1/*  SuperH Ethernet device driver
2 *
3 *  Copyright (C) 2014  Renesas Electronics Corporation
4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6 *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7 *  Copyright (C) 2014 Codethink Limited
8 *
9 *  This program is free software; you can redistribute it and/or modify it
10 *  under the terms and conditions of the GNU General Public License,
11 *  version 2, as published by the Free Software Foundation.
12 *
13 *  This program is distributed in the hope it will be useful, but WITHOUT
14 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16 *  more details.
17 *
18 *  The full GNU General Public License is included in this distribution in
19 *  the file called "COPYING".
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/spinlock.h>
25#include <linux/interrupt.h>
26#include <linux/dma-mapping.h>
27#include <linux/etherdevice.h>
28#include <linux/delay.h>
29#include <linux/platform_device.h>
30#include <linux/mdio-bitbang.h>
31#include <linux/netdevice.h>
32#include <linux/of.h>
33#include <linux/of_device.h>
34#include <linux/of_irq.h>
35#include <linux/of_net.h>
36#include <linux/phy.h>
37#include <linux/cache.h>
38#include <linux/io.h>
39#include <linux/pm_runtime.h>
40#include <linux/slab.h>
41#include <linux/ethtool.h>
42#include <linux/if_vlan.h>
43#include <linux/clk.h>
44#include <linux/sh_eth.h>
45#include <linux/of_mdio.h>
46
47#include "sh_eth.h"
48
49#define SH_ETH_DEF_MSG_ENABLE \
50		(NETIF_MSG_LINK	| \
51		NETIF_MSG_TIMER	| \
52		NETIF_MSG_RX_ERR| \
53		NETIF_MSG_TX_ERR)
54
55#define SH_ETH_OFFSET_DEFAULTS			\
56	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
57
58static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
59	SH_ETH_OFFSET_DEFAULTS,
60
61	[EDSR]		= 0x0000,
62	[EDMR]		= 0x0400,
63	[EDTRR]		= 0x0408,
64	[EDRRR]		= 0x0410,
65	[EESR]		= 0x0428,
66	[EESIPR]	= 0x0430,
67	[TDLAR]		= 0x0010,
68	[TDFAR]		= 0x0014,
69	[TDFXR]		= 0x0018,
70	[TDFFR]		= 0x001c,
71	[RDLAR]		= 0x0030,
72	[RDFAR]		= 0x0034,
73	[RDFXR]		= 0x0038,
74	[RDFFR]		= 0x003c,
75	[TRSCER]	= 0x0438,
76	[RMFCR]		= 0x0440,
77	[TFTR]		= 0x0448,
78	[FDR]		= 0x0450,
79	[RMCR]		= 0x0458,
80	[RPADIR]	= 0x0460,
81	[FCFTR]		= 0x0468,
82	[CSMR]		= 0x04E4,
83
84	[ECMR]		= 0x0500,
85	[ECSR]		= 0x0510,
86	[ECSIPR]	= 0x0518,
87	[PIR]		= 0x0520,
88	[PSR]		= 0x0528,
89	[PIPR]		= 0x052c,
90	[RFLR]		= 0x0508,
91	[APR]		= 0x0554,
92	[MPR]		= 0x0558,
93	[PFTCR]		= 0x055c,
94	[PFRCR]		= 0x0560,
95	[TPAUSER]	= 0x0564,
96	[GECMR]		= 0x05b0,
97	[BCULR]		= 0x05b4,
98	[MAHR]		= 0x05c0,
99	[MALR]		= 0x05c8,
100	[TROCR]		= 0x0700,
101	[CDCR]		= 0x0708,
102	[LCCR]		= 0x0710,
103	[CEFCR]		= 0x0740,
104	[FRECR]		= 0x0748,
105	[TSFRCR]	= 0x0750,
106	[TLFRCR]	= 0x0758,
107	[RFCR]		= 0x0760,
108	[CERCR]		= 0x0768,
109	[CEECR]		= 0x0770,
110	[MAFCR]		= 0x0778,
111	[RMII_MII]	= 0x0790,
112
113	[ARSTR]		= 0x0000,
114	[TSU_CTRST]	= 0x0004,
115	[TSU_FWEN0]	= 0x0010,
116	[TSU_FWEN1]	= 0x0014,
117	[TSU_FCM]	= 0x0018,
118	[TSU_BSYSL0]	= 0x0020,
119	[TSU_BSYSL1]	= 0x0024,
120	[TSU_PRISL0]	= 0x0028,
121	[TSU_PRISL1]	= 0x002c,
122	[TSU_FWSL0]	= 0x0030,
123	[TSU_FWSL1]	= 0x0034,
124	[TSU_FWSLC]	= 0x0038,
125	[TSU_QTAG0]	= 0x0040,
126	[TSU_QTAG1]	= 0x0044,
127	[TSU_FWSR]	= 0x0050,
128	[TSU_FWINMK]	= 0x0054,
129	[TSU_ADQT0]	= 0x0048,
130	[TSU_ADQT1]	= 0x004c,
131	[TSU_VTAG0]	= 0x0058,
132	[TSU_VTAG1]	= 0x005c,
133	[TSU_ADSBSY]	= 0x0060,
134	[TSU_TEN]	= 0x0064,
135	[TSU_POST1]	= 0x0070,
136	[TSU_POST2]	= 0x0074,
137	[TSU_POST3]	= 0x0078,
138	[TSU_POST4]	= 0x007c,
139	[TSU_ADRH0]	= 0x0100,
140
141	[TXNLCR0]	= 0x0080,
142	[TXALCR0]	= 0x0084,
143	[RXNLCR0]	= 0x0088,
144	[RXALCR0]	= 0x008c,
145	[FWNLCR0]	= 0x0090,
146	[FWALCR0]	= 0x0094,
147	[TXNLCR1]	= 0x00a0,
148	[TXALCR1]	= 0x00a0,
149	[RXNLCR1]	= 0x00a8,
150	[RXALCR1]	= 0x00ac,
151	[FWNLCR1]	= 0x00b0,
152	[FWALCR1]	= 0x00b4,
153};
154
155static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
156	SH_ETH_OFFSET_DEFAULTS,
157
158	[EDSR]		= 0x0000,
159	[EDMR]		= 0x0400,
160	[EDTRR]		= 0x0408,
161	[EDRRR]		= 0x0410,
162	[EESR]		= 0x0428,
163	[EESIPR]	= 0x0430,
164	[TDLAR]		= 0x0010,
165	[TDFAR]		= 0x0014,
166	[TDFXR]		= 0x0018,
167	[TDFFR]		= 0x001c,
168	[RDLAR]		= 0x0030,
169	[RDFAR]		= 0x0034,
170	[RDFXR]		= 0x0038,
171	[RDFFR]		= 0x003c,
172	[TRSCER]	= 0x0438,
173	[RMFCR]		= 0x0440,
174	[TFTR]		= 0x0448,
175	[FDR]		= 0x0450,
176	[RMCR]		= 0x0458,
177	[RPADIR]	= 0x0460,
178	[FCFTR]		= 0x0468,
179	[CSMR]		= 0x04E4,
180
181	[ECMR]		= 0x0500,
182	[RFLR]		= 0x0508,
183	[ECSR]		= 0x0510,
184	[ECSIPR]	= 0x0518,
185	[PIR]		= 0x0520,
186	[APR]		= 0x0554,
187	[MPR]		= 0x0558,
188	[PFTCR]		= 0x055c,
189	[PFRCR]		= 0x0560,
190	[TPAUSER]	= 0x0564,
191	[MAHR]		= 0x05c0,
192	[MALR]		= 0x05c8,
193	[CEFCR]		= 0x0740,
194	[FRECR]		= 0x0748,
195	[TSFRCR]	= 0x0750,
196	[TLFRCR]	= 0x0758,
197	[RFCR]		= 0x0760,
198	[MAFCR]		= 0x0778,
199
200	[ARSTR]		= 0x0000,
201	[TSU_CTRST]	= 0x0004,
202	[TSU_VTAG0]	= 0x0058,
203	[TSU_ADSBSY]	= 0x0060,
204	[TSU_TEN]	= 0x0064,
205	[TSU_ADRH0]	= 0x0100,
206
207	[TXNLCR0]	= 0x0080,
208	[TXALCR0]	= 0x0084,
209	[RXNLCR0]	= 0x0088,
210	[RXALCR0]	= 0x008C,
211};
212
213static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
214	SH_ETH_OFFSET_DEFAULTS,
215
216	[ECMR]		= 0x0300,
217	[RFLR]		= 0x0308,
218	[ECSR]		= 0x0310,
219	[ECSIPR]	= 0x0318,
220	[PIR]		= 0x0320,
221	[PSR]		= 0x0328,
222	[RDMLR]		= 0x0340,
223	[IPGR]		= 0x0350,
224	[APR]		= 0x0354,
225	[MPR]		= 0x0358,
226	[RFCF]		= 0x0360,
227	[TPAUSER]	= 0x0364,
228	[TPAUSECR]	= 0x0368,
229	[MAHR]		= 0x03c0,
230	[MALR]		= 0x03c8,
231	[TROCR]		= 0x03d0,
232	[CDCR]		= 0x03d4,
233	[LCCR]		= 0x03d8,
234	[CNDCR]		= 0x03dc,
235	[CEFCR]		= 0x03e4,
236	[FRECR]		= 0x03e8,
237	[TSFRCR]	= 0x03ec,
238	[TLFRCR]	= 0x03f0,
239	[RFCR]		= 0x03f4,
240	[MAFCR]		= 0x03f8,
241
242	[EDMR]		= 0x0200,
243	[EDTRR]		= 0x0208,
244	[EDRRR]		= 0x0210,
245	[TDLAR]		= 0x0218,
246	[RDLAR]		= 0x0220,
247	[EESR]		= 0x0228,
248	[EESIPR]	= 0x0230,
249	[TRSCER]	= 0x0238,
250	[RMFCR]		= 0x0240,
251	[TFTR]		= 0x0248,
252	[FDR]		= 0x0250,
253	[RMCR]		= 0x0258,
254	[TFUCR]		= 0x0264,
255	[RFOCR]		= 0x0268,
256	[RMIIMODE]      = 0x026c,
257	[FCFTR]		= 0x0270,
258	[TRIMD]		= 0x027c,
259};
260
261static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
262	SH_ETH_OFFSET_DEFAULTS,
263
264	[ECMR]		= 0x0100,
265	[RFLR]		= 0x0108,
266	[ECSR]		= 0x0110,
267	[ECSIPR]	= 0x0118,
268	[PIR]		= 0x0120,
269	[PSR]		= 0x0128,
270	[RDMLR]		= 0x0140,
271	[IPGR]		= 0x0150,
272	[APR]		= 0x0154,
273	[MPR]		= 0x0158,
274	[TPAUSER]	= 0x0164,
275	[RFCF]		= 0x0160,
276	[TPAUSECR]	= 0x0168,
277	[BCFRR]		= 0x016c,
278	[MAHR]		= 0x01c0,
279	[MALR]		= 0x01c8,
280	[TROCR]		= 0x01d0,
281	[CDCR]		= 0x01d4,
282	[LCCR]		= 0x01d8,
283	[CNDCR]		= 0x01dc,
284	[CEFCR]		= 0x01e4,
285	[FRECR]		= 0x01e8,
286	[TSFRCR]	= 0x01ec,
287	[TLFRCR]	= 0x01f0,
288	[RFCR]		= 0x01f4,
289	[MAFCR]		= 0x01f8,
290	[RTRATE]	= 0x01fc,
291
292	[EDMR]		= 0x0000,
293	[EDTRR]		= 0x0008,
294	[EDRRR]		= 0x0010,
295	[TDLAR]		= 0x0018,
296	[RDLAR]		= 0x0020,
297	[EESR]		= 0x0028,
298	[EESIPR]	= 0x0030,
299	[TRSCER]	= 0x0038,
300	[RMFCR]		= 0x0040,
301	[TFTR]		= 0x0048,
302	[FDR]		= 0x0050,
303	[RMCR]		= 0x0058,
304	[TFUCR]		= 0x0064,
305	[RFOCR]		= 0x0068,
306	[FCFTR]		= 0x0070,
307	[RPADIR]	= 0x0078,
308	[TRIMD]		= 0x007c,
309	[RBWAR]		= 0x00c8,
310	[RDFAR]		= 0x00cc,
311	[TBRAR]		= 0x00d4,
312	[TDFAR]		= 0x00d8,
313};
314
315static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
316	SH_ETH_OFFSET_DEFAULTS,
317
318	[EDMR]		= 0x0000,
319	[EDTRR]		= 0x0004,
320	[EDRRR]		= 0x0008,
321	[TDLAR]		= 0x000c,
322	[RDLAR]		= 0x0010,
323	[EESR]		= 0x0014,
324	[EESIPR]	= 0x0018,
325	[TRSCER]	= 0x001c,
326	[RMFCR]		= 0x0020,
327	[TFTR]		= 0x0024,
328	[FDR]		= 0x0028,
329	[RMCR]		= 0x002c,
330	[EDOCR]		= 0x0030,
331	[FCFTR]		= 0x0034,
332	[RPADIR]	= 0x0038,
333	[TRIMD]		= 0x003c,
334	[RBWAR]		= 0x0040,
335	[RDFAR]		= 0x0044,
336	[TBRAR]		= 0x004c,
337	[TDFAR]		= 0x0050,
338
339	[ECMR]		= 0x0160,
340	[ECSR]		= 0x0164,
341	[ECSIPR]	= 0x0168,
342	[PIR]		= 0x016c,
343	[MAHR]		= 0x0170,
344	[MALR]		= 0x0174,
345	[RFLR]		= 0x0178,
346	[PSR]		= 0x017c,
347	[TROCR]		= 0x0180,
348	[CDCR]		= 0x0184,
349	[LCCR]		= 0x0188,
350	[CNDCR]		= 0x018c,
351	[CEFCR]		= 0x0194,
352	[FRECR]		= 0x0198,
353	[TSFRCR]	= 0x019c,
354	[TLFRCR]	= 0x01a0,
355	[RFCR]		= 0x01a4,
356	[MAFCR]		= 0x01a8,
357	[IPGR]		= 0x01b4,
358	[APR]		= 0x01b8,
359	[MPR]		= 0x01bc,
360	[TPAUSER]	= 0x01c4,
361	[BCFR]		= 0x01cc,
362
363	[ARSTR]		= 0x0000,
364	[TSU_CTRST]	= 0x0004,
365	[TSU_FWEN0]	= 0x0010,
366	[TSU_FWEN1]	= 0x0014,
367	[TSU_FCM]	= 0x0018,
368	[TSU_BSYSL0]	= 0x0020,
369	[TSU_BSYSL1]	= 0x0024,
370	[TSU_PRISL0]	= 0x0028,
371	[TSU_PRISL1]	= 0x002c,
372	[TSU_FWSL0]	= 0x0030,
373	[TSU_FWSL1]	= 0x0034,
374	[TSU_FWSLC]	= 0x0038,
375	[TSU_QTAGM0]	= 0x0040,
376	[TSU_QTAGM1]	= 0x0044,
377	[TSU_ADQT0]	= 0x0048,
378	[TSU_ADQT1]	= 0x004c,
379	[TSU_FWSR]	= 0x0050,
380	[TSU_FWINMK]	= 0x0054,
381	[TSU_ADSBSY]	= 0x0060,
382	[TSU_TEN]	= 0x0064,
383	[TSU_POST1]	= 0x0070,
384	[TSU_POST2]	= 0x0074,
385	[TSU_POST3]	= 0x0078,
386	[TSU_POST4]	= 0x007c,
387
388	[TXNLCR0]	= 0x0080,
389	[TXALCR0]	= 0x0084,
390	[RXNLCR0]	= 0x0088,
391	[RXALCR0]	= 0x008c,
392	[FWNLCR0]	= 0x0090,
393	[FWALCR0]	= 0x0094,
394	[TXNLCR1]	= 0x00a0,
395	[TXALCR1]	= 0x00a0,
396	[RXNLCR1]	= 0x00a8,
397	[RXALCR1]	= 0x00ac,
398	[FWNLCR1]	= 0x00b0,
399	[FWALCR1]	= 0x00b4,
400
401	[TSU_ADRH0]	= 0x0100,
402};
403
404static void sh_eth_rcv_snd_disable(struct net_device *ndev);
405static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
406
407static bool sh_eth_is_gether(struct sh_eth_private *mdp)
408{
409	return mdp->reg_offset == sh_eth_offset_gigabit;
410}
411
412static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
413{
414	return mdp->reg_offset == sh_eth_offset_fast_rz;
415}
416
417static void sh_eth_select_mii(struct net_device *ndev)
418{
419	u32 value = 0x0;
420	struct sh_eth_private *mdp = netdev_priv(ndev);
421
422	switch (mdp->phy_interface) {
423	case PHY_INTERFACE_MODE_GMII:
424		value = 0x2;
425		break;
426	case PHY_INTERFACE_MODE_MII:
427		value = 0x1;
428		break;
429	case PHY_INTERFACE_MODE_RMII:
430		value = 0x0;
431		break;
432	default:
433		netdev_warn(ndev,
434			    "PHY interface mode was not setup. Set to MII.\n");
435		value = 0x1;
436		break;
437	}
438
