1/*******************************************************************************
2  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3  ST Ethernet IPs are built around a Synopsys IP Core.
4
5	Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7  This program is free software; you can redistribute it and/or modify it
8  under the terms and conditions of the GNU General Public License,
9  version 2, as published by the Free Software Foundation.
10
11  This program is distributed in the hope it will be useful, but WITHOUT
12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  more details.
15
16  You should have received a copy of the GNU General Public License along with
17  this program; if not, write to the Free Software Foundation, Inc.,
18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20  The full GNU General Public License is included in this distribution in
21  the file called "COPYING".
22
23  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25  Documentation available at:
26	http://www.stlinux.com
27  Support available at:
28	https://bugzilla.stlinux.com/
29*******************************************************************************/
30
31#include <linux/clk.h>
32#include <linux/kernel.h>
33#include <linux/interrupt.h>
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/skbuff.h>
37#include <linux/ethtool.h>
38#include <linux/if_ether.h>
39#include <linux/crc32.h>
40#include <linux/mii.h>
41#include <linux/if.h>
42#include <linux/if_vlan.h>
43#include <linux/dma-mapping.h>
44#include <linux/slab.h>
45#include <linux/prefetch.h>
46#include <linux/pinctrl/consumer.h>
47#ifdef CONFIG_DEBUG_FS
48#include <linux/debugfs.h>
49#include <linux/seq_file.h>
50#endif /* CONFIG_DEBUG_FS */
51#include <linux/net_tstamp.h>
52#include "stmmac_ptp.h"
53#include "stmmac.h"
54#include <linux/reset.h>
55
56#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
57
58/* Module parameters */
59#define TX_TIMEO	5000
60static int watchdog = TX_TIMEO;
61module_param(watchdog, int, S_IRUGO | S_IWUSR);
62MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64static int debug = -1;
65module_param(debug, int, S_IRUGO | S_IWUSR);
66MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68static int phyaddr = -1;
69module_param(phyaddr, int, S_IRUGO);
70MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72#define DMA_TX_SIZE 256
73static int dma_txsize = DMA_TX_SIZE;
74module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77#define DMA_RX_SIZE 256
78static int dma_rxsize = DMA_RX_SIZE;
79module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82static int flow_ctrl = FLOW_OFF;
83module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86static int pause = PAUSE_TIME;
87module_param(pause, int, S_IRUGO | S_IWUSR);
88MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90#define TC_DEFAULT 64
91static int tc = TC_DEFAULT;
92module_param(tc, int, S_IRUGO | S_IWUSR);
93MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95#define	DEFAULT_BUFSIZE	1536
96static int buf_sz = DEFAULT_BUFSIZE;
97module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
102				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104#define STMMAC_DEFAULT_LPI_TIMER	1000
105static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108#define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110/* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113static unsigned int chain_mode;
114module_param(chain_mode, int, S_IRUGO);
115MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119#ifdef CONFIG_DEBUG_FS
120static int stmmac_init_fs(struct net_device *dev);
121static void stmmac_exit_fs(struct net_device *dev);
122#endif
123
124#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126/**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it checks the driver parameters and set a default in case of
129 * errors.
130 */
131static void stmmac_verify_args(void)
132{
133	if (unlikely(watchdog < 0))
134		watchdog = TX_TIMEO;
135	if (unlikely(dma_rxsize < 0))
136		dma_rxsize = DMA_RX_SIZE;
137	if (unlikely(dma_txsize < 0))
138		dma_txsize = DMA_TX_SIZE;
139	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140		buf_sz = DEFAULT_BUFSIZE;
141	if (unlikely(flow_ctrl > 1))
142		flow_ctrl = FLOW_AUTO;
143	else if (likely(flow_ctrl < 0))
144		flow_ctrl = FLOW_OFF;
145	if (unlikely((pause < 0) || (pause > 0xffff)))
146		pause = PAUSE_TIME;
147	if (eee_timer < 0)
148		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149}
150
151/**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 *	If a specific clk_csr value is passed from the platform
158 *	this means that the CSR Clock Range selection cannot be
159 *	changed at run-time and it is fixed (as reported in the driver
160 *	documentation). Viceversa the driver will try to set the MDC
161 *	clock dynamically according to the actual clock input.
162 */
163static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164{
165	u32 clk_rate;
166
167	clk_rate = clk_get_rate(priv->stmmac_clk);
168
169	/* Platform provided default clk_csr would be assumed valid
170	 * for all other cases except for the below mentioned ones.
171	 * For values higher than the IEEE 802.3 specified frequency
172	 * we can not estimate the proper divider as it is not known
173	 * the frequency of clk_csr_i. So we do not change the default
174	 * divider.
175	 */
176	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177		if (clk_rate < CSR_F_35M)
178			priv->clk_csr = STMMAC_CSR_20_35M;
179		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180			priv->clk_csr = STMMAC_CSR_35_60M;
181		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182			priv->clk_csr = STMMAC_CSR_60_100M;
183		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184			priv->clk_csr = STMMAC_CSR_100_150M;
185		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186			priv->clk_csr = STMMAC_CSR_150_250M;
187		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188			priv->clk_csr = STMMAC_CSR_250_300M;
189	}
190}
191
192static void print_pkt(unsigned char *buf, int len)
193{
194	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196}
197
198/* minimum number of free TX descriptors required to wake up TX process */
199#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
200
201static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202{
203	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204}
205
206/**
207 * stmmac_hw_fix_mac_speed - callback for speed selection
208 * @priv: driver private structure
209 * Description: on some platforms (e.g. ST), some HW system configuraton
210 * registers have to be set according to the link speed negotiated.
211 */
212static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213{
214	struct phy_device *phydev = priv->phydev;
215
216	if (likely(priv->plat->fix_mac_speed))
217		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218}
219
220/**
221 * stmmac_enable_eee_mode - check and enter in LPI mode
222 * @priv: driver private structure
223 * Description: this function is to verify and enter in LPI mode in case of
224 * EEE.
225 */
226static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
227{
228	/* Check and enter in LPI mode */
229	if ((priv->dirty_tx == priv->cur_tx) &&
230	    (priv->tx_path_in_lpi_mode == false))
231		priv->hw->mac->set_eee_mode(priv->hw);
232}
233
234/**
235 * stmmac_disable_eee_mode - disable and exit from LPI mode
236 * @priv: driver private structure
237 * Description: this function is to exit and disable EEE in case of
238 * LPI state is true. This is called by the xmit.
239 */
240void stmmac_disable_eee_mode(struct stmmac_priv *priv)
241{
242	priv->hw->mac->reset_eee_mode(priv->hw);
243	del_timer_sync(&priv->eee_ctrl_timer);
244	priv->tx_path_in_lpi_mode = false;
245}
246
247/**
248 * stmmac_eee_ctrl_timer - EEE TX SW timer.
249 * @arg : data hook
250 * Description:
251 *  if there is no data transfer and if we are not in LPI state,
252 *  then MAC Transmitter can be moved to LPI state.
253 */
254static void stmmac_eee_ctrl_timer(unsigned long arg)
255{
256	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
257
258	stmmac_enable_eee_mode(priv);
259	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
260}
261
262/**
263 * stmmac_eee_init - init EEE
264 * @priv: driver private structure
265 * Description:
266 *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
267 *  can also manage EEE, this function enable the LPI state and start related
268 *  timer.
269 */
270bool stmmac_eee_init(struct stmmac_priv *priv)
271{
272	char *phy_bus_name = priv->plat->phy_bus_name;
273	unsigned long flags;
274	bool ret = false;
275
276	/* Using PCS we cannot dial with the phy registers at this stage
277	 * so we do not support extra feature like EEE.
278	 */
279	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280	    (priv->pcs == STMMAC_PCS_RTBI))
281		goto out;
282
283	/* Never init EEE in case of a switch is attached */
284	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285		goto out;
286
287	/* MAC core supports the EEE feature. */
288	if (priv->dma_cap.eee) {
289		int tx_lpi_timer = priv->tx_lpi_timer;
290
291		/* Check if the PHY supports EEE */
292		if (phy_init_eee(priv->phydev, 1)) {
293			/* To manage at run-time if the EEE cannot be supported
294			 * anymore (for example because the lp caps have been
295			 * changed).
296			 * In that case the driver disable own timers.
297			 */
298			spin_lock_irqsave(&priv->lock, flags);
299			if (priv->eee_active) {
300				pr_debug("stmmac: disable EEE\n");
301				del_timer_sync(&priv->eee_ctrl_timer);
302				priv->hw->mac->set_eee_timer(priv->hw, 0,
303							     tx_lpi_timer);
304			}
305			priv->eee_active = 0;
306			spin_unlock_irqrestore(&priv->lock, flags);
307			goto out;
308		}
309		/* Activate the EEE and start timers */
310		spin_lock_irqsave(&priv->lock, flags);
311		if (!priv->eee_active) {
312			priv->eee_active = 1;
313			setup_timer(&priv->eee_ctrl_timer,
314				    stmmac_eee_ctrl_timer,
315				    (unsigned long)priv);
316			mod_timer(&priv->eee_ctrl_timer,
317				  STMMAC_LPI_T(eee_timer));
318
319			priv->hw->mac->set_eee_timer(priv->hw,
320						     STMMAC_DEFAULT_LIT_LS,
321						     tx_lpi_timer);
322		}
323		/* Set HW EEE according to the speed */
324		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325
326		ret = true;
327		spin_unlock_irqrestore(&priv->lock, flags);
328
329		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330	}
331out:
332	return ret;
333}
334
335/* stmmac_get_tx_hwtstamp - get HW TX timestamps
336 * @priv: driver private structure
337 * @entry : descriptor index to be used.
338 * @skb : the socket buffer
339 * Description :
340 * This function will read timestamp from the descriptor & pass it to stack.
341 * and also perform some sanity checks.
342 */
343static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344				   unsigned int entry, struct sk_buff *skb)
345{
346	struct skb_shared_hwtstamps shhwtstamp;
347	u64 ns;
348	void *desc = NULL;
349
350	if (!priv->hwts_tx_en)
351		return;
352
353	/* exit if skb doesn't support hw tstamp */
354	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355		return;
356
357	if (priv->adv_ts)
358		desc = (priv->dma_etx + entry);
359	else
360		desc = (priv->dma_tx + entry);
361
362	/* check tx tstamp status */
363	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364		return;
365
366	/* get the valid tstamp */
367	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368
369	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370	shhwtstamp.hwtstamp = ns_to_ktime(ns);
371	/* pass tstamp to stack */
372	skb_tstamp_tx(skb, &shhwtstamp);
373
374	return;
375}
376
377/* stmmac_get_rx_hwtstamp - get HW RX timestamps
378 * @priv: driver private structure
379 * @entry : descriptor index to be used.
380 * @skb : the socket buffer
381 * Description :
382 * This function will read received packet's timestamp from the descriptor
383 * and pass it to stack. It also perform some sanity checks.
384 */
385static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386				   unsigned int entry, struct sk_buff *skb)
387{
388	struct skb_shared_hwtstamps *shhwtstamp = NULL;
389	u64 ns;
390	void *desc = NULL;
391
392	if (!priv->hwts_rx_en)
393		return;
394
395	if (priv->adv_ts)
396		desc = (priv->dma_erx + entry);
397	else
398		desc = (priv->dma_rx + entry);
399
400	/* exit if rx tstamp is not valid */
401	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402		return;
403
404	/* get valid tstamp */
405	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406	shhwtstamp = skb_hwtstamps(skb);
407	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408	shhwtstamp->hwtstamp = ns_to_ktime(ns);
409}
410
411/**
412 *  stmmac_hwtstamp_ioctl - control hardware timestamping.
413 *  @dev: device pointer.
414 *  @ifr: An IOCTL specefic structure, that can contain a pointer to
415 *  a proprietary structure used to pass information to the driver.
416 *  Description:
417 *  This function configures the MAC to enable/disable both outgoing(TX)
418 *  and incoming(RX) packets time stamping based on user input.
419 *  Return Value:
420 *  0 on success and an appropriate -ve integer on failure.
