1/******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice.  This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 *                 Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14#include <linux/etherdevice.h>
15#include <linux/prefetch.h>
16
17#include "vxge-traffic.h"
18#include "vxge-config.h"
19#include "vxge-main.h"
20
21/*
22 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
23 * @vp: Virtual Path handle.
24 *
25 * Enable vpath interrupts. The function is to be executed the last in
26 * vpath initialization sequence.
27 *
28 * See also: vxge_hw_vpath_intr_disable()
29 */
30enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
31{
32	u64 val64;
33
34	struct __vxge_hw_virtualpath *vpath;
35	struct vxge_hw_vpath_reg __iomem *vp_reg;
36	enum vxge_hw_status status = VXGE_HW_OK;
37	if (vp == NULL) {
38		status = VXGE_HW_ERR_INVALID_HANDLE;
39		goto exit;
40	}
41
42	vpath = vp->vpath;
43
44	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
45		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
46		goto exit;
47	}
48
49	vp_reg = vpath->vp_reg;
50
51	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
52
53	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
54			&vp_reg->general_errors_reg);
55
56	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
57			&vp_reg->pci_config_errors_reg);
58
59	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
60			&vp_reg->mrpcim_to_vpath_alarm_reg);
61
62	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
63			&vp_reg->srpcim_to_vpath_alarm_reg);
64
65	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
66			&vp_reg->vpath_ppif_int_status);
67
68	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
69			&vp_reg->srpcim_msg_to_vpath_reg);
70
71	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
72			&vp_reg->vpath_pcipif_int_status);
73
74	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
75			&vp_reg->prc_alarm_reg);
76
77	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
78			&vp_reg->wrdma_alarm_status);
79
80	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
81			&vp_reg->asic_ntwk_vp_err_reg);
82
83	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
84			&vp_reg->xgmac_vp_int_status);
85
86	val64 = readq(&vp_reg->vpath_general_int_status);
87
88	/* Mask unwanted interrupts */
89
90	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
91			&vp_reg->vpath_pcipif_int_mask);
92
93	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
94			&vp_reg->srpcim_msg_to_vpath_mask);
95
96	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
97			&vp_reg->srpcim_to_vpath_alarm_mask);
98
99	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
100			&vp_reg->mrpcim_to_vpath_alarm_mask);
101
102	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
103			&vp_reg->pci_config_errors_mask);
104
105	/* Unmask the individual interrupts */
106
107	writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
108		VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
109		VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
110		VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
111		&vp_reg->general_errors_mask);
112
113	__vxge_hw_pio_mem_write32_upper(
114		(u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
115		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
116		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
117		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
118		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
119		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
120		&vp_reg->kdfcctl_errors_mask);
121
122	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
123
124	__vxge_hw_pio_mem_write32_upper(
125		(u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
126		&vp_reg->prc_alarm_mask);
127
128	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
129	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
130
131	if (vpath->hldev->first_vp_id != vpath->vp_id)
132		__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
133			&vp_reg->asic_ntwk_vp_err_mask);
134	else
135		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
136		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
137		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
138		&vp_reg->asic_ntwk_vp_err_mask);
139
140	__vxge_hw_pio_mem_write32_upper(0,
141		&vp_reg->vpath_general_int_mask);
142exit:
143	return status;
144
145}
146
147/*
148 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
149 * @vp: Virtual Path handle.
150 *
151 * Disable vpath interrupts. The function is to be executed the last in
152 * vpath initialization sequence.
153 *
154 * See also: vxge_hw_vpath_intr_enable()
155 */
156enum vxge_hw_status vxge_hw_vpath_intr_disable(
157			struct __vxge_hw_vpath_handle *vp)
158{
159	u64 val64;
160
161	struct __vxge_hw_virtualpath *vpath;
162	enum vxge_hw_status status = VXGE_HW_OK;
163	struct vxge_hw_vpath_reg __iomem *vp_reg;
164	if (vp == NULL) {
165		status = VXGE_HW_ERR_INVALID_HANDLE;
166		goto exit;
167	}
168
169	vpath = vp->vpath;
170
171	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
172		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
173		goto exit;
174	}
175	vp_reg = vpath->vp_reg;
176
177	__vxge_hw_pio_mem_write32_upper(
178		(u32)VXGE_HW_INTR_MASK_ALL,
179		&vp_reg->vpath_general_int_mask);
180
181	val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
182
183	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
184
185	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
186			&vp_reg->general_errors_mask);
187
188	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
189			&vp_reg->pci_config_errors_mask);
190
191	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
192			&vp_reg->mrpcim_to_vpath_alarm_mask);
193
194	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
195			&vp_reg->srpcim_to_vpath_alarm_mask);
196
197	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
198			&vp_reg->vpath_ppif_int_mask);
199
200	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
201			&vp_reg->srpcim_msg_to_vpath_mask);
202
203	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
204			&vp_reg->vpath_pcipif_int_mask);
205
206	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
207			&vp_reg->wrdma_alarm_mask);
208
209	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
210			&vp_reg->prc_alarm_mask);
211
212	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
213			&vp_reg->xgmac_vp_int_mask);
214
215	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
216			&vp_reg->asic_ntwk_vp_err_mask);
217
218exit:
219	return status;
220}
221
222void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
223{
224	struct vxge_hw_vpath_reg __iomem *vp_reg;
225	struct vxge_hw_vp_config *config;
226	u64 val64;
227
228	if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
229		return;
230
231	vp_reg = fifo->vp_reg;
232	config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
233
234	if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
235		config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
236		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
237		val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
238		fifo->tim_tti_cfg1_saved = val64;
239		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
240	}
241}
242
243void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
244{
245	u64 val64 = ring->tim_rti_cfg1_saved;
246
247	val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
248	ring->tim_rti_cfg1_saved = val64;
249	writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
250}
251
252void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
253{
254	u64 val64 = fifo->tim_tti_cfg3_saved;
255	u64 timer = (fifo->rtimer * 1000) / 272;
256
257	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
258	if (timer)
259		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
260			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
261
262	writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
263	/* tti_cfg3_saved is not updated again because it is
264	 * initialized at one place only - init time.
265	 */
266}
267
268void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
269{
270	u64 val64 = ring->tim_rti_cfg3_saved;
271	u64 timer = (ring->rtimer * 1000) / 272;
272
273	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
274	if (timer)
275		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
276			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
277
278	writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
279	/* rti_cfg3_saved is not updated again because it is
280	 * initialized at one place only - init time.
281	 */
282}
283
284/**
285 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
286 * @channeh: Channel for rx or tx handle
287 * @msix_id:  MSIX ID
288 *
289 * The function masks the msix interrupt for the given msix_id
290 *
291 * Returns: 0
292 */
293void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
294{
295
296	__vxge_hw_pio_mem_write32_upper(
297		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
298		&channel->common_reg->set_msix_mask_vect[msix_id%4]);
299}
300
301/**
302 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
303 * @channeh: Channel for rx or tx handle
304 * @msix_id:  MSI ID
305 *
306 * The function unmasks the msix interrupt for the given msix_id
307 *
308 * Returns: 0
309 */
310void
311vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
312{
313
314	__vxge_hw_pio_mem_write32_upper(
315		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
316		&channel->common_reg->clear_msix_mask_vect[msix_id%4]);
317}
318
319/**
320 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
321 * @channel: Channel for rx or tx handle
322 * @msix_id:  MSI ID
323 *
324 * The function unmasks the msix interrupt for the given msix_id
325 * if configured in MSIX oneshot mode
326 *
327 * Returns: 0
328 */
329void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
330{
331	__vxge_hw_pio_mem_write32_upper(
332		(u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
333		&channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
334}
335
336/**
337 * vxge_hw_device_set_intr_type - Updates the configuration
338 *		with new interrupt type.
339 * @hldev: HW device handle.
340 * @intr_mode: New interrupt type
341 */
342u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
343{
344
345	if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
346	   (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
347	   (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
348	   (intr_mode != VXGE_HW_INTR_MODE_DEF))
349		intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
350
351	hldev->config.intr_mode = intr_mode;
352	return intr_mode;
353}
354
355/**
356 * vxge_hw_device_intr_enable - Enable interrupts.
357 * @hldev: HW device handle.
358 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
359 *      the type(s) of interrupts to enable.
360 *
361 * Enable Titan interrupts. The function is to be executed the last in
362 * Titan initialization sequence.
