1/* 10G controller driver for Samsung SoCs
2 *
3 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
4 *		http://www.samsung.com
5 *
6 * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/clk.h>
16#include <linux/crc32.h>
17#include <linux/dma-mapping.h>
18#include <linux/etherdevice.h>
19#include <linux/ethtool.h>
20#include <linux/if.h>
21#include <linux/if_ether.h>
22#include <linux/if_vlan.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/ip.h>
26#include <linux/kernel.h>
27#include <linux/mii.h>
28#include <linux/module.h>
29#include <linux/net_tstamp.h>
30#include <linux/netdevice.h>
31#include <linux/phy.h>
32#include <linux/platform_device.h>
33#include <linux/prefetch.h>
34#include <linux/skbuff.h>
35#include <linux/slab.h>
36#include <linux/tcp.h>
37#include <linux/sxgbe_platform.h>
38
39#include "sxgbe_common.h"
40#include "sxgbe_desc.h"
41#include "sxgbe_dma.h"
42#include "sxgbe_mtl.h"
43#include "sxgbe_reg.h"
44
45#define SXGBE_ALIGN(x)	L1_CACHE_ALIGN(x)
46#define JUMBO_LEN	9000
47
48/* Module parameters */
49#define TX_TIMEO	5000
50#define DMA_TX_SIZE	512
51#define DMA_RX_SIZE	1024
52#define TC_DEFAULT	64
53#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
54/* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
55#define SXGBE_DEFAULT_LPI_TIMER	1000
56
57static int debug = -1;
58static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
59
60module_param(eee_timer, int, S_IRUGO | S_IWUSR);
61
62module_param(debug, int, S_IRUGO | S_IWUSR);
63static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
64				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
65				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
66
67static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
68static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
69static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
70
71#define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
72
73#define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
74
75/**
76 * sxgbe_verify_args - verify the driver parameters.
77 * Description: it verifies if some wrong parameter is passed to the driver.
78 * Note that wrong parameters are replaced with the default values.
79 */
80static void sxgbe_verify_args(void)
81{
82	if (unlikely(eee_timer < 0))
83		eee_timer = SXGBE_DEFAULT_LPI_TIMER;
84}
85
86static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
87{
88	/* Check and enter in LPI mode */
89	if (!priv->tx_path_in_lpi_mode)
90		priv->hw->mac->set_eee_mode(priv->ioaddr);
91}
92
93void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
94{
95	/* Exit and disable EEE in case of we are are in LPI state. */
96	priv->hw->mac->reset_eee_mode(priv->ioaddr);
97	del_timer_sync(&priv->eee_ctrl_timer);
98	priv->tx_path_in_lpi_mode = false;
99}
100
101/**
102 * sxgbe_eee_ctrl_timer
103 * @arg : data hook
104 * Description:
105 *  If there is no data transfer and if we are not in LPI state,
106 *  then MAC Transmitter can be moved to LPI state.
107 */
108static void sxgbe_eee_ctrl_timer(unsigned long arg)
109{
110	struct sxgbe_priv_data *priv = (struct sxgbe_priv_data *)arg;
111
112	sxgbe_enable_eee_mode(priv);
113	mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
114}
115
116/**
117 * sxgbe_eee_init
118 * @priv: private device pointer
119 * Description:
120 *  If the EEE support has been enabled while configuring the driver,
121 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
122 *  phy can also manage EEE, so enable the LPI state and start the timer
123 *  to verify if the tx path can enter in LPI state.
124 */
125bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
126{
127	bool ret = false;
128
129	/* MAC core supports the EEE feature. */
130	if (priv->hw_cap.eee) {
131		/* Check if the PHY supports EEE */
132		if (phy_init_eee(priv->phydev, 1))
133			return false;
134
135		priv->eee_active = 1;
136		setup_timer(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer,
137			    (unsigned long)priv);
138		priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
139		add_timer(&priv->eee_ctrl_timer);
140
141		priv->hw->mac->set_eee_timer(priv->ioaddr,
142					     SXGBE_DEFAULT_LPI_TIMER,
143					     priv->tx_lpi_timer);
144
145		pr_info("Energy-Efficient Ethernet initialized\n");
146
147		ret = true;
148	}
149
150	return ret;
151}
152
153static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
154{
155	/* When the EEE has been already initialised we have to
156	 * modify the PLS bit in the LPI ctrl & status reg according
157	 * to the PHY link status. For this reason.
158	 */
159	if (priv->eee_enabled)
160		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
161}
162
163/**
164 * sxgbe_clk_csr_set - dynamically set the MDC clock
165 * @priv: driver private structure
166 * Description: this is to dynamically set the MDC clock according to the csr
167 * clock input.
168 */
169static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
170{
171	u32 clk_rate = clk_get_rate(priv->sxgbe_clk);
172
173	/* assign the proper divider, this will be used during
174	 * mdio communication
175	 */
176	if (clk_rate < SXGBE_CSR_F_150M)
177		priv->clk_csr = SXGBE_CSR_100_150M;
178	else if (clk_rate <= SXGBE_CSR_F_250M)
179		priv->clk_csr = SXGBE_CSR_150_250M;
180	else if (clk_rate <= SXGBE_CSR_F_300M)
181		priv->clk_csr = SXGBE_CSR_250_300M;
182	else if (clk_rate <= SXGBE_CSR_F_350M)
183		priv->clk_csr = SXGBE_CSR_300_350M;
184	else if (clk_rate <= SXGBE_CSR_F_400M)
185		priv->clk_csr = SXGBE_CSR_350_400M;
186	else if (clk_rate <= SXGBE_CSR_F_500M)
187		priv->clk_csr = SXGBE_CSR_400_500M;
188}
189
190/* minimum number of free TX descriptors required to wake up TX process */
191#define SXGBE_TX_THRESH(x)	(x->dma_tx_size/4)
192
193static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
194{
195	return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
196}
197
198/**
199 * sxgbe_adjust_link
200 * @dev: net device structure
201 * Description: it adjusts the link parameters.
202 */
203static void sxgbe_adjust_link(struct net_device *dev)
204{
205	struct sxgbe_priv_data *priv = netdev_priv(dev);
206	struct phy_device *phydev = priv->phydev;
207	u8 new_state = 0;
208	u8 speed = 0xff;
209
210	if (!phydev)
211		return;
212
213	/* SXGBE is not supporting auto-negotiation and
214	 * half duplex mode. so, not handling duplex change
215	 * in this function. only handling speed and link status
216	 */
217	if (phydev->link) {
218		if (phydev->speed != priv->speed) {
219			new_state = 1;
220			switch (phydev->speed) {
221			case SPEED_10000:
222				speed = SXGBE_SPEED_10G;
223				break;
224			case SPEED_2500:
225				speed = SXGBE_SPEED_2_5G;
226				break;
227			case SPEED_1000:
228				speed = SXGBE_SPEED_1G;
229				break;
230			default:
231				netif_err(priv, link, dev,
232					  "Speed (%d) not supported\n",
233					  phydev->speed);
234			}
235
236			priv->speed = phydev->speed;
237			priv->hw->mac->set_speed(priv->ioaddr, speed);
238		}
239
240		if (!priv->oldlink) {
241			new_state = 1;
242			priv->oldlink = 1;
243		}
244	} else if (priv->oldlink) {
245		new_state = 1;
246		priv->oldlink = 0;
247		priv->speed = SPEED_UNKNOWN;
248	}
249
250	if (new_state & netif_msg_link(priv))
251		phy_print_status(phydev);
252
253	/* Alter the MAC settings for EEE */
254	sxgbe_eee_adjust(priv);
255}
256
257/**
258 * sxgbe_init_phy - PHY initialization
259 * @dev: net device structure
260 * Description: it initializes the driver's PHY state, and attaches the PHY
261 * to the mac driver.
262 *  Return value:
263 *  0 on success
264 */
265static int sxgbe_init_phy(struct net_device *ndev)
266{
267	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
268	char bus_id[MII_BUS_ID_SIZE];
269	struct phy_device *phydev;
270	struct sxgbe_priv_data *priv = netdev_priv(ndev);
271	int phy_iface = priv->plat->interface;
272
273	/* assign default link status */
274	priv->oldlink = 0;
275	priv->speed = SPEED_UNKNOWN;
276	priv->oldduplex = DUPLEX_UNKNOWN;
277
278	if (priv->plat->phy_bus_name)
279		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
280			 priv->plat->phy_bus_name, priv->plat->bus_id);
281	else
282		snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x",
283			 priv->plat->bus_id);
284
285	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
286		 priv->plat->phy_addr);
287	netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
288
289	phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface);
290
291	if (IS_ERR(phydev)) {
292		netdev_err(ndev, "Could not attach to PHY\n");
293		return PTR_ERR(phydev);
294	}
295
296	/* Stop Advertising 1000BASE Capability if interface is not GMII */
297	if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
298	    (phy_iface == PHY_INTERFACE_MODE_RMII))
299		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
300					 SUPPORTED_1000baseT_Full);
301	if (phydev->phy_id == 0) {
302		phy_disconnect(phydev);
303		return -ENODEV;
304	}
305
306	netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
307		   __func__, phydev->phy_id, phydev->link);
308
309	/* save phy device in private structure */
310	priv->phydev = phydev;
311
312	return 0;
313}
314
315/**
316 * sxgbe_clear_descriptors: clear descriptors
317 * @priv: driver private structure
318 * Description: this function is called to clear the tx and rx descriptors
319 * in case of both basic and extended descriptors are used.
