to change MTU size for the device. 2344 * @dev : device pointer. 2345 * @new_mtu : the new MTU size for the device. 2346 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 2347 * to drive packet transmission. Ethernet has an MTU of 1500 octets 2348 * (ETH_DATA_LEN). This value can be changed with ifconfig. 2349 * Return value: 2350 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2351 * file on failure. 2352 */ 2353static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 2354{ 2355 struct stmmac_priv *priv = netdev_priv(dev); 2356 int max_mtu; 2357 2358 if (netif_running(dev)) { 2359 pr_err("%s: must be stopped to change its MTU\n", dev->name); 2360 return -EBUSY; 2361 } 2362 2363 if (priv->plat->enh_desc) 2364 max_mtu = JUMBO_LEN; 2365 else 2366 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 2367 2368 if (priv->plat->maxmtu < max_mtu) 2369 max_mtu = priv->plat->maxmtu; 2370 2371 if ((new_mtu < 46) || (new_mtu > max_mtu)) { 2372 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu); 2373 return -EINVAL; 2374 } 2375 2376 dev->mtu = new_mtu; 2377 netdev_update_features(dev); 2378 2379 return 0; 2380} 2381 2382static netdev_features_t stmmac_fix_features(struct net_device *dev, 2383 netdev_features_t features) 2384{ 2385 struct stmmac_priv *priv = netdev_priv(dev); 2386 2387 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 2388 features &= ~NETIF_F_RXCSUM; 2389 2390 if (!priv->plat->tx_coe) 2391 features &= ~NETIF_F_ALL_CSUM; 2392 2393 /* Some GMAC devices have a bugged Jumbo frame support that 2394 * needs to have the Tx COE disabled for oversized frames 2395 * (due to limited buffer sizes). In this case we disable 2396 * the TX csum insertionin the TDES and not use SF. 2397 */ 2398 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 2399 features &= ~NETIF_F_ALL_CSUM; 2400 2401 return features; 2402} 2403 2404static int stmmac_set_features(struct net_device *netdev, 2405 netdev_features_t features) 2406{ 2407 struct stmmac_priv *priv = netdev_priv(netdev); 2408 2409 /* Keep the COE Type in case of csum is supporting */ 2410 if (features & NETIF_F_RXCSUM) 2411 priv->hw->rx_csum = priv->plat->rx_coe; 2412 else 2413 priv->hw->rx_csum = 0; 2414 /* No check needed because rx_coe has been set before and it will be 2415 * fixed in case of issue. 2416 */ 2417 priv->hw->mac->rx_ipc(priv->hw); 2418 2419 return 0; 2420} 2421 2422/** 2423 * stmmac_interrupt - main ISR 2424 * @irq: interrupt number. 2425 * @dev_id: to pass the net device pointer. 2426 * Description: this is the main driver interrupt service routine. 2427 * It can call: 2428 * o DMA service routine (to manage incoming frame reception and transmission 2429 * status) 2430 * o Core interrupts to manage: remote wake-up, management counter, LPI 2431 * interrupts. 2432 */ 2433static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 2434{ 2435 struct net_device *dev = (struct net_device *)dev_id; 2436 struct stmmac_priv *priv = netdev_priv(dev); 2437 2438 if (priv->irq_wake) 2439 pm_wakeup_event(priv->device, 0); 2440 2441 if (unlikely(!dev)) { 2442 pr_err("%s: invalid dev pointer\n", __func__); 2443 return IRQ_NONE; 2444 } 2445 2446 /* To handle GMAC own interrupts */ 2447 if (priv->plat->has_gmac) { 2448 int status = priv->hw->mac->host_irq_status(priv->hw, 2449 &priv->xstats); 2450 if (unlikely(status)) { 2451 /* For LPI we need to save the tx status */ 2452 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 2453 priv->tx_path_in_lpi_mode = true; 2454 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 2455 priv->tx_path_in_lpi_mode = false; 2456 } 2457 } 2458 2459 /* To handle DMA interrupts */ 2460 stmmac_dma_interrupt(priv); 2461 2462 return IRQ_HANDLED; 2463} 2464 2465#ifdef CONFIG_NET_POLL_CONTROLLER 2466/* Polling receive - used by NETCONSOLE and other diagnostic tools 2467 * to allow network I/O with interrupts disabled. 