1/** 2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver 3 * 4 * Copyright (c) 2009-2010 Micrel, Inc. 5 * Tristram Ha <Tristram.Ha@micrel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19#include <linux/init.h> 20#include <linux/interrupt.h> 21#include <linux/kernel.h> 22#include <linux/module.h> 23#include <linux/ioport.h> 24#include <linux/pci.h> 25#include <linux/proc_fs.h> 26#include <linux/mii.h> 27#include <linux/platform_device.h> 28#include <linux/ethtool.h> 29#include <linux/etherdevice.h> 30#include <linux/in.h> 31#include <linux/ip.h> 32#include <linux/if_vlan.h> 33#include <linux/crc32.h> 34#include <linux/sched.h> 35#include <linux/slab.h> 36 37 38/* DMA Registers */ 39 40#define KS_DMA_TX_CTRL 0x0000 41#define DMA_TX_ENABLE 0x00000001 42#define DMA_TX_CRC_ENABLE 0x00000002 43#define DMA_TX_PAD_ENABLE 0x00000004 44#define DMA_TX_LOOPBACK 0x00000100 45#define DMA_TX_FLOW_ENABLE 0x00000200 46#define DMA_TX_CSUM_IP 0x00010000 47#define DMA_TX_CSUM_TCP 0x00020000 48#define DMA_TX_CSUM_UDP 0x00040000 49#define DMA_TX_BURST_SIZE 0x3F000000 50 51#define KS_DMA_RX_CTRL 0x0004 52#define DMA_RX_ENABLE 0x00000001 53#define KS884X_DMA_RX_MULTICAST 0x00000002 54#define DMA_RX_PROMISCUOUS 0x00000004 55#define DMA_RX_ERROR 0x00000008 56#define DMA_RX_UNICAST 0x00000010 57#define DMA_RX_ALL_MULTICAST 0x00000020 58#define DMA_RX_BROADCAST 0x00000040 59#define DMA_RX_FLOW_ENABLE 0x00000200 60#define DMA_RX_CSUM_IP 0x00010000 61#define DMA_RX_CSUM_TCP 0x00020000 62#define DMA_RX_CSUM_UDP 0x00040000 63#define DMA_RX_BURST_SIZE 0x3F000000 64 65#define DMA_BURST_SHIFT 24 66#define DMA_BURST_DEFAULT 8 67 68#define KS_DMA_TX_START 0x0008 69#define KS_DMA_RX_START 0x000C 70#define DMA_START 0x00000001 71 72#define KS_DMA_TX_ADDR 0x0010 73#define KS_DMA_RX_ADDR 0x0014 74 75#define DMA_ADDR_LIST_MASK 0xFFFFFFFC 76#define DMA_ADDR_LIST_SHIFT 2 77 78/* MTR0 */ 79#define KS884X_MULTICAST_0_OFFSET 0x0020 80#define KS884X_MULTICAST_1_OFFSET 0x0021 81#define KS884X_MULTICAST_2_OFFSET 0x0022 82#define KS884x_MULTICAST_3_OFFSET 0x0023 83/* MTR1 */ 84#define KS884X_MULTICAST_4_OFFSET 0x0024 85#define KS884X_MULTICAST_5_OFFSET 0x0025 86#define KS884X_MULTICAST_6_OFFSET 0x0026 87#define KS884X_MULTICAST_7_OFFSET 0x0027 88 89/* Interrupt Registers */ 90 91/* INTEN */ 92#define KS884X_INTERRUPTS_ENABLE 0x0028 93/* INTST */ 94#define KS884X_INTERRUPTS_STATUS 0x002C 95 96#define KS884X_INT_RX_STOPPED 0x02000000 97#define KS884X_INT_TX_STOPPED 0x04000000 98#define KS884X_INT_RX_OVERRUN 0x08000000 99#define KS884X_INT_TX_EMPTY 0x10000000 100#define KS884X_INT_RX 0x20000000 101#define KS884X_INT_TX 0x40000000 102#define KS884X_INT_PHY 0x80000000 103 104#define KS884X_INT_RX_MASK \ 105 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN) 106#define KS884X_INT_TX_MASK \ 107 (KS884X_INT_TX | KS884X_INT_TX_EMPTY) 108#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY) 109 110/* MAC Additional Station Address */ 111 112/* MAAL0 */ 113#define KS_ADD_ADDR_0_LO 0x0080 114/* MAAH0 */ 115#define KS_ADD_ADDR_0_HI 0x0084 116/* MAAL1 */ 117#define KS_ADD_ADDR_1_LO 0x0088 118/* MAAH1 */ 119#define KS_ADD_ADDR_1_HI 0x008C 120/* MAAL2 */ 121#define KS_ADD_ADDR_2_LO 0x0090 122/* MAAH2 */ 123#define KS_ADD_ADDR_2_HI 0x0094 124/* MAAL3 */ 125#define KS_ADD_ADDR_3_LO 0x0098 126/* MAAH3 */ 127#define KS_ADD_ADDR_3_HI 0x009C 128/* MAAL4 */ 129#define KS_ADD_ADDR_4_LO 0x00A0 130/* MAAH4 */ 131#define KS_ADD_ADDR_4_HI 0x00A4 132/* MAAL5 */ 133#define KS_ADD_ADDR_5_LO 0x00A8 134/* MAAH5 */ 135#define KS_ADD_ADDR_5_HI 0x00AC 136/* MAAL6 */ 137#define KS_ADD_ADDR_6_LO 0x00B0 138/* MAAH6 */ 139#define KS_ADD_ADDR_6_HI 0x00B4 140/* MAAL7 */ 141#define KS_ADD_ADDR_7_LO 0x00B8 142/* MAAH7 */ 143#define KS_ADD_ADDR_7_HI 0x00BC 144/* MAAL8 */ 145#define KS_ADD_ADDR_8_LO 0x00C0 146/* MAAH8 */ 147#define KS_ADD_ADDR_8_HI 0x00C4 148/* MAAL9 */ 149#define KS_ADD_ADDR_9_LO 0x00C8 150/* MAAH9 */ 151#define KS_ADD_ADDR_9_HI 0x00CC 152/* MAAL10 */ 153#define KS_ADD_ADDR_A_LO 0x00D0 154/* MAAH10 */ 155#define KS_ADD_ADDR_A_HI 0x00D4 156/* MAAL11 */ 157#define KS_ADD_ADDR_B_LO 0x00D8 158/* MAAH11 */ 159#define KS_ADD_ADDR_B_HI 0x00DC 160/* MAAL12 */ 161#define KS_ADD_ADDR_C_LO 0x00E0 162/* MAAH12 */ 163#define KS_ADD_ADDR_C_HI 0x00E4 164/* MAAL13 */ 165#define KS_ADD_ADDR_D_LO 0x00E8 166/* MAAH13 */ 167#define KS_ADD_ADDR_D_HI 0x00EC 168/* MAAL14 */ 169#define KS_ADD_ADDR_E_LO 0x00F0 170/* MAAH14 */ 171#define KS_ADD_ADDR_E_HI 0x00F4 172/* MAAL15 */ 173#define KS_ADD_ADDR_F_LO 0x00F8 174/* MAAH15 */ 175#define KS_ADD_ADDR_F_HI 0x00FC 176 177#define ADD_ADDR_HI_MASK 0x0000FFFF 178#define ADD_ADDR_ENABLE 0x80000000 179#define ADD_ADDR_INCR 8 180 181/* Miscellaneous Registers */ 182 183/* MARL */ 184#define KS884X_ADDR_0_OFFSET 0x0200 185#define KS884X_ADDR_1_OFFSET 0x0201 186/* MARM */ 187#define KS884X_ADDR_2_OFFSET 0x0202 188#define KS884X_ADDR_3_OFFSET 0x0203 189/* MARH */ 190#define KS884X_ADDR_4_OFFSET 0x0204 191#define KS884X_ADDR_5_OFFSET 0x0205 192 193/* OBCR */ 194#define KS884X_BUS_CTRL_OFFSET 0x0210 195 196#define BUS_SPEED_125_MHZ 0x0000 197#define BUS_SPEED_62_5_MHZ 0x0001 198#define BUS_SPEED_41_66_MHZ 0x0002 199#define BUS_SPEED_25_MHZ 0x0003 200 201/* EEPCR */ 202#define KS884X_EEPROM_CTRL_OFFSET 0x0212 203 204#define EEPROM_CHIP_SELECT 0x0001 205#define EEPROM_SERIAL_CLOCK 0x0002 206#define EEPROM_DATA_OUT 0x0004 207#define EEPROM_DATA_IN 0x0008 208#define EEPROM_ACCESS_ENABLE 0x0010 209 210/* MBIR */ 211#define KS884X_MEM_INFO_OFFSET 0x0214 212 213#define RX_MEM_TEST_FAILED 0x0008 214#define RX_MEM_TEST_FINISHED 0x0010 215#define TX_MEM_TEST_FAILED 0x0800 216#define TX_MEM_TEST_FINISHED 0x1000 217 218/* GCR */ 219#define KS884X_GLOBAL_CTRL_OFFSET 0x0216 220#define GLOBAL_SOFTWARE_RESET 0x0001 221 222#define KS8841_POWER_MANAGE_OFFSET 0x0218 223 224/* WFCR */ 225#define KS8841_WOL_CTRL_OFFSET 0x021A 226#define KS8841_WOL_MAGIC_ENABLE 0x0080 227#define KS8841_WOL_FRAME3_ENABLE 0x0008 228#define KS8841_WOL_FRAME2_ENABLE 0x0004 229#define KS8841_WOL_FRAME1_ENABLE 0x0002 230#define KS8841_WOL_FRAME0_ENABLE 0x0001 231 232/* WF0 */ 233#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220 234#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224 235#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228 236 237/* IACR */ 238#define KS884X_IACR_P 0x04A0 239#define KS884X_IACR_OFFSET KS884X_IACR_P 240 241/* IADR1 */ 242#define KS884X_IADR1_P 0x04A2 243#define KS884X_IADR2_P 0x04A4 244#define KS884X_IADR3_P 0x04A6 245#define KS884X_IADR4_P 0x04A8 246#define KS884X_IADR5_P 0x04AA 247 248#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P 249#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1) 250 251#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P 252#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1) 253#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P 254#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1) 255#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P 256#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1) 257#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P 258#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1) 259#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P 260 261/* P1MBCR */ 262#define KS884X_P1MBCR_P 0x04D0 263#define KS884X_P1MBSR_P 0x04D2 264#define KS884X_PHY1ILR_P 0x04D4 265#define KS884X_PHY1IHR_P 0x04D6 266#define KS884X_P1ANAR_P 0x04D8 267#define KS884X_P1ANLPR_P 0x04DA 268 269/* P2MBCR */ 270#define KS884X_P2MBCR_P 0x04E0 271#define KS884X_P2MBSR_P 0x04E2 272#define KS884X_PHY2ILR_P 0x04E4 273#define KS884X_PHY2IHR_P 0x04E6 274#define KS884X_P2ANAR_P 0x04E8 275#define KS884X_P2ANLPR_P 0x04EA 276 277#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P 278#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P) 279 280#define KS884X_PHY_CTRL_OFFSET 0x00 281 282/* Mode Control Register */ 283#define PHY_REG_CTRL 0 284 285#define PHY_RESET 0x8000 286#define PHY_LOOPBACK 0x4000 287#define PHY_SPEED_100MBIT 0x2000 288#define PHY_AUTO_NEG_ENABLE 0x1000 289#define PHY_POWER_DOWN 0x0800 290#define PHY_MII_DISABLE 0x0400 291#define PHY_AUTO_NEG_RESTART 0x0200 292#define PHY_FULL_DUPLEX 0x0100 293#define PHY_COLLISION_TEST 0x0080 294#define PHY_HP_MDIX 0x0020 295#define PHY_FORCE_MDIX 0x0010 296#define PHY_AUTO_MDIX_DISABLE 0x0008 297#define PHY_REMOTE_FAULT_DISABLE 0x0004 298#define PHY_TRANSMIT_DISABLE 0x0002 299#define PHY_LED_DISABLE 0x0001 300 301#define KS884X_PHY_STATUS_OFFSET 0x02 302 303/* Mode Status Register */ 304#define PHY_REG_STATUS 1 305 306#define PHY_100BT4_CAPABLE 0x8000 307#define PHY_100BTX_FD_CAPABLE 0x4000 308#define PHY_100BTX_CAPABLE 0x2000 309#define PHY_10BT_FD_CAPABLE 0x1000 310#define PHY_10BT_CAPABLE 0x0800 311#define PHY_MII_SUPPRESS_CAPABLE 0x0040 312#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020 313#define PHY_REMOTE_FAULT 0x0010 314#define PHY_AUTO_NEG_CAPABLE 0x0008 315#define PHY_LINK_STATUS 0x0004 316#define PHY_JABBER_DETECT 0x0002 317#define PHY_EXTENDED_CAPABILITY 0x0001 318 319#define KS884X_PHY_ID_1_OFFSET 0x04 320#define KS884X_PHY_ID_2_OFFSET 0x06 321 322/* PHY Identifier Registers */ 323#define PHY_REG_ID_1 2 324#define PHY_REG_ID_2 3 325 326#define KS884X_PHY_AUTO_NEG_OFFSET 0x08 327 328/* Auto-Negotiation Advertisement Register */ 329#define PHY_REG_AUTO_NEGOTIATION 4 330 331#define PHY_AUTO_NEG_NEXT_PAGE 0x8000 332#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000 333/* Not supported. */ 334#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800 335#define PHY_AUTO_NEG_SYM_PAUSE 0x0400 336#define PHY_AUTO_NEG_100BT4 0x0200 337#define PHY_AUTO_NEG_100BTX_FD 0x0100 338#define PHY_AUTO_NEG_100BTX 0x0080 339#define PHY_AUTO_NEG_10BT_FD 0x0040 340#define PHY_AUTO_NEG_10BT 0x0020 341#define PHY_AUTO_NEG_SELECTOR 0x001F 342#define PHY_AUTO_NEG_802_3 0x0001 343 344#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE) 345 346#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A 347 348/* Auto-Negotiation Link Partner Ability Register */ 349#define PHY_REG_REMOTE_CAPABILITY 5 350 351#define PHY_REMOTE_NEXT_PAGE 0x8000 352#define PHY_REMOTE_ACKNOWLEDGE 0x4000 353#define PHY_REMOTE_REMOTE_FAULT 0x2000 354#define PHY_REMOTE_SYM_PAUSE 0x0400 355#define PHY_REMOTE_100BTX_FD 0x0100 356#define PHY_REMOTE_100BTX 0x0080 357#define PHY_REMOTE_10BT_FD 0x0040 358#define PHY_REMOTE_10BT 0x0020 359 360/* P1VCT */ 361#define KS884X_P1VCT_P 0x04F0 362#define KS884X_P1PHYCTRL_P 0x04F2 363 364/* P2VCT */ 365#define KS884X_P2VCT_P 0x04F4 366#define KS884X_P2PHYCTRL_P 0x04F6 367 368#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P 369#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P) 370 371#define KS884X_PHY_LINK_MD_OFFSET 0x00 372 373#define PHY_START_CABLE_DIAG 0x8000 374#define PHY_CABLE_DIAG_RESULT 0x6000 375#define PHY_CABLE_STAT_NORMAL 0x0000 376#define PHY_CABLE_STAT_OPEN 0x2000 377#define PHY_CABLE_STAT_SHORT 0x4000 378#define PHY_CABLE_STAT_FAILED 0x6000 379#define PHY_CABLE_10M_SHORT 0x1000 380#define PHY_CABLE_FAULT_COUNTER 0x01FF 381 382#define KS884X_PHY_PHY_CTRL_OFFSET 0x02 383 384#define PHY_STAT_REVERSED_POLARITY 0x0020 385#define PHY_STAT_MDIX 0x0010 386#define PHY_FORCE_LINK 0x0008 387#define PHY_POWER_SAVING_DISABLE 0x0004 388#define PHY_REMOTE_LOOPBACK 0x0002 389 390/* SIDER */ 391#define KS884X_SIDER_P 0x0400 392#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P 393#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1) 394 395#define REG_FAMILY_ID 0x88 396 397#define REG_CHIP_ID_41 0x8810 398#define REG_CHIP_ID_42 0x8800 399 400#define KS884X_CHIP_ID_MASK_41 0xFF10 401#define KS884X_CHIP_ID_MASK 0xFFF0 402#define KS884X_CHIP_ID_SHIFT 4 403#define KS884X_REVISION_MASK 0x000E 404#define KS884X_REVISION_SHIFT 1 405#define KS8842_START 0x0001 406 407#define CHIP_IP_41_M 0x8810 408#define CHIP_IP_42_M 0x8800 409#define CHIP_IP_61_M 0x8890 410#define CHIP_IP_62_M 0x8880 411 412#define CHIP_IP_41_P 0x8850 413#define CHIP_IP_42_P 0x8840 414#define CHIP_IP_61_P 0x88D0 415#define CHIP_IP_62_P 0x88C0 416 417/* SGCR1 */ 418#define KS8842_SGCR1_P 0x0402 419#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P 420 421#define SWITCH_PASS_ALL 0x8000 422#define SWITCH_TX_FLOW_CTRL 0x2000 423#define SWITCH_RX_FLOW_CTRL 0x1000 424#define SWITCH_CHECK_LENGTH 0x0800 425#define SWITCH_AGING_ENABLE 0x0400 426#define SWITCH_FAST_AGING 0x0200 427#define SWITCH_AGGR_BACKOFF 0x0100 428#define SWITCH_PASS_PAUSE 0x0008 429#define SWITCH_LINK_AUTO_AGING 0x0001 430 431/* SGCR2 */ 432#define KS8842_SGCR2_P 0x0404 433#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P 434 435#define SWITCH_VLAN_ENABLE 0x8000 436#define SWITCH_IGMP_SNOOP 0x4000 437#define IPV6_MLD_SNOOP_ENABLE 0x2000 438#define IPV6_MLD_SNOOP_OPTION 0x1000 439#define PRIORITY_SCHEME_SELECT 0x0800 440#define SWITCH_MIRROR_RX_TX 0x0100 441#define UNICAST_VLAN_BOUNDARY 0x0080 442#define MULTICAST_STORM_DISABLE 0x0040 443#define SWITCH_BACK_PRESSURE 0x0020 444#define FAIR_FLOW_CTRL 0x0010 445#define NO_EXC_COLLISION_DROP 0x0008 446#define SWITCH_HUGE_PACKET 0x0004 447#define SWITCH_LEGAL_PACKET 0x0002 448#define SWITCH_BUF_RESERVE 0x0001 449 450/* SGCR3 */ 451#define KS8842_SGCR3_P 0x0406 452#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P 453 454#define BROADCAST_STORM_RATE_LO 0xFF00 455#define SWITCH_REPEATER 0x0080 456#define SWITCH_HALF_DUPLEX 0x0040 457#define SWITCH_FLOW_CTRL 0x0020 458#define SWITCH_10_MBIT 0x0010 459#define SWITCH_REPLACE_NULL_VID 0x0008 460#define BROADCAST_STORM_RATE_HI 0x0007 461 462#define BROADCAST_STORM_RATE 0x07FF 463 464/* SGCR4 */ 465#define KS8842_SGCR4_P 0x0408 466 467/* SGCR5 */ 468#define KS8842_SGCR5_P 0x040A 469#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P 470 471#define LED_MODE 0x8200 472#define LED_SPEED_DUPLEX_ACT 0x0000 473#define LED_SPEED_DUPLEX_LINK_ACT 0x8000 474#define LED_DUPLEX_10_100 0x0200 475 476/* SGCR6 */ 477#define KS8842_SGCR6_P 0x0410 478#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P 479 480#define KS8842_PRIORITY_MASK 3 481#define KS8842_PRIORITY_SHIFT 2 482 483/* SGCR7 */ 484#define KS8842_SGCR7_P 0x0412 485#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P 486 487#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008 488#define SWITCH_UNK_DEF_PORT_3 0x0004 489#define SWITCH_UNK_DEF_PORT_2 0x0002 490#define SWITCH_UNK_DEF_PORT_1 0x0001 491 492/* MACAR1 */ 493#define KS8842_MACAR1_P 0x0470 494#define KS8842_MACAR2_P 0x0472 495#define KS8842_MACAR3_P 0x0474 496#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P 497#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1) 498#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P 499#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1) 500#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P 501#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1) 502 503/* TOSR1 */ 504#define KS8842_TOSR1_P 0x0480 505#define KS8842_TOSR2_P 0x0482 506#define KS8842_TOSR3_P 0x0484 507#define KS8842_TOSR4_P 0x0486 508#define KS8842_TOSR5_P 0x0488 509#define KS8842_TOSR6_P 0x048A 510#define KS8842_TOSR7_P 0x0490 511#define KS8842_TOSR8_P 0x0492 512#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P 513#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P 514#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P 515#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P 516#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P 517#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P 518 519#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P 520#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P 521 522/* P1CR1 */ 523#define KS8842_P1CR1_P 0x0500 524#define KS8842_P1CR2_P 0x0502 525#define KS8842_P1VIDR_P 0x0504 526#define KS8842_P1CR3_P 0x0506 527#define KS8842_P1IRCR_P 0x0508 528#define KS8842_P1ERCR_P 0x050A 529#define KS884X_P1SCSLMD_P 0x0510 530#define KS884X_P1CR4_P 0x0512 531#define KS884X_P1SR_P 0x0514 532 533/* P2CR1 */ 534#define KS8842_P2CR1_P 0x0520 535#define KS8842_P2CR2_P 0x0522 536#define KS8842_P2VIDR_P 0x0524 537#define KS8842_P2CR3_P 0x0526 538#define KS8842_P2IRCR_P 0x0528 539#define KS8842_P2ERCR_P 0x052A 540#define KS884X_P2SCSLMD_P 0x0530 541#define KS884X_P2CR4_P 0x0532 542#define KS884X_P2SR_P 0x0534 543 544/* P3CR1 */ 545#define KS8842_P3CR1_P 0x0540 546#define KS8842_P3CR2_P 0x0542 547#define KS8842_P3VIDR_P 0x0544 548#define KS8842_P3CR3_P 0x0546 549#define KS8842_P3IRCR_P 0x0548 550#define KS8842_P3ERCR_P 0x054A 551 552#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P 553#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P 554#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P 555 556#define PORT_CTRL_ADDR(port, addr) \ 557 (addr = KS8842_PORT_1_CTRL_1 + (port) * \ 558 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1)) 559 560#define KS8842_PORT_CTRL_1_OFFSET 0x00 561 562#define PORT_BROADCAST_STORM 0x0080 563#define PORT_DIFFSERV_ENABLE 0x0040 564#define PORT_802_1P_ENABLE 0x0020 565#define PORT_BASED_PRIORITY_MASK 0x0018 566#define PORT_BASED_PRIORITY_BASE 0x0003 567#define PORT_BASED_PRIORITY_SHIFT 3 568#define PORT_BASED_PRIORITY_0 0x0000 569#define PORT_BASED_PRIORITY_1 0x0008 570#define PORT_BASED_PRIORITY_2 0x0010 571#define PORT_BASED_PRIORITY_3 0x0018 572#define PORT_INSERT_TAG 0x0004 573#define PORT_REMOVE_TAG 0x0002 574#define PORT_PRIO_QUEUE_ENABLE 0x0001 575 576#define KS8842_PORT_CTRL_2_OFFSET 0x02 577 578#define PORT_INGRESS_VLAN_FILTER 0x4000 579#define PORT_DISCARD_NON_VID 0x2000 580#define PORT_FORCE_FLOW_CTRL 0x1000 581#define PORT_BACK_PRESSURE 0x0800 582#define PORT_TX_ENABLE 0x0400 583#define PORT_RX_ENABLE 0x0200 584#define PORT_LEARN_DISABLE 0x0100 585#define PORT_MIRROR_SNIFFER 0x0080 586#define PORT_MIRROR_RX 0x0040 587#define PORT_MIRROR_TX 0x0020 588#define PORT_USER_PRIORITY_CEILING 0x0008 589#define PORT_VLAN_MEMBERSHIP 0x0007 590 591#define KS8842_PORT_CTRL_VID_OFFSET 0x04 592 593#define PORT_DEFAULT_VID 0x0001 594 595#define KS8842_PORT_CTRL_3_OFFSET 0x06 596 597#define PORT_INGRESS_LIMIT_MODE 0x000C 598#define PORT_INGRESS_ALL 0x0000 599#define PORT_INGRESS_UNICAST 0x0004 600#define PORT_INGRESS_MULTICAST 0x0008 