320 */
321static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
322{
323	int i, j;
324	unsigned int txsize = priv->dma_tx_size;
325	unsigned int rxsize = priv->dma_rx_size;
326
327	/* Clear the Rx/Tx descriptors */
328	for (j = 0; j < SXGBE_RX_QUEUES; j++) {
329		for (i = 0; i < rxsize; i++)
330			priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
331						     priv->use_riwt, priv->mode,
332						     (i == rxsize - 1));
333	}
334
335	for (j = 0; j < SXGBE_TX_QUEUES; j++) {
336		for (i = 0; i < txsize; i++)
337			priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
338	}
339}
340
341static int sxgbe_init_rx_buffers(struct net_device *dev,
342				 struct sxgbe_rx_norm_desc *p, int i,
343				 unsigned int dma_buf_sz,
344				 struct sxgbe_rx_queue *rx_ring)
345{
346	struct sxgbe_priv_data *priv = netdev_priv(dev);
347	struct sk_buff *skb;
348
349	skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL);
350	if (!skb)
351		return -ENOMEM;
352
353	rx_ring->rx_skbuff[i] = skb;
354	rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
355						   dma_buf_sz, DMA_FROM_DEVICE);
356
357	if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) {
358		netdev_err(dev, "%s: DMA mapping error\n", __func__);
359		dev_kfree_skb_any(skb);
360		return -EINVAL;
361	}
362
363	p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
364
365	return 0;
366}
367
368/**
369 * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
370 * @dev: net device structure
371 * @rx_ring: ring to be freed
372 * @rx_rsize: ring size
373 * Description:  this function initializes the DMA RX descriptor
374 */
375static void sxgbe_free_rx_buffers(struct net_device *dev,
376				  struct sxgbe_rx_norm_desc *p, int i,
377				  unsigned int dma_buf_sz,
378				  struct sxgbe_rx_queue *rx_ring)
379{
380	struct sxgbe_priv_data *priv = netdev_priv(dev);
381
382	kfree_skb(rx_ring->rx_skbuff[i]);
383	dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
384			 dma_buf_sz, DMA_FROM_DEVICE);
385}
386
387/**
388 * init_tx_ring - init the TX descriptor ring
389 * @dev: net device structure
390 * @tx_ring: ring to be intialised
391 * @tx_rsize: ring size
392 * Description:  this function initializes the DMA TX descriptor
393 */
394static int init_tx_ring(struct device *dev, u8 queue_no,
395			struct sxgbe_tx_queue *tx_ring,	int tx_rsize)
396{
397	/* TX ring is not allcoated */
398	if (!tx_ring) {
399		dev_err(dev, "No memory for TX queue of SXGBE\n");
400		return -ENOMEM;
401	}
402
403	/* allocate memory for TX descriptors */
404	tx_ring->dma_tx = dma_zalloc_coherent(dev,
405					      tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
406					      &tx_ring->dma_tx_phy, GFP_KERNEL);
407	if (!tx_ring->dma_tx)
408		return -ENOMEM;
409
410	/* allocate memory for TX skbuff array */
411	tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize,
412					      sizeof(dma_addr_t), GFP_KERNEL);
413	if (!tx_ring->tx_skbuff_dma)
414		goto dmamem_err;
415
416	tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize,
417					  sizeof(struct sk_buff *), GFP_KERNEL);
418
419	if (!tx_ring->tx_skbuff)
420		goto dmamem_err;
421
422	/* assign queue number */
423	tx_ring->queue_no = queue_no;
424
425	/* initialise counters */
426	tx_ring->dirty_tx = 0;
427	tx_ring->cur_tx = 0;
428
429	/* initialise TX queue lock */
430	spin_lock_init(&tx_ring->tx_lock);
431
432	return 0;
433
434dmamem_err:
435	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
436			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
437	return -ENOMEM;
438}
439
440/**
441 * free_rx_ring - free the RX descriptor ring
442 * @dev: net device structure
443 * @rx_ring: ring to be intialised
444 * @rx_rsize: ring size
445 * Description:  this function initializes the DMA RX descriptor
446 */
447static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
448			 int rx_rsize)
449{
450	dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
451			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
452	kfree(rx_ring->rx_skbuff_dma);
453	kfree(rx_ring->rx_skbuff);
454}
455
456/**
457 * init_rx_ring - init the RX descriptor ring
458 * @dev: net device structure
459 * @rx_ring: ring to be intialised
460 * @rx_rsize: ring size
461 * Description:  this function initializes the DMA RX descriptor
462 */
463static int init_rx_ring(struct net_device *dev, u8 queue_no,
464			struct sxgbe_rx_queue *rx_ring,	int rx_rsize)
465{
466	struct sxgbe_priv_data *priv = netdev_priv(dev);
467	int desc_index;
468	unsigned int bfsize = 0;
469	unsigned int ret = 0;
470
471	/* Set the max buffer size according to the MTU. */
472	bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
473
474	netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
475
476	/* RX ring is not allcoated */
477	if (rx_ring == NULL) {
478		netdev_err(dev, "No memory for RX queue\n");
479		return -ENOMEM;
480	}
481
482	/* assign queue number */
483	rx_ring->queue_no = queue_no;
484
485	/* allocate memory for RX descriptors */
486	rx_ring->dma_rx = dma_zalloc_coherent(priv->device,
487					      rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
488					      &rx_ring->dma_rx_phy, GFP_KERNEL);
489
490	if (rx_ring->dma_rx == NULL)
491		return -ENOMEM;
492
493	/* allocate memory for RX skbuff array */
494	rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize,
495					       sizeof(dma_addr_t), GFP_KERNEL);
496	if (!rx_ring->rx_skbuff_dma) {
497		ret = -ENOMEM;
498		goto err_free_dma_rx;
499	}
500
501	rx_ring->rx_skbuff = kmalloc_array(rx_rsize,
502					   sizeof(struct sk_buff *), GFP_KERNEL);
503	if (!rx_ring->rx_skbuff) {
504		ret = -ENOMEM;
505		goto err_free_skbuff_dma;
506	}
507
508	/* initialise the buffers */
509	for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
510		struct sxgbe_rx_norm_desc *p;
511		p = rx_ring->dma_rx + desc_index;
512		ret = sxgbe_init_rx_buffers(dev, p, desc_index,
513					    bfsize, rx_ring);
514		if (ret)
515			goto err_free_rx_buffers;
516	}
517
518	/* initialise counters */
519	rx_ring->cur_rx = 0;
520	rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
521	priv->dma_buf_sz = bfsize;
522
523	return 0;
524
525err_free_rx_buffers:
526	while (--desc_index >= 0) {
527		struct sxgbe_rx_norm_desc *p;
528
529		p = rx_ring->dma_rx + desc_index;
530		sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring);
531	}
532	kfree(rx_ring->rx_skbuff);
533err_free_skbuff_dma:
534	kfree(rx_ring->rx_skbuff_dma);
535err_free_dma_rx:
536	dma_free_coherent(priv->device,
537			  rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
538			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
539
540	return ret;
541}
542/**
543 * free_tx_ring - free the TX descriptor ring
544 * @dev: net device structure
545 * @tx_ring: ring to be intialised
546 * @tx_rsize: ring size
547 * Description:  this function initializes the DMA TX descriptor
548 */
549static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
550			 int tx_rsize)
551{
552	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
553			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
554}
555
556/**
557 * init_dma_desc_rings - init the RX/TX descriptor rings
558 * @dev: net device structure
559 * Description:  this function initializes the DMA RX/TX descriptors
560 * and allocates the socket buffers. It suppors the chained and ring
561 * modes.