363 *
364 * See also: vxge_hw_device_intr_disable()
365 */
366void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
367{
368	u32 i;
369	u64 val64;
370	u32 val32;
371
372	vxge_hw_device_mask_all(hldev);
373
374	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
375
376		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
377			continue;
378
379		vxge_hw_vpath_intr_enable(
380			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
381	}
382
383	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
384		val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
385			hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
386
387		if (val64 != 0) {
388			writeq(val64, &hldev->common_reg->tim_int_status0);
389
390			writeq(~val64, &hldev->common_reg->tim_int_mask0);
391		}
392
393		val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
394			hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
395
396		if (val32 != 0) {
397			__vxge_hw_pio_mem_write32_upper(val32,
398					&hldev->common_reg->tim_int_status1);
399
400			__vxge_hw_pio_mem_write32_upper(~val32,
401					&hldev->common_reg->tim_int_mask1);
402		}
403	}
404
405	val64 = readq(&hldev->common_reg->titan_general_int_status);
406
407	vxge_hw_device_unmask_all(hldev);
408}
409
410/**
411 * vxge_hw_device_intr_disable - Disable Titan interrupts.
412 * @hldev: HW device handle.
413 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
414 *      the type(s) of interrupts to disable.
415 *
416 * Disable Titan interrupts.
417 *
418 * See also: vxge_hw_device_intr_enable()
419 */
420void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
421{
422	u32 i;
423
424	vxge_hw_device_mask_all(hldev);
425
426	/* mask all the tim interrupts */
427	writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
428	__vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
429		&hldev->common_reg->tim_int_mask1);
430
431	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
432
433		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
434			continue;
435
436		vxge_hw_vpath_intr_disable(
437			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
438	}
439}
440
441/**
442 * vxge_hw_device_mask_all - Mask all device interrupts.
443 * @hldev: HW device handle.
444 *
445 * Mask	all device interrupts.
446 *
447 * See also: vxge_hw_device_unmask_all()
448 */
449void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
450{
451	u64 val64;
452
453	val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
454		VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
455
456	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
457				&hldev->common_reg->titan_mask_all_int);
458}
459
460/**
461 * vxge_hw_device_unmask_all - Unmask all device interrupts.
462 * @hldev: HW device handle.
463 *
464 * Unmask all device interrupts.
465 *
466 * See also: vxge_hw_device_mask_all()
467 */
468void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
469{
470	u64 val64 = 0;
471
472	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
473		val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
474
475	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
476			&hldev->common_reg->titan_mask_all_int);
477}
478
479/**
480 * vxge_hw_device_flush_io - Flush io writes.
481 * @hldev: HW device handle.
482 *
483 * The function	performs a read operation to flush io writes.
484 *
485 * Returns: void
486 */
487void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
488{
489	u32 val32;
490
491	val32 = readl(&hldev->common_reg->titan_general_int_status);
492}
493
494/**
495 * __vxge_hw_device_handle_error - Handle error
496 * @hldev: HW device
497 * @vp_id: Vpath Id
498 * @type: Error type. Please see enum vxge_hw_event{}
499 *
500 * Handle error.
501 */
502static enum vxge_hw_status
503__vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
504			      enum vxge_hw_event type)
505{
506	switch (type) {
507	case VXGE_HW_EVENT_UNKNOWN:
508		break;
509	case VXGE_HW_EVENT_RESET_START:
510	case VXGE_HW_EVENT_RESET_COMPLETE:
511	case VXGE_HW_EVENT_LINK_DOWN:
512	case VXGE_HW_EVENT_LINK_UP:
513		goto out;
514	case VXGE_HW_EVENT_ALARM_CLEARED:
515		goto out;
516	case VXGE_HW_EVENT_ECCERR:
517	case VXGE_HW_EVENT_MRPCIM_ECCERR:
518		goto out;
519	case VXGE_HW_EVENT_FIFO_ERR:
520	case VXGE_HW_EVENT_VPATH_ERR:
521	case VXGE_HW_EVENT_CRITICAL_ERR:
522	case VXGE_HW_EVENT_SERR:
523		break;
524	case VXGE_HW_EVENT_SRPCIM_SERR:
525	case VXGE_HW_EVENT_MRPCIM_SERR:
526		goto out;
527	case VXGE_HW_EVENT_SLOT_FREEZE:
528		break;
529	default:
530		vxge_assert(0);
531		goto out;
532	}
533
534	/* notify driver */
535	if (hldev->uld_callbacks->crit_err)
536		hldev->uld_callbacks->crit_err(hldev,
537			type, vp_id);
538out:
539
540	return VXGE_HW_OK;
541}
542
543/*
544 * __vxge_hw_device_handle_link_down_ind
545 * @hldev: HW device handle.
546 *
547 * Link down indication handler. The function is invoked by HW when
548 * Titan indicates that the link is down.
549 */
550static enum vxge_hw_status
551__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
552{
553	/*
554	 * If the previous link state is not down, return.
555	 */
556	if (hldev->link_state == VXGE_HW_LINK_DOWN)
557		goto exit;
558
559	hldev->link_state = VXGE_HW_LINK_DOWN;
560
561	/* notify driver */
562	if (hldev->uld_callbacks->link_down)
563		hldev->uld_callbacks->link_down(hldev);
564exit:
565	return VXGE_HW_OK;
566}
567
568/*
569 * __vxge_hw_device_handle_link_up_ind
570 * @hldev: HW device handle.
571 *
572 * Link up indication handler. The function is invoked by HW when
573 * Titan indicates that the link is up for programmable amount of time.
574 */
575static enum vxge_hw_status
576__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
577{
578	/*
579	 * If the previous link state is not down, return.
580	 */
581	if (hldev->link_state == VXGE_HW_LINK_UP)
582		goto exit;
583
584	hldev->link_state = VXGE_HW_LINK_UP;
585
586	/* notify driver */
587	if (hldev->uld_callbacks->link_up)
588		hldev->uld_callbacks->link_up(hldev);
589exit:
590	return VXGE_HW_OK;
591}
592
593/*
594 * __vxge_hw_vpath_alarm_process - Process Alarms.
595 * @vpath: Virtual Path.
596 * @skip_alarms: Do not clear the alarms
597 *
598 * Process vpath alarms.