421 */
422static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423{
424	struct stmmac_priv *priv = netdev_priv(dev);
425	struct hwtstamp_config config;
426	struct timespec now;
427	u64 temp = 0;
428	u32 ptp_v2 = 0;
429	u32 tstamp_all = 0;
430	u32 ptp_over_ipv4_udp = 0;
431	u32 ptp_over_ipv6_udp = 0;
432	u32 ptp_over_ethernet = 0;
433	u32 snap_type_sel = 0;
434	u32 ts_master_en = 0;
435	u32 ts_event_en = 0;
436	u32 value = 0;
437
438	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439		netdev_alert(priv->dev, "No support for HW time stamping\n");
440		priv->hwts_tx_en = 0;
441		priv->hwts_rx_en = 0;
442
443		return -EOPNOTSUPP;
444	}
445
446	if (copy_from_user(&config, ifr->ifr_data,
447			   sizeof(struct hwtstamp_config)))
448		return -EFAULT;
449
450	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451		 __func__, config.flags, config.tx_type, config.rx_filter);
452
453	/* reserved for future extensions */
454	if (config.flags)
455		return -EINVAL;
456
457	if (config.tx_type != HWTSTAMP_TX_OFF &&
458	    config.tx_type != HWTSTAMP_TX_ON)
459		return -ERANGE;
460
461	if (priv->adv_ts) {
462		switch (config.rx_filter) {
463		case HWTSTAMP_FILTER_NONE:
464			/* time stamp no incoming packet at all */
465			config.rx_filter = HWTSTAMP_FILTER_NONE;
466			break;
467
468		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469			/* PTP v1, UDP, any kind of event packet */
470			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471			/* take time stamp for all event messages */
472			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473
474			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476			break;
477
478		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479			/* PTP v1, UDP, Sync packet */
480			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481			/* take time stamp for SYNC messages only */
482			ts_event_en = PTP_TCR_TSEVNTENA;
483
484			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486			break;
487
488		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489			/* PTP v1, UDP, Delay_req packet */
490			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491			/* take time stamp for Delay_Req messages only */
492			ts_master_en = PTP_TCR_TSMSTRENA;
493			ts_event_en = PTP_TCR_TSEVNTENA;
494
495			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497			break;
498
499		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500			/* PTP v2, UDP, any kind of event packet */
501			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502			ptp_v2 = PTP_TCR_TSVER2ENA;
503			/* take time stamp for all event messages */
504			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505
506			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508			break;
509
510		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511			/* PTP v2, UDP, Sync packet */
512			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513			ptp_v2 = PTP_TCR_TSVER2ENA;
514			/* take time stamp for SYNC messages only */
515			ts_event_en = PTP_TCR_TSEVNTENA;
516
517			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519			break;
520
521		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522			/* PTP v2, UDP, Delay_req packet */
523			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524			ptp_v2 = PTP_TCR_TSVER2ENA;
525			/* take time stamp for Delay_Req messages only */
526			ts_master_en = PTP_TCR_TSMSTRENA;
527			ts_event_en = PTP_TCR_TSEVNTENA;
528
529			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531			break;
532
533		case HWTSTAMP_FILTER_PTP_V2_EVENT:
534			/* PTP v2/802.AS1 any layer, any kind of event packet */
535			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536			ptp_v2 = PTP_TCR_TSVER2ENA;
537			/* take time stamp for all event messages */
538			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539
540			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542			ptp_over_ethernet = PTP_TCR_TSIPENA;
543			break;
544
545		case HWTSTAMP_FILTER_PTP_V2_SYNC:
546			/* PTP v2/802.AS1, any layer, Sync packet */
547			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548			ptp_v2 = PTP_TCR_TSVER2ENA;
549			/* take time stamp for SYNC messages only */
550			ts_event_en = PTP_TCR_TSEVNTENA;
551
552			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554			ptp_over_ethernet = PTP_TCR_TSIPENA;
555			break;
556
557		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558			/* PTP v2/802.AS1, any layer, Delay_req packet */
559			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560			ptp_v2 = PTP_TCR_TSVER2ENA;
561			/* take time stamp for Delay_Req messages only */
562			ts_master_en = PTP_TCR_TSMSTRENA;
563			ts_event_en = PTP_TCR_TSEVNTENA;
564
565			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567			ptp_over_ethernet = PTP_TCR_TSIPENA;
568			break;
569
570		case HWTSTAMP_FILTER_ALL:
571			/* time stamp any incoming packet */
572			config.rx_filter = HWTSTAMP_FILTER_ALL;
573			tstamp_all = PTP_TCR_TSENALL;
574			break;
575
576		default:
577			return -ERANGE;
578		}
579	} else {
580		switch (config.rx_filter) {
581		case HWTSTAMP_FILTER_NONE:
582			config.rx_filter = HWTSTAMP_FILTER_NONE;
583			break;
584		default:
585			/* PTP v1, UDP, any kind of event packet */
586			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587			break;
588		}
589	}
590	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592
593	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595	else {
596		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597			 tstamp_all | ptp_v2 | ptp_over_ethernet |
598			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599			 ts_master_en | snap_type_sel);
600
601		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602
603		/* program Sub Second Increment reg */
604		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605
606		/* calculate default added value:
607		 * formula is :
608		 * addend = (2^32)/freq_div_ratio;
609		 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610		 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611		 * NOTE: clk_ptp_ref_i should be >= 50MHz to
612		 *       achieve 20ns accuracy.
613		 *
614		 * 2^x * y == (y << x), hence
615		 * 2^32 * 50000000 ==> (50000000 << 32)
616		 */
617		temp = (u64) (50000000ULL << 32);
618		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619		priv->hw->ptp->config_addend(priv->ioaddr,
620					     priv->default_addend);
621
622		/* initialize system time */
623		getnstimeofday(&now);
624		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625					    now.tv_nsec);
626	}
627
628	return copy_to_user(ifr->ifr_data, &config,
629			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630}
631
632/**
633 * stmmac_init_ptp - init PTP
634 * @priv: driver private structure
635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636 * This is done by looking at the HW cap. register.
637 * This function also registers the ptp driver.
638 */
639static int stmmac_init_ptp(struct stmmac_priv *priv)
640{
641	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642		return -EOPNOTSUPP;
643
644	/* Fall-back to main clock in case of no PTP ref is passed */
645	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646	if (IS_ERR(priv->clk_ptp_ref)) {
647		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648		priv->clk_ptp_ref = NULL;
649	} else {
650		clk_prepare_enable(priv->clk_ptp_ref);
651		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652	}
653
654	priv->adv_ts = 0;
655	if (priv->dma_cap.atime_stamp && priv->extend_desc)
656		priv->adv_ts = 1;
657
658	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660
661	if (netif_msg_hw(priv) && priv->adv_ts)
662		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663
664	priv->hw->ptp = &stmmac_ptp;
665	priv->hwts_tx_en = 0;
666	priv->hwts_rx_en = 0;
667
668	return stmmac_ptp_register(priv);
669}
670
671static void stmmac_release_ptp(struct stmmac_priv *priv)
672{
673	if (priv->clk_ptp_ref)
674		clk_disable_unprepare(priv->clk_ptp_ref);
675	stmmac_ptp_unregister(priv);
676}
677
678/**
679 * stmmac_adjust_link - adjusts the link parameters
680 * @dev: net device structure
681 * Description: this is the helper called by the physical abstraction layer
682 * drivers to communicate the phy link status. According the speed and duplex
683 * this driver can invoke registered glue-logic as well.
684 * It also invoke the eee initialization because it could happen when switch
685 * on different networks (that are eee capable).
686 */
687static void stmmac_adjust_link(struct net_device *dev)
688{
689	struct stmmac_priv *priv = netdev_priv(dev);
690	struct phy_device *phydev = priv->phydev;
691	unsigned long flags;
692	int new_state = 0;
693	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694
695	if (phydev == NULL)
696		return;
697
698	spin_lock_irqsave(&priv->lock, flags);
699
700	if (phydev->link) {
701		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702
703		/* Now we make sure that we can be in full duplex mode.
704		 * If not, we operate in half-duplex mode. */
705		if (phydev->duplex != priv->oldduplex) {
706			new_state = 1;
707			if (!(phydev->duplex))
708				ctrl &= ~priv->hw->link.duplex;
709			else
710				ctrl |= priv->hw->link.duplex;
711			priv->oldduplex = phydev->duplex;
712		}
713		/* Flow Control operation */
714		if (phydev->pause)
715			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716						 fc, pause_time);
717
718		if (phydev->speed != priv->speed) {
719			new_state = 1;
720			switch (phydev->speed) {
721			case 1000:
722				if (likely(priv->plat->has_gmac))
723					ctrl &= ~priv->hw->link.port;
724				stmmac_hw_fix_mac_speed(priv);
725				break;
726			case 100:
727			case 10:
728				if (priv->plat->has_gmac) {
729					ctrl |= priv->hw->link.port;
730					if (phydev->speed == SPEED_100) {
731						ctrl |= priv->hw->link.speed;
732					} else {
733						ctrl &= ~(priv->hw->link.speed);
734					}
735				} else {
736					ctrl &= ~priv->hw->link.port;
737				}
738				stmmac_hw_fix_mac_speed(priv);
739				break;
740			default:
741				if (netif_msg_link(priv))
742					pr_warn("%s: Speed (%d) not 10/100\n",
743						dev->name, phydev->speed);
744				break;
745			}
746
747			priv->speed = phydev->speed;
748		}
749
750		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751
752		if (!priv->oldlink) {
753			new_state = 1;
754			priv->oldlink = 1;
755		}
756	} else if (priv->oldlink) {
757		new_state = 1;
758		priv->oldlink = 0;
759		priv->speed = 0;
760		priv->oldduplex = -1;
761	}
762
763	if (new_state && netif_msg_link(priv))
764		phy_print_status(phydev);
765
766	spin_unlock_irqrestore(&priv->lock, flags);
767
768	/* At this stage, it could be needed to setup the EEE or adjust some
769	 * MAC related HW registers.
770	 */
771	priv->eee_enabled = stmmac_eee_init(priv);
772}
773
774/**
775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776 * @priv: driver private structure
777 * Description: this is to verify if the HW supports the PCS.
778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779 * configured for the TBI, RTBI, or SGMII PHY interface.
780 */
781static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782{
783	int interface = priv->plat->interface;
784
785	if (priv->dma_cap.pcs) {
786		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790			pr_debug("STMMAC: PCS RGMII support enable\n");
791			priv->pcs = STMMAC_PCS_RGMII;
792		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
793			pr_debug("STMMAC: PCS SGMII support enable\n");
794			priv->pcs = STMMAC_PCS_SGMII;
795		}
796	}
797}
798
799/**
800 * stmmac_init_phy - PHY initialization
801 * @dev: net device structure
802 * Description: it initializes the driver's PHY state, and attaches the PHY
803 * to the mac driver.
804 *  Return value:
805 *  0 on success
806 */
807static int stmmac_init_phy(struct net_device *dev)
808{
809	struct stmmac_priv *priv = netdev_priv(dev);
810	struct phy_device *phydev;
811	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812	char bus_id[MII_BUS_ID_SIZE];
813	int interface = priv->plat->interface;
814	int max_speed = priv->plat->max_speed;
815	priv->oldlink = 0;
816	priv->speed = 0;
817	priv->oldduplex = -1;
818
819	if (priv->plat->phy_bus_name)
820		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
821			 priv->plat->phy_bus_name, priv->plat->bus_id);
822	else
823		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
824			 priv->plat->bus_id);
825
826	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
827		 priv->plat->phy_addr);
828	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
829
830	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
831
832	if (IS_ERR_OR_NULL(phydev)) {
833		pr_err("%s: Could not attach to PHY\n", dev->name);
834		if (!phydev)
835			return -ENODEV;
836
837		return PTR_ERR(phydev);
838	}
839
840	/* Stop Advertising 1000BASE Capability if interface is not GMII */
841	if ((interface == PHY_INTERFACE_MODE_MII) ||
842	    (interface == PHY_INTERFACE_MODE_RMII) ||
843		(max_speed < 1000 && max_speed > 0))
844		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
845					 SUPPORTED_1000baseT_Full);
846
847	/*
848	 * Broken HW is sometimes missing the pull-up resistor on the
849	 * MDIO line, which results in reads to non-existent devices returning
850	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
851	 * device as well.
852	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
853	 */
854	if (phydev->phy_id == 0) {
855		phy_disconnect(phydev);
856		return -ENODEV;
857	}
858	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
859		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
860
861	priv->phydev = phydev;
862
863	return 0;
864}
865
866/**
867 * stmmac_display_ring - display ring
868 * @head: pointer to the head of the ring passed.
869 * @size: size of the ring.
870 * @extend_desc: to verify if extended descriptors are used.
871 * Description: display the control/status and buffer descriptors.