2468 */ 2469static void stmmac_poll_controller(struct net_device *dev) 2470{ 2471 disable_irq(dev->irq); 2472 stmmac_interrupt(dev->irq, dev); 2473 enable_irq(dev->irq); 2474} 2475#endif 2476 2477/** 2478 * stmmac_ioctl - Entry point for the Ioctl 2479 * @dev: Device pointer. 2480 * @rq: An IOCTL specefic structure, that can contain a pointer to 2481 * a proprietary structure used to pass information to the driver. 2482 * @cmd: IOCTL command 2483 * Description: 2484 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 2485 */ 2486static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2487{ 2488 struct stmmac_priv *priv = netdev_priv(dev); 2489 int ret = -EOPNOTSUPP; 2490 2491 if (!netif_running(dev)) 2492 return -EINVAL; 2493 2494 switch (cmd) { 2495 case SIOCGMIIPHY: 2496 case SIOCGMIIREG: 2497 case SIOCSMIIREG: 2498 if (!priv->phydev) 2499 return -EINVAL; 2500 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 2501 break; 2502 case SIOCSHWTSTAMP: 2503 ret = stmmac_hwtstamp_ioctl(dev, rq); 2504 break; 2505 default: 2506 break; 2507 } 2508 2509 return ret; 2510} 2511 2512#ifdef CONFIG_DEBUG_FS 2513static struct dentry *stmmac_fs_dir; 2514 2515static void sysfs_display_ring(void *head, int size, int extend_desc, 2516 struct seq_file *seq) 2517{ 2518 int i; 2519 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 2520 struct dma_desc *p = (struct dma_desc *)head; 2521 2522 for (i = 0; i < size; i++) { 2523 u64 x; 2524 if (extend_desc) { 2525 x = *(u64 *) ep; 2526 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2527 i, (unsigned int)virt_to_phys(ep), 2528 (unsigned int)x, (unsigned int)(x >> 32), 2529 ep->basic.des2, ep->basic.des3); 2530 ep++; 2531 } else { 2532 x = *(u64 *) p; 2533 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2534 i, (unsigned int)virt_to_phys(ep), 2535 (unsigned int)x, (unsigned int)(x >> 32), 2536 p->des2, p->des3); 2537 p++; 2538 } 2539 seq_printf(seq, "\n"); 2540 } 2541} 2542 2543static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) 2544{ 2545 struct net_device *dev = seq->private; 2546 struct stmmac_priv *priv = netdev_priv(dev); 2547 unsigned int txsize = priv->dma_tx_size; 2548 unsigned int rxsize = priv->dma_rx_size; 2549 2550 if (priv->extend_desc) { 2551 seq_printf(seq, "Extended RX descriptor ring:\n"); 2552 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq); 2553 seq_printf(seq, "Extended TX descriptor ring:\n"); 2554 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq); 2555 } else { 2556 seq_printf(seq, "RX descriptor ring:\n"); 2557 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq); 2558 seq_printf(seq, "TX descriptor ring:\n"); 2559 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq); 2560 } 2561 2562 return 0; 2563} 2564 2565static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file) 2566{ 2567 return single_open(file, stmmac_sysfs_ring_read, inode->i_private); 2568} 2569 2570static const struct file_operations stmmac_rings_status_fops = { 2571 .owner = THIS_MODULE, 2572 .open = stmmac_sysfs_ring_open, 2573 .read = seq_read, 2574 .llseek = seq_lseek, 2575 .release = single_release, 2576}; 2577 2578static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v) 2579{ 2580 struct net_device *dev = seq->private; 2581 struct stmmac_priv *priv = netdev_priv(dev); 2582 2583 if (!priv->hw_cap_support) { 2584 seq_printf(seq, "DMA HW features not supported\n"); 2585 return 0; 2586 } 2587 2588 seq_printf(seq, "==============================\n"); 2589 seq_printf(seq, "\tDMA HW features\n"); 2590 seq_printf(seq, "==============================\n"); 2591 2592 seq_printf(seq, "\t10/100 