601#define PORT_INGRESS_BROADCAST 0x000C 602#define PORT_COUNT_IFG 0x0002 603#define PORT_COUNT_PREAMBLE 0x0001 604 605#define KS8842_PORT_IN_RATE_OFFSET 0x08 606#define KS8842_PORT_OUT_RATE_OFFSET 0x0A 607 608#define PORT_PRIORITY_RATE 0x0F 609#define PORT_PRIORITY_RATE_SHIFT 4 610 611#define KS884X_PORT_LINK_MD 0x10 612 613#define PORT_CABLE_10M_SHORT 0x8000 614#define PORT_CABLE_DIAG_RESULT 0x6000 615#define PORT_CABLE_STAT_NORMAL 0x0000 616#define PORT_CABLE_STAT_OPEN 0x2000 617#define PORT_CABLE_STAT_SHORT 0x4000 618#define PORT_CABLE_STAT_FAILED 0x6000 619#define PORT_START_CABLE_DIAG 0x1000 620#define PORT_FORCE_LINK 0x0800 621#define PORT_POWER_SAVING_DISABLE 0x0400 622#define PORT_PHY_REMOTE_LOOPBACK 0x0200 623#define PORT_CABLE_FAULT_COUNTER 0x01FF 624 625#define KS884X_PORT_CTRL_4_OFFSET 0x12 626 627#define PORT_LED_OFF 0x8000 628#define PORT_TX_DISABLE 0x4000 629#define PORT_AUTO_NEG_RESTART 0x2000 630#define PORT_REMOTE_FAULT_DISABLE 0x1000 631#define PORT_POWER_DOWN 0x0800 632#define PORT_AUTO_MDIX_DISABLE 0x0400 633#define PORT_FORCE_MDIX 0x0200 634#define PORT_LOOPBACK 0x0100 635#define PORT_AUTO_NEG_ENABLE 0x0080 636#define PORT_FORCE_100_MBIT 0x0040 637#define PORT_FORCE_FULL_DUPLEX 0x0020 638#define PORT_AUTO_NEG_SYM_PAUSE 0x0010 639#define PORT_AUTO_NEG_100BTX_FD 0x0008 640#define PORT_AUTO_NEG_100BTX 0x0004 641#define PORT_AUTO_NEG_10BT_FD 0x0002 642#define PORT_AUTO_NEG_10BT 0x0001 643 644#define KS884X_PORT_STATUS_OFFSET 0x14 645 646#define PORT_HP_MDIX 0x8000 647#define PORT_REVERSED_POLARITY 0x2000 648#define PORT_RX_FLOW_CTRL 0x0800 649#define PORT_TX_FLOW_CTRL 0x1000 650#define PORT_STATUS_SPEED_100MBIT 0x0400 651#define PORT_STATUS_FULL_DUPLEX 0x0200 652#define PORT_REMOTE_FAULT 0x0100 653#define PORT_MDIX_STATUS 0x0080 654#define PORT_AUTO_NEG_COMPLETE 0x0040 655#define PORT_STATUS_LINK_GOOD 0x0020 656#define PORT_REMOTE_SYM_PAUSE 0x0010 657#define PORT_REMOTE_100BTX_FD 0x0008 658#define PORT_REMOTE_100BTX 0x0004 659#define PORT_REMOTE_10BT_FD 0x0002 660#define PORT_REMOTE_10BT 0x0001 661 662/* 663#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 664#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000 665#define STATIC_MAC_TABLE_VALID 00-00080000-00000000 666#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000 667#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000 668#define STATIC_MAC_TABLE_FID 00-03C00000-00000000 669*/ 670 671#define STATIC_MAC_TABLE_ADDR 0x0000FFFF 672#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000 673#define STATIC_MAC_TABLE_VALID 0x00080000 674#define STATIC_MAC_TABLE_OVERRIDE 0x00100000 675#define STATIC_MAC_TABLE_USE_FID 0x00200000 676#define STATIC_MAC_TABLE_FID 0x03C00000 677 678#define STATIC_MAC_FWD_PORTS_SHIFT 16 679#define STATIC_MAC_FID_SHIFT 22 680 681/* 682#define VLAN_TABLE_VID 00-00000000-00000FFF 683#define VLAN_TABLE_FID 00-00000000-0000F000 684#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000 685#define VLAN_TABLE_VALID 00-00000000-00080000 686*/ 687 688#define VLAN_TABLE_VID 0x00000FFF 689#define VLAN_TABLE_FID 0x0000F000 690#define VLAN_TABLE_MEMBERSHIP 0x00070000 691#define VLAN_TABLE_VALID 0x00080000 692 693#define VLAN_TABLE_FID_SHIFT 12 694#define VLAN_TABLE_MEMBERSHIP_SHIFT 16 695 696/* 697#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 698#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000 699#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000 700#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000 701#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000 703#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000 704#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000 705*/ 706 707#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF 708#define DYNAMIC_MAC_TABLE_FID 0x000F0000 709#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000 710#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000 711#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000 712 713#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04 715#define DYNAMIC_MAC_TABLE_RESERVED 0x78 716#define DYNAMIC_MAC_TABLE_NOT_READY 0x80 717 718#define DYNAMIC_MAC_FID_SHIFT 16 719#define DYNAMIC_MAC_SRC_PORT_SHIFT 20 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22 721#define DYNAMIC_MAC_ENTRIES_SHIFT 24 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8 723 724/* 725#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF 726#define MIB_COUNTER_VALID 00-00000000-40000000 727#define MIB_COUNTER_OVERFLOW 00-00000000-80000000 728*/ 729 730#define MIB_COUNTER_VALUE 0x3FFFFFFF 731#define MIB_COUNTER_VALID 0x40000000 732#define MIB_COUNTER_OVERFLOW 0x80000000 733 734#define MIB_PACKET_DROPPED 0x0000FFFF 735 736#define KS_MIB_PACKET_DROPPED_TX_0 0x100 737#define KS_MIB_PACKET_DROPPED_TX_1 0x101 738#define KS_MIB_PACKET_DROPPED_TX 0x102 739#define KS_MIB_PACKET_DROPPED_RX_0 0x103 740#define KS_MIB_PACKET_DROPPED_RX_1 0x104 741#define KS_MIB_PACKET_DROPPED_RX 0x105 742 743/* Change default LED mode. */ 744#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT 745 746#define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i)) 747 748#define MAX_ETHERNET_BODY_SIZE 1500 749#define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN) 750 751#define MAX_ETHERNET_PACKET_SIZE \ 752 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE) 753 754#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4) 755#define MAX_RX_BUF_SIZE (1912 + 4) 756 757#define ADDITIONAL_ENTRIES 16 758#define MAX_MULTICAST_LIST 32 759 760#define HW_MULTICAST_SIZE 8 761 762#define HW_TO_DEV_PORT(port) (port - 1) 763 764enum { 765 media_connected, 766 media_disconnected 767}; 768 769enum { 770 OID_COUNTER_UNKOWN, 771 772 OID_COUNTER_FIRST, 773 774 /* total transmit errors */ 775 OID_COUNTER_XMIT_ERROR, 776 777 /* total receive errors */ 778 OID_COUNTER_RCV_ERROR, 779 780 OID_COUNTER_LAST 781}; 782 783/* 784 * Hardware descriptor definitions 785 */ 786 787#define DESC_ALIGNMENT 16 788#define BUFFER_ALIGNMENT 8 789 790#define NUM_OF_RX_DESC 64 791#define NUM_OF_TX_DESC 64 792 793#define KS_DESC_RX_FRAME_LEN 0x000007FF 794#define KS_DESC_RX_FRAME_TYPE 0x00008000 795#define KS_DESC_RX_ERROR_CRC 0x00010000 796#define KS_DESC_RX_ERROR_RUNT 0x00020000 797#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000 798#define KS_DESC_RX_ERROR_PHY 0x00080000 799#define KS884X_DESC_RX_PORT_MASK 0x00300000 800#define KS_DESC_RX_MULTICAST 0x01000000 801#define KS_DESC_RX_ERROR 0x02000000 802#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000 803#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000 804#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000 805#define KS_DESC_RX_LAST 0x20000000 806#define KS_DESC_RX_FIRST 0x40000000 807#define KS_DESC_RX_ERROR_COND \ 808 (KS_DESC_RX_ERROR_CRC | \ 809 KS_DESC_RX_ERROR_RUNT | \ 810 KS_DESC_RX_ERROR_PHY | \ 811 KS_DESC_RX_ERROR_TOO_LONG) 812 813#define KS_DESC_HW_OWNED 0x80000000 814 815#define KS_DESC_BUF_SIZE 0x000007FF 816#define KS884X_DESC_TX_PORT_MASK 0x00300000 817#define KS_DESC_END_OF_RING 0x02000000 818#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000 819#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000 820#define KS_DESC_TX_CSUM_GEN_IP 0x10000000 821#define KS_DESC_TX_LAST 0x20000000 822#define KS_DESC_TX_FIRST 0x40000000 823#define KS_DESC_TX_INTERRUPT 0x80000000 824 825#define KS_DESC_PORT_SHIFT 20 826 827#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE) 828 829#define KS_DESC_TX_MASK \ 830 (KS_DESC_TX_INTERRUPT | \ 831 KS_DESC_TX_FIRST | \ 832 KS_DESC_TX_LAST | \ 833 KS_DESC_TX_CSUM_GEN_IP | \ 834 KS_DESC_TX_CSUM_GEN_TCP | \ 835 KS_DESC_TX_CSUM_GEN_UDP | \ 836 KS_DESC_BUF_SIZE) 837 838struct ksz_desc_rx_stat { 839#ifdef __BIG_ENDIAN_BITFIELD 840 u32 hw_owned:1; 841 u32 first_desc:1; 842 u32 last_desc:1; 843 u32 csum_err_ip:1; 844 u32 csum_err_tcp:1; 845 u32 csum_err_udp:1; 846 u32 error:1; 847 u32 multicast:1; 848 u32 src_port:4; 849 u32 err_phy:1; 850 u32 err_too_long:1; 851 u32 err_runt:1; 852 u32 err_crc:1; 853 u32 frame_type:1; 854 u32 reserved1:4; 855 u32 frame_len:11; 856#else 857 u32 frame_len:11; 858 u32 reserved1:4; 859 u32 frame_type:1; 860 u32 err_crc:1; 861 u32 err_runt:1; 862 u32 err_too_long:1; 863 u32 err_phy:1; 864 u32 src_port:4; 865 u32 multicast:1; 866 u32 error:1; 867 u32 csum_err_udp:1; 868 u32 csum_err_tcp:1; 869 u32 csum_err_ip:1; 870 u32 last_desc:1; 871 u32 first_desc:1; 872 u32 hw_owned:1; 873#endif 874}; 875 876struct ksz_desc_tx_stat { 877#ifdef __BIG_ENDIAN_BITFIELD 878 u32 hw_owned:1; 879 u32 reserved1:31; 880#else 881 u32 reserved1:31; 882 u32 hw_owned:1; 883#endif 884}; 885 886struct ksz_desc_rx_buf { 887#ifdef __BIG_ENDIAN_BITFIELD 888 u32 reserved4:6; 889 u32 end_of_ring:1; 890 u32 reserved3:14; 891 u32 buf_size:11; 892#else 893 u32 buf_size:11; 894 u32 reserved3:14; 895 u32 end_of_ring:1; 896 u32 reserved4:6; 897#endif 898}; 899 900struct ksz_desc_tx_buf { 901#ifdef __BIG_ENDIAN_BITFIELD 902 u32 intr:1; 903 u32 first_seg:1; 904 u32 last_seg:1; 905 u32 csum_gen_ip:1; 906 u32 csum_gen_tcp:1; 907 u32 csum_gen_udp:1; 908 u32 end_of_ring:1; 909 u32 reserved4:1; 910 u32 dest_port:4; 911 u32 reserved3:9; 912 u32 buf_size:11; 913#else 914 u32 buf_size:11; 915 u32 reserved3:9; 916 u32 dest_port:4; 917 u32 reserved4:1; 918 u32 end_of_ring:1; 919 u32 csum_gen_udp:1; 920 u32 csum_gen_tcp:1; 921 u32 csum_gen_ip:1; 922 u32 last_seg:1; 923 u32 first_seg:1; 924 u32 intr:1; 925#endif 926}; 927 928union desc_stat { 929 struct ksz_desc_rx_stat rx; 930 struct ksz_desc_tx_stat tx; 931 u32 data; 932}; 933 934union desc_buf { 935 struct ksz_desc_rx_buf rx; 936 struct ksz_desc_tx_buf tx; 937 u32 data; 938}; 939 940/** 941 * struct ksz_hw_desc - Hardware descriptor data structure 942 * @ctrl: Descriptor control value. 943 * @buf: Descriptor buffer value. 944 * @addr: Physical address of memory buffer. 945 * @next: Pointer to next hardware descriptor. 946 */ 947struct ksz_hw_desc { 948 union desc_stat ctrl; 949 union desc_buf buf; 950 u32 addr; 951 u32 next; 952}; 953 954/** 955 * struct ksz_sw_desc - Software descriptor data structure 956 * @ctrl: Descriptor control value. 957 * @buf: Descriptor buffer value. 958 * @buf_size: Current buffers size value in hardware descriptor. 959 */ 960struct ksz_sw_desc { 961 union desc_stat ctrl; 962 union desc_buf buf; 963 u32 buf_size; 964}; 965 966/** 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure 968 * @skb: Associated socket buffer. 969 * @dma: Associated physical DMA address. 970 * len: Actual len used. 971 */ 972struct ksz_dma_buf { 973 struct sk_buff *skb; 974 dma_addr_t dma; 975 int len; 976}; 977 978/** 979 * struct ksz_desc - Descriptor structure 980 * @phw: Hardware descriptor pointer to uncached physical memory. 981 * @sw: Cached memory to hold hardware descriptor values for 982 * manipulation. 983 * @dma_buf: Operating system dependent data structure to hold physical 984 * memory buffer allocation information. 985 */ 986struct ksz_desc { 987 struct ksz_hw_desc *phw; 988 struct ksz_sw_desc sw; 989 struct ksz_dma_buf dma_buf; 990}; 991 992#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf)) 993 994/** 995 * struct ksz_desc_info - Descriptor information data structure 996 * @ring: First descriptor in the ring. 997 * @cur: Current descriptor being manipulated. 998 * @ring_virt: First hardware descriptor in the ring. 999 * @ring_phys: The physical address of the first descriptor of the ring. 1000 * @size: Size of hardware descriptor. 1001 * @alloc: Number of descriptors allocated. 1002 * @avail: Number of descriptors available for use. 1003 * @last: Index for last descriptor released to hardware. 1004 * @next: Index for next descriptor available for use. 1005 * @mask: Mask for index wrapping. 1006 */ 1007struct ksz_desc_info { 1008 struct ksz_desc *ring; 1009 struct ksz_desc *cur; 1010 struct ksz_hw_desc *ring_virt; 1011 u32 ring_phys; 1012 int size; 1013 int alloc; 1014 int avail; 1015 int last; 1016 int next; 1017 int mask; 1018}; 1019 1020/* 1021 * KSZ8842 switch definitions 1022 */ 1023 1024enum { 1025 TABLE_STATIC_MAC = 0, 1026 TABLE_VLAN, 1027 TABLE_DYNAMIC_MAC, 1028 TABLE_MIB 1029}; 1030 1031#define LEARNED_MAC_TABLE_ENTRIES 1024 1032#define STATIC_MAC_TABLE_ENTRIES 8 1033 1034/** 1035 * struct ksz_mac_table - Static MAC table data structure 1036 * @mac_addr: MAC address to filter. 1037 * @vid: VID value. 1038 * @fid: FID value. 1039 * @ports: Port membership. 1040 * @override: Override setting. 1041 * @use_fid: FID use setting. 1042 * @valid: Valid setting indicating the entry is being used. 1043 */ 1044struct ksz_mac_table { 1045 u8 mac_addr[ETH_ALEN]; 1046 u16 vid; 1047 u8 fid; 1048 u8 ports; 1049 u8 override:1; 1050 u8 use_fid:1; 1051 u8 valid:1; 1052}; 1053 1054#define VLAN_TABLE_ENTRIES 16 1055 1056/** 1057 * struct ksz_vlan_table - VLAN table data structure 1058 * @vid: VID value. 1059 * @fid: FID value. 1060 * @member: Port membership. 1061 */ 1062struct ksz_vlan_table { 1063 u16 vid; 1064 u8 fid; 1065 u8 member; 1066}; 1067 1068#define DIFFSERV_ENTRIES 64 1069#define PRIO_802_1P_ENTRIES 8 1070#define PRIO_QUEUES 4 1071 1072#define SWITCH_PORT_NUM 2 1073#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1) 1074#define HOST_MASK (1 << SWITCH_PORT_NUM) 1075#define PORT_MASK 7 1076 1077#define MAIN_PORT 0 1078#define OTHER_PORT 1 1079#define HOST_PORT SWITCH_PORT_NUM 1080 1081#define PORT_COUNTER_NUM 0x20 1082#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2) 1083 1084#define MIB_COUNTER_RX_LO_PRIORITY 0x00 1085#define MIB_COUNTER_RX_HI_PRIORITY 0x01 1086#define MIB_COUNTER_RX_UNDERSIZE 0x02 1087#define MIB_COUNTER_RX_FRAGMENT 0x03 1088#define MIB_COUNTER_RX_OVERSIZE 0x04 1089#define MIB_COUNTER_RX_JABBER 0x05 1090#define MIB_COUNTER_RX_SYMBOL_ERR 0x06 1091#define MIB_COUNTER_RX_CRC_ERR 0x07 1092#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08 1093#define MIB_COUNTER_RX_CTRL_8808 0x09 1094#define MIB_COUNTER_RX_PAUSE 0x0A 1095#define MIB_COUNTER_RX_BROADCAST 0x0B 1096#define MIB_COUNTER_RX_MULTICAST 0x0C 1097#define MIB_COUNTER_RX_UNICAST 0x0D 1098#define MIB_COUNTER_RX_OCTET_64 0x0E 1099#define MIB_COUNTER_RX_OCTET_65_127 0x0F 1100#define MIB_COUNTER_RX_OCTET_128_255 0x10 1101#define MIB_COUNTER_RX_OCTET_256_511 0x11 1102#define MIB_COUNTER_RX_OCTET_512_1023 0x12 1103#define MIB_COUNTER_RX_OCTET_1024_1522 0x13 1104#define MIB_COUNTER_TX_LO_PRIORITY 0x14 1105#define MIB_COUNTER_TX_HI_PRIORITY 0x15 1106#define MIB_COUNTER_TX_LATE_COLLISION 0x16 1107#define MIB_COUNTER_TX_PAUSE 0x17 1108#define MIB_COUNTER_TX_BROADCAST 0x18 1109#define MIB_COUNTER_TX_MULTICAST 0x19 1110#define MIB_COUNTER_TX_UNICAST 0x1A 1111#define MIB_COUNTER_TX_DEFERRED 0x1B 1112#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C 1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D 1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E 1115#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F 1116 1117#define MIB_COUNTER_RX_DROPPED_PACKET 0x20 1118#define MIB_COUNTER_TX_DROPPED_PACKET 0x21 1119 1120/** 1121 * struct ksz_port_mib - Port MIB data structure 1122 * @cnt_ptr: Current pointer to MIB counter index. 1123 * @link_down: Indication the link has just gone down. 1124 * @state: Connection status of the port. 1125 * @mib_start: The starting counter index. Some ports do not start at 0. 1126 * @counter: 64-bit MIB counter value. 1127 * @dropped: Temporary buffer to remember last read packet dropped values. 1128 * 1129 * MIB counters needs to be read periodically so that counters do not get 1130 * overflowed and give incorrect values. A right balance is needed to 1131 * satisfy this condition and not waste too much CPU time. 1132 * 1133 * It is pointless to read MIB counters when the port is disconnected. The 1134 * @state provides the connection status so that MIB counters are read only 1135 * when the port is connected. The @link_down indicates the port is just 1136 * disconnected so that all MIB counters are read one last time to update the 1137 * information. 1138 */ 1139struct ksz_port_mib { 1140 u8 cnt_ptr; 1141 u8 link_down; 1142 u8 state; 1143 u8 mib_start; 1144 1145 u64 counter[TOTAL_PORT_COUNTER_NUM]; 1146 u32 dropped[2]; 1147}; 1148 1149/** 1150 * struct ksz_port_cfg - Port configuration data structure 1151 * @vid: VID value. 1152 * @member: Port membership. 1153 * @port_prio: Port priority. 1154 * @rx_rate: Receive priority rate. 1155 * @tx_rate: Transmit priority rate. 1156 * @stp_state: Current Spanning Tree Protocol state. 1157 */ 1158struct ksz_port_cfg { 1159 u16 vid; 1160 u8 member; 1161 u8 port_prio; 1162 u32 rx_rate[PRIO_QUEUES]; 1163 u32 tx_rate[PRIO_QUEUES]; 1164 int stp_state; 1165}; 1166 1167/** 1168 * struct ksz_switch - KSZ8842 switch data structure 1169 * @mac_table: MAC table entries information. 1170 * @vlan_table: VLAN table entries information. 1171 * @port_cfg: Port configuration information. 1172 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS 1173 * (bit7 ~ bit2) field. 1174 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p 1175 * Tag priority field. 1176 * @br_addr: Bridge address. Used for STP. 1177 * @other_addr: Other MAC address. Used for multiple network device mode. 1178 * @broad_per: Broadcast storm percentage. 1179 * @member: Current port membership. Used for STP. 1180 */ 1181struct ksz_switch { 1182 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES]; 1183 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES]; 1184 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM]; 1185 1186 u8 diffserv[DIFFSERV_ENTRIES]; 1187 u8 p_802_1p[PRIO_802_1P_ENTRIES]; 1188 1189 u8 br_addr[ETH_ALEN]; 1190 u8 other_addr[ETH_ALEN]; 1191 1192 u8 broad_per; 1193 u8 member; 1194}; 1195 1196#define TX_RATE_UNIT 10000 1197 1198/** 1199 * struct ksz_port_info - Port information data structure 1200 * @state: Connection status of the port. 1201 * @tx_rate: Transmit rate divided by 10000 to get Mbit. 1202 * @duplex: Duplex mode. 1203 * @advertised: Advertised auto-negotiation setting. Used to determine link. 1204 * @partner: Auto-negotiation partner setting. Used to determine link. 1205 * @port_id: Port index to access actual hardware register. 