872 */
873static void stmmac_display_ring(void *head, int size, int extend_desc)
874{
875	int i;
876	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
877	struct dma_desc *p = (struct dma_desc *)head;
878
879	for (i = 0; i < size; i++) {
880		u64 x;
881		if (extend_desc) {
882			x = *(u64 *) ep;
883			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
884				i, (unsigned int)virt_to_phys(ep),
885				(unsigned int)x, (unsigned int)(x >> 32),
886				ep->basic.des2, ep->basic.des3);
887			ep++;
888		} else {
889			x = *(u64 *) p;
890			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
891				i, (unsigned int)virt_to_phys(p),
892				(unsigned int)x, (unsigned int)(x >> 32),
893				p->des2, p->des3);
894			p++;
895		}
896		pr_info("\n");
897	}
898}
899
900static void stmmac_display_rings(struct stmmac_priv *priv)
901{
902	unsigned int txsize = priv->dma_tx_size;
903	unsigned int rxsize = priv->dma_rx_size;
904
905	if (priv->extend_desc) {
906		pr_info("Extended RX descriptor ring:\n");
907		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
908		pr_info("Extended TX descriptor ring:\n");
909		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
910	} else {
911		pr_info("RX descriptor ring:\n");
912		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
913		pr_info("TX descriptor ring:\n");
914		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
915	}
916}
917
918static int stmmac_set_bfsize(int mtu, int bufsize)
919{
920	int ret = bufsize;
921
922	if (mtu >= BUF_SIZE_4KiB)
923		ret = BUF_SIZE_8KiB;
924	else if (mtu >= BUF_SIZE_2KiB)
925		ret = BUF_SIZE_4KiB;
926	else if (mtu > DEFAULT_BUFSIZE)
927		ret = BUF_SIZE_2KiB;
928	else
929		ret = DEFAULT_BUFSIZE;
930
931	return ret;
932}
933
934/**
935 * stmmac_clear_descriptors - clear descriptors
936 * @priv: driver private structure
937 * Description: this function is called to clear the tx and rx descriptors
938 * in case of both basic and extended descriptors are used.
939 */
940static void stmmac_clear_descriptors(struct stmmac_priv *priv)
941{
942	int i;
943	unsigned int txsize = priv->dma_tx_size;
944	unsigned int rxsize = priv->dma_rx_size;
945
946	/* Clear the Rx/Tx descriptors */
947	for (i = 0; i < rxsize; i++)
948		if (priv->extend_desc)
949			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
950						     priv->use_riwt, priv->mode,
951						     (i == rxsize - 1));
952		else
953			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
954						     priv->use_riwt, priv->mode,
955						     (i == rxsize - 1));
956	for (i = 0; i < txsize; i++)
957		if (priv->extend_desc)
958			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
959						     priv->mode,
960						     (i == txsize - 1));
961		else
962			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
963						     priv->mode,
964						     (i == txsize - 1));
965}
966
967/**
968 * stmmac_init_rx_buffers - init the RX descriptor buffer.
969 * @priv: driver private structure
970 * @p: descriptor pointer
971 * @i: descriptor index
972 * @flags: gfp flag.
973 * Description: this function is called to allocate a receive buffer, perform
974 * the DMA mapping and init the descriptor.
975 */
976static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
977				  int i, gfp_t flags)
978{
979	struct sk_buff *skb;
980
981	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
982				 flags);
983	if (!skb) {
984		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
985		return -ENOMEM;
986	}
987	skb_reserve(skb, NET_IP_ALIGN);
988	priv->rx_skbuff[i] = skb;
989	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
990						priv->dma_buf_sz,
991						DMA_FROM_DEVICE);
992	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
993		pr_err("%s: DMA mapping error\n", __func__);
994		dev_kfree_skb_any(skb);
995		return -EINVAL;
996	}
997
998	p->des2 = priv->rx_skbuff_dma[i];
999
1000	if ((priv->hw->mode->init_desc3) &&
1001	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
1002		priv->hw->mode->init_desc3(p);
1003
1004	return 0;
1005}
1006
1007static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1008{
1009	if (priv->rx_skbuff[i]) {
1010		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1011				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1012		dev_kfree_skb_any(priv->rx_skbuff[i]);
1013	}
1014	priv->rx_skbuff[i] = NULL;
1015}
1016
1017/**
1018 * init_dma_desc_rings - init the RX/TX descriptor rings
1019 * @dev: net device structure
1020 * @flags: gfp flag.
1021 * Description: this function initializes the DMA RX/TX descriptors
1022 * and allocates the socket buffers. It suppors the chained and ring
1023 * modes.
1024 */
1025static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1026{
1027	int i;
1028	struct stmmac_priv *priv = netdev_priv(dev);
1029	unsigned int txsize = priv->dma_tx_size;
1030	unsigned int rxsize = priv->dma_rx_size;
1031	unsigned int bfsize = 0;
1032	int ret = -ENOMEM;
1033
1034	if (priv->hw->mode->set_16kib_bfsize)
1035		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1036
1037	if (bfsize < BUF_SIZE_16KiB)
1038		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1039
1040	priv->dma_buf_sz = bfsize;
1041
1042	if (netif_msg_probe(priv))
1043		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1044			 txsize, rxsize, bfsize);
1045
1046	if (netif_msg_probe(priv)) {
1047		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1048			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1049
1050		/* RX INITIALIZATION */
1051		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1052	}
1053	for (i = 0; i < rxsize; i++) {
1054		struct dma_desc *p;
1055		if (priv->extend_desc)
1056			p = &((priv->dma_erx + i)->basic);
1057		else
1058			p = priv->dma_rx + i;
1059
1060		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1061		if (ret)
1062			goto err_init_rx_buffers;
1063
1064		if (netif_msg_probe(priv))
1065			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1066				 priv->rx_skbuff[i]->data,
1067				 (unsigned int)priv->rx_skbuff_dma[i]);
1068	}
1069	priv->cur_rx = 0;
1070	priv->dirty_rx = (unsigned int)(i - rxsize);
1071	buf_sz = bfsize;
1072
1073	/* Setup the chained descriptor addresses */
1074	if (priv->mode == STMMAC_CHAIN_MODE) {
1075		if (priv->extend_desc) {
1076			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1077					     rxsize, 1);
1078			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1079					     txsize, 1);
1080		} else {
1081			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1082					     rxsize, 0);
1083			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1084					     txsize, 0);
1085		}
1086	}
1087
1088	/* TX INITIALIZATION */
1089	for (i = 0; i < txsize; i++) {
1090		struct dma_desc *p;
1091		if (priv->extend_desc)
1092			p = &((priv->dma_etx + i)->basic);
1093		else
1094			p = priv->dma_tx + i;
1095		p->des2 = 0;
1096		priv->tx_skbuff_dma[i].buf = 0;
1097		priv->tx_skbuff_dma[i].map_as_page = false;
1098		priv->tx_skbuff[i] = NULL;
1099	}
1100
1101	priv->dirty_tx = 0;
1102	priv->cur_tx = 0;
1103	netdev_reset_queue(priv->dev);
1104
1105	stmmac_clear_descriptors(priv);
1106
1107	if (netif_msg_hw(priv))
1108		stmmac_display_rings(priv);
1109
1110	return 0;
1111err_init_rx_buffers:
1112	while (--i >= 0)
1113		stmmac_free_rx_buffers(priv, i);
1114	return ret;
1115}
1116
1117static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1118{
1119	int i;
1120
1121	for (i = 0; i < priv->dma_rx_size; i++)
1122		stmmac_free_rx_buffers(priv, i);
1123}
1124
1125static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1126{
1127	int i;
1128
1129	for (i = 0; i < priv->dma_tx_size; i++) {
1130		struct dma_desc *p;
1131
1132		if (priv->extend_desc)
1133			p = &((priv->dma_etx + i)->basic);
1134		else
1135			p = priv->dma_tx + i;
1136
1137		if (priv->tx_skbuff_dma[i].buf) {
1138			if (priv->tx_skbuff_dma[i].map_as_page)
1139				dma_unmap_page(priv->device,
1140					       priv->tx_skbuff_dma[i].buf,
1141					       priv->hw->desc->get_tx_len(p),
1142					       DMA_TO_DEVICE);
1143			else
1144				dma_unmap_single(priv->device,
1145						 priv->tx_skbuff_dma[i].buf,
1146						 priv->hw->desc->get_tx_len(p),
1147						 DMA_TO_DEVICE);
1148		}
1149
1150		if (priv->tx_skbuff[i] != NULL) {
1151			dev_kfree_skb_any(priv->tx_skbuff[i]);
1152			priv->tx_skbuff[i] = NULL;
1153			priv->tx_skbuff_dma[i].buf = 0;
1154			priv->tx_skbuff_dma[i].map_as_page = false;
1155		}
1156	}
1157}
1158
1159/**
1160 * alloc_dma_desc_resources - alloc TX/RX resources.
1161 * @priv: private structure
1162 * Description: according to which descriptor can be used (extend or basic)
1163 * this function allocates the resources for TX and RX paths. In case of
1164 * reception, for example, it pre-allocated the RX socket buffer in order to
1165 * allow zero-copy mechanism.
1166 */
1167static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1168{
1169	unsigned int txsize = priv->dma_tx_size;
1170	unsigned int rxsize = priv->dma_rx_size;
1171	int ret = -ENOMEM;
1172
1173	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1174					    GFP_KERNEL);
1175	if (!priv->rx_skbuff_dma)
1176		return -ENOMEM;
1177
1178	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1179					GFP_KERNEL);
1180	if (!priv->rx_skbuff)
1181		goto err_rx_skbuff;
1182
1183	priv->tx_skbuff_dma = kmalloc_array(txsize,
1184					    sizeof(*priv->tx_skbuff_dma),
1185					    GFP_KERNEL);
1186	if (!priv->tx_skbuff_dma)
1187		goto err_tx_skbuff_dma;
1188
1189	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1190					GFP_KERNEL);
1191	if (!priv->tx_skbuff)
1192		goto err_tx_skbuff;
1193
1194	if (priv->extend_desc) {
1195		priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1196						    sizeof(struct
1197							   dma_extended_desc),
1198						    &priv->dma_rx_phy,
1199						    GFP_KERNEL);
1200		if (!priv->dma_erx)
1201			goto err_dma;
1202
1203		priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1204						    sizeof(struct
1205							   dma_extended_desc),
1206						    &priv->dma_tx_phy,
1207						    GFP_KERNEL);
1208		if (!priv->dma_etx) {
1209			dma_free_coherent(priv->device, priv->dma_rx_size *
1210					  sizeof(struct dma_extended_desc),
1211					  priv->dma_erx, priv->dma_rx_phy);
1212			goto err_dma;
1213		}
1214	} else {
1215		priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1216						   sizeof(struct dma_desc),
1217						   &priv->dma_rx_phy,
1218						   GFP_KERNEL);
1219		if (!priv->dma_rx)
1220			goto err_dma;
1221
1222		priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1223						   sizeof(struct dma_desc),
1224						   &priv->dma_tx_phy,
1225						   GFP_KERNEL);
1226		if (!priv->dma_tx) {
1227			dma_free_coherent(priv->device, priv->dma_rx_size *
1228					  sizeof(struct dma_desc),
1229					  priv->dma_rx, priv->dma_rx_phy);
1230			goto err_dma;
1231		}
1232	}
1233
1234	return 0;
1235
1236err_dma:
1237	kfree(priv->tx_skbuff);
1238err_tx_skbuff:
1239	kfree(priv->tx_skbuff_dma);
1240err_tx_skbuff_dma:
1241	kfree(priv->rx_skbuff);
1242err_rx_skbuff:
1243	kfree(priv->rx_skbuff_dma);
1244	return ret;
1245}
1246
1247static void free_dma_desc_resources(struct stmmac_priv *priv)
1248{
1249	/* Release the DMA TX/RX socket buffers */
1250	dma_free_rx_skbufs(priv);
1251	dma_free_tx_skbufs(priv);
1252
1253	/* Free DMA regions of consistent memory previously allocated */
1254	if (!priv->extend_desc) {
1255		dma_free_coherent(priv->device,
1256				  priv->dma_tx_size * sizeof(struct dma_desc),
1257				  priv->dma_tx, priv->dma_tx_phy);
1258		dma_free_coherent(priv->device,
1259				  priv->dma_rx_size * sizeof(struct dma_desc),
1260				  priv->dma_rx, priv->dma_rx_phy);
1261	} else {
1262		dma_free_coherent(priv->device, priv->dma_tx_size *
1263				  sizeof(struct dma_extended_desc),
1264				  priv->dma_etx, priv->dma_tx_phy);
1265		dma_free_coherent(priv->device, priv->dma_rx_size *
1266				  sizeof(struct dma_extended_desc),
1267				  priv->dma_erx, priv->dma_rx_phy);
1268	}
1269	kfree(priv->rx_skbuff_dma);
1270	kfree(priv->rx_skbuff);
1271	kfree(priv->tx_skbuff_dma);
1272	kfree(priv->tx_skbuff);
1273}
1274
1275/**
1276 *  stmmac_dma_operation_mode - HW DMA operation mode
1277 *  @priv: driver private structure
1278 *  Description: it is used for configuring the DMA operation mode register in
1279 *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1280 */
1281static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1282{
1283	int rxfifosz = priv->plat->rx_fifo_size;
1284
1285	if (priv->plat->force_thresh_dma_mode)
1286		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1287	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1288		/*
1289		 * In case of GMAC, SF mode can be enabled
1290		 * to perform the TX COE in HW. This depends on:
1291		 * 1) TX COE if actually supported
1292		 * 2) There is no bugged Jumbo frame support
1293		 *    that needs to not insert csum in the TDES.