439	sh_eth_write(ndev, value, RMII_MII);
440}
441
442static void sh_eth_set_duplex(struct net_device *ndev)
443{
444	struct sh_eth_private *mdp = netdev_priv(ndev);
445
446	if (mdp->duplex) /* Full */
447		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
448	else		/* Half */
449		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
450}
451
452/* There is CPU dependent code */
453static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
454{
455	struct sh_eth_private *mdp = netdev_priv(ndev);
456
457	switch (mdp->speed) {
458	case 10: /* 10BASE */
459		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
460		break;
461	case 100:/* 100BASE */
462		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
463		break;
464	default:
465		break;
466	}
467}
468
469/* R8A7778/9 */
470static struct sh_eth_cpu_data r8a777x_data = {
471	.set_duplex	= sh_eth_set_duplex,
472	.set_rate	= sh_eth_set_rate_r8a777x,
473
474	.register_type	= SH_ETH_REG_FAST_RCAR,
475
476	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
477	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
478	.eesipr_value	= 0x01ff009f,
479
480	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
481	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
482			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
483			  EESR_ECI,
484	.fdr_value	= 0x00000f0f,
485
486	.apr		= 1,
487	.mpr		= 1,
488	.tpauser	= 1,
489	.hw_swap	= 1,
490};
491
492/* R8A7790/1 */
493static struct sh_eth_cpu_data r8a779x_data = {
494	.set_duplex	= sh_eth_set_duplex,
495	.set_rate	= sh_eth_set_rate_r8a777x,
496
497	.register_type	= SH_ETH_REG_FAST_RCAR,
498
499	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
500	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
501	.eesipr_value	= 0x01ff009f,
502
503	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
504	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
505			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
506			  EESR_ECI,
507	.fdr_value	= 0x00000f0f,
508
509	.trscer_err_mask = DESC_I_RINT8,
510
511	.apr		= 1,
512	.mpr		= 1,
513	.tpauser	= 1,
514	.hw_swap	= 1,
515	.rmiimode	= 1,
516};
517
518static void sh_eth_set_rate_sh7724(struct net_device *ndev)
519{
520	struct sh_eth_private *mdp = netdev_priv(ndev);
521
522	switch (mdp->speed) {
523	case 10: /* 10BASE */
524		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
525		break;
526	case 100:/* 100BASE */
527		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
528		break;
529	default:
530		break;
531	}
532}
533
534/* SH7724 */
535static struct sh_eth_cpu_data sh7724_data = {
536	.set_duplex	= sh_eth_set_duplex,
537	.set_rate	= sh_eth_set_rate_sh7724,
538
539	.register_type	= SH_ETH_REG_FAST_SH4,
540
541	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
542	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
543	.eesipr_value	= 0x01ff009f,
544
545	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
546	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
547			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
548			  EESR_ECI,
549
550	.apr		= 1,
551	.mpr		= 1,
552	.tpauser	= 1,
553	.hw_swap	= 1,
554	.rpadir		= 1,
555	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
556};
557
558static void sh_eth_set_rate_sh7757(struct net_device *ndev)
559{
560	struct sh_eth_private *mdp = netdev_priv(ndev);
561
562	switch (mdp->speed) {
563	case 10: /* 10BASE */
564		sh_eth_write(ndev, 0, RTRATE);
565		break;
566	case 100:/* 100BASE */
567		sh_eth_write(ndev, 1, RTRATE);
568		break;
569	default:
570		break;
571	}
572}
573
574/* SH7757 */
575static struct sh_eth_cpu_data sh7757_data = {
576	.set_duplex	= sh_eth_set_duplex,
577	.set_rate	= sh_eth_set_rate_sh7757,
578
579	.register_type	= SH_ETH_REG_FAST_SH4,
580
581	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
582
583	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
584	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
585			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
586			  EESR_ECI,
587
588	.irq_flags	= IRQF_SHARED,
589	.apr		= 1,
590	.mpr		= 1,
591	.tpauser	= 1,
592	.hw_swap	= 1,
593	.no_ade		= 1,
594	.rpadir		= 1,
595	.rpadir_value   = 2 << 16,
596	.rtrate		= 1,
597};
598
599#define SH_GIGA_ETH_BASE	0xfee00000UL
600#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
601#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
602static void sh_eth_chip_reset_giga(struct net_device *ndev)
603{
604	int i;
605	u32 mahr[2], malr[2];
606
607	/* save MAHR and MALR */
608	for (i = 0; i < 2; i++) {
609		malr[i] = ioread32((void *)GIGA_MALR(i));
610		mahr[i] = ioread32((void *)GIGA_MAHR(i));
611	}
612
613	/* reset device */
614	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
615	mdelay(1);
616
617	/* restore MAHR and MALR */
618	for (i = 0; i < 2; i++) {
619		iowrite32(malr[i], (void *)GIGA_MALR(i));
620		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
621	}
622}
623
624static void sh_eth_set_rate_giga(struct net_device *ndev)
625{
626	struct sh_eth_private *mdp = netdev_priv(ndev);
627
628	switch (mdp->speed) {
629	case 10: /* 10BASE */
630		sh_eth_write(ndev, 0x00000000, GECMR);
631		break;
632	case 100:/* 100BASE */
633		sh_eth_write(ndev, 0x00000010, GECMR);
634		break;
635	case 1000: /* 1000BASE */
636		sh_eth_write(ndev, 0x00000020, GECMR);
637		break;
638	default:
639		break;
640	}
641}
642
643/* SH7757(GETHERC) */
644static struct sh_eth_cpu_data sh7757_data_giga = {
645	.chip_reset	= sh_eth_chip_reset_giga,
646	.set_duplex	= sh_eth_set_duplex,
647	.set_rate	= sh_eth_set_rate_giga,
648
649	.register_type	= SH_ETH_REG_GIGABIT,
650
651	.ecsr_value	= ECSR_ICD | ECSR_MPD,
652	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
653	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
654
655	.tx_check	= EESR_TC1 | EESR_FTC,
656	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
657			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
658			  EESR_TDE | EESR_ECI,
659	.fdr_value	= 0x0000072f,
660
661	.irq_flags	= IRQF_SHARED,
662	.apr		= 1,
663	.mpr		= 1,
664	.tpauser	= 1,
665	.bculr		= 1,
666	.hw_swap	= 1,
667	.rpadir		= 1,
668	.rpadir_value   = 2 << 16,
669	.no_trimd	= 1,
670	.no_ade		= 1,
671	.tsu		= 1,
672};
673
674static void sh_eth_chip_reset(struct net_device *ndev)
675{
676	struct sh_eth_private *mdp = netdev_priv(ndev);
677
678	/* reset device */
679	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
680	mdelay(1);
681}
682
683static void sh_eth_set_rate_gether(struct net_device *ndev)
684{
685	struct sh_eth_private *mdp = netdev_priv(ndev);
686
687	switch (mdp->speed) {
688	case 10: /* 10BASE */
689		sh_eth_write(ndev, GECMR_10, GECMR);
690		break;
691	case 100:/* 100BASE */
692		sh_eth_write(ndev, GECMR_100, GECMR);
693		break;
694	case 1000: /* 1000BASE */
695		sh_eth_write(ndev, GECMR_1000, GECMR);
696		break;
697	default:
698		break;
699	}
700}
701
702/* SH7734 */
703static struct sh_eth_cpu_data sh7734_data = {
704	.chip_reset	= sh_eth_chip_reset,
705	.set_duplex	= sh_eth_set_duplex,
706	.set_rate	= sh_eth_set_rate_gether,
707
708	.register_type	= SH_ETH_REG_GIGABIT,
709
710	.ecsr_value	= ECSR_ICD | ECSR_MPD,
711	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
712	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
713
714	.tx_check	= EESR_TC1 | EESR_FTC,
715	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
716			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
717			  EESR_TDE | EESR_ECI,
718
719	.apr		= 1,
720	.mpr		= 1,
721	.tpauser	= 1,
722	.bculr		= 1,
723	.hw_swap	= 1,
724	.no_trimd	= 1,
725	.no_ade		= 1,
726	.tsu		= 1,
727	.hw_crc		= 1,
728	.select_mii	= 1,
729};
730
731/* SH7763 */
732static struct sh_eth_cpu_data sh7763_data = {
733	.chip_reset	= sh_eth_chip_reset,
734	.set_duplex	= sh_eth_set_duplex,
735	.set_rate	= sh_eth_set_rate_gether,
736
737	.register_type	= SH_ETH_REG_GIGABIT,
738
739	.ecsr_value	= ECSR_ICD | ECSR_MPD,
740	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
741	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
742
743	.tx_check	= EESR_TC1 | EESR_FTC,
744	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
745			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
746			  EESR_ECI,
747
748	.apr		= 1,
749	.mpr		= 1,
750	.tpauser	= 1,
751	.bculr		= 1,
752	.hw_swap	= 1,
753	.no_trimd	= 1,
754	.no_ade		= 1,
755	.tsu		= 1,
756	.irq_flags	= IRQF_SHARED,
757};
758
759static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
760{
761	struct sh_eth_private *mdp = netdev_priv(ndev);
762
763	/* reset device */
764	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
765	mdelay(1);
766
767	sh_eth_select_mii(ndev);
768}
769
770/* R8A7740 */
771static struct sh_eth_cpu_data r8a7740_data = {
772	.chip_reset	= sh_eth_chip_reset_r8a7740,
773	.set_duplex	= sh_eth_set_duplex,
774	.set_rate	= sh_eth_set_rate_gether,
775
776	.register_type	= SH_ETH_REG_GIGABIT,
777
778	.ecsr_value	= ECSR_ICD | ECSR_MPD,
779	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
780	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
781
782	.tx_check	= EESR_TC1 | EESR_FTC,
783	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
784			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
785			  EESR_TDE | EESR_ECI,
786	.fdr_value	= 0x0000070f,
787
788	.apr		= 1,
789	.mpr		= 1,
790	.tpauser	= 1,
791	.bculr		= 1,
792	.hw_swap	= 1,
793	.rpadir		= 1,
794	.rpadir_value   = 2 << 16,
795	.no_trimd	= 1,
796	.no_ade		= 1,
797	.tsu		= 1,
798	.select_mii	= 1,
799	.shift_rd0	= 1,
800};
801
802/* R7S72100 */
803static struct sh_eth_cpu_data r7s72100_data = {
804	.chip_reset	= sh_eth_chip_reset,
805	.set_duplex	= sh_eth_set_duplex,
806
807	.register_type	= SH_ETH_REG_FAST_RZ,
808
809	.ecsr_value	= ECSR_ICD,
810	.ecsipr_value	= ECSIPR_ICDIP,
811	.eesipr_value	= 0xff7f009f,
812
813	.tx_check	= EESR_TC1 | EESR_FTC,
814	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
815			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
816			  EESR_TDE | EESR_ECI,
817	.fdr_value	= 0x0000070f,
818
819	.no_psr		= 1,
820	.apr		= 1,
821	.mpr		= 1,
822	.tpauser	= 1,
823	.hw_swap	= 1,
824	.rpadir		= 1,
825	.rpadir_value   = 2 << 16,
826	.no_trimd	= 1,
827	.no_ade		= 1,
828	.hw_crc		= 1,
829	.tsu		= 1,
830	.shift_rd0	= 1,
831};
832
833static struct sh_eth_cpu_data sh7619_data = {
834	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
835