Mbps %s\n", 2593 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 2594 seq_printf(seq, "\t1000 Mbps %s\n", 2595 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 2596 seq_printf(seq, "\tHalf duple %s\n", 2597 (priv->dma_cap.half_duplex) ? "Y" : "N"); 2598 seq_printf(seq, "\tHash Filter: %s\n", 2599 (priv->dma_cap.hash_filter) ? "Y" : "N"); 2600 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 2601 (priv->dma_cap.multi_addr) ? "Y" : "N"); 2602 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n", 2603 (priv->dma_cap.pcs) ? "Y" : "N"); 2604 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 2605 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 2606 seq_printf(seq, "\tPMT Remote wake up: %s\n", 2607 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 2608 seq_printf(seq, "\tPMT Magic Frame: %s\n", 2609 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 2610 seq_printf(seq, "\tRMON module: %s\n", 2611 (priv->dma_cap.rmon) ? "Y" : "N"); 2612 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 2613 (priv->dma_cap.time_stamp) ? "Y" : "N"); 2614 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n", 2615 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 2616 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n", 2617 (priv->dma_cap.eee) ? "Y" : "N"); 2618 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 2619 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 2620 (priv->dma_cap.tx_coe) ? "Y" : "N"); 2621 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 2622 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 2623 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 2624 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 2625 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 2626 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 2627 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 2628 priv->dma_cap.number_rx_channel); 2629 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 2630 priv->dma_cap.number_tx_channel); 2631 seq_printf(seq, "\tEnhanced descriptors: %s\n", 2632 (priv->dma_cap.enh_desc) ? "Y" : "N"); 2633 2634 return 0; 2635} 2636 2637static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file) 2638{ 2639 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private); 2640} 2641 2642static const struct file_operations stmmac_dma_cap_fops = { 2643 .owner = THIS_MODULE, 2644 .open = stmmac_sysfs_dma_cap_open, 2645 .read = seq_read, 2646 .llseek = seq_lseek, 2647 .release = single_release, 2648}; 2649 2650static int stmmac_init_fs(struct net_device *dev) 2651{ 2652 struct stmmac_priv *priv = netdev_priv(dev); 2653 2654 /* Create per netdev entries */ 2655 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 2656 2657 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 2658 pr_err("ERROR %s/%s, debugfs create directory failed\n", 2659 STMMAC_RESOURCE_NAME, dev->name); 2660 2661 return -ENOMEM; 2662 } 2663 2664 /* Entry to report DMA RX/TX rings */ 2665 priv->dbgfs_rings_status = 2666 debugfs_create_file("descriptors_status", S_IRUGO, 2667 priv->dbgfs_dir, dev, 2668 &stmmac_rings_status_fops); 2669 2670 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 2671 pr_info("ERROR creating stmmac ring debugfs file\n"); 2672 debugfs_remove_recursive(priv->dbgfs_dir); 2673 2674 return -ENOMEM; 2675 } 2676 2677 /* Entry to report the DMA HW features */ 2678 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, 2679 priv->dbgfs_dir, 2680 dev, &stmmac_dma_cap_fops); 2681 2682 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 2683 pr_info("ERROR creating stmmac MMC debugfs file\n"); 2684 debugfs_remove_recursive(priv->dbgfs_dir); 2685 2686 return -ENOMEM; 2687 } 2688 2689 return 0; 2690} 2691 2692static void