1206 * @pdev: Pointer to OS dependent network device. 1207 */ 1208struct ksz_port_info { 1209 uint state; 1210 uint tx_rate; 1211 u8 duplex; 1212 u8 advertised; 1213 u8 partner; 1214 u8 port_id; 1215 void *pdev; 1216}; 1217 1218#define MAX_TX_HELD_SIZE 52000 1219 1220/* Hardware features and bug fixes. */ 1221#define LINK_INT_WORKING (1 << 0) 1222#define SMALL_PACKET_TX_BUG (1 << 1) 1223#define HALF_DUPLEX_SIGNAL_BUG (1 << 2) 1224#define RX_HUGE_FRAME (1 << 4) 1225#define STP_SUPPORT (1 << 8) 1226 1227/* Software overrides. */ 1228#define PAUSE_FLOW_CTRL (1 << 0) 1229#define FAST_AGING (1 << 1) 1230 1231/** 1232 * struct ksz_hw - KSZ884X hardware data structure 1233 * @io: Virtual address assigned. 1234 * @ksz_switch: Pointer to KSZ8842 switch. 1235 * @port_info: Port information. 1236 * @port_mib: Port MIB information. 1237 * @dev_count: Number of network devices this hardware supports. 1238 * @dst_ports: Destination ports in switch for transmission. 1239 * @id: Hardware ID. Used for display only. 1240 * @mib_cnt: Number of MIB counters this hardware has. 1241 * @mib_port_cnt: Number of ports with MIB counters. 1242 * @tx_cfg: Cached transmit control settings. 1243 * @rx_cfg: Cached receive control settings. 1244 * @intr_mask: Current interrupt mask. 1245 * @intr_set: Current interrup set. 1246 * @intr_blocked: Interrupt blocked. 1247 * @rx_desc_info: Receive descriptor information. 1248 * @tx_desc_info: Transmit descriptor information. 1249 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization. 1250 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization. 1251 * @tx_size: Transmit data size. Used for TX optimization. 1252 * The maximum is defined by MAX_TX_HELD_SIZE. 1253 * @perm_addr: Permanent MAC address. 1254 * @override_addr: Overrided MAC address. 1255 * @address: Additional MAC address entries. 1256 * @addr_list_size: Additional MAC address list size. 1257 * @mac_override: Indication of MAC address overrided. 1258 * @promiscuous: Counter to keep track of promiscuous mode set. 1259 * @all_multi: Counter to keep track of all multicast mode set. 1260 * @multi_list: Multicast address entries. 1261 * @multi_bits: Cached multicast hash table settings. 1262 * @multi_list_size: Multicast address list size. 1263 * @enabled: Indication of hardware enabled. 1264 * @rx_stop: Indication of receive process stop. 1265 * @features: Hardware features to enable. 1266 * @overrides: Hardware features to override. 1267 * @parent: Pointer to parent, network device private structure. 1268 */ 1269struct ksz_hw { 1270 void __iomem *io; 1271 1272 struct ksz_switch *ksz_switch; 1273 struct ksz_port_info port_info[SWITCH_PORT_NUM]; 1274 struct ksz_port_mib port_mib[TOTAL_PORT_NUM]; 1275 int dev_count; 1276 int dst_ports; 1277 int id; 1278 int mib_cnt; 1279 int mib_port_cnt; 1280 1281 u32 tx_cfg; 1282 u32 rx_cfg; 1283 u32 intr_mask; 1284 u32 intr_set; 1285 uint intr_blocked; 1286 1287 struct ksz_desc_info rx_desc_info; 1288 struct ksz_desc_info tx_desc_info; 1289 1290 int tx_int_cnt; 1291 int tx_int_mask; 1292 int tx_size; 1293 1294 u8 perm_addr[ETH_ALEN]; 1295 u8 override_addr[ETH_ALEN]; 1296 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN]; 1297 u8 addr_list_size; 1298 u8 mac_override; 1299 u8 promiscuous; 1300 u8 all_multi; 1301 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN]; 1302 u8 multi_bits[HW_MULTICAST_SIZE]; 1303 u8 multi_list_size; 1304 1305 u8 enabled; 1306 u8 rx_stop; 1307 u8 reserved2[1]; 1308 1309 uint features; 1310 uint overrides; 1311 1312 void *parent; 1313}; 1314 1315enum { 1316 PHY_NO_FLOW_CTRL, 1317 PHY_FLOW_CTRL, 1318 PHY_TX_ONLY, 1319 PHY_RX_ONLY 1320}; 1321 1322/** 1323 * struct ksz_port - Virtual port data structure 1324 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full 1325 * duplex, and 0 for auto, which normally results in full 1326 * duplex. 1327 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and 1328 * 0 for auto, which normally results in 100 Mbit. 1329 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for 1330 * force. 1331 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow 1332 * control, and PHY_FLOW_CTRL for flow control. 1333 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100 1334 * Mbit PHY. 1335 * @first_port: Index of first port this port supports. 1336 * @mib_port_cnt: Number of ports with MIB counters. 1337 * @port_cnt: Number of ports this port supports. 1338 * @counter: Port statistics counter. 1339 * @hw: Pointer to hardware structure. 1340 * @linked: Pointer to port information linked to this port. 1341 */ 1342struct ksz_port { 1343 u8 duplex; 1344 u8 speed; 1345 u8 force_link; 1346 u8 flow_ctrl; 1347 1348 int first_port; 1349 int mib_port_cnt; 1350 int port_cnt; 1351 u64 counter[OID_COUNTER_LAST]; 1352 1353 struct ksz_hw *hw; 1354 struct ksz_port_info *linked; 1355}; 1356 1357/** 1358 * struct ksz_timer_info - Timer information data structure 1359 * @timer: Kernel timer. 1360 * @cnt: Running timer counter. 1361 * @max: Number of times to run timer; -1 for infinity. 1362 * @period: Timer period in jiffies. 1363 */ 1364struct ksz_timer_info { 1365 struct timer_list timer; 1366 int cnt; 1367 int max; 1368 int period; 1369}; 1370 1371/** 1372 * struct ksz_shared_mem - OS dependent shared memory data structure 1373 * @dma_addr: Physical DMA address allocated. 1374 * @alloc_size: Allocation size. 1375 * @phys: Actual physical address used. 1376 * @alloc_virt: Virtual address allocated. 1377 * @virt: Actual virtual address used. 1378 */ 1379struct ksz_shared_mem { 1380 dma_addr_t dma_addr; 1381 uint alloc_size; 1382 uint phys; 1383 u8 *alloc_virt; 1384 u8 *virt; 1385}; 1386 1387/** 1388 * struct ksz_counter_info - OS dependent counter information data structure 1389 * @counter: Wait queue to wakeup after counters are read. 1390 * @time: Next time in jiffies to read counter. 1391 * @read: Indication of counters read in full or not. 1392 */ 1393struct ksz_counter_info { 1394 wait_queue_head_t counter; 1395 unsigned long time; 1396 int read; 1397}; 1398 1399/** 1400 * struct dev_info - Network device information data structure 1401 * @dev: Pointer to network device. 1402 * @pdev: Pointer to PCI device. 1403 * @hw: Hardware structure. 1404 * @desc_pool: Physical memory used for descriptor pool. 1405 * @hwlock: Spinlock to prevent hardware from accessing. 1406 * @lock: Mutex lock to prevent device from accessing. 1407 * @dev_rcv: Receive process function used. 1408 * @last_skb: Socket buffer allocated for descriptor rx fragments. 1409 * @skb_index: Buffer index for receiving fragments. 1410 * @skb_len: Buffer length for receiving fragments. 1411 * @mib_read: Workqueue to read MIB counters. 1412 * @mib_timer_info: Timer to read MIB counters. 1413 * @counter: Used for MIB reading. 1414 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE; 1415 * the maximum is MAX_RX_BUF_SIZE. 1416 * @opened: Counter to keep track of device open. 1417 * @rx_tasklet: Receive processing tasklet. 1418 * @tx_tasklet: Transmit processing tasklet. 1419 * @wol_enable: Wake-on-LAN enable set by ethtool. 1420 * @wol_support: Wake-on-LAN support used by ethtool. 1421 * @pme_wait: Used for KSZ8841 power management. 1422 */ 1423struct dev_info { 1424 struct net_device *dev; 1425 struct pci_dev *pdev; 1426 1427 struct ksz_hw hw; 1428 struct ksz_shared_mem desc_pool; 1429 1430 spinlock_t hwlock; 1431 struct mutex lock; 1432 1433 int (*dev_rcv)(struct dev_info *); 1434 1435 struct sk_buff *last_skb; 1436 int skb_index; 1437 int skb_len; 1438 1439 struct work_struct mib_read; 1440 struct ksz_timer_info mib_timer_info; 1441 struct ksz_counter_info counter[TOTAL_PORT_NUM]; 1442 1443 int mtu; 1444 int opened; 1445 1446 struct tasklet_struct rx_tasklet; 1447 struct tasklet_struct tx_tasklet; 1448 1449 int wol_enable; 1450 int wol_support; 1451 unsigned long pme_wait; 1452}; 1453 1454/** 1455 * struct dev_priv - Network device private data structure 1456 * @adapter: Adapter device information. 1457 * @port: Port information. 1458 * @monitor_time_info: Timer to monitor ports. 1459 * @proc_sem: Semaphore for proc accessing. 1460 * @id: Device ID. 1461 * @mii_if: MII interface information. 1462 * @advertising: Temporary variable to store advertised settings. 1463 * @msg_enable: The message flags controlling driver output. 1464 * @media_state: The connection status of the device. 1465 * @multicast: The all multicast state of the device. 1466 * @promiscuous: The promiscuous state of the device. 1467 */ 1468struct dev_priv { 1469 struct dev_info *adapter; 1470 struct ksz_port port; 1471 struct ksz_timer_info monitor_timer_info; 1472 1473 struct semaphore proc_sem; 1474 int id; 1475 1476 struct mii_if_info mii_if; 1477 u32 advertising; 1478 1479 u32 msg_enable; 1480 int media_state; 1481 int multicast; 1482 int promiscuous; 1483}; 1484 1485#define DRV_NAME "KSZ884X PCI" 1486#define DEVICE_NAME "KSZ884x PCI" 1487#define DRV_VERSION "1.0.0" 1488#define DRV_RELDATE "Feb 8, 2010" 1489 1490static char version[] = 1491 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")"; 1492 1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 }; 1494 1495/* 1496 * Interrupt processing primary routines 1497 */ 1498 1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt) 1500{ 1501 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS); 1502} 1503 1504static inline void hw_dis_intr(struct ksz_hw *hw) 1505{ 1506 hw->intr_blocked = hw->intr_mask; 1507 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE); 1508 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1509} 1510 1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt) 1512{ 1513 hw->intr_set = interrupt; 1514 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE); 1515} 1516 1517static inline void hw_ena_intr(struct ksz_hw *hw) 1518{ 1519 hw->intr_blocked = 0; 1520 hw_set_intr(hw, hw->intr_mask); 1521} 1522 1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit) 1524{ 1525 hw->intr_mask &= ~(bit); 1526} 1527 1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt) 1529{ 1530 u32 read_intr; 1531 1532 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1533 hw->intr_set = read_intr & ~interrupt; 1534 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1535 hw_dis_intr_bit(hw, interrupt); 1536} 1537 1538/** 1539 * hw_turn_on_intr - turn on specified interrupts 1540 * @hw: The hardware instance. 1541 * @bit: The interrupt bits to be on. 1542 * 1543 * This routine turns on the specified interrupts in the interrupt mask so that 1544 * those interrupts will be enabled. 1545 */ 1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit) 1547{ 1548 hw->intr_mask |= bit; 1549 1550 if (!hw->intr_blocked) 1551 hw_set_intr(hw, hw->intr_mask); 1552} 1553 1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt) 1555{ 1556 u32 read_intr; 1557 1558 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1559 hw->intr_set = read_intr | interrupt; 1560 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1561} 1562 1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status) 1564{ 1565 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS); 1566 *status = *status & hw->intr_set; 1567} 1568 1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt) 1570{ 1571 if (interrupt) 1572 hw_ena_intr(hw); 1573} 1574 1575/** 1576 * hw_block_intr - block hardware interrupts 1577 * 1578 * This function blocks all interrupts of the hardware and returns the current 1579 * interrupt enable mask so that interrupts can be restored later. 1580 * 1581 * Return the current interrupt enable mask. 1582 */ 1583static uint hw_block_intr(struct ksz_hw *hw) 1584{ 1585 uint interrupt = 0; 1586 1587 if (!hw->intr_blocked) { 1588 hw_dis_intr(hw); 1589 interrupt = hw->intr_blocked; 1590 } 1591 return interrupt; 1592} 1593 1594/* 1595 * Hardware descriptor routines 1596 */ 1597 1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status) 1599{ 1600 status.rx.hw_owned = 0; 1601 desc->phw->ctrl.data = cpu_to_le32(status.data); 1602} 1603 1604static inline void release_desc(struct ksz_desc *desc) 1605{ 1606 desc->sw.ctrl.tx.hw_owned = 1; 1607 if (desc->sw.buf_size != desc->sw.buf.data) { 1608 desc->sw.buf_size = desc->sw.buf.data; 1609 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data); 1610 } 1611 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data); 1612} 1613 1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc) 1615{ 1616 *desc = &info->ring[info->last]; 1617 info->last++; 1618 info->last &= info->mask; 1619 info->avail--; 1620 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK; 1621} 1622 1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr) 1624{ 1625 desc->phw->addr = cpu_to_le32(addr); 1626} 1627 1628static inline void set_rx_len(struct ksz_desc *desc, u32 len) 1629{ 1630 desc->sw.buf.rx.buf_size = len; 1631} 1632 1633static inline void get_tx_pkt(struct ksz_desc_info *info, 1634 struct ksz_desc **desc) 1635{ 1636 *desc = &info->ring[info->next]; 1637 info->next++; 1638 info->next &= info->mask; 1639 info->avail--; 1640 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK; 1641} 1642 1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr) 1644{ 1645 desc->phw->addr = cpu_to_le32(addr); 1646} 1647 1648static inline void set_tx_len(struct ksz_desc *desc, u32 len) 1649{ 1650 desc->sw.buf.tx.buf_size = len; 1651} 1652 1653/* Switch functions */ 1654 1655#define TABLE_READ 0x10 1656#define TABLE_SEL_SHIFT 2 1657 1658#define HW_DELAY(hw, reg) \ 1659 do { \ 1660 u16 dummy; \ 1661 dummy = readw(hw->io + reg); \ 1662 } while (0) 1663 1664/** 1665 * sw_r_table - read 4 bytes of data from switch table 1666 * @hw: The hardware instance. 1667 * @table: The table selector. 1668 * @addr: The address of the table entry. 1669 * @data: Buffer to store the read data. 1670 * 1671 * This routine reads 4 bytes of data from the table of the switch. 1672 * Hardware interrupts are disabled to minimize corruption of read data. 1673 */ 1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data) 1675{ 1676 u16 ctrl_addr; 1677 uint interrupt; 1678 1679 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr; 1680 1681 interrupt = hw_block_intr(hw); 1682 1683 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1684 HW_DELAY(hw, KS884X_IACR_OFFSET); 1685 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1686 1687 hw_restore_intr(hw, interrupt); 1688} 1689 1690/** 1691 * sw_w_table_64 - write 8 bytes of data to the switch table 1692 * @hw: The hardware instance. 1693 * @table: The table selector. 1694 * @addr: The address of the table entry. 1695 * @data_hi: The high part of data to be written (bit63 ~ bit32). 1696 * @data_lo: The low part of data to be written (bit31 ~ bit0). 1697 * 1698 * This routine writes 8 bytes of data to the table of the switch. 1699 * Hardware interrupts are disabled to minimize corruption of written data. 1700 */ 1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi, 1702 u32 data_lo) 1703{ 1704 u16 ctrl_addr; 1705 uint interrupt; 1706 1707 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr; 1708 1709 interrupt = hw_block_intr(hw); 1710 1711 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET); 1712 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET); 1713 1714 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1715 HW_DELAY(hw, KS884X_IACR_OFFSET); 1716 1717 hw_restore_intr(hw, interrupt); 1718} 1719 1720/** 1721 * sw_w_sta_mac_table - write to the static MAC table 1722 * @hw: The hardware instance. 1723 * @addr: The address of the table entry. 1724 * @mac_addr: The MAC address. 1725 * @ports: The port members. 1726 * @override: The flag to override the port receive/transmit settings. 1727 * @valid: The flag to indicate entry is valid. 1728 * @use_fid: The flag to indicate the FID is valid. 1729 * @fid: The FID value. 1730 * 1731 * This routine writes an entry of the static MAC table of the switch. It 1732 * calls sw_w_table_64() to write the data. 1733 */ 1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr, 1735 u8 ports, int override, int valid, int use_fid, u8 fid) 1736{ 1737 u32 data_hi; 1738 u32 data_lo; 1739 1740 data_lo = ((u32) mac_addr[2] << 24) | 1741 ((u32) mac_addr[3] << 16) | 1742 ((u32) mac_addr[4] << 8) | mac_addr[5]; 1743 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1]; 1744 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT; 1745 1746 if (override) 1747 data_hi |= STATIC_MAC_TABLE_OVERRIDE; 1748 if (use_fid) { 1749 data_hi |= STATIC_MAC_TABLE_USE_FID; 1750 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT; 1751 } 1752 if (valid) 1753 data_hi |= STATIC_MAC_TABLE_VALID; 1754 1755 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo); 1756} 1757 1758/** 1759 * sw_r_vlan_table - read from the VLAN table 1760 * @hw: The hardware instance. 1761 * @addr: The address of the table entry. 1762 * @vid: Buffer to store the VID. 1763 * @fid: Buffer to store the VID. 1764 * @member: Buffer to store the port membership. 1765 * 1766 * This function reads an entry of the VLAN table of the switch. It calls 1767 * sw_r_table() to get the data. 1768 * 1769 * Return 0 if the entry is valid; otherwise -1. 1770 */ 1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid, 1772 u8 *member) 1773{ 1774 u32 data; 1775 1776 sw_r_table(hw, TABLE_VLAN, addr, &data); 1777 if (data & VLAN_TABLE_VALID) { 1778 *vid = (u16)(data & VLAN_TABLE_VID); 1779 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT); 1780 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >> 1781 VLAN_TABLE_MEMBERSHIP_SHIFT); 1782 return 0; 1783 } 1784 return -1; 1785} 1786 1787/** 1788 * port_r_mib_cnt - read MIB counter 1789 * @hw: The hardware instance. 1790 * @port: The port index. 1791 * @addr: The address of the counter. 1792 * @cnt: Buffer to store the counter. 