1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2/*
3	Written/copyright 1999-2001 by Donald Becker.
4	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7
8	This software may be used and distributed according to the terms of
9	the GNU General Public License (GPL), incorporated herein by reference.
10	Drivers based on or derived from this code fall under the GPL and must
11	retain the authorship, copyright and license notice.  This file is not
12	a complete program and may only be used when the entire operating
13	system is licensed under the GPL.  License for under other terms may be
14	available.  Contact the original author for details.
15
16	The original author may be reached as becker@scyld.com, or at
17	Scyld Computing Corporation
18	410 Severn Ave., Suite 210
19	Annapolis MD 21403
20
21	Support information and updates available at
22	http://www.scyld.com/network/netsemi.html
23	[link no longer provides useful info -jgarzik]
24
25
26	TODO:
27	* big endian support with CFG:BEM instead of cpu_to_le32
28*/
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/errno.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/interrupt.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/init.h>
43#include <linux/spinlock.h>
44#include <linux/ethtool.h>
45#include <linux/delay.h>
46#include <linux/rtnetlink.h>
47#include <linux/mii.h>
48#include <linux/crc32.h>
49#include <linux/bitops.h>
50#include <linux/prefetch.h>
51#include <asm/processor.h>	/* Processor type for cache alignment. */
52#include <asm/io.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55
56#define DRV_NAME	"natsemi"
57#define DRV_VERSION	"2.1"
58#define DRV_RELDATE	"Sept 11, 2006"
59
60#define RX_OFFSET	2
61
62/* Updated to recommendations in pci-skeleton v2.03. */
63
64/* The user-configurable values.
65   These may be modified when a driver module is loaded.*/
66
67#define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68				 NETIF_MSG_LINK		| \
69				 NETIF_MSG_WOL		| \
70				 NETIF_MSG_RX_ERR	| \
71				 NETIF_MSG_TX_ERR)
72static int debug = -1;
73
74static int mtu;
75
76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
78static const int multicast_filter_limit = 100;
79
80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81   Setting to > 1518 effectively disables this feature. */
82static int rx_copybreak;
83
84static int dspcfg_workaround = 1;
85
86/* Used to pass the media type, etc.
87   Both 'options[]' and 'full_duplex[]' should exist for driver
88   interoperability.
89   The media type is usually passed in 'options[]'.
90*/
91#define MAX_UNITS 8		/* More are supported, limit only on options */
92static int options[MAX_UNITS];
93static int full_duplex[MAX_UNITS];
94
95/* Operational parameters that are set at compile time. */
96
97/* Keep the ring sizes a power of two for compile efficiency.
98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99   Making the Tx ring too large decreases the effectiveness of channel
100   bonding and packet priority.
101   There are no ill effects from too-large receive rings. */
102#define TX_RING_SIZE	16
103#define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104#define RX_RING_SIZE	32
105
106/* Operational parameters that usually are not changed. */
107/* Time in jiffies before concluding the transmitter is hung. */
108#define TX_TIMEOUT  (2*HZ)
109
110#define NATSEMI_HW_TIMEOUT	400
111#define NATSEMI_TIMER_FREQ	5*HZ
112#define NATSEMI_PG0_NREGS	64
113#define NATSEMI_RFDR_NREGS	8
114#define NATSEMI_PG1_NREGS	4
115#define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116				 NATSEMI_PG1_NREGS)
117#define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118#define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119
120/* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124#define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125#define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126#define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127#define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128
129/* These identify the driver base version and may not be removed. */
130static const char version[] =
131  KERN_INFO DRV_NAME " dp8381x driver, version "
132      DRV_VERSION ", " DRV_RELDATE "\n"
133  "  originally by Donald Becker <becker@scyld.com>\n"
134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138MODULE_LICENSE("GPL");
139
140module_param(mtu, int, 0);
141module_param(debug, int, 0);
142module_param(rx_copybreak, int, 0);
143module_param(dspcfg_workaround, int, 0);
144module_param_array(options, int, NULL, 0);
145module_param_array(full_duplex, int, NULL, 0);
146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147MODULE_PARM_DESC(debug, "DP8381x default debug level");
148MODULE_PARM_DESC(rx_copybreak,
149	"DP8381x copy breakpoint for copy-only-tiny-frames");
150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151MODULE_PARM_DESC(options,
152	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155/*
156				Theory of Operation
157
158I. Board Compatibility
159
160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161It also works with other chips in in the DP83810 series.
162
163II. Board-specific settings
164
165This driver requires the PCI interrupt line to be valid.
166It honors the EEPROM-set values.
167
168III. Driver operation
169
170IIIa. Ring buffers
171
172This driver uses two statically allocated fixed-size descriptor lists
173formed into rings by a branch from the final descriptor to the beginning of
174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175The NatSemi design uses a 'next descriptor' pointer that the driver forms
176into a list.
177
178IIIb/c. Transmit/Receive Structure
179
180This driver uses a zero-copy receive and transmit scheme.
181The driver allocates full frame size skbuffs for the Rx ring buffers at
182open() time and passes the skb->data field to the chip as receive data
183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184a fresh skbuff is allocated and the frame is copied to the new skbuff.
185When the incoming frame is larger, the skbuff is passed directly up the
186protocol stack.  Buffers consumed this way are replaced by newly allocated
187skbuffs in a later phase of receives.
188
189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190using a full-sized skbuff for small frames vs. the copying costs of larger
191frames.  New boards are typically used in generously configured machines
192and the underfilled buffers have negligible impact compared to the benefit of
193a single allocation size, so the default value of zero results in never
194copying packets.  When copying is done, the cost is usually mitigated by using
195a combined copy/checksum routine.  Copying also preloads the cache, which is
196most useful with small frames.
197
198A subtle aspect of the operation is that unaligned buffers are not permitted
199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200longword aligned for further processing.  On copies frames are put into the
201skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203IIId. Synchronization
204
205Most operations are synchronized on the np->lock irq spinlock, except the
206receive and transmit paths which are synchronised using a combination of
207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208
209IVb. References
210
211http://www.scyld.com/expert/100mbps.html
212http://www.scyld.com/expert/NWay.html
213Datasheet is available from:
214http://www.national.com/pf/DP/DP83815.html
215
216IVc. Errata
217
218None characterised.
219*/
220
221
222
223/*
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227 */
228#define PHYID_AM79C874	0x0022561b
229
230enum {
231	MII_MCTRL	= 0x15,		/* mode control register */
232	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234};
235
236enum {
237	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238};
239
240/* array of board data directly indexed by pci_tbl[x].driver_data */
241static struct {
242	const char *name;
243	unsigned long flags;
244	unsigned int eeprom_size;
245} natsemi_pci_info[] = {
246	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247	{ "NatSemi DP8381[56]", 0, 24 },
248};
249
250static const struct pci_device_id natsemi_pci_tbl[] = {
251	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253	{ }	/* terminate list */
254};
255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257/* Offsets to the device registers.
258   Unlike software-only systems, device drivers interact with complex hardware.
259   It's not useful to define symbolic names for every register bit in the
260   device.
261*/
262enum register_offsets {
263	ChipCmd			= 0x00,
264	ChipConfig		= 0x04,
265	EECtrl			= 0x08,
266	PCIBusCfg		= 0x0C,
267	IntrStatus		= 0x10,
268	IntrMask		= 0x14,
269	IntrEnable		= 0x18,
270	IntrHoldoff		= 0x1C, /* DP83816 only */
271	TxRingPtr		= 0x20,
272	TxConfig		= 0x24,
273	RxRingPtr		= 0x30,
274	RxConfig		= 0x34,
275	ClkRun			= 0x3C,
276	WOLCmd			= 0x40,
277	PauseCmd		= 0x44,
278	RxFilterAddr		= 0x48,
279	RxFilterData		= 0x4C,
280	BootRomAddr		= 0x50,
281	BootRomData		= 0x54,
282	SiliconRev		= 0x58,
283	StatsCtrl		= 0x5C,
284	StatsData		= 0x60,
285	RxPktErrs		= 0x60,
286	RxMissed		= 0x68,
287	RxCRCErrs		= 0x64,
288	BasicControl		= 0x80,
289	BasicStatus		= 0x84,
290	AnegAdv			= 0x90,
291	AnegPeer		= 0x94,
292	PhyStatus		= 0xC0,
293	MIntrCtrl		= 0xC4,
294	MIntrStatus		= 0xC8,
295	PhyCtrl			= 0xE4,
296
297	/* These are from the spec, around page 78... on a separate table.
298	 * The meaning of these registers depend on the value of PGSEL. */
299	PGSEL			= 0xCC,
300	PMDCSR			= 0xE4,
301	TSTDAT			= 0xFC,
302	DSPCFG			= 0xF4,
303	SDCFG			= 0xF8
304};
305/* the values for the 'magic' registers above (PGSEL=1) */
306#define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307#define TSTDAT_VAL	0x0
308#define DSPCFG_VAL	0x5040
309#define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310#define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311#define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312#define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313
314/* misc PCI space registers */
315enum pci_register_offsets {
316	PCIPM			= 0x44,
317};
318
319enum ChipCmd_bits {
320	ChipReset		= 0x100,
321	RxReset			= 0x20,
322	TxReset			= 0x10,
323	RxOff			= 0x08,
324	RxOn			= 0x04,
325	TxOff			= 0x02,
326	TxOn			= 0x01,
327};
328
329enum ChipConfig_bits {
330	CfgPhyDis		= 0x200,
331	CfgPhyRst		= 0x400,
332	CfgExtPhy		= 0x1000,
333	CfgAnegEnable		= 0x2000,
334	CfgAneg100		= 0x4000,
335	CfgAnegFull		= 0x8000,
336	CfgAnegDone		= 0x8000000,
337	CfgFullDuplex		= 0x20000000,
338	CfgSpeed100		= 0x40000000,
339	CfgLink			= 0x80000000,
340};
341
342enum EECtrl_bits {
343	EE_ShiftClk		= 0x04,
344	EE_DataIn		= 0x01,
345	EE_ChipSelect		= 0x08,
346	EE_DataOut		= 0x02,
347	MII_Data 		= 0x10,
348	MII_Write		= 0x20,
349	MII_ShiftClk		= 0x40,
350};
351
352enum PCIBusCfg_bits {
353	EepromReload		= 0x4,
354};
355
356/* Bits in the interrupt status/mask registers. */
357enum IntrStatus_bits {
358	IntrRxDone		= 0x0001,
359	IntrRxIntr		= 0x0002,
360	IntrRxErr		= 0x0004,
361	IntrRxEarly		= 0x0008,
362	IntrRxIdle		= 0x0010,
363	IntrRxOverrun		= 0x0020,
364	IntrTxDone		= 0x0040,
365	IntrTxIntr		= 0x0080,
366	IntrTxErr		= 0x0100,
367	IntrTxIdle		= 0x0200,
368	IntrTxUnderrun		= 0x0400,
369	StatsMax		= 0x0800,
370	SWInt			= 0x1000,
371	WOLPkt			= 0x2000,
372	LinkChange		= 0x4000,
373	IntrHighBits		= 0x8000,
374	RxStatusFIFOOver	= 0x10000,
375	IntrPCIErr		= 0xf00000,
376	RxResetDone		= 0x1000000,
377	TxResetDone		= 0x2000000,
378	IntrAbnormalSummary	= 0xCD20,
379};
380
381/*
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
389 */
390#define DEFAULT_INTR 0x00f1cd65
391
392enum TxConfig_bits {
393	TxDrthMask		= 0x3f,
394	TxFlthMask		= 0x3f00,
395	TxMxdmaMask		= 0x700000,
396	TxMxdma_512		= 0x0,
397	TxMxdma_4		= 0x100000,
398	TxMxdma_8		= 0x200000,
399	TxMxdma_16		= 0x300000,
400	TxMxdma_32		= 0x400000,
401	TxMxdma_64		= 0x500000,
402	TxMxdma_128		= 0x600000,
403	TxMxdma_256		= 0x700000,
404	TxCollRetry		= 0x800000,
405	TxAutoPad		= 0x10000000,
406	TxMacLoop		= 0x20000000,
407	TxHeartIgn		= 0x40000000,
408	TxCarrierIgn		= 0x80000000
409};
410
411/*
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 *   when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 *   threshold and the drain threshold must be less than 2016 bytes.