stmmac_exit_fs(struct net_device *dev) 2693{ 2694 struct stmmac_priv *priv = netdev_priv(dev); 2695 2696 debugfs_remove_recursive(priv->dbgfs_dir); 2697} 2698#endif /* CONFIG_DEBUG_FS */ 2699 2700static const struct net_device_ops stmmac_netdev_ops = { 2701 .ndo_open = stmmac_open, 2702 .ndo_start_xmit = stmmac_xmit, 2703 .ndo_stop = stmmac_release, 2704 .ndo_change_mtu = stmmac_change_mtu, 2705 .ndo_fix_features = stmmac_fix_features, 2706 .ndo_set_features = stmmac_set_features, 2707 .ndo_set_rx_mode = stmmac_set_rx_mode, 2708 .ndo_tx_timeout = stmmac_tx_timeout, 2709 .ndo_do_ioctl = stmmac_ioctl, 2710#ifdef CONFIG_NET_POLL_CONTROLLER 2711 .ndo_poll_controller = stmmac_poll_controller, 2712#endif 2713 .ndo_set_mac_address = eth_mac_addr, 2714}; 2715 2716/** 2717 * stmmac_hw_init - Init the MAC device 2718 * @priv: driver private structure 2719 * Description: this function is to configure the MAC device according to 2720 * some platform parameters or the HW capability register. It prepares the 2721 * driver to use either ring or chain modes and to setup either enhanced or 2722 * normal descriptors. 2723 */ 2724static int stmmac_hw_init(struct stmmac_priv *priv) 2725{ 2726 struct mac_device_info *mac; 2727 2728 /* Identify the MAC HW device */ 2729 if (priv->plat->has_gmac) { 2730 priv->dev->priv_flags |= IFF_UNICAST_FLT; 2731 mac = dwmac1000_setup(priv->ioaddr, 2732 priv->plat->multicast_filter_bins, 2733 priv->plat->unicast_filter_entries); 2734 } else { 2735 mac = dwmac100_setup(priv->ioaddr); 2736 } 2737 if (!mac) 2738 return -ENOMEM; 2739 2740 priv->hw = mac; 2741 2742 /* Get and dump the chip ID */ 2743 priv->synopsys_id = stmmac_get_synopsys_id(priv); 2744 2745 /* To use the chained or ring mode */ 2746 if (chain_mode) { 2747 priv->hw->mode = &chain_mode_ops; 2748 pr_info(" Chain mode enabled\n"); 2749 priv->mode = STMMAC_CHAIN_MODE; 2750 } else { 2751 priv->hw->mode = &ring_mode_ops; 2752 pr_info(" Ring mode enabled\n"); 2753 priv->mode = STMMAC_RING_MODE; 2754 } 2755 2756 /* Get the HW capability (new GMAC newer than 3.50a) */ 2757 priv->hw_cap_support = stmmac_get_hw_features(priv); 2758 if (priv->hw_cap_support) { 2759 pr_info(" DMA HW capability register supported"); 2760 2761 /* We can override some gmac/dma configuration fields: e.g. 2762 * enh_desc, tx_coe (e.g. that are passed through the 2763 * platform) with the values from the HW capability 2764 * register (if supported). 2765 */ 2766 priv->plat->enh_desc = priv->dma_cap.enh_desc; 2767 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 2768 2769 /* TXCOE doesn't work in thresh DMA mode */ 2770 if (priv->plat->force_thresh_dma_mode) 2771 priv->plat->tx_coe = 0; 2772 else 2773 priv->plat->tx_coe = priv->dma_cap.tx_coe; 2774 2775 if (priv->dma_cap.rx_coe_type2) 2776 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 2777 else if (priv->dma_cap.rx_coe_type1) 2778 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 2779 2780 } else 2781 pr_info(" No HW DMA feature register supported"); 2782 2783 /* To use alternate (extended) or normal descriptor structures */ 2784 stmmac_selec_desc_mode(priv); 2785 2786 if (priv->plat->rx_coe) { 2787 priv->hw->rx_csum = priv->plat->rx_coe; 2788 pr_info(" RX Checksum Offload Engine supported (type %d)\n", 2789 priv->plat->rx_coe); 2790 } 2791 if (priv->plat->tx_coe) 2792 pr_info(" TX Checksum insertion supported\n"); 2793 2794 if (priv->plat->pmt) { 2795 pr_info(" Wake-Up On Lan supported\n"); 2796 device_set_wakeup_capable(priv->device, 1); 2797 } 2798 2799 return 0; 2800} 2801 2802/** 2803 * stmmac_dvr_probe 2804 * @device: device pointer 2805 * @plat_dat: platform data pointer 2806 * @addr: iobase memory address 2807 * Description: this is the main probe function used to 2808 * call the alloc_etherdev, allocate the priv structure. 