1294		 */
1295		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1296					rxfifosz);
1297		priv->xstats.threshold = SF_DMA_MODE;
1298	} else
1299		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1300					rxfifosz);
1301}
1302
1303/**
1304 * stmmac_tx_clean - to manage the transmission completion
1305 * @priv: driver private structure
1306 * Description: it reclaims the transmit resources after transmission completes.
1307 */
1308static void stmmac_tx_clean(struct stmmac_priv *priv)
1309{
1310	unsigned int txsize = priv->dma_tx_size;
1311	unsigned int bytes_compl = 0, pkts_compl = 0;
1312
1313	spin_lock(&priv->tx_lock);
1314
1315	priv->xstats.tx_clean++;
1316
1317	while (priv->dirty_tx != priv->cur_tx) {
1318		int last;
1319		unsigned int entry = priv->dirty_tx % txsize;
1320		struct sk_buff *skb = priv->tx_skbuff[entry];
1321		struct dma_desc *p;
1322
1323		if (priv->extend_desc)
1324			p = (struct dma_desc *)(priv->dma_etx + entry);
1325		else
1326			p = priv->dma_tx + entry;
1327
1328		/* Check if the descriptor is owned by the DMA. */
1329		if (priv->hw->desc->get_tx_owner(p))
1330			break;
1331
1332		/* Verify tx error by looking at the last segment. */
1333		last = priv->hw->desc->get_tx_ls(p);
1334		if (likely(last)) {
1335			int tx_error =
1336			    priv->hw->desc->tx_status(&priv->dev->stats,
1337						      &priv->xstats, p,
1338						      priv->ioaddr);
1339			if (likely(tx_error == 0)) {
1340				priv->dev->stats.tx_packets++;
1341				priv->xstats.tx_pkt_n++;
1342			} else
1343				priv->dev->stats.tx_errors++;
1344
1345			stmmac_get_tx_hwtstamp(priv, entry, skb);
1346		}
1347		if (netif_msg_tx_done(priv))
1348			pr_debug("%s: curr %d, dirty %d\n", __func__,
1349				 priv->cur_tx, priv->dirty_tx);
1350
1351		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1352			if (priv->tx_skbuff_dma[entry].map_as_page)
1353				dma_unmap_page(priv->device,
1354					       priv->tx_skbuff_dma[entry].buf,
1355					       priv->hw->desc->get_tx_len(p),
1356					       DMA_TO_DEVICE);
1357			else
1358				dma_unmap_single(priv->device,
1359						 priv->tx_skbuff_dma[entry].buf,
1360						 priv->hw->desc->get_tx_len(p),
1361						 DMA_TO_DEVICE);
1362			priv->tx_skbuff_dma[entry].buf = 0;
1363			priv->tx_skbuff_dma[entry].map_as_page = false;
1364		}
1365		priv->hw->mode->clean_desc3(priv, p);
1366
1367		if (likely(skb != NULL)) {
1368			pkts_compl++;
1369			bytes_compl += skb->len;
1370			dev_consume_skb_any(skb);
1371			priv->tx_skbuff[entry] = NULL;
1372		}
1373
1374		priv->hw->desc->release_tx_desc(p, priv->mode);
1375
1376		priv->dirty_tx++;
1377	}
1378
1379	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1380
1381	if (unlikely(netif_queue_stopped(priv->dev) &&
1382		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1383		netif_tx_lock(priv->dev);
1384		if (netif_queue_stopped(priv->dev) &&
1385		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1386			if (netif_msg_tx_done(priv))
1387				pr_debug("%s: restart transmit\n", __func__);
1388			netif_wake_queue(priv->dev);
1389		}
1390		netif_tx_unlock(priv->dev);
1391	}
1392
1393	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1394		stmmac_enable_eee_mode(priv);
1395		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1396	}
1397	spin_unlock(&priv->tx_lock);
1398}
1399
1400static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1401{
1402	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1403}
1404
1405static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1406{
1407	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1408}
1409
1410/**
1411 * stmmac_tx_err - to manage the tx error
1412 * @priv: driver private structure
1413 * Description: it cleans the descriptors and restarts the transmission
1414 * in case of transmission errors.
1415 */
1416static void stmmac_tx_err(struct stmmac_priv *priv)
1417{
1418	int i;
1419	int txsize = priv->dma_tx_size;
1420	netif_stop_queue(priv->dev);
1421
1422	priv->hw->dma->stop_tx(priv->ioaddr);
1423	dma_free_tx_skbufs(priv);
1424	for (i = 0; i < txsize; i++)
1425		if (priv->extend_desc)
1426			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1427						     priv->mode,
1428						     (i == txsize - 1));
1429		else
1430			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1431						     priv->mode,
1432						     (i == txsize - 1));
1433	priv->dirty_tx = 0;
1434	priv->cur_tx = 0;
1435	netdev_reset_queue(priv->dev);
1436	priv->hw->dma->start_tx(priv->ioaddr);
1437
1438	priv->dev->stats.tx_errors++;
1439	netif_wake_queue(priv->dev);
1440}
1441
1442/**
1443 * stmmac_dma_interrupt - DMA ISR
1444 * @priv: driver private structure
1445 * Description: this is the DMA ISR. It is called by the main ISR.
1446 * It calls the dwmac dma routine and schedule poll method in case of some
1447 * work can be done.
1448 */
1449static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1450{
1451	int status;
1452	int rxfifosz = priv->plat->rx_fifo_size;
1453
1454	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1455	if (likely((status & handle_rx)) || (status & handle_tx)) {
1456		if (likely(napi_schedule_prep(&priv->napi))) {
1457			stmmac_disable_dma_irq(priv);
1458			__napi_schedule(&priv->napi);
1459		}
1460	}
1461	if (unlikely(status & tx_hard_error_bump_tc)) {
1462		/* Try to bump up the dma threshold on this failure */
1463		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1464		    (tc <= 256)) {
1465			tc += 64;
1466			if (priv->plat->force_thresh_dma_mode)
1467				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1468							rxfifosz);
1469			else
1470				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1471							SF_DMA_MODE, rxfifosz);
1472			priv->xstats.threshold = tc;
1473		}
1474	} else if (unlikely(status == tx_hard_error))
1475		stmmac_tx_err(priv);
1476}
1477
1478/**
1479 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1480 * @priv: driver private structure
1481 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1482 */
1483static void stmmac_mmc_setup(struct stmmac_priv *priv)
1484{
1485	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1486	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1487
1488	dwmac_mmc_intr_all_mask(priv->ioaddr);
1489
1490	if (priv->dma_cap.rmon) {
1491		dwmac_mmc_ctrl(priv->ioaddr, mode);
1492		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1493	} else
1494		pr_info(" No MAC Management Counters available\n");
1495}
1496
1497/**
1498 * stmmac_get_synopsys_id - return the SYINID.
1499 * @priv: driver private structure
1500 * Description: this simple function is to decode and return the SYINID
1501 * starting from the HW core register.
1502 */
1503static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1504{
1505	u32 hwid = priv->hw->synopsys_uid;
1506
1507	/* Check Synopsys Id (not available on old chips) */
1508	if (likely(hwid)) {
1509		u32 uid = ((hwid & 0x0000ff00) >> 8);
1510		u32 synid = (hwid & 0x000000ff);
1511
1512		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1513			uid, synid);
1514
1515		return synid;
1516	}
1517	return 0;
1518}
1519
1520/**
1521 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1522 * @priv: driver private structure
1523 * Description: select the Enhanced/Alternate or Normal descriptors.
1524 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1525 * supported by the HW capability register.
1526 */
1527static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1528{
1529	if (priv->plat->enh_desc) {
1530		pr_info(" Enhanced/Alternate descriptors\n");
1531
1532		/* GMAC older than 3.50 has no extended descriptors */
1533		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1534			pr_info("\tEnabled extended descriptors\n");
1535			priv->extend_desc = 1;
1536		} else
1537			pr_warn("Extended descriptors not supported\n");
1538
1539		priv->hw->desc = &enh_desc_ops;
1540	} else {
1541		pr_info(" Normal descriptors\n");
1542		priv->hw->desc = &ndesc_ops;
1543	}
1544}
1545
1546/**
1547 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1548 * @priv: driver private structure
1549 * Description:
1550 *  new GMAC chip generations have a new register to indicate the
1551 *  presence of the optional feature/functions.
1552 *  This can be also used to override the value passed through the
1553 *  platform and necessary for old MAC10/100 and GMAC chips.
1554 */
1555static int stmmac_get_hw_features(struct stmmac_priv *priv)
1556{
1557	u32 hw_cap = 0;
1558
1559	if (priv->hw->dma->get_hw_feature) {
1560		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1561
1562		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1563		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1564		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1565		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1566		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1567		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1568		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1569		priv->dma_cap.pmt_remote_wake_up =
1570		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1571		priv->dma_cap.pmt_magic_frame =
1572		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1573		/* MMC */
1574		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1575		/* IEEE 1588-2002 */
1576		priv->dma_cap.time_stamp =
1577		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1578		/* IEEE 1588-2008 */
1579		priv->dma_cap.atime_stamp =
1580		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1581		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1582		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1583		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1584		/* TX and RX csum */
1585		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1586		priv->dma_cap.rx_coe_type1 =
1587		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1588		priv->dma_cap.rx_coe_type2 =
1589		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1590		priv->dma_cap.rxfifo_over_2048 =
1591		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1592		/* TX and RX number of channels */
1593		priv->dma_cap.number_rx_channel =
1594		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1595		priv->dma_cap.number_tx_channel =
1596		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1597		/* Alternate (enhanced) DESC mode */
1598		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1599	}
1600
1601	return hw_cap;
1602}
1603
1604/**
1605 * stmmac_check_ether_addr - check if the MAC addr is valid
1606 * @priv: driver private structure
1607 * Description:
1608 * it is to verify if the MAC address is valid, in case of failures it
1609 * generates a random MAC address
1610 */
1611static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1612{
1613	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1614		priv->hw->mac->get_umac_addr(priv->hw,
1615					     priv->dev->dev_addr, 0);
1616		if (!is_valid_ether_addr(priv->dev->dev_addr))
1617			eth_hw_addr_random(priv->dev);
1618		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1619			priv->dev->dev_addr);
1620	}
1621}
1622
1623/**
1624 * stmmac_init_dma_engine - DMA init.
1625 * @priv: driver private structure
1626 * Description:
1627 * It inits the DMA invoking the specific MAC/GMAC callback.
1628 * Some DMA parameters can be passed from the platform;
1629 * in case of these are not passed a default is kept for the MAC or GMAC.
1630 */
1631static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1632{
1633	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1634	int mixed_burst = 0;
1635	int atds = 0;
1636
1637	if (priv->plat->dma_cfg) {
1638		pbl = priv->plat->dma_cfg->pbl;
1639		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1640		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1641		burst_len = priv->plat->dma_cfg->burst_len;
1642	}
1643
1644	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1645		atds = 1;
1646
1647	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1648				   burst_len, priv->dma_tx_phy,
1649				   priv->dma_rx_phy, atds);
1650}
1651
1652/**
1653 * stmmac_tx_timer - mitigation sw timer for tx.
1654 * @data: data pointer
1655 * Description:
1656 * This is the timer handler to directly invoke the stmmac_tx_clean.