562 */
563static int init_dma_desc_rings(struct net_device *netd)
564{
565	int queue_num, ret;
566	struct sxgbe_priv_data *priv = netdev_priv(netd);
567	int tx_rsize = priv->dma_tx_size;
568	int rx_rsize = priv->dma_rx_size;
569
570	/* Allocate memory for queue structures and TX descs */
571	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
572		ret = init_tx_ring(priv->device, queue_num,
573				   priv->txq[queue_num], tx_rsize);
574		if (ret) {
575			dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
576			goto txalloc_err;
577		}
578
579		/* save private pointer in each ring this
580		 * pointer is needed during cleaing TX queue
581		 */
582		priv->txq[queue_num]->priv_ptr = priv;
583	}
584
585	/* Allocate memory for queue structures and RX descs */
586	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
587		ret = init_rx_ring(netd, queue_num,
588				   priv->rxq[queue_num], rx_rsize);
589		if (ret) {
590			netdev_err(netd, "RX DMA ring allocation failed!!\n");
591			goto rxalloc_err;
592		}
593
594		/* save private pointer in each ring this
595		 * pointer is needed during cleaing TX queue
596		 */
597		priv->rxq[queue_num]->priv_ptr = priv;
598	}
599
600	sxgbe_clear_descriptors(priv);
601
602	return 0;
603
604txalloc_err:
605	while (queue_num--)
606		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
607	return ret;
608
609rxalloc_err:
610	while (queue_num--)
611		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
612	return ret;
613}
614
615static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
616{
617	int dma_desc;
618	struct sxgbe_priv_data *priv = txqueue->priv_ptr;
619	int tx_rsize = priv->dma_tx_size;
620
621	for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
622		struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
623
624		if (txqueue->tx_skbuff_dma[dma_desc])
625			dma_unmap_single(priv->device,
626					 txqueue->tx_skbuff_dma[dma_desc],
627					 priv->hw->desc->get_tx_len(tdesc),
628					 DMA_TO_DEVICE);
629
630		dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]);
631		txqueue->tx_skbuff[dma_desc] = NULL;
632		txqueue->tx_skbuff_dma[dma_desc] = 0;
633	}
634}
635
636
637static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
638{
639	int queue_num;
640
641	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
642		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
643		tx_free_ring_skbufs(tqueue);
644	}
645}
646
647static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
648{
649	int queue_num;
650	int tx_rsize = priv->dma_tx_size;
651	int rx_rsize = priv->dma_rx_size;
652
653	/* Release the DMA TX buffers */
654	dma_free_tx_skbufs(priv);
655
656	/* Release the TX ring memory also */
657	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
658		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
659	}
660
661	/* Release the RX ring memory also */
662	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
663		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
664	}
665}
666
667static int txring_mem_alloc(struct sxgbe_priv_data *priv)
668{
669	int queue_num;
670
671	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
672		priv->txq[queue_num] = devm_kmalloc(priv->device,
673						    sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
674		if (!priv->txq[queue_num])
675			return -ENOMEM;
676	}
677
678	return 0;
679}
680
681static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
682{
683	int queue_num;
684
685	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
686		priv->rxq[queue_num] = devm_kmalloc(priv->device,
687						    sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
688		if (!priv->rxq[queue_num])
689			return -ENOMEM;
690	}
691
692	return 0;
693}
694
695/**
696 *  sxgbe_mtl_operation_mode - HW MTL operation mode
697 *  @priv: driver private structure
698 *  Description: it sets the MTL operation mode: tx/rx MTL thresholds
699 *  or Store-And-Forward capability.
700 */
701static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
702{
703	int queue_num;
704
705	/* TX/RX threshold control */
706	if (likely(priv->plat->force_sf_dma_mode)) {
707		/* set TC mode for TX QUEUES */
708		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
709			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
710						       SXGBE_MTL_SFMODE);
711		priv->tx_tc = SXGBE_MTL_SFMODE;
712
713		/* set TC mode for RX QUEUES */
714		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
715			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
716						       SXGBE_MTL_SFMODE);
717		priv->rx_tc = SXGBE_MTL_SFMODE;
718	} else if (unlikely(priv->plat->force_thresh_dma_mode)) {
719		/* set TC mode for TX QUEUES */
720		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
721			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
722						       priv->tx_tc);
723		/* set TC mode for RX QUEUES */
724		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
725			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
726						       priv->rx_tc);
727	} else {
728		pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
729	}
730}
731
732/**
733 * sxgbe_tx_queue_clean:
734 * @priv: driver private structure
735 * Description: it reclaims resources after transmission completes.
736 */
737static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
738{
739	struct sxgbe_priv_data *priv = tqueue->priv_ptr;
740	unsigned int tx_rsize = priv->dma_tx_size;
741	struct netdev_queue *dev_txq;
742	u8 queue_no = tqueue->queue_no;
743
744	dev_txq = netdev_get_tx_queue(priv->dev, queue_no);
745
746	spin_lock(&tqueue->tx_lock);
747
748	priv->xstats.tx_clean++;
749	while (tqueue->dirty_tx != tqueue->cur_tx) {
750		unsigned int entry = tqueue->dirty_tx % tx_rsize;
751		struct sk_buff *skb = tqueue->tx_skbuff[entry];
752		struct sxgbe_tx_norm_desc *p;
753
754		p = tqueue->dma_tx + entry;
755
756		/* Check if the descriptor is owned by the DMA. */
757		if (priv->hw->desc->get_tx_owner(p))
758			break;
759
760		if (netif_msg_tx_done(priv))
761			pr_debug("%s: curr %d, dirty %d\n",
762				 __func__, tqueue->cur_tx, tqueue->dirty_tx);
763
764		if (likely(tqueue->tx_skbuff_dma[entry])) {
765			dma_unmap_single(priv->device,
766					 tqueue->tx_skbuff_dma[entry],
767					 priv->hw->desc->get_tx_len(p),
768					 DMA_TO_DEVICE);
769			tqueue->tx_skbuff_dma[entry] = 0;
770		}
771
772		if (likely(skb)) {
773			dev_kfree_skb(skb);
774			tqueue->tx_skbuff[entry] = NULL;
775		}
776
777		priv->hw->desc->release_tx_desc(p);
778
779		tqueue->dirty_tx++;
780	}
781
782	/* wake up queue */
783	if (unlikely(netif_tx_queue_stopped(dev_txq) &&
784		     sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
785		netif_tx_lock(priv->dev);
786		if (netif_tx_queue_stopped(dev_txq) &&
787		    sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv)) {
788			if (netif_msg_tx_done(priv))
789				pr_debug("%s: restart transmit\n", __func__);
790			netif_tx_wake_queue(dev_txq);
791		}
792		netif_tx_unlock(priv->dev);
793	}
794
795	spin_unlock(&tqueue->tx_lock);
796}
797
798/**
799 * sxgbe_tx_clean:
800 * @priv: driver private structure
801 * Description: it reclaims resources after transmission completes.
802 */
803static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
804{
805	u8 queue_num;
806
807	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
808		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
809
810		sxgbe_tx_queue_clean(tqueue);
811	}
812
813	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
814		sxgbe_enable_eee_mode(priv);
815		mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
816	}
817}
818
819/**
820 * sxgbe_restart_tx_queue: irq tx error mng function
821 * @priv: driver private structure
822 * Description: it cleans the descriptors and restarts the transmission
823 * in case of errors.
824 */
825static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
826{
827	struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
828	struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev,
829							   queue_num);
830
831	/* stop the queue */
832	netif_tx_stop_queue(dev_txq);
833
834	/* stop the tx dma */
835	priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
836
837	/* free the skbuffs of the ring */
838	tx_free_ring_skbufs(tx_ring);
839
840	/* initialise counters */
841	tx_ring->cur_tx = 0;
842	tx_ring->dirty_tx = 0;
843
844	/* start the tx dma */
845	priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
846
847	priv->dev->stats.tx_errors++;
848
849	/* wakeup the queue */
850	netif_tx_wake_queue(dev_txq);
851}
852
853/**
854 * sxgbe_reset_all_tx_queues: irq tx error mng function
855 * @priv: driver private structure
856 * Description: it cleans all the descriptors and
857 * restarts the transmission on all queues in case of errors.
858 */
859static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
860{
861	int queue_num;
862
863	/* On TX timeout of net device, resetting of all queues
864	 * may not be proper way, revisit this later if needed
865	 */
866	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
867		sxgbe_restart_tx_queue(priv, queue_num);
868}
869
870/**
871 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
872 * @priv: driver private structure
873 * Description:
874 *  new GMAC chip generations have a new register to indicate the
875 *  presence of the optional feature/functions.
876 *  This can be also used to override the value passed through the
877 *  platform and necessary for old MAC10/100 and GMAC chips.
878 */
879static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
880{
881	int rval = 0;
882	struct sxgbe_hw_features *features = &priv->hw_cap;
883
884	/* Read First Capability Register CAP[0] */
885	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
886	if (rval) {
887		features->pmt_remote_wake_up =
888			SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
889		features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
890		features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
891		features->tx_csum_offload =
892			SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
893		features->rx_csum_offload =
894			SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
895		features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
896		features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
897		features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
898		features->eee = SXGBE_HW_FEAT_EEE(rval);
899	}
900
901	/* Read First Capability Register CAP[1] */
902	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
903	if (rval) {
904		features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
905		features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
906		features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
907		features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
908		features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
909		features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
910		features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
911		features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
912		features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
913		features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
914	}
915
916	/* Read First Capability Register CAP[2] */
917	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
918	if (rval) {
919		features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
920		features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
921		features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
922		features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
923		features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
924		features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
925	}
926
927	return rval;
928}
929
930/**
931 * sxgbe_check_ether_addr: check if the MAC addr is valid
932 * @priv: driver private structure
933 * Description:
934 * it is to verify if the MAC address is valid, in case of failures it
935 * generates a random MAC address
936 */
937static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
938{
939	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
940		priv->hw->mac->get_umac_addr((void __iomem *)
941					     priv->ioaddr,
942					     priv->dev->dev_addr, 0);
943		if (!is_valid_ether_addr(priv->dev->dev_addr))
944			eth_hw_addr_random(priv->dev);
945	}
946	dev_info(priv->device, "device MAC address %pM\n",
947		 priv->dev->dev_addr);
948}
949
950/**
951 * sxgbe_init_dma_engine: DMA init.