2809 * Return: 2810 * on success the new private structure is returned, otherwise the error 2811 * pointer. 2812 */ 2813struct stmmac_priv *stmmac_dvr_probe(struct device *device, 2814 struct plat_stmmacenet_data *plat_dat, 2815 void __iomem *addr) 2816{ 2817 int ret = 0; 2818 struct net_device *ndev = NULL; 2819 struct stmmac_priv *priv; 2820 2821 ndev = alloc_etherdev(sizeof(struct stmmac_priv)); 2822 if (!ndev) 2823 return ERR_PTR(-ENOMEM); 2824 2825 SET_NETDEV_DEV(ndev, device); 2826 2827 priv = netdev_priv(ndev); 2828 priv->device = device; 2829 priv->dev = ndev; 2830 2831 stmmac_set_ethtool_ops(ndev); 2832 priv->pause = pause; 2833 priv->plat = plat_dat; 2834 priv->ioaddr = addr; 2835 priv->dev->base_addr = (unsigned long)addr; 2836 2837 /* Verify driver arguments */ 2838 stmmac_verify_args(); 2839 2840 /* Override with kernel parameters if supplied XXX CRS XXX 2841 * this needs to have multiple instances 2842 */ 2843 if ((phyaddr >= 0) && (phyaddr <= 31)) 2844 priv->plat->phy_addr = phyaddr; 2845 2846 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME); 2847 if (IS_ERR(priv->stmmac_clk)) { 2848 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n", 2849 __func__); 2850 /* If failed to obtain stmmac_clk and specific clk_csr value 2851 * is NOT passed from the platform, probe fail. 2852 */ 2853 if (!priv->plat->clk_csr) { 2854 ret = PTR_ERR(priv->stmmac_clk); 2855 goto error_clk_get; 2856 } else { 2857 priv->stmmac_clk = NULL; 2858 } 2859 } 2860 clk_prepare_enable(priv->stmmac_clk); 2861 2862 priv->pclk = devm_clk_get(priv->device, "pclk"); 2863 if (IS_ERR(priv->pclk)) { 2864 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) { 2865 ret = -EPROBE_DEFER; 2866 goto error_pclk_get; 2867 } 2868 priv->pclk = NULL; 2869 } 2870 clk_prepare_enable(priv->pclk); 2871 2872 priv->stmmac_rst = devm_reset_control_get(priv->device, 2873 STMMAC_RESOURCE_NAME); 2874 if (IS_ERR(priv->stmmac_rst)) { 2875 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) { 2876 ret = -EPROBE_DEFER; 2877 goto error_hw_init; 2878 } 2879 dev_info(priv->device, "no reset control found\n"); 2880 priv->stmmac_rst = NULL; 2881 } 2882 if (priv->stmmac_rst) 2883 reset_control_deassert(priv->stmmac_rst); 2884 2885 /* Init MAC and get the capabilities */ 2886 ret = stmmac_hw_init(priv); 2887 if (ret) 2888 goto error_hw_init; 2889 2890 ndev->netdev_ops = &stmmac_netdev_ops; 2891 2892 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2893 NETIF_F_RXCSUM; 2894 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2895 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 2896#ifdef STMMAC_VLAN_TAG_USED 2897 /* Both mac100 and gmac support receive VLAN tag detection */ 2898 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 2899#endif 2900 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2901 2902 if (flow_ctrl) 2903 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 2904 2905 /* Rx Watchdog is available in the COREs newer than the 3.40. 2906 * In some case, for example on bugged HW this feature 2907 * has to be disable and this can be done by passing the 2908 * riwt_off field from the platform. 2909 */ 2910 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) { 2911 priv->use_riwt = 1; 2912 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n"); 2913 } 2914 2915 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64); 2916 2917 spin_lock_init(&priv->lock); 2918 spin_lock_init(&priv->tx_lock); 2919 2920 ret = register_netdev(ndev); 2921 if (ret) { 2922 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2923 goto error_netdev_register; 2924 } 2925 2926 /* If a specific clk_csr value is passed from the platform 2927 * this means that the CSR Clock Range selection cannot be 2928 * changed at run-time and it is fixed. Viceversa the driver'll try to 2929 * set the MDC clock dynamically according to the csr actual 2930 * clock input. 