599 *
600 */
601static enum vxge_hw_status
602__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
603			      u32 skip_alarms)
604{
605	u64 val64;
606	u64 alarm_status;
607	u64 pic_status;
608	struct __vxge_hw_device *hldev = NULL;
609	enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
610	u64 mask64;
611	struct vxge_hw_vpath_stats_sw_info *sw_stats;
612	struct vxge_hw_vpath_reg __iomem *vp_reg;
613
614	if (vpath == NULL) {
615		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
616			alarm_event);
617		goto out2;
618	}
619
620	hldev = vpath->hldev;
621	vp_reg = vpath->vp_reg;
622	alarm_status = readq(&vp_reg->vpath_general_int_status);
623
624	if (alarm_status == VXGE_HW_ALL_FOXES) {
625		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
626			alarm_event);
627		goto out;
628	}
629
630	sw_stats = vpath->sw_stats;
631
632	if (alarm_status & ~(
633		VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
634		VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
635		VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
636		VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
637		sw_stats->error_stats.unknown_alarms++;
638
639		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
640			alarm_event);
641		goto out;
642	}
643
644	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
645
646		val64 = readq(&vp_reg->xgmac_vp_int_status);
647
648		if (val64 &
649		VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
650
651			val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
652
653			if (((val64 &
654			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
655			     (!(val64 &
656				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
657			    ((val64 &
658			     VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
659			     (!(val64 &
660				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
661				     ))) {
662				sw_stats->error_stats.network_sustained_fault++;
663
664				writeq(
665				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
666					&vp_reg->asic_ntwk_vp_err_mask);
667
668				__vxge_hw_device_handle_link_down_ind(hldev);
669				alarm_event = VXGE_HW_SET_LEVEL(
670					VXGE_HW_EVENT_LINK_DOWN, alarm_event);
671			}
672
673			if (((val64 &
674			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
675			     (!(val64 &
676				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
677			    ((val64 &
678			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
679			     (!(val64 &
680				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
681				     ))) {
682
683				sw_stats->error_stats.network_sustained_ok++;
684
685				writeq(
686				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
687					&vp_reg->asic_ntwk_vp_err_mask);
688
689				__vxge_hw_device_handle_link_up_ind(hldev);
690				alarm_event = VXGE_HW_SET_LEVEL(
691					VXGE_HW_EVENT_LINK_UP, alarm_event);
692			}
693
694			writeq(VXGE_HW_INTR_MASK_ALL,
695				&vp_reg->asic_ntwk_vp_err_reg);
696
697			alarm_event = VXGE_HW_SET_LEVEL(
698				VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
699
700			if (skip_alarms)
701				return VXGE_HW_OK;
702		}
703	}
704
705	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
706
707		pic_status = readq(&vp_reg->vpath_ppif_int_status);
708
709		if (pic_status &
710		    VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
711
712			val64 = readq(&vp_reg->general_errors_reg);
713			mask64 = readq(&vp_reg->general_errors_mask);
714
715			if ((val64 &
716				VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
717				~mask64) {
718				sw_stats->error_stats.ini_serr_det++;
719
720				alarm_event = VXGE_HW_SET_LEVEL(
721					VXGE_HW_EVENT_SERR, alarm_event);
722			}
723
724			if ((val64 &
725			    VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
726				~mask64) {
727				sw_stats->error_stats.dblgen_fifo0_overflow++;
728
729				alarm_event = VXGE_HW_SET_LEVEL(
730					VXGE_HW_EVENT_FIFO_ERR, alarm_event);
731			}
732
733			if ((val64 &
734			    VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
735				~mask64)
736				sw_stats->error_stats.statsb_pif_chain_error++;
737
738			if ((val64 &
739			   VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
740				~mask64)
741				sw_stats->error_stats.statsb_drop_timeout++;
742
743			if ((val64 &
744				VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
745				~mask64)
746				sw_stats->error_stats.target_illegal_access++;
747
748			if (!skip_alarms) {
749				writeq(VXGE_HW_INTR_MASK_ALL,
750					&vp_reg->general_errors_reg);
751				alarm_event = VXGE_HW_SET_LEVEL(
752					VXGE_HW_EVENT_ALARM_CLEARED,
753					alarm_event);
754			}
755		}
756
757		if (pic_status &
758		    VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
759
760			val64 = readq(&vp_reg->kdfcctl_errors_reg);
761			mask64 = readq(&vp_reg->kdfcctl_errors_mask);
762
763			if ((val64 &
764			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
765				~mask64) {
766				sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
767
768				alarm_event = VXGE_HW_SET_LEVEL(
769					VXGE_HW_EVENT_FIFO_ERR,
770					alarm_event);
771			}
772
773			if ((val64 &
774			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
775				~mask64) {
776				sw_stats->error_stats.kdfcctl_fifo0_poison++;
777
778				alarm_event = VXGE_HW_SET_LEVEL(
779					VXGE_HW_EVENT_FIFO_ERR,
780					alarm_event);
781			}
782
783			if ((val64 &
784			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
785				~mask64) {
786				sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
787
788				alarm_event = VXGE_HW_SET_LEVEL(
789					VXGE_HW_EVENT_FIFO_ERR,
790					alarm_event);
791			}
792
793			if (!skip_alarms) {
794				writeq(VXGE_HW_INTR_MASK_ALL,
795					&vp_reg->kdfcctl_errors_reg);
796				alarm_event = VXGE_HW_SET_LEVEL(
797					VXGE_HW_EVENT_ALARM_CLEARED,
798					alarm_event);
799			}
800		}
801
802	}
803
804	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
805
806		val64 = readq(&vp_reg->wrdma_alarm_status);
807
808		if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
809
810			val64 = readq(&vp_reg->prc_alarm_reg);
811			mask64 = readq(&vp_reg->prc_alarm_mask);
812
813			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
814				~mask64)
815				sw_stats->error_stats.prc_ring_bumps++;
816
817			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
818				~mask64) {
819				sw_stats->error_stats.prc_rxdcm_sc_err++;
820
821				alarm_event = VXGE_HW_SET_LEVEL(
822					VXGE_HW_EVENT_VPATH_ERR,
823					alarm_event);
824			}
825
826			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
827				& ~mask64) {
828				sw_stats->error_stats.prc_rxdcm_sc_abort++;
829
830				alarm_event = VXGE_HW_SET_LEVEL(
831						VXGE_HW_EVENT_VPATH_ERR,
832						alarm_event);
833			}
834
835			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
836				 & ~mask64) {
837				sw_stats->error_stats.prc_quanta_size_err++;
838
839				alarm_event = VXGE_HW_SET_LEVEL(
840					VXGE_HW_EVENT_VPATH_ERR,
841					alarm_event);
842			}
843
844			if (!skip_alarms) {
845				writeq(VXGE_HW_INTR_MASK_ALL,
846					&vp_reg->prc_alarm_reg);
847				alarm_event = VXGE_HW_SET_LEVEL(
848						VXGE_HW_EVENT_ALARM_CLEARED,
849						alarm_event);
850			}
851		}
852	}
853out:
854	hldev->stats.sw_dev_err_stats.vpath_alarms++;
855out2:
856	if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
857		(alarm_event == VXGE_HW_EVENT_UNKNOWN))
858		return VXGE_HW_OK;
859
860	__vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
861
862	if (alarm_event == VXGE_HW_EVENT_SERR)
863		return VXGE_HW_ERR_CRITICAL;
864
865	return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
866		VXGE_HW_ERR_SLOT_FREEZE :
867		(alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
868		VXGE_HW_ERR_VPATH;
869}
870
871/**
872 * vxge_hw_device_begin_irq - Begin IRQ processing.
873 * @hldev: HW device handle.
874 * @skip_alarms: Do not clear the alarms
875 * @reason: "Reason" for the interrupt, the value of Titan's
876 *	general_int_status register.
877 *
878 * The function	performs two actions, It first checks whether (shared IRQ) the
879 * interrupt was raised	by the device. Next, it	masks the device interrupts.
880 *
881 * Note:
882 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
883 * bridge. Therefore, two back-to-back interrupts are potentially possible.
884 *
885 * Returns: 0, if the interrupt	is not "ours" (note that in this case the
886 * device remain enabled).
887 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
888 * status.
889 */
890enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
891					     u32 skip_alarms, u64 *reason)
892{
893	u32 i;
894	u64 val64;
895	u64 adapter_status;
896	u64 vpath_mask;
897	enum vxge_hw_status ret = VXGE_HW_OK;
898
899	val64 = readq(&hldev->common_reg->titan_general_int_status);
900
901	if (unlikely(!val64)) {
902		/* not Titan interrupt	*/
903		*reason	= 0;
904		ret = VXGE_HW_ERR_WRONG_IRQ;
905		goto exit;
906	}
907
908	if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
909
910		adapter_status = readq(&hldev->common_reg->adapter_status);
911
912		if (adapter_status == VXGE_HW_ALL_FOXES) {
913
914			__vxge_hw_device_handle_error(hldev,
915				NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
916			*reason	= 0;
917			ret = VXGE_HW_ERR_SLOT_FREEZE;
918			goto exit;
919		}
920	}
921
922	hldev->stats.sw_dev_info_stats.total_intr_cnt++;
923
924	*reason	= val64;
925
926	vpath_mask = hldev->vpaths_deployed >>
927				(64 - VXGE_HW_MAX_VIRTUAL_PATHS);
928
929	if (val64 &
930	    VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
931		hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
932
933		return VXGE_HW_OK;
934	}
935
936	hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
937
938	if (unlikely(val64 &
939			VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
940
941		enum vxge_hw_status error_level = VXGE_HW_OK;
942
943		hldev->stats.sw_dev_err_stats.vpath_alarms++;
944
945		for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
946
947			if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
948				continue;
949
950			ret = __vxge_hw_vpath_alarm_process(
951				&hldev->virtual_paths[i], skip_alarms);
952
953			error_level = VXGE_HW_SET_LEVEL(ret, error_level);
954
955			if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
956				(ret == VXGE_HW_ERR_SLOT_FREEZE)))
957				break;
958		}
959
960		ret = error_level;
961	}
962exit:
963	return ret;
964}
965
966/**
967 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
968 * condition that has caused the Tx and RX interrupt.
969 * @hldev: HW device.
970 *
971 * Acknowledge (that is, clear) the condition that has caused
972 * the Tx and Rx interrupt.