836	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
837
838	.apr		= 1,
839	.mpr		= 1,
840	.tpauser	= 1,
841	.hw_swap	= 1,
842};
843
844static struct sh_eth_cpu_data sh771x_data = {
845	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
846
847	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
848	.tsu		= 1,
849};
850
851static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
852{
853	if (!cd->ecsr_value)
854		cd->ecsr_value = DEFAULT_ECSR_INIT;
855
856	if (!cd->ecsipr_value)
857		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
858
859	if (!cd->fcftr_value)
860		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
861				  DEFAULT_FIFO_F_D_RFD;
862
863	if (!cd->fdr_value)
864		cd->fdr_value = DEFAULT_FDR_INIT;
865
866	if (!cd->tx_check)
867		cd->tx_check = DEFAULT_TX_CHECK;
868
869	if (!cd->eesr_err_check)
870		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
871
872	if (!cd->trscer_err_mask)
873		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
874}
875
876static int sh_eth_check_reset(struct net_device *ndev)
877{
878	int ret = 0;
879	int cnt = 100;
880
881	while (cnt > 0) {
882		if (!(sh_eth_read(ndev, EDMR) & 0x3))
883			break;
884		mdelay(1);
885		cnt--;
886	}
887	if (cnt <= 0) {
888		netdev_err(ndev, "Device reset failed\n");
889		ret = -ETIMEDOUT;
890	}
891	return ret;
892}
893
894static int sh_eth_reset(struct net_device *ndev)
895{
896	struct sh_eth_private *mdp = netdev_priv(ndev);
897	int ret = 0;
898
899	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
900		sh_eth_write(ndev, EDSR_ENALL, EDSR);
901		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
902			     EDMR);
903
904		ret = sh_eth_check_reset(ndev);
905		if (ret)
906			return ret;
907
908		/* Table Init */
909		sh_eth_write(ndev, 0x0, TDLAR);
910		sh_eth_write(ndev, 0x0, TDFAR);
911		sh_eth_write(ndev, 0x0, TDFXR);
912		sh_eth_write(ndev, 0x0, TDFFR);
913		sh_eth_write(ndev, 0x0, RDLAR);
914		sh_eth_write(ndev, 0x0, RDFAR);
915		sh_eth_write(ndev, 0x0, RDFXR);
916		sh_eth_write(ndev, 0x0, RDFFR);
917
918		/* Reset HW CRC register */
919		if (mdp->cd->hw_crc)
920			sh_eth_write(ndev, 0x0, CSMR);
921
922		/* Select MII mode */
923		if (mdp->cd->select_mii)
924			sh_eth_select_mii(ndev);
925	} else {
926		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
927			     EDMR);
928		mdelay(3);
929		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
930			     EDMR);
931	}
932
933	return ret;
934}
935
936static void sh_eth_set_receive_align(struct sk_buff *skb)
937{
938	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
939
940	if (reserve)
941		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
942}
943
944
945/* CPU <-> EDMAC endian convert */
946static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
947{
948	switch (mdp->edmac_endian) {
949	case EDMAC_LITTLE_ENDIAN:
950		return cpu_to_le32(x);
951	case EDMAC_BIG_ENDIAN:
952		return cpu_to_be32(x);
953	}
954	return x;
955}
956
957static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
958{
959	switch (mdp->edmac_endian) {
960	case EDMAC_LITTLE_ENDIAN:
961		return le32_to_cpu(x);
962	case EDMAC_BIG_ENDIAN:
963		return be32_to_cpu(x);
964	}
965	return x;
966}
967
968/* Program the hardware MAC address from dev->dev_addr. */
969static void update_mac_address(struct net_device *ndev)
970{
971	sh_eth_write(ndev,
972		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
973		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
974	sh_eth_write(ndev,
975		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
976}
977
978/* Get MAC address from SuperH MAC address register
979 *
980 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
981 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
982 * When you want use this device, you must set MAC address in bootloader.
983 *
984 */
985static void read_mac_address(struct net_device *ndev, unsigned char *mac)
986{
987	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
988		memcpy(ndev->dev_addr, mac, ETH_ALEN);
989	} else {
990		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
991		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
992		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
993		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
994		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
995		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
996	}
997}
998
999static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1000{
1001	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1002		return EDTRR_TRNS_GETHER;
1003	else
1004		return EDTRR_TRNS_ETHER;
1005}
1006
1007struct bb_info {
1008	void (*set_gate)(void *addr);
1009	struct mdiobb_ctrl ctrl;
1010	void *addr;
1011	u32 mmd_msk;/* MMD */
1012	u32 mdo_msk;
1013	u32 mdi_msk;
1014	u32 mdc_msk;
1015};
1016
1017/* PHY bit set */
1018static void bb_set(void *addr, u32 msk)
1019{
1020	iowrite32(ioread32(addr) | msk, addr);
1021}
1022
1023/* PHY bit clear */
1024static void bb_clr(void *addr, u32 msk)
1025{
1026	iowrite32((ioread32(addr) & ~msk), addr);
1027}
1028
1029/* PHY bit read */
1030static int bb_read(void *addr, u32 msk)
1031{
1032	return (ioread32(addr) & msk) != 0;
1033}
1034
1035/* Data I/O pin control */
1036static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1037{
1038	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1039
1040	if (bitbang->set_gate)
1041		bitbang->set_gate(bitbang->addr);
1042
1043	if (bit)
1044		bb_set(bitbang->addr, bitbang->mmd_msk);
1045	else
1046		bb_clr(bitbang->addr, bitbang->mmd_msk);
1047}
1048
1049/* Set bit data*/
1050static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1051{
1052	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1053
1054	if (bitbang->set_gate)
1055		bitbang->set_gate(bitbang->addr);
1056
1057	if (bit)
1058		bb_set(bitbang->addr, bitbang->mdo_msk);
1059	else
1060		bb_clr(bitbang->addr, bitbang->mdo_msk);
1061}
1062
1063/* Get bit data*/
1064static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1065{
1066	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1067
1068	if (bitbang->set_gate)
1069		bitbang->set_gate(bitbang->addr);
1070
1071	return bb_read(bitbang->addr, bitbang->mdi_msk);
1072}
1073
1074/* MDC pin control */
1075static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1076{
1077	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1078
1079	if (bitbang->set_gate)
1080		bitbang->set_gate(bitbang->addr);
1081
1082	if (bit)
1083		bb_set(bitbang->addr, bitbang->mdc_msk);
1084	else
1085		bb_clr(bitbang->addr, bitbang->mdc_msk);
1086}
1087
1088/* mdio bus control struct */
1089static struct mdiobb_ops bb_ops = {
1090	.owner = THIS_MODULE,
1091	.set_mdc = sh_mdc_ctrl,
1092	.set_mdio_dir = sh_mmd_ctrl,
1093	.set_mdio_data = sh_set_mdio,
1094	.get_mdio_data = sh_get_mdio,
1095};
1096
1097/* free skb and descriptor buffer */
1098static void sh_eth_ring_free(struct net_device *ndev)
1099{
1100	struct sh_eth_private *mdp = netdev_priv(ndev);
1101	int i;
1102
1103	/* Free Rx skb ringbuffer */
1104	if (mdp->rx_skbuff) {
1105		for (i = 0; i < mdp->num_rx_ring; i++)
1106			dev_kfree_skb(mdp->rx_skbuff[i]);
1107	}
1108	kfree(mdp->rx_skbuff);
1109	mdp->rx_skbuff = NULL;
1110
1111	/* Free Tx skb ringbuffer */
1112	if (mdp->tx_skbuff) {
1113		for (i = 0; i < mdp->num_tx_ring; i++)
1114			dev_kfree_skb(mdp->tx_skbuff[i]);
1115	}
1116	kfree(mdp->tx_skbuff);
1117	mdp->tx_skbuff = NULL;
1118}
1119
1120/* format skb and descriptor buffer */
1121static void sh_eth_ring_format(struct net_device *ndev)
1122{
1123	struct sh_eth_private *mdp = netdev_priv(ndev);
1124	int i;
1125	struct sk_buff *skb;
1126	struct sh_eth_rxdesc *rxdesc = NULL;
1127	struct sh_eth_txdesc *txdesc = NULL;
1128	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1129	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1130	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1131	dma_addr_t dma_addr;
1132
1133	mdp->cur_rx = 0;
1134	mdp->cur_tx = 0;
1135	mdp->dirty_rx = 0;
1136	mdp->dirty_tx = 0;
1137
1138	memset(mdp->rx_ring, 0, rx_ringsize);
1139
1140	/* build Rx ring buffer */
1141	for (i = 0; i < mdp->num_rx_ring; i++) {
1142		/* skb */
1143		mdp->rx_skbuff[i] = NULL;
1144		skb = netdev_alloc_skb(ndev, skbuff_size);
1145		if (skb == NULL)
1146			break;
1147		sh_eth_set_receive_align(skb);
1148
1149		/* RX descriptor */
1150		rxdesc = &mdp->rx_ring[i];
1151		/* The size of the buffer is a multiple of 16 bytes. */
1152		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1153		dma_addr = dma_map_single(&ndev->dev, skb->data,
1154					  rxdesc->buffer_length,
1155					  DMA_FROM_DEVICE);
1156		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1157			kfree_skb(skb);
1158			break;
1159		}
1160		mdp->rx_skbuff[i] = skb;
1161		rxdesc->addr = dma_addr;
1162		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1163
1164		/* Rx descriptor address set */
1165		if (i == 0) {
1166			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1167			if (sh_eth_is_gether(mdp) ||
1168			    sh_eth_is_rz_fast_ether(mdp))
1169				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1170		}
1171	}
1172
1173	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1174
1175	/* Mark the last entry as wrapping the ring. */
1176	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1177
1178	memset(mdp->tx_ring, 0, tx_ringsize);
1179
1180	/* build Tx ring buffer */
1181	for (i = 0; i < mdp->num_tx_ring; i++) {
1182		mdp->tx_skbuff[i] = NULL;
1183		txdesc = &mdp->tx_ring[i];
1184		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1185		txdesc->buffer_length = 0;
1186		if (i == 0) {
1187			/* Tx descriptor address set */
1188			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1189			if (sh_eth_is_gether(mdp) ||
1190			    sh_eth_is_rz_fast_ether(mdp))
1191				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1192		}
1193	}
1194
1195	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1196}
1197
1198/* Get skb and descriptor buffer */
1199static int sh_eth_ring_init(struct net_device *ndev)
1200{
1201	struct sh_eth_private *mdp = netdev_priv(ndev);
1202	int rx_ringsize, tx_ringsize, ret = 0;
1203
1204	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1205	 * card needs room to do 8 byte alignment, +2 so we can reserve
1206	 * the first 2 bytes, and +16 gets room for the status word from the
1207	 * card.