420 *
421 */
422#define TX_FLTH_VAL		((512/32) << 8)
423#define TX_DRTH_VAL_START	(64/32)
424#define TX_DRTH_VAL_INC		2
425#define TX_DRTH_VAL_LIMIT	(1472/32)
426
427enum RxConfig_bits {
428	RxDrthMask		= 0x3e,
429	RxMxdmaMask		= 0x700000,
430	RxMxdma_512		= 0x0,
431	RxMxdma_4		= 0x100000,
432	RxMxdma_8		= 0x200000,
433	RxMxdma_16		= 0x300000,
434	RxMxdma_32		= 0x400000,
435	RxMxdma_64		= 0x500000,
436	RxMxdma_128		= 0x600000,
437	RxMxdma_256		= 0x700000,
438	RxAcceptLong		= 0x8000000,
439	RxAcceptTx		= 0x10000000,
440	RxAcceptRunt		= 0x40000000,
441	RxAcceptErr		= 0x80000000
442};
443#define RX_DRTH_VAL		(128/8)
444
445enum ClkRun_bits {
446	PMEEnable		= 0x100,
447	PMEStatus		= 0x8000,
448};
449
450enum WolCmd_bits {
451	WakePhy			= 0x1,
452	WakeUnicast		= 0x2,
453	WakeMulticast		= 0x4,
454	WakeBroadcast		= 0x8,
455	WakeArp			= 0x10,
456	WakePMatch0		= 0x20,
457	WakePMatch1		= 0x40,
458	WakePMatch2		= 0x80,
459	WakePMatch3		= 0x100,
460	WakeMagic		= 0x200,
461	WakeMagicSecure		= 0x400,
462	SecureHack		= 0x100000,
463	WokePhy			= 0x400000,
464	WokeUnicast		= 0x800000,
465	WokeMulticast		= 0x1000000,
466	WokeBroadcast		= 0x2000000,
467	WokeArp			= 0x4000000,
468	WokePMatch0		= 0x8000000,
469	WokePMatch1		= 0x10000000,
470	WokePMatch2		= 0x20000000,
471	WokePMatch3		= 0x40000000,
472	WokeMagic		= 0x80000000,
473	WakeOptsSummary		= 0x7ff
474};
475
476enum RxFilterAddr_bits {
477	RFCRAddressMask		= 0x3ff,
478	AcceptMulticast		= 0x00200000,
479	AcceptMyPhys		= 0x08000000,
480	AcceptAllPhys		= 0x10000000,
481	AcceptAllMulticast	= 0x20000000,
482	AcceptBroadcast		= 0x40000000,
483	RxFilterEnable		= 0x80000000
484};
485
486enum StatsCtrl_bits {
487	StatsWarn		= 0x1,
488	StatsFreeze		= 0x2,
489	StatsClear		= 0x4,
490	StatsStrobe		= 0x8,
491};
492
493enum MIntrCtrl_bits {
494	MICRIntEn		= 0x2,
495};
496
497enum PhyCtrl_bits {
498	PhyAddrMask		= 0x1f,
499};
500
501#define PHY_ADDR_NONE		32
502#define PHY_ADDR_INTERNAL	1
503
504/* values we might find in the silicon revision register */
505#define SRR_DP83815_C	0x0302
506#define SRR_DP83815_D	0x0403
507#define SRR_DP83816_A4	0x0504
508#define SRR_DP83816_A5	0x0505
509
510/* The Rx and Tx buffer descriptors. */
511/* Note that using only 32 bit fields simplifies conversion to big-endian
512   architectures. */
513struct netdev_desc {
514	__le32 next_desc;
515	__le32 cmd_status;
516	__le32 addr;
517	__le32 software_use;
518};
519
520/* Bits in network_desc.status */
521enum desc_status_bits {
522	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524	DescSizeMask=0xfff,
525
526	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532	DescRxDest=0x01800000, DescRxLong=0x00400000,
533	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536};
537
538struct netdev_private {
539	/* Descriptor rings first for alignment */
540	dma_addr_t ring_dma;
541	struct netdev_desc *rx_ring;
542	struct netdev_desc *tx_ring;
543	/* The addresses of receive-in-place skbuffs */
544	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545	dma_addr_t rx_dma[RX_RING_SIZE];
546	/* address of a sent-in-place packet/buffer, for later free() */
547	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548	dma_addr_t tx_dma[TX_RING_SIZE];
549	struct net_device *dev;
550	void __iomem *ioaddr;
551	struct napi_struct napi;
552	/* Media monitoring timer */
553	struct timer_list timer;
554	/* Frequently used values: keep some adjacent for cache effect */
555	struct pci_dev *pci_dev;
556	struct netdev_desc *rx_head_desc;
557	/* Producer/consumer ring indices */
558	unsigned int cur_rx, dirty_rx;
559	unsigned int cur_tx, dirty_tx;
560	/* Based on MTU+slack. */
561	unsigned int rx_buf_sz;
562	int oom;
563	/* Interrupt status */
564	u32 intr_status;
565	/* Do not touch the nic registers */
566	int hands_off;
567	/* Don't pay attention to the reported link state. */
568	int ignore_phy;
569	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570	int mii;
571	int phy_addr_external;
572	unsigned int full_duplex;
573	/* Rx filter */
574	u32 cur_rx_mode;
575	u32 rx_filter[16];
576	/* FIFO and PCI burst thresholds */
577	u32 tx_config, rx_config;
578	/* original contents of ClkRun register */
579	u32 SavedClkRun;
580	/* silicon revision */
581	u32 srr;
582	/* expected DSPCFG value */
583	u16 dspcfg;
584	int dspcfg_workaround;
585	/* parms saved in ethtool format */
586	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587	u8	duplex;		/* Duplex, half or full */
588	u8	autoneg;	/* Autonegotiation enabled */
589	/* MII transceiver section */
590	u16 advertising;
591	unsigned int iosize;
592	spinlock_t lock;
593	u32 msg_enable;
594	/* EEPROM data */
595	int eeprom_size;
596};
597
598static void move_int_phy(struct net_device *dev, int addr);
599static int eeprom_read(void __iomem *ioaddr, int location);
600static int mdio_read(struct net_device *dev, int reg);
601static void mdio_write(struct net_device *dev, int reg, u16 data);
602static void init_phy_fixup(struct net_device *dev);
603static int miiport_read(struct net_device *dev, int phy_id, int reg);
604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605static int find_mii(struct net_device *dev);
606static void natsemi_reset(struct net_device *dev);
607static void natsemi_reload_eeprom(struct net_device *dev);
608static void natsemi_stop_rxtx(struct net_device *dev);
609static int netdev_open(struct net_device *dev);
610static void do_cable_magic(struct net_device *dev);
611static void undo_cable_magic(struct net_device *dev);
612static void check_link(struct net_device *dev);
613static void netdev_timer(unsigned long data);
614static void dump_ring(struct net_device *dev);
615static void ns_tx_timeout(struct net_device *dev);
616static int alloc_ring(struct net_device *dev);
617static void refill_rx(struct net_device *dev);
618static void init_ring(struct net_device *dev);
619static void drain_tx(struct net_device *dev);
620static void drain_ring(struct net_device *dev);
621static void free_ring(struct net_device *dev);
622static void reinit_ring(struct net_device *dev);
623static void init_registers(struct net_device *dev);
624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625static irqreturn_t intr_handler(int irq, void *dev_instance);
626static void netdev_error(struct net_device *dev, int intr_status);
627static int natsemi_poll(struct napi_struct *napi, int budget);
628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629static void netdev_tx_done(struct net_device *dev);
630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631#ifdef CONFIG_NET_POLL_CONTROLLER
632static void natsemi_poll_controller(struct net_device *dev);
633#endif
634static void __set_rx_mode(struct net_device *dev);
635static void set_rx_mode(struct net_device *dev);
636static void __get_stats(struct net_device *dev);
637static struct net_device_stats *get_stats(struct net_device *dev);
638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639static int netdev_set_wol(struct net_device *dev, u32 newval);
640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642static int netdev_get_sopass(struct net_device *dev, u8 *data);
643static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645static void enable_wol_mode(struct net_device *dev, int enable_intr);
646static int netdev_close(struct net_device *dev);
647static int netdev_get_regs(struct net_device *dev, u8 *buf);
648static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649static const struct ethtool_ops ethtool_ops;
650
651#define NATSEMI_ATTR(_name) \
652static ssize_t natsemi_show_##_name(struct device *dev, \
653         struct device_attribute *attr, char *buf); \
654	 static ssize_t natsemi_set_##_name(struct device *dev, \
655		struct device_attribute *attr, \
656	        const char *buf, size_t count); \
657	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658
659#define NATSEMI_CREATE_FILE(_dev, _name) \
660         device_create_file(&_dev->dev, &dev_attr_##_name)
661#define NATSEMI_REMOVE_FILE(_dev, _name) \
662         device_remove_file(&_dev->dev, &dev_attr_##_name)
663
664NATSEMI_ATTR(dspcfg_workaround);
665
666static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667				  	      struct device_attribute *attr,
668					      char *buf)
669{
670	struct netdev_private *np = netdev_priv(to_net_dev(dev));
671
672	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673}
674
675static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676					     struct device_attribute *attr,
677					     const char *buf, size_t count)
678{
679	struct netdev_private *np = netdev_priv(to_net_dev(dev));
680	int new_setting;
681	unsigned long flags;
682
683        /* Find out the new setting */
684        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685                new_setting = 1;
686        else if (!strncmp("off", buf, count - 1) ||
687                 !strncmp("0", buf, count - 1))
688		new_setting = 0;
689	else
690                 return count;
691
692	spin_lock_irqsave(&np->lock, flags);
693
694	np->dspcfg_workaround = new_setting;
695
696	spin_unlock_irqrestore(&np->lock, flags);
697
698	return count;
699}
700
701static inline void __iomem *ns_ioaddr(struct net_device *dev)
702{
703	struct netdev_private *np = netdev_priv(dev);
704
705	return np->ioaddr;
706}
707
708static inline void natsemi_irq_enable(struct net_device *dev)
709{
710	writel(1, ns_ioaddr(dev) + IntrEnable);
711	readl(ns_ioaddr(dev) + IntrEnable);
712}
713
714static inline void natsemi_irq_disable(struct net_device *dev)
715{
716	writel(0, ns_ioaddr(dev) + IntrEnable);
717	readl(ns_ioaddr(dev) + IntrEnable);
718}
719
720static void move_int_phy(struct net_device *dev, int addr)
721{
722	struct netdev_private *np = netdev_priv(dev);
723	void __iomem *ioaddr = ns_ioaddr(dev);
724	int target = 31;
725
726	/*
727	 * The internal phy is visible on the external mii bus. Therefore we must
728	 * move it away before we can send commands to an external phy.
729	 * There are two addresses we must avoid:
730	 * - the address on the external phy that is used for transmission.
731	 * - the address that we want to access. User space can access phys
732	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
733	 *   phy that is used for transmission.
734	 */
735
736	if (target == addr)
737		target--;
738	if (target == np->phy_addr_external)
739		target--;
740	writew(target, ioaddr + PhyCtrl);
741	readw(ioaddr + PhyCtrl);
742	udelay(1);
743}
744
745static void natsemi_init_media(struct net_device *dev)
746{
747	struct netdev_private *np = netdev_priv(dev);
748	u32 tmp;
749
750	if (np->ignore_phy)
751		netif_carrier_on(dev);
752	else
753		netif_carrier_off(dev);
754
755	/* get the initial settings from hardware */
756	tmp            = mdio_read(dev, MII_BMCR);
757	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
758	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
759	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
760	np->advertising= mdio_read(dev, MII_ADVERTISE);
761
762	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
763	    netif_msg_probe(np)) {
764		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
765			"10%s %s duplex.\n",
766			pci_name(np->pci_dev),
767			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
768			  "enabled, advertise" : "disabled, force",
769			(np->advertising &
770			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
771			    "0" : "",
772			(np->advertising &
773			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
774			    "full" : "half");
775	}
776	if (netif_msg_probe(np))
777		printk(KERN_INFO
778			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
779			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
780			np->advertising);
781
782}
783
784static const struct net_device_ops natsemi_netdev_ops = {
785	.ndo_open		= netdev_open,
786	.ndo_stop		= netdev_close,
787	.ndo_start_xmit		= start_tx,
788	.ndo_get_stats		= get_stats,
789	.ndo_set_rx_mode	= set_rx_mode,
790	.ndo_change_mtu		= natsemi_change_mtu,
791	.ndo_do_ioctl		= netdev_ioctl,
792	.ndo_tx_timeout 	= ns_tx_timeout,
793	.ndo_set_mac_address 	= eth_mac_addr,
794	.ndo_validate_addr	= eth_validate_addr,
795#ifdef CONFIG_NET_POLL_CONTROLLER
796	.ndo_poll_controller	= natsemi_poll_controller,
797#endif
798};
799
800static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
801{
802	struct net_device *dev;
803	struct netdev_private *np;
804	int i, option, irq, chip_idx = ent->driver_data;
805	static int find_cnt = -1;
806	resource_size_t iostart;
807	unsigned long iosize;
808	void __iomem *ioaddr;
809	const int pcibar = 1; /* PCI base address register */
810	int prev_eedata;
811	u32 tmp;
812
813/* when built into the kernel, we only print version if device is found */
814#ifndef MODULE
815	static int printed_version;
816	if (!printed_version++)
817		printk(version);
818#endif
819
820	i = pci_enable_device(pdev);
821	if (i) return i;
822
823	/* natsemi has a non-standard PM control register
824	 * in PCI config space.  Some boards apparently need
825	 * to be brought to D0 in this manner.
826	 */
827	pci_read_config_dword(pdev, PCIPM, &tmp);
828	if (tmp & PCI_PM_CTRL_STATE_MASK) {
829		/* D0 state, disable PME assertion */
830		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
831		pci_write_config_dword(pdev, PCIPM, newtmp);
832	}
833
834	find_cnt++;
835	iostart = pci_resource_start(pdev, pcibar);
836	iosize = pci_resource_len(pdev, pcibar);
837	irq = pdev->irq;
838
839	pci_set_master(pdev);
840
841	dev = alloc_etherdev(sizeof (struct netdev_private));
842	if (!dev)
843		return -ENOMEM;
844	SET_NETDEV_DEV(dev, &pdev->dev);
845
846	i = pci_request_regions(pdev, DRV_NAME);
847	if (i)
848		goto err_pci_request_regions;
849
850	ioaddr = ioremap(iostart, iosize);
851	if (!ioaddr) {
852		i = -ENOMEM;
853		goto err_ioremap;
854	}
855
856	/* Work around the dropped serial bit. */
857	prev_eedata = eeprom_read(ioaddr, 6);
858	for (i = 0; i < 3; i++) {
859		int eedata = eeprom_read(ioaddr, i + 7);
860		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
861		dev->dev_addr[i*2+1] = eedata >> 7;
862		prev_eedata = eedata;
863	}
864
865	np = netdev_priv(dev);
866	np->ioaddr = ioaddr;
867
868	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
869	np->dev = dev;
870
871	np->pci_dev = pdev;
872	pci_set_drvdata(pdev, dev);
873	np->iosize = iosize;
874	spin_lock_init(&np->lock);
875	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
876	np->hands_off = 0;
877	np->intr_status = 0;
878	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
879	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
880		np->ignore_phy = 1;
881	else
882		np->ignore_phy = 0;
883	np->dspcfg_workaround = dspcfg_workaround;
884
885	/* Initial port:
886	 * - If configured to ignore the PHY set up for external.