952 * @priv: driver private structure
953 * Description:
954 * It inits the DMA invoking the specific SXGBE callback.
955 * Some DMA parameters can be passed from the platform;
956 * in case of these are not passed a default is kept for the MAC or GMAC.
957 */
958static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
959{
960	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
961	int queue_num;
962
963	if (priv->plat->dma_cfg) {
964		pbl = priv->plat->dma_cfg->pbl;
965		fixed_burst = priv->plat->dma_cfg->fixed_burst;
966		burst_map = priv->plat->dma_cfg->burst_map;
967	}
968
969	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
970		priv->hw->dma->cha_init(priv->ioaddr, queue_num,
971					fixed_burst, pbl,
972					(priv->txq[queue_num])->dma_tx_phy,
973					(priv->rxq[queue_num])->dma_rx_phy,
974					priv->dma_tx_size, priv->dma_rx_size);
975
976	return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
977}
978
979/**
980 * sxgbe_init_mtl_engine: MTL init.
981 * @priv: driver private structure
982 * Description:
983 * It inits the MTL invoking the specific SXGBE callback.
984 */
985static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
986{
987	int queue_num;
988
989	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
990		priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
991						  priv->hw_cap.tx_mtl_qsize);
992		priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
993	}
994}
995
996/**
997 * sxgbe_disable_mtl_engine: MTL disable.
998 * @priv: driver private structure
999 * Description:
1000 * It disables the MTL queues by invoking the specific SXGBE callback.
1001 */
1002static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
1003{
1004	int queue_num;
1005
1006	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
1007		priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
1008}
1009
1010
1011/**
1012 * sxgbe_tx_timer: mitigation sw timer for tx.
1013 * @data: data pointer
1014 * Description:
1015 * This is the timer handler to directly invoke the sxgbe_tx_clean.
1016 */
1017static void sxgbe_tx_timer(unsigned long data)
1018{
1019	struct sxgbe_tx_queue *p = (struct sxgbe_tx_queue *)data;
1020	sxgbe_tx_queue_clean(p);
1021}
1022
1023/**
1024 * sxgbe_init_tx_coalesce: init tx mitigation options.
1025 * @priv: driver private structure
1026 * Description:
1027 * This inits the transmit coalesce parameters: i.e. timer rate,
1028 * timer handler and default threshold used for enabling the
1029 * interrupt on completion bit.
1030 */
1031static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1032{
1033	u8 queue_num;
1034
1035	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1036		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1037		p->tx_coal_frames =  SXGBE_TX_FRAMES;
1038		p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
1039		setup_timer(&p->txtimer, sxgbe_tx_timer,
1040			    (unsigned long)&priv->txq[queue_num]);
1041		p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1042		add_timer(&p->txtimer);
1043	}
1044}
1045
1046static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1047{
1048	u8 queue_num;
1049
1050	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1051		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1052		del_timer_sync(&p->txtimer);
1053	}
1054}
1055
1056/**
1057 *  sxgbe_open - open entry point of the driver
1058 *  @dev : pointer to the device structure.
1059 *  Description:
1060 *  This function is the open entry point of the driver.
1061 *  Return value:
1062 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1063 *  file on failure.
1064 */
1065static int sxgbe_open(struct net_device *dev)
1066{
1067	struct sxgbe_priv_data *priv = netdev_priv(dev);
1068	int ret, queue_num;
1069
1070	clk_prepare_enable(priv->sxgbe_clk);
1071
1072	sxgbe_check_ether_addr(priv);
1073
1074	/* Init the phy */
1075	ret = sxgbe_init_phy(dev);
1076	if (ret) {
1077		netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n",
1078			   __func__, ret);
1079		goto phy_error;
1080	}
1081
1082	/* Create and initialize the TX/RX descriptors chains. */
1083	priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1084	priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1085	priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1086	priv->tx_tc = TC_DEFAULT;
1087	priv->rx_tc = TC_DEFAULT;
1088	init_dma_desc_rings(dev);
1089
1090	/* DMA initialization and SW reset */
1091	ret = sxgbe_init_dma_engine(priv);
1092	if (ret < 0) {
1093		netdev_err(dev, "%s: DMA initialization failed\n", __func__);
1094		goto init_error;
1095	}
1096
1097	/*  MTL initialization */
1098	sxgbe_init_mtl_engine(priv);
1099
1100	/* Copy the MAC addr into the HW  */
1101	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1102
1103	/* Initialize the MAC Core */
1104	priv->hw->mac->core_init(priv->ioaddr);
1105	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1106		priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1107	}
1108
1109	/* Request the IRQ lines */
1110	ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt,
1111			       IRQF_SHARED, dev->name, dev);
1112	if (unlikely(ret < 0)) {
1113		netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1114			   __func__, priv->irq, ret);
1115		goto init_error;
1116	}
1117
1118	/* If the LPI irq is different from the mac irq
1119	 * register a dedicated handler
1120	 */
1121	if (priv->lpi_irq != dev->irq) {
1122		ret = devm_request_irq(priv->device, priv->lpi_irq,
1123				       sxgbe_common_interrupt,
1124				       IRQF_SHARED, dev->name, dev);
1125		if (unlikely(ret < 0)) {
1126			netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1127				   __func__, priv->lpi_irq, ret);
1128			goto init_error;
1129		}
1130	}
1131
1132	/* Request TX DMA irq lines */
1133	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1134		ret = devm_request_irq(priv->device,
1135				       (priv->txq[queue_num])->irq_no,
1136				       sxgbe_tx_interrupt, 0,
1137				       dev->name, priv->txq[queue_num]);
1138		if (unlikely(ret < 0)) {
1139			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1140				   __func__, priv->irq, ret);
1141			goto init_error;
1142		}
1143	}
1144
1145	/* Request RX DMA irq lines */
1146	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1147		ret = devm_request_irq(priv->device,
1148				       (priv->rxq[queue_num])->irq_no,
1149				       sxgbe_rx_interrupt, 0,
1150				       dev->name, priv->rxq[queue_num]);
1151		if (unlikely(ret < 0)) {
1152			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1153				   __func__, priv->irq, ret);
1154			goto init_error;
1155		}
1156	}
1157
1158	/* Enable the MAC Rx/Tx */
1159	priv->hw->mac->enable_tx(priv->ioaddr, true);
1160	priv->hw->mac->enable_rx(priv->ioaddr, true);
1161
1162	/* Set the HW DMA mode and the COE */
1163	sxgbe_mtl_operation_mode(priv);
1164
1165	/* Extra statistics */
1166	memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1167
1168	priv->xstats.tx_threshold = priv->tx_tc;
1169	priv->xstats.rx_threshold = priv->rx_tc;
1170
1171	/* Start the ball rolling... */
1172	netdev_dbg(dev, "DMA RX/TX processes started...\n");
1173	priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1174	priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1175
1176	if (priv->phydev)
1177		phy_start(priv->phydev);
1178
1179	/* initialise TX coalesce parameters */
1180	sxgbe_tx_init_coalesce(priv);
1181
1182	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1183		priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1184		priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1185	}
1186
1187	priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1188	priv->eee_enabled = sxgbe_eee_init(priv);
1189
1190	napi_enable(&priv->napi);
1191	netif_start_queue(dev);
1192
1193	return 0;
1194
1195init_error:
1196	free_dma_desc_resources(priv);
1197	if (priv->phydev)
1198		phy_disconnect(priv->phydev);
1199phy_error:
1200	clk_disable_unprepare(priv->sxgbe_clk);
1201
1202	return ret;
1203}
1204
1205/**
1206 *  sxgbe_release - close entry point of the driver
1207 *  @dev : device pointer.
1208 *  Description:
1209 *  This is the stop entry point of the driver.