2931 */ 2932 if (!priv->plat->clk_csr) 2933 stmmac_clk_csr_set(priv); 2934 else 2935 priv->clk_csr = priv->plat->clk_csr; 2936 2937 stmmac_check_pcs_mode(priv); 2938 2939 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2940 priv->pcs != STMMAC_PCS_RTBI) { 2941 /* MDIO bus Registration */ 2942 ret = stmmac_mdio_register(ndev); 2943 if (ret < 0) { 2944 pr_debug("%s: MDIO bus (id: %d) registration failed", 2945 __func__, priv->plat->bus_id); 2946 goto error_mdio_register; 2947 } 2948 } 2949 2950 return priv; 2951 2952error_mdio_register: 2953 unregister_netdev(ndev); 2954error_netdev_register: 2955 netif_napi_del(&priv->napi); 2956error_hw_init: 2957 clk_disable_unprepare(priv->pclk); 2958error_pclk_get: 2959 clk_disable_unprepare(priv->stmmac_clk); 2960error_clk_get: 2961 free_netdev(ndev); 2962 2963 return ERR_PTR(ret); 2964} 2965EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 2966 2967/** 2968 * stmmac_dvr_remove 2969 * @ndev: net device pointer 2970 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2971 * changes the link status, releases the DMA descriptor rings. 2972 */ 2973int stmmac_dvr_remove(struct net_device *ndev) 2974{ 2975 struct stmmac_priv *priv = netdev_priv(ndev); 2976 2977 pr_info("%s:\n\tremoving driver", __func__); 2978 2979 priv->hw->dma->stop_rx(priv->ioaddr); 2980 priv->hw->dma->stop_tx(priv->ioaddr); 2981 2982 stmmac_set_mac(priv->ioaddr, false); 2983 netif_carrier_off(ndev); 2984 unregister_netdev(ndev); 2985 if (priv->stmmac_rst) 2986 reset_control_assert(priv->stmmac_rst); 2987 clk_disable_unprepare(priv->pclk); 2988 clk_disable_unprepare(priv->stmmac_clk); 2989 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2990 priv->pcs != STMMAC_PCS_RTBI) 2991 stmmac_mdio_unregister(ndev); 2992 free_netdev(ndev); 2993 2994 return 0; 2995} 2996EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 2997 2998/** 2999 * stmmac_suspend - suspend callback 3000 * @ndev: net device pointer 3001 * Description: this is the function to suspend the device and it is called 3002 * by the platform driver to stop the network queue, release the resources, 3003 * program the PMT register (for WoL), clean and release driver resources. 3004 */ 3005int stmmac_suspend(struct net_device *ndev) 3006{ 3007 struct stmmac_priv *priv = netdev_priv(ndev); 3008 unsigned long flags; 3009 3010 if (!ndev || !netif_running(ndev)) 3011 return 0; 3012 3013 if (priv->phydev) 3014 phy_stop(priv->phydev); 3015 3016 spin_lock_irqsave(&priv->lock, flags); 3017 3018 netif_device_detach(ndev); 3019 netif_stop_queue(ndev); 3020 3021 napi_disable(&priv->napi); 3022 3023 /* Stop TX/RX DMA */ 3024 priv->hw->dma->stop_tx(priv->ioaddr); 3025 priv->hw->dma->stop_rx(priv->ioaddr); 3026 3027 stmmac_clear_descriptors(priv); 3028 3029 /* Enable Power down mode by programming the PMT regs */ 3030 if (device_may_wakeup(priv->device)) { 3031 priv->hw->mac->pmt(priv->hw, priv->wolopts); 3032 priv->irq_wake = 1; 3033 } else { 3034 stmmac_set_mac(priv->ioaddr, false); 3035 pinctrl_pm_select_sleep_state(priv->device); 3036 /* Disable clock in case of PWM is off */ 3037 clk_disable(priv->pclk); 3038 clk_disable(priv->stmmac_clk); 3039 } 3040 spin_unlock_irqrestore(&priv->lock, flags); 3041 3042 priv->oldlink = 0; 3043 priv->speed = 0; 3044 priv->oldduplex = -1; 3045 return 0; 3046} 3047EXPORT_SYMBOL_GPL(stmmac_suspend); 3048 3049/** 3050 * stmmac_resume - resume callback 3051 * @ndev: net device pointer 3052 * Description: when resume this function is invoked to setup the DMA and CORE 3053 * in a usable state. 