887	 * - If the nic was configured to use an external phy and if find_mii
888	 *   finds a phy: use external port, first phy that replies.
889	 * - Otherwise: internal port.
890	 * Note that the phy address for the internal phy doesn't matter:
891	 * The address would be used to access a phy over the mii bus, but
892	 * the internal phy is accessed through mapped registers.
893	 */
894	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
895		dev->if_port = PORT_MII;
896	else
897		dev->if_port = PORT_TP;
898	/* Reset the chip to erase previous misconfiguration. */
899	natsemi_reload_eeprom(dev);
900	natsemi_reset(dev);
901
902	if (dev->if_port != PORT_TP) {
903		np->phy_addr_external = find_mii(dev);
904		/* If we're ignoring the PHY it doesn't matter if we can't
905		 * find one. */
906		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
907			dev->if_port = PORT_TP;
908			np->phy_addr_external = PHY_ADDR_INTERNAL;
909		}
910	} else {
911		np->phy_addr_external = PHY_ADDR_INTERNAL;
912	}
913
914	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
915	/* The lower four bits are the media type. */
916	if (option) {
917		if (option & 0x200)
918			np->full_duplex = 1;
919		if (option & 15)
920			printk(KERN_INFO
921				"natsemi %s: ignoring user supplied media type %d",
922				pci_name(np->pci_dev), option & 15);
923	}
924	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
925		np->full_duplex = 1;
926
927	dev->netdev_ops = &natsemi_netdev_ops;
928	dev->watchdog_timeo = TX_TIMEOUT;
929
930	dev->ethtool_ops = &ethtool_ops;
931
932	if (mtu)
933		dev->mtu = mtu;
934
935	natsemi_init_media(dev);
936
937	/* save the silicon revision for later querying */
938	np->srr = readl(ioaddr + SiliconRev);
939	if (netif_msg_hw(np))
940		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
941				pci_name(np->pci_dev), np->srr);
942
943	i = register_netdev(dev);
944	if (i)
945		goto err_register_netdev;
946	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
947	if (i)
948		goto err_create_file;
949
950	if (netif_msg_drv(np)) {
951		printk(KERN_INFO "natsemi %s: %s at %#08llx "
952		       "(%s), %pM, IRQ %d",
953		       dev->name, natsemi_pci_info[chip_idx].name,
954		       (unsigned long long)iostart, pci_name(np->pci_dev),
955		       dev->dev_addr, irq);
956		if (dev->if_port == PORT_TP)
957			printk(", port TP.\n");
958		else if (np->ignore_phy)
959			printk(", port MII, ignoring PHY\n");
960		else
961			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
962	}
963	return 0;
964
965 err_create_file:
966 	unregister_netdev(dev);
967
968 err_register_netdev:
969	iounmap(ioaddr);
970
971 err_ioremap:
972	pci_release_regions(pdev);
973
974 err_pci_request_regions:
975	free_netdev(dev);
976	return i;
977}
978
979
980/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
981   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
982
983/* Delay between EEPROM clock transitions.
984   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
985   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
986   made udelay() unreliable.
987   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
988   deprecated.
989*/
990#define eeprom_delay(ee_addr)	readl(ee_addr)
991
992#define EE_Write0 (EE_ChipSelect)
993#define EE_Write1 (EE_ChipSelect | EE_DataIn)
994
995/* The EEPROM commands include the alway-set leading bit. */
996enum EEPROM_Cmds {
997	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
998};
999
1000static int eeprom_read(void __iomem *addr, int location)
1001{
1002	int i;
1003	int retval = 0;
1004	void __iomem *ee_addr = addr + EECtrl;
1005	int read_cmd = location | EE_ReadCmd;
1006
1007	writel(EE_Write0, ee_addr);
1008
1009	/* Shift the read command bits out. */
1010	for (i = 10; i >= 0; i--) {
1011		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1012		writel(dataval, ee_addr);
1013		eeprom_delay(ee_addr);
1014		writel(dataval | EE_ShiftClk, ee_addr);
1015		eeprom_delay(ee_addr);
1016	}
1017	writel(EE_ChipSelect, ee_addr);
1018	eeprom_delay(ee_addr);
1019
1020	for (i = 0; i < 16; i++) {
1021		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1022		eeprom_delay(ee_addr);
1023		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1024		writel(EE_ChipSelect, ee_addr);
1025		eeprom_delay(ee_addr);
1026	}
1027
1028	/* Terminate the EEPROM access. */
1029	writel(EE_Write0, ee_addr);
1030	writel(0, ee_addr);
1031	return retval;
1032}
1033
1034/* MII transceiver control section.
1035 * The 83815 series has an internal transceiver, and we present the
1036 * internal management registers as if they were MII connected.
1037 * External Phy registers are referenced through the MII interface.
1038 */
1039
1040/* clock transitions >= 20ns (25MHz)
1041 * One readl should be good to PCI @ 100MHz
1042 */
1043#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1044
1045static int mii_getbit (struct net_device *dev)
1046{
1047	int data;
1048	void __iomem *ioaddr = ns_ioaddr(dev);
1049
1050	writel(MII_ShiftClk, ioaddr + EECtrl);
1051	data = readl(ioaddr + EECtrl);
1052	writel(0, ioaddr + EECtrl);
1053	mii_delay(ioaddr);
1054	return (data & MII_Data)? 1 : 0;
1055}
1056
1057static void mii_send_bits (struct net_device *dev, u32 data, int len)
1058{
1059	u32 i;
1060	void __iomem *ioaddr = ns_ioaddr(dev);
1061
1062	for (i = (1 << (len-1)); i; i >>= 1)
1063	{
1064		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1065		writel(mdio_val, ioaddr + EECtrl);
1066		mii_delay(ioaddr);
1067		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1068		mii_delay(ioaddr);
1069	}
1070	writel(0, ioaddr + EECtrl);
1071	mii_delay(ioaddr);
1072}
1073
1074static int miiport_read(struct net_device *dev, int phy_id, int reg)
1075{
1076	u32 cmd;
1077	int i;
1078	u32 retval = 0;
1079
1080	/* Ensure sync */
1081	mii_send_bits (dev, 0xffffffff, 32);
1082	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1083	/* ST,OP = 0110'b for read operation */
1084	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1085	mii_send_bits (dev, cmd, 14);
1086	/* Turnaround */
1087	if (mii_getbit (dev))
1088		return 0;
1089	/* Read data */
1090	for (i = 0; i < 16; i++) {
1091		retval <<= 1;
1092		retval |= mii_getbit (dev);
1093	}
1094	/* End cycle */
1095	mii_getbit (dev);
1096	return retval;
1097}
1098
1099static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1100{
1101	u32 cmd;
1102
1103	/* Ensure sync */
1104	mii_send_bits (dev, 0xffffffff, 32);
1105	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1106	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1107	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1108	mii_send_bits (dev, cmd, 32);
1109	/* End cycle */
1110	mii_getbit (dev);
1111}
1112
1113static int mdio_read(struct net_device *dev, int reg)
1114{
1115	struct netdev_private *np = netdev_priv(dev);
1116	void __iomem *ioaddr = ns_ioaddr(dev);
1117
1118	/* The 83815 series has two ports:
1119	 * - an internal transceiver
1120	 * - an external mii bus
1121	 */
1122	if (dev->if_port == PORT_TP)
1123		return readw(ioaddr+BasicControl+(reg<<2));
1124	else
1125		return miiport_read(dev, np->phy_addr_external, reg);
1126}
1127
1128static void mdio_write(struct net_device *dev, int reg, u16 data)
1129{
1130	struct netdev_private *np = netdev_priv(dev);
1131	void __iomem *ioaddr = ns_ioaddr(dev);
1132
1133	/* The 83815 series has an internal transceiver; handle separately */
1134	if (dev->if_port == PORT_TP)
1135		writew(data, ioaddr+BasicControl+(reg<<2));
1136	else
1137		miiport_write(dev, np->phy_addr_external, reg, data);
1138}
1139
1140static void init_phy_fixup(struct net_device *dev)
1141{
1142	struct netdev_private *np = netdev_priv(dev);
1143	void __iomem *ioaddr = ns_ioaddr(dev);
1144	int i;
1145	u32 cfg;
1146	u16 tmp;
1147
1148	/* restore stuff lost when power was out */
1149	tmp = mdio_read(dev, MII_BMCR);
1150	if (np->autoneg == AUTONEG_ENABLE) {
1151		/* renegotiate if something changed */
1152		if ((tmp & BMCR_ANENABLE) == 0 ||
1153		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1154		{
1155			/* turn on autonegotiation and force negotiation */
1156			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1157			mdio_write(dev, MII_ADVERTISE, np->advertising);
1158		}
1159	} else {
1160		/* turn off auto negotiation, set speed and duplexity */
1161		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1162		if (np->speed == SPEED_100)
1163			tmp |= BMCR_SPEED100;
1164		if (np->duplex == DUPLEX_FULL)
1165			tmp |= BMCR_FULLDPLX;
1166		/*
1167		 * Note: there is no good way to inform the link partner
1168		 * that our capabilities changed. The user has to unplug
1169		 * and replug the network cable after some changes, e.g.
1170		 * after switching from 10HD, autoneg off to 100 HD,
1171		 * autoneg off.
1172		 */
1173	}
1174	mdio_write(dev, MII_BMCR, tmp);
1175	readl(ioaddr + ChipConfig);
1176	udelay(1);
1177
1178	/* find out what phy this is */
1179	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1180				+ mdio_read(dev, MII_PHYSID2);
1181
1182	/* handle external phys here */
1183	switch (np->mii) {
1184	case PHYID_AM79C874:
1185		/* phy specific configuration for fibre/tp operation */
1186		tmp = mdio_read(dev, MII_MCTRL);
1187		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1188		if (dev->if_port == PORT_FIBRE)
1189			tmp |= MII_FX_SEL;
1190		else
1191			tmp |= MII_EN_SCRM;
1192		mdio_write(dev, MII_MCTRL, tmp);
1193		break;
1194	default:
1195		break;
1196	}
1197	cfg = readl(ioaddr + ChipConfig);
1198	if (cfg & CfgExtPhy)
1199		return;
1200
1201	/* On page 78 of the spec, they recommend some settings for "optimum
1202	   performance" to be done in sequence.  These settings optimize some
1203	   of the 100Mbit autodetection circuitry.  They say we only want to
1204	   do this for rev C of the chip, but engineers at NSC (Bradley
1205	   Kennedy) recommends always setting them.  If you don't, you get
1206	   errors on some autonegotiations that make the device unusable.
1207
1208	   It seems that the DSP needs a few usec to reinitialize after
1209	   the start of the phy. Just retry writing these values until they
1210	   stick.
1211	*/
1212	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1213
1214		int dspcfg;
1215		writew(1, ioaddr + PGSEL);
1216		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1217		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1218		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1219			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1220		writew(np->dspcfg, ioaddr + DSPCFG);
1221		writew(SDCFG_VAL, ioaddr + SDCFG);
1222		writew(0, ioaddr + PGSEL);
1223		readl(ioaddr + ChipConfig);
1224		udelay(10);
1225
1226		writew(1, ioaddr + PGSEL);
1227		dspcfg = readw(ioaddr + DSPCFG);
1228		writew(0, ioaddr + PGSEL);
1229		if (np->dspcfg == dspcfg)
1230			break;
1231	}
1232
1233	if (netif_msg_link(np)) {
1234		if (i==NATSEMI_HW_TIMEOUT) {
1235			printk(KERN_INFO
1236				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1237				dev->name, i*10);
1238		} else {
1239			printk(KERN_INFO
1240				"%s: DSPCFG accepted after %d usec.\n",
1241				dev->name, i*10);
1242		}
1243	}
1244	/*
1245	 * Enable PHY Specific event based interrupts.  Link state change
1246	 * and Auto-Negotiation Completion are among the affected.
1247	 * Read the intr status to clear it (needed for wake events).
1248	 */
1249	readw(ioaddr + MIntrStatus);
1250	writew(MICRIntEn, ioaddr + MIntrCtrl);
1251}
1252
1253static int switch_port_external(struct net_device *dev)
1254{
1255	struct netdev_private *np = netdev_priv(dev);
1256	void __iomem *ioaddr = ns_ioaddr(dev);
1257	u32 cfg;
1258
1259	cfg = readl(ioaddr + ChipConfig);
1260	if (cfg & CfgExtPhy)
1261		return 0;
1262
1263	if (netif_msg_link(np)) {
1264		printk(KERN_INFO "%s: switching to external transceiver.\n",
1265				dev->name);
1266	}
1267
1268	/* 1) switch back to external phy */
1269	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1270	readl(ioaddr + ChipConfig);
1271	udelay(1);
1272
1273	/* 2) reset the external phy: */
1274	/* resetting the external PHY has been known to cause a hub supplying
1275	 * power over Ethernet to kill the power.  We don't want to kill
1276	 * power to this computer, so we avoid resetting the phy.