1208	 */
1209	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1210			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1211	if (mdp->cd->rpadir)
1212		mdp->rx_buf_sz += NET_IP_ALIGN;
1213
1214	/* Allocate RX and TX skb rings */
1215	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1216				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1217	if (!mdp->rx_skbuff) {
1218		ret = -ENOMEM;
1219		return ret;
1220	}
1221
1222	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1223				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1224	if (!mdp->tx_skbuff) {
1225		ret = -ENOMEM;
1226		goto skb_ring_free;
1227	}
1228
1229	/* Allocate all Rx descriptors. */
1230	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1231	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1232					  GFP_KERNEL);
1233	if (!mdp->rx_ring) {
1234		ret = -ENOMEM;
1235		goto desc_ring_free;
1236	}
1237
1238	mdp->dirty_rx = 0;
1239
1240	/* Allocate all Tx descriptors. */
1241	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1242	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1243					  GFP_KERNEL);
1244	if (!mdp->tx_ring) {
1245		ret = -ENOMEM;
1246		goto desc_ring_free;
1247	}
1248	return ret;
1249
1250desc_ring_free:
1251	/* free DMA buffer */
1252	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1253
1254skb_ring_free:
1255	/* Free Rx and Tx skb ring buffer */
1256	sh_eth_ring_free(ndev);
1257	mdp->tx_ring = NULL;
1258	mdp->rx_ring = NULL;
1259
1260	return ret;
1261}
1262
1263static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1264{
1265	int ringsize;
1266
1267	if (mdp->rx_ring) {
1268		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1269		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1270				  mdp->rx_desc_dma);
1271		mdp->rx_ring = NULL;
1272	}
1273
1274	if (mdp->tx_ring) {
1275		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1276		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1277				  mdp->tx_desc_dma);
1278		mdp->tx_ring = NULL;
1279	}
1280}
1281
1282static int sh_eth_dev_init(struct net_device *ndev, bool start)
1283{
1284	int ret = 0;
1285	struct sh_eth_private *mdp = netdev_priv(ndev);
1286	u32 val;
1287
1288	/* Soft Reset */
1289	ret = sh_eth_reset(ndev);
1290	if (ret)
1291		return ret;
1292
1293	if (mdp->cd->rmiimode)
1294		sh_eth_write(ndev, 0x1, RMIIMODE);
1295
1296	/* Descriptor format */
1297	sh_eth_ring_format(ndev);
1298	if (mdp->cd->rpadir)
1299		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1300
1301	/* all sh_eth int mask */
1302	sh_eth_write(ndev, 0, EESIPR);
1303
1304#if defined(__LITTLE_ENDIAN)
1305	if (mdp->cd->hw_swap)
1306		sh_eth_write(ndev, EDMR_EL, EDMR);
1307	else
1308#endif
1309		sh_eth_write(ndev, 0, EDMR);
1310
1311	/* FIFO size set */
1312	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1313	sh_eth_write(ndev, 0, TFTR);
1314
1315	/* Frame recv control (enable multiple-packets per rx irq) */
1316	sh_eth_write(ndev, RMCR_RNC, RMCR);
1317
1318	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1319
1320	if (mdp->cd->bculr)
1321		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1322
1323	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1324
1325	if (!mdp->cd->no_trimd)
1326		sh_eth_write(ndev, 0, TRIMD);
1327
1328	/* Recv frame limit set register */
1329	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1330		     RFLR);
1331
1332	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1333	if (start) {
1334		mdp->irq_enabled = true;
1335		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1336	}
1337
1338	/* PAUSE Prohibition */
1339	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1340		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1341
1342	sh_eth_write(ndev, val, ECMR);
1343
1344	if (mdp->cd->set_rate)
1345		mdp->cd->set_rate(ndev);
1346
1347	/* E-MAC Status Register clear */
1348	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1349
1350	/* E-MAC Interrupt Enable register */
1351	if (start)
1352		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1353
1354	/* Set MAC address */
1355	update_mac_address(ndev);
1356
1357	/* mask reset */
1358	if (mdp->cd->apr)
1359		sh_eth_write(ndev, APR_AP, APR);
1360	if (mdp->cd->mpr)
1361		sh_eth_write(ndev, MPR_MP, MPR);
1362	if (mdp->cd->tpauser)
1363		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1364
1365	if (start) {
1366		/* Setting the Rx mode will start the Rx process. */
1367		sh_eth_write(ndev, EDRRR_R, EDRRR);
1368
1369		netif_start_queue(ndev);
1370	}
1371
1372	return ret;
1373}
1374
1375static void sh_eth_dev_exit(struct net_device *ndev)
1376{
1377	struct sh_eth_private *mdp = netdev_priv(ndev);
1378	int i;
1379
1380	/* Deactivate all TX descriptors, so DMA should stop at next
1381	 * packet boundary if it's currently running
1382	 */
1383	for (i = 0; i < mdp->num_tx_ring; i++)
1384		mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1385
1386	/* Disable TX FIFO egress to MAC */
1387	sh_eth_rcv_snd_disable(ndev);
1388
1389	/* Stop RX DMA at next packet boundary */
1390	sh_eth_write(ndev, 0, EDRRR);
1391
1392	/* Aside from TX DMA, we can't tell when the hardware is
1393	 * really stopped, so we need to reset to make sure.
1394	 * Before doing that, wait for long enough to *probably*
1395	 * finish transmitting the last packet and poll stats.
1396	 */
1397	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1398	sh_eth_get_stats(ndev);
1399	sh_eth_reset(ndev);
1400
1401	/* Set MAC address again */
1402	update_mac_address(ndev);
1403}
1404
1405/* free Tx skb function */
1406static int sh_eth_txfree(struct net_device *ndev)
1407{
1408	struct sh_eth_private *mdp = netdev_priv(ndev);
1409	struct sh_eth_txdesc *txdesc;
1410	int free_num = 0;
1411	int entry = 0;
1412
1413	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1414		entry = mdp->dirty_tx % mdp->num_tx_ring;
1415		txdesc = &mdp->tx_ring[entry];
1416		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1417			break;
1418		/* TACT bit must be checked before all the following reads */
1419		rmb();
1420		netif_info(mdp, tx_done, ndev,
1421			   "tx entry %d status 0x%08x\n",
1422			   entry, edmac_to_cpu(mdp, txdesc->status));
1423		/* Free the original skb. */
1424		if (mdp->tx_skbuff[entry]) {
1425			dma_unmap_single(&ndev->dev, txdesc->addr,
1426					 txdesc->buffer_length, DMA_TO_DEVICE);
1427			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1428			mdp->tx_skbuff[entry] = NULL;
1429			free_num++;
1430		}
1431		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1432		if (entry >= mdp->num_tx_ring - 1)
1433			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1434
1435		ndev->stats.tx_packets++;
1436		ndev->stats.tx_bytes += txdesc->buffer_length;
1437	}
1438	return free_num;
1439}
1440
1441/* Packet receive function */
1442static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1443{
1444	struct sh_eth_private *mdp = netdev_priv(ndev);
1445	struct sh_eth_rxdesc *rxdesc;
1446
1447	int entry = mdp->cur_rx % mdp->num_rx_ring;
1448	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1449	int limit;
1450	struct sk_buff *skb;
1451	u16 pkt_len = 0;
1452	u32 desc_status;
1453	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1454	dma_addr_t dma_addr;
1455
1456	boguscnt = min(boguscnt, *quota);
1457	limit = boguscnt;
1458	rxdesc = &mdp->rx_ring[entry];
1459	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1460		/* RACT bit must be checked before all the following reads */
1461		rmb();
1462		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1463		pkt_len = rxdesc->frame_length;
1464
1465		if (--boguscnt < 0)
1466			break;
1467
1468		netif_info(mdp, rx_status, ndev,
1469			   "rx entry %d status 0x%08x len %d\n",
1470			   entry, desc_status, pkt_len);
1471
1472		if (!(desc_status & RDFEND))
1473			ndev->stats.rx_length_errors++;
1474
1475		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1476		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1477		 * bit 0. However, in case of the R8A7740 and R7S72100
1478		 * the RFS bits are from bit 25 to bit 16. So, the
1479		 * driver needs right shifting by 16.
1480		 */
1481		if (mdp->cd->shift_rd0)
1482			desc_status >>= 16;
1483
1484		skb = mdp->rx_skbuff[entry];
1485		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1486				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1487			ndev->stats.rx_errors++;
1488			if (desc_status & RD_RFS1)
1489				ndev->stats.rx_crc_errors++;
1490			if (desc_status & RD_RFS2)
1491				ndev->stats.rx_frame_errors++;
1492			if (desc_status & RD_RFS3)
1493				ndev->stats.rx_length_errors++;
1494			if (desc_status & RD_RFS4)
1495				ndev->stats.rx_length_errors++;
1496			if (desc_status & RD_RFS6)
1497				ndev->stats.rx_missed_errors++;
1498			if (desc_status & RD_RFS10)
1499				ndev->stats.rx_over_errors++;
1500		} else	if (skb) {
1501			if (!mdp->cd->hw_swap)
1502				sh_eth_soft_swap(
1503					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1504					pkt_len + 2);
1505			mdp->rx_skbuff[entry] = NULL;
1506			if (mdp->cd->rpadir)
1507				skb_reserve(skb, NET_IP_ALIGN);
1508			dma_unmap_single(&ndev->dev, rxdesc->addr,
1509					 ALIGN(mdp->rx_buf_sz, 16),
1510					 DMA_FROM_DEVICE);
1511			skb_put(skb, pkt_len);
1512			skb->protocol = eth_type_trans(skb, ndev);
1513			netif_receive_skb(skb);
1514			ndev->stats.rx_packets++;
1515			ndev->stats.rx_bytes += pkt_len;
1516			if (desc_status & RD_RFS8)
1517				ndev->stats.multicast++;
1518		}
1519		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1520		rxdesc = &mdp->rx_ring[entry];
1521	}
1522
1523	/* Refill the Rx ring buffers. */
1524	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1525		entry = mdp->dirty_rx % mdp->num_rx_ring;
1526		rxdesc = &mdp->rx_ring[entry];
1527		/* The size of the buffer is 16 byte boundary. */
1528		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1529
1530		if (mdp->rx_skbuff[entry] == NULL) {
1531			skb = netdev_alloc_skb(ndev, skbuff_size);
1532			if (skb == NULL)
1533				break;	/* Better luck next round. */
1534			sh_eth_set_receive_align(skb);
1535			dma_addr = dma_map_single(&ndev->dev, skb->data,
1536						  rxdesc->buffer_length,
1537						  DMA_FROM_DEVICE);
1538			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1539				kfree_skb(skb);
1540				break;
1541			}
1542			mdp->rx_skbuff[entry] = skb;
1543
1544			skb_checksum_none_assert(skb);
1545			rxdesc->addr = dma_addr;
1546		}
1547		wmb(); /* RACT bit must be set after all the above writes */
1548		if (entry >= mdp->num_rx_ring - 1)
1549			rxdesc->status |=
1550				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1551		else
1552			rxdesc->status |=
1553				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1554	}
1555
1556	/* Restart Rx engine if stopped. */
1557	/* If we don't need to check status, don't. -KDU */
1558	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1559		/* fix the values for the next receiving if RDE is set */
1560		if (intr_status & EESR_RDE &&
1561		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1562			u32 count = (sh_eth_read(ndev, RDFAR) -
1563				     sh_eth_read(ndev, RDLAR)) >> 4;
1564
1565			mdp->cur_rx = count;
1566			mdp->dirty_rx = count;
1567		}
1568		sh_eth_write(ndev, EDRRR_R, EDRRR);
1569	}
1570