1793 * 1794 * This routine reads a MIB counter of the port. 1795 * Hardware interrupts are disabled to minimize corruption of read data. 1796 */ 1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt) 1798{ 1799 u32 data; 1800 u16 ctrl_addr; 1801 uint interrupt; 1802 int timeout; 1803 1804 ctrl_addr = addr + PORT_COUNTER_NUM * port; 1805 1806 interrupt = hw_block_intr(hw); 1807 1808 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8); 1809 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1810 HW_DELAY(hw, KS884X_IACR_OFFSET); 1811 1812 for (timeout = 100; timeout > 0; timeout--) { 1813 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1814 1815 if (data & MIB_COUNTER_VALID) { 1816 if (data & MIB_COUNTER_OVERFLOW) 1817 *cnt += MIB_COUNTER_VALUE + 1; 1818 *cnt += data & MIB_COUNTER_VALUE; 1819 break; 1820 } 1821 } 1822 1823 hw_restore_intr(hw, interrupt); 1824} 1825 1826/** 1827 * port_r_mib_pkt - read dropped packet counts 1828 * @hw: The hardware instance. 1829 * @port: The port index. 1830 * @cnt: Buffer to store the receive and transmit dropped packet counts. 1831 * 1832 * This routine reads the dropped packet counts of the port. 1833 * Hardware interrupts are disabled to minimize corruption of read data. 1834 */ 1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt) 1836{ 1837 u32 cur; 1838 u32 data; 1839 u16 ctrl_addr; 1840 uint interrupt; 1841 int index; 1842 1843 index = KS_MIB_PACKET_DROPPED_RX_0 + port; 1844 do { 1845 interrupt = hw_block_intr(hw); 1846 1847 ctrl_addr = (u16) index; 1848 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) 1849 << 8); 1850 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1851 HW_DELAY(hw, KS884X_IACR_OFFSET); 1852 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1853 1854 hw_restore_intr(hw, interrupt); 1855 1856 data &= MIB_PACKET_DROPPED; 1857 cur = *last; 1858 if (data != cur) { 1859 *last = data; 1860 if (data < cur) 1861 data += MIB_PACKET_DROPPED + 1; 1862 data -= cur; 1863 *cnt += data; 1864 } 1865 ++last; 1866 ++cnt; 1867 index -= KS_MIB_PACKET_DROPPED_TX - 1868 KS_MIB_PACKET_DROPPED_TX_0 + 1; 1869 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port); 1870} 1871 1872/** 1873 * port_r_cnt - read MIB counters periodically 1874 * @hw: The hardware instance. 1875 * @port: The port index. 1876 * 1877 * This routine is used to read the counters of the port periodically to avoid 1878 * counter overflow. The hardware should be acquired first before calling this 1879 * routine. 1880 * 1881 * Return non-zero when not all counters not read. 1882 */ 1883static int port_r_cnt(struct ksz_hw *hw, int port) 1884{ 1885 struct ksz_port_mib *mib = &hw->port_mib[port]; 1886 1887 if (mib->mib_start < PORT_COUNTER_NUM) 1888 while (mib->cnt_ptr < PORT_COUNTER_NUM) { 1889 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1890 &mib->counter[mib->cnt_ptr]); 1891 ++mib->cnt_ptr; 1892 } 1893 if (hw->mib_cnt > PORT_COUNTER_NUM) 1894 port_r_mib_pkt(hw, port, mib->dropped, 1895 &mib->counter[PORT_COUNTER_NUM]); 1896 mib->cnt_ptr = 0; 1897 return 0; 1898} 1899 1900/** 1901 * port_init_cnt - initialize MIB counter values 1902 * @hw: The hardware instance. 1903 * @port: The port index. 1904 * 1905 * This routine is used to initialize all counters to zero if the hardware 1906 * cannot do it after reset. 1907 */ 1908static void port_init_cnt(struct ksz_hw *hw, int port) 1909{ 1910 struct ksz_port_mib *mib = &hw->port_mib[port]; 1911 1912 mib->cnt_ptr = 0; 1913 if (mib->mib_start < PORT_COUNTER_NUM) 1914 do { 1915 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1916 &mib->counter[mib->cnt_ptr]); 1917 ++mib->cnt_ptr; 1918 } while (mib->cnt_ptr < PORT_COUNTER_NUM); 1919 if (hw->mib_cnt > PORT_COUNTER_NUM) 1920 port_r_mib_pkt(hw, port, mib->dropped, 1921 &mib->counter[PORT_COUNTER_NUM]); 1922 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 1923 mib->cnt_ptr = 0; 1924} 1925 1926/* 1927 * Port functions 1928 */ 1929 1930/** 1931 * port_chk - check port register bits 1932 * @hw: The hardware instance. 1933 * @port: The port index. 1934 * @offset: The offset of the port register. 1935 * @bits: The data bits to check. 1936 * 1937 * This function checks whether the specified bits of the port register are set 1938 * or not. 1939 * 1940 * Return 0 if the bits are not set. 1941 */ 1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits) 1943{ 1944 u32 addr; 1945 u16 data; 1946 1947 PORT_CTRL_ADDR(port, addr); 1948 addr += offset; 1949 data = readw(hw->io + addr); 1950 return (data & bits) == bits; 1951} 1952 1953/** 1954 * port_cfg - set port register bits 1955 * @hw: The hardware instance. 1956 * @port: The port index. 1957 * @offset: The offset of the port register. 1958 * @bits: The data bits to set. 1959 * @set: The flag indicating whether the bits are to be set or not. 1960 * 1961 * This routine sets or resets the specified bits of the port register. 1962 */ 1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits, 1964 int set) 1965{ 1966 u32 addr; 1967 u16 data; 1968 1969 PORT_CTRL_ADDR(port, addr); 1970 addr += offset; 1971 data = readw(hw->io + addr); 1972 if (set) 1973 data |= bits; 1974 else 1975 data &= ~bits; 1976 writew(data, hw->io + addr); 1977} 1978 1979/** 1980 * port_chk_shift - check port bit 1981 * @hw: The hardware instance. 1982 * @port: The port index. 1983 * @offset: The offset of the register. 1984 * @shift: Number of bits to shift. 1985 * 1986 * This function checks whether the specified port is set in the register or 1987 * not. 1988 * 1989 * Return 0 if the port is not set. 1990 */ 1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift) 1992{ 1993 u16 data; 1994 u16 bit = 1 << port; 1995 1996 data = readw(hw->io + addr); 1997 data >>= shift; 1998 return (data & bit) == bit; 1999} 2000 2001/** 2002 * port_cfg_shift - set port bit 2003 * @hw: The hardware instance. 2004 * @port: The port index. 2005 * @offset: The offset of the register. 2006 * @shift: Number of bits to shift. 2007 * @set: The flag indicating whether the port is to be set or not. 2008 * 2009 * This routine sets or resets the specified port in the register. 2010 */ 2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift, 2012 int set) 2013{ 2014 u16 data; 2015 u16 bits = 1 << port; 2016 2017 data = readw(hw->io + addr); 2018 bits <<= shift; 2019 if (set) 2020 data |= bits; 2021 else 2022 data &= ~bits; 2023 writew(data, hw->io + addr); 2024} 2025 2026/** 2027 * port_r8 - read byte from port register 2028 * @hw: The hardware instance. 2029 * @port: The port index. 2030 * @offset: The offset of the port register. 2031 * @data: Buffer to store the data. 2032 * 2033 * This routine reads a byte from the port register. 2034 */ 2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data) 2036{ 2037 u32 addr; 2038 2039 PORT_CTRL_ADDR(port, addr); 2040 addr += offset; 2041 *data = readb(hw->io + addr); 2042} 2043 2044/** 2045 * port_r16 - read word from port register. 2046 * @hw: The hardware instance. 2047 * @port: The port index. 2048 * @offset: The offset of the port register. 2049 * @data: Buffer to store the data. 2050 * 2051 * This routine reads a word from the port register. 2052 */ 2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data) 2054{ 2055 u32 addr; 2056 2057 PORT_CTRL_ADDR(port, addr); 2058 addr += offset; 2059 *data = readw(hw->io + addr); 2060} 2061 2062/** 2063 * port_w16 - write word to port register. 2064 * @hw: The hardware instance. 2065 * @port: The port index. 2066 * @offset: The offset of the port register. 2067 * @data: Data to write. 2068 * 2069 * This routine writes a word to the port register. 2070 */ 2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data) 2072{ 2073 u32 addr; 2074 2075 PORT_CTRL_ADDR(port, addr); 2076 addr += offset; 2077 writew(data, hw->io + addr); 2078} 2079 2080/** 2081 * sw_chk - check switch register bits 2082 * @hw: The hardware instance. 2083 * @addr: The address of the switch register. 2084 * @bits: The data bits to check. 2085 * 2086 * This function checks whether the specified bits of the switch register are 2087 * set or not. 2088 * 2089 * Return 0 if the bits are not set. 2090 */ 2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits) 2092{ 2093 u16 data; 2094 2095 data = readw(hw->io + addr); 2096 return (data & bits) == bits; 2097} 2098 2099/** 2100 * sw_cfg - set switch register bits 2101 * @hw: The hardware instance. 2102 * @addr: The address of the switch register. 2103 * @bits: The data bits to set. 2104 * @set: The flag indicating whether the bits are to be set or not. 2105 * 2106 * This function sets or resets the specified bits of the switch register. 2107 */ 2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set) 2109{ 2110 u16 data; 2111 2112 data = readw(hw->io + addr); 2113 if (set) 2114 data |= bits; 2115 else 2116 data &= ~bits; 2117 writew(data, hw->io + addr); 2118} 2119 2120/* Bandwidth */ 2121 2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set) 2123{ 2124 port_cfg(hw, p, 2125 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set); 2126} 2127 2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p) 2129{ 2130 return port_chk(hw, p, 2131 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM); 2132} 2133 2134/* Driver set switch broadcast storm protection at 10% rate. */ 2135#define BROADCAST_STORM_PROTECTION_RATE 10 2136 2137/* 148,800 frames * 67 ms / 100 */ 2138#define BROADCAST_STORM_VALUE 9969 2139 2140/** 2141 * sw_cfg_broad_storm - configure broadcast storm threshold 2142 * @hw: The hardware instance. 2143 * @percent: Broadcast storm threshold in percent of transmit rate. 2144 * 2145 * This routine configures the broadcast storm threshold of the switch. 2146 */ 2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2148{ 2149 u16 data; 2150 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100); 2151 2152 if (value > BROADCAST_STORM_RATE) 2153 value = BROADCAST_STORM_RATE; 2154 2155 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2156 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI); 2157 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8); 2158 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2159} 2160 2161/** 2162 * sw_get_board_storm - get broadcast storm threshold 2163 * @hw: The hardware instance. 2164 * @percent: Buffer to store the broadcast storm threshold percentage. 2165 * 2166 * This routine retrieves the broadcast storm threshold of the switch. 2167 */ 2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent) 2169{ 2170 int num; 2171 u16 data; 2172 2173 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2174 num = (data & BROADCAST_STORM_RATE_HI); 2175 num <<= 8; 2176 num |= (data & BROADCAST_STORM_RATE_LO) >> 8; 2177 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE; 2178 *percent = (u8) num; 2179} 2180 2181/** 2182 * sw_dis_broad_storm - disable broadstorm 2183 * @hw: The hardware instance. 2184 * @port: The port index. 2185 * 2186 * This routine disables the broadcast storm limit function of the switch. 2187 */ 2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port) 2189{ 2190 port_cfg_broad_storm(hw, port, 0); 2191} 2192 2193/** 2194 * sw_ena_broad_storm - enable broadcast storm 2195 * @hw: The hardware instance. 2196 * @port: The port index. 2197 * 2198 * This routine enables the broadcast storm limit function of the switch. 2199 */ 2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port) 2201{ 2202 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2203 port_cfg_broad_storm(hw, port, 1); 2204} 2205 2206/** 2207 * sw_init_broad_storm - initialize broadcast storm 2208 * @hw: The hardware instance. 2209 * 2210 * This routine initializes the broadcast storm limit function of the switch. 2211 */ 2212static void sw_init_broad_storm(struct ksz_hw *hw) 2213{ 2214 int port; 2215 2216 hw->ksz_switch->broad_per = 1; 2217 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2218 for (port = 0; port < TOTAL_PORT_NUM; port++) 2219 sw_dis_broad_storm(hw, port); 2220 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1); 2221} 2222 2223/** 2224 * hw_cfg_broad_storm - configure broadcast storm 2225 * @hw: The hardware instance. 2226 * @percent: Broadcast storm threshold in percent of transmit rate. 2227 * 2228 * This routine configures the broadcast storm threshold of the switch. 2229 * It is called by user functions. The hardware should be acquired first. 2230 */ 2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2232{ 2233 if (percent > 100) 2234 percent = 100; 2235 2236 sw_cfg_broad_storm(hw, percent); 2237 sw_get_broad_storm(hw, &percent); 2238 hw->ksz_switch->broad_per = percent; 2239} 2240 2241/** 2242 * sw_dis_prio_rate - disable switch priority rate 2243 * @hw: The hardware instance. 2244 * @port: The port index. 2245 * 2246 * This routine disables the priority rate function of the switch. 2247 */ 2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port) 2249{ 2250 u32 addr; 2251 2252 PORT_CTRL_ADDR(port, addr); 2253 addr += KS8842_PORT_IN_RATE_OFFSET; 2254 writel(0, hw->io + addr); 2255} 2256 2257/** 2258 * sw_init_prio_rate - initialize switch prioirty rate 2259 * @hw: The hardware instance. 2260 * 2261 * This routine initializes the priority rate function of the switch. 2262 */ 2263static void sw_init_prio_rate(struct ksz_hw *hw) 2264{ 2265 int port; 2266 int prio; 2267 struct ksz_switch *sw = hw->ksz_switch; 2268 2269 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2270 for (prio = 0; prio < PRIO_QUEUES; prio++) { 2271 sw->port_cfg[port].rx_rate[prio] = 2272 sw->port_cfg[port].tx_rate[prio] = 0; 2273 } 2274 sw_dis_prio_rate(hw, port); 2275 } 2276} 2277 2278/* Communication */ 2279 2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set) 2281{ 2282 port_cfg(hw, p, 2283 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set); 2284} 2285 2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set) 2287{ 2288 port_cfg(hw, p, 2289 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set); 2290} 2291 2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p) 2293{ 2294 return port_chk(hw, p, 2295 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE); 2296} 2297 2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p) 2299{ 2300 return port_chk(hw, p, 2301 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL); 2302} 2303 2304/* Spanning Tree */ 2305 2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set) 2307{ 2308 port_cfg(hw, p, 2309 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set); 2310} 2311 2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set) 2313{ 2314 port_cfg(hw, p, 2315 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set); 2316} 2317 2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set) 2319{ 2320 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set); 2321} 2322 2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw) 2324{ 2325 if (!(hw->overrides & FAST_AGING)) { 2326 sw_cfg_fast_aging(hw, 1); 2327 mdelay(1); 2328 sw_cfg_fast_aging(hw, 0); 2329 } 2330} 2331 2332/* VLAN */ 2333 2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert) 2335{ 2336 port_cfg(hw, p, 2337 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert); 2338} 2339 2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove) 2341{ 2342 port_cfg(hw, p, 2343 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove); 2344} 2345 2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p) 2347{ 2348 return port_chk(hw, p, 2349 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG); 2350} 2351 2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p) 2353{ 2354 return port_chk(hw, p, 2355 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG); 2356} 2357 2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set) 2359{ 2360 port_cfg(hw, p, 2361 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set); 2362} 2363 2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set) 2365{ 2366 port_cfg(hw, p, 2367 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set); 2368} 2369 2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p) 2371{ 2372 return port_chk(hw, p, 2373 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID); 2374} 2375 2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p) 2377{ 2378 return port_chk(hw, p, 2379 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER); 2380} 2381 2382/* Mirroring */ 2383 2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set) 2385{ 2386 port_cfg(hw, p, 2387 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set); 2388} 2389 2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set) 2391{ 2392 port_cfg(hw, p, 2393 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set); 2394} 2395 2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set) 2397{ 2398 port_cfg(hw, p, 2399 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set); 2400} 2401 2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set) 2403{ 2404 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set); 2405} 2406 2407static void sw_init_mirror(struct ksz_hw *hw) 2408{ 2409 int port; 2410 2411 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2412 port_cfg_mirror_sniffer(hw, port, 0); 2413 port_cfg_mirror_rx(hw, port, 0); 2414 port_cfg_mirror_tx(hw, port, 0); 2415 } 2416 sw_cfg_mirror_rx_tx(hw, 0); 2417} 2418 2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set) 2420{ 2421 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2422 SWITCH_UNK_DEF_PORT_ENABLE, set); 2423} 2424 2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw) 2426{ 2427 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2428 SWITCH_UNK_DEF_PORT_ENABLE); 2429} 2430 2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set) 2432{ 2433 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set); 2434} 2435 2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port) 2437{ 2438 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0); 2439} 2440 2441/* Priority */ 2442 2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set) 2444{ 2445 port_cfg(hw, p, 2446 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set); 2447} 2448 2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set) 2450{ 2451 port_cfg(hw, p, 2452 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set); 2453} 2454 2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set) 2456{ 2457 port_cfg(hw, p, 2458 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set); 2459} 2460 2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set) 2462{ 2463 port_cfg(hw, p, 2464 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set); 2465} 2466 2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p) 2468{ 2469 return port_chk(hw, p, 2470 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE); 2471} 2472 2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p) 2474{ 2475 return port_chk(hw, p, 2476 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE); 2477} 2478 2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p) 2480{ 2481 return port_chk(hw, p, 2482 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING); 2483} 2484 2485static inline int port_chk_prio(struct ksz_hw *hw, int p) 2486{ 2487 return port_chk(hw, p, 2488 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE); 2489} 2490 2491/** 2492 * sw_dis_diffserv - disable switch DiffServ priority 2493 * @hw: The hardware instance. 