1277	 */
1278
1279	/* 3) reinit the phy fixup, it got lost during power down. */
1280	move_int_phy(dev, np->phy_addr_external);
1281	init_phy_fixup(dev);
1282
1283	return 1;
1284}
1285
1286static int switch_port_internal(struct net_device *dev)
1287{
1288	struct netdev_private *np = netdev_priv(dev);
1289	void __iomem *ioaddr = ns_ioaddr(dev);
1290	int i;
1291	u32 cfg;
1292	u16 bmcr;
1293
1294	cfg = readl(ioaddr + ChipConfig);
1295	if (!(cfg &CfgExtPhy))
1296		return 0;
1297
1298	if (netif_msg_link(np)) {
1299		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1300				dev->name);
1301	}
1302	/* 1) switch back to internal phy: */
1303	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1304	writel(cfg, ioaddr + ChipConfig);
1305	readl(ioaddr + ChipConfig);
1306	udelay(1);
1307
1308	/* 2) reset the internal phy: */
1309	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1310	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1311	readl(ioaddr + ChipConfig);
1312	udelay(10);
1313	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1314		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1315		if (!(bmcr & BMCR_RESET))
1316			break;
1317		udelay(10);
1318	}
1319	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1320		printk(KERN_INFO
1321			"%s: phy reset did not complete in %d usec.\n",
1322			dev->name, i*10);
1323	}
1324	/* 3) reinit the phy fixup, it got lost during power down. */
1325	init_phy_fixup(dev);
1326
1327	return 1;
1328}
1329
1330/* Scan for a PHY on the external mii bus.
1331 * There are two tricky points:
1332 * - Do not scan while the internal phy is enabled. The internal phy will
1333 *   crash: e.g. reads from the DSPCFG register will return odd values and
1334 *   the nasty random phy reset code will reset the nic every few seconds.
1335 * - The internal phy must be moved around, an external phy could
1336 *   have the same address as the internal phy.
1337 */
1338static int find_mii(struct net_device *dev)
1339{
1340	struct netdev_private *np = netdev_priv(dev);
1341	int tmp;
1342	int i;
1343	int did_switch;
1344
1345	/* Switch to external phy */
1346	did_switch = switch_port_external(dev);
1347
1348	/* Scan the possible phy addresses:
1349	 *
1350	 * PHY address 0 means that the phy is in isolate mode. Not yet
1351	 * supported due to lack of test hardware. User space should
1352	 * handle it through ethtool.
1353	 */
1354	for (i = 1; i <= 31; i++) {
1355		move_int_phy(dev, i);
1356		tmp = miiport_read(dev, i, MII_BMSR);
1357		if (tmp != 0xffff && tmp != 0x0000) {
1358			/* found something! */
1359			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1360					+ mdio_read(dev, MII_PHYSID2);
1361	 		if (netif_msg_probe(np)) {
1362				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1363						pci_name(np->pci_dev), np->mii, i);
1364			}
1365			break;
1366		}
1367	}
1368	/* And switch back to internal phy: */
1369	if (did_switch)
1370		switch_port_internal(dev);
1371	return i;
1372}
1373
1374/* CFG bits [13:16] [18:23] */
1375#define CFG_RESET_SAVE 0xfde000
1376/* WCSR bits [0:4] [9:10] */
1377#define WCSR_RESET_SAVE 0x61f
1378/* RFCR bits [20] [22] [27:31] */
1379#define RFCR_RESET_SAVE 0xf8500000
1380
1381static void natsemi_reset(struct net_device *dev)
1382{
1383	int i;
1384	u32 cfg;
1385	u32 wcsr;
1386	u32 rfcr;
1387	u16 pmatch[3];
1388	u16 sopass[3];
1389	struct netdev_private *np = netdev_priv(dev);
1390	void __iomem *ioaddr = ns_ioaddr(dev);
1391
1392	/*
1393	 * Resetting the chip causes some registers to be lost.
1394	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1395	 * we save the state that would have been loaded from EEPROM
1396	 * on a normal power-up (see the spec EEPROM map).  This assumes
1397	 * whoever calls this will follow up with init_registers() eventually.
1398	 */
1399
1400	/* CFG */
1401	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1402	/* WCSR */
1403	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1404	/* RFCR */
1405	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1406	/* PMATCH */
1407	for (i = 0; i < 3; i++) {
1408		writel(i*2, ioaddr + RxFilterAddr);
1409		pmatch[i] = readw(ioaddr + RxFilterData);
1410	}
1411	/* SOPAS */
1412	for (i = 0; i < 3; i++) {
1413		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1414		sopass[i] = readw(ioaddr + RxFilterData);
1415	}
1416
1417	/* now whack the chip */
1418	writel(ChipReset, ioaddr + ChipCmd);
1419	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1420		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1421			break;
1422		udelay(5);
1423	}
1424	if (i==NATSEMI_HW_TIMEOUT) {
1425		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1426			dev->name, i*5);
1427	} else if (netif_msg_hw(np)) {
1428		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1429			dev->name, i*5);
1430	}
1431
1432	/* restore CFG */
1433	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1434	/* turn on external phy if it was selected */
1435	if (dev->if_port == PORT_TP)
1436		cfg &= ~(CfgExtPhy | CfgPhyDis);
1437	else
1438		cfg |= (CfgExtPhy | CfgPhyDis);
1439	writel(cfg, ioaddr + ChipConfig);
1440	/* restore WCSR */
1441	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1442	writel(wcsr, ioaddr + WOLCmd);
1443	/* read RFCR */
1444	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1445	/* restore PMATCH */
1446	for (i = 0; i < 3; i++) {
1447		writel(i*2, ioaddr + RxFilterAddr);
1448		writew(pmatch[i], ioaddr + RxFilterData);
1449	}
1450	for (i = 0; i < 3; i++) {
1451		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1452		writew(sopass[i], ioaddr + RxFilterData);
1453	}
1454	/* restore RFCR */
1455	writel(rfcr, ioaddr + RxFilterAddr);
1456}
1457
1458static void reset_rx(struct net_device *dev)
1459{
1460	int i;
1461	struct netdev_private *np = netdev_priv(dev);
1462	void __iomem *ioaddr = ns_ioaddr(dev);
1463
1464	np->intr_status &= ~RxResetDone;
1465
1466	writel(RxReset, ioaddr + ChipCmd);
1467
1468	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1469		np->intr_status |= readl(ioaddr + IntrStatus);
1470		if (np->intr_status & RxResetDone)
1471			break;
1472		udelay(15);
1473	}
1474	if (i==NATSEMI_HW_TIMEOUT) {
1475		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1476		       dev->name, i*15);
1477	} else if (netif_msg_hw(np)) {
1478		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1479		       dev->name, i*15);
1480	}
1481}
1482
1483static void natsemi_reload_eeprom(struct net_device *dev)
1484{
1485	struct netdev_private *np = netdev_priv(dev);
1486	void __iomem *ioaddr = ns_ioaddr(dev);
1487	int i;
1488
1489	writel(EepromReload, ioaddr + PCIBusCfg);
1490	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1491		udelay(50);
1492		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1493			break;
1494	}
1495	if (i==NATSEMI_HW_TIMEOUT) {
1496		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1497			pci_name(np->pci_dev), i*50);
1498	} else if (netif_msg_hw(np)) {
1499		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1500			pci_name(np->pci_dev), i*50);
1501	}
1502}
1503
1504static void natsemi_stop_rxtx(struct net_device *dev)
1505{
1506	void __iomem * ioaddr = ns_ioaddr(dev);
1507	struct netdev_private *np = netdev_priv(dev);
1508	int i;
1509
1510	writel(RxOff | TxOff, ioaddr + ChipCmd);
1511	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1512		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1513			break;
1514		udelay(5);
1515	}
1516	if (i==NATSEMI_HW_TIMEOUT) {
1517		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1518			dev->name, i*5);
1519	} else if (netif_msg_hw(np)) {
1520		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1521			dev->name, i*5);
1522	}
1523}
1524
1525static int netdev_open(struct net_device *dev)
1526{
1527	struct netdev_private *np = netdev_priv(dev);
1528	void __iomem * ioaddr = ns_ioaddr(dev);
1529	const int irq = np->pci_dev->irq;
1530	int i;
1531
1532	/* Reset the chip, just in case. */
1533	natsemi_reset(dev);
1534
1535	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1536	if (i) return i;
1537
1538	if (netif_msg_ifup(np))
1539		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1540			dev->name, irq);
1541	i = alloc_ring(dev);
1542	if (i < 0) {
1543		free_irq(irq, dev);
1544		return i;
1545	}
1546	napi_enable(&np->napi);
1547
1548	init_ring(dev);
1549	spin_lock_irq(&np->lock);
1550	init_registers(dev);
1551	/* now set the MAC address according to dev->dev_addr */
1552	for (i = 0; i < 3; i++) {
1553		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1554
1555		writel(i*2, ioaddr + RxFilterAddr);
1556		writew(mac, ioaddr + RxFilterData);
1557	}
1558	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1559	spin_unlock_irq(&np->lock);
1560
1561	netif_start_queue(dev);
1562
1563	if (netif_msg_ifup(np))
1564		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1565			dev->name, (int)readl(ioaddr + ChipCmd));
1566
1567	/* Set the timer to check for link beat. */
1568	init_timer(&np->timer);
1569	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1570	np->timer.data = (unsigned long)dev;
1571	np->timer.function = netdev_timer; /* timer handler */
1572	add_timer(&np->timer);
1573
1574	return 0;
1575}
1576
1577static void do_cable_magic(struct net_device *dev)
1578{
1579	struct netdev_private *np = netdev_priv(dev);
1580	void __iomem *ioaddr = ns_ioaddr(dev);
1581
1582	if (dev->if_port != PORT_TP)
1583		return;
1584
1585	if (np->srr >= SRR_DP83816_A5)
1586		return;
1587
1588	/*
1589	 * 100 MBit links with short cables can trip an issue with the chip.
1590	 * The problem manifests as lots of CRC errors and/or flickering
1591	 * activity LED while idle.  This process is based on instructions
1592	 * from engineers at National.
1593	 */
1594	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1595		u16 data;
1596
1597		writew(1, ioaddr + PGSEL);
1598		/*
1599		 * coefficient visibility should already be enabled via
1600		 * DSPCFG | 0x1000
1601		 */
1602		data = readw(ioaddr + TSTDAT) & 0xff;
1603		/*
1604		 * the value must be negative, and within certain values
1605		 * (these values all come from National)
1606		 */
1607		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1608			np = netdev_priv(dev);
1609
1610			/* the bug has been triggered - fix the coefficient */
1611			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1612			/* lock the value */
1613			data = readw(ioaddr + DSPCFG);
1614			np->dspcfg = data | DSPCFG_LOCK;
1615			writew(np->dspcfg, ioaddr + DSPCFG);
1616		}
1617		writew(0, ioaddr + PGSEL);
1618	}
1619}
1620
1621static void undo_cable_magic(struct net_device *dev)
1622{
1623	u16 data;
1624	struct netdev_private *np = netdev_priv(dev);
1625	void __iomem * ioaddr = ns_ioaddr(dev);
1626
1627	if (dev->if_port != PORT_TP)
1628		return;
1629
1630	if (np->srr >= SRR_DP83816_A5)
1631		return;
1632
1633	writew(1, ioaddr + PGSEL);
1634	/* make sure the lock bit is clear */
1635	data = readw(ioaddr + DSPCFG);
1636	np->dspcfg = data & ~DSPCFG_LOCK;
1637	writew(np->dspcfg, ioaddr + DSPCFG);
1638	writew(0, ioaddr + PGSEL);
1639}
1640
1641static void check_link(struct net_device *dev)
1642{
1643	struct netdev_private *np = netdev_priv(dev);
1644	void __iomem * ioaddr = ns_ioaddr(dev);
1645	int duplex = np->duplex;
1646	u16 bmsr;
1647
1648	/* If we are ignoring the PHY then don't try reading it. */
1649	if (np->ignore_phy)
1650		goto propagate_state;
1651
1652	/* The link status field is latched: it remains low after a temporary
1653	 * link failure until it's read. We need the current link status,
1654	 * thus read twice.
1655	 */
1656	mdio_read(dev, MII_BMSR);
1657	bmsr = mdio_read(dev, MII_BMSR);
1658
1659	if (!(bmsr & BMSR_LSTATUS)) {
1660		if (netif_carrier_ok(dev)) {
1661			if (netif_msg_link(np))
1662				printk(KERN_NOTICE "%s: link down.\n",
1663				       dev->name);
1664			netif_carrier_off(dev);
1665			undo_cable_magic(dev);
1666		}
1667		return;
1668	}
1669	if (!netif_carrier_ok(dev)) {
1670		if (netif_msg_link(np))
1671			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1672		netif_carrier_on(dev);
1673		do_cable_magic(dev);
1674	}
1675
1676	duplex = np->full_duplex;
1677	if (!duplex) {
1678		if (bmsr & BMSR_ANEGCOMPLETE) {
1679			int tmp = mii_nway_result(
1680				np->advertising & mdio_read(dev, MII_LPA));
1681			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1682				duplex = 1;
1683		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1684			duplex = 1;
1685	}
1686
1687propagate_state:
1688	/* if duplex is set then bit 28 must be set, too */
1689	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1690		if (netif_msg_link(np))
1691			printk(KERN_INFO
1692				"%s: Setting %s-duplex based on negotiated "
1693				"link capability.\n", dev->name,
1694				duplex ? "full" : "half");
1695		if (duplex) {
1696			np->rx_config |= RxAcceptTx;
1697			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1698		} else {
1699			np->rx_config &= ~RxAcceptTx;
1700			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1701		}
1702		writel(np->tx_config, ioaddr + TxConfig);
1703		writel(np->rx_config, ioaddr + RxConfig);
1704	}
1705}
1706
1707static void init_registers(struct net_device *dev)
1708{
1709	struct netdev_private *np = netdev_priv(dev);
1710	void __iomem * ioaddr = ns_ioaddr(dev);
1711
1712	init_phy_fixup(dev);
1713
1714	/* clear any interrupts that are pending, such as wake events */
1715	readl(ioaddr + IntrStatus);
1716
1717	writel(np->ring_dma, ioaddr + RxRingPtr);
1718	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1719		ioaddr + TxRingPtr);
1720
1721	/* Initialize other registers.