1210 */
1211static int sxgbe_release(struct net_device *dev)
1212{
1213	struct sxgbe_priv_data *priv = netdev_priv(dev);
1214
1215	if (priv->eee_enabled)
1216		del_timer_sync(&priv->eee_ctrl_timer);
1217
1218	/* Stop and disconnect the PHY */
1219	if (priv->phydev) {
1220		phy_stop(priv->phydev);
1221		phy_disconnect(priv->phydev);
1222		priv->phydev = NULL;
1223	}
1224
1225	netif_tx_stop_all_queues(dev);
1226
1227	napi_disable(&priv->napi);
1228
1229	/* delete TX timers */
1230	sxgbe_tx_del_timer(priv);
1231
1232	/* Stop TX/RX DMA and clear the descriptors */
1233	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1234	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1235
1236	/* disable MTL queue */
1237	sxgbe_disable_mtl_engine(priv);
1238
1239	/* Release and free the Rx/Tx resources */
1240	free_dma_desc_resources(priv);
1241
1242	/* Disable the MAC Rx/Tx */
1243	priv->hw->mac->enable_tx(priv->ioaddr, false);
1244	priv->hw->mac->enable_rx(priv->ioaddr, false);
1245
1246	clk_disable_unprepare(priv->sxgbe_clk);
1247
1248	return 0;
1249}
1250/* Prepare first Tx descriptor for doing TSO operation */
1251static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1252			      struct sxgbe_tx_norm_desc *first_desc,
1253			      struct sk_buff *skb)
1254{
1255	unsigned int total_hdr_len, tcp_hdr_len;
1256
1257	/* Write first Tx descriptor with appropriate value */
1258	tcp_hdr_len = tcp_hdrlen(skb);
1259	total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1260
1261	first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1262					    total_hdr_len, DMA_TO_DEVICE);
1263	if (dma_mapping_error(priv->device, first_desc->tdes01))
1264		pr_err("%s: TX dma mapping failed!!\n", __func__);
1265
1266	first_desc->tdes23.tx_rd_des23.first_desc = 1;
1267	priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1268					   tcp_hdr_len,
1269					   skb->len - total_hdr_len);
1270}
1271
1272/**
1273 *  sxgbe_xmit: Tx entry point of the driver
1274 *  @skb : the socket buffer
1275 *  @dev : device pointer
1276 *  Description : this is the tx entry point of the driver.
1277 *  It programs the chain or the ring and supports oversized frames
1278 *  and SG feature.
1279 */
1280static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1281{
1282	unsigned int entry, frag_num;
1283	int cksum_flag = 0;
1284	struct netdev_queue *dev_txq;
1285	unsigned txq_index = skb_get_queue_mapping(skb);
1286	struct sxgbe_priv_data *priv = netdev_priv(dev);
1287	unsigned int tx_rsize = priv->dma_tx_size;
1288	struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1289	struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1290	struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1291	int nr_frags = skb_shinfo(skb)->nr_frags;
1292	int no_pagedlen = skb_headlen(skb);
1293	int is_jumbo = 0;
1294	u16 cur_mss = skb_shinfo(skb)->gso_size;
1295	u32 ctxt_desc_req = 0;
1296
1297	/* get the TX queue handle */
1298	dev_txq = netdev_get_tx_queue(dev, txq_index);
1299
1300	if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1301		ctxt_desc_req = 1;
1302
1303	if (unlikely(skb_vlan_tag_present(skb) ||
1304		     ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1305		      tqueue->hwts_tx_en)))
1306		ctxt_desc_req = 1;
1307
1308	/* get the spinlock */
1309	spin_lock(&tqueue->tx_lock);
1310
1311	if (priv->tx_path_in_lpi_mode)
1312		sxgbe_disable_eee_mode(priv);
1313
1314	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1315		if (!netif_tx_queue_stopped(dev_txq)) {
1316			netif_tx_stop_queue(dev_txq);
1317			netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n",
1318				   __func__, txq_index);
1319		}
1320		/* release the spin lock in case of BUSY */
1321		spin_unlock(&tqueue->tx_lock);
1322		return NETDEV_TX_BUSY;
1323	}
1324
1325	entry = tqueue->cur_tx % tx_rsize;
1326	tx_desc = tqueue->dma_tx + entry;
1327
1328	first_desc = tx_desc;
1329	if (ctxt_desc_req)
1330		ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1331
1332	/* save the skb address */
1333	tqueue->tx_skbuff[entry] = skb;
1334
1335	if (!is_jumbo) {
1336		if (likely(skb_is_gso(skb))) {
1337			/* TSO support */
1338			if (unlikely(tqueue->prev_mss != cur_mss)) {
1339				priv->hw->desc->tx_ctxt_desc_set_mss(
1340						ctxt_desc, cur_mss);
1341				priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1342						ctxt_desc);
1343				priv->hw->desc->tx_ctxt_desc_reset_ostc(
1344						ctxt_desc);
1345				priv->hw->desc->tx_ctxt_desc_set_ctxt(
1346						ctxt_desc);
1347				priv->hw->desc->tx_ctxt_desc_set_owner(
1348						ctxt_desc);
1349
1350				entry = (++tqueue->cur_tx) % tx_rsize;
1351				first_desc = tqueue->dma_tx + entry;
1352
1353				tqueue->prev_mss = cur_mss;
1354			}
1355			sxgbe_tso_prepare(priv, first_desc, skb);
1356		} else {
1357			tx_desc->tdes01 = dma_map_single(priv->device,
1358							 skb->data, no_pagedlen, DMA_TO_DEVICE);
1359			if (dma_mapping_error(priv->device, tx_desc->tdes01))
1360				netdev_err(dev, "%s: TX dma mapping failed!!\n",
1361					   __func__);
1362
1363			priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
1364							no_pagedlen, cksum_flag);
1365		}
1366	}
1367
1368	for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1369		const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1370		int len = skb_frag_size(frag);
1371
1372		entry = (++tqueue->cur_tx) % tx_rsize;
1373		tx_desc = tqueue->dma_tx + entry;
1374		tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len,
1375						   DMA_TO_DEVICE);
1376
1377		tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1378		tqueue->tx_skbuff[entry] = NULL;
1379
1380		/* prepare the descriptor */
1381		priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
1382						len, cksum_flag);
1383		/* memory barrier to flush descriptor */
1384		wmb();
1385
1386		/* set the owner */
1387		priv->hw->desc->set_tx_owner(tx_desc);
1388	}
1389
1390	/* close the descriptors */
1391	priv->hw->desc->close_tx_desc(tx_desc);
1392
1393	/* memory barrier to flush descriptor */
1394	wmb();
1395
1396	tqueue->tx_count_frames += nr_frags + 1;
1397	if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1398		priv->hw->desc->clear_tx_ic(tx_desc);
1399		priv->xstats.tx_reset_ic_bit++;
1400		mod_timer(&tqueue->txtimer,
1401			  SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1402	} else {
1403		tqueue->tx_count_frames = 0;
1404	}
1405
1406	/* set owner for first desc */
1407	priv->hw->desc->set_tx_owner(first_desc);
1408
1409	/* memory barrier to flush descriptor */
1410	wmb();
1411
1412	tqueue->cur_tx++;
1413
1414	/* display current ring */
1415	netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1416		  __func__, tqueue->cur_tx % tx_rsize,
1417		  tqueue->dirty_tx % tx_rsize, entry,
1418		  first_desc, nr_frags);
1419
1420	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1421		netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1422			  __func__);
1423		netif_tx_stop_queue(dev_txq);
1424	}
1425
1426	dev->stats.tx_bytes += skb->len;
1427
1428	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1429		     tqueue->hwts_tx_en)) {
1430		/* declare that device is doing timestamping */
1431		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1432		priv->hw->desc->tx_enable_tstamp(first_desc);
1433	}
1434
1435	if (!tqueue->hwts_tx_en)
1436		skb_tx_timestamp(skb);
1437
1438	priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1439
1440	spin_unlock(&tqueue->tx_lock);
1441
1442	return NETDEV_TX_OK;
1443}
1444
1445/**
1446 * sxgbe_rx_refill: refill used skb preallocated buffers
1447 * @priv: driver private structure
1448 * Description : this is to reallocate the skb for the reception process
1449 * that is based on zero-copy.
1450 */
1451static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1452{
1453	unsigned int rxsize = priv->dma_rx_size;
1454	int bfsize = priv->dma_buf_sz;
1455	u8 qnum = priv->cur_rx_qnum;
1456
1457	for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1458	     priv->rxq[qnum]->dirty_rx++) {
1459		unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1460		struct sxgbe_rx_norm_desc *p;
1461
1462		p = priv->rxq[qnum]->dma_rx + entry;
1463
1464		if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1465			struct sk_buff *skb;
1466
1467			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1468
1469			if (unlikely(skb == NULL))
1470				break;
1471
1472			priv->rxq[qnum]->rx_skbuff[entry] = skb;
1473			priv->rxq[qnum]->rx_skbuff_dma[entry] =
1474				dma_map_single(priv->device, skb->data, bfsize,
1475					       DMA_FROM_DEVICE);
1476
1477			p->rdes23.rx_rd_des23.buf2_addr =
1478				priv->rxq[qnum]->rx_skbuff_dma[entry];
1479		}
1480
1481		/* Added memory barrier for RX descriptor modification */
1482		wmb();
1483		priv->hw->desc->set_rx_owner(p);
1484		priv->hw->desc->set_rx_int_on_com(p);
1485		/* Added memory barrier for RX descriptor modification */
1486		wmb();
1487	}
1488}
1489
1490/**
1491 * sxgbe_rx: receive the frames from the remote host
1492 * @priv: driver private structure
1493 * @limit: napi bugget.
1494 * Description :  this the function called by the napi poll method.
1495 * It gets all the frames inside the ring.