973 * See also: vxge_hw_device_begin_irq(),
974 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
975 */
976void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
977{
978
979	if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
980	   (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
981		writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
982				 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
983				&hldev->common_reg->tim_int_status0);
984	}
985
986	if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
987	   (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
988		__vxge_hw_pio_mem_write32_upper(
989				(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
990				 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
991				&hldev->common_reg->tim_int_status1);
992	}
993}
994
995/*
996 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
997 * @channel: Channel
998 * @dtrh: Buffer to return the DTR pointer
999 *
1000 * Allocates a dtr from the reserve array. If the reserve array is empty,
1001 * it swaps the reserve and free arrays.
1002 *
1003 */
1004static enum vxge_hw_status
1005vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1006{
1007	void **tmp_arr;
1008
1009	if (channel->reserve_ptr - channel->reserve_top > 0) {
1010_alloc_after_swap:
1011		*dtrh =	channel->reserve_arr[--channel->reserve_ptr];
1012
1013		return VXGE_HW_OK;
1014	}
1015
1016	/* switch between empty	and full arrays	*/
1017
1018	/* the idea behind such	a design is that by having free	and reserved
1019	 * arrays separated we basically separated irq and non-irq parts.
1020	 * i.e.	no additional lock need	to be done when	we free	a resource */
1021
1022	if (channel->length - channel->free_ptr > 0) {
1023
1024		tmp_arr	= channel->reserve_arr;
1025		channel->reserve_arr = channel->free_arr;
1026		channel->free_arr = tmp_arr;
1027		channel->reserve_ptr = channel->length;
1028		channel->reserve_top = channel->free_ptr;
1029		channel->free_ptr = channel->length;
1030
1031		channel->stats->reserve_free_swaps_cnt++;
1032
1033		goto _alloc_after_swap;
1034	}
1035
1036	channel->stats->full_cnt++;
1037
1038	*dtrh =	NULL;
1039	return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1040}
1041
1042/*
1043 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1044 * @channelh: Channel
1045 * @dtrh: DTR pointer
1046 *
1047 * Posts a dtr to work array.
1048 *
1049 */
1050static void
1051vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1052{
1053	vxge_assert(channel->work_arr[channel->post_index] == NULL);
1054
1055	channel->work_arr[channel->post_index++] = dtrh;
1056
1057	/* wrap-around */
1058	if (channel->post_index	== channel->length)
1059		channel->post_index = 0;
1060}
1061
1062/*
1063 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1064 * @channel: Channel
1065 * @dtr: Buffer to return the next completed DTR pointer
1066 *
1067 * Returns the next completed dtr with out removing it from work array
1068 *
1069 */
1070void
1071vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1072{
1073	vxge_assert(channel->compl_index < channel->length);
1074
1075	*dtrh =	channel->work_arr[channel->compl_index];
1076	prefetch(*dtrh);
1077}
1078
1079/*
1080 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1081 * @channel: Channel handle
1082 *
1083 * Removes the next completed dtr from work array
1084 *
1085 */
1086void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1087{
1088	channel->work_arr[channel->compl_index]	= NULL;
1089
1090	/* wrap-around */
1091	if (++channel->compl_index == channel->length)
1092		channel->compl_index = 0;
1093
1094	channel->stats->total_compl_cnt++;
1095}
1096
1097/*
1098 * vxge_hw_channel_dtr_free - Frees a dtr
1099 * @channel: Channel handle
1100 * @dtr:  DTR pointer
1101 *
1102 * Returns the dtr to free array
1103 *
1104 */
1105void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1106{
1107	channel->free_arr[--channel->free_ptr] = dtrh;
1108}
1109
1110/*
1111 * vxge_hw_channel_dtr_count
1112 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1113 *
1114 * Retrieve number of DTRs available. This function can not be called
1115 * from data path. ring_initial_replenishi() is the only user.
1116 */
1117int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1118{
1119	return (channel->reserve_ptr - channel->reserve_top) +
1120		(channel->length - channel->free_ptr);
1121}
1122
1123/**
1124 * vxge_hw_ring_rxd_reserve	- Reserve ring descriptor.
1125 * @ring: Handle to the ring object used for receive
1126 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1127 * with a valid handle.
1128 *
1129 * Reserve Rx descriptor for the subsequent filling-in driver
1130 * and posting on the corresponding channel (@channelh)
1131 * via vxge_hw_ring_rxd_post().
1132 *
1133 * Returns: VXGE_HW_OK - success.
1134 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1135 *
1136 */
1137enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1138	void **rxdh)
1139{
1140	enum vxge_hw_status status;
1141	struct __vxge_hw_channel *channel;
1142
1143	channel = &ring->channel;
1144
1145	status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1146
1147	if (status == VXGE_HW_OK) {
1148		struct vxge_hw_ring_rxd_1 *rxdp =
1149			(struct vxge_hw_ring_rxd_1 *)*rxdh;
1150
1151		rxdp->control_0	= rxdp->control_1 = 0;
1152	}
1153
1154	return status;
1155}
1156
1157/**
1158 * vxge_hw_ring_rxd_free - Free descriptor.
1159 * @ring: Handle to the ring object used for receive
1160 * @rxdh: Descriptor handle.
1161 *
1162 * Free	the reserved descriptor. This operation is "symmetrical" to
1163 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1164 * lifecycle.
1165 *
1166 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1167 * be:
1168 *
1169 * - reserved (vxge_hw_ring_rxd_reserve);
1170 *
1171 * - posted	(vxge_hw_ring_rxd_post);
1172 *
1173 * - completed (vxge_hw_ring_rxd_next_completed);
1174 *
1175 * - and recycled again	(vxge_hw_ring_rxd_free).
1176 *
1177 * For alternative state transitions and more details please refer to
1178 * the design doc.
1179 *
1180 */
1181void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1182{
1183	struct __vxge_hw_channel *channel;
1184
1185	channel = &ring->channel;
1186
1187	vxge_hw_channel_dtr_free(channel, rxdh);
1188
1189}
1190
1191/**
1192 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1193 * @ring: Handle to the ring object used for receive
1194 * @rxdh: Descriptor handle.
1195 *
1196 * This routine prepares a rxd and posts
1197 */
1198void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1199{
1200	struct __vxge_hw_channel *channel;
1201
1202	channel = &ring->channel;
1203
1204	vxge_hw_channel_dtr_post(channel, rxdh);
1205}
1206
1207/**
1208 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1209 * @ring: Handle to the ring object used for receive
1210 * @rxdh: Descriptor handle.
1211 *
1212 * Processes rxd after post
1213 */
1214void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1215{
1216	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1217	struct __vxge_hw_channel *channel;
1218
1219	channel = &ring->channel;
1220
1221	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1222
1223	if (ring->stats->common_stats.usage_cnt > 0)
1224		ring->stats->common_stats.usage_cnt--;
1225}
1226
1227/**
1228 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1229 * @ring: Handle to the ring object used for receive
1230 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1231 *
1232 * Post	descriptor on the ring.
1233 * Prior to posting the	descriptor should be filled in accordance with
1234 * Host/Titan interface specification for a given service (LL, etc.).
1235 *
1236 */
1237void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1238{
1239	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1240	struct __vxge_hw_channel *channel;
1241
1242	channel = &ring->channel;
1243
1244	wmb();
1245	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1246
1247	vxge_hw_channel_dtr_post(channel, rxdh);
1248
1249	if (ring->stats->common_stats.usage_cnt > 0)
1250		ring->stats->common_stats.usage_cnt--;
1251}
1252
1253/**
1254 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1255 * @ring: Handle to the ring object used for receive
1256 * @rxdh: Descriptor handle.
1257 *
1258 * Processes rxd after post with memory barrier.
1259 */
1260void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1261{
1262	wmb();
1263	vxge_hw_ring_rxd_post_post(ring, rxdh);
1264}
1265
1266/**
1267 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1268 * @ring: Handle to the ring object used for receive
1269 * @rxdh: Descriptor handle. Returned by HW.
1270 * @t_code:	Transfer code, as per Titan User Guide,
1271 *	 Receive Descriptor Format. Returned by HW.
1272 *
1273 * Retrieve the	_next_ completed descriptor.
1274 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1275 * driver of new completed descriptors. After that
1276 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1277 * completions (the very first completion is passed by HW via
1278 * vxge_hw_ring_callback_f).
1279 *
1280 * Implementation-wise, the driver is free to call
1281 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1282 * ring callback, or in a deferred fashion and separate (from HW)
1283 * context.