1722	 * Configure the PCI bus bursts and FIFO thresholds.
1723	 * Configure for standard, in-spec Ethernet.
1724	 * Start with half-duplex. check_link will update
1725	 * to the correct settings.
1726	 */
1727
1728	/* DRTH: 2: start tx if 64 bytes are in the fifo
1729	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1730	 * MXDMA: 0: up to 256 byte bursts.
1731	 * 	MXDMA must be <= FLTH
1732	 * ECRETRY=1
1733	 * ATP=1
1734	 */
1735	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1736				TX_FLTH_VAL | TX_DRTH_VAL_START;
1737	writel(np->tx_config, ioaddr + TxConfig);
1738
1739	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1740	 * MXDMA 0: up to 256 byte bursts
1741	 */
1742	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1743	/* if receive ring now has bigger buffers than normal, enable jumbo */
1744	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1745		np->rx_config |= RxAcceptLong;
1746
1747	writel(np->rx_config, ioaddr + RxConfig);
1748
1749	/* Disable PME:
1750	 * The PME bit is initialized from the EEPROM contents.
1751	 * PCI cards probably have PME disabled, but motherboard
1752	 * implementations may have PME set to enable WakeOnLan.
1753	 * With PME set the chip will scan incoming packets but
1754	 * nothing will be written to memory. */
1755	np->SavedClkRun = readl(ioaddr + ClkRun);
1756	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1757	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1758		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1759			dev->name, readl(ioaddr + WOLCmd));
1760	}
1761
1762	check_link(dev);
1763	__set_rx_mode(dev);
1764
1765	/* Enable interrupts by setting the interrupt mask. */
1766	writel(DEFAULT_INTR, ioaddr + IntrMask);
1767	natsemi_irq_enable(dev);
1768
1769	writel(RxOn | TxOn, ioaddr + ChipCmd);
1770	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1771}
1772
1773/*
1774 * netdev_timer:
1775 * Purpose:
1776 * 1) check for link changes. Usually they are handled by the MII interrupt
1777 *    but it doesn't hurt to check twice.
1778 * 2) check for sudden death of the NIC:
1779 *    It seems that a reference set for this chip went out with incorrect info,
1780 *    and there exist boards that aren't quite right.  An unexpected voltage
1781 *    drop can cause the PHY to get itself in a weird state (basically reset).
1782 *    NOTE: this only seems to affect revC chips.  The user can disable
1783 *    this check via dspcfg_workaround sysfs option.
1784 * 3) check of death of the RX path due to OOM
1785 */
1786static void netdev_timer(unsigned long data)
1787{
1788	struct net_device *dev = (struct net_device *)data;
1789	struct netdev_private *np = netdev_priv(dev);
1790	void __iomem * ioaddr = ns_ioaddr(dev);
1791	int next_tick = NATSEMI_TIMER_FREQ;
1792	const int irq = np->pci_dev->irq;
1793
1794	if (netif_msg_timer(np)) {
1795		/* DO NOT read the IntrStatus register,
1796		 * a read clears any pending interrupts.
1797		 */
1798		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1799			dev->name);
1800	}
1801
1802	if (dev->if_port == PORT_TP) {
1803		u16 dspcfg;
1804
1805		spin_lock_irq(&np->lock);
1806		/* check for a nasty random phy-reset - use dspcfg as a flag */
1807		writew(1, ioaddr+PGSEL);
1808		dspcfg = readw(ioaddr+DSPCFG);
1809		writew(0, ioaddr+PGSEL);
1810		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1811			if (!netif_queue_stopped(dev)) {
1812				spin_unlock_irq(&np->lock);
1813				if (netif_msg_drv(np))
1814					printk(KERN_NOTICE "%s: possible phy reset: "
1815						"re-initializing\n", dev->name);
1816				disable_irq(irq);
1817				spin_lock_irq(&np->lock);
1818				natsemi_stop_rxtx(dev);
1819				dump_ring(dev);
1820				reinit_ring(dev);
1821				init_registers(dev);
1822				spin_unlock_irq(&np->lock);
1823				enable_irq(irq);
1824			} else {
1825				/* hurry back */
1826				next_tick = HZ;
1827				spin_unlock_irq(&np->lock);
1828			}
1829		} else {
1830			/* init_registers() calls check_link() for the above case */
1831			check_link(dev);
1832			spin_unlock_irq(&np->lock);
1833		}
1834	} else {
1835		spin_lock_irq(&np->lock);
1836		check_link(dev);
1837		spin_unlock_irq(&np->lock);
1838	}
1839	if (np->oom) {
1840		disable_irq(irq);
1841		np->oom = 0;
1842		refill_rx(dev);
1843		enable_irq(irq);
1844		if (!np->oom) {
1845			writel(RxOn, ioaddr + ChipCmd);
1846		} else {
1847			next_tick = 1;
1848		}
1849	}
1850
1851	if (next_tick > 1)
1852		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1853	else
1854		mod_timer(&np->timer, jiffies + next_tick);
1855}
1856
1857static void dump_ring(struct net_device *dev)
1858{
1859	struct netdev_private *np = netdev_priv(dev);
1860
1861	if (netif_msg_pktdata(np)) {
1862		int i;
1863		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1864		for (i = 0; i < TX_RING_SIZE; i++) {
1865			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1866				i, np->tx_ring[i].next_desc,
1867				np->tx_ring[i].cmd_status,
1868				np->tx_ring[i].addr);
1869		}
1870		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1871		for (i = 0; i < RX_RING_SIZE; i++) {
1872			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1873				i, np->rx_ring[i].next_desc,
1874				np->rx_ring[i].cmd_status,
1875				np->rx_ring[i].addr);
1876		}
1877	}
1878}
1879
1880static void ns_tx_timeout(struct net_device *dev)
1881{
1882	struct netdev_private *np = netdev_priv(dev);
1883	void __iomem * ioaddr = ns_ioaddr(dev);
1884	const int irq = np->pci_dev->irq;
1885
1886	disable_irq(irq);
1887	spin_lock_irq(&np->lock);
1888	if (!np->hands_off) {
1889		if (netif_msg_tx_err(np))
1890			printk(KERN_WARNING
1891				"%s: Transmit timed out, status %#08x,"
1892				" resetting...\n",
1893				dev->name, readl(ioaddr + IntrStatus));
1894		dump_ring(dev);
1895
1896		natsemi_reset(dev);
1897		reinit_ring(dev);
1898		init_registers(dev);
1899	} else {
1900		printk(KERN_WARNING
1901			"%s: tx_timeout while in hands_off state?\n",
1902			dev->name);
1903	}
1904	spin_unlock_irq(&np->lock);
1905	enable_irq(irq);
1906
1907	dev->trans_start = jiffies; /* prevent tx timeout */
1908	dev->stats.tx_errors++;
1909	netif_wake_queue(dev);
1910}
1911
1912static int alloc_ring(struct net_device *dev)
1913{
1914	struct netdev_private *np = netdev_priv(dev);
1915	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1916		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1917		&np->ring_dma);
1918	if (!np->rx_ring)
1919		return -ENOMEM;
1920	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1921	return 0;
1922}
1923
1924static void refill_rx(struct net_device *dev)
1925{
1926	struct netdev_private *np = netdev_priv(dev);
1927
1928	/* Refill the Rx ring buffers. */
1929	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1930		struct sk_buff *skb;
1931		int entry = np->dirty_rx % RX_RING_SIZE;
1932		if (np->rx_skbuff[entry] == NULL) {
1933			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1934			skb = netdev_alloc_skb(dev, buflen);
1935			np->rx_skbuff[entry] = skb;
1936			if (skb == NULL)
1937				break; /* Better luck next round. */
1938			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1939				skb->data, buflen, PCI_DMA_FROMDEVICE);
1940			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1941		}
1942		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1943	}
1944	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1945		if (netif_msg_rx_err(np))
1946			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1947		np->oom = 1;
1948	}
1949}
1950
1951static void set_bufsize(struct net_device *dev)
1952{
1953	struct netdev_private *np = netdev_priv(dev);
1954	if (dev->mtu <= ETH_DATA_LEN)
1955		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1956	else
1957		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1958}
1959
1960/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1961static void init_ring(struct net_device *dev)
1962{
1963	struct netdev_private *np = netdev_priv(dev);
1964	int i;
1965
1966	/* 1) TX ring */
1967	np->dirty_tx = np->cur_tx = 0;
1968	for (i = 0; i < TX_RING_SIZE; i++) {
1969		np->tx_skbuff[i] = NULL;
1970		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1971			+sizeof(struct netdev_desc)
1972			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1973		np->tx_ring[i].cmd_status = 0;
1974	}
1975
1976	/* 2) RX ring */
1977	np->dirty_rx = 0;
1978	np->cur_rx = RX_RING_SIZE;
1979	np->oom = 0;
1980	set_bufsize(dev);
1981
1982	np->rx_head_desc = &np->rx_ring[0];
1983
1984	/* Please be careful before changing this loop - at least gcc-2.95.1
1985	 * miscompiles it otherwise.
1986	 */
1987	/* Initialize all Rx descriptors. */
1988	for (i = 0; i < RX_RING_SIZE; i++) {
1989		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1990				+sizeof(struct netdev_desc)
1991				*((i+1)%RX_RING_SIZE));
1992		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1993		np->rx_skbuff[i] = NULL;
1994	}
1995	refill_rx(dev);
1996	dump_ring(dev);
1997}
1998
1999static void drain_tx(struct net_device *dev)
2000{
2001	struct netdev_private *np = netdev_priv(dev);
2002	int i;
2003
2004	for (i = 0; i < TX_RING_SIZE; i++) {
2005		if (np->tx_skbuff[i]) {
2006			pci_unmap_single(np->pci_dev,
2007				np->tx_dma[i], np->tx_skbuff[i]->len,
2008				PCI_DMA_TODEVICE);
2009			dev_kfree_skb(np->tx_skbuff[i]);
2010			dev->stats.tx_dropped++;
2011		}
2012		np->tx_skbuff[i] = NULL;
2013	}
2014}
2015
2016static void drain_rx(struct net_device *dev)
2017{
2018	struct netdev_private *np = netdev_priv(dev);
2019	unsigned int buflen = np->rx_buf_sz;
2020	int i;
2021
2022	/* Free all the skbuffs in the Rx queue. */
2023	for (i = 0; i < RX_RING_SIZE; i++) {
2024		np->rx_ring[i].cmd_status = 0;
2025		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2026		if (np->rx_skbuff[i]) {
2027			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2028				buflen + NATSEMI_PADDING,
2029				PCI_DMA_FROMDEVICE);
2030			dev_kfree_skb(np->rx_skbuff[i]);
2031		}
2032		np->rx_skbuff[i] = NULL;
2033	}
2034}
2035
2036static void drain_ring(struct net_device *dev)
2037{
2038	drain_rx(dev);
2039	drain_tx(dev);
2040}
2041
2042static void free_ring(struct net_device *dev)
2043{
2044	struct netdev_private *np = netdev_priv(dev);
2045	pci_free_consistent(np->pci_dev,
2046		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2047		np->rx_ring, np->ring_dma);
2048}
2049
2050static void reinit_rx(struct net_device *dev)
2051{
2052	struct netdev_private *np = netdev_priv(dev);
2053	int i;
2054
2055	/* RX Ring */
2056	np->dirty_rx = 0;
2057	np->cur_rx = RX_RING_SIZE;
2058	np->rx_head_desc = &np->rx_ring[0];
2059	/* Initialize all Rx descriptors. */
2060	for (i = 0; i < RX_RING_SIZE; i++)
2061		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2062
2063	refill_rx(dev);
2064}
2065
2066static void reinit_ring(struct net_device *dev)
2067{
2068	struct netdev_private *np = netdev_priv(dev);
2069	int i;
2070
2071	/* drain TX ring */
2072	drain_tx(dev);
2073	np->dirty_tx = np->cur_tx = 0;
2074	for (i=0;i<TX_RING_SIZE;i++)
2075		np->tx_ring[i].cmd_status = 0;
2076
2077	reinit_rx(dev);
2078}
2079
2080static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2081{
2082	struct netdev_private *np = netdev_priv(dev);
2083	void __iomem * ioaddr = ns_ioaddr(dev);
2084	unsigned entry;
2085	unsigned long flags;
2086
2087	/* Note: Ordering is important here, set the field with the
2088	   "ownership" bit last, and only then increment cur_tx. */
2089
2090	/* Calculate the next Tx descriptor entry. */
2091	entry = np->cur_tx % TX_RING_SIZE;
2092
2093	np->tx_skbuff[entry] = skb;
2094	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2095				skb->data,skb->len, PCI_DMA_TODEVICE);
2096
2097	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2098
2099	spin_lock_irqsave(&np->lock, flags);
2100
2101	if (!np->hands_off) {
2102		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2103		/* StrongARM: Explicitly cache flush np->tx_ring and
2104		 * skb->data,skb->len. */
2105		wmb();
2106		np->cur_tx++;
2107		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2108			netdev_tx_done(dev);
2109			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2110				netif_stop_queue(dev);
2111		}
2112		/* Wake the potentially-idle transmit channel. */
2113		writel(TxOn, ioaddr + ChipCmd);
2114	} else {
2115		dev_kfree_skb_irq(skb);
2116		dev->stats.tx_dropped++;
2117	}
2118	spin_unlock_irqrestore(&np->lock, flags);
2119
2120	if (netif_msg_tx_queued(np)) {
2121		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2122			dev->name, np->cur_tx, entry);
2123	}
2124	return NETDEV_TX_OK;
2125}
2126
2127static void netdev_tx_done(struct net_device *dev)
2128{
2129	struct netdev_private *np = netdev_priv(dev);
2130
2131	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2132		int entry = np->dirty_tx % TX_RING_SIZE;
2133		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2134			break;
2135		if (netif_msg_tx_done(np))
2136			printk(KERN_DEBUG
2137				"%s: tx frame #%d finished, status %#08x.\n",
2138					dev->name, np->dirty_tx,
2139					le32_to_cpu(np->tx_ring[entry].cmd_status));
2140		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2141			dev->stats.tx_packets++;
2142			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2143		} else { /* Various Tx errors */
2144			int tx_status =
2145				le32_to_cpu(np->tx_ring[entry].cmd_status);
2146			if (tx_status & (DescTxAbort|DescTxExcColl))
2147				dev->stats.tx_aborted_errors++;
2148			if (tx_status & DescTxFIFO)
2149				dev->stats.tx_fifo_errors++;
2150			if (tx_status & DescTxCarrier)
2151				dev->stats.tx_carrier_errors++;
2152			if (tx_status & DescTxOOWCol)
2153				dev->stats.tx_window_errors++;
2154			dev->stats.tx_errors++;
2155		}
2156		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2157					np->tx_skbuff[entry]->len,
2158					PCI_DMA_TODEVICE);
2159		/* Free the original skb. */
2160		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2161		np->tx_skbuff[entry] = NULL;
2162	}
2163	if (netif_queue_stopped(dev) &&
2164	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2165		/* The ring is no longer full, wake queue. */
2166		netif_wake_queue(dev);
2167	}
2168}
2169
2170/* The interrupt handler doesn't actually handle interrupts itself, it
2171 * schedules a NAPI poll if there is anything to do. */
2172static irqreturn_t intr_handler(int irq, void *dev_instance)
2173{
2174	struct net_device *dev = dev_instance;
2175	struct netdev_private *np = netdev_priv(dev);
2176	void __iomem * ioaddr = ns_ioaddr(dev);
2177
2178	/* Reading IntrStatus automatically acknowledges so don't do
2179	 * that while interrupts are disabled, (for example, while a
2180	 * poll is scheduled).  */
2181	if (np->hands_off || !readl(ioaddr + IntrEnable))
2182		return IRQ_NONE;
2183
2184	np->intr_status = readl(ioaddr + IntrStatus);
2185
2186	if (!np->intr_status)
2187		return IRQ_NONE;
2188
2189	if (netif_msg_intr(np))
2190		printk(KERN_DEBUG
2191		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2192		       dev->name, np->intr_status,
2193		       readl(ioaddr + IntrMask));
2194
2195	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2196
2197	if (napi_schedule_prep(&np->napi)) {
2198		/* Disable interrupts and register for poll */
2199		natsemi_irq_disable(dev);
2200		__napi_schedule(&np->napi);
2201	} else
2202		printk(KERN_WARNING
2203	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2204		       dev->name, np->intr_status,
2205		       readl(ioaddr + IntrMask));
2206
2207	return IRQ_HANDLED;
2208}
2209
2210/* This is the NAPI poll routine.  As well as the standard RX handling
2211 * it also handles all other interrupts that the chip might raise.