1657 */
1658static void stmmac_tx_timer(unsigned long data)
1659{
1660	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1661
1662	stmmac_tx_clean(priv);
1663}
1664
1665/**
1666 * stmmac_init_tx_coalesce - init tx mitigation options.
1667 * @priv: driver private structure
1668 * Description:
1669 * This inits the transmit coalesce parameters: i.e. timer rate,
1670 * timer handler and default threshold used for enabling the
1671 * interrupt on completion bit.
1672 */
1673static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1674{
1675	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1676	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1677	init_timer(&priv->txtimer);
1678	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1679	priv->txtimer.data = (unsigned long)priv;
1680	priv->txtimer.function = stmmac_tx_timer;
1681	add_timer(&priv->txtimer);
1682}
1683
1684/**
1685 * stmmac_hw_setup - setup mac in a usable state.
1686 *  @dev : pointer to the device structure.
1687 *  Description:
1688 *  this is the main function to setup the HW in a usable state because the
1689 *  dma engine is reset, the core registers are configured (e.g. AXI,
1690 *  Checksum features, timers). The DMA is ready to start receiving and
1691 *  transmitting.
1692 *  Return value:
1693 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1694 *  file on failure.
1695 */
1696static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1697{
1698	struct stmmac_priv *priv = netdev_priv(dev);
1699	int ret;
1700
1701	/* DMA initialization and SW reset */
1702	ret = stmmac_init_dma_engine(priv);
1703	if (ret < 0) {
1704		pr_err("%s: DMA engine initialization failed\n", __func__);
1705		return ret;
1706	}
1707
1708	/* Copy the MAC addr into the HW  */
1709	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1710
1711	/* If required, perform hw setup of the bus. */
1712	if (priv->plat->bus_setup)
1713		priv->plat->bus_setup(priv->ioaddr);
1714
1715	/* Initialize the MAC Core */
1716	priv->hw->mac->core_init(priv->hw, dev->mtu);
1717
1718	ret = priv->hw->mac->rx_ipc(priv->hw);
1719	if (!ret) {
1720		pr_warn(" RX IPC Checksum Offload disabled\n");
1721		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1722		priv->hw->rx_csum = 0;
1723	}
1724
1725	/* Enable the MAC Rx/Tx */
1726	stmmac_set_mac(priv->ioaddr, true);
1727
1728	/* Set the HW DMA mode and the COE */
1729	stmmac_dma_operation_mode(priv);
1730
1731	stmmac_mmc_setup(priv);
1732
1733	if (init_ptp) {
1734		ret = stmmac_init_ptp(priv);
1735		if (ret && ret != -EOPNOTSUPP)
1736			pr_warn("%s: failed PTP initialisation\n", __func__);
1737	}
1738
1739#ifdef CONFIG_DEBUG_FS
1740	ret = stmmac_init_fs(dev);
1741	if (ret < 0)
1742		pr_warn("%s: failed debugFS registration\n", __func__);
1743#endif
1744	/* Start the ball rolling... */
1745	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1746	priv->hw->dma->start_tx(priv->ioaddr);
1747	priv->hw->dma->start_rx(priv->ioaddr);
1748
1749	/* Dump DMA/MAC registers */
1750	if (netif_msg_hw(priv)) {
1751		priv->hw->mac->dump_regs(priv->hw);
1752		priv->hw->dma->dump_regs(priv->ioaddr);
1753	}
1754	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1755
1756	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1757		priv->rx_riwt = MAX_DMA_RIWT;
1758		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1759	}
1760
1761	if (priv->pcs && priv->hw->mac->ctrl_ane)
1762		priv->hw->mac->ctrl_ane(priv->hw, 0);
1763
1764	return 0;
1765}
1766
1767/**
1768 *  stmmac_open - open entry point of the driver
1769 *  @dev : pointer to the device structure.
1770 *  Description:
1771 *  This function is the open entry point of the driver.
1772 *  Return value:
1773 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1774 *  file on failure.
1775 */
1776static int stmmac_open(struct net_device *dev)
1777{
1778	struct stmmac_priv *priv = netdev_priv(dev);
1779	int ret;
1780
1781	stmmac_check_ether_addr(priv);
1782
1783	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1784	    priv->pcs != STMMAC_PCS_RTBI) {
1785		ret = stmmac_init_phy(dev);
1786		if (ret) {
1787			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1788			       __func__, ret);
1789			return ret;
1790		}
1791	}
1792
1793	/* Extra statistics */
1794	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1795	priv->xstats.threshold = tc;
1796
1797	/* Create and initialize the TX/RX descriptors chains. */
1798	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1799	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1800	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1801
1802	ret = alloc_dma_desc_resources(priv);
1803	if (ret < 0) {
1804		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1805		goto dma_desc_error;
1806	}
1807
1808	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1809	if (ret < 0) {
1810		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1811		goto init_error;
1812	}
1813
1814	ret = stmmac_hw_setup(dev, true);
1815	if (ret < 0) {
1816		pr_err("%s: Hw setup failed\n", __func__);
1817		goto init_error;
1818	}
1819
1820	stmmac_init_tx_coalesce(priv);
1821
1822	if (priv->phydev)
1823		phy_start(priv->phydev);
1824
1825	/* Request the IRQ lines */
1826	ret = request_irq(dev->irq, stmmac_interrupt,
1827			  IRQF_SHARED, dev->name, dev);
1828	if (unlikely(ret < 0)) {
1829		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1830		       __func__, dev->irq, ret);
1831		goto init_error;
1832	}
1833
1834	/* Request the Wake IRQ in case of another line is used for WoL */
1835	if (priv->wol_irq != dev->irq) {
1836		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1837				  IRQF_SHARED, dev->name, dev);
1838		if (unlikely(ret < 0)) {
1839			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1840			       __func__, priv->wol_irq, ret);
1841			goto wolirq_error;
1842		}
1843	}
1844
1845	/* Request the IRQ lines */
1846	if (priv->lpi_irq > 0) {
1847		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1848				  dev->name, dev);
1849		if (unlikely(ret < 0)) {
1850			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1851			       __func__, priv->lpi_irq, ret);
1852			goto lpiirq_error;
1853		}
1854	}
1855
1856	napi_enable(&priv->napi);
1857	netif_start_queue(dev);
1858
1859	return 0;
1860
1861lpiirq_error:
1862	if (priv->wol_irq != dev->irq)
1863		free_irq(priv->wol_irq, dev);
1864wolirq_error:
1865	free_irq(dev->irq, dev);
1866
1867init_error:
1868	free_dma_desc_resources(priv);
1869dma_desc_error:
1870	if (priv->phydev)
1871		phy_disconnect(priv->phydev);
1872
1873	return ret;
1874}
1875
1876/**
1877 *  stmmac_release - close entry point of the driver
1878 *  @dev : device pointer.
1879 *  Description:
1880 *  This is the stop entry point of the driver.
1881 */
1882static int stmmac_release(struct net_device *dev)
1883{
1884	struct stmmac_priv *priv = netdev_priv(dev);
1885
1886	if (priv->eee_enabled)
1887		del_timer_sync(&priv->eee_ctrl_timer);
1888
1889	/* Stop and disconnect the PHY */
1890	if (priv->phydev) {
1891		phy_stop(priv->phydev);
1892		phy_disconnect(priv->phydev);
1893		priv->phydev = NULL;
1894	}
1895
1896	netif_stop_queue(dev);
1897
1898	napi_disable(&priv->napi);
1899
1900	del_timer_sync(&priv->txtimer);
1901
1902	/* Free the IRQ lines */
1903	free_irq(dev->irq, dev);
1904	if (priv->wol_irq != dev->irq)
1905		free_irq(priv->wol_irq, dev);
1906	if (priv->lpi_irq > 0)
1907		free_irq(priv->lpi_irq, dev);
1908
1909	/* Stop TX/RX DMA and clear the descriptors */
1910	priv->hw->dma->stop_tx(priv->ioaddr);
1911	priv->hw->dma->stop_rx(priv->ioaddr);
1912
1913	/* Release and free the Rx/Tx resources */
1914	free_dma_desc_resources(priv);
1915
1916	/* Disable the MAC Rx/Tx */
1917	stmmac_set_mac(priv->ioaddr, false);
1918
1919	netif_carrier_off(dev);
1920
1921#ifdef CONFIG_DEBUG_FS
1922	stmmac_exit_fs(dev);
1923#endif
1924
1925	stmmac_release_ptp(priv);
1926
1927	return 0;
1928}
1929
1930/**
1931 *  stmmac_xmit - Tx entry point of the driver
1932 *  @skb : the socket buffer
1933 *  @dev : device pointer
1934 *  Description : this is the tx entry point of the driver.
1935 *  It programs the chain or the ring and supports oversized frames
1936 *  and SG feature.
1937 */
1938static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1939{
1940	struct stmmac_priv *priv = netdev_priv(dev);
1941	unsigned int txsize = priv->dma_tx_size;
1942	unsigned int entry;
1943	int i, csum_insertion = 0, is_jumbo = 0;
1944	int nfrags = skb_shinfo(skb)->nr_frags;
1945	struct dma_desc *desc, *first;
1946	unsigned int nopaged_len = skb_headlen(skb);
1947	unsigned int enh_desc = priv->plat->enh_desc;
1948
1949	spin_lock(&priv->tx_lock);
1950
1951	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1952		spin_unlock(&priv->tx_lock);
1953		if (!netif_queue_stopped(dev)) {
1954			netif_stop_queue(dev);
1955			/* This is a hard error, log it. */
1956			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1957		}
1958		return NETDEV_TX_BUSY;
1959	}
1960
1961	if (priv->tx_path_in_lpi_mode)
1962		stmmac_disable_eee_mode(priv);
1963
1964	entry = priv->cur_tx % txsize;
1965
1966	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1967
1968	if (priv->extend_desc)
1969		desc = (struct dma_desc *)(priv->dma_etx + entry);
1970	else
1971		desc = priv->dma_tx + entry;
1972
1973	first = desc;
1974
1975	/* To program the descriptors according to the size of the frame */
1976	if (enh_desc)
1977		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1978
1979	if (likely(!is_jumbo)) {
1980		desc->des2 = dma_map_single(priv->device, skb->data,
1981					    nopaged_len, DMA_TO_DEVICE);
1982		if (dma_mapping_error(priv->device, desc->des2))
1983			goto dma_map_err;
1984		priv->tx_skbuff_dma[entry].buf = desc->des2;
1985		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1986						csum_insertion, priv->mode);
1987	} else {
1988		desc = first;
1989		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1990		if (unlikely(entry < 0))
1991			goto dma_map_err;
1992	}
1993
1994	for (i = 0; i < nfrags; i++) {
1995		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1996		int len = skb_frag_size(frag);
1997
1998		priv->tx_skbuff[entry] = NULL;
1999		entry = (++priv->cur_tx) % txsize;
2000		if (priv->extend_desc)
2001			desc = (struct dma_desc *)(priv->dma_etx + entry);
2002		else
2003			desc = priv->dma_tx + entry;
2004
2005		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2006					      DMA_TO_DEVICE);
2007		if (dma_mapping_error(priv->device, desc->des2))
2008			goto dma_map_err; /* should reuse desc w/o issues */
2009
2010		priv->tx_skbuff_dma[entry].buf = desc->des2;
2011		priv->tx_skbuff_dma[entry].map_as_page = true;
2012		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2013						priv->mode);
2014		wmb();
2015		priv->hw->desc->set_tx_owner(desc);
2016		wmb();
2017	}
2018
2019	priv->tx_skbuff[entry] = skb;
2020
2021	/* Finalize the latest segment. */
2022	priv->hw->desc->close_tx_desc(desc);
2023
2024	wmb();
2025	/* According to the coalesce parameter the IC bit for the latest
2026	 * segment could be reset and the timer re-started to invoke the
2027	 * stmmac_tx function. This approach takes care about the fragments.