1571	*quota -= limit - boguscnt - 1;
1572
1573	return *quota <= 0;
1574}
1575
1576static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1577{
1578	/* disable tx and rx */
1579	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1580		~(ECMR_RE | ECMR_TE), ECMR);
1581}
1582
1583static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1584{
1585	/* enable tx and rx */
1586	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1587		(ECMR_RE | ECMR_TE), ECMR);
1588}
1589
1590/* error control function */
1591static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1592{
1593	struct sh_eth_private *mdp = netdev_priv(ndev);
1594	u32 felic_stat;
1595	u32 link_stat;
1596	u32 mask;
1597
1598	if (intr_status & EESR_ECI) {
1599		felic_stat = sh_eth_read(ndev, ECSR);
1600		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1601		if (felic_stat & ECSR_ICD)
1602			ndev->stats.tx_carrier_errors++;
1603		if (felic_stat & ECSR_LCHNG) {
1604			/* Link Changed */
1605			if (mdp->cd->no_psr || mdp->no_ether_link) {
1606				goto ignore_link;
1607			} else {
1608				link_stat = (sh_eth_read(ndev, PSR));
1609				if (mdp->ether_link_active_low)
1610					link_stat = ~link_stat;
1611			}
1612			if (!(link_stat & PHY_ST_LINK)) {
1613				sh_eth_rcv_snd_disable(ndev);
1614			} else {
1615				/* Link Up */
1616				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1617						   ~DMAC_M_ECI, EESIPR);
1618				/* clear int */
1619				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1620					     ECSR);
1621				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1622						   DMAC_M_ECI, EESIPR);
1623				/* enable tx and rx */
1624				sh_eth_rcv_snd_enable(ndev);
1625			}
1626		}
1627	}
1628
1629ignore_link:
1630	if (intr_status & EESR_TWB) {
1631		/* Unused write back interrupt */
1632		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1633			ndev->stats.tx_aborted_errors++;
1634			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1635		}
1636	}
1637
1638	if (intr_status & EESR_RABT) {
1639		/* Receive Abort int */
1640		if (intr_status & EESR_RFRMER) {
1641			/* Receive Frame Overflow int */
1642			ndev->stats.rx_frame_errors++;
1643		}
1644	}
1645
1646	if (intr_status & EESR_TDE) {
1647		/* Transmit Descriptor Empty int */
1648		ndev->stats.tx_fifo_errors++;
1649		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1650	}
1651
1652	if (intr_status & EESR_TFE) {
1653		/* FIFO under flow */
1654		ndev->stats.tx_fifo_errors++;
1655		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1656	}
1657
1658	if (intr_status & EESR_RDE) {
1659		/* Receive Descriptor Empty int */
1660		ndev->stats.rx_over_errors++;
1661	}
1662
1663	if (intr_status & EESR_RFE) {
1664		/* Receive FIFO Overflow int */
1665		ndev->stats.rx_fifo_errors++;
1666	}
1667
1668	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1669		/* Address Error */
1670		ndev->stats.tx_fifo_errors++;
1671		netif_err(mdp, tx_err, ndev, "Address Error\n");
1672	}
1673
1674	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1675	if (mdp->cd->no_ade)
1676		mask &= ~EESR_ADE;
1677	if (intr_status & mask) {
1678		/* Tx error */
1679		u32 edtrr = sh_eth_read(ndev, EDTRR);
1680
1681		/* dmesg */
1682		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1683			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1684			   (u32)ndev->state, edtrr);
1685		/* dirty buffer free */
1686		sh_eth_txfree(ndev);
1687
1688		/* SH7712 BUG */
1689		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1690			/* tx dma start */
1691			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1692		}
1693		/* wakeup */
1694		netif_wake_queue(ndev);
1695	}
1696}
1697
1698static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1699{
1700	struct net_device *ndev = netdev;
1701	struct sh_eth_private *mdp = netdev_priv(ndev);
1702	struct sh_eth_cpu_data *cd = mdp->cd;
1703	irqreturn_t ret = IRQ_NONE;
1704	u32 intr_status, intr_enable;
1705
1706	spin_lock(&mdp->lock);
1707
1708	/* Get interrupt status */
1709	intr_status = sh_eth_read(ndev, EESR);
1710	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1711	 * enabled since it's the one that  comes thru regardless of the mask,
1712	 * and we need to fully handle it in sh_eth_error() in order to quench
1713	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1714	 */
1715	intr_enable = sh_eth_read(ndev, EESIPR);
1716	intr_status &= intr_enable | DMAC_M_ECI;
1717	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1718		ret = IRQ_HANDLED;
1719	else
1720		goto out;
1721
1722	if (!likely(mdp->irq_enabled)) {
1723		sh_eth_write(ndev, 0, EESIPR);
1724		goto out;
1725	}
1726
1727	if (intr_status & EESR_RX_CHECK) {
1728		if (napi_schedule_prep(&mdp->napi)) {
1729			/* Mask Rx interrupts */
1730			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1731				     EESIPR);
1732			__napi_schedule(&mdp->napi);
1733		} else {
1734			netdev_warn(ndev,
1735				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1736				    intr_status, intr_enable);
1737		}
1738	}
1739
1740	/* Tx Check */
1741	if (intr_status & cd->tx_check) {
1742		/* Clear Tx interrupts */
1743		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1744
1745		sh_eth_txfree(ndev);
1746		netif_wake_queue(ndev);
1747	}
1748
1749	if (intr_status & cd->eesr_err_check) {
1750		/* Clear error interrupts */
1751		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1752
1753		sh_eth_error(ndev, intr_status);
1754	}
1755
1756out:
1757	spin_unlock(&mdp->lock);
1758
1759	return ret;
1760}
1761
1762static int sh_eth_poll(struct napi_struct *napi, int budget)
1763{
1764	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1765						  napi);
1766	struct net_device *ndev = napi->dev;
1767	int quota = budget;
1768	u32 intr_status;
1769
1770	for (;;) {
1771		intr_status = sh_eth_read(ndev, EESR);
1772		if (!(intr_status & EESR_RX_CHECK))
1773			break;
1774		/* Clear Rx interrupts */
1775		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1776
1777		if (sh_eth_rx(ndev, intr_status, &quota))
1778			goto out;
1779	}
1780
1781	napi_complete(napi);
1782
1783	/* Reenable Rx interrupts */
1784	if (mdp->irq_enabled)
1785		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1786out:
1787	return budget - quota;
1788}
1789
1790/* PHY state control function */
1791static void sh_eth_adjust_link(struct net_device *ndev)
1792{
1793	struct sh_eth_private *mdp = netdev_priv(ndev);
1794	struct phy_device *phydev = mdp->phydev;
1795	int new_state = 0;
1796
1797	if (phydev->link) {
1798		if (phydev->duplex != mdp->duplex) {
1799			new_state = 1;
1800			mdp->duplex = phydev->duplex;
1801			if (mdp->cd->set_duplex)
1802				mdp->cd->set_duplex(ndev);
1803		}
1804
1805		if (phydev->speed != mdp->speed) {
1806			new_state = 1;
1807			mdp->speed = phydev->speed;
1808			if (mdp->cd->set_rate)
1809				mdp->cd->set_rate(ndev);
1810		}
1811		if (!mdp->link) {
1812			sh_eth_write(ndev,
1813				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1814				     ECMR);
1815			new_state = 1;
1816			mdp->link = phydev->link;
1817			if (mdp->cd->no_psr || mdp->no_ether_link)
1818				sh_eth_rcv_snd_enable(ndev);
1819		}
1820	} else if (mdp->link) {
1821		new_state = 1;
1822		mdp->link = 0;
1823		mdp->speed = 0;
1824		mdp->duplex = -1;
1825		if (mdp->cd->no_psr || mdp->no_ether_link)
1826			sh_eth_rcv_snd_disable(ndev);
1827	}
1828
1829	if (new_state && netif_msg_link(mdp))
1830		phy_print_status(phydev);
1831}
1832
1833/* PHY init function */
1834static int sh_eth_phy_init(struct net_device *ndev)
1835{
1836	struct device_node *np = ndev->dev.parent->of_node;
1837	struct sh_eth_private *mdp = netdev_priv(ndev);
1838	struct phy_device *phydev = NULL;
1839
1840	mdp->link = 0;
1841	mdp->speed = 0;
1842	mdp->duplex = -1;
1843
1844	/* Try connect to PHY */
1845	if (np) {
1846		struct device_node *pn;
1847
1848		pn = of_parse_phandle(np, "phy-handle", 0);
1849		phydev = of_phy_connect(ndev, pn,
1850					sh_eth_adjust_link, 0,
1851					mdp->phy_interface);
1852
1853		if (!phydev)
1854			phydev = ERR_PTR(-ENOENT);
1855	} else {
1856		char phy_id[MII_BUS_ID_SIZE + 3];
1857
1858		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1859			 mdp->mii_bus->id, mdp->phy_id);
1860
1861		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1862				     mdp->phy_interface);
1863	}
1864
1865	if (IS_ERR(phydev)) {
1866		netdev_err(ndev, "failed to connect PHY\n");
1867		return PTR_ERR(phydev);
1868	}
1869
1870	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1871		    phydev->addr, phydev->irq, phydev->drv->name);
1872
1873	mdp->phydev = phydev;
1874
1875	return 0;
1876}
1877
1878/* PHY control start function */
1879static int sh_eth_phy_start(struct net_device *ndev)
1880{
1881	struct sh_eth_private *mdp = netdev_priv(ndev);
1882	int ret;
1883
1884	ret = sh_eth_phy_init(ndev);
1885	if (ret)
1886		return ret;
1887
1888	phy_start(mdp->phydev);
1889
1890	return 0;
1891}
1892
1893static int sh_eth_get_settings(struct net_device *ndev,
1894			       struct ethtool_cmd *ecmd)
1895{
1896	struct sh_eth_private *mdp = netdev_priv(ndev);
1897	unsigned long flags;
1898	int ret;
1899
1900	if (!mdp->phydev)
1901		return -ENODEV;
1902
1903	spin_lock_irqsave(&mdp->lock, flags);
1904	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1905	spin_unlock_irqrestore(&mdp->lock, flags);
1906
1907	return ret;
1908}
1909
1910static int sh_eth_set_settings(struct net_device *ndev,
1911			       struct ethtool_cmd *ecmd)
1912{
1913	struct sh_eth_private *mdp = netdev_priv(ndev);
1914	unsigned long flags;
1915	int ret;
1916
1917	if (!mdp->phydev)
1918		return -ENODEV;
1919
1920	spin_lock_irqsave(&mdp->lock, flags);
1921
1922	/* disable tx and rx */
1923	sh_eth_rcv_snd_disable(ndev);
1924
1925	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1926	if (ret)
1927		goto error_exit;
1928
1929	if (ecmd->duplex == DUPLEX_FULL)
1930		mdp->duplex = 1;
1931	else
1932		mdp->duplex = 0;
1933
1934	if (mdp->cd->set_duplex)
1935		mdp->cd->set_duplex(ndev);
1936
1937error_exit:
1938	mdelay(1);
1939
1940	/* enable tx and rx */
1941	sh_eth_rcv_snd_enable(ndev);
1942
1943	spin_unlock_irqrestore(&mdp->lock, flags);
1944
1945	return ret;
1946}
1947
1948/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1949 * version must be bumped as well.  Just adding registers up to that
1950 * limit is fine, as long as the existing register indices don't
1951 * change.
1952 */
1953#define SH_ETH_REG_DUMP_VERSION		1
1954#define SH_ETH_REG_DUMP_MAX_REGS	256
1955
1956static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1957{
1958	struct sh_eth_private *mdp = netdev_priv(ndev);
1959	struct sh_eth_cpu_data *cd = mdp->cd;
1960	u32 *valid_map;
1961	size_t len;
1962
1963	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1964
1965	/* Dump starts with a bitmap that tells ethtool which
1966	 * registers are defined for this chip.
1967	 */
1968	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1969	if (buf) {
1970		valid_map = buf;
1971		buf += len;
1972	} else {
1973		valid_map = NULL;
1974	}
1975
1976	/* Add a register to the dump, if it has a defined offset.
1977	 * This automatically skips most undefined registers, but for
1978	 * some it is also necessary to check a capability flag in
1979	 * struct sh_eth_cpu_data.