2494 * @port: The port index. 2495 * 2496 * This routine disables the DiffServ priority function of the switch. 2497 */ 2498static void sw_dis_diffserv(struct ksz_hw *hw, int port) 2499{ 2500 port_cfg_diffserv(hw, port, 0); 2501} 2502 2503/** 2504 * sw_dis_802_1p - disable switch 802.1p priority 2505 * @hw: The hardware instance. 2506 * @port: The port index. 2507 * 2508 * This routine disables the 802.1p priority function of the switch. 2509 */ 2510static void sw_dis_802_1p(struct ksz_hw *hw, int port) 2511{ 2512 port_cfg_802_1p(hw, port, 0); 2513} 2514 2515/** 2516 * sw_cfg_replace_null_vid - 2517 * @hw: The hardware instance. 2518 * @set: The flag to disable or enable. 2519 * 2520 */ 2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set) 2522{ 2523 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set); 2524} 2525 2526/** 2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping 2528 * @hw: The hardware instance. 2529 * @port: The port index. 2530 * @set: The flag to disable or enable. 2531 * 2532 * This routine enables the 802.1p priority re-mapping function of the switch. 2533 * That allows 802.1p priority field to be replaced with the port's default 2534 * tag's priority value if the ingress packet's 802.1p priority has a higher 2535 * priority than port's default tag's priority. 2536 */ 2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set) 2538{ 2539 port_cfg_replace_vid(hw, port, set); 2540} 2541 2542/** 2543 * sw_cfg_port_based - configure switch port based priority 2544 * @hw: The hardware instance. 2545 * @port: The port index. 2546 * @prio: The priority to set. 2547 * 2548 * This routine configures the port based priority of the switch. 2549 */ 2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio) 2551{ 2552 u16 data; 2553 2554 if (prio > PORT_BASED_PRIORITY_BASE) 2555 prio = PORT_BASED_PRIORITY_BASE; 2556 2557 hw->ksz_switch->port_cfg[port].port_prio = prio; 2558 2559 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data); 2560 data &= ~PORT_BASED_PRIORITY_MASK; 2561 data |= prio << PORT_BASED_PRIORITY_SHIFT; 2562 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data); 2563} 2564 2565/** 2566 * sw_dis_multi_queue - disable transmit multiple queues 2567 * @hw: The hardware instance. 2568 * @port: The port index. 2569 * 2570 * This routine disables the transmit multiple queues selection of the switch 2571 * port. Only single transmit queue on the port. 2572 */ 2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port) 2574{ 2575 port_cfg_prio(hw, port, 0); 2576} 2577 2578/** 2579 * sw_init_prio - initialize switch priority 2580 * @hw: The hardware instance. 2581 * 2582 * This routine initializes the switch QoS priority functions. 2583 */ 2584static void sw_init_prio(struct ksz_hw *hw) 2585{ 2586 int port; 2587 int tos; 2588 struct ksz_switch *sw = hw->ksz_switch; 2589 2590 /* 2591 * Init all the 802.1p tag priority value to be assigned to different 2592 * priority queue. 2593 */ 2594 sw->p_802_1p[0] = 0; 2595 sw->p_802_1p[1] = 0; 2596 sw->p_802_1p[2] = 1; 2597 sw->p_802_1p[3] = 1; 2598 sw->p_802_1p[4] = 2; 2599 sw->p_802_1p[5] = 2; 2600 sw->p_802_1p[6] = 3; 2601 sw->p_802_1p[7] = 3; 2602 2603 /* 2604 * Init all the DiffServ priority value to be assigned to priority 2605 * queue 0. 2606 */ 2607 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++) 2608 sw->diffserv[tos] = 0; 2609 2610 /* All QoS functions disabled. */ 2611 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2612 sw_dis_multi_queue(hw, port); 2613 sw_dis_diffserv(hw, port); 2614 sw_dis_802_1p(hw, port); 2615 sw_cfg_replace_vid(hw, port, 0); 2616 2617 sw->port_cfg[port].port_prio = 0; 2618 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio); 2619 } 2620 sw_cfg_replace_null_vid(hw, 0); 2621} 2622 2623/** 2624 * port_get_def_vid - get port default VID. 2625 * @hw: The hardware instance. 2626 * @port: The port index. 2627 * @vid: Buffer to store the VID. 2628 * 2629 * This routine retrieves the default VID of the port. 2630 */ 2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid) 2632{ 2633 u32 addr; 2634 2635 PORT_CTRL_ADDR(port, addr); 2636 addr += KS8842_PORT_CTRL_VID_OFFSET; 2637 *vid = readw(hw->io + addr); 2638} 2639 2640/** 2641 * sw_init_vlan - initialize switch VLAN 2642 * @hw: The hardware instance. 2643 * 2644 * This routine initializes the VLAN function of the switch. 2645 */ 2646static void sw_init_vlan(struct ksz_hw *hw) 2647{ 2648 int port; 2649 int entry; 2650 struct ksz_switch *sw = hw->ksz_switch; 2651 2652 /* Read 16 VLAN entries from device's VLAN table. */ 2653 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) { 2654 sw_r_vlan_table(hw, entry, 2655 &sw->vlan_table[entry].vid, 2656 &sw->vlan_table[entry].fid, 2657 &sw->vlan_table[entry].member); 2658 } 2659 2660 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2661 port_get_def_vid(hw, port, &sw->port_cfg[port].vid); 2662 sw->port_cfg[port].member = PORT_MASK; 2663 } 2664} 2665 2666/** 2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership 2668 * @hw: The hardware instance. 2669 * @port: The port index. 2670 * @member: The port-based VLAN membership. 2671 * 2672 * This routine configures the port-based VLAN membership of the port. 2673 */ 2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member) 2675{ 2676 u32 addr; 2677 u8 data; 2678 2679 PORT_CTRL_ADDR(port, addr); 2680 addr += KS8842_PORT_CTRL_2_OFFSET; 2681 2682 data = readb(hw->io + addr); 2683 data &= ~PORT_VLAN_MEMBERSHIP; 2684 data |= (member & PORT_MASK); 2685 writeb(data, hw->io + addr); 2686 2687 hw->ksz_switch->port_cfg[port].member = member; 2688} 2689 2690/** 2691 * sw_get_addr - get the switch MAC address. 2692 * @hw: The hardware instance. 2693 * @mac_addr: Buffer to store the MAC address. 2694 * 2695 * This function retrieves the MAC address of the switch. 2696 */ 2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr) 2698{ 2699 int i; 2700 2701 for (i = 0; i < 6; i += 2) { 2702 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2703 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2704 } 2705} 2706 2707/** 2708 * sw_set_addr - configure switch MAC address 2709 * @hw: The hardware instance. 2710 * @mac_addr: The MAC address. 2711 * 2712 * This function configures the MAC address of the switch. 2713 */ 2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr) 2715{ 2716 int i; 2717 2718 for (i = 0; i < 6; i += 2) { 2719 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2720 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2721 } 2722} 2723 2724/** 2725 * sw_set_global_ctrl - set switch global control 2726 * @hw: The hardware instance. 2727 * 2728 * This routine sets the global control of the switch function. 2729 */ 2730static void sw_set_global_ctrl(struct ksz_hw *hw) 2731{ 2732 u16 data; 2733 2734 /* Enable switch MII flow control. */ 2735 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2736 data |= SWITCH_FLOW_CTRL; 2737 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2738 2739 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2740 2741 /* Enable aggressive back off algorithm in half duplex mode. */ 2742 data |= SWITCH_AGGR_BACKOFF; 2743 2744 /* Enable automatic fast aging when link changed detected. */ 2745 data |= SWITCH_AGING_ENABLE; 2746 data |= SWITCH_LINK_AUTO_AGING; 2747 2748 if (hw->overrides & FAST_AGING) 2749 data |= SWITCH_FAST_AGING; 2750 else 2751 data &= ~SWITCH_FAST_AGING; 2752 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2753 2754 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2755 2756 /* Enable no excessive collision drop. */ 2757 data |= NO_EXC_COLLISION_DROP; 2758 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2759} 2760 2761enum { 2762 STP_STATE_DISABLED = 0, 2763 STP_STATE_LISTENING, 2764 STP_STATE_LEARNING, 2765 STP_STATE_FORWARDING, 2766 STP_STATE_BLOCKED, 2767 STP_STATE_SIMPLE 2768}; 2769 2770/** 2771 * port_set_stp_state - configure port spanning tree state 2772 * @hw: The hardware instance. 2773 * @port: The port index. 2774 * @state: The spanning tree state. 2775 * 2776 * This routine configures the spanning tree state of the port. 2777 */ 2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state) 2779{ 2780 u16 data; 2781 2782 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data); 2783 switch (state) { 2784 case STP_STATE_DISABLED: 2785 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2786 data |= PORT_LEARN_DISABLE; 2787 break; 2788 case STP_STATE_LISTENING: 2789/* 2790 * No need to turn on transmit because of port direct mode. 2791 * Turning on receive is required if static MAC table is not setup. 2792 */ 2793 data &= ~PORT_TX_ENABLE; 2794 data |= PORT_RX_ENABLE; 2795 data |= PORT_LEARN_DISABLE; 2796 break; 2797 case STP_STATE_LEARNING: 2798 data &= ~PORT_TX_ENABLE; 2799 data |= PORT_RX_ENABLE; 2800 data &= ~PORT_LEARN_DISABLE; 2801 break; 2802 case STP_STATE_FORWARDING: 2803 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2804 data &= ~PORT_LEARN_DISABLE; 2805 break; 2806 case STP_STATE_BLOCKED: 2807/* 2808 * Need to setup static MAC table with override to keep receiving BPDU 2809 * messages. See sw_init_stp routine. 2810 */ 2811 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2812 data |= PORT_LEARN_DISABLE; 2813 break; 2814 case STP_STATE_SIMPLE: 2815 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2816 data |= PORT_LEARN_DISABLE; 2817 break; 2818 } 2819 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data); 2820 hw->ksz_switch->port_cfg[port].stp_state = state; 2821} 2822 2823#define STP_ENTRY 0 2824#define BROADCAST_ENTRY 1 2825#define BRIDGE_ADDR_ENTRY 2 2826#define IPV6_ADDR_ENTRY 3 2827 2828/** 2829 * sw_clr_sta_mac_table - clear static MAC table 2830 * @hw: The hardware instance. 2831 * 2832 * This routine clears the static MAC table. 2833 */ 2834static void sw_clr_sta_mac_table(struct ksz_hw *hw) 2835{ 2836 struct ksz_mac_table *entry; 2837 int i; 2838 2839 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) { 2840 entry = &hw->ksz_switch->mac_table[i]; 2841 sw_w_sta_mac_table(hw, i, 2842 entry->mac_addr, entry->ports, 2843 entry->override, 0, 2844 entry->use_fid, entry->fid); 2845 } 2846} 2847 2848/** 2849 * sw_init_stp - initialize switch spanning tree support 2850 * @hw: The hardware instance. 2851 * 2852 * This routine initializes the spanning tree support of the switch. 2853 */ 2854static void sw_init_stp(struct ksz_hw *hw) 2855{ 2856 struct ksz_mac_table *entry; 2857 2858 entry = &hw->ksz_switch->mac_table[STP_ENTRY]; 2859 entry->mac_addr[0] = 0x01; 2860 entry->mac_addr[1] = 0x80; 2861 entry->mac_addr[2] = 0xC2; 2862 entry->mac_addr[3] = 0x00; 2863 entry->mac_addr[4] = 0x00; 2864 entry->mac_addr[5] = 0x00; 2865 entry->ports = HOST_MASK; 2866 entry->override = 1; 2867 entry->valid = 1; 2868 sw_w_sta_mac_table(hw, STP_ENTRY, 2869 entry->mac_addr, entry->ports, 2870 entry->override, entry->valid, 2871 entry->use_fid, entry->fid); 2872} 2873 2874/** 2875 * sw_block_addr - block certain packets from the host port 2876 * @hw: The hardware instance. 2877 * 2878 * This routine blocks certain packets from reaching to the host port. 2879 */ 2880static void sw_block_addr(struct ksz_hw *hw) 2881{ 2882 struct ksz_mac_table *entry; 2883 int i; 2884 2885 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) { 2886 entry = &hw->ksz_switch->mac_table[i]; 2887 entry->valid = 0; 2888 sw_w_sta_mac_table(hw, i, 2889 entry->mac_addr, entry->ports, 2890 entry->override, entry->valid, 2891 entry->use_fid, entry->fid); 2892 } 2893} 2894 2895#define PHY_LINK_SUPPORT \ 2896 (PHY_AUTO_NEG_ASYM_PAUSE | \ 2897 PHY_AUTO_NEG_SYM_PAUSE | \ 2898 PHY_AUTO_NEG_100BT4 | \ 2899 PHY_AUTO_NEG_100BTX_FD | \ 2900 PHY_AUTO_NEG_100BTX | \ 2901 PHY_AUTO_NEG_10BT_FD | \ 2902 PHY_AUTO_NEG_10BT) 2903 2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data) 2905{ 2906 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2907} 2908 2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data) 2910{ 2911 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2912} 2913 2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data) 2915{ 2916 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET); 2917} 2918 2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data) 2920{ 2921 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2922} 2923 2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data) 2925{ 2926 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2927} 2928 2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data) 2930{ 2931 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET); 2932} 2933 2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data) 2935{ 2936 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2937} 2938 2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data) 2940{ 2941 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2942} 2943 2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data) 2945{ 2946 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2947} 2948 2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data) 2950{ 2951 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2952} 2953 2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data) 2955{ 2956 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2957} 2958 2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data) 2960{ 2961 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2962} 2963 2964/** 2965 * hw_r_phy - read data from PHY register 2966 * @hw: The hardware instance. 2967 * @port: Port to read. 2968 * @reg: PHY register to read. 2969 * @val: Buffer to store the read data. 2970 * 2971 * This routine reads data from the PHY register. 2972 */ 2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val) 2974{ 2975 int phy; 2976 2977 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2978 *val = readw(hw->io + phy); 2979} 2980 2981/** 2982 * port_w_phy - write data to PHY register 2983 * @hw: The hardware instance. 2984 * @port: Port to write. 2985 * @reg: PHY register to write. 2986 * @val: Word data to write. 2987 * 2988 * This routine writes data to the PHY register. 2989 */ 2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val) 2991{ 2992 int phy; 2993 2994 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2995 writew(val, hw->io + phy); 2996} 2997 2998/* 2999 * EEPROM access functions 3000 */ 3001 3002#define AT93C_CODE 0 3003#define AT93C_WR_OFF 0x00 3004#define AT93C_WR_ALL 0x10 3005#define AT93C_ER_ALL 0x20 3006#define AT93C_WR_ON 0x30 3007 3008#define AT93C_WRITE 1 3009#define AT93C_READ 2 3010#define AT93C_ERASE 3 3011 3012#define EEPROM_DELAY 4 3013 3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio) 3015{ 3016 u16 data; 3017 3018 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3019 data &= ~gpio; 3020 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 3021} 3022 3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio) 3024{ 3025 u16 data; 3026 3027 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3028 data |= gpio; 3029 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 3030} 3031 3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio) 3033{ 3034 u16 data; 3035 3036 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3037 return (u8)(data & gpio); 3038} 3039 3040static void eeprom_clk(struct ksz_hw *hw) 3041{ 3042 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 3043 udelay(EEPROM_DELAY); 3044 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 3045 udelay(EEPROM_DELAY); 3046} 3047 3048static u16 spi_r(struct ksz_hw *hw) 3049{ 3050 int i; 3051 u16 temp = 0; 3052 3053 for (i = 15; i >= 0; i--) { 3054 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 3055 udelay(EEPROM_DELAY); 3056 3057 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0; 3058 3059 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 3060 udelay(EEPROM_DELAY); 3061 } 3062 return temp; 3063} 3064 3065static void spi_w(struct ksz_hw *hw, u16 data) 3066{ 3067 int i; 3068 3069 for (i = 15; i >= 0; i--) { 3070 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3071 drop_gpio(hw, EEPROM_DATA_OUT); 3072 eeprom_clk(hw); 3073 } 3074} 3075 3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg) 3077{ 3078 int i; 3079 3080 /* Initial start bit */ 3081 raise_gpio(hw, EEPROM_DATA_OUT); 3082 eeprom_clk(hw); 3083 3084 /* AT93C operation */ 3085 for (i = 1; i >= 0; i--) { 3086 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3087 drop_gpio(hw, EEPROM_DATA_OUT); 3088 eeprom_clk(hw); 3089 } 3090 3091 /* Address location */ 3092 for (i = 5; i >= 0; i--) { 3093 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3094 drop_gpio(hw, EEPROM_DATA_OUT); 3095 eeprom_clk(hw); 3096 } 3097} 3098 3099#define EEPROM_DATA_RESERVED 0 3100#define EEPROM_DATA_MAC_ADDR_0 1 3101#define EEPROM_DATA_MAC_ADDR_1 2 3102#define EEPROM_DATA_MAC_ADDR_2 3 3103#define EEPROM_DATA_SUBSYS_ID 4 3104#define EEPROM_DATA_SUBSYS_VEN_ID 5 3105#define EEPROM_DATA_PM_CAP 6 3106 3107/* User defined EEPROM data */ 3108#define EEPROM_DATA_OTHER_MAC_ADDR 9 3109 3110/** 3111 * eeprom_read - read from AT93C46 EEPROM 3112 * @hw: The hardware instance. 3113 * @reg: The register offset. 3114 * 3115 * This function reads a word from the AT93C46 EEPROM. 3116 * 3117 * Return the data value. 