2028	 */
2029	priv->tx_count_frames += nfrags + 1;
2030	if (priv->tx_coal_frames > priv->tx_count_frames) {
2031		priv->hw->desc->clear_tx_ic(desc);
2032		priv->xstats.tx_reset_ic_bit++;
2033		mod_timer(&priv->txtimer,
2034			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2035	} else
2036		priv->tx_count_frames = 0;
2037
2038	/* To avoid raise condition */
2039	priv->hw->desc->set_tx_owner(first);
2040	wmb();
2041
2042	priv->cur_tx++;
2043
2044	if (netif_msg_pktdata(priv)) {
2045		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2046			__func__, (priv->cur_tx % txsize),
2047			(priv->dirty_tx % txsize), entry, first, nfrags);
2048
2049		if (priv->extend_desc)
2050			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2051		else
2052			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2053
2054		pr_debug(">>> frame to be transmitted: ");
2055		print_pkt(skb->data, skb->len);
2056	}
2057	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2058		if (netif_msg_hw(priv))
2059			pr_debug("%s: stop transmitted packets\n", __func__);
2060		netif_stop_queue(dev);
2061	}
2062
2063	dev->stats.tx_bytes += skb->len;
2064
2065	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2066		     priv->hwts_tx_en)) {
2067		/* declare that device is doing timestamping */
2068		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2069		priv->hw->desc->enable_tx_timestamp(first);
2070	}
2071
2072	if (!priv->hwts_tx_en)
2073		skb_tx_timestamp(skb);
2074
2075	netdev_sent_queue(dev, skb->len);
2076	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2077
2078	spin_unlock(&priv->tx_lock);
2079	return NETDEV_TX_OK;
2080
2081dma_map_err:
2082	spin_unlock(&priv->tx_lock);
2083	dev_err(priv->device, "Tx dma map failed\n");
2084	dev_kfree_skb(skb);
2085	priv->dev->stats.tx_dropped++;
2086	return NETDEV_TX_OK;
2087}
2088
2089static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2090{
2091	struct ethhdr *ehdr;
2092	u16 vlanid;
2093
2094	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2095	    NETIF_F_HW_VLAN_CTAG_RX &&
2096	    !__vlan_get_tag(skb, &vlanid)) {
2097		/* pop the vlan tag */
2098		ehdr = (struct ethhdr *)skb->data;
2099		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2100		skb_pull(skb, VLAN_HLEN);
2101		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2102	}
2103}
2104
2105
2106/**
2107 * stmmac_rx_refill - refill used skb preallocated buffers
2108 * @priv: driver private structure
2109 * Description : this is to reallocate the skb for the reception process
2110 * that is based on zero-copy.
2111 */
2112static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2113{
2114	unsigned int rxsize = priv->dma_rx_size;
2115	int bfsize = priv->dma_buf_sz;
2116
2117	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2118		unsigned int entry = priv->dirty_rx % rxsize;
2119		struct dma_desc *p;
2120
2121		if (priv->extend_desc)
2122			p = (struct dma_desc *)(priv->dma_erx + entry);
2123		else
2124			p = priv->dma_rx + entry;
2125
2126		if (likely(priv->rx_skbuff[entry] == NULL)) {
2127			struct sk_buff *skb;
2128
2129			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2130
2131			if (unlikely(skb == NULL))
2132				break;
2133
2134			priv->rx_skbuff[entry] = skb;
2135			priv->rx_skbuff_dma[entry] =
2136			    dma_map_single(priv->device, skb->data, bfsize,
2137					   DMA_FROM_DEVICE);
2138			if (dma_mapping_error(priv->device,
2139					      priv->rx_skbuff_dma[entry])) {
2140				dev_err(priv->device, "Rx dma map failed\n");
2141				dev_kfree_skb(skb);
2142				break;
2143			}
2144			p->des2 = priv->rx_skbuff_dma[entry];
2145
2146			priv->hw->mode->refill_desc3(priv, p);
2147
2148			if (netif_msg_rx_status(priv))
2149				pr_debug("\trefill entry #%d\n", entry);
2150		}
2151		wmb();
2152		priv->hw->desc->set_rx_owner(p);
2153		wmb();
2154	}
2155}
2156
2157/**
2158 * stmmac_rx - manage the receive process
2159 * @priv: driver private structure
2160 * @limit: napi bugget.
2161 * Description :  this the function called by the napi poll method.
2162 * It gets all the frames inside the ring.
2163 */
2164static int stmmac_rx(struct stmmac_priv *priv, int limit)
2165{
2166	unsigned int rxsize = priv->dma_rx_size;
2167	unsigned int entry = priv->cur_rx % rxsize;
2168	unsigned int next_entry;
2169	unsigned int count = 0;
2170	int coe = priv->hw->rx_csum;
2171
2172	if (netif_msg_rx_status(priv)) {
2173		pr_debug("%s: descriptor ring:\n", __func__);
2174		if (priv->extend_desc)
2175			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2176		else
2177			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2178	}
2179	while (count < limit) {
2180		int status;
2181		struct dma_desc *p;
2182
2183		if (priv->extend_desc)
2184			p = (struct dma_desc *)(priv->dma_erx + entry);
2185		else
2186			p = priv->dma_rx + entry;
2187
2188		if (priv->hw->desc->get_rx_owner(p))
2189			break;
2190
2191		count++;
2192
2193		next_entry = (++priv->cur_rx) % rxsize;
2194		if (priv->extend_desc)
2195			prefetch(priv->dma_erx + next_entry);
2196		else
2197			prefetch(priv->dma_rx + next_entry);
2198
2199		/* read the status of the incoming frame */
2200		status = priv->hw->desc->rx_status(&priv->dev->stats,
2201						   &priv->xstats, p);
2202		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2203			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2204							   &priv->xstats,
2205							   priv->dma_erx +
2206							   entry);
2207		if (unlikely(status == discard_frame)) {
2208			priv->dev->stats.rx_errors++;
2209			if (priv->hwts_rx_en && !priv->extend_desc) {
2210				/* DESC2 & DESC3 will be overwitten by device
2211				 * with timestamp value, hence reinitialize
2212				 * them in stmmac_rx_refill() function so that
2213				 * device can reuse it.
2214				 */
2215				priv->rx_skbuff[entry] = NULL;
2216				dma_unmap_single(priv->device,
2217						 priv->rx_skbuff_dma[entry],
2218						 priv->dma_buf_sz,
2219						 DMA_FROM_DEVICE);
2220			}
2221		} else {
2222			struct sk_buff *skb;
2223			int frame_len;
2224
2225			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2226
2227			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2228			 * Type frames (LLC/LLC-SNAP)
2229			 */
2230			if (unlikely(status != llc_snap))
2231				frame_len -= ETH_FCS_LEN;
2232
2233			if (netif_msg_rx_status(priv)) {
2234				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2235					 p, entry, p->des2);
2236				if (frame_len > ETH_FRAME_LEN)
2237					pr_debug("\tframe size %d, COE: %d\n",
2238						 frame_len, status);
2239			}
2240			skb = priv->rx_skbuff[entry];
2241			if (unlikely(!skb)) {
2242				pr_err("%s: Inconsistent Rx descriptor chain\n",
2243				       priv->dev->name);
2244				priv->dev->stats.rx_dropped++;
2245				break;
2246			}
2247			prefetch(skb->data - NET_IP_ALIGN);
2248			priv->rx_skbuff[entry] = NULL;
2249
2250			stmmac_get_rx_hwtstamp(priv, entry, skb);
2251
2252			skb_put(skb, frame_len);
2253			dma_unmap_single(priv->device,
2254					 priv->rx_skbuff_dma[entry],
2255					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2256
2257			if (netif_msg_pktdata(priv)) {
2258				pr_debug("frame received (%dbytes)", frame_len);
2259				print_pkt(skb->data, frame_len);
2260			}
2261
2262			stmmac_rx_vlan(priv->dev, skb);
2263
2264			skb->protocol = eth_type_trans(skb, priv->dev);
2265
2266			if (unlikely(!coe))
2267				skb_checksum_none_assert(skb);
2268			else
2269				skb->ip_summed = CHECKSUM_UNNECESSARY;
2270
2271			napi_gro_receive(&priv->napi, skb);
2272
2273			priv->dev->stats.rx_packets++;
2274			priv->dev->stats.rx_bytes += frame_len;
2275		}
2276		entry = next_entry;
2277	}
2278
2279	stmmac_rx_refill(priv);
2280
2281	priv->xstats.rx_pkt_n += count;
2282
2283	return count;
2284}
2285
2286/**
2287 *  stmmac_poll - stmmac poll method (NAPI)
2288 *  @napi : pointer to the napi structure.
2289 *  @budget : maximum number of packets that the current CPU can receive from
2290 *	      all interfaces.
2291 *  Description :
2292 *  To look at the incoming frames and clear the tx resources.
2293 */
2294static int stmmac_poll(struct napi_struct *napi, int budget)
2295{
2296	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2297	int work_done = 0;
2298
2299	priv->xstats.napi_poll++;
2300	stmmac_tx_clean(priv);
2301
2302	work_done = stmmac_rx(priv, budget);
2303	if (work_done < budget) {
2304		napi_complete(napi);
2305		stmmac_enable_dma_irq(priv);
2306	}
2307	return work_done;
2308}
2309
2310/**
2311 *  stmmac_tx_timeout
2312 *  @dev : Pointer to net device structure
2313 *  Description: this function is called when a packet transmission fails to
2314 *   complete within a reasonable time. The driver will mark the error in the
2315 *   netdev structure and arrange for the device to be reset to a sane state
2316 *   in order to transmit a new packet.
2317 */
2318static void stmmac_tx_timeout(struct net_device *dev)
2319{
2320	struct stmmac_priv *priv = netdev_priv(dev);
2321
2322	/* Clear Tx resources and restart transmitting again */
2323	stmmac_tx_err(priv);
2324}
2325
2326/**
2327 *  stmmac_set_rx_mode - entry point for multicast addressing
2328 *  @dev : pointer to the device structure
2329 *  Description:
2330 *  This function is a driver entry point which gets called by the kernel
2331 *  whenever multicast addresses must be enabled/disabled.
2332 *  Return value:
2333 *  void.
2334 */
2335static void stmmac_set_rx_mode(struct net_device *dev)
2336{
2337	struct stmmac_priv *priv = netdev_priv(dev);
2338
2339	priv->hw->mac->set_filter(priv->hw, dev);
2340}
2341
2342/**
2343 *  stmmac_change_mtu - entry point to change MTU size for the device.
2344 *  @dev : device pointer.
2345 *  @new_mtu : the new MTU size for the device.
2346 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2347 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2348 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2349 *  Return value:
2350 *  0 on success and an appropriate (-)ve integer as defined in errno.h
2351 *  file on failure.
2352 */
2353static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2354{
2355	struct stmmac_priv *priv = netdev_priv(dev);
2356	int max_mtu;
2357
2358	if (netif_running(dev)) {
2359		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2360		return -EBUSY;
2361	}
2362
2363	if (priv->plat->enh_desc)
2364		max_mtu = JUMBO_LEN;
2365	else
2366		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2367
2368	if (priv->plat->maxmtu < max_mtu)
2369		max_mtu = priv->plat->maxmtu;
2370
2371	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2372		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2373		return -EINVAL;
2374	}
2375
2376	dev->mtu = new_mtu;
2377	netdev_update_features(dev);
2378
2379	return 0;
2380}
2381
2382static netdev_features_t stmmac_fix_features(struct net_device *dev,
2383					     netdev_features_t features)
2384{
2385	struct stmmac_priv *priv = netdev_priv(dev);
2386
2387	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2388		features &= ~NETIF_F_RXCSUM;
2389
2390	if (!priv->plat->tx_coe)
2391		features &= ~NETIF_F_ALL_CSUM;
2392
2393	/* Some GMAC devices have a bugged Jumbo frame support that
2394	 * needs to have the Tx COE disabled for oversized frames
2395	 * (due to limited buffer sizes). In this case we disable
2396	 * the TX csum insertionin the TDES and not use SF.
2397	 */
2398	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2399		features &= ~NETIF_F_ALL_CSUM;
2400
2401	return features;
2402}
2403
2404static int stmmac_set_features(struct net_device *netdev,
2405			       netdev_features_t features)
2406{
2407	struct stmmac_priv *priv = netdev_priv(netdev);
2408
2409	/* Keep the COE Type in case of csum is supporting */
2410	if (features & NETIF_F_RXCSUM)
2411		priv->hw->rx_csum = priv->plat->rx_coe;
2412	else
2413		priv->hw->rx_csum = 0;
2414	/* No check needed because rx_coe has been set before and it will be
2415	 * fixed in case of issue.
2416	 */
2417	priv->hw->mac->rx_ipc(priv->hw);
2418
2419	return 0;
2420}
2421
2422/**
2423 *  stmmac_interrupt - main ISR
2424 *  @irq: interrupt number.
2425 *  @dev_id: to pass the net device pointer.
2426 *  Description: this is the main driver interrupt service routine.