1980	 */
1981#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1982#define add_reg_from(reg, read_expr) do {				\
1983		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1984			if (buf) {					\
1985				mark_reg_valid(reg);			\
1986				*buf++ = read_expr;			\
1987			}						\
1988			++len;						\
1989		}							\
1990	} while (0)
1991#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1992#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1993
1994	add_reg(EDSR);
1995	add_reg(EDMR);
1996	add_reg(EDTRR);
1997	add_reg(EDRRR);
1998	add_reg(EESR);
1999	add_reg(EESIPR);
2000	add_reg(TDLAR);
2001	add_reg(TDFAR);
2002	add_reg(TDFXR);
2003	add_reg(TDFFR);
2004	add_reg(RDLAR);
2005	add_reg(RDFAR);
2006	add_reg(RDFXR);
2007	add_reg(RDFFR);
2008	add_reg(TRSCER);
2009	add_reg(RMFCR);
2010	add_reg(TFTR);
2011	add_reg(FDR);
2012	add_reg(RMCR);
2013	add_reg(TFUCR);
2014	add_reg(RFOCR);
2015	if (cd->rmiimode)
2016		add_reg(RMIIMODE);
2017	add_reg(FCFTR);
2018	if (cd->rpadir)
2019		add_reg(RPADIR);
2020	if (!cd->no_trimd)
2021		add_reg(TRIMD);
2022	add_reg(ECMR);
2023	add_reg(ECSR);
2024	add_reg(ECSIPR);
2025	add_reg(PIR);
2026	if (!cd->no_psr)
2027		add_reg(PSR);
2028	add_reg(RDMLR);
2029	add_reg(RFLR);
2030	add_reg(IPGR);
2031	if (cd->apr)
2032		add_reg(APR);
2033	if (cd->mpr)
2034		add_reg(MPR);
2035	add_reg(RFCR);
2036	add_reg(RFCF);
2037	if (cd->tpauser)
2038		add_reg(TPAUSER);
2039	add_reg(TPAUSECR);
2040	add_reg(GECMR);
2041	if (cd->bculr)
2042		add_reg(BCULR);
2043	add_reg(MAHR);
2044	add_reg(MALR);
2045	add_reg(TROCR);
2046	add_reg(CDCR);
2047	add_reg(LCCR);
2048	add_reg(CNDCR);
2049	add_reg(CEFCR);
2050	add_reg(FRECR);
2051	add_reg(TSFRCR);
2052	add_reg(TLFRCR);
2053	add_reg(CERCR);
2054	add_reg(CEECR);
2055	add_reg(MAFCR);
2056	if (cd->rtrate)
2057		add_reg(RTRATE);
2058	if (cd->hw_crc)
2059		add_reg(CSMR);
2060	if (cd->select_mii)
2061		add_reg(RMII_MII);
2062	add_reg(ARSTR);
2063	if (cd->tsu) {
2064		add_tsu_reg(TSU_CTRST);
2065		add_tsu_reg(TSU_FWEN0);
2066		add_tsu_reg(TSU_FWEN1);
2067		add_tsu_reg(TSU_FCM);
2068		add_tsu_reg(TSU_BSYSL0);
2069		add_tsu_reg(TSU_BSYSL1);
2070		add_tsu_reg(TSU_PRISL0);
2071		add_tsu_reg(TSU_PRISL1);
2072		add_tsu_reg(TSU_FWSL0);
2073		add_tsu_reg(TSU_FWSL1);
2074		add_tsu_reg(TSU_FWSLC);
2075		add_tsu_reg(TSU_QTAG0);
2076		add_tsu_reg(TSU_QTAG1);
2077		add_tsu_reg(TSU_QTAGM0);
2078		add_tsu_reg(TSU_QTAGM1);
2079		add_tsu_reg(TSU_FWSR);
2080		add_tsu_reg(TSU_FWINMK);
2081		add_tsu_reg(TSU_ADQT0);
2082		add_tsu_reg(TSU_ADQT1);
2083		add_tsu_reg(TSU_VTAG0);
2084		add_tsu_reg(TSU_VTAG1);
2085		add_tsu_reg(TSU_ADSBSY);
2086		add_tsu_reg(TSU_TEN);
2087		add_tsu_reg(TSU_POST1);
2088		add_tsu_reg(TSU_POST2);
2089		add_tsu_reg(TSU_POST3);
2090		add_tsu_reg(TSU_POST4);
2091		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2092			/* This is the start of a table, not just a single
2093			 * register.
2094			 */
2095			if (buf) {
2096				unsigned int i;
2097
2098				mark_reg_valid(TSU_ADRH0);
2099				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2100					*buf++ = ioread32(
2101						mdp->tsu_addr +
2102						mdp->reg_offset[TSU_ADRH0] +
2103						i * 4);
2104			}
2105			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2106		}
2107	}
2108
2109#undef mark_reg_valid
2110#undef add_reg_from
2111#undef add_reg
2112#undef add_tsu_reg
2113
2114	return len * 4;
2115}
2116
2117static int sh_eth_get_regs_len(struct net_device *ndev)
2118{
2119	return __sh_eth_get_regs(ndev, NULL);
2120}
2121
2122static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2123			    void *buf)
2124{
2125	struct sh_eth_private *mdp = netdev_priv(ndev);
2126
2127	regs->version = SH_ETH_REG_DUMP_VERSION;
2128
2129	pm_runtime_get_sync(&mdp->pdev->dev);
2130	__sh_eth_get_regs(ndev, buf);
2131	pm_runtime_put_sync(&mdp->pdev->dev);
2132}
2133
2134static int sh_eth_nway_reset(struct net_device *ndev)
2135{
2136	struct sh_eth_private *mdp = netdev_priv(ndev);
2137	unsigned long flags;
2138	int ret;
2139
2140	if (!mdp->phydev)
2141		return -ENODEV;
2142
2143	spin_lock_irqsave(&mdp->lock, flags);
2144	ret = phy_start_aneg(mdp->phydev);
2145	spin_unlock_irqrestore(&mdp->lock, flags);
2146
2147	return ret;
2148}
2149
2150static u32 sh_eth_get_msglevel(struct net_device *ndev)
2151{
2152	struct sh_eth_private *mdp = netdev_priv(ndev);
2153	return mdp->msg_enable;
2154}
2155
2156static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2157{
2158	struct sh_eth_private *mdp = netdev_priv(ndev);
2159	mdp->msg_enable = value;
2160}
2161
2162static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2163	"rx_current", "tx_current",
2164	"rx_dirty", "tx_dirty",
2165};
2166#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2167
2168static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2169{
2170	switch (sset) {
2171	case ETH_SS_STATS:
2172		return SH_ETH_STATS_LEN;
2173	default:
2174		return -EOPNOTSUPP;
2175	}
2176}
2177
2178static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2179				     struct ethtool_stats *stats, u64 *data)
2180{
2181	struct sh_eth_private *mdp = netdev_priv(ndev);
2182	int i = 0;
2183
2184	/* device-specific stats */
2185	data[i++] = mdp->cur_rx;
2186	data[i++] = mdp->cur_tx;
2187	data[i++] = mdp->dirty_rx;
2188	data[i++] = mdp->dirty_tx;
2189}
2190
2191static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2192{
2193	switch (stringset) {
2194	case ETH_SS_STATS:
2195		memcpy(data, *sh_eth_gstrings_stats,
2196		       sizeof(sh_eth_gstrings_stats));
2197		break;
2198	}
2199}
2200
2201static void sh_eth_get_ringparam(struct net_device *ndev,
2202				 struct ethtool_ringparam *ring)
2203{
2204	struct sh_eth_private *mdp = netdev_priv(ndev);
2205
2206	ring->rx_max_pending = RX_RING_MAX;
2207	ring->tx_max_pending = TX_RING_MAX;
2208	ring->rx_pending = mdp->num_rx_ring;
2209	ring->tx_pending = mdp->num_tx_ring;
2210}
2211
2212static int sh_eth_set_ringparam(struct net_device *ndev,
2213				struct ethtool_ringparam *ring)
2214{
2215	struct sh_eth_private *mdp = netdev_priv(ndev);
2216	int ret;
2217
2218	if (ring->tx_pending > TX_RING_MAX ||
2219	    ring->rx_pending > RX_RING_MAX ||
2220	    ring->tx_pending < TX_RING_MIN ||
2221	    ring->rx_pending < RX_RING_MIN)
2222		return -EINVAL;
2223	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2224		return -EINVAL;
2225
2226	if (netif_running(ndev)) {
2227		netif_device_detach(ndev);
2228		netif_tx_disable(ndev);
2229
2230		/* Serialise with the interrupt handler and NAPI, then
2231		 * disable interrupts.  We have to clear the
2232		 * irq_enabled flag first to ensure that interrupts
2233		 * won't be re-enabled.
2234		 */
2235		mdp->irq_enabled = false;
2236		synchronize_irq(ndev->irq);
2237		napi_synchronize(&mdp->napi);
2238		sh_eth_write(ndev, 0x0000, EESIPR);
2239
2240		sh_eth_dev_exit(ndev);
2241
2242		/* Free all the skbuffs in the Rx queue. */
2243		sh_eth_ring_free(ndev);
2244		/* Free DMA buffer */
2245		sh_eth_free_dma_buffer(mdp);
2246	}
2247
2248	/* Set new parameters */
2249	mdp->num_rx_ring = ring->rx_pending;
2250	mdp->num_tx_ring = ring->tx_pending;
2251
2252	if (netif_running(ndev)) {
2253		ret = sh_eth_ring_init(ndev);
2254		if (ret < 0) {
2255			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2256				   __func__);
2257			return ret;
2258		}
2259		ret = sh_eth_dev_init(ndev, false);
2260		if (ret < 0) {
2261			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2262				   __func__);
2263			return ret;
2264		}
2265
2266		mdp->irq_enabled = true;
2267		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2268		/* Setting the Rx mode will start the Rx process. */
2269		sh_eth_write(ndev, EDRRR_R, EDRRR);
2270		netif_device_attach(ndev);
2271	}
2272
2273	return 0;
2274}
2275
2276static const struct ethtool_ops sh_eth_ethtool_ops = {
2277	.get_settings	= sh_eth_get_settings,
2278	.set_settings	= sh_eth_set_settings,
2279	.get_regs_len	= sh_eth_get_regs_len,
2280	.get_regs	= sh_eth_get_regs,
2281	.nway_reset	= sh_eth_nway_reset,
2282	.get_msglevel	= sh_eth_get_msglevel,
2283	.set_msglevel	= sh_eth_set_msglevel,
2284	.get_link	= ethtool_op_get_link,
2285	.get_strings	= sh_eth_get_strings,
2286	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2287	.get_sset_count     = sh_eth_get_sset_count,
2288	.get_ringparam	= sh_eth_get_ringparam,
2289	.set_ringparam	= sh_eth_set_ringparam,
2290};
2291
2292/* network device open function */
2293static int sh_eth_open(struct net_device *ndev)
2294{
2295	int ret = 0;
2296	struct sh_eth_private *mdp = netdev_priv(ndev);
2297
2298	pm_runtime_get_sync(&mdp->pdev->dev);
2299
2300	napi_enable(&mdp->napi);
2301
2302	ret = request_irq(ndev->irq, sh_eth_interrupt,
2303			  mdp->cd->irq_flags, ndev->name, ndev);
2304	if (ret) {
2305		netdev_err(ndev, "Can not assign IRQ number\n");
2306		goto out_napi_off;
2307	}
2308
2309	/* Descriptor set */
2310	ret = sh_eth_ring_init(ndev);
2311	if (ret)
2312		goto out_free_irq;
2313
2314	/* device init */
2315	ret = sh_eth_dev_init(ndev, true);
2316	if (ret)
2317		goto out_free_irq;
2318
2319	/* PHY control start*/
2320	ret = sh_eth_phy_start(ndev);
2321	if (ret)
2322		goto out_free_irq;
2323
2324	mdp->is_opened = 1;
2325
2326	return ret;
2327
2328out_free_irq:
2329	free_irq(ndev->irq, ndev);
2330out_napi_off:
2331	napi_disable(&mdp->napi);
2332	pm_runtime_put_sync(&mdp->pdev->dev);
2333	return ret;
2334}
2335
2336/* Timeout function */
2337static void sh_eth_tx_timeout(struct net_device *ndev)
2338{
2339	struct sh_eth_private *mdp = netdev_priv(ndev);
2340	struct sh_eth_rxdesc *rxdesc;
2341	int i;
2342
2343	netif_stop_queue(ndev);
2344
2345	netif_err(mdp, timer, ndev,
2346		  "transmit timed out, status %8.8x, resetting...\n",
2347		  sh_eth_read(ndev, EESR));
2348
2349	/* tx_errors count up */
2350	ndev->stats.tx_errors++;
2351
2352	/* Free all the skbuffs in the Rx queue. */
2353	for (i = 0; i < mdp->num_rx_ring; i++) {
2354		rxdesc = &mdp->rx_ring[i];
2355		rxdesc->status = 0;
2356		rxdesc->addr = 0xBADF00D0;
2357		dev_kfree_skb(mdp->rx_skbuff[i]);
2358		mdp->rx_skbuff[i] = NULL;
2359	}
2360	for (i = 0; i < mdp->num_tx_ring; i++) {
2361		dev_kfree_skb(mdp->tx_skbuff[i]);
2362		mdp->tx_skbuff[i] = NULL;
2363	}
2364
2365	/* device init */
2366	sh_eth_dev_init(ndev, true);
2367}
2368
2369/* Packet transmit function */
2370static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2371{
2372	struct sh_eth_private *mdp = netdev_priv(ndev);
2373	struct sh_eth_txdesc *txdesc;
2374	u32 entry;
2375	unsigned long flags;
2376
2377	spin_lock_irqsave(&mdp->lock, flags);
2378	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2379		if (!sh_eth_txfree(ndev)) {
2380			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2381			netif_stop_queue(ndev);
2382			spin_unlock_irqrestore(&mdp->lock, flags);
2383			return NETDEV_TX_BUSY;
2384		}
2385	}
2386	spin_unlock_irqrestore(&mdp->lock, flags);
2387
2388	if (skb_put_padto(skb, ETH_ZLEN))
2389		return NETDEV_TX_OK;
2390
2391	entry = mdp->cur_tx % mdp->num_tx_ring;
2392	mdp->tx_skbuff[entry] = skb;
2393	txdesc = &mdp->tx_ring[entry];
2394	/* soft swap. */
2395	if (!mdp->cd->hw_swap)
2396		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2397				 skb->len + 2);
2398	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2399				      DMA_TO_DEVICE);
2400	if (dma_mapping_error(&ndev->dev, txdesc->addr)) {
2401		kfree_skb(skb);
2402		return NETDEV_TX_OK;
2403	}
2404	txdesc->buffer_length = skb->len;
2405
2406	wmb(); /* TACT bit must be set after all the above writes */
2407	if (entry >= mdp->num_tx_ring - 1)
2408		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2409	else
2410		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2411
2412	mdp->cur_tx++;
2413
2414	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2415		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2416
2417	return NETDEV_TX_OK;
2418}
2419
2420/* The statistics registers have write-clear behaviour, which means we
2421 * will lose any increment between the read and write.  We mitigate
2422 * this by only clearing when we read a non-zero value, so we will
2423 * never falsely report a total of zero.