1496 */
1497static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1498{
1499	u8 qnum = priv->cur_rx_qnum;
1500	unsigned int rxsize = priv->dma_rx_size;
1501	unsigned int entry = priv->rxq[qnum]->cur_rx;
1502	unsigned int next_entry = 0;
1503	unsigned int count = 0;
1504	int checksum;
1505	int status;
1506
1507	while (count < limit) {
1508		struct sxgbe_rx_norm_desc *p;
1509		struct sk_buff *skb;
1510		int frame_len;
1511
1512		p = priv->rxq[qnum]->dma_rx + entry;
1513
1514		if (priv->hw->desc->get_rx_owner(p))
1515			break;
1516
1517		count++;
1518
1519		next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1520		prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1521
1522		/* Read the status of the incoming frame and also get checksum
1523		 * value based on whether it is enabled in SXGBE hardware or
1524		 * not.
1525		 */
1526		status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1527						     &checksum);
1528		if (unlikely(status < 0)) {
1529			entry = next_entry;
1530			continue;
1531		}
1532		if (unlikely(!priv->rxcsum_insertion))
1533			checksum = CHECKSUM_NONE;
1534
1535		skb = priv->rxq[qnum]->rx_skbuff[entry];
1536
1537		if (unlikely(!skb))
1538			netdev_err(priv->dev, "rx descriptor is not consistent\n");
1539
1540		prefetch(skb->data - NET_IP_ALIGN);
1541		priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1542
1543		frame_len = priv->hw->desc->get_rx_frame_len(p);
1544
1545		skb_put(skb, frame_len);
1546
1547		skb->ip_summed = checksum;
1548		if (checksum == CHECKSUM_NONE)
1549			netif_receive_skb(skb);
1550		else
1551			napi_gro_receive(&priv->napi, skb);
1552
1553		entry = next_entry;
1554	}
1555
1556	sxgbe_rx_refill(priv);
1557
1558	return count;
1559}
1560
1561/**
1562 *  sxgbe_poll - sxgbe poll method (NAPI)
1563 *  @napi : pointer to the napi structure.
1564 *  @budget : maximum number of packets that the current CPU can receive from
1565 *	      all interfaces.
1566 *  Description :
1567 *  To look at the incoming frames and clear the tx resources.
1568 */
1569static int sxgbe_poll(struct napi_struct *napi, int budget)
1570{
1571	struct sxgbe_priv_data *priv = container_of(napi,
1572						    struct sxgbe_priv_data, napi);
1573	int work_done = 0;
1574	u8 qnum = priv->cur_rx_qnum;
1575
1576	priv->xstats.napi_poll++;
1577	/* first, clean the tx queues */
1578	sxgbe_tx_all_clean(priv);
1579
1580	work_done = sxgbe_rx(priv, budget);
1581	if (work_done < budget) {
1582		napi_complete(napi);
1583		priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1584	}
1585
1586	return work_done;
1587}
1588
1589/**
1590 *  sxgbe_tx_timeout
1591 *  @dev : Pointer to net device structure
1592 *  Description: this function is called when a packet transmission fails to
1593 *   complete within a reasonable time. The driver will mark the error in the
1594 *   netdev structure and arrange for the device to be reset to a sane state
1595 *   in order to transmit a new packet.
1596 */
1597static void sxgbe_tx_timeout(struct net_device *dev)
1598{
1599	struct sxgbe_priv_data *priv = netdev_priv(dev);
1600
1601	sxgbe_reset_all_tx_queues(priv);
1602}
1603
1604/**
1605 *  sxgbe_common_interrupt - main ISR
1606 *  @irq: interrupt number.
1607 *  @dev_id: to pass the net device pointer.
1608 *  Description: this is the main driver interrupt service routine.
1609 *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1610 *  interrupts.
1611 */
1612static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1613{
1614	struct net_device *netdev = (struct net_device *)dev_id;
1615	struct sxgbe_priv_data *priv = netdev_priv(netdev);
1616	int status;
1617
1618	status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1619	/* For LPI we need to save the tx status */
1620	if (status & TX_ENTRY_LPI_MODE) {
1621		priv->xstats.tx_lpi_entry_n++;
1622		priv->tx_path_in_lpi_mode = true;
1623	}
1624	if (status & TX_EXIT_LPI_MODE) {
1625		priv->xstats.tx_lpi_exit_n++;
1626		priv->tx_path_in_lpi_mode = false;
1627	}
1628	if (status & RX_ENTRY_LPI_MODE)
1629		priv->xstats.rx_lpi_entry_n++;
1630	if (status & RX_EXIT_LPI_MODE)
1631		priv->xstats.rx_lpi_exit_n++;
1632
1633	return IRQ_HANDLED;
1634}
1635
1636/**
1637 *  sxgbe_tx_interrupt - TX DMA ISR
1638 *  @irq: interrupt number.
1639 *  @dev_id: to pass the net device pointer.
1640 *  Description: this is the tx dma interrupt service routine.
1641 */
1642static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1643{
1644	int status;
1645	struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1646	struct sxgbe_priv_data *priv = txq->priv_ptr;
1647
1648	/* get the channel status */
1649	status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1650						  &priv->xstats);
1651	/* check for normal path */
1652	if (likely((status & handle_tx)))
1653		napi_schedule(&priv->napi);
1654
1655	/* check for unrecoverable error */
1656	if (unlikely((status & tx_hard_error)))
1657		sxgbe_restart_tx_queue(priv, txq->queue_no);
1658
1659	/* check for TC configuration change */
1660	if (unlikely((status & tx_bump_tc) &&
1661		     (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1662		     (priv->tx_tc < 512))) {
1663		/* step of TX TC is 32 till 128, otherwise 64 */
1664		priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1665		priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1666					       txq->queue_no, priv->tx_tc);
1667		priv->xstats.tx_threshold = priv->tx_tc;
1668	}
1669
1670	return IRQ_HANDLED;
1671}
1672
1673/**
1674 *  sxgbe_rx_interrupt - RX DMA ISR
1675 *  @irq: interrupt number.
1676 *  @dev_id: to pass the net device pointer.
1677 *  Description: this is the rx dma interrupt service routine.
1678 */
1679static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1680{
1681	int status;
1682	struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1683	struct sxgbe_priv_data *priv = rxq->priv_ptr;
1684
1685	/* get the channel status */
1686	status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1687						  &priv->xstats);
1688
1689	if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1690		priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1691		__napi_schedule(&priv->napi);
1692	}
1693
1694	/* check for TC configuration change */
1695	if (unlikely((status & rx_bump_tc) &&
1696		     (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1697		     (priv->rx_tc < 128))) {
1698		/* step of TC is 32 */
1699		priv->rx_tc += 32;
1700		priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1701					       rxq->queue_no, priv->rx_tc);
1702		priv->xstats.rx_threshold = priv->rx_tc;
1703	}
1704
1705	return IRQ_HANDLED;
1706}
1707
1708static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1709{
1710	u64 val = readl(ioaddr + reg_lo);
1711
1712	val |= ((u64)readl(ioaddr + reg_hi)) << 32;
1713
1714	return val;
1715}
1716
1717
1718/*  sxgbe_get_stats64 - entry point to see statistical information of device
1719 *  @dev : device pointer.
1720 *  @stats : pointer to hold all the statistical information of device.
1721 *  Description:
1722 *  This function is a driver entry point whenever ifconfig command gets
1723 *  executed to see device statistics. Statistics are number of
1724 *  bytes sent or received, errors occurred etc.
1725 *  Return value:
1726 *  This function returns various statistical information of device.
1727 */
1728static struct rtnl_link_stats64 *sxgbe_get_stats64(struct net_device *dev,
1729						   struct rtnl_link_stats64 *stats)
1730{
1731	struct sxgbe_priv_data *priv = netdev_priv(dev);
1732	void __iomem *ioaddr = priv->ioaddr;
1733	u64 count;
1734
1735	spin_lock(&priv->stats_lock);
1736	/* Freeze the counter registers before reading value otherwise it may
1737	 * get updated by hardware while we are reading them
1738	 */
1739	writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG);
1740
1741	stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1742					   SXGBE_MMC_RXOCTETLO_GCNT_REG,
1743					   SXGBE_MMC_RXOCTETHI_GCNT_REG);
1744
1745	stats->rx_packets = sxgbe_get_stat64(ioaddr,
1746					     SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1747					     SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1748
1749	stats->multicast = sxgbe_get_stat64(ioaddr,
1750					    SXGBE_MMC_RXMULTILO_GCNT_REG,
1751					    SXGBE_MMC_RXMULTIHI_GCNT_REG);
1752
1753	stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1754						SXGBE_MMC_RXCRCERRLO_REG,
1755						SXGBE_MMC_RXCRCERRHI_REG);
1756
1757	stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1758						  SXGBE_MMC_RXLENERRLO_REG,
1759						  SXGBE_MMC_RXLENERRHI_REG);
1760
1761	stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1762						   SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1763						   SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1764
1765	stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1766					   SXGBE_MMC_TXOCTETLO_GCNT_REG,
1767					   SXGBE_MMC_TXOCTETHI_GCNT_REG);
1768
1769	count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1770				 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1771
1772	stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1773					    SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1774	stats->tx_errors = count - stats->tx_errors;
1775	stats->tx_packets = count;
1776	stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1777						 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1778	writel(0, ioaddr + SXGBE_MMC_CTL_REG);
1779	spin_unlock(&priv->stats_lock);
1780
1781	return stats;
1782}
1783
1784/*  sxgbe_set_features - entry point to set offload features of the device.