2212 */
2213static int natsemi_poll(struct napi_struct *napi, int budget)
2214{
2215	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2216	struct net_device *dev = np->dev;
2217	void __iomem * ioaddr = ns_ioaddr(dev);
2218	int work_done = 0;
2219
2220	do {
2221		if (netif_msg_intr(np))
2222			printk(KERN_DEBUG
2223			       "%s: Poll, status %#08x, mask %#08x.\n",
2224			       dev->name, np->intr_status,
2225			       readl(ioaddr + IntrMask));
2226
2227		/* netdev_rx() may read IntrStatus again if the RX state
2228		 * machine falls over so do it first. */
2229		if (np->intr_status &
2230		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2231		     IntrRxErr | IntrRxOverrun)) {
2232			netdev_rx(dev, &work_done, budget);
2233		}
2234
2235		if (np->intr_status &
2236		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2237			spin_lock(&np->lock);
2238			netdev_tx_done(dev);
2239			spin_unlock(&np->lock);
2240		}
2241
2242		/* Abnormal error summary/uncommon events handlers. */
2243		if (np->intr_status & IntrAbnormalSummary)
2244			netdev_error(dev, np->intr_status);
2245
2246		if (work_done >= budget)
2247			return work_done;
2248
2249		np->intr_status = readl(ioaddr + IntrStatus);
2250	} while (np->intr_status);
2251
2252	napi_complete(napi);
2253
2254	/* Reenable interrupts providing nothing is trying to shut
2255	 * the chip down. */
2256	spin_lock(&np->lock);
2257	if (!np->hands_off)
2258		natsemi_irq_enable(dev);
2259	spin_unlock(&np->lock);
2260
2261	return work_done;
2262}
2263
2264/* This routine is logically part of the interrupt handler, but separated
2265   for clarity and better register allocation. */
2266static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2267{
2268	struct netdev_private *np = netdev_priv(dev);
2269	int entry = np->cur_rx % RX_RING_SIZE;
2270	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2271	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2272	unsigned int buflen = np->rx_buf_sz;
2273	void __iomem * ioaddr = ns_ioaddr(dev);
2274
2275	/* If the driver owns the next entry it's a new packet. Send it up. */
2276	while (desc_status < 0) { /* e.g. & DescOwn */
2277		int pkt_len;
2278		if (netif_msg_rx_status(np))
2279			printk(KERN_DEBUG
2280				"  netdev_rx() entry %d status was %#08x.\n",
2281				entry, desc_status);
2282		if (--boguscnt < 0)
2283			break;
2284
2285		if (*work_done >= work_to_do)
2286			break;
2287
2288		(*work_done)++;
2289
2290		pkt_len = (desc_status & DescSizeMask) - 4;
2291		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2292			if (desc_status & DescMore) {
2293				unsigned long flags;
2294
2295				if (netif_msg_rx_err(np))
2296					printk(KERN_WARNING
2297						"%s: Oversized(?) Ethernet "
2298						"frame spanned multiple "
2299						"buffers, entry %#08x "
2300						"status %#08x.\n", dev->name,
2301						np->cur_rx, desc_status);
2302				dev->stats.rx_length_errors++;
2303
2304				/* The RX state machine has probably
2305				 * locked up beneath us.  Follow the
2306				 * reset procedure documented in
2307				 * AN-1287. */
2308
2309				spin_lock_irqsave(&np->lock, flags);
2310				reset_rx(dev);
2311				reinit_rx(dev);
2312				writel(np->ring_dma, ioaddr + RxRingPtr);
2313				check_link(dev);
2314				spin_unlock_irqrestore(&np->lock, flags);
2315
2316				/* We'll enable RX on exit from this
2317				 * function. */
2318				break;
2319
2320			} else {
2321				/* There was an error. */
2322				dev->stats.rx_errors++;
2323				if (desc_status & (DescRxAbort|DescRxOver))
2324					dev->stats.rx_over_errors++;
2325				if (desc_status & (DescRxLong|DescRxRunt))
2326					dev->stats.rx_length_errors++;
2327				if (desc_status & (DescRxInvalid|DescRxAlign))
2328					dev->stats.rx_frame_errors++;
2329				if (desc_status & DescRxCRC)
2330					dev->stats.rx_crc_errors++;
2331			}
2332		} else if (pkt_len > np->rx_buf_sz) {
2333			/* if this is the tail of a double buffer
2334			 * packet, we've already counted the error
2335			 * on the first part.  Ignore the second half.
2336			 */
2337		} else {
2338			struct sk_buff *skb;
2339			/* Omit CRC size. */
2340			/* Check if the packet is long enough to accept
2341			 * without copying to a minimally-sized skbuff. */
2342			if (pkt_len < rx_copybreak &&
2343			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2344				/* 16 byte align the IP header */
2345				skb_reserve(skb, RX_OFFSET);
2346				pci_dma_sync_single_for_cpu(np->pci_dev,
2347					np->rx_dma[entry],
2348					buflen,
2349					PCI_DMA_FROMDEVICE);
2350				skb_copy_to_linear_data(skb,
2351					np->rx_skbuff[entry]->data, pkt_len);
2352				skb_put(skb, pkt_len);
2353				pci_dma_sync_single_for_device(np->pci_dev,
2354					np->rx_dma[entry],
2355					buflen,
2356					PCI_DMA_FROMDEVICE);
2357			} else {
2358				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2359						 buflen + NATSEMI_PADDING,
2360						 PCI_DMA_FROMDEVICE);
2361				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2362				np->rx_skbuff[entry] = NULL;
2363			}
2364			skb->protocol = eth_type_trans(skb, dev);
2365			netif_receive_skb(skb);
2366			dev->stats.rx_packets++;
2367			dev->stats.rx_bytes += pkt_len;
2368		}
2369		entry = (++np->cur_rx) % RX_RING_SIZE;
2370		np->rx_head_desc = &np->rx_ring[entry];
2371		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2372	}
2373	refill_rx(dev);
2374
2375	/* Restart Rx engine if stopped. */
2376	if (np->oom)
2377		mod_timer(&np->timer, jiffies + 1);
2378	else
2379		writel(RxOn, ioaddr + ChipCmd);
2380}
2381
2382static void netdev_error(struct net_device *dev, int intr_status)
2383{
2384	struct netdev_private *np = netdev_priv(dev);
2385	void __iomem * ioaddr = ns_ioaddr(dev);
2386
2387	spin_lock(&np->lock);
2388	if (intr_status & LinkChange) {
2389		u16 lpa = mdio_read(dev, MII_LPA);
2390		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2391		    netif_msg_link(np)) {
2392			printk(KERN_INFO
2393				"%s: Autonegotiation advertising"
2394				" %#04x  partner %#04x.\n", dev->name,
2395				np->advertising, lpa);
2396		}
2397
2398		/* read MII int status to clear the flag */
2399		readw(ioaddr + MIntrStatus);
2400		check_link(dev);
2401	}
2402	if (intr_status & StatsMax) {
2403		__get_stats(dev);
2404	}
2405	if (intr_status & IntrTxUnderrun) {
2406		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2407			np->tx_config += TX_DRTH_VAL_INC;
2408			if (netif_msg_tx_err(np))
2409				printk(KERN_NOTICE
2410					"%s: increased tx threshold, txcfg %#08x.\n",
2411					dev->name, np->tx_config);
2412		} else {
2413			if (netif_msg_tx_err(np))
2414				printk(KERN_NOTICE
2415					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2416					dev->name, np->tx_config);
2417		}
2418		writel(np->tx_config, ioaddr + TxConfig);
2419	}
2420	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2421		int wol_status = readl(ioaddr + WOLCmd);
2422		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2423			dev->name, wol_status);
2424	}
2425	if (intr_status & RxStatusFIFOOver) {
2426		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2427			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2428				dev->name);
2429		}
2430		dev->stats.rx_fifo_errors++;
2431		dev->stats.rx_errors++;
2432	}
2433	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2434	if (intr_status & IntrPCIErr) {
2435		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2436			intr_status & IntrPCIErr);
2437		dev->stats.tx_fifo_errors++;
2438		dev->stats.tx_errors++;
2439		dev->stats.rx_fifo_errors++;
2440		dev->stats.rx_errors++;
2441	}
2442	spin_unlock(&np->lock);
2443}
2444
2445static void __get_stats(struct net_device *dev)
2446{
2447	void __iomem * ioaddr = ns_ioaddr(dev);
2448
2449	/* The chip only need report frame silently dropped. */
2450	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2451	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2452}
2453
2454static struct net_device_stats *get_stats(struct net_device *dev)
2455{
2456	struct netdev_private *np = netdev_priv(dev);
2457
2458	/* The chip only need report frame silently dropped. */
2459	spin_lock_irq(&np->lock);
2460	if (netif_running(dev) && !np->hands_off)
2461		__get_stats(dev);
2462	spin_unlock_irq(&np->lock);
2463
2464	return &dev->stats;
2465}
2466
2467#ifdef CONFIG_NET_POLL_CONTROLLER
2468static void natsemi_poll_controller(struct net_device *dev)
2469{
2470	struct netdev_private *np = netdev_priv(dev);
2471	const int irq = np->pci_dev->irq;
2472
2473	disable_irq(irq);
2474	intr_handler(irq, dev);
2475	enable_irq(irq);
2476}
2477#endif
2478
2479#define HASH_TABLE	0x200
2480static void __set_rx_mode(struct net_device *dev)
2481{
2482	void __iomem * ioaddr = ns_ioaddr(dev);
2483	struct netdev_private *np = netdev_priv(dev);
2484	u8 mc_filter[64]; /* Multicast hash filter */
2485	u32 rx_mode;
2486
2487	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2488		rx_mode = RxFilterEnable | AcceptBroadcast
2489			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2490	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2491		   (dev->flags & IFF_ALLMULTI)) {
2492		rx_mode = RxFilterEnable | AcceptBroadcast
2493			| AcceptAllMulticast | AcceptMyPhys;
2494	} else {
2495		struct netdev_hw_addr *ha;
2496		int i;
2497
2498		memset(mc_filter, 0, sizeof(mc_filter));
2499		netdev_for_each_mc_addr(ha, dev) {
2500			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2501			mc_filter[b/8] |= (1 << (b & 0x07));
2502		}
2503		rx_mode = RxFilterEnable | AcceptBroadcast
2504			| AcceptMulticast | AcceptMyPhys;
2505		for (i = 0; i < 64; i += 2) {
2506			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2507			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2508			       ioaddr + RxFilterData);
2509		}
2510	}
2511	writel(rx_mode, ioaddr + RxFilterAddr);
2512	np->cur_rx_mode = rx_mode;
2513}
2514
2515static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2516{
2517	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2518		return -EINVAL;
2519
2520	dev->mtu = new_mtu;
2521
2522	/* synchronized against open : rtnl_lock() held by caller */
2523	if (netif_running(dev)) {
2524		struct netdev_private *np = netdev_priv(dev);
2525		void __iomem * ioaddr = ns_ioaddr(dev);
2526		const int irq = np->pci_dev->irq;
2527
2528		disable_irq(irq);
2529		spin_lock(&np->lock);
2530		/* stop engines */
2531		natsemi_stop_rxtx(dev);
2532		/* drain rx queue */
2533		drain_rx(dev);
2534		/* change buffers */
2535		set_bufsize(dev);
2536		reinit_rx(dev);
2537		writel(np->ring_dma, ioaddr + RxRingPtr);
2538		/* restart engines */
2539		writel(RxOn | TxOn, ioaddr + ChipCmd);
2540		spin_unlock(&np->lock);
2541		enable_irq(irq);
2542	}
2543	return 0;
2544}
2545
2546static void set_rx_mode(struct net_device *dev)
2547{
2548	struct netdev_private *np = netdev_priv(dev);
2549	spin_lock_irq(&np->lock);
2550	if (!np->hands_off)
2551		__set_rx_mode(dev);
2552	spin_unlock_irq(&np->lock);
2553}
2554
2555static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556{
2557	struct netdev_private *np = netdev_priv(dev);
2558	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2559	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2560	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2561}
2562
2563static int get_regs_len(struct net_device *dev)
2564{
2565	return NATSEMI_REGS_SIZE;
2566}
2567