2424 */
2425static void
2426sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2427{
2428	u32 delta = sh_eth_read(ndev, reg);
2429
2430	if (delta) {
2431		*stat += delta;
2432		sh_eth_write(ndev, 0, reg);
2433	}
2434}
2435
2436static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2437{
2438	struct sh_eth_private *mdp = netdev_priv(ndev);
2439
2440	if (sh_eth_is_rz_fast_ether(mdp))
2441		return &ndev->stats;
2442
2443	if (!mdp->is_opened)
2444		return &ndev->stats;
2445
2446	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2447	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2448	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2449
2450	if (sh_eth_is_gether(mdp)) {
2451		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2452				   CERCR);
2453		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2454				   CEECR);
2455	} else {
2456		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2457				   CNDCR);
2458	}
2459
2460	return &ndev->stats;
2461}
2462
2463/* device close function */
2464static int sh_eth_close(struct net_device *ndev)
2465{
2466	struct sh_eth_private *mdp = netdev_priv(ndev);
2467
2468	netif_stop_queue(ndev);
2469
2470	/* Serialise with the interrupt handler and NAPI, then disable
2471	 * interrupts.  We have to clear the irq_enabled flag first to
2472	 * ensure that interrupts won't be re-enabled.
2473	 */
2474	mdp->irq_enabled = false;
2475	synchronize_irq(ndev->irq);
2476	napi_disable(&mdp->napi);
2477	sh_eth_write(ndev, 0x0000, EESIPR);
2478
2479	sh_eth_dev_exit(ndev);
2480
2481	/* PHY Disconnect */
2482	if (mdp->phydev) {
2483		phy_stop(mdp->phydev);
2484		phy_disconnect(mdp->phydev);
2485		mdp->phydev = NULL;
2486	}
2487
2488	free_irq(ndev->irq, ndev);
2489
2490	/* Free all the skbuffs in the Rx queue. */
2491	sh_eth_ring_free(ndev);
2492
2493	/* free DMA buffer */
2494	sh_eth_free_dma_buffer(mdp);
2495
2496	pm_runtime_put_sync(&mdp->pdev->dev);
2497
2498	mdp->is_opened = 0;
2499
2500	return 0;
2501}
2502
2503/* ioctl to device function */
2504static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2505{
2506	struct sh_eth_private *mdp = netdev_priv(ndev);
2507	struct phy_device *phydev = mdp->phydev;
2508
2509	if (!netif_running(ndev))
2510		return -EINVAL;
2511
2512	if (!phydev)
2513		return -ENODEV;
2514
2515	return phy_mii_ioctl(phydev, rq, cmd);
2516}
2517
2518/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2519static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2520					    int entry)
2521{
2522	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2523}
2524
2525static u32 sh_eth_tsu_get_post_mask(int entry)
2526{
2527	return 0x0f << (28 - ((entry % 8) * 4));
2528}
2529
2530static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2531{
2532	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2533}
2534
2535static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2536					     int entry)
2537{
2538	struct sh_eth_private *mdp = netdev_priv(ndev);
2539	u32 tmp;
2540	void *reg_offset;
2541
2542	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2543	tmp = ioread32(reg_offset);
2544	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2545}
2546
2547static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2548					      int entry)
2549{
2550	struct sh_eth_private *mdp = netdev_priv(ndev);
2551	u32 post_mask, ref_mask, tmp;
2552	void *reg_offset;
2553
2554	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2555	post_mask = sh_eth_tsu_get_post_mask(entry);
2556	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2557
2558	tmp = ioread32(reg_offset);
2559	iowrite32(tmp & ~post_mask, reg_offset);
2560
2561	/* If other port enables, the function returns "true" */
2562	return tmp & ref_mask;
2563}
2564
2565static int sh_eth_tsu_busy(struct net_device *ndev)
2566{
2567	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2568	struct sh_eth_private *mdp = netdev_priv(ndev);
2569
2570	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2571		udelay(10);
2572		timeout--;
2573		if (timeout <= 0) {
2574			netdev_err(ndev, "%s: timeout\n", __func__);
2575			return -ETIMEDOUT;
2576		}
2577	}
2578
2579	return 0;
2580}
2581
2582static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2583				  const u8 *addr)
2584{
2585	u32 val;
2586
2587	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2588	iowrite32(val, reg);
2589	if (sh_eth_tsu_busy(ndev) < 0)
2590		return -EBUSY;
2591
2592	val = addr[4] << 8 | addr[5];
2593	iowrite32(val, reg + 4);
2594	if (sh_eth_tsu_busy(ndev) < 0)
2595		return -EBUSY;
2596
2597	return 0;
2598}
2599
2600static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2601{
2602	u32 val;
2603
2604	val = ioread32(reg);
2605	addr[0] = (val >> 24) & 0xff;
2606	addr[1] = (val >> 16) & 0xff;
2607	addr[2] = (val >> 8) & 0xff;
2608	addr[3] = val & 0xff;
2609	val = ioread32(reg + 4);
2610	addr[4] = (val >> 8) & 0xff;
2611	addr[5] = val & 0xff;
2612}
2613
2614
2615static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2616{
2617	struct sh_eth_private *mdp = netdev_priv(ndev);
2618	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2619	int i;
2620	u8 c_addr[ETH_ALEN];
2621
2622	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2623		sh_eth_tsu_read_entry(reg_offset, c_addr);
2624		if (ether_addr_equal(addr, c_addr))
2625			return i;
2626	}
2627
2628	return -ENOENT;
2629}
2630
2631static int sh_eth_tsu_find_empty(struct net_device *ndev)
2632{
2633	u8 blank[ETH_ALEN];
2634	int entry;
2635
2636	memset(blank, 0, sizeof(blank));
2637	entry = sh_eth_tsu_find_entry(ndev, blank);
2638	return (entry < 0) ? -ENOMEM : entry;
2639}
2640
2641static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2642					      int entry)
2643{
2644	struct sh_eth_private *mdp = netdev_priv(ndev);
2645	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2646	int ret;
2647	u8 blank[ETH_ALEN];
2648
2649	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2650			 ~(1 << (31 - entry)), TSU_TEN);
2651
2652	memset(blank, 0, sizeof(blank));
2653	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2654	if (ret < 0)
2655		return ret;
2656	return 0;
2657}
2658
2659static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2660{
2661	struct sh_eth_private *mdp = netdev_priv(ndev);
2662	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2663	int i, ret;
2664
2665	if (!mdp->cd->tsu)
2666		return 0;
2667
2668	i = sh_eth_tsu_find_entry(ndev, addr);
2669	if (i < 0) {
2670		/* No entry found, create one */
2671		i = sh_eth_tsu_find_empty(ndev);
2672		if (i < 0)
2673			return -ENOMEM;
2674		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2675		if (ret < 0)
2676			return ret;
2677
2678		/* Enable the entry */
2679		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2680				 (1 << (31 - i)), TSU_TEN);
2681	}
2682
2683	/* Entry found or created, enable POST */
2684	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2685
2686	return 0;
2687}
2688
2689static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2690{
2691	struct sh_eth_private *mdp = netdev_priv(ndev);
2692	int i, ret;
2693
2694	if (!mdp->cd->tsu)
2695		return 0;
2696
2697	i = sh_eth_tsu_find_entry(ndev, addr);
2698	if (i) {
2699		/* Entry found */
2700		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2701			goto done;
2702
2703		/* Disable the entry if both ports was disabled */
2704		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2705		if (ret < 0)
2706			return ret;
2707	}
2708done:
2709	return 0;
2710}
2711
2712static int sh_eth_tsu_purge_all(struct net_device *ndev)
2713{
2714	struct sh_eth_private *mdp = netdev_priv(ndev);
2715	int i, ret;
2716
2717	if (!mdp->cd->tsu)
2718		return 0;
2719
2720	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2721		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2722			continue;
2723
2724		/* Disable the entry if both ports was disabled */
2725		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2726		if (ret < 0)
2727			return ret;
2728	}
2729
2730	return 0;
2731}
2732
2733static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2734{
2735	struct sh_eth_private *mdp = netdev_priv(ndev);
2736	u8 addr[ETH_ALEN];
2737	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2738	int i;
2739
2740	if (!mdp->cd->tsu)
2741		return;
2742
2743	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2744		sh_eth_tsu_read_entry(reg_offset, addr);
2745		if (is_multicast_ether_addr(addr))
2746			sh_eth_tsu_del_entry(ndev, addr);
2747	}
2748}
2749
2750/* Update promiscuous flag and multicast filter */
2751static void sh_eth_set_rx_mode(struct net_device *ndev)
2752{
2753	struct sh_eth_private *mdp = netdev_priv(ndev);
2754	u32 ecmr_bits;
2755	int mcast_all = 0;
2756	unsigned long flags;
2757
2758	spin_lock_irqsave(&mdp->lock, flags);
2759	/* Initial condition is MCT = 1, PRM = 0.