1284 *
1285 * Non-zero @t_code means failure to fill-in receive buffer(s)
1286 * of the descriptor.
1287 * For instance, parity	error detected during the data transfer.
1288 * In this case	Titan will complete the descriptor and indicate
1289 * for the host	that the received data is not to be used.
1290 * For details please refer to Titan User Guide.
1291 *
1292 * Returns: VXGE_HW_OK - success.
1293 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1294 * are currently available for processing.
1295 *
1296 * See also: vxge_hw_ring_callback_f{},
1297 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1298 */
1299enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1300	struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1301{
1302	struct __vxge_hw_channel *channel;
1303	struct vxge_hw_ring_rxd_1 *rxdp;
1304	enum vxge_hw_status status = VXGE_HW_OK;
1305	u64 control_0, own;
1306
1307	channel = &ring->channel;
1308
1309	vxge_hw_channel_dtr_try_complete(channel, rxdh);
1310
1311	rxdp = *rxdh;
1312	if (rxdp == NULL) {
1313		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1314		goto exit;
1315	}
1316
1317	control_0 = rxdp->control_0;
1318	own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1319	*t_code	= (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1320
1321	/* check whether it is not the end */
1322	if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1323
1324		vxge_assert((rxdp)->host_control !=
1325				0);
1326
1327		++ring->cmpl_cnt;
1328		vxge_hw_channel_dtr_complete(channel);
1329
1330		vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1331
1332		ring->stats->common_stats.usage_cnt++;
1333		if (ring->stats->common_stats.usage_max <
1334				ring->stats->common_stats.usage_cnt)
1335			ring->stats->common_stats.usage_max =
1336				ring->stats->common_stats.usage_cnt;
1337
1338		status = VXGE_HW_OK;
1339		goto exit;
1340	}
1341
1342	/* reset it. since we don't want to return
1343	 * garbage to the driver */
1344	*rxdh =	NULL;
1345	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1346exit:
1347	return status;
1348}
1349
1350/**
1351 * vxge_hw_ring_handle_tcode - Handle transfer code.
1352 * @ring: Handle to the ring object used for receive
1353 * @rxdh: Descriptor handle.
1354 * @t_code: One of the enumerated (and documented in the Titan user guide)
1355 * "transfer codes".
1356 *
1357 * Handle descriptor's transfer code. The latter comes with each completed
1358 * descriptor.
1359 *
1360 * Returns: one of the enum vxge_hw_status{} enumerated types.
1361 * VXGE_HW_OK			- for success.
1362 * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1363 */
1364enum vxge_hw_status vxge_hw_ring_handle_tcode(
1365	struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1366{
1367	struct __vxge_hw_channel *channel;
1368	enum vxge_hw_status status = VXGE_HW_OK;
1369
1370	channel = &ring->channel;
1371
1372	/* If the t_code is not supported and if the
1373	 * t_code is other than 0x5 (unparseable packet
1374	 * such as unknown UPV6 header), Drop it !!!
1375	 */
1376
1377	if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1378		t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1379		status = VXGE_HW_OK;
1380		goto exit;
1381	}
1382
1383	if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1384		status = VXGE_HW_ERR_INVALID_TCODE;
1385		goto exit;
1386	}
1387
1388	ring->stats->rxd_t_code_err_cnt[t_code]++;
1389exit:
1390	return status;
1391}
1392
1393/**
1394 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1395 *
1396 * @fifo: fifohandle
1397 * @txdl_ptr: The starting location of the TxDL in host memory
1398 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1399 * @no_snoop: No snoop flags
1400 *
1401 * This function posts a non-offload doorbell to doorbell FIFO
1402 *
1403 */
1404static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1405	u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1406{
1407	struct __vxge_hw_channel *channel;
1408
1409	channel = &fifo->channel;
1410
1411	writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1412		VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1413		VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1414		&fifo->nofl_db->control_0);
1415
1416	mmiowb();
1417
1418	writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1419
1420	mmiowb();
1421}
1422
1423/**
1424 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1425 * the fifo
1426 * @fifoh: Handle to the fifo object used for non offload send
1427 */
1428u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1429{
1430	return vxge_hw_channel_dtr_count(&fifoh->channel);
1431}
1432
1433/**
1434 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1435 * @fifoh: Handle to the fifo object used for non offload send
1436 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1437 *        with a valid handle.
1438 * @txdl_priv: Buffer to return the pointer to per txdl space
1439 *
1440 * Reserve a single TxDL (that is, fifo descriptor)
1441 * for the subsequent filling-in by driver)
1442 * and posting on the corresponding channel (@channelh)
1443 * via vxge_hw_fifo_txdl_post().
1444 *
1445 * Note: it is the responsibility of driver to reserve multiple descriptors
1446 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1447 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1448 *
1449 * Returns: VXGE_HW_OK - success;
1450 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1451 *
1452 */
1453enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1454	struct __vxge_hw_fifo *fifo,
1455	void **txdlh, void **txdl_priv)
1456{
1457	struct __vxge_hw_channel *channel;
1458	enum vxge_hw_status status;
1459	int i;
1460
1461	channel = &fifo->channel;
1462
1463	status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1464
1465	if (status == VXGE_HW_OK) {
1466		struct vxge_hw_fifo_txd *txdp =
1467			(struct vxge_hw_fifo_txd *)*txdlh;
1468		struct __vxge_hw_fifo_txdl_priv *priv;
1469
1470		priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1471
1472		/* reset the TxDL's private */
1473		priv->align_dma_offset = 0;
1474		priv->align_vaddr_start = priv->align_vaddr;
1475		priv->align_used_frags = 0;
1476		priv->frags = 0;
1477		priv->alloc_frags = fifo->config->max_frags;
1478		priv->next_txdl_priv = NULL;
1479
1480		*txdl_priv = (void *)(size_t)txdp->host_control;
1481
1482		for (i = 0; i < fifo->config->max_frags; i++) {
1483			txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1484			txdp->control_0 = txdp->control_1 = 0;
1485		}
1486	}
1487
1488	return status;
1489}
1490
1491/**
1492 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1493 * descriptor.
1494 * @fifo: Handle to the fifo object used for non offload send
1495 * @txdlh: Descriptor handle.
1496 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1497 *            (of buffers).
1498 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1499 * @size: Size of the data buffer (in bytes).
1500 *
1501 * This API is part of the preparation of the transmit descriptor for posting
1502 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1503 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1504 * All three APIs fill in the fields of the fifo descriptor,
1505 * in accordance with the Titan specification.
1506 *
1507 */
1508void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1509				  void *txdlh, u32 frag_idx,
1510				  dma_addr_t dma_pointer, u32 size)
1511{
1512	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1513	struct vxge_hw_fifo_txd *txdp, *txdp_last;
1514	struct __vxge_hw_channel *channel;
1515
1516	channel = &fifo->channel;
1517
1518	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1519	txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1520
1521	if (frag_idx != 0)
1522		txdp->control_0 = txdp->control_1 = 0;
1523	else {
1524		txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1525			VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1526		txdp->control_1 |= fifo->interrupt_type;
1527		txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1528			fifo->tx_intr_num);
1529		if (txdl_priv->frags) {
1530			txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1531			(txdl_priv->frags - 1);
1532			txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1533				VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1534		}
1535	}
1536
1537	vxge_assert(frag_idx < txdl_priv->alloc_frags);
1538
1539	txdp->buffer_pointer = (u64)dma_pointer;
1540	txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1541	fifo->stats->total_buffers++;
1542	txdl_priv->frags++;
1543}
1544
1545/**
1546 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1547 * @fifo: Handle to the fifo object used for non offload send
1548 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1549 * @frags: Number of contiguous buffers that are part of a single
1550 *         transmit operation.
1551 *
1552 * Post descriptor on the 'fifo' type channel for transmission.
1553 * Prior to posting the descriptor should be filled in accordance with
1554 * Host/Titan interface specification for a given service (LL, etc.).