2568static int get_eeprom_len(struct net_device *dev)
2569{
2570	struct netdev_private *np = netdev_priv(dev);
2571	return np->eeprom_size;
2572}
2573
2574static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575{
2576	struct netdev_private *np = netdev_priv(dev);
2577	spin_lock_irq(&np->lock);
2578	netdev_get_ecmd(dev, ecmd);
2579	spin_unlock_irq(&np->lock);
2580	return 0;
2581}
2582
2583static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584{
2585	struct netdev_private *np = netdev_priv(dev);
2586	int res;
2587	spin_lock_irq(&np->lock);
2588	res = netdev_set_ecmd(dev, ecmd);
2589	spin_unlock_irq(&np->lock);
2590	return res;
2591}
2592
2593static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594{
2595	struct netdev_private *np = netdev_priv(dev);
2596	spin_lock_irq(&np->lock);
2597	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2598	netdev_get_sopass(dev, wol->sopass);
2599	spin_unlock_irq(&np->lock);
2600}
2601
2602static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603{
2604	struct netdev_private *np = netdev_priv(dev);
2605	int res;
2606	spin_lock_irq(&np->lock);
2607	netdev_set_wol(dev, wol->wolopts);
2608	res = netdev_set_sopass(dev, wol->sopass);
2609	spin_unlock_irq(&np->lock);
2610	return res;
2611}
2612
2613static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614{
2615	struct netdev_private *np = netdev_priv(dev);
2616	regs->version = NATSEMI_REGS_VER;
2617	spin_lock_irq(&np->lock);
2618	netdev_get_regs(dev, buf);
2619	spin_unlock_irq(&np->lock);
2620}
2621
2622static u32 get_msglevel(struct net_device *dev)
2623{
2624	struct netdev_private *np = netdev_priv(dev);
2625	return np->msg_enable;
2626}
2627
2628static void set_msglevel(struct net_device *dev, u32 val)
2629{
2630	struct netdev_private *np = netdev_priv(dev);
2631	np->msg_enable = val;
2632}
2633
2634static int nway_reset(struct net_device *dev)
2635{
2636	int tmp;
2637	int r = -EINVAL;
2638	/* if autoneg is off, it's an error */
2639	tmp = mdio_read(dev, MII_BMCR);
2640	if (tmp & BMCR_ANENABLE) {
2641		tmp |= (BMCR_ANRESTART);
2642		mdio_write(dev, MII_BMCR, tmp);
2643		r = 0;
2644	}
2645	return r;
2646}
2647
2648static u32 get_link(struct net_device *dev)
2649{
2650	/* LSTATUS is latched low until a read - so read twice */
2651	mdio_read(dev, MII_BMSR);
2652	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2653}
2654
2655static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656{
2657	struct netdev_private *np = netdev_priv(dev);
2658	u8 *eebuf;
2659	int res;
2660
2661	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2662	if (!eebuf)
2663		return -ENOMEM;
2664
2665	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2666	spin_lock_irq(&np->lock);
2667	res = netdev_get_eeprom(dev, eebuf);
2668	spin_unlock_irq(&np->lock);
2669	if (!res)
2670		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2671	kfree(eebuf);
2672	return res;
2673}
2674
2675static const struct ethtool_ops ethtool_ops = {
2676	.get_drvinfo = get_drvinfo,
2677	.get_regs_len = get_regs_len,
2678	.get_eeprom_len = get_eeprom_len,
2679	.get_settings = get_settings,
2680	.set_settings = set_settings,
2681	.get_wol = get_wol,
2682	.set_wol = set_wol,
2683	.get_regs = get_regs,
2684	.get_msglevel = get_msglevel,
2685	.set_msglevel = set_msglevel,
2686	.nway_reset = nway_reset,
2687	.get_link = get_link,
2688	.get_eeprom = get_eeprom,
2689};
2690
2691static int netdev_set_wol(struct net_device *dev, u32 newval)
2692{
2693	struct netdev_private *np = netdev_priv(dev);
2694	void __iomem * ioaddr = ns_ioaddr(dev);
2695	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696
2697	/* translate to bitmasks this chip understands */
2698	if (newval & WAKE_PHY)
2699		data |= WakePhy;
2700	if (newval & WAKE_UCAST)
2701		data |= WakeUnicast;
2702	if (newval & WAKE_MCAST)
2703		data |= WakeMulticast;
2704	if (newval & WAKE_BCAST)
2705		data |= WakeBroadcast;
2706	if (newval & WAKE_ARP)
2707		data |= WakeArp;
2708	if (newval & WAKE_MAGIC)
2709		data |= WakeMagic;
2710	if (np->srr >= SRR_DP83815_D) {
2711		if (newval & WAKE_MAGICSECURE) {
2712			data |= WakeMagicSecure;
2713		}
2714	}
2715
2716	writel(data, ioaddr + WOLCmd);
2717
2718	return 0;
2719}
2720
2721static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722{
2723	struct netdev_private *np = netdev_priv(dev);
2724	void __iomem * ioaddr = ns_ioaddr(dev);
2725	u32 regval = readl(ioaddr + WOLCmd);
2726
2727	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2728			| WAKE_ARP | WAKE_MAGIC);
2729
2730	if (np->srr >= SRR_DP83815_D) {
2731		/* SOPASS works on revD and higher */
2732		*supported |= WAKE_MAGICSECURE;
2733	}
2734	*cur = 0;
2735
2736	/* translate from chip bitmasks */
2737	if (regval & WakePhy)
2738		*cur |= WAKE_PHY;
2739	if (regval & WakeUnicast)
2740		*cur |= WAKE_UCAST;
2741	if (regval & WakeMulticast)
2742		*cur |= WAKE_MCAST;
2743	if (regval & WakeBroadcast)
2744		*cur |= WAKE_BCAST;
2745	if (regval & WakeArp)
2746		*cur |= WAKE_ARP;
2747	if (regval & WakeMagic)
2748		*cur |= WAKE_MAGIC;
2749	if (regval & WakeMagicSecure) {
2750		/* this can be on in revC, but it's broken */
2751		*cur |= WAKE_MAGICSECURE;
2752	}
2753
2754	return 0;
2755}
2756
2757static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758{
2759	struct netdev_private *np = netdev_priv(dev);
2760	void __iomem * ioaddr = ns_ioaddr(dev);
2761	u16 *sval = (u16 *)newval;
2762	u32 addr;
2763
2764	if (np->srr < SRR_DP83815_D) {
2765		return 0;
2766	}
2767
2768	/* enable writing to these registers by disabling the RX filter */
2769	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2770	addr &= ~RxFilterEnable;
2771	writel(addr, ioaddr + RxFilterAddr);
2772
2773	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2774	writel(addr | 0xa, ioaddr + RxFilterAddr);
2775	writew(sval[0], ioaddr + RxFilterData);
2776
2777	writel(addr | 0xc, ioaddr + RxFilterAddr);
2778	writew(sval[1], ioaddr + RxFilterData);
2779
2780	writel(addr | 0xe, ioaddr + RxFilterAddr);
2781	writew(sval[2], ioaddr + RxFilterData);
2782
2783	/* re-enable the RX filter */
2784	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785
2786	return 0;
2787}
2788
2789static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790{
2791	struct netdev_private *np = netdev_priv(dev);
2792	void __iomem * ioaddr = ns_ioaddr(dev);
2793	u16 *sval = (u16 *)data;
2794	u32 addr;
2795
2796	if (np->srr < SRR_DP83815_D) {
2797		sval[0] = sval[1] = sval[2] = 0;
2798		return 0;
2799	}
2800
2801	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2802	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803
2804	writel(addr | 0xa, ioaddr + RxFilterAddr);
2805	sval[0] = readw(ioaddr + RxFilterData);
2806
2807	writel(addr | 0xc, ioaddr + RxFilterAddr);
2808	sval[1] = readw(ioaddr + RxFilterData);
2809
2810	writel(addr | 0xe, ioaddr + RxFilterAddr);
2811	sval[2] = readw(ioaddr + RxFilterData);
2812
2813	writel(addr, ioaddr + RxFilterAddr);
2814
2815	return 0;
2816}
2817
2818static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819{
2820	struct netdev_private *np = netdev_priv(dev);
2821	u32 tmp;
2822
2823	ecmd->port        = dev->if_port;
2824	ethtool_cmd_speed_set(ecmd, np->speed);
2825	ecmd->duplex      = np->duplex;
2826	ecmd->autoneg     = np->autoneg;
2827	ecmd->advertising = 0;
2828	if (np->advertising & ADVERTISE_10HALF)
2829		ecmd->advertising |= ADVERTISED_10baseT_Half;
2830	if (np->advertising & ADVERTISE_10FULL)
2831		ecmd->advertising |= ADVERTISED_10baseT_Full;
2832	if (np->advertising & ADVERTISE_100HALF)
2833		ecmd->advertising |= ADVERTISED_100baseT_Half;
2834	if (np->advertising & ADVERTISE_100FULL)
2835		ecmd->advertising |= ADVERTISED_100baseT_Full;
2836	ecmd->supported   = (SUPPORTED_Autoneg |
2837		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2838		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2839		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2840	ecmd->phy_address = np->phy_addr_external;
2841	/*
2842	 * We intentionally report the phy address of the external
2843	 * phy, even if the internal phy is used. This is necessary
2844	 * to work around a deficiency of the ethtool interface:
2845	 * It's only possible to query the settings of the active
2846	 * port. Therefore
2847	 * # ethtool -s ethX port mii
2848	 * actually sends an ioctl to switch to port mii with the
2849	 * settings that are used for the current active port.
2850	 * If we would report a different phy address in this
2851	 * command, then
2852	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2853	 * would unintentionally change the phy address.
2854	 *
2855	 * Fortunately the phy address doesn't matter with the
2856	 * internal phy...
2857	 */
2858
2859	/* set information based on active port type */
2860	switch (ecmd->port) {
2861	default:
2862	case PORT_TP:
2863		ecmd->advertising |= ADVERTISED_TP;
2864		ecmd->transceiver = XCVR_INTERNAL;
2865		break;
2866	case PORT_MII:
2867		ecmd->advertising |= ADVERTISED_MII;
2868		ecmd->transceiver = XCVR_EXTERNAL;
2869		break;
2870	case PORT_FIBRE:
2871		ecmd->advertising |= ADVERTISED_FIBRE;
2872		ecmd->transceiver = XCVR_EXTERNAL;
2873		break;
2874	}
2875
2876	/* if autonegotiation is on, try to return the active speed/duplex */
2877	if (ecmd->autoneg == AUTONEG_ENABLE) {
2878		ecmd->advertising |= ADVERTISED_Autoneg;
2879		tmp = mii_nway_result(
2880			np->advertising & mdio_read(dev, MII_LPA));
2881		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2882			ethtool_cmd_speed_set(ecmd, SPEED_100);
2883		else
2884			ethtool_cmd_speed_set(ecmd, SPEED_10);
2885		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2886			ecmd->duplex = DUPLEX_FULL;
2887		else
2888			ecmd->duplex = DUPLEX_HALF;
2889	}
2890
2891	/* ignore maxtxpkt, maxrxpkt for now */
2892
2893	return 0;
2894}
2895
2896static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897{
2898	struct netdev_private *np = netdev_priv(dev);
2899
2900	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2901		return -EINVAL;
2902	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2903		return -EINVAL;
2904	if (ecmd->autoneg == AUTONEG_ENABLE) {
2905		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2906					  ADVERTISED_10baseT_Full |
2907					  ADVERTISED_100baseT_Half |
2908					  ADVERTISED_100baseT_Full)) == 0) {
2909			return -EINVAL;
2910		}
2911	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2912		u32 speed = ethtool_cmd_speed(ecmd);
2913		if (speed != SPEED_10 && speed != SPEED_100)
2914			return -EINVAL;
2915		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2916			return -EINVAL;
2917	} else {
2918		return -EINVAL;
2919	}
2920
2921	/*
2922	 * If we're ignoring the PHY then autoneg and the internal
2923	 * transceiver are really not going to work so don't let the
2924	 * user select them.
2925	 */
2926	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2927			       ecmd->port == PORT_TP))
2928		return -EINVAL;
2929
2930	/*
2931	 * maxtxpkt, maxrxpkt: ignored for now.
2932	 *
2933	 * transceiver:
2934	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2935	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2936	 * selects based on ecmd->port.
2937	 *
2938	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2939	 * phys that are connected to the mii bus. It's used to apply fibre
2940	 * specific updates.