1785 *  @dev : device pointer.
1786 *  @features : features which are required to be set.
1787 *  Description:
1788 *  This function is a driver entry point and called by Linux kernel whenever
1789 *  any device features are set or reset by user.
1790 *  Return value:
1791 *  This function returns 0 after setting or resetting device features.
1792 */
1793static int sxgbe_set_features(struct net_device *dev,
1794			      netdev_features_t features)
1795{
1796	struct sxgbe_priv_data *priv = netdev_priv(dev);
1797	netdev_features_t changed = dev->features ^ features;
1798
1799	if (changed & NETIF_F_RXCSUM) {
1800		if (features & NETIF_F_RXCSUM) {
1801			priv->hw->mac->enable_rx_csum(priv->ioaddr);
1802			priv->rxcsum_insertion = true;
1803		} else {
1804			priv->hw->mac->disable_rx_csum(priv->ioaddr);
1805			priv->rxcsum_insertion = false;
1806		}
1807	}
1808
1809	return 0;
1810}
1811
1812/*  sxgbe_change_mtu - entry point to change MTU size for the device.
1813 *  @dev : device pointer.
1814 *  @new_mtu : the new MTU size for the device.
1815 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1816 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1817 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1818 *  Return value:
1819 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1820 *  file on failure.
1821 */
1822static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1823{
1824	/* RFC 791, page 25, "Every internet module must be able to forward
1825	 * a datagram of 68 octets without further fragmentation."
1826	 */
1827	if (new_mtu < MIN_MTU || (new_mtu > MAX_MTU)) {
1828		netdev_err(dev, "invalid MTU, MTU should be in between %d and %d\n",
1829			   MIN_MTU, MAX_MTU);
1830		return -EINVAL;
1831	}
1832
1833	/* Return if the buffer sizes will not change */
1834	if (dev->mtu == new_mtu)
1835		return 0;
1836
1837	dev->mtu = new_mtu;
1838
1839	if (!netif_running(dev))
1840		return 0;
1841
1842	/* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1843	 * changed then reinitilisation of the receive ring buffers need to be
1844	 * done. Hence bring interface down and bring interface back up
1845	 */
1846	sxgbe_release(dev);
1847	return sxgbe_open(dev);
1848}
1849
1850static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1851				unsigned int reg_n)
1852{
1853	unsigned long data;
1854
1855	data = (addr[5] << 8) | addr[4];
1856	/* For MAC Addr registers se have to set the Address Enable (AE)
1857	 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1858	 * is RO.
1859	 */
1860	writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n));
1861	data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1862	writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n));
1863}
1864
1865/**
1866 * sxgbe_set_rx_mode - entry point for setting different receive mode of
1867 * a device. unicast, multicast addressing
1868 * @dev : pointer to the device structure
1869 * Description:
1870 * This function is a driver entry point which gets called by the kernel
1871 * whenever different receive mode like unicast, multicast and promiscuous
1872 * must be enabled/disabled.
1873 * Return value:
1874 * void.
1875 */
1876static void sxgbe_set_rx_mode(struct net_device *dev)
1877{
1878	struct sxgbe_priv_data *priv = netdev_priv(dev);
1879	void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1880	unsigned int value = 0;
1881	u32 mc_filter[2];
1882	struct netdev_hw_addr *ha;
1883	int reg = 1;
1884
1885	netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1886		   __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1887
1888	if (dev->flags & IFF_PROMISC) {
1889		value = SXGBE_FRAME_FILTER_PR;
1890
1891	} else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1892		   (dev->flags & IFF_ALLMULTI)) {
1893		value = SXGBE_FRAME_FILTER_PM;	/* pass all multi */
1894		writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH);
1895		writel(0xffffffff, ioaddr + SXGBE_HASH_LOW);
1896
1897	} else if (!netdev_mc_empty(dev)) {
1898		/* Hash filter for multicast */
1899		value = SXGBE_FRAME_FILTER_HMC;
1900
1901		memset(mc_filter, 0, sizeof(mc_filter));
1902		netdev_for_each_mc_addr(ha, dev) {
1903			/* The upper 6 bits of the calculated CRC are used to
1904			 * index the contens of the hash table
1905			 */
1906			int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1907
1908			/* The most significant bit determines the register to
1909			 * use (H/L) while the other 5 bits determine the bit
1910			 * within the register.
1911			 */
1912			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1913		}
1914		writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW);
1915		writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH);
1916	}
1917
1918	/* Handle multiple unicast addresses (perfect filtering) */
1919	if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1920		/* Switch to promiscuous mode if more than 16 addrs
1921		 * are required
1922		 */
1923		value |= SXGBE_FRAME_FILTER_PR;
1924	else {
1925		netdev_for_each_uc_addr(ha, dev) {
1926			sxgbe_set_umac_addr(ioaddr, ha->addr, reg);
1927			reg++;
1928		}
1929	}
1930#ifdef FRAME_FILTER_DEBUG
1931	/* Enable Receive all mode (to debug filtering_fail errors) */
1932	value |= SXGBE_FRAME_FILTER_RA;
1933#endif
1934	writel(value, ioaddr + SXGBE_FRAME_FILTER);
1935
1936	netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1937		   readl(ioaddr + SXGBE_FRAME_FILTER),
1938		   readl(ioaddr + SXGBE_HASH_HIGH),
1939		   readl(ioaddr + SXGBE_HASH_LOW));
1940}
1941
1942#ifdef CONFIG_NET_POLL_CONTROLLER
1943/**
1944 * sxgbe_poll_controller - entry point for polling receive by device
1945 * @dev : pointer to the device structure
1946 * Description:
1947 * This function is used by NETCONSOLE and other diagnostic tools
1948 * to allow network I/O with interrupts disabled.
1949 * Return value:
1950 * Void.
1951 */
1952static void sxgbe_poll_controller(struct net_device *dev)
1953{
1954	struct sxgbe_priv_data *priv = netdev_priv(dev);
1955
1956	disable_irq(priv->irq);
1957	sxgbe_rx_interrupt(priv->irq, dev);
1958	enable_irq(priv->irq);
1959}
1960#endif
1961
1962/*  sxgbe_ioctl - Entry point for the Ioctl
1963 *  @dev: Device pointer.
1964 *  @rq: An IOCTL specefic structure, that can contain a pointer to
1965 *  a proprietary structure used to pass information to the driver.
1966 *  @cmd: IOCTL command
1967 *  Description:
1968 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1969 */
1970static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1971{
1972	struct sxgbe_priv_data *priv = netdev_priv(dev);
1973	int ret = -EOPNOTSUPP;
1974
1975	if (!netif_running(dev))
1976		return -EINVAL;
1977
1978	switch (cmd) {
1979	case SIOCGMIIPHY:
1980	case SIOCGMIIREG:
1981	case SIOCSMIIREG:
1982		if (!priv->phydev)
1983			return -EINVAL;
1984		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1985		break;
1986	default:
1987		break;
1988	}
1989
1990	return ret;
1991}
1992
1993static const struct net_device_ops sxgbe_netdev_ops = {
1994	.ndo_open		= sxgbe_open,
1995	.ndo_start_xmit		= sxgbe_xmit,
1996	.ndo_stop		= sxgbe_release,
1997	.ndo_get_stats64	= sxgbe_get_stats64,
1998	.ndo_change_mtu		= sxgbe_change_mtu,
1999	.ndo_set_features	= sxgbe_set_features,
2000	.ndo_set_rx_mode	= sxgbe_set_rx_mode,
2001	.ndo_tx_timeout		= sxgbe_tx_timeout,
2002	.ndo_do_ioctl		= sxgbe_ioctl,
2003#ifdef CONFIG_NET_POLL_CONTROLLER
2004	.ndo_poll_controller	= sxgbe_poll_controller,
2005#endif
2006	.ndo_set_mac_address	= eth_mac_addr,
2007};
2008
2009/* Get the hardware ops */
2010static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
2011{
2012	ops_ptr->mac		= sxgbe_get_core_ops();
2013	ops_ptr->desc		= sxgbe_get_desc_ops();
2014	ops_ptr->dma		= sxgbe_get_dma_ops();
2015	ops_ptr->mtl		= sxgbe_get_mtl_ops();
2016
2017	/* set the MDIO communication Address/Data regisers */
2018	ops_ptr->mii.addr	= SXGBE_MDIO_SCMD_ADD_REG;
2019	ops_ptr->mii.data	= SXGBE_MDIO_SCMD_DATA_REG;
2020
2021	/* Assigning the default link settings
2022	 * no SXGBE defined default values to be set in registers,
2023	 * so assigning as 0 for port and duplex
2024	 */
2025	ops_ptr->link.port	= 0;
2026	ops_ptr->link.duplex	= 0;
2027	ops_ptr->link.speed	= SXGBE_SPEED_10G;
2028}
2029
2030/**
2031 *  sxgbe_hw_init - Init the GMAC device
2032 *  @priv: driver private structure
2033 *  Description: this function checks the HW capability
2034 *  (if supported) and sets the driver's features.