3118 */ 3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg) 3120{ 3121 u16 data; 3122 3123 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3124 3125 spi_reg(hw, AT93C_READ, reg); 3126 data = spi_r(hw); 3127 3128 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3129 3130 return data; 3131} 3132 3133/** 3134 * eeprom_write - write to AT93C46 EEPROM 3135 * @hw: The hardware instance. 3136 * @reg: The register offset. 3137 * @data: The data value. 3138 * 3139 * This procedure writes a word to the AT93C46 EEPROM. 3140 */ 3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data) 3142{ 3143 int timeout; 3144 3145 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3146 3147 /* Enable write. */ 3148 spi_reg(hw, AT93C_CODE, AT93C_WR_ON); 3149 drop_gpio(hw, EEPROM_CHIP_SELECT); 3150 udelay(1); 3151 3152 /* Erase the register. */ 3153 raise_gpio(hw, EEPROM_CHIP_SELECT); 3154 spi_reg(hw, AT93C_ERASE, reg); 3155 drop_gpio(hw, EEPROM_CHIP_SELECT); 3156 udelay(1); 3157 3158 /* Check operation complete. */ 3159 raise_gpio(hw, EEPROM_CHIP_SELECT); 3160 timeout = 8; 3161 mdelay(2); 3162 do { 3163 mdelay(1); 3164 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3165 drop_gpio(hw, EEPROM_CHIP_SELECT); 3166 udelay(1); 3167 3168 /* Write the register. */ 3169 raise_gpio(hw, EEPROM_CHIP_SELECT); 3170 spi_reg(hw, AT93C_WRITE, reg); 3171 spi_w(hw, data); 3172 drop_gpio(hw, EEPROM_CHIP_SELECT); 3173 udelay(1); 3174 3175 /* Check operation complete. */ 3176 raise_gpio(hw, EEPROM_CHIP_SELECT); 3177 timeout = 8; 3178 mdelay(2); 3179 do { 3180 mdelay(1); 3181 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3182 drop_gpio(hw, EEPROM_CHIP_SELECT); 3183 udelay(1); 3184 3185 /* Disable write. */ 3186 raise_gpio(hw, EEPROM_CHIP_SELECT); 3187 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF); 3188 3189 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3190} 3191 3192/* 3193 * Link detection routines 3194 */ 3195 3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl) 3197{ 3198 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE; 3199 switch (port->flow_ctrl) { 3200 case PHY_FLOW_CTRL: 3201 ctrl |= PORT_AUTO_NEG_SYM_PAUSE; 3202 break; 3203 /* Not supported. */ 3204 case PHY_TX_ONLY: 3205 case PHY_RX_ONLY: 3206 default: 3207 break; 3208 } 3209 return ctrl; 3210} 3211 3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx) 3213{ 3214 u32 rx_cfg; 3215 u32 tx_cfg; 3216 3217 rx_cfg = hw->rx_cfg; 3218 tx_cfg = hw->tx_cfg; 3219 if (rx) 3220 hw->rx_cfg |= DMA_RX_FLOW_ENABLE; 3221 else 3222 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE; 3223 if (tx) 3224 hw->tx_cfg |= DMA_TX_FLOW_ENABLE; 3225 else 3226 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3227 if (hw->enabled) { 3228 if (rx_cfg != hw->rx_cfg) 3229 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3230 if (tx_cfg != hw->tx_cfg) 3231 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3232 } 3233} 3234 3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port, 3236 u16 local, u16 remote) 3237{ 3238 int rx; 3239 int tx; 3240 3241 if (hw->overrides & PAUSE_FLOW_CTRL) 3242 return; 3243 3244 rx = tx = 0; 3245 if (port->force_link) 3246 rx = tx = 1; 3247 if (remote & PHY_AUTO_NEG_SYM_PAUSE) { 3248 if (local & PHY_AUTO_NEG_SYM_PAUSE) { 3249 rx = tx = 1; 3250 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) && 3251 (local & PHY_AUTO_NEG_PAUSE) == 3252 PHY_AUTO_NEG_ASYM_PAUSE) { 3253 tx = 1; 3254 } 3255 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) { 3256 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE) 3257 rx = 1; 3258 } 3259 if (!hw->ksz_switch) 3260 set_flow_ctrl(hw, rx, tx); 3261} 3262 3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port, 3264 struct ksz_port_info *info, u16 link_status) 3265{ 3266 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) && 3267 !(hw->overrides & PAUSE_FLOW_CTRL)) { 3268 u32 cfg = hw->tx_cfg; 3269 3270 /* Disable flow control in the half duplex mode. */ 3271 if (1 == info->duplex) 3272 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3273 if (hw->enabled && cfg != hw->tx_cfg) 3274 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3275 } 3276} 3277 3278/** 3279 * port_get_link_speed - get current link status 3280 * @port: The port instance. 3281 * 3282 * This routine reads PHY registers to determine the current link status of the 3283 * switch ports. 3284 */ 3285static void port_get_link_speed(struct ksz_port *port) 3286{ 3287 uint interrupt; 3288 struct ksz_port_info *info; 3289 struct ksz_port_info *linked = NULL; 3290 struct ksz_hw *hw = port->hw; 3291 u16 data; 3292 u16 status; 3293 u8 local; 3294 u8 remote; 3295 int i; 3296 int p; 3297 int change = 0; 3298 3299 interrupt = hw_block_intr(hw); 3300 3301 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3302 info = &hw->port_info[p]; 3303 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3304 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3305 3306 /* 3307 * Link status is changing all the time even when there is no 3308 * cable connection! 3309 */ 3310 remote = status & (PORT_AUTO_NEG_COMPLETE | 3311 PORT_STATUS_LINK_GOOD); 3312 local = (u8) data; 3313 3314 /* No change to status. */ 3315 if (local == info->advertised && remote == info->partner) 3316 continue; 3317 3318 info->advertised = local; 3319 info->partner = remote; 3320 if (status & PORT_STATUS_LINK_GOOD) { 3321 3322 /* Remember the first linked port. */ 3323 if (!linked) 3324 linked = info; 3325 3326 info->tx_rate = 10 * TX_RATE_UNIT; 3327 if (status & PORT_STATUS_SPEED_100MBIT) 3328 info->tx_rate = 100 * TX_RATE_UNIT; 3329 3330 info->duplex = 1; 3331 if (status & PORT_STATUS_FULL_DUPLEX) 3332 info->duplex = 2; 3333 3334 if (media_connected != info->state) { 3335 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET, 3336 &data); 3337 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET, 3338 &status); 3339 determine_flow_ctrl(hw, port, data, status); 3340 if (hw->ksz_switch) { 3341 port_cfg_back_pressure(hw, p, 3342 (1 == info->duplex)); 3343 } 3344 change |= 1 << i; 3345 port_cfg_change(hw, port, info, status); 3346 } 3347 info->state = media_connected; 3348 } else { 3349 if (media_disconnected != info->state) { 3350 change |= 1 << i; 3351 3352 /* Indicate the link just goes down. */ 3353 hw->port_mib[p].link_down = 1; 3354 } 3355 info->state = media_disconnected; 3356 } 3357 hw->port_mib[p].state = (u8) info->state; 3358 } 3359 3360 if (linked && media_disconnected == port->linked->state) 3361 port->linked = linked; 3362 3363 hw_restore_intr(hw, interrupt); 3364} 3365 3366#define PHY_RESET_TIMEOUT 10 3367 3368/** 3369 * port_set_link_speed - set port speed 3370 * @port: The port instance. 3371 * 3372 * This routine sets the link speed of the switch ports. 3373 */ 3374static void port_set_link_speed(struct ksz_port *port) 3375{ 3376 struct ksz_port_info *info; 3377 struct ksz_hw *hw = port->hw; 3378 u16 data; 3379 u16 cfg; 3380 u8 status; 3381 int i; 3382 int p; 3383 3384 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3385 info = &hw->port_info[p]; 3386 3387 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3388 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3389 3390 cfg = 0; 3391 if (status & PORT_STATUS_LINK_GOOD) 3392 cfg = data; 3393 3394 data |= PORT_AUTO_NEG_ENABLE; 3395 data = advertised_flow_ctrl(port, data); 3396 3397 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | 3398 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT; 3399 3400 /* Check if manual configuration is specified by the user. */ 3401 if (port->speed || port->duplex) { 3402 if (10 == port->speed) 3403 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3404 PORT_AUTO_NEG_100BTX); 3405 else if (100 == port->speed) 3406 data &= ~(PORT_AUTO_NEG_10BT_FD | 3407 PORT_AUTO_NEG_10BT); 3408 if (1 == port->duplex) 3409 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3410 PORT_AUTO_NEG_10BT_FD); 3411 else if (2 == port->duplex) 3412 data &= ~(PORT_AUTO_NEG_100BTX | 3413 PORT_AUTO_NEG_10BT); 3414 } 3415 if (data != cfg) { 3416 data |= PORT_AUTO_NEG_RESTART; 3417 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data); 3418 } 3419 } 3420} 3421 3422/** 3423 * port_force_link_speed - force port speed 3424 * @port: The port instance. 3425 * 3426 * This routine forces the link speed of the switch ports. 3427 */ 3428static void port_force_link_speed(struct ksz_port *port) 3429{ 3430 struct ksz_hw *hw = port->hw; 3431 u16 data; 3432 int i; 3433 int phy; 3434 int p; 3435 3436 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3437 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL; 3438 hw_r_phy_ctrl(hw, phy, &data); 3439 3440 data &= ~PHY_AUTO_NEG_ENABLE; 3441 3442 if (10 == port->speed) 3443 data &= ~PHY_SPEED_100MBIT; 3444 else if (100 == port->speed) 3445 data |= PHY_SPEED_100MBIT; 3446 if (1 == port->duplex) 3447 data &= ~PHY_FULL_DUPLEX; 3448 else if (2 == port->duplex) 3449 data |= PHY_FULL_DUPLEX; 3450 hw_w_phy_ctrl(hw, phy, data); 3451 } 3452} 3453 3454static void port_set_power_saving(struct ksz_port *port, int enable) 3455{ 3456 struct ksz_hw *hw = port->hw; 3457 int i; 3458 int p; 3459 3460 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) 3461 port_cfg(hw, p, 3462 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable); 3463} 3464 3465/* 3466 * KSZ8841 power management functions 3467 */ 3468 3469/** 3470 * hw_chk_wol_pme_status - check PMEN pin 3471 * @hw: The hardware instance. 3472 * 3473 * This function is used to check PMEN pin is asserted. 3474 * 3475 * Return 1 if PMEN pin is asserted; otherwise, 0. 3476 */ 3477static int hw_chk_wol_pme_status(struct ksz_hw *hw) 3478{ 3479 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3480 struct pci_dev *pdev = hw_priv->pdev; 3481 u16 data; 3482 3483 if (!pdev->pm_cap) 3484 return 0; 3485 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3486 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS; 3487} 3488 3489/** 3490 * hw_clr_wol_pme_status - clear PMEN pin 3491 * @hw: The hardware instance. 3492 * 3493 * This routine is used to clear PME_Status to deassert PMEN pin. 3494 */ 3495static void hw_clr_wol_pme_status(struct ksz_hw *hw) 3496{ 3497 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3498 struct pci_dev *pdev = hw_priv->pdev; 3499 u16 data; 3500 3501 if (!pdev->pm_cap) 3502 return; 3503 3504 /* Clear PME_Status to deassert PMEN pin. */ 3505 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3506 data |= PCI_PM_CTRL_PME_STATUS; 3507 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3508} 3509 3510/** 3511 * hw_cfg_wol_pme - enable or disable Wake-on-LAN 3512 * @hw: The hardware instance. 3513 * @set: The flag indicating whether to enable or disable. 3514 * 3515 * This routine is used to enable or disable Wake-on-LAN. 3516 */ 3517static void hw_cfg_wol_pme(struct ksz_hw *hw, int set) 3518{ 3519 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3520 struct pci_dev *pdev = hw_priv->pdev; 3521 u16 data; 3522 3523 if (!pdev->pm_cap) 3524 return; 3525 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3526 data &= ~PCI_PM_CTRL_STATE_MASK; 3527 if (set) 3528 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot; 3529 else 3530 data &= ~PCI_PM_CTRL_PME_ENABLE; 3531 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3532} 3533 3534/** 3535 * hw_cfg_wol - configure Wake-on-LAN features 3536 * @hw: The hardware instance. 3537 * @frame: The pattern frame bit. 3538 * @set: The flag indicating whether to enable or disable. 3539 * 3540 * This routine is used to enable or disable certain Wake-on-LAN features. 3541 */ 3542static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set) 3543{ 3544 u16 data; 3545 3546 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET); 3547 if (set) 3548 data |= frame; 3549 else 3550 data &= ~frame; 3551 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET); 3552} 3553 3554/** 3555 * hw_set_wol_frame - program Wake-on-LAN pattern 3556 * @hw: The hardware instance. 3557 * @i: The frame index. 3558 * @mask_size: The size of the mask. 3559 * @mask: Mask to ignore certain bytes in the pattern. 3560 * @frame_size: The size of the frame. 3561 * @pattern: The frame data. 3562 * 3563 * This routine is used to program Wake-on-LAN pattern. 3564 */ 3565static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size, 3566 const u8 *mask, uint frame_size, const u8 *pattern) 3567{ 3568 int bits; 3569 int from; 3570 int len; 3571 int to; 3572 u32 crc; 3573 u8 data[64]; 3574 u8 val = 0; 3575 3576 if (frame_size > mask_size * 8) 3577 frame_size = mask_size * 8; 3578 if (frame_size > 64) 3579 frame_size = 64; 3580 3581 i *= 0x10; 3582 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i); 3583 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i); 3584 3585 bits = len = from = to = 0; 3586 do { 3587 if (bits) { 3588 if ((val & 1)) 3589 data[to++] = pattern[from]; 3590 val >>= 1; 3591 ++from; 3592 --bits; 3593 } else { 3594 val = mask[len]; 3595 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i 3596 + len); 3597 ++len; 3598 if (val) 3599 bits = 8; 3600 else 3601 from += 8; 3602 } 3603 } while (from < (int) frame_size); 3604 if (val) { 3605 bits = mask[len - 1]; 3606 val <<= (from % 8); 3607 bits &= ~val; 3608 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len - 3609 1); 3610 } 3611 crc = ether_crc(to, data); 3612 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i); 3613} 3614 3615/** 3616 * hw_add_wol_arp - add ARP pattern 3617 * @hw: The hardware instance. 3618 * @ip_addr: The IPv4 address assigned to the device. 3619 * 3620 * This routine is used to add ARP pattern for waking up the host. 3621 */ 3622static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr) 3623{ 3624 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 }; 3625 u8 pattern[42] = { 3626 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 3627 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3628 0x08, 0x06, 3629 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01, 3630 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3631 0x00, 0x00, 0x00, 0x00, 3632 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3633 0x00, 0x00, 0x00, 0x00 }; 3634 3635 memcpy(&pattern[38], ip_addr, 4); 3636 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern); 3637} 3638 3639/** 3640 * hw_add_wol_bcast - add broadcast pattern 3641 * @hw: The hardware instance. 3642 * 3643 * This routine is used to add broadcast pattern for waking up the host. 3644 */ 3645static void hw_add_wol_bcast(struct ksz_hw *hw) 3646{ 3647 static const u8 mask[] = { 0x3F }; 3648 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3649 3650 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern); 3651} 3652 3653/** 3654 * hw_add_wol_mcast - add multicast pattern 3655 * @hw: The hardware instance. 3656 * 3657 * This routine is used to add multicast pattern for waking up the host. 3658 * 3659 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used 3660 * by IPv6 ping command. Note that multicast packets are filtred through the 3661 * multicast hash table, so not all multicast packets can wake up the host. 3662 */ 3663static void hw_add_wol_mcast(struct ksz_hw *hw) 3664{ 3665 static const u8 mask[] = { 0x3F }; 3666 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 }; 3667 3668 memcpy(&pattern[3], &hw->override_addr[3], 3); 3669 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern); 3670} 3671 3672/** 3673 * hw_add_wol_ucast - add unicast pattern 3674 * @hw: The hardware instance. 3675 * 3676 * This routine is used to add unicast pattern to wakeup the host. 3677 * 3678 * It is assumed the unicast packet is directed to the device, as the hardware 3679 * can only receive them in normal case. 3680 */ 3681static void hw_add_wol_ucast(struct ksz_hw *hw) 3682{ 3683 static const u8 mask[] = { 0x3F }; 3684 3685 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr); 3686} 3687 3688/** 3689 * hw_enable_wol - enable Wake-on-LAN 3690 * @hw: The hardware instance. 3691 * @wol_enable: The Wake-on-LAN settings. 3692 * @net_addr: The IPv4 address assigned to the device. 3693 * 3694 * This routine is used to enable Wake-on-LAN depending on driver settings. 3695 */ 3696static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr) 3697{ 3698 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC)); 3699 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST)); 3700 hw_add_wol_ucast(hw); 3701 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST)); 3702 hw_add_wol_mcast(hw); 3703 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST)); 3704 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP)); 3705 hw_add_wol_arp(hw, net_addr); 3706} 3707 3708/** 3709 * hw_init - check driver is correct for the hardware 3710 * @hw: The hardware instance. 3711 * 3712 * This function checks the hardware is correct for this driver and sets the 3713 * hardware up for proper initialization. 3714 * 3715 * Return number of ports or 0 if not right. 3716 */ 3717static int hw_init(struct ksz_hw *hw) 3718{ 3719 int rc = 0; 3720 u16 data; 3721 u16 revision; 3722 3723 /* Set bus speed to 125MHz. */ 3724 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET); 3725 3726 /* Check KSZ884x chip ID. */ 3727 data = readw(hw->io + KS884X_CHIP_ID_OFFSET); 3728 3729 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT; 3730 data &= KS884X_CHIP_ID_MASK_41; 3731 if (REG_CHIP_ID_41 == data) 3732 rc = 1; 3733 else if (REG_CHIP_ID_42 == data) 3734 rc = 2; 3735 else 3736 return 0; 3737 3738 /* Setup hardware features or bug workarounds. */ 3739 if (revision <= 1) { 3740 hw->features |= SMALL_PACKET_TX_BUG; 3741 if (1 == rc) 3742 hw->features |= HALF_DUPLEX_SIGNAL_BUG; 3743 } 3744 return rc; 3745} 3746 3747/** 3748 * hw_reset - reset the hardware 3749 * @hw: The hardware instance. 3750 * 3751 * This routine resets the hardware. 3752 */ 3753static void hw_reset(struct ksz_hw *hw) 3754{ 3755 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3756 3757 /* Wait for device to reset. */ 3758 mdelay(10); 3759 3760 /* Write 0 to clear device reset. */ 3761 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3762} 3763 3764/** 3765 * hw_setup - setup the hardware 3766 * @hw: The hardware instance. 