1555 *
1556 */
1557void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1558{
1559	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1560	struct vxge_hw_fifo_txd *txdp_last;
1561	struct vxge_hw_fifo_txd *txdp_first;
1562	struct __vxge_hw_channel *channel;
1563
1564	channel = &fifo->channel;
1565
1566	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1567	txdp_first = txdlh;
1568
1569	txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1570	txdp_last->control_0 |=
1571	      VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1572	txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1573
1574	vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1575
1576	__vxge_hw_non_offload_db_post(fifo,
1577		(u64)txdl_priv->dma_addr,
1578		txdl_priv->frags - 1,
1579		fifo->no_snoop_bits);
1580
1581	fifo->stats->total_posts++;
1582	fifo->stats->common_stats.usage_cnt++;
1583	if (fifo->stats->common_stats.usage_max <
1584		fifo->stats->common_stats.usage_cnt)
1585		fifo->stats->common_stats.usage_max =
1586			fifo->stats->common_stats.usage_cnt;
1587}
1588
1589/**
1590 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1591 * @fifo: Handle to the fifo object used for non offload send
1592 * @txdlh: Descriptor handle. Returned by HW.
1593 * @t_code: Transfer code, as per Titan User Guide,
1594 *          Transmit Descriptor Format.
1595 *          Returned by HW.
1596 *
1597 * Retrieve the _next_ completed descriptor.
1598 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1599 * driver of new completed descriptors. After that
1600 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1601 * completions (the very first completion is passed by HW via
1602 * vxge_hw_channel_callback_f).
1603 *
1604 * Implementation-wise, the driver is free to call
1605 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1606 * channel callback, or in a deferred fashion and separate (from HW)
1607 * context.
1608 *
1609 * Non-zero @t_code means failure to process the descriptor.
1610 * The failure could happen, for instance, when the link is
1611 * down, in which case Titan completes the descriptor because it
1612 * is not able to send the data out.
1613 *
1614 * For details please refer to Titan User Guide.
1615 *
1616 * Returns: VXGE_HW_OK - success.
1617 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1618 * are currently available for processing.
1619 *
1620 */
1621enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1622	struct __vxge_hw_fifo *fifo, void **txdlh,
1623	enum vxge_hw_fifo_tcode *t_code)
1624{
1625	struct __vxge_hw_channel *channel;
1626	struct vxge_hw_fifo_txd *txdp;
1627	enum vxge_hw_status status = VXGE_HW_OK;
1628
1629	channel = &fifo->channel;
1630
1631	vxge_hw_channel_dtr_try_complete(channel, txdlh);
1632
1633	txdp = *txdlh;
1634	if (txdp == NULL) {
1635		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1636		goto exit;
1637	}
1638
1639	/* check whether host owns it */
1640	if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1641
1642		vxge_assert(txdp->host_control != 0);
1643
1644		vxge_hw_channel_dtr_complete(channel);
1645
1646		*t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1647
1648		if (fifo->stats->common_stats.usage_cnt > 0)
1649			fifo->stats->common_stats.usage_cnt--;
1650
1651		status = VXGE_HW_OK;
1652		goto exit;
1653	}
1654
1655	/* no more completions */
1656	*txdlh = NULL;
1657	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1658exit:
1659	return status;
1660}
1661
1662/**
1663 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1664 * @fifo: Handle to the fifo object used for non offload send
1665 * @txdlh: Descriptor handle.
1666 * @t_code: One of the enumerated (and documented in the Titan user guide)
1667 *          "transfer codes".
1668 *
1669 * Handle descriptor's transfer code. The latter comes with each completed
1670 * descriptor.
1671 *
1672 * Returns: one of the enum vxge_hw_status{} enumerated types.
1673 * VXGE_HW_OK - for success.
1674 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1675 */
1676enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1677					      void *txdlh,
1678					      enum vxge_hw_fifo_tcode t_code)
1679{
1680	struct __vxge_hw_channel *channel;
1681
1682	enum vxge_hw_status status = VXGE_HW_OK;
1683	channel = &fifo->channel;
1684
1685	if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1686		status = VXGE_HW_ERR_INVALID_TCODE;
1687		goto exit;
1688	}
1689
1690	fifo->stats->txd_t_code_err_cnt[t_code]++;
1691exit:
1692	return status;
1693}
1694
1695/**
1696 * vxge_hw_fifo_txdl_free - Free descriptor.
1697 * @fifo: Handle to the fifo object used for non offload send
1698 * @txdlh: Descriptor handle.
1699 *
1700 * Free the reserved descriptor. This operation is "symmetrical" to
1701 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1702 * lifecycle.
1703 *
1704 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1705 * be:
1706 *
1707 * - reserved (vxge_hw_fifo_txdl_reserve);
1708 *
1709 * - posted (vxge_hw_fifo_txdl_post);
1710 *
1711 * - completed (vxge_hw_fifo_txdl_next_completed);
1712 *
1713 * - and recycled again (vxge_hw_fifo_txdl_free).
1714 *
1715 * For alternative state transitions and more details please refer to
1716 * the design doc.
1717 *
1718 */
1719void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1720{
1721	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1722	u32 max_frags;
1723	struct __vxge_hw_channel *channel;
1724
1725	channel = &fifo->channel;
1726
1727	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1728			(struct vxge_hw_fifo_txd *)txdlh);
1729
1730	max_frags = fifo->config->max_frags;
1731
1732	vxge_hw_channel_dtr_free(channel, txdlh);
1733}
1734
1735/**
1736 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1737 *               to MAC address table.
1738 * @vp: Vpath handle.
1739 * @macaddr: MAC address to be added for this vpath into the list
1740 * @macaddr_mask: MAC address mask for macaddr
1741 * @duplicate_mode: Duplicate MAC address add mode. Please see
1742 *             enum vxge_hw_vpath_mac_addr_add_mode{}
1743 *
1744 * Adds the given mac address and mac address mask into the list for this
1745 * vpath.
1746 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1747 * vxge_hw_vpath_mac_addr_get_next
1748 *
1749 */
1750enum vxge_hw_status
1751vxge_hw_vpath_mac_addr_add(
1752	struct __vxge_hw_vpath_handle *vp,
1753	u8 (macaddr)[ETH_ALEN],
1754	u8 (macaddr_mask)[ETH_ALEN],
1755	enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1756{
1757	u32 i;
1758	u64 data1 = 0ULL;
1759	u64 data2 = 0ULL;
1760	enum vxge_hw_status status = VXGE_HW_OK;
1761
1762	if (vp == NULL) {
1763		status = VXGE_HW_ERR_INVALID_HANDLE;
1764		goto exit;
1765	}
1766
1767	for (i = 0; i < ETH_ALEN; i++) {
1768		data1 <<= 8;
1769		data1 |= (u8)macaddr[i];
1770
1771		data2 <<= 8;
1772		data2 |= (u8)macaddr_mask[i];
1773	}
1774
1775	switch (duplicate_mode) {
1776	case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1777		i = 0;
1778		break;
1779	case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1780		i = 1;
1781		break;
1782	case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1783		i = 2;
1784		break;
1785	default:
1786		i = 0;
1787		break;
1788	}
1789
1790	status = __vxge_hw_vpath_rts_table_set(vp,
1791			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1792			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1793			0,
1794			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1795			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1796			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1797exit:
1798	return status;
1799}
1800
1801/**
1802 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1803 *               from MAC address table.
1804 * @vp: Vpath handle.
1805 * @macaddr: First MAC address entry for this vpath in the list
1806 * @macaddr_mask: MAC address mask for macaddr
1807 *
1808 * Returns the first mac address and mac address mask in the list for this
1809 * vpath.
1810 * see also: vxge_hw_vpath_mac_addr_get_next
1811 *
1812 */
1813enum vxge_hw_status
1814vxge_hw_vpath_mac_addr_get(
1815	struct __vxge_hw_vpath_handle *vp,
1816	u8 (macaddr)[ETH_ALEN],
1817	u8 (macaddr_mask)[ETH_ALEN])
1818{
1819	u32 i;
1820	u64 data1 = 0ULL;
1821	u64 data2 = 0ULL;
1822	enum vxge_hw_status status = VXGE_HW_OK;
1823
1824	if (vp == NULL) {
1825		status = VXGE_HW_ERR_INVALID_HANDLE;
1826		goto exit;
1827	}
1828
1829	status = __vxge_hw_vpath_rts_table_get(vp,
1830			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1831			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1832			0, &data1, &data2);
1833
1834	if (status != VXGE_HW_OK)
1835		goto exit;
1836
1837	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1838
1839	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1840
1841	for (i = ETH_ALEN; i > 0; i--) {
1842		macaddr[i-1] = (u8)(data1 & 0xFF);
1843		data1 >>= 8;
1844
1845		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1846		data2 >>= 8;
1847	}
1848exit:
1849	return status;
1850}
1851
1852/**
1853 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1854 * vpath
1855 *               from MAC address table.