2427 *  It can call:
2428 *  o DMA service routine (to manage incoming frame reception and transmission
2429 *    status)
2430 *  o Core interrupts to manage: remote wake-up, management counter, LPI
2431 *    interrupts.
2432 */
2433static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2434{
2435	struct net_device *dev = (struct net_device *)dev_id;
2436	struct stmmac_priv *priv = netdev_priv(dev);
2437
2438	if (priv->irq_wake)
2439		pm_wakeup_event(priv->device, 0);
2440
2441	if (unlikely(!dev)) {
2442		pr_err("%s: invalid dev pointer\n", __func__);
2443		return IRQ_NONE;
2444	}
2445
2446	/* To handle GMAC own interrupts */
2447	if (priv->plat->has_gmac) {
2448		int status = priv->hw->mac->host_irq_status(priv->hw,
2449							    &priv->xstats);
2450		if (unlikely(status)) {
2451			/* For LPI we need to save the tx status */
2452			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2453				priv->tx_path_in_lpi_mode = true;
2454			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2455				priv->tx_path_in_lpi_mode = false;
2456		}
2457	}
2458
2459	/* To handle DMA interrupts */
2460	stmmac_dma_interrupt(priv);
2461
2462	return IRQ_HANDLED;
2463}
2464
2465#ifdef CONFIG_NET_POLL_CONTROLLER
2466/* Polling receive - used by NETCONSOLE and other diagnostic tools
2467 * to allow network I/O with interrupts disabled.
2468 */
2469static void stmmac_poll_controller(struct net_device *dev)
2470{
2471	disable_irq(dev->irq);
2472	stmmac_interrupt(dev->irq, dev);
2473	enable_irq(dev->irq);
2474}
2475#endif
2476
2477/**
2478 *  stmmac_ioctl - Entry point for the Ioctl
2479 *  @dev: Device pointer.
2480 *  @rq: An IOCTL specefic structure, that can contain a pointer to
2481 *  a proprietary structure used to pass information to the driver.
2482 *  @cmd: IOCTL command
2483 *  Description:
2484 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2485 */
2486static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2487{
2488	struct stmmac_priv *priv = netdev_priv(dev);
2489	int ret = -EOPNOTSUPP;
2490
2491	if (!netif_running(dev))
2492		return -EINVAL;
2493
2494	switch (cmd) {
2495	case SIOCGMIIPHY:
2496	case SIOCGMIIREG:
2497	case SIOCSMIIREG:
2498		if (!priv->phydev)
2499			return -EINVAL;
2500		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2501		break;
2502	case SIOCSHWTSTAMP:
2503		ret = stmmac_hwtstamp_ioctl(dev, rq);
2504		break;
2505	default:
2506		break;
2507	}
2508
2509	return ret;
2510}
2511
2512#ifdef CONFIG_DEBUG_FS
2513static struct dentry *stmmac_fs_dir;
2514
2515static void sysfs_display_ring(void *head, int size, int extend_desc,
2516			       struct seq_file *seq)
2517{
2518	int i;
2519	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2520	struct dma_desc *p = (struct dma_desc *)head;
2521
2522	for (i = 0; i < size; i++) {
2523		u64 x;
2524		if (extend_desc) {
2525			x = *(u64 *) ep;
2526			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2527				   i, (unsigned int)virt_to_phys(ep),
2528				   (unsigned int)x, (unsigned int)(x >> 32),
2529				   ep->basic.des2, ep->basic.des3);
2530			ep++;
2531		} else {
2532			x = *(u64 *) p;
2533			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2534				   i, (unsigned int)virt_to_phys(ep),
2535				   (unsigned int)x, (unsigned int)(x >> 32),
2536				   p->des2, p->des3);
2537			p++;
2538		}
2539		seq_printf(seq, "\n");
2540	}
2541}
2542
2543static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2544{
2545	struct net_device *dev = seq->private;
2546	struct stmmac_priv *priv = netdev_priv(dev);
2547	unsigned int txsize = priv->dma_tx_size;
2548	unsigned int rxsize = priv->dma_rx_size;
2549
2550	if (priv->extend_desc) {
2551		seq_printf(seq, "Extended RX descriptor ring:\n");
2552		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2553		seq_printf(seq, "Extended TX descriptor ring:\n");
2554		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2555	} else {
2556		seq_printf(seq, "RX descriptor ring:\n");
2557		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2558		seq_printf(seq, "TX descriptor ring:\n");
2559		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2560	}
2561
2562	return 0;
2563}
2564
2565static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2566{
2567	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2568}
2569
2570static const struct file_operations stmmac_rings_status_fops = {
2571	.owner = THIS_MODULE,
2572	.open = stmmac_sysfs_ring_open,
2573	.read = seq_read,
2574	.llseek = seq_lseek,
2575	.release = single_release,
2576};
2577
2578static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2579{
2580	struct net_device *dev = seq->private;
2581	struct stmmac_priv *priv = netdev_priv(dev);
2582
2583	if (!priv->hw_cap_support) {
2584		seq_printf(seq, "DMA HW features not supported\n");
2585		return 0;
2586	}
2587
2588	seq_printf(seq, "==============================\n");
2589	seq_printf(seq, "\tDMA HW features\n");
2590	seq_printf(seq, "==============================\n");
2591
2592	seq_printf(seq, "\t10/100 Mbps %s\n",
2593		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2594	seq_printf(seq, "\t1000 Mbps %s\n",
2595		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2596	seq_printf(seq, "\tHalf duple %s\n",
2597		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2598	seq_printf(seq, "\tHash Filter: %s\n",
2599		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2600	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2601		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2602	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2603		   (priv->dma_cap.pcs) ? "Y" : "N");
2604	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2605		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2606	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2607		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2608	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2609		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2610	seq_printf(seq, "\tRMON module: %s\n",
2611		   (priv->dma_cap.rmon) ? "Y" : "N");
2612	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2613		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2614	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2615		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2616	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2617		   (priv->dma_cap.eee) ? "Y" : "N");
2618	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2619	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2620		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2621	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2622		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2623	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2624		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2625	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2626		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2627	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2628		   priv->dma_cap.number_rx_channel);
2629	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2630		   priv->dma_cap.number_tx_channel);
2631	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2632		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2633
2634	return 0;
2635}
2636
2637static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2638{
2639	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2640}
2641
2642static const struct file_operations stmmac_dma_cap_fops = {
2643	.owner = THIS_MODULE,
2644	.open = stmmac_sysfs_dma_cap_open,
2645	.read = seq_read,
2646	.llseek = seq_lseek,
2647	.release = single_release,
2648};
2649
2650static int stmmac_init_fs(struct net_device *dev)
2651{
2652	struct stmmac_priv *priv = netdev_priv(dev);
2653
2654	/* Create per netdev entries */
2655	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2656
2657	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2658		pr_err("ERROR %s/%s, debugfs create directory failed\n",
2659		       STMMAC_RESOURCE_NAME, dev->name);
2660
2661		return -ENOMEM;
2662	}
2663
2664	/* Entry to report DMA RX/TX rings */
2665	priv->dbgfs_rings_status =
2666		debugfs_create_file("descriptors_status", S_IRUGO,
2667				    priv->dbgfs_dir, dev,
2668				    &stmmac_rings_status_fops);
2669
2670	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2671		pr_info("ERROR creating stmmac ring debugfs file\n");
2672		debugfs_remove_recursive(priv->dbgfs_dir);
2673
2674		return -ENOMEM;
2675	}
2676
2677	/* Entry to report the DMA HW features */
2678	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2679					    priv->dbgfs_dir,
2680					    dev, &stmmac_dma_cap_fops);
2681
2682	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2683		pr_info("ERROR creating stmmac MMC debugfs file\n");
2684		debugfs_remove_recursive(priv->dbgfs_dir);
2685
2686		return -ENOMEM;
2687	}
2688
2689	return 0;
2690}
2691
2692static void stmmac_exit_fs(struct net_device *dev)
2693{
2694	struct stmmac_priv *priv = netdev_priv(dev);
2695
2696	debugfs_remove_recursive(priv->dbgfs_dir);
2697}
2698#endif /* CONFIG_DEBUG_FS */
2699
2700static const struct net_device_ops stmmac_netdev_ops = {
2701	.ndo_open = stmmac_open,
2702	.ndo_start_xmit = stmmac_xmit,
2703	.ndo_stop = stmmac_release,
2704	.ndo_change_mtu = stmmac_change_mtu,
2705	.ndo_fix_features = stmmac_fix_features,
2706	.ndo_set_features = stmmac_set_features,
2707	.ndo_set_rx_mode = stmmac_set_rx_mode,
2708	.ndo_tx_timeout = stmmac_tx_timeout,
2709	.ndo_do_ioctl = stmmac_ioctl,
2710#ifdef CONFIG_NET_POLL_CONTROLLER
2711	.ndo_poll_controller = stmmac_poll_controller,
2712#endif
2713	.ndo_set_mac_address = eth_mac_addr,
2714};
2715
2716/**
2717 *  stmmac_hw_init - Init the MAC device
2718 *  @priv: driver private structure
2719 *  Description: this function is to configure the MAC device according to
2720 *  some platform parameters or the HW capability register. It prepares the
2721 *  driver to use either ring or chain modes and to setup either enhanced or
2722 *  normal descriptors.
2723 */
2724static int stmmac_hw_init(struct stmmac_priv *priv)
2725{
2726	struct mac_device_info *mac;
2727
2728	/* Identify the MAC HW device */
2729	if (priv->plat->has_gmac) {
2730		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2731		mac = dwmac1000_setup(priv->ioaddr,
2732				      priv->plat->multicast_filter_bins,
2733				      priv->plat->unicast_filter_entries);
2734	} else {
2735		mac = dwmac100_setup(priv->ioaddr);
2736	}
2737	if (!mac)
2738		return -ENOMEM;
2739
2740	priv->hw = mac;
2741
2742	/* Get and dump the chip ID */
2743	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2744
2745	/* To use the chained or ring mode */
2746	if (chain_mode) {
2747		priv->hw->mode = &chain_mode_ops;
2748		pr_info(" Chain mode enabled\n");
2749		priv->mode = STMMAC_CHAIN_MODE;
2750	} else {
2751		priv->hw->mode = &ring_mode_ops;
2752		pr_info(" Ring mode enabled\n");
2753		priv->mode = STMMAC_RING_MODE;
2754	}
2755
2756	/* Get the HW capability (new GMAC newer than 3.50a) */
2757	priv->hw_cap_support = stmmac_get_hw_features(priv);
2758	if (priv->hw_cap_support) {
2759		pr_info(" DMA HW capability register supported");
2760
2761		/* We can override some gmac/dma configuration fields: e.g.
2762		 * enh_desc, tx_coe (e.g. that are passed through the
2763		 * platform) with the values from the HW capability
2764		 * register (if supported).
2765		 */
2766		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2767		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2768
2769		/* TXCOE doesn't work in thresh DMA mode */
2770		if (priv->plat->force_thresh_dma_mode)
2771			priv->plat->tx_coe = 0;
2772		else
2773			priv->plat->tx_coe = priv->dma_cap.tx_coe;
2774
2775		if (priv->dma_cap.rx_coe_type2)
2776			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2777		else if (priv->dma_cap.rx_coe_type1)
2778			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2779
2780	} else
2781		pr_info(" No HW DMA feature register supported");
2782
2783	/* To use alternate (extended) or normal descriptor structures */
2784	stmmac_selec_desc_mode(priv);
2785
2786	if (priv->plat->rx_coe) {
2787		priv->hw->rx_csum = priv->plat->rx_coe;
2788		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2789			priv->plat->rx_coe);
2790	}
2791	if (priv->plat->tx_coe)
2792		pr_info(" TX Checksum insertion supported\n");
2793
2794	if (priv->plat->pmt) {
2795		pr_info(" Wake-Up On Lan supported\n");
2796		device_set_wakeup_capable(priv->device, 1);
2797	}
2798
2799	return 0;
2800}
2801
2802/**
2803 * stmmac_dvr_probe
2804 * @device: device pointer
2805 * @plat_dat: platform data pointer
2806 * @addr: iobase memory address
2807 * Description: this is the main probe function used to
2808 * call the alloc_etherdev, allocate the priv structure.
2809 * Return:
2810 * on success the new private structure is returned, otherwise the error
2811 * pointer.