3767 * 3768 * This routine setup the hardware for proper operation. 3769 */ 3770static void hw_setup(struct ksz_hw *hw) 3771{ 3772#if SET_DEFAULT_LED 3773 u16 data; 3774 3775 /* Change default LED mode. */ 3776 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3777 data &= ~LED_MODE; 3778 data |= SET_DEFAULT_LED; 3779 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3780#endif 3781 3782 /* Setup transmit control. */ 3783 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE | 3784 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE); 3785 3786 /* Setup receive control. */ 3787 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST | 3788 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE); 3789 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST; 3790 3791 /* Hardware cannot handle UDP packet in IP fragments. */ 3792 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 3793 3794 if (hw->all_multi) 3795 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 3796 if (hw->promiscuous) 3797 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 3798} 3799 3800/** 3801 * hw_setup_intr - setup interrupt mask 3802 * @hw: The hardware instance. 3803 * 3804 * This routine setup the interrupt mask for proper operation. 3805 */ 3806static void hw_setup_intr(struct ksz_hw *hw) 3807{ 3808 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN; 3809} 3810 3811static void ksz_check_desc_num(struct ksz_desc_info *info) 3812{ 3813#define MIN_DESC_SHIFT 2 3814 3815 int alloc = info->alloc; 3816 int shift; 3817 3818 shift = 0; 3819 while (!(alloc & 1)) { 3820 shift++; 3821 alloc >>= 1; 3822 } 3823 if (alloc != 1 || shift < MIN_DESC_SHIFT) { 3824 pr_alert("Hardware descriptor numbers not right!\n"); 3825 while (alloc) { 3826 shift++; 3827 alloc >>= 1; 3828 } 3829 if (shift < MIN_DESC_SHIFT) 3830 shift = MIN_DESC_SHIFT; 3831 alloc = 1 << shift; 3832 info->alloc = alloc; 3833 } 3834 info->mask = info->alloc - 1; 3835} 3836 3837static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit) 3838{ 3839 int i; 3840 u32 phys = desc_info->ring_phys; 3841 struct ksz_hw_desc *desc = desc_info->ring_virt; 3842 struct ksz_desc *cur = desc_info->ring; 3843 struct ksz_desc *previous = NULL; 3844 3845 for (i = 0; i < desc_info->alloc; i++) { 3846 cur->phw = desc++; 3847 phys += desc_info->size; 3848 previous = cur++; 3849 previous->phw->next = cpu_to_le32(phys); 3850 } 3851 previous->phw->next = cpu_to_le32(desc_info->ring_phys); 3852 previous->sw.buf.rx.end_of_ring = 1; 3853 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data); 3854 3855 desc_info->avail = desc_info->alloc; 3856 desc_info->last = desc_info->next = 0; 3857 3858 desc_info->cur = desc_info->ring; 3859} 3860 3861/** 3862 * hw_set_desc_base - set descriptor base addresses 3863 * @hw: The hardware instance. 3864 * @tx_addr: The transmit descriptor base. 3865 * @rx_addr: The receive descriptor base. 3866 * 3867 * This routine programs the descriptor base addresses after reset. 3868 */ 3869static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr) 3870{ 3871 /* Set base address of Tx/Rx descriptors. */ 3872 writel(tx_addr, hw->io + KS_DMA_TX_ADDR); 3873 writel(rx_addr, hw->io + KS_DMA_RX_ADDR); 3874} 3875 3876static void hw_reset_pkts(struct ksz_desc_info *info) 3877{ 3878 info->cur = info->ring; 3879 info->avail = info->alloc; 3880 info->last = info->next = 0; 3881} 3882 3883static inline void hw_resume_rx(struct ksz_hw *hw) 3884{ 3885 writel(DMA_START, hw->io + KS_DMA_RX_START); 3886} 3887 3888/** 3889 * hw_start_rx - start receiving 3890 * @hw: The hardware instance. 3891 * 3892 * This routine starts the receive function of the hardware. 3893 */ 3894static void hw_start_rx(struct ksz_hw *hw) 3895{ 3896 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3897 3898 /* Notify when the receive stops. */ 3899 hw->intr_mask |= KS884X_INT_RX_STOPPED; 3900 3901 writel(DMA_START, hw->io + KS_DMA_RX_START); 3902 hw_ack_intr(hw, KS884X_INT_RX_STOPPED); 3903 hw->rx_stop++; 3904 3905 /* Variable overflows. */ 3906 if (0 == hw->rx_stop) 3907 hw->rx_stop = 2; 3908} 3909 3910/** 3911 * hw_stop_rx - stop receiving 3912 * @hw: The hardware instance. 3913 * 3914 * This routine stops the receive function of the hardware. 3915 */ 3916static void hw_stop_rx(struct ksz_hw *hw) 3917{ 3918 hw->rx_stop = 0; 3919 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED); 3920 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL); 3921} 3922 3923/** 3924 * hw_start_tx - start transmitting 3925 * @hw: The hardware instance. 3926 * 3927 * This routine starts the transmit function of the hardware. 3928 */ 3929static void hw_start_tx(struct ksz_hw *hw) 3930{ 3931 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3932} 3933 3934/** 3935 * hw_stop_tx - stop transmitting 3936 * @hw: The hardware instance. 3937 * 3938 * This routine stops the transmit function of the hardware. 3939 */ 3940static void hw_stop_tx(struct ksz_hw *hw) 3941{ 3942 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL); 3943} 3944 3945/** 3946 * hw_disable - disable hardware 3947 * @hw: The hardware instance. 3948 * 3949 * This routine disables the hardware. 3950 */ 3951static void hw_disable(struct ksz_hw *hw) 3952{ 3953 hw_stop_rx(hw); 3954 hw_stop_tx(hw); 3955 hw->enabled = 0; 3956} 3957 3958/** 3959 * hw_enable - enable hardware 3960 * @hw: The hardware instance. 3961 * 3962 * This routine enables the hardware. 3963 */ 3964static void hw_enable(struct ksz_hw *hw) 3965{ 3966 hw_start_tx(hw); 3967 hw_start_rx(hw); 3968 hw->enabled = 1; 3969} 3970 3971/** 3972 * hw_alloc_pkt - allocate enough descriptors for transmission 3973 * @hw: The hardware instance. 3974 * @length: The length of the packet. 3975 * @physical: Number of descriptors required. 3976 * 3977 * This function allocates descriptors for transmission. 3978 * 3979 * Return 0 if not successful; 1 for buffer copy; or number of descriptors. 3980 */ 3981static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical) 3982{ 3983 /* Always leave one descriptor free. */ 3984 if (hw->tx_desc_info.avail <= 1) 3985 return 0; 3986 3987 /* Allocate a descriptor for transmission and mark it current. */ 3988 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur); 3989 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1; 3990 3991 /* Keep track of number of transmit descriptors used so far. */ 3992 ++hw->tx_int_cnt; 3993 hw->tx_size += length; 3994 3995 /* Cannot hold on too much data. */ 3996 if (hw->tx_size >= MAX_TX_HELD_SIZE) 3997 hw->tx_int_cnt = hw->tx_int_mask + 1; 3998 3999 if (physical > hw->tx_desc_info.avail) 4000 return 1; 4001 4002 return hw->tx_desc_info.avail; 4003} 4004 4005/** 4006 * hw_send_pkt - mark packet for transmission 4007 * @hw: The hardware instance. 4008 * 4009 * This routine marks the packet for transmission in PCI version. 4010 */ 4011static void hw_send_pkt(struct ksz_hw *hw) 4012{ 4013 struct ksz_desc *cur = hw->tx_desc_info.cur; 4014 4015 cur->sw.buf.tx.last_seg = 1; 4016 4017 /* Interrupt only after specified number of descriptors used. */ 4018 if (hw->tx_int_cnt > hw->tx_int_mask) { 4019 cur->sw.buf.tx.intr = 1; 4020 hw->tx_int_cnt = 0; 4021 hw->tx_size = 0; 4022 } 4023 4024 /* KSZ8842 supports port directed transmission. */ 4025 cur->sw.buf.tx.dest_port = hw->dst_ports; 4026 4027 release_desc(cur); 4028 4029 writel(0, hw->io + KS_DMA_TX_START); 4030} 4031 4032static int empty_addr(u8 *addr) 4033{ 4034 u32 *addr1 = (u32 *) addr; 4035 u16 *addr2 = (u16 *) &addr[4]; 4036 4037 return 0 == *addr1 && 0 == *addr2; 4038} 4039 4040/** 4041 * hw_set_addr - set MAC address 4042 * @hw: The hardware instance. 4043 * 4044 * This routine programs the MAC address of the hardware when the address is 4045 * overrided. 4046 */ 4047static void hw_set_addr(struct ksz_hw *hw) 4048{ 4049 int i; 4050 4051 for (i = 0; i < ETH_ALEN; i++) 4052 writeb(hw->override_addr[MAC_ADDR_ORDER(i)], 4053 hw->io + KS884X_ADDR_0_OFFSET + i); 4054 4055 sw_set_addr(hw, hw->override_addr); 4056} 4057 4058/** 4059 * hw_read_addr - read MAC address 4060 * @hw: The hardware instance. 4061 * 4062 * This routine retrieves the MAC address of the hardware. 4063 */ 4064static void hw_read_addr(struct ksz_hw *hw) 4065{ 4066 int i; 4067 4068 for (i = 0; i < ETH_ALEN; i++) 4069 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io + 4070 KS884X_ADDR_0_OFFSET + i); 4071 4072 if (!hw->mac_override) { 4073 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN); 4074 if (empty_addr(hw->override_addr)) { 4075 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN); 4076 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS, 4077 ETH_ALEN); 4078 hw->override_addr[5] += hw->id; 4079 hw_set_addr(hw); 4080 } 4081 } 4082} 4083 4084static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr) 4085{ 4086 int i; 4087 u32 mac_addr_lo; 4088 u32 mac_addr_hi; 4089 4090 mac_addr_hi = 0; 4091 for (i = 0; i < 2; i++) { 4092 mac_addr_hi <<= 8; 4093 mac_addr_hi |= mac_addr[i]; 4094 } 4095 mac_addr_hi |= ADD_ADDR_ENABLE; 4096 mac_addr_lo = 0; 4097 for (i = 2; i < 6; i++) { 4098 mac_addr_lo <<= 8; 4099 mac_addr_lo |= mac_addr[i]; 4100 } 4101 index *= ADD_ADDR_INCR; 4102 4103 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO); 4104 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI); 4105} 4106 4107static void hw_set_add_addr(struct ksz_hw *hw) 4108{ 4109 int i; 4110 4111 for (i = 0; i < ADDITIONAL_ENTRIES; i++) { 4112 if (empty_addr(hw->address[i])) 4113 writel(0, hw->io + ADD_ADDR_INCR * i + 4114 KS_ADD_ADDR_0_HI); 4115 else 4116 hw_ena_add_addr(hw, i, hw->address[i]); 4117 } 4118} 4119 4120static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr) 4121{ 4122 int i; 4123 int j = ADDITIONAL_ENTRIES; 4124 4125 if (ether_addr_equal(hw->override_addr, mac_addr)) 4126 return 0; 4127 for (i = 0; i < hw->addr_list_size; i++) { 4128 if (ether_addr_equal(hw->address[i], mac_addr)) 4129 return 0; 4130 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i])) 4131 j = i; 4132 } 4133 if (j < ADDITIONAL_ENTRIES) { 4134 memcpy(hw->address[j], mac_addr, ETH_ALEN); 4135 hw_ena_add_addr(hw, j, hw->address[j]); 4136 return 0; 4137 } 4138 return -1; 4139} 4140 4141static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr) 4142{ 4143 int i; 4144 4145 for (i = 0; i < hw->addr_list_size; i++) { 4146 if (ether_addr_equal(hw->address[i], mac_addr)) { 4147 eth_zero_addr(hw->address[i]); 4148 writel(0, hw->io + ADD_ADDR_INCR * i + 4149 KS_ADD_ADDR_0_HI); 4150 return 0; 4151 } 4152 } 4153 return -1; 4154} 4155 4156/** 4157 * hw_clr_multicast - clear multicast addresses 4158 * @hw: The hardware instance. 4159 * 4160 * This routine removes all multicast addresses set in the hardware. 4161 */ 4162static void hw_clr_multicast(struct ksz_hw *hw) 4163{ 4164 int i; 4165 4166 for (i = 0; i < HW_MULTICAST_SIZE; i++) { 4167 hw->multi_bits[i] = 0; 4168 4169 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i); 4170 } 4171} 4172 4173/** 4174 * hw_set_grp_addr - set multicast addresses 4175 * @hw: The hardware instance. 4176 * 4177 * This routine programs multicast addresses for the hardware to accept those 4178 * addresses. 4179 */ 4180static void hw_set_grp_addr(struct ksz_hw *hw) 4181{ 4182 int i; 4183 int index; 4184 int position; 4185 int value; 4186 4187 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE); 4188 4189 for (i = 0; i < hw->multi_list_size; i++) { 4190 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f; 4191 index = position >> 3; 4192 value = 1 << (position & 7); 4193 hw->multi_bits[index] |= (u8) value; 4194 } 4195 4196 for (i = 0; i < HW_MULTICAST_SIZE; i++) 4197 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET + 4198 i); 4199} 4200 4201/** 4202 * hw_set_multicast - enable or disable all multicast receiving 4203 * @hw: The hardware instance. 4204 * @multicast: To turn on or off the all multicast feature. 4205 * 4206 * This routine enables/disables the hardware to accept all multicast packets. 4207 */ 4208static void hw_set_multicast(struct ksz_hw *hw, u8 multicast) 4209{ 4210 /* Stop receiving for reconfiguration. */ 4211 hw_stop_rx(hw); 4212 4213 if (multicast) 4214 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 4215 else 4216 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST; 4217 4218 if (hw->enabled) 4219 hw_start_rx(hw); 4220} 4221 4222/** 4223 * hw_set_promiscuous - enable or disable promiscuous receiving 4224 * @hw: The hardware instance. 4225 * @prom: To turn on or off the promiscuous feature. 4226 * 4227 * This routine enables/disables the hardware to accept all packets. 4228 */ 4229static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom) 4230{ 4231 /* Stop receiving for reconfiguration. */ 4232 hw_stop_rx(hw); 4233 4234 if (prom) 4235 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 4236 else 4237 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS; 4238 4239 if (hw->enabled) 4240 hw_start_rx(hw); 4241} 4242 4243/** 4244 * sw_enable - enable the switch 4245 * @hw: The hardware instance. 4246 * @enable: The flag to enable or disable the switch 4247 * 4248 * This routine is used to enable/disable the switch in KSZ8842. 4249 */ 4250static void sw_enable(struct ksz_hw *hw, int enable) 4251{ 4252 int port; 4253 4254 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4255 if (hw->dev_count > 1) { 4256 /* Set port-base vlan membership with host port. */ 4257 sw_cfg_port_base_vlan(hw, port, 4258 HOST_MASK | (1 << port)); 4259 port_set_stp_state(hw, port, STP_STATE_DISABLED); 4260 } else { 4261 sw_cfg_port_base_vlan(hw, port, PORT_MASK); 4262 port_set_stp_state(hw, port, STP_STATE_FORWARDING); 4263 } 4264 } 4265 if (hw->dev_count > 1) 4266 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 4267 else 4268 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING); 4269 4270 if (enable) 4271 enable = KS8842_START; 4272 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET); 4273} 4274 4275/** 4276 * sw_setup - setup the switch 4277 * @hw: The hardware instance. 4278 * 4279 * This routine setup the hardware switch engine for default operation. 4280 */ 4281static void sw_setup(struct ksz_hw *hw) 4282{ 4283 int port; 4284 4285 sw_set_global_ctrl(hw); 4286 4287 /* Enable switch broadcast storm protection at 10% percent rate. */ 4288 sw_init_broad_storm(hw); 4289 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE); 4290 for (port = 0; port < SWITCH_PORT_NUM; port++) 4291 sw_ena_broad_storm(hw, port); 4292 4293 sw_init_prio(hw); 4294 4295 sw_init_mirror(hw); 4296 4297 sw_init_prio_rate(hw); 4298 4299 sw_init_vlan(hw); 4300 4301 if (hw->features & STP_SUPPORT) 4302 sw_init_stp(hw); 4303 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 4304 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL)) 4305 hw->overrides |= PAUSE_FLOW_CTRL; 4306 sw_enable(hw, 1); 4307} 4308 4309/** 4310 * ksz_start_timer - start kernel timer 4311 * @info: Kernel timer information. 4312 * @time: The time tick. 4313 * 4314 * This routine starts the kernel timer after the specified time tick. 4315 */ 4316static void ksz_start_timer(struct ksz_timer_info *info, int time) 4317{ 4318 info->cnt = 0; 4319 info->timer.expires = jiffies + time; 4320 add_timer(&info->timer); 4321 4322 /* infinity */ 4323 info->max = -1; 4324} 4325 4326/** 4327 * ksz_stop_timer - stop kernel timer 4328 * @info: Kernel timer information. 4329 * 4330 * This routine stops the kernel timer. 4331 */ 4332static void ksz_stop_timer(struct ksz_timer_info *info) 4333{ 4334 if (info->max) { 4335 info->max = 0; 4336 del_timer_sync(&info->timer); 4337 } 4338} 4339 4340static void ksz_init_timer(struct ksz_timer_info *info, int period, 4341 void (*function)(unsigned long), void *data) 4342{ 4343 info->max = 0; 4344 info->period = period; 4345 setup_timer(&info->timer, function, (unsigned long)data); 4346} 4347 4348static void ksz_update_timer(struct ksz_timer_info *info) 4349{ 4350 ++info->cnt; 4351 if (info->max > 0) { 4352 if (info->cnt < info->max) { 4353 info->timer.expires = jiffies + info->period; 4354 add_timer(&info->timer); 4355 } else 4356 info->max = 0; 4357 } else if (info->max < 0) { 4358 info->timer.expires = jiffies + info->period; 4359 add_timer(&info->timer); 4360 } 4361} 4362 4363/** 4364 * ksz_alloc_soft_desc - allocate software descriptors 4365 * @desc_info: Descriptor information structure. 4366 * @transmit: Indication that descriptors are for transmit. 4367 * 4368 * This local function allocates software descriptors for manipulation in 4369 * memory. 4370 * 4371 * Return 0 if successful. 4372 */ 4373static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit) 4374{ 4375 desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc, 4376 GFP_KERNEL); 4377 if (!desc_info->ring) 4378 return 1; 4379 hw_init_desc(desc_info, transmit); 4380 return 0; 4381} 4382 4383/** 4384 * ksz_alloc_desc - allocate hardware descriptors 4385 * @adapter: Adapter information structure. 4386 * 4387 * This local function allocates hardware descriptors for receiving and 4388 * transmitting. 4389 * 4390 * Return 0 if successful. 4391 */ 4392static int ksz_alloc_desc(struct dev_info *adapter) 4393{ 4394 struct ksz_hw *hw = &adapter->hw; 4395 int offset; 4396 4397 /* Allocate memory for RX & TX descriptors. */ 4398 adapter->desc_pool.alloc_size = 4399 hw->rx_desc_info.size * hw->rx_desc_info.alloc + 4400 hw->tx_desc_info.size * hw->tx_desc_info.alloc + 4401 DESC_ALIGNMENT; 4402 4403 adapter->desc_pool.alloc_virt = 4404 pci_zalloc_consistent(adapter->pdev, 4405 adapter->desc_pool.alloc_size, 4406 &adapter->desc_pool.dma_addr); 4407 if (adapter->desc_pool.alloc_virt == NULL) { 4408 adapter->desc_pool.alloc_size = 0; 4409 return 1; 4410 } 4411 4412 /* Align to the next cache line boundary. */ 4413 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ? 