2035 */
2036static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
2037{
2038	u32 ctrl_ids;
2039
2040	priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL);
2041	if(!priv->hw)
2042		return -ENOMEM;
2043
2044	/* get the hardware ops */
2045	sxgbe_get_ops(priv->hw);
2046
2047	/* get the controller id */
2048	ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2049	priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2050	priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2051	pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2052		priv->hw->ctrl_uid, priv->hw->ctrl_id);
2053
2054	/* get the H/W features */
2055	if (!sxgbe_get_hw_features(priv))
2056		pr_info("Hardware features not found\n");
2057
2058	if (priv->hw_cap.tx_csum_offload)
2059		pr_info("TX Checksum offload supported\n");
2060
2061	if (priv->hw_cap.rx_csum_offload)
2062		pr_info("RX Checksum offload supported\n");
2063
2064	return 0;
2065}
2066
2067static int sxgbe_sw_reset(void __iomem *addr)
2068{
2069	int retry_count = 10;
2070
2071	writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG);
2072	while (retry_count--) {
2073		if (!(readl(addr + SXGBE_DMA_MODE_REG) &
2074		      SXGBE_DMA_SOFT_RESET))
2075			break;
2076		mdelay(10);
2077	}
2078
2079	if (retry_count < 0)
2080		return -EBUSY;
2081
2082	return 0;
2083}
2084
2085/**
2086 * sxgbe_drv_probe
2087 * @device: device pointer
2088 * @plat_dat: platform data pointer
2089 * @addr: iobase memory address
2090 * Description: this is the main probe function used to
2091 * call the alloc_etherdev, allocate the priv structure.
2092 */
2093struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2094					struct sxgbe_plat_data *plat_dat,
2095					void __iomem *addr)
2096{
2097	struct sxgbe_priv_data *priv;
2098	struct net_device *ndev;
2099	int ret;
2100	u8 queue_num;
2101
2102	ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data),
2103				  SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2104	if (!ndev)
2105		return NULL;
2106
2107	SET_NETDEV_DEV(ndev, device);
2108
2109	priv = netdev_priv(ndev);
2110	priv->device = device;
2111	priv->dev = ndev;
2112
2113	sxgbe_set_ethtool_ops(ndev);
2114	priv->plat = plat_dat;
2115	priv->ioaddr = addr;
2116
2117	ret = sxgbe_sw_reset(priv->ioaddr);
2118	if (ret)
2119		goto error_free_netdev;
2120
2121	/* Verify driver arguments */
2122	sxgbe_verify_args();
2123
2124	/* Init MAC and get the capabilities */
2125	ret = sxgbe_hw_init(priv);
2126	if (ret)
2127		goto error_free_netdev;
2128
2129	/* allocate memory resources for Descriptor rings */
2130	ret = txring_mem_alloc(priv);
2131	if (ret)
2132		goto error_free_hw;
2133
2134	ret = rxring_mem_alloc(priv);
2135	if (ret)
2136		goto error_free_hw;
2137
2138	ndev->netdev_ops = &sxgbe_netdev_ops;
2139
2140	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2141		NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2142		NETIF_F_GRO;
2143	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2144	ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2145
2146	/* assign filtering support */
2147	ndev->priv_flags |= IFF_UNICAST_FLT;
2148
2149	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2150
2151	/* Enable TCP segmentation offload for all DMA channels */
2152	if (priv->hw_cap.tcpseg_offload) {
2153		SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2154			priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2155		}
2156	}
2157
2158	/* Enable Rx checksum offload */
2159	if (priv->hw_cap.rx_csum_offload) {
2160		priv->hw->mac->enable_rx_csum(priv->ioaddr);
2161		priv->rxcsum_insertion = true;
2162	}
2163
2164	/* Initialise pause frame settings */
2165	priv->rx_pause = 1;
2166	priv->tx_pause = 1;
2167
2168	/* Rx Watchdog is available, enable depend on platform data */
2169	if (!priv->plat->riwt_off) {
2170		priv->use_riwt = 1;
2171		pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2172	}
2173
2174	netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64);
2175
2176	spin_lock_init(&priv->stats_lock);
2177
2178	priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME);
2179	if (IS_ERR(priv->sxgbe_clk)) {
2180		netdev_warn(ndev, "%s: warning: cannot get CSR clock\n",
2181			    __func__);
2182		goto error_napi_del;
2183	}
2184
2185	/* If a specific clk_csr value is passed from the platform
2186	 * this means that the CSR Clock Range selection cannot be
2187	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2188	 * set the MDC clock dynamically according to the csr actual
2189	 * clock input.
2190	 */
2191	if (!priv->plat->clk_csr)
2192		sxgbe_clk_csr_set(priv);
2193	else
2194		priv->clk_csr = priv->plat->clk_csr;
2195
2196	/* MDIO bus Registration */
2197	ret = sxgbe_mdio_register(ndev);
2198	if (ret < 0) {
2199		netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2200			   __func__, priv->plat->bus_id);
2201		goto error_clk_put;
2202	}
2203
2204	ret = register_netdev(ndev);
2205	if (ret) {
2206		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2207		goto error_mdio_unregister;
2208	}
2209
2210	sxgbe_check_ether_addr(priv);
2211
2212	return priv;
2213
2214error_mdio_unregister:
2215	sxgbe_mdio_unregister(ndev);
2216error_clk_put:
2217	clk_put(priv->sxgbe_clk);
2218error_napi_del:
2219	netif_napi_del(&priv->napi);
2220error_free_hw:
2221	kfree(priv->hw);
2222error_free_netdev:
2223	free_netdev(ndev);
2224
2225	return NULL;
2226}
2227
2228/**
2229 * sxgbe_drv_remove
2230 * @ndev: net device pointer
2231 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2232 * changes the link status, releases the DMA descriptor rings.
2233 */
2234int sxgbe_drv_remove(struct net_device *ndev)
2235{
2236	struct sxgbe_priv_data *priv = netdev_priv(ndev);
2237	u8 queue_num;
2238
2239	netdev_info(ndev, "%s: removing driver\n", __func__);
2240
2241	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2242		priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2243	}
2244
2245	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2246	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2247
2248	priv->hw->mac->enable_tx(priv->ioaddr, false);
2249	priv->hw->mac->enable_rx(priv->ioaddr, false);
2250
2251	unregister_netdev(ndev);
2252
2253	sxgbe_mdio_unregister(ndev);
2254
2255	clk_put(priv->sxgbe_clk);
2256
2257	netif_napi_del(&priv->napi);
2258
2259	kfree(priv->hw);
2260
2261	free_netdev(ndev);
2262
2263	return 0;
2264}
2265
2266#ifdef CONFIG_PM
2267int sxgbe_suspend(struct net_device *ndev)
2268{
2269	return 0;
2270}
2271
2272int sxgbe_resume(struct net_device *ndev)
2273{
2274	return 0;
2275}
2276
2277int sxgbe_freeze(struct net_device *ndev)
2278{
2279	return -ENOSYS;
2280}
2281
2282int sxgbe_restore(struct net_device *ndev)
2283{
2284	return -ENOSYS;
2285}
2286#endif /* CONFIG_PM */
2287
2288/* Driver is configured as Platform driver */
2289static int __init sxgbe_init(void)
2290{
2291	int ret;
2292
2293	ret = sxgbe_register_platform();
2294	if (ret)
2295		goto err;
2296	return 0;
2297err:
2298	pr_err("driver registration failed\n");
2299	return ret;
2300}
2301
2302static void __exit sxgbe_exit(void)
2303{
2304	sxgbe_unregister_platform();
2305}
2306
2307module_init(sxgbe_init);
2308module_exit(sxgbe_exit);
2309
2310#ifndef MODULE
2311static int __init sxgbe_cmdline_opt(char *str)
2312{
2313	char *opt;
2314
2315	if (!str || !*str)
2316		return -EINVAL;
2317	while ((opt = strsep(&str, ",")) != NULL) {
2318		if (!strncmp(opt, "eee_timer:", 6)) {
2319			if (kstrtoint(opt + 10, 0, &eee_timer))
2320				goto err;
2321		}
2322	}
2323	return 0;
2324
2325err:
2326	pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2327	return -EINVAL;
2328}
2329
2330__setup("sxgbeeth=", sxgbe_cmdline_opt);
2331#endif /* MODULE */
2332
2333
2334
2335MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver");
2336
2337MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
2338MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
2339
2340MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2341MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2342MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2343MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2344
2345MODULE_LICENSE("GPL");
2346