3054 */ 3055int stmmac_resume(struct net_device *ndev) 3056{ 3057 struct stmmac_priv *priv = netdev_priv(ndev); 3058 unsigned long flags; 3059 3060 if (!netif_running(ndev)) 3061 return 0; 3062 3063 spin_lock_irqsave(&priv->lock, flags); 3064 3065 /* Power Down bit, into the PM register, is cleared 3066 * automatically as soon as a magic packet or a Wake-up frame 3067 * is received. Anyway, it's better to manually clear 3068 * this bit because it can generate problems while resuming 3069 * from another devices (e.g. serial console). 3070 */ 3071 if (device_may_wakeup(priv->device)) { 3072 priv->hw->mac->pmt(priv->hw, 0); 3073 priv->irq_wake = 0; 3074 } else { 3075 pinctrl_pm_select_default_state(priv->device); 3076 /* enable the clk prevously disabled */ 3077 clk_enable(priv->stmmac_clk); 3078 clk_enable(priv->pclk); 3079 /* reset the phy so that it's ready */ 3080 if (priv->mii) 3081 stmmac_mdio_reset(priv->mii); 3082 } 3083 3084 netif_device_attach(ndev); 3085 3086 init_dma_desc_rings(ndev, GFP_ATOMIC); 3087 stmmac_hw_setup(ndev, false); 3088 stmmac_init_tx_coalesce(priv); 3089 3090 napi_enable(&priv->napi); 3091 3092 netif_start_queue(ndev); 3093 3094 spin_unlock_irqrestore(&priv->lock, flags); 3095 3096 if (priv->phydev) 3097 phy_start(priv->phydev); 3098 3099 return 0; 3100} 3101EXPORT_SYMBOL_GPL(stmmac_resume); 3102 3103#ifndef MODULE 3104static int __init stmmac_cmdline_opt(char *str) 3105{ 3106 char *opt; 3107 3108 if (!str || !*str) 3109 return -EINVAL; 3110 while ((opt = strsep(&str, ",")) != NULL) { 3111 if (!strncmp(opt, "debug:", 6)) { 3112 if (kstrtoint(opt + 6, 0, &debug)) 3113 goto err; 3114 } else if (!strncmp(opt, "phyaddr:", 8)) { 3115 if (kstrtoint(opt + 8, 0, &phyaddr)) 3116 goto err; 3117 } else if (!strncmp(opt, "dma_txsize:", 11)) { 3118 if (kstrtoint(opt + 11, 0, &dma_txsize)) 3119 goto err; 3120 } else if (!strncmp(opt, "dma_rxsize:", 11)) { 3121 if (kstrtoint(opt + 11, 0, &dma_rxsize)) 3122 goto err; 3123 } else if (!strncmp(opt, "buf_sz:", 7)) { 3124 if (kstrtoint(opt + 7, 0, &buf_sz)) 3125 goto err; 3126 } else if (!strncmp(opt, "tc:", 3)) { 3127 if (kstrtoint(opt + 3, 0, &tc)) 3128 goto err; 3129 } else if (!strncmp(opt, "watchdog:", 9)) { 3130 if (kstrtoint(opt + 9, 0, &watchdog)) 3131 goto err; 3132 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 3133 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 3134 goto err; 3135 } else if (!strncmp(opt, "pause:", 6)) { 3136 if (kstrtoint(opt + 6, 0, &pause)) 3137 goto err; 3138 } else if (!strncmp(opt, "eee_timer:", 10)) { 3139 if (kstrtoint(opt + 10, 0, &eee_timer)) 3140 goto err; 3141 } else if (!strncmp(opt, "chain_mode:", 11)) { 3142 if (kstrtoint(opt + 11, 0, &chain_mode)) 3143 goto err; 3144 } 3145 } 3146 return 0; 3147 3148err: 3149 pr_err("%s: ERROR broken module parameter conversion", __func__); 3150 return -EINVAL; 3151} 3152 3153__setup("stmmaceth=", stmmac_cmdline_opt); 3154#endif /* MODULE */ 3155 3156static int __init stmmac_init(void) 3157{ 3158#ifdef CONFIG_DEBUG_FS 3159 /* Create debugfs main directory if it doesn't exist yet */ 3160 if (!stmmac_fs_dir) { 3161 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 3162 3163 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 3164 pr_err("ERROR %s, debugfs create directory failed\n", 3165 STMMAC_RESOURCE_NAME); 3166 3167 return -ENOMEM; 3168 } 3169 } 3170#endif 3171 3172 return 0; 3173} 3174 3175static void __exit stmmac_exit(void) 3176{ 3177#ifdef CONFIG_DEBUG_FS 3178 debugfs_remove_recursive(stmmac_fs_dir); 3179#endif 3180} 3181 3182module_init(stmmac_init) 3183module_exit(stmmac_exit) 3184 3185MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 3186MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 3187MODULE_LICENSE("GPL"); 3188