1856 * @vp: Vpath handle.
1857 * @macaddr: Next MAC address entry for this vpath in the list
1858 * @macaddr_mask: MAC address mask for macaddr
1859 *
1860 * Returns the next mac address and mac address mask in the list for this
1861 * vpath.
1862 * see also: vxge_hw_vpath_mac_addr_get
1863 *
1864 */
1865enum vxge_hw_status
1866vxge_hw_vpath_mac_addr_get_next(
1867	struct __vxge_hw_vpath_handle *vp,
1868	u8 (macaddr)[ETH_ALEN],
1869	u8 (macaddr_mask)[ETH_ALEN])
1870{
1871	u32 i;
1872	u64 data1 = 0ULL;
1873	u64 data2 = 0ULL;
1874	enum vxge_hw_status status = VXGE_HW_OK;
1875
1876	if (vp == NULL) {
1877		status = VXGE_HW_ERR_INVALID_HANDLE;
1878		goto exit;
1879	}
1880
1881	status = __vxge_hw_vpath_rts_table_get(vp,
1882			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1883			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1884			0, &data1, &data2);
1885
1886	if (status != VXGE_HW_OK)
1887		goto exit;
1888
1889	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1890
1891	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1892
1893	for (i = ETH_ALEN; i > 0; i--) {
1894		macaddr[i-1] = (u8)(data1 & 0xFF);
1895		data1 >>= 8;
1896
1897		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1898		data2 >>= 8;
1899	}
1900
1901exit:
1902	return status;
1903}
1904
1905/**
1906 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1907 *               to MAC address table.
1908 * @vp: Vpath handle.
1909 * @macaddr: MAC address to be added for this vpath into the list
1910 * @macaddr_mask: MAC address mask for macaddr
1911 *
1912 * Delete the given mac address and mac address mask into the list for this
1913 * vpath.
1914 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1915 * vxge_hw_vpath_mac_addr_get_next
1916 *
1917 */
1918enum vxge_hw_status
1919vxge_hw_vpath_mac_addr_delete(
1920	struct __vxge_hw_vpath_handle *vp,
1921	u8 (macaddr)[ETH_ALEN],
1922	u8 (macaddr_mask)[ETH_ALEN])
1923{
1924	u32 i;
1925	u64 data1 = 0ULL;
1926	u64 data2 = 0ULL;
1927	enum vxge_hw_status status = VXGE_HW_OK;
1928
1929	if (vp == NULL) {
1930		status = VXGE_HW_ERR_INVALID_HANDLE;
1931		goto exit;
1932	}
1933
1934	for (i = 0; i < ETH_ALEN; i++) {
1935		data1 <<= 8;
1936		data1 |= (u8)macaddr[i];
1937
1938		data2 <<= 8;
1939		data2 |= (u8)macaddr_mask[i];
1940	}
1941
1942	status = __vxge_hw_vpath_rts_table_set(vp,
1943			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1944			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1945			0,
1946			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1947			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1948exit:
1949	return status;
1950}
1951
1952/**
1953 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1954 *               to vlan id table.
1955 * @vp: Vpath handle.
1956 * @vid: vlan id to be added for this vpath into the list
1957 *
1958 * Adds the given vlan id into the list for this  vpath.
1959 * see also: vxge_hw_vpath_vid_delete
1960 *
1961 */
1962enum vxge_hw_status
1963vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1964{
1965	enum vxge_hw_status status = VXGE_HW_OK;
1966
1967	if (vp == NULL) {
1968		status = VXGE_HW_ERR_INVALID_HANDLE;
1969		goto exit;
1970	}
1971
1972	status = __vxge_hw_vpath_rts_table_set(vp,
1973			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1974			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1975			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1976exit:
1977	return status;
1978}
1979
1980/**
1981 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1982 *               to vlan id table.
1983 * @vp: Vpath handle.
1984 * @vid: vlan id to be added for this vpath into the list
1985 *
1986 * Adds the given vlan id into the list for this  vpath.
1987 * see also: vxge_hw_vpath_vid_add
1988 *
1989 */
1990enum vxge_hw_status
1991vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1992{
1993	enum vxge_hw_status status = VXGE_HW_OK;
1994
1995	if (vp == NULL) {
1996		status = VXGE_HW_ERR_INVALID_HANDLE;
1997		goto exit;
1998	}
1999
2000	status = __vxge_hw_vpath_rts_table_set(vp,
2001			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
2002			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2003			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
2004exit:
2005	return status;
2006}
2007
2008/**
2009 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2010 * @vp: Vpath handle.
2011 *
2012 * Enable promiscuous mode of Titan-e operation.
2013 *
2014 * See also: vxge_hw_vpath_promisc_disable().
2015 */
2016enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2017			struct __vxge_hw_vpath_handle *vp)
2018{
2019	u64 val64;
2020	struct __vxge_hw_virtualpath *vpath;
2021	enum vxge_hw_status status = VXGE_HW_OK;
2022
2023	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2024		status = VXGE_HW_ERR_INVALID_HANDLE;
2025		goto exit;
2026	}
2027
2028	vpath = vp->vpath;
2029
2030	/* Enable promiscuous mode for function 0 only */
2031	if (!(vpath->hldev->access_rights &
2032		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2033		return VXGE_HW_OK;
2034
2035	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2036
2037	if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2038
2039		val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2040			 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2041			 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2042			 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2043
2044		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2045	}
2046exit:
2047	return status;
2048}
2049
2050/**
2051 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2052 * @vp: Vpath handle.
2053 *
2054 * Disable promiscuous mode of Titan-e operation.
2055 *
2056 * See also: vxge_hw_vpath_promisc_enable().
2057 */
2058enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2059			struct __vxge_hw_vpath_handle *vp)
2060{
2061	u64 val64;
2062	struct __vxge_hw_virtualpath *vpath;
2063	enum vxge_hw_status status = VXGE_HW_OK;
2064
2065	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2066		status = VXGE_HW_ERR_INVALID_HANDLE;
2067		goto exit;
2068	}
2069
2070	vpath = vp->vpath;
2071
2072	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2073
2074	if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2075
2076		val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2077			   VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2078			   VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2079
2080		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2081	}
2082exit:
2083	return status;
2084}
2085
2086/*
2087 * vxge_hw_vpath_bcast_enable - Enable broadcast
2088 * @vp: Vpath handle.
2089 *
2090 * Enable receiving broadcasts.
2091 */
2092enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2093			struct __vxge_hw_vpath_handle *vp)
2094{
2095	u64 val64;
2096	struct __vxge_hw_virtualpath *vpath;
2097	enum vxge_hw_status status = VXGE_HW_OK;
2098
2099	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2100		status = VXGE_HW_ERR_INVALID_HANDLE;
2101		goto exit;
2102	}
2103
2104	vpath = vp->vpath;
2105
2106	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2107
2108	if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2109		val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2110		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2111	}
2112exit:
2113	return status;
2114}
2115
2116/**
2117 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2118 * @vp: Vpath handle.
2119 *
2120 * Enable Titan-e multicast addresses.
2121 * Returns: VXGE_HW_OK on success.
2122 *
2123 */
2124enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2125			struct __vxge_hw_vpath_handle *vp)
2126{
2127	u64 val64;
2128	struct __vxge_hw_virtualpath *vpath;
2129	enum vxge_hw_status status = VXGE_HW_OK;
2130
2131	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2132		status = VXGE_HW_ERR_INVALID_HANDLE;
2133		goto exit;
2134	}
2135
2136	vpath = vp->vpath;
2137
2138	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2139
2140	if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2141		val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2142		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2143	}
2144exit:
2145	return status;
2146}
2147
2148/**
2149 * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2150 * @vp: Vpath handle.
2151 *
2152 * Disable Titan-e multicast addresses.
2153 * Returns: VXGE_HW_OK - success.
2154 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2155 *
2156 */
2157enum vxge_hw_status
2158vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2159{
2160	u64 val64;
2161	struct __vxge_hw_virtualpath *vpath;
2162	enum vxge_hw_status status = VXGE_HW_OK;
2163
2164	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2165		status = VXGE_HW_ERR_INVALID_HANDLE;
2166		goto exit;
2167	}
2168
2169	vpath = vp->vpath;
2170
2171	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2172
2173	if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2174		val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2175		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2176	}
2177exit:
2178	return status;
2179}
2180
2181/*
2182 * vxge_hw_vpath_alarm_process - Process Alarms.