2812 */
2813struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2814				     struct plat_stmmacenet_data *plat_dat,
2815				     void __iomem *addr)
2816{
2817	int ret = 0;
2818	struct net_device *ndev = NULL;
2819	struct stmmac_priv *priv;
2820
2821	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2822	if (!ndev)
2823		return ERR_PTR(-ENOMEM);
2824
2825	SET_NETDEV_DEV(ndev, device);
2826
2827	priv = netdev_priv(ndev);
2828	priv->device = device;
2829	priv->dev = ndev;
2830
2831	stmmac_set_ethtool_ops(ndev);
2832	priv->pause = pause;
2833	priv->plat = plat_dat;
2834	priv->ioaddr = addr;
2835	priv->dev->base_addr = (unsigned long)addr;
2836
2837	/* Verify driver arguments */
2838	stmmac_verify_args();
2839
2840	/* Override with kernel parameters if supplied XXX CRS XXX
2841	 * this needs to have multiple instances
2842	 */
2843	if ((phyaddr >= 0) && (phyaddr <= 31))
2844		priv->plat->phy_addr = phyaddr;
2845
2846	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2847	if (IS_ERR(priv->stmmac_clk)) {
2848		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2849			 __func__);
2850		/* If failed to obtain stmmac_clk and specific clk_csr value
2851		 * is NOT passed from the platform, probe fail.
2852		 */
2853		if (!priv->plat->clk_csr) {
2854			ret = PTR_ERR(priv->stmmac_clk);
2855			goto error_clk_get;
2856		} else {
2857			priv->stmmac_clk = NULL;
2858		}
2859	}
2860	clk_prepare_enable(priv->stmmac_clk);
2861
2862	priv->pclk = devm_clk_get(priv->device, "pclk");
2863	if (IS_ERR(priv->pclk)) {
2864		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2865			ret = -EPROBE_DEFER;
2866			goto error_pclk_get;
2867		}
2868		priv->pclk = NULL;
2869	}
2870	clk_prepare_enable(priv->pclk);
2871
2872	priv->stmmac_rst = devm_reset_control_get(priv->device,
2873						  STMMAC_RESOURCE_NAME);
2874	if (IS_ERR(priv->stmmac_rst)) {
2875		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2876			ret = -EPROBE_DEFER;
2877			goto error_hw_init;
2878		}
2879		dev_info(priv->device, "no reset control found\n");
2880		priv->stmmac_rst = NULL;
2881	}
2882	if (priv->stmmac_rst)
2883		reset_control_deassert(priv->stmmac_rst);
2884
2885	/* Init MAC and get the capabilities */
2886	ret = stmmac_hw_init(priv);
2887	if (ret)
2888		goto error_hw_init;
2889
2890	ndev->netdev_ops = &stmmac_netdev_ops;
2891
2892	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2893			    NETIF_F_RXCSUM;
2894	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2895	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2896#ifdef STMMAC_VLAN_TAG_USED
2897	/* Both mac100 and gmac support receive VLAN tag detection */
2898	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2899#endif
2900	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2901
2902	if (flow_ctrl)
2903		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2904
2905	/* Rx Watchdog is available in the COREs newer than the 3.40.
2906	 * In some case, for example on bugged HW this feature
2907	 * has to be disable and this can be done by passing the
2908	 * riwt_off field from the platform.
2909	 */
2910	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2911		priv->use_riwt = 1;
2912		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2913	}
2914
2915	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2916
2917	spin_lock_init(&priv->lock);
2918	spin_lock_init(&priv->tx_lock);
2919
2920	ret = register_netdev(ndev);
2921	if (ret) {
2922		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2923		goto error_netdev_register;
2924	}
2925
2926	/* If a specific clk_csr value is passed from the platform
2927	 * this means that the CSR Clock Range selection cannot be
2928	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2929	 * set the MDC clock dynamically according to the csr actual
2930	 * clock input.
2931	 */
2932	if (!priv->plat->clk_csr)
2933		stmmac_clk_csr_set(priv);
2934	else
2935		priv->clk_csr = priv->plat->clk_csr;
2936
2937	stmmac_check_pcs_mode(priv);
2938
2939	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2940	    priv->pcs != STMMAC_PCS_RTBI) {
2941		/* MDIO bus Registration */
2942		ret = stmmac_mdio_register(ndev);
2943		if (ret < 0) {
2944			pr_debug("%s: MDIO bus (id: %d) registration failed",
2945				 __func__, priv->plat->bus_id);
2946			goto error_mdio_register;
2947		}
2948	}
2949
2950	return priv;
2951
2952error_mdio_register:
2953	unregister_netdev(ndev);
2954error_netdev_register:
2955	netif_napi_del(&priv->napi);
2956error_hw_init:
2957	clk_disable_unprepare(priv->pclk);
2958error_pclk_get:
2959	clk_disable_unprepare(priv->stmmac_clk);
2960error_clk_get:
2961	free_netdev(ndev);
2962
2963	return ERR_PTR(ret);
2964}
2965EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2966
2967/**
2968 * stmmac_dvr_remove
2969 * @ndev: net device pointer
2970 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2971 * changes the link status, releases the DMA descriptor rings.
2972 */
2973int stmmac_dvr_remove(struct net_device *ndev)
2974{
2975	struct stmmac_priv *priv = netdev_priv(ndev);
2976
2977	pr_info("%s:\n\tremoving driver", __func__);
2978
2979	priv->hw->dma->stop_rx(priv->ioaddr);
2980	priv->hw->dma->stop_tx(priv->ioaddr);
2981
2982	stmmac_set_mac(priv->ioaddr, false);
2983	netif_carrier_off(ndev);
2984	unregister_netdev(ndev);
2985	if (priv->stmmac_rst)
2986		reset_control_assert(priv->stmmac_rst);
2987	clk_disable_unprepare(priv->pclk);
2988	clk_disable_unprepare(priv->stmmac_clk);
2989	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2990	    priv->pcs != STMMAC_PCS_RTBI)
2991		stmmac_mdio_unregister(ndev);
2992	free_netdev(ndev);
2993
2994	return 0;
2995}
2996EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
2997
2998/**
2999 * stmmac_suspend - suspend callback
3000 * @ndev: net device pointer
3001 * Description: this is the function to suspend the device and it is called
3002 * by the platform driver to stop the network queue, release the resources,
3003 * program the PMT register (for WoL), clean and release driver resources.
3004 */
3005int stmmac_suspend(struct net_device *ndev)
3006{
3007	struct stmmac_priv *priv = netdev_priv(ndev);
3008	unsigned long flags;
3009
3010	if (!ndev || !netif_running(ndev))
3011		return 0;
3012
3013	if (priv->phydev)
3014		phy_stop(priv->phydev);
3015
3016	spin_lock_irqsave(&priv->lock, flags);
3017
3018	netif_device_detach(ndev);
3019	netif_stop_queue(ndev);
3020
3021	napi_disable(&priv->napi);
3022
3023	/* Stop TX/RX DMA */
3024	priv->hw->dma->stop_tx(priv->ioaddr);
3025	priv->hw->dma->stop_rx(priv->ioaddr);
3026
3027	stmmac_clear_descriptors(priv);
3028
3029	/* Enable Power down mode by programming the PMT regs */
3030	if (device_may_wakeup(priv->device)) {
3031		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3032		priv->irq_wake = 1;
3033	} else {
3034		stmmac_set_mac(priv->ioaddr, false);
3035		pinctrl_pm_select_sleep_state(priv->device);
3036		/* Disable clock in case of PWM is off */
3037		clk_disable(priv->pclk);
3038		clk_disable(priv->stmmac_clk);
3039	}
3040	spin_unlock_irqrestore(&priv->lock, flags);
3041
3042	priv->oldlink = 0;
3043	priv->speed = 0;
3044	priv->oldduplex = -1;
3045	return 0;
3046}
3047EXPORT_SYMBOL_GPL(stmmac_suspend);
3048
3049/**
3050 * stmmac_resume - resume callback
3051 * @ndev: net device pointer
3052 * Description: when resume this function is invoked to setup the DMA and CORE
3053 * in a usable state.
3054 */
3055int stmmac_resume(struct net_device *ndev)
3056{
3057	struct stmmac_priv *priv = netdev_priv(ndev);
3058	unsigned long flags;
3059
3060	if (!netif_running(ndev))
3061		return 0;
3062
3063	spin_lock_irqsave(&priv->lock, flags);
3064
3065	/* Power Down bit, into the PM register, is cleared
3066	 * automatically as soon as a magic packet or a Wake-up frame
3067	 * is received. Anyway, it's better to manually clear
3068	 * this bit because it can generate problems while resuming
3069	 * from another devices (e.g. serial console).
3070	 */
3071	if (device_may_wakeup(priv->device)) {
3072		priv->hw->mac->pmt(priv->hw, 0);
3073		priv->irq_wake = 0;
3074	} else {
3075		pinctrl_pm_select_default_state(priv->device);
3076		/* enable the clk prevously disabled */
3077		clk_enable(priv->stmmac_clk);
3078		clk_enable(priv->pclk);
3079		/* reset the phy so that it's ready */
3080		if (priv->mii)
3081			stmmac_mdio_reset(priv->mii);
3082	}
3083
3084	netif_device_attach(ndev);
3085
3086	init_dma_desc_rings(ndev, GFP_ATOMIC);
3087	stmmac_hw_setup(ndev, false);
3088	stmmac_init_tx_coalesce(priv);
3089
3090	napi_enable(&priv->napi);
3091
3092	netif_start_queue(ndev);
3093
3094	spin_unlock_irqrestore(&priv->lock, flags);
3095
3096	if (priv->phydev)
3097		phy_start(priv->phydev);
3098
3099	return 0;
3100}
3101EXPORT_SYMBOL_GPL(stmmac_resume);
3102
3103#ifndef MODULE
3104static int __init stmmac_cmdline_opt(char *str)
3105{
3106	char *opt;
3107
3108	if (!str || !*str)
3109		return -EINVAL;
3110	while ((opt = strsep(&str, ",")) != NULL) {
3111		if (!strncmp(opt, "debug:", 6)) {
3112			if (kstrtoint(opt + 6, 0, &debug))
3113				goto err;
3114		} else if (!strncmp(opt, "phyaddr:", 8)) {
3115			if (kstrtoint(opt + 8, 0, &phyaddr))
3116				goto err;
3117		} else if (!strncmp(opt, "dma_txsize:", 11)) {
3118			if (kstrtoint(opt + 11, 0, &dma_txsize))
3119				goto err;
3120		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3121			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3122				goto err;
3123		} else if (!strncmp(opt, "buf_sz:", 7)) {
3124			if (kstrtoint(opt + 7, 0, &buf_sz))
3125				goto err;
3126		} else if (!strncmp(opt, "tc:", 3)) {
3127			if (kstrtoint(opt + 3, 0, &tc))
3128				goto err;
3129		} else if (!strncmp(opt, "watchdog:", 9)) {
3130			if (kstrtoint(opt + 9, 0, &watchdog))
3131				goto err;
3132		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3133			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3134				goto err;
3135		} else if (!strncmp(opt, "pause:", 6)) {
3136			if (kstrtoint(opt + 6, 0, &pause))
3137				goto err;
3138		} else if (!strncmp(opt, "eee_timer:", 10)) {
3139			if (kstrtoint(opt + 10, 0, &eee_timer))
3140				goto err;
3141		} else if (!strncmp(opt, "chain_mode:", 11)) {
3142			if (kstrtoint(opt + 11, 0, &chain_mode))
3143				goto err;
3144		}
3145	}
3146	return 0;
3147
3148err:
3149	pr_err("%s: ERROR broken module parameter conversion", __func__);
3150	return -EINVAL;
3151}
3152
3153__setup("stmmaceth=", stmmac_cmdline_opt);
3154#endif /* MODULE */
3155
3156static int __init stmmac_init(void)
3157{
3158#ifdef CONFIG_DEBUG_FS
3159	/* Create debugfs main directory if it doesn't exist yet */
3160	if (!stmmac_fs_dir) {
3161		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3162
3163		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3164			pr_err("ERROR %s, debugfs create directory failed\n",
3165			       STMMAC_RESOURCE_NAME);
3166
3167			return -ENOMEM;
3168		}
3169	}
3170#endif
3171
3172	return 0;
3173}
3174
3175static void __exit stmmac_exit(void)
3176{
3177#ifdef CONFIG_DEBUG_FS
3178	debugfs_remove_recursive(stmmac_fs_dir);
3179#endif
3180}
3181
3182module_init(stmmac_init)
3183module_exit(stmmac_exit)
3184
3185MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3186MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3187MODULE_LICENSE("GPL");
3188