2941	 */
2942
2943	/* WHEW! now lets bang some bits */
2944
2945	/* save the parms */
2946	dev->if_port          = ecmd->port;
2947	np->autoneg           = ecmd->autoneg;
2948	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2949	if (np->autoneg == AUTONEG_ENABLE) {
2950		/* advertise only what has been requested */
2951		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2952		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2953			np->advertising |= ADVERTISE_10HALF;
2954		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2955			np->advertising |= ADVERTISE_10FULL;
2956		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2957			np->advertising |= ADVERTISE_100HALF;
2958		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2959			np->advertising |= ADVERTISE_100FULL;
2960	} else {
2961		np->speed  = ethtool_cmd_speed(ecmd);
2962		np->duplex = ecmd->duplex;
2963		/* user overriding the initial full duplex parm? */
2964		if (np->duplex == DUPLEX_HALF)
2965			np->full_duplex = 0;
2966	}
2967
2968	/* get the right phy enabled */
2969	if (ecmd->port == PORT_TP)
2970		switch_port_internal(dev);
2971	else
2972		switch_port_external(dev);
2973
2974	/* set parms and see how this affected our link status */
2975	init_phy_fixup(dev);
2976	check_link(dev);
2977	return 0;
2978}
2979
2980static int netdev_get_regs(struct net_device *dev, u8 *buf)
2981{
2982	int i;
2983	int j;
2984	u32 rfcr;
2985	u32 *rbuf = (u32 *)buf;
2986	void __iomem * ioaddr = ns_ioaddr(dev);
2987
2988	/* read non-mii page 0 of registers */
2989	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2990		rbuf[i] = readl(ioaddr + i*4);
2991	}
2992
2993	/* read current mii registers */
2994	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2995		rbuf[i] = mdio_read(dev, i & 0x1f);
2996
2997	/* read only the 'magic' registers from page 1 */
2998	writew(1, ioaddr + PGSEL);
2999	rbuf[i++] = readw(ioaddr + PMDCSR);
3000	rbuf[i++] = readw(ioaddr + TSTDAT);
3001	rbuf[i++] = readw(ioaddr + DSPCFG);
3002	rbuf[i++] = readw(ioaddr + SDCFG);
3003	writew(0, ioaddr + PGSEL);
3004
3005	/* read RFCR indexed registers */
3006	rfcr = readl(ioaddr + RxFilterAddr);
3007	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3008		writel(j*2, ioaddr + RxFilterAddr);
3009		rbuf[i++] = readw(ioaddr + RxFilterData);
3010	}
3011	writel(rfcr, ioaddr + RxFilterAddr);
3012
3013	/* the interrupt status is clear-on-read - see if we missed any */
3014	if (rbuf[4] & rbuf[5]) {
3015		printk(KERN_WARNING
3016			"%s: shoot, we dropped an interrupt (%#08x)\n",
3017			dev->name, rbuf[4] & rbuf[5]);
3018	}
3019
3020	return 0;
3021}
3022
3023#define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3024			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3025			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3026			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3027			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3028			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3029			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3030			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3031
3032static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3033{
3034	int i;
3035	u16 *ebuf = (u16 *)buf;
3036	void __iomem * ioaddr = ns_ioaddr(dev);
3037	struct netdev_private *np = netdev_priv(dev);
3038
3039	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3040	for (i = 0; i < np->eeprom_size/2; i++) {
3041		ebuf[i] = eeprom_read(ioaddr, i);
3042		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3043		 * reads it back "sanely". So we swap it back here in order to
3044		 * present it to userland as it is stored. */
3045		ebuf[i] = SWAP_BITS(ebuf[i]);
3046	}
3047	return 0;
3048}
3049
3050static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3051{
3052	struct mii_ioctl_data *data = if_mii(rq);
3053	struct netdev_private *np = netdev_priv(dev);
3054
3055	switch(cmd) {
3056	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3057		data->phy_id = np->phy_addr_external;
3058		/* Fall Through */
3059
3060	case SIOCGMIIREG:		/* Read MII PHY register. */
3061		/* The phy_id is not enough to uniquely identify
3062		 * the intended target. Therefore the command is sent to
3063		 * the given mii on the current port.
3064		 */
3065		if (dev->if_port == PORT_TP) {
3066			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3067				data->val_out = mdio_read(dev,
3068							data->reg_num & 0x1f);
3069			else
3070				data->val_out = 0;
3071		} else {
3072			move_int_phy(dev, data->phy_id & 0x1f);
3073			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3074							data->reg_num & 0x1f);
3075		}
3076		return 0;
3077
3078	case SIOCSMIIREG:		/* Write MII PHY register. */
3079		if (dev->if_port == PORT_TP) {
3080			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3081 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3082					np->advertising = data->val_in;
3083				mdio_write(dev, data->reg_num & 0x1f,
3084							data->val_in);
3085			}
3086		} else {
3087			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3088 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3089					np->advertising = data->val_in;
3090			}
3091			move_int_phy(dev, data->phy_id & 0x1f);
3092			miiport_write(dev, data->phy_id & 0x1f,
3093						data->reg_num & 0x1f,
3094						data->val_in);
3095		}
3096		return 0;
3097	default:
3098		return -EOPNOTSUPP;
3099	}
3100}
3101
3102static void enable_wol_mode(struct net_device *dev, int enable_intr)
3103{
3104	void __iomem * ioaddr = ns_ioaddr(dev);
3105	struct netdev_private *np = netdev_priv(dev);
3106
3107	if (netif_msg_wol(np))
3108		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3109			dev->name);
3110
3111	/* For WOL we must restart the rx process in silent mode.
3112	 * Write NULL to the RxRingPtr. Only possible if
3113	 * rx process is stopped
3114	 */
3115	writel(0, ioaddr + RxRingPtr);
3116
3117	/* read WoL status to clear */
3118	readl(ioaddr + WOLCmd);
3119
3120	/* PME on, clear status */
3121	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3122
3123	/* and restart the rx process */
3124	writel(RxOn, ioaddr + ChipCmd);
3125
3126	if (enable_intr) {
3127		/* enable the WOL interrupt.
3128		 * Could be used to send a netlink message.
3129		 */
3130		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3131		natsemi_irq_enable(dev);
3132	}
3133}
3134
3135static int netdev_close(struct net_device *dev)
3136{
3137	void __iomem * ioaddr = ns_ioaddr(dev);
3138	struct netdev_private *np = netdev_priv(dev);
3139	const int irq = np->pci_dev->irq;
3140
3141	if (netif_msg_ifdown(np))
3142		printk(KERN_DEBUG
3143			"%s: Shutting down ethercard, status was %#04x.\n",
3144			dev->name, (int)readl(ioaddr + ChipCmd));
3145	if (netif_msg_pktdata(np))
3146		printk(KERN_DEBUG
3147			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3148			dev->name, np->cur_tx, np->dirty_tx,
3149			np->cur_rx, np->dirty_rx);
3150
3151	napi_disable(&np->napi);
3152
3153	/*
3154	 * FIXME: what if someone tries to close a device
3155	 * that is suspended?
3156	 * Should we reenable the nic to switch to
3157	 * the final WOL settings?
3158	 */
3159
3160	del_timer_sync(&np->timer);
3161	disable_irq(irq);
3162	spin_lock_irq(&np->lock);
3163	natsemi_irq_disable(dev);
3164	np->hands_off = 1;
3165	spin_unlock_irq(&np->lock);
3166	enable_irq(irq);
3167
3168	free_irq(irq, dev);
3169
3170	/* Interrupt disabled, interrupt handler released,
3171	 * queue stopped, timer deleted, rtnl_lock held
3172	 * All async codepaths that access the driver are disabled.
3173	 */
3174	spin_lock_irq(&np->lock);
3175	np->hands_off = 0;
3176	readl(ioaddr + IntrMask);
3177	readw(ioaddr + MIntrStatus);
3178
3179	/* Freeze Stats */
3180	writel(StatsFreeze, ioaddr + StatsCtrl);
3181
3182	/* Stop the chip's Tx and Rx processes. */
3183	natsemi_stop_rxtx(dev);
3184
3185	__get_stats(dev);
3186	spin_unlock_irq(&np->lock);
3187
3188	/* clear the carrier last - an interrupt could reenable it otherwise */
3189	netif_carrier_off(dev);
3190	netif_stop_queue(dev);
3191
3192	dump_ring(dev);
3193	drain_ring(dev);
3194	free_ring(dev);
3195
3196	{
3197		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3198		if (wol) {
3199			/* restart the NIC in WOL mode.
3200			 * The nic must be stopped for this.
3201			 */
3202			enable_wol_mode(dev, 0);
3203		} else {
3204			/* Restore PME enable bit unmolested */
3205			writel(np->SavedClkRun, ioaddr + ClkRun);
3206		}
3207	}
3208	return 0;
3209}
3210
3211
3212static void natsemi_remove1(struct pci_dev *pdev)
3213{
3214	struct net_device *dev = pci_get_drvdata(pdev);
3215	void __iomem * ioaddr = ns_ioaddr(dev);
3216
3217	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3218	unregister_netdev (dev);
3219	pci_release_regions (pdev);
3220	iounmap(ioaddr);
3221	free_netdev (dev);
3222}
3223
3224#ifdef CONFIG_PM
3225
3226/*
3227 * The ns83815 chip doesn't have explicit RxStop bits.
3228 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3229 * of the nic, thus this function must be very careful:
3230 *
3231 * suspend/resume synchronization:
3232 * entry points:
3233 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3234 *   start_tx, ns_tx_timeout
3235 *
3236 * No function accesses the hardware without checking np->hands_off.
3237 *	the check occurs under spin_lock_irq(&np->lock);
3238 * exceptions:
3239 *	* netdev_ioctl: noncritical access.
3240 *	* netdev_open: cannot happen due to the device_detach
3241 *	* netdev_close: doesn't hurt.
3242 *	* netdev_timer: timer stopped by natsemi_suspend.
3243 *	* intr_handler: doesn't acquire the spinlock. suspend calls
3244 *		disable_irq() to enforce synchronization.
3245 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3246 *              sets hands_off, disables interrupts and then waits with
3247 *              napi_disable().
3248 *
3249 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3250 */
3251
3252static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3253{
3254	struct net_device *dev = pci_get_drvdata (pdev);
3255	struct netdev_private *np = netdev_priv(dev);
3256	void __iomem * ioaddr = ns_ioaddr(dev);
3257
3258	rtnl_lock();
3259	if (netif_running (dev)) {
3260		const int irq = np->pci_dev->irq;
3261
3262		del_timer_sync(&np->timer);
3263
3264		disable_irq(irq);
3265		spin_lock_irq(&np->lock);
3266
3267		natsemi_irq_disable(dev);
3268		np->hands_off = 1;
3269		natsemi_stop_rxtx(dev);
3270		netif_stop_queue(dev);
3271
3272		spin_unlock_irq(&np->lock);
3273		enable_irq(irq);
3274
3275		napi_disable(&np->napi);
3276
3277		/* Update the error counts. */
3278		__get_stats(dev);
3279
3280		/* pci_power_off(pdev, -1); */
3281		drain_ring(dev);
3282		{
3283			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3284			/* Restore PME enable bit */
3285			if (wol) {
3286				/* restart the NIC in WOL mode.
3287				 * The nic must be stopped for this.
3288				 * FIXME: use the WOL interrupt
3289				 */
3290				enable_wol_mode(dev, 0);
3291			} else {
3292				/* Restore PME enable bit unmolested */
3293				writel(np->SavedClkRun, ioaddr + ClkRun);
3294			}
3295		}
3296	}
3297	netif_device_detach(dev);
3298	rtnl_unlock();
3299	return 0;
3300}
3301
3302
3303static int natsemi_resume (struct pci_dev *pdev)
3304{
3305	struct net_device *dev = pci_get_drvdata (pdev);
3306	struct netdev_private *np = netdev_priv(dev);
3307	int ret = 0;
3308
3309	rtnl_lock();
3310	if (netif_device_present(dev))
3311		goto out;
3312	if (netif_running(dev)) {
3313		const int irq = np->pci_dev->irq;
3314
3315		BUG_ON(!np->hands_off);
3316		ret = pci_enable_device(pdev);
3317		if (ret < 0) {
3318			dev_err(&pdev->dev,
3319				"pci_enable_device() failed: %d\n", ret);
3320			goto out;
3321		}
3322	/*	pci_power_on(pdev); */
3323
3324		napi_enable(&np->napi);
3325
3326		natsemi_reset(dev);
3327		init_ring(dev);
3328		disable_irq(irq);
3329		spin_lock_irq(&np->lock);
3330		np->hands_off = 0;
3331		init_registers(dev);
3332		netif_device_attach(dev);
3333		spin_unlock_irq(&np->lock);
3334		enable_irq(irq);
3335
3336		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3337	}
3338	netif_device_attach(dev);
3339out:
3340	rtnl_unlock();
3341	return ret;
3342}
3343
3344#endif /* CONFIG_PM */
3345
3346static struct pci_driver natsemi_driver = {
3347	.name		= DRV_NAME,
3348	.id_table	= natsemi_pci_tbl,
3349	.probe		= natsemi_probe1,
3350	.remove		= natsemi_remove1,
3351#ifdef CONFIG_PM
3352	.suspend	= natsemi_suspend,
3353	.resume		= natsemi_resume,
3354#endif
3355};
3356
3357static int __init natsemi_init_mod (void)
3358{
3359/* when a module, this is printed whether or not devices are found in probe */
3360#ifdef MODULE
3361	printk(version);
3362#endif
3363
3364	return pci_register_driver(&natsemi_driver);
3365}
3366
3367static void __exit natsemi_exit_mod (void)
3368{
3369	pci_unregister_driver (&natsemi_driver);
3370}
3371
3372module_init(natsemi_init_mod);
3373module_exit(natsemi_exit_mod);
3374
3375