2183 * @vpath: Virtual Path.
2184 * @skip_alarms: Do not clear the alarms
2185 *
2186 * Process vpath alarms.
2187 *
2188 */
2189enum vxge_hw_status vxge_hw_vpath_alarm_process(
2190			struct __vxge_hw_vpath_handle *vp,
2191			u32 skip_alarms)
2192{
2193	enum vxge_hw_status status = VXGE_HW_OK;
2194
2195	if (vp == NULL) {
2196		status = VXGE_HW_ERR_INVALID_HANDLE;
2197		goto exit;
2198	}
2199
2200	status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2201exit:
2202	return status;
2203}
2204
2205/**
2206 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2207 *                            alrms
2208 * @vp: Virtual Path handle.
2209 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2210 *             interrupts(Can be repeated). If fifo or ring are not enabled
2211 *             the MSIX vector for that should be set to 0
2212 * @alarm_msix_id: MSIX vector for alarm.
2213 *
2214 * This API will associate a given MSIX vector numbers with the four TIM
2215 * interrupts and alarm interrupt.
2216 */
2217void
2218vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2219		       int alarm_msix_id)
2220{
2221	u64 val64;
2222	struct __vxge_hw_virtualpath *vpath = vp->vpath;
2223	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2224	u32 vp_id = vp->vpath->vp_id;
2225
2226	val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2227		  (vp_id * 4) + tim_msix_id[0]) |
2228		 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2229		  (vp_id * 4) + tim_msix_id[1]);
2230
2231	writeq(val64, &vp_reg->interrupt_cfg0);
2232
2233	writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2234			(vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2235			&vp_reg->interrupt_cfg2);
2236
2237	if (vpath->hldev->config.intr_mode ==
2238					VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2239		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2240				VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2241				0, 32), &vp_reg->one_shot_vect0_en);
2242		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2243				VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2244				0, 32), &vp_reg->one_shot_vect1_en);
2245		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2246				VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2247				0, 32), &vp_reg->one_shot_vect2_en);
2248	}
2249}
2250
2251/**
2252 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2253 * @vp: Virtual Path handle.
2254 * @msix_id:  MSIX ID
2255 *
2256 * The function masks the msix interrupt for the given msix_id
2257 *
2258 * Returns: 0,
2259 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2260 * status.
2261 * See also:
2262 */
2263void
2264vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2265{
2266	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2267	__vxge_hw_pio_mem_write32_upper(
2268		(u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2269		&hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2270}
2271
2272/**
2273 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2274 * @vp: Virtual Path handle.
2275 * @msix_id:  MSI ID
2276 *
2277 * The function clears the msix interrupt for the given msix_id
2278 *
2279 * Returns: 0,
2280 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2281 * status.
2282 * See also:
2283 */
2284void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2285{
2286	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2287
2288	if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2289		__vxge_hw_pio_mem_write32_upper(
2290			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2291			&hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2292	else
2293		__vxge_hw_pio_mem_write32_upper(
2294			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2295			&hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2296}
2297
2298/**
2299 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2300 * @vp: Virtual Path handle.
2301 * @msix_id:  MSI ID
2302 *
2303 * The function unmasks the msix interrupt for the given msix_id
2304 *
2305 * Returns: 0,
2306 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2307 * status.
2308 * See also:
2309 */
2310void
2311vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2312{
2313	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2314	__vxge_hw_pio_mem_write32_upper(
2315			(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2316			&hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2317}
2318
2319/**
2320 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2321 * @vp: Virtual Path handle.
2322 *
2323 * Mask Tx and Rx vpath interrupts.
2324 *
2325 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2326 */
2327void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2328{
2329	u64	tim_int_mask0[4] = {[0 ...3] = 0};
2330	u32	tim_int_mask1[4] = {[0 ...3] = 0};
2331	u64	val64;
2332	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2333
2334	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2335		tim_int_mask1, vp->vpath->vp_id);
2336
2337	val64 = readq(&hldev->common_reg->tim_int_mask0);
2338
2339	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2340		(tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2341		writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2342			tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2343			&hldev->common_reg->tim_int_mask0);
2344	}
2345
2346	val64 = readl(&hldev->common_reg->tim_int_mask1);
2347
2348	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2349		(tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2350		__vxge_hw_pio_mem_write32_upper(
2351			(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2352			tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2353			&hldev->common_reg->tim_int_mask1);
2354	}
2355}
2356
2357/**
2358 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2359 * @vp: Virtual Path handle.
2360 *
2361 * Unmask Tx and Rx vpath interrupts.
2362 *
2363 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2364 */
2365void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2366{
2367	u64	tim_int_mask0[4] = {[0 ...3] = 0};
2368	u32	tim_int_mask1[4] = {[0 ...3] = 0};
2369	u64	val64;
2370	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2371
2372	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2373		tim_int_mask1, vp->vpath->vp_id);
2374
2375	val64 = readq(&hldev->common_reg->tim_int_mask0);
2376
2377	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2378	   (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2379		writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2380			tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2381			&hldev->common_reg->tim_int_mask0);
2382	}
2383
2384	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2385	   (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2386		__vxge_hw_pio_mem_write32_upper(
2387			(~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2388			  tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2389			&hldev->common_reg->tim_int_mask1);
2390	}
2391}
2392
2393/**
2394 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2395 * descriptors and process the same.
2396 * @ring: Handle to the ring object used for receive
2397 *
2398 * The function	polls the Rx for the completed	descriptors and	calls
2399 * the driver via supplied completion	callback.
2400 *
2401 * Returns: VXGE_HW_OK, if the polling is completed successful.
2402 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2403 * descriptors available which are yet to be processed.
2404 *
2405 * See also: vxge_hw_vpath_poll_rx()
2406 */
2407enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2408{
2409	u8 t_code;
2410	enum vxge_hw_status status = VXGE_HW_OK;
2411	void *first_rxdh;
2412	u64 val64 = 0;
2413	int new_count = 0;
2414
2415	ring->cmpl_cnt = 0;
2416
2417	status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2418	if (status == VXGE_HW_OK)
2419		ring->callback(ring, first_rxdh,
2420			t_code, ring->channel.userdata);
2421
2422	if (ring->cmpl_cnt != 0) {
2423		ring->doorbell_cnt += ring->cmpl_cnt;
2424		if (ring->doorbell_cnt >= ring->rxds_limit) {
2425			/*
2426			 * Each RxD is of 4 qwords, update the number of
2427			 * qwords replenished
2428			 */
2429			new_count = (ring->doorbell_cnt * 4);
2430
2431			/* For each block add 4 more qwords */
2432			ring->total_db_cnt += ring->doorbell_cnt;
2433			if (ring->total_db_cnt >= ring->rxds_per_block) {
2434				new_count += 4;
2435				/* Reset total count */
2436				ring->total_db_cnt %= ring->rxds_per_block;
2437			}
2438			writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2439				&ring->vp_reg->prc_rxd_doorbell);
2440			val64 =
2441			  readl(&ring->common_reg->titan_general_int_status);
2442			ring->doorbell_cnt = 0;
2443		}
2444	}
2445
2446	return status;
2447}
2448
2449/**
2450 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2451 * the same.
2452 * @fifo: Handle to the fifo object used for non offload send
2453 *
2454 * The function polls the Tx for the completed descriptors and calls
2455 * the driver via supplied completion callback.
2456 *
2457 * Returns: VXGE_HW_OK, if the polling is completed successful.
2458 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2459 * descriptors available which are yet to be processed.
2460 */
2461enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2462					struct sk_buff ***skb_ptr, int nr_skb,
2463					int *more)
2464{
2465	enum vxge_hw_fifo_tcode t_code;
2466	void *first_txdlh;
2467	enum vxge_hw_status status = VXGE_HW_OK;
2468	struct __vxge_hw_channel *channel;
2469
2470	channel = &fifo->channel;
2471
2472	status = vxge_hw_fifo_txdl_next_completed(fifo,
2473				&first_txdlh, &t_code);
2474	if (status == VXGE_HW_OK)
2475		if (fifo->callback(fifo, first_txdlh, t_code,
2476			channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2477			status = VXGE_HW_COMPLETIONS_REMAIN;
2478
2479	return status;
2480}
2481