2760	 * Depending on ndev->flags, set PRM or clear MCT
2761	 */
2762	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2763	if (mdp->cd->tsu)
2764		ecmr_bits |= ECMR_MCT;
2765
2766	if (!(ndev->flags & IFF_MULTICAST)) {
2767		sh_eth_tsu_purge_mcast(ndev);
2768		mcast_all = 1;
2769	}
2770	if (ndev->flags & IFF_ALLMULTI) {
2771		sh_eth_tsu_purge_mcast(ndev);
2772		ecmr_bits &= ~ECMR_MCT;
2773		mcast_all = 1;
2774	}
2775
2776	if (ndev->flags & IFF_PROMISC) {
2777		sh_eth_tsu_purge_all(ndev);
2778		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2779	} else if (mdp->cd->tsu) {
2780		struct netdev_hw_addr *ha;
2781		netdev_for_each_mc_addr(ha, ndev) {
2782			if (mcast_all && is_multicast_ether_addr(ha->addr))
2783				continue;
2784
2785			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2786				if (!mcast_all) {
2787					sh_eth_tsu_purge_mcast(ndev);
2788					ecmr_bits &= ~ECMR_MCT;
2789					mcast_all = 1;
2790				}
2791			}
2792		}
2793	}
2794
2795	/* update the ethernet mode */
2796	sh_eth_write(ndev, ecmr_bits, ECMR);
2797
2798	spin_unlock_irqrestore(&mdp->lock, flags);
2799}
2800
2801static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2802{
2803	if (!mdp->port)
2804		return TSU_VTAG0;
2805	else
2806		return TSU_VTAG1;
2807}
2808
2809static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2810				  __be16 proto, u16 vid)
2811{
2812	struct sh_eth_private *mdp = netdev_priv(ndev);
2813	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2814
2815	if (unlikely(!mdp->cd->tsu))
2816		return -EPERM;
2817
2818	/* No filtering if vid = 0 */
2819	if (!vid)
2820		return 0;
2821
2822	mdp->vlan_num_ids++;
2823
2824	/* The controller has one VLAN tag HW filter. So, if the filter is
2825	 * already enabled, the driver disables it and the filte
2826	 */
2827	if (mdp->vlan_num_ids > 1) {
2828		/* disable VLAN filter */
2829		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2830		return 0;
2831	}
2832
2833	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2834			 vtag_reg_index);
2835
2836	return 0;
2837}
2838
2839static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2840				   __be16 proto, u16 vid)
2841{
2842	struct sh_eth_private *mdp = netdev_priv(ndev);
2843	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2844
2845	if (unlikely(!mdp->cd->tsu))
2846		return -EPERM;
2847
2848	/* No filtering if vid = 0 */
2849	if (!vid)
2850		return 0;
2851
2852	mdp->vlan_num_ids--;
2853	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2854
2855	return 0;
2856}
2857
2858/* SuperH's TSU register init function */
2859static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2860{
2861	if (sh_eth_is_rz_fast_ether(mdp)) {
2862		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2863		return;
2864	}
2865
2866	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2867	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2868	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2869	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2870	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2871	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2872	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2873	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2874	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2875	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2876	if (sh_eth_is_gether(mdp)) {
2877		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2878		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2879	} else {
2880		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2881		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2882	}
2883	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2884	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2885	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2886	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2887	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2888	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2889	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2890}
2891
2892/* MDIO bus release function */
2893static int sh_mdio_release(struct sh_eth_private *mdp)
2894{
2895	/* unregister mdio bus */
2896	mdiobus_unregister(mdp->mii_bus);
2897
2898	/* free bitbang info */
2899	free_mdio_bitbang(mdp->mii_bus);
2900
2901	return 0;
2902}
2903
2904/* MDIO bus init function */
2905static int sh_mdio_init(struct sh_eth_private *mdp,
2906			struct sh_eth_plat_data *pd)
2907{
2908	int ret, i;
2909	struct bb_info *bitbang;
2910	struct platform_device *pdev = mdp->pdev;
2911	struct device *dev = &mdp->pdev->dev;
2912
2913	/* create bit control struct for PHY */
2914	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2915	if (!bitbang)
2916		return -ENOMEM;
2917
2918	/* bitbang init */
2919	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2920	bitbang->set_gate = pd->set_mdio_gate;
2921	bitbang->mdi_msk = PIR_MDI;
2922	bitbang->mdo_msk = PIR_MDO;
2923	bitbang->mmd_msk = PIR_MMD;
2924	bitbang->mdc_msk = PIR_MDC;
2925	bitbang->ctrl.ops = &bb_ops;
2926
2927	/* MII controller setting */
2928	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2929	if (!mdp->mii_bus)
2930		return -ENOMEM;
2931
2932	/* Hook up MII support for ethtool */
2933	mdp->mii_bus->name = "sh_mii";
2934	mdp->mii_bus->parent = dev;
2935	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2936		 pdev->name, pdev->id);
2937
2938	/* PHY IRQ */
2939	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2940					       GFP_KERNEL);
2941	if (!mdp->mii_bus->irq) {
2942		ret = -ENOMEM;
2943		goto out_free_bus;
2944	}
2945
2946	/* register MDIO bus */
2947	if (dev->of_node) {
2948		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2949	} else {
2950		for (i = 0; i < PHY_MAX_ADDR; i++)
2951			mdp->mii_bus->irq[i] = PHY_POLL;
2952		if (pd->phy_irq > 0)
2953			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2954
2955		ret = mdiobus_register(mdp->mii_bus);
2956	}
2957
2958	if (ret)
2959		goto out_free_bus;
2960
2961	return 0;
2962
2963out_free_bus:
2964	free_mdio_bitbang(mdp->mii_bus);
2965	return ret;
2966}
2967
2968static const u16 *sh_eth_get_register_offset(int register_type)
2969{
2970	const u16 *reg_offset = NULL;
2971
2972	switch (register_type) {
2973	case SH_ETH_REG_GIGABIT:
2974		reg_offset = sh_eth_offset_gigabit;
2975		break;
2976	case SH_ETH_REG_FAST_RZ:
2977		reg_offset = sh_eth_offset_fast_rz;
2978		break;
2979	case SH_ETH_REG_FAST_RCAR:
2980		reg_offset = sh_eth_offset_fast_rcar;
2981		break;
2982	case SH_ETH_REG_FAST_SH4:
2983		reg_offset = sh_eth_offset_fast_sh4;
2984		break;
2985	case SH_ETH_REG_FAST_SH3_SH2:
2986		reg_offset = sh_eth_offset_fast_sh3_sh2;
2987		break;
2988	default:
2989		break;
2990	}
2991
2992	return reg_offset;
2993}
2994
2995static const struct net_device_ops sh_eth_netdev_ops = {
2996	.ndo_open		= sh_eth_open,
2997	.ndo_stop		= sh_eth_close,
2998	.ndo_start_xmit		= sh_eth_start_xmit,
2999	.ndo_get_stats		= sh_eth_get_stats,
3000	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3001	.ndo_tx_timeout		= sh_eth_tx_timeout,
3002	.ndo_do_ioctl		= sh_eth_do_ioctl,
3003	.ndo_validate_addr	= eth_validate_addr,
3004	.ndo_set_mac_address	= eth_mac_addr,
3005	.ndo_change_mtu		= eth_change_mtu,
3006};
3007
3008static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3009	.ndo_open		= sh_eth_open,
3010	.ndo_stop		= sh_eth_close,
3011	.ndo_start_xmit		= sh_eth_start_xmit,
3012	.ndo_get_stats		= sh_eth_get_stats,
3013	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3014	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3015	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3016	.ndo_tx_timeout		= sh_eth_tx_timeout,
3017	.ndo_do_ioctl		= sh_eth_do_ioctl,
3018	.ndo_validate_addr	= eth_validate_addr,
3019	.ndo_set_mac_address	= eth_mac_addr,
3020	.ndo_change_mtu		= eth_change_mtu,
3021};
3022
3023#ifdef CONFIG_OF
3024static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3025{
3026	struct device_node *np = dev->of_node;
3027	struct sh_eth_plat_data *pdata;
3028	const char *mac_addr;
3029
3030	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3031	if (!pdata)
3032		return NULL;
3033
3034	pdata->phy_interface = of_get_phy_mode(np);
3035
3036	mac_addr = of_get_mac_address(np);
3037	if (mac_addr)
3038		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3039
3040	pdata->no_ether_link =
3041		of_property_read_bool(np, "renesas,no-ether-link");
3042	pdata->ether_link_active_low =
3043		of_property_read_bool(np, "renesas,ether-link-active-low");
3044
3045	return pdata;
3046}
3047
3048static const struct of_device_id sh_eth_match_table[] = {
3049	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3050	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3051	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3052	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3053	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3054	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3055	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3056	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3057	{ }
3058};
3059MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3060#else
3061static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3062{
3063	return NULL;
3064}
3065#endif
3066
3067static int sh_eth_drv_probe(struct platform_device *pdev)
3068{
3069	int ret, devno = 0;
3070	struct resource *res;
3071	struct net_device *ndev = NULL;
3072	struct sh_eth_private *mdp = NULL;
3073	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3074	const struct platform_device_id *id = platform_get_device_id(pdev);
3075
3076	/* get base addr */
3077	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3078
3079	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3080	if (!ndev)
3081		return -ENOMEM;
3082
3083	pm_runtime_enable(&pdev->dev);
3084	pm_runtime_get_sync(&pdev->dev);
3085
3086	devno = pdev->id;
3087	if (devno < 0)
3088		devno = 0;
3089
3090	ndev->dma = -1;
3091	ret = platform_get_irq(pdev, 0);
3092	if (ret < 0) {
3093		ret = -ENODEV;
3094		goto out_release;
3095	}
3096	ndev->irq = ret;
3097
3098	SET_NETDEV_DEV(ndev, &pdev->dev);
3099
3100	mdp = netdev_priv(ndev);
3101	mdp->num_tx_ring = TX_RING_SIZE;
3102	mdp->num_rx_ring = RX_RING_SIZE;
3103	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3104	if (IS_ERR(mdp->addr)) {
3105		ret = PTR_ERR(mdp->addr);
3106		goto out_release;
3107	}
3108
3109	ndev->base_addr = res->start;
3110
3111	spin_lock_init(&mdp->lock);
3112	mdp->pdev = pdev;
3113
3114	if (pdev->dev.of_node)
3115		pd = sh_eth_parse_dt(&pdev->dev);
3116	if (!pd) {
3117		dev_err(&pdev->dev, "no platform data\n");
3118		ret = -EINVAL;
3119		goto out_release;
3120	}
3121
3122	/* get PHY ID */
3123	mdp->phy_id = pd->phy;
3124	mdp->phy_interface = pd->phy_interface;
3125	/* EDMAC endian */
3126	mdp->edmac_endian = pd->edmac_endian;
3127	mdp->no_ether_link = pd->no_ether_link;
3128	mdp->ether_link_active_low = pd->ether_link_active_low;
3129
3130	/* set cpu data */
3131	if (id) {
3132		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3133	} else	{
3134		const struct of_device_id *match;
3135
3136		match = of_match_device(of_match_ptr(sh_eth_match_table),
3137					&pdev->dev);
3138		mdp->cd = (struct sh_eth_cpu_data *)match->data;
3139	}
3140	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3141	if (!mdp->reg_offset) {
3142		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3143			mdp->cd->register_type);
3144		ret = -EINVAL;
3145		goto out_release;
3146	}
3147	sh_eth_set_default_cpu_data(mdp->cd);
3148
3149	/* set function */
3150	if (mdp->cd->tsu)
3151		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3152	else
3153		ndev->netdev_ops = &sh_eth_netdev_ops;
3154	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3155	ndev->watchdog_timeo = TX_TIMEOUT;
3156
3157	/* debug message level */
3158	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3159
3160	/* read and set MAC address */
3161	read_mac_address(ndev, pd->mac_addr);
3162	if (!is_valid_ether_addr(ndev->dev_addr)) {
3163		dev_warn(&pdev->dev,
3164			 "no valid MAC address supplied, using a random one.\n");
3165		eth_hw_addr_random(ndev);
3166	}
3167
3168	/* ioremap the TSU registers */
3169	if (mdp->cd->tsu) {
3170		struct resource *rtsu;
3171		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3172		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3173		if (IS_ERR(mdp->tsu_addr)) {
3174			ret = PTR_ERR(mdp->tsu_addr);
3175			goto out_release;
3176		}
3177		mdp->port = devno % 2;
3178		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3179	}
3180
3181	/* initialize first or needed device */
3182	if (!devno || pd->needs_init) {
3183		if (mdp->cd->chip_reset)
3184			mdp->cd->chip_reset(ndev);
3185
3186		if (mdp->cd->tsu) {
3187			/* TSU init (Init only)*/
3188			sh_eth_tsu_init(mdp);
3189		}
3190	}
3191
3192	if (mdp->cd->rmiimode)
3193		sh_eth_write(ndev, 0x1, RMIIMODE);
3194
3195	/* MDIO bus init */
3196	ret = sh_mdio_init(mdp, pd);
3197	if (ret) {
3198		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3199		goto out_release;
3200	}
3201
3202	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3203
3204	/* network device register */
3205	ret = register_netdev(ndev);
3206	if (ret)
3207		goto out_napi_del;
3208
3209	/* print device information */
3210	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3211		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3212
3213	pm_runtime_put(&pdev->dev);
3214	platform_set_drvdata(pdev, ndev);
3215
3216	return ret;
3217
3218out_napi_del:
3219	netif_napi_del(&mdp->napi);
3220	sh_mdio_release(mdp);
3221
3222out_release:
3223	/* net_dev free */
3224	if (ndev)
3225		free_netdev(ndev);
3226
3227	pm_runtime_put(&pdev->dev);
3228	pm_runtime_disable(&pdev->dev);
3229	return ret;
3230}
3231
3232static int sh_eth_drv_remove(struct platform_device *pdev)
3233{
3234	struct net_device *ndev = platform_get_drvdata(pdev);
3235	struct sh_eth_private *mdp = netdev_priv(ndev);
3236
3237	unregister_netdev(ndev);
3238	netif_napi_del(&mdp->napi);
3239	sh_mdio_release(mdp);
3240	pm_runtime_disable(&pdev->dev);
3241	free_netdev(ndev);
3242
3243	return 0;
3244}
3245
3246#ifdef CONFIG_PM
3247#ifdef CONFIG_PM_SLEEP
3248static int sh_eth_suspend(struct device *dev)
3249{
3250	struct net_device *ndev = dev_get_drvdata(dev);
3251	int ret = 0;
3252
3253	if (netif_running(ndev)) {
3254		netif_device_detach(ndev);
3255		ret = sh_eth_close(ndev);
3256	}
3257
3258	return ret;
3259}
3260
3261static int sh_eth_resume(struct device *dev)
3262{
3263	struct net_device *ndev = dev_get_drvdata(dev);
3264	int ret = 0;
3265
3266	if (netif_running(ndev)) {
3267		ret = sh_eth_open(ndev);
3268		if (ret < 0)
3269			return ret;
3270		netif_device_attach(ndev);
3271	}
3272
3273	return ret;
3274}
3275#endif
3276
3277static int sh_eth_runtime_nop(struct device *dev)
3278{
3279	/* Runtime PM callback shared between ->runtime_suspend()
3280	 * and ->runtime_resume(). Simply returns success.
3281	 *
3282	 * This driver re-initializes all registers after
3283	 * pm_runtime_get_sync() anyway so there is no need
3284	 * to save and restore registers here.
3285	 */
3286	return 0;
3287}
3288
3289static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3290	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3291	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3292};
3293#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3294#else
3295#define SH_ETH_PM_OPS NULL
3296#endif
3297
3298static struct platform_device_id sh_eth_id_table[] = {
3299	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3300	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3301	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3302	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3303	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3304	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3305	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3306	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3307	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3308	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3309	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3310	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3311	{ "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3312	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3313	{ }
3314};
3315MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3316
3317static struct platform_driver sh_eth_driver = {
3318	.probe = sh_eth_drv_probe,
3319	.remove = sh_eth_drv_remove,
3320	.id_table = sh_eth_id_table,
3321	.driver = {
3322		   .name = CARDNAME,
3323		   .pm = SH_ETH_PM_OPS,
3324		   .of_match_table = of_match_ptr(sh_eth_match_table),
3325	},
3326};
3327
3328module_platform_driver(sh_eth_driver);
3329
3330MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3331MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3332MODULE_LICENSE("GPL v2");
3333