4414 (DESC_ALIGNMENT - 4415 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0); 4416 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset; 4417 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset; 4418 4419 /* Allocate receive/transmit descriptors. */ 4420 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *) 4421 adapter->desc_pool.virt; 4422 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys; 4423 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size; 4424 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *) 4425 (adapter->desc_pool.virt + offset); 4426 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset; 4427 4428 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0)) 4429 return 1; 4430 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1)) 4431 return 1; 4432 4433 return 0; 4434} 4435 4436/** 4437 * free_dma_buf - release DMA buffer resources 4438 * @adapter: Adapter information structure. 4439 * 4440 * This routine is just a helper function to release the DMA buffer resources. 4441 */ 4442static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf, 4443 int direction) 4444{ 4445 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction); 4446 dev_kfree_skb(dma_buf->skb); 4447 dma_buf->skb = NULL; 4448 dma_buf->dma = 0; 4449} 4450 4451/** 4452 * ksz_init_rx_buffers - initialize receive descriptors 4453 * @adapter: Adapter information structure. 4454 * 4455 * This routine initializes DMA buffers for receiving. 4456 */ 4457static void ksz_init_rx_buffers(struct dev_info *adapter) 4458{ 4459 int i; 4460 struct ksz_desc *desc; 4461 struct ksz_dma_buf *dma_buf; 4462 struct ksz_hw *hw = &adapter->hw; 4463 struct ksz_desc_info *info = &hw->rx_desc_info; 4464 4465 for (i = 0; i < hw->rx_desc_info.alloc; i++) { 4466 get_rx_pkt(info, &desc); 4467 4468 dma_buf = DMA_BUFFER(desc); 4469 if (dma_buf->skb && dma_buf->len != adapter->mtu) 4470 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE); 4471 dma_buf->len = adapter->mtu; 4472 if (!dma_buf->skb) 4473 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC); 4474 if (dma_buf->skb && !dma_buf->dma) 4475 dma_buf->dma = pci_map_single( 4476 adapter->pdev, 4477 skb_tail_pointer(dma_buf->skb), 4478 dma_buf->len, 4479 PCI_DMA_FROMDEVICE); 4480 4481 /* Set descriptor. */ 4482 set_rx_buf(desc, dma_buf->dma); 4483 set_rx_len(desc, dma_buf->len); 4484 release_desc(desc); 4485 } 4486} 4487 4488/** 4489 * ksz_alloc_mem - allocate memory for hardware descriptors 4490 * @adapter: Adapter information structure. 4491 * 4492 * This function allocates memory for use by hardware descriptors for receiving 4493 * and transmitting. 4494 * 4495 * Return 0 if successful. 4496 */ 4497static int ksz_alloc_mem(struct dev_info *adapter) 4498{ 4499 struct ksz_hw *hw = &adapter->hw; 4500 4501 /* Determine the number of receive and transmit descriptors. */ 4502 hw->rx_desc_info.alloc = NUM_OF_RX_DESC; 4503 hw->tx_desc_info.alloc = NUM_OF_TX_DESC; 4504 4505 /* Determine how many descriptors to skip transmit interrupt. */ 4506 hw->tx_int_cnt = 0; 4507 hw->tx_int_mask = NUM_OF_TX_DESC / 4; 4508 if (hw->tx_int_mask > 8) 4509 hw->tx_int_mask = 8; 4510 while (hw->tx_int_mask) { 4511 hw->tx_int_cnt++; 4512 hw->tx_int_mask >>= 1; 4513 } 4514 if (hw->tx_int_cnt) { 4515 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1; 4516 hw->tx_int_cnt = 0; 4517 } 4518 4519 /* Determine the descriptor size. */ 4520 hw->rx_desc_info.size = 4521 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4522 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4523 hw->tx_desc_info.size = 4524 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4525 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4526 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc)) 4527 pr_alert("Hardware descriptor size not right!\n"); 4528 ksz_check_desc_num(&hw->rx_desc_info); 4529 ksz_check_desc_num(&hw->tx_desc_info); 4530 4531 /* Allocate descriptors. */ 4532 if (ksz_alloc_desc(adapter)) 4533 return 1; 4534 4535 return 0; 4536} 4537 4538/** 4539 * ksz_free_desc - free software and hardware descriptors 4540 * @adapter: Adapter information structure. 4541 * 4542 * This local routine frees the software and hardware descriptors allocated by 4543 * ksz_alloc_desc(). 4544 */ 4545static void ksz_free_desc(struct dev_info *adapter) 4546{ 4547 struct ksz_hw *hw = &adapter->hw; 4548 4549 /* Reset descriptor. */ 4550 hw->rx_desc_info.ring_virt = NULL; 4551 hw->tx_desc_info.ring_virt = NULL; 4552 hw->rx_desc_info.ring_phys = 0; 4553 hw->tx_desc_info.ring_phys = 0; 4554 4555 /* Free memory. */ 4556 if (adapter->desc_pool.alloc_virt) 4557 pci_free_consistent( 4558 adapter->pdev, 4559 adapter->desc_pool.alloc_size, 4560 adapter->desc_pool.alloc_virt, 4561 adapter->desc_pool.dma_addr); 4562 4563 /* Reset resource pool. */ 4564 adapter->desc_pool.alloc_size = 0; 4565 adapter->desc_pool.alloc_virt = NULL; 4566 4567 kfree(hw->rx_desc_info.ring); 4568 hw->rx_desc_info.ring = NULL; 4569 kfree(hw->tx_desc_info.ring); 4570 hw->tx_desc_info.ring = NULL; 4571} 4572 4573/** 4574 * ksz_free_buffers - free buffers used in the descriptors 4575 * @adapter: Adapter information structure. 4576 * @desc_info: Descriptor information structure. 4577 * 4578 * This local routine frees buffers used in the DMA buffers. 4579 */ 4580static void ksz_free_buffers(struct dev_info *adapter, 4581 struct ksz_desc_info *desc_info, int direction) 4582{ 4583 int i; 4584 struct ksz_dma_buf *dma_buf; 4585 struct ksz_desc *desc = desc_info->ring; 4586 4587 for (i = 0; i < desc_info->alloc; i++) { 4588 dma_buf = DMA_BUFFER(desc); 4589 if (dma_buf->skb) 4590 free_dma_buf(adapter, dma_buf, direction); 4591 desc++; 4592 } 4593} 4594 4595/** 4596 * ksz_free_mem - free all resources used by descriptors 4597 * @adapter: Adapter information structure. 4598 * 4599 * This local routine frees all the resources allocated by ksz_alloc_mem(). 4600 */ 4601static void ksz_free_mem(struct dev_info *adapter) 4602{ 4603 /* Free transmit buffers. */ 4604 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, 4605 PCI_DMA_TODEVICE); 4606 4607 /* Free receive buffers. */ 4608 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, 4609 PCI_DMA_FROMDEVICE); 4610 4611 /* Free descriptors. */ 4612 ksz_free_desc(adapter); 4613} 4614 4615static void get_mib_counters(struct ksz_hw *hw, int first, int cnt, 4616 u64 *counter) 4617{ 4618 int i; 4619 int mib; 4620 int port; 4621 struct ksz_port_mib *port_mib; 4622 4623 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 4624 for (i = 0, port = first; i < cnt; i++, port++) { 4625 port_mib = &hw->port_mib[port]; 4626 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++) 4627 counter[mib] += port_mib->counter[mib]; 4628 } 4629} 4630 4631/** 4632 * send_packet - send packet 4633 * @skb: Socket buffer. 4634 * @dev: Network device. 4635 * 4636 * This routine is used to send a packet out to the network. 4637 */ 4638static void send_packet(struct sk_buff *skb, struct net_device *dev) 4639{ 4640 struct ksz_desc *desc; 4641 struct ksz_desc *first; 4642 struct dev_priv *priv = netdev_priv(dev); 4643 struct dev_info *hw_priv = priv->adapter; 4644 struct ksz_hw *hw = &hw_priv->hw; 4645 struct ksz_desc_info *info = &hw->tx_desc_info; 4646 struct ksz_dma_buf *dma_buf; 4647 int len; 4648 int last_frag = skb_shinfo(skb)->nr_frags; 4649 4650 /* 4651 * KSZ8842 with multiple device interfaces needs to be told which port 4652 * to send. 4653 */ 4654 if (hw->dev_count > 1) 4655 hw->dst_ports = 1 << priv->port.first_port; 4656 4657 /* Hardware will pad the length to 60. */ 4658 len = skb->len; 4659 4660 /* Remember the very first descriptor. */ 4661 first = info->cur; 4662 desc = first; 4663 4664 dma_buf = DMA_BUFFER(desc); 4665 if (last_frag) { 4666 int frag; 4667 skb_frag_t *this_frag; 4668 4669 dma_buf->len = skb_headlen(skb); 4670 4671 dma_buf->dma = pci_map_single( 4672 hw_priv->pdev, skb->data, dma_buf->len, 4673 PCI_DMA_TODEVICE); 4674 set_tx_buf(desc, dma_buf->dma); 4675 set_tx_len(desc, dma_buf->len); 4676 4677 frag = 0; 4678 do { 4679 this_frag = &skb_shinfo(skb)->frags[frag]; 4680 4681 /* Get a new descriptor. */ 4682 get_tx_pkt(info, &desc); 4683 4684 /* Keep track of descriptors used so far. */ 4685 ++hw->tx_int_cnt; 4686 4687 dma_buf = DMA_BUFFER(desc); 4688 dma_buf->len = skb_frag_size(this_frag); 4689 4690 dma_buf->dma = pci_map_single( 4691 hw_priv->pdev, 4692 skb_frag_address(this_frag), 4693 dma_buf->len, 4694 PCI_DMA_TODEVICE); 4695 set_tx_buf(desc, dma_buf->dma); 4696 set_tx_len(desc, dma_buf->len); 4697 4698 frag++; 4699 if (frag == last_frag) 4700 break; 4701 4702 /* Do not release the last descriptor here. */ 4703 release_desc(desc); 4704 } while (1); 4705 4706 /* current points to the last descriptor. */ 4707 info->cur = desc; 4708 4709 /* Release the first descriptor. */ 4710 release_desc(first); 4711 } else { 4712 dma_buf->len = len; 4713 4714 dma_buf->dma = pci_map_single( 4715 hw_priv->pdev, skb->data, dma_buf->len, 4716 PCI_DMA_TODEVICE); 4717 set_tx_buf(desc, dma_buf->dma); 4718 set_tx_len(desc, dma_buf->len); 4719 } 4720 4721 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4722 (desc)->sw.buf.tx.csum_gen_tcp = 1; 4723 (desc)->sw.buf.tx.csum_gen_udp = 1; 4724 } 4725 4726 /* 4727 * The last descriptor holds the packet so that it can be returned to 4728 * network subsystem after all descriptors are transmitted. 4729 */ 4730 dma_buf->skb = skb; 4731 4732 hw_send_pkt(hw); 4733 4734 /* Update transmit statistics. */ 4735 dev->stats.tx_packets++; 4736 dev->stats.tx_bytes += len; 4737} 4738 4739/** 4740 * transmit_cleanup - clean up transmit descriptors 4741 * @dev: Network device. 4742 * 4743 * This routine is called to clean up the transmitted buffers. 4744 */ 4745static void transmit_cleanup(struct dev_info *hw_priv, int normal) 4746{ 4747 int last; 4748 union desc_stat status; 4749 struct ksz_hw *hw = &hw_priv->hw; 4750 struct ksz_desc_info *info = &hw->tx_desc_info; 4751 struct ksz_desc *desc; 4752 struct ksz_dma_buf *dma_buf; 4753 struct net_device *dev = NULL; 4754 4755 spin_lock_irq(&hw_priv->hwlock); 4756 last = info->last; 4757 4758 while (info->avail < info->alloc) { 4759 /* Get next descriptor which is not hardware owned. */ 4760 desc = &info->ring[last]; 4761 status.data = le32_to_cpu(desc->phw->ctrl.data); 4762 if (status.tx.hw_owned) { 4763 if (normal) 4764 break; 4765 else 4766 reset_desc(desc, status); 4767 } 4768 4769 dma_buf = DMA_BUFFER(desc); 4770 pci_unmap_single( 4771 hw_priv->pdev, dma_buf->dma, dma_buf->len, 4772 PCI_DMA_TODEVICE); 4773 4774 /* This descriptor contains the last buffer in the packet. */ 4775 if (dma_buf->skb) { 4776 dev = dma_buf->skb->dev; 4777 4778 /* Release the packet back to network subsystem. */ 4779 dev_kfree_skb_irq(dma_buf->skb); 4780 dma_buf->skb = NULL; 4781 } 4782 4783 /* Free the transmitted descriptor. */ 4784 last++; 4785 last &= info->mask; 4786 info->avail++; 4787 } 4788 info->last = last; 4789 spin_unlock_irq(&hw_priv->hwlock); 4790 4791 /* Notify the network subsystem that the packet has been sent. */ 4792 if (dev) 4793 dev->trans_start = jiffies; 4794} 4795 4796/** 4797 * transmit_done - transmit done processing 4798 * @dev: Network device. 4799 * 4800 * This routine is called when the transmit interrupt is triggered, indicating 4801 * either a packet is sent successfully or there are transmit errors. 4802 */ 4803static void tx_done(struct dev_info *hw_priv) 4804{ 4805 struct ksz_hw *hw = &hw_priv->hw; 4806 int port; 4807 4808 transmit_cleanup(hw_priv, 1); 4809 4810 for (port = 0; port < hw->dev_count; port++) { 4811 struct net_device *dev = hw->port_info[port].pdev; 4812 4813 if (netif_running(dev) && netif_queue_stopped(dev)) 4814 netif_wake_queue(dev); 4815 } 4816} 4817 4818static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb) 4819{ 4820 skb->dev = old->dev; 4821 skb->protocol = old->protocol; 4822 skb->ip_summed = old->ip_summed; 4823 skb->csum = old->csum; 4824 skb_set_network_header(skb, ETH_HLEN); 4825 4826 dev_consume_skb_any(old); 4827} 4828 4829/** 4830 * netdev_tx - send out packet 4831 * @skb: Socket buffer. 4832 * @dev: Network device. 4833 * 4834 * This function is used by the upper network layer to send out a packet. 4835 * 4836 * Return 0 if successful; otherwise an error code indicating failure. 4837 */ 4838static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev) 4839{ 4840 struct dev_priv *priv = netdev_priv(dev); 4841 struct dev_info *hw_priv = priv->adapter; 4842 struct ksz_hw *hw = &hw_priv->hw; 4843 int left; 4844 int num = 1; 4845 int rc = 0; 4846 4847 if (hw->features & SMALL_PACKET_TX_BUG) { 4848 struct sk_buff *org_skb = skb; 4849 4850 if (skb->len <= 48) { 4851 if (skb_end_pointer(skb) - skb->data >= 50) { 4852 memset(&skb->data[skb->len], 0, 50 - skb->len); 4853 skb->len = 50; 4854 } else { 4855 skb = netdev_alloc_skb(dev, 50); 4856 if (!skb) 4857 return NETDEV_TX_BUSY; 4858 memcpy(skb->data, org_skb->data, org_skb->len); 4859 memset(&skb->data[org_skb->len], 0, 4860 50 - org_skb->len); 4861 skb->len = 50; 4862 copy_old_skb(org_skb, skb); 4863 } 4864 } 4865 } 4866 4867 spin_lock_irq(&hw_priv->hwlock); 4868 4869 num = skb_shinfo(skb)->nr_frags + 1; 4870 left = hw_alloc_pkt(hw, skb->len, num); 4871 if (left) { 4872 if (left < num || 4873 (CHECKSUM_PARTIAL == skb->ip_summed && 4874 skb->protocol == htons(ETH_P_IPV6))) { 4875 struct sk_buff *org_skb = skb; 4876 4877 skb = netdev_alloc_skb(dev, org_skb->len); 4878 if (!skb) { 4879 rc = NETDEV_TX_BUSY; 4880 goto unlock; 4881 } 4882 skb_copy_and_csum_dev(org_skb, skb->data); 4883 org_skb->ip_summed = CHECKSUM_NONE; 4884 skb->len = org_skb->len; 4885 copy_old_skb(org_skb, skb); 4886 } 4887 send_packet(skb, dev); 4888 if (left <= num) 4889 netif_stop_queue(dev); 4890 } else { 4891 /* Stop the transmit queue until packet is allocated. */ 4892 netif_stop_queue(dev); 4893 rc = NETDEV_TX_BUSY; 4894 } 4895unlock: 4896 spin_unlock_irq(&hw_priv->hwlock); 4897 4898 return rc; 4899} 4900 4901/** 4902 * netdev_tx_timeout - transmit timeout processing 4903 * @dev: Network device. 4904 * 4905 * This routine is called when the transmit timer expires. That indicates the 4906 * hardware is not running correctly because transmit interrupts are not 4907 * triggered to free up resources so that the transmit routine can continue 4908 * sending out packets. The hardware is reset to correct the problem. 4909 */ 4910static void netdev_tx_timeout(struct net_device *dev) 4911{ 4912 static unsigned long last_reset; 4913 4914 struct dev_priv *priv = netdev_priv(dev); 4915 struct dev_info *hw_priv = priv->adapter; 4916 struct ksz_hw *hw = &hw_priv->hw; 4917 int port; 4918 4919 if (hw->dev_count > 1) { 4920 /* 4921 * Only reset the hardware if time between calls is long 4922 * enough. 4923 */ 4924 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo)) 4925 hw_priv = NULL; 4926 } 4927 4928 last_reset = jiffies; 4929 if (hw_priv) { 4930 hw_dis_intr(hw); 4931 hw_disable(hw); 4932 4933 transmit_cleanup(hw_priv, 0); 4934 hw_reset_pkts(&hw->rx_desc_info); 4935 hw_reset_pkts(&hw->tx_desc_info); 4936 ksz_init_rx_buffers(hw_priv); 4937 4938 hw_reset(hw); 4939 4940 hw_set_desc_base(hw, 4941 hw->tx_desc_info.ring_phys, 4942 hw->rx_desc_info.ring_phys); 4943 hw_set_addr(hw); 4944 if (hw->all_multi) 4945 hw_set_multicast(hw, hw->all_multi); 4946 else if (hw->multi_list_size) 4947 hw_set_grp_addr(hw); 4948 4949 if (hw->dev_count > 1) { 4950 hw_set_add_addr(hw); 4951 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4952 struct net_device *port_dev; 4953 4954 port_set_stp_state(hw, port, 4955 STP_STATE_DISABLED); 4956 4957 port_dev = hw->port_info[port].pdev; 4958 if (netif_running(port_dev)) 4959 port_set_stp_state(hw, port, 4960 STP_STATE_SIMPLE); 4961 } 4962 } 4963 4964 hw_enable(hw); 4965 hw_ena_intr(hw); 4966 } 4967 4968 dev->trans_start = jiffies; 4969 netif_wake_queue(dev); 4970} 4971 4972static inline void csum_verified(struct sk_buff *skb) 4973{ 4974 unsigned short protocol; 4975 struct iphdr *iph; 4976 4977 protocol = skb->protocol; 4978 skb_reset_network_header(skb); 4979 iph = (struct iphdr *) skb_network_header(skb); 4980 if (protocol == htons(ETH_P_8021Q)) { 4981 protocol = iph->tot_len; 4982 skb_set_network_header(skb, VLAN_HLEN); 4983 iph = (struct iphdr *) skb_network_header(skb); 4984 } 4985 if (protocol == htons(ETH_P_IP)) { 4986 if (iph->protocol == IPPROTO_TCP) 4987 skb->ip_summed = CHECKSUM_UNNECESSARY; 4988 } 4989} 4990 4991static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw, 4992 struct ksz_desc *desc, union desc_stat status) 4993{ 4994 int packet_len; 4995 struct dev_priv *priv = netdev_priv(dev); 4996 struct dev_info *hw_priv = priv->adapter; 4997 struct ksz_dma_buf *dma_buf; 4998 struct sk_buff *skb; 4999 int rx_status; 5000 5001 /* Received length includes 4-byte CRC. */ 5002 packet_len = status.rx.frame_len - 4; 5003 5004 dma_buf = DMA_BUFFER(desc); 5005 pci_dma_sync_single_for_cpu( 5006 hw_priv->pdev, dma_buf->dma, packet_len + 4, 5007 PCI_DMA_FROMDEVICE); 5008 5009 do { 5010 /* skb->data != skb->head */ 5011 skb = netdev_alloc_skb(dev, packet_len + 2); 5012 if (!skb) { 5013 dev->stats.rx_dropped++; 5014 return -ENOMEM; 5015 } 5016 5017 /* 5018 * Align socket buffer in 4-byte boundary for better 5019 * performance. 5020 */ 5021 skb_reserve(skb, 2); 5022 5023 memcpy(skb_put(skb, packet_len), 5024 dma_buf->skb->data, packet_len); 5025 } while (0); 5026 5027 skb->protocol = eth_type_trans(skb, dev); 5028 5029 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP)) 5030 csum_verified(skb); 5031 5032 /* Update receive statistics. */ 5033 dev->stats.rx_packets++; 5034 dev->stats.rx_bytes += packet_len; 5035 5036 /* Notify upper layer for received packet. */ 5037 rx_status = netif_rx(skb); 5038 5039 return 0; 5040} 5041 5042static int dev_rcv_packets(struct dev_info *hw_priv) 5043{ 5044 int next; 5045 union desc_stat status; 5046 struct ksz_hw *hw = &hw_priv->hw; 5047 struct net_device *dev = hw->port_info[0].pdev; 5048 struct ksz_desc_info *info = &hw->rx_desc_info; 5049 int left = info->alloc; 5050 struct ksz_desc *desc; 5051 int received = 0; 5052 5053 next = info->next; 5054 while (left--) { 5055 /* Get next descriptor which is not hardware owned. */ 5056 desc = &info->ring[next]; 5057 status.data = le32_to_cpu(desc->phw->ctrl.data); 5058 if (status.rx.hw_owned) 5059 break; 5060 5061 /* Status valid only when last descriptor bit is set. */ 5062 if (status.rx.last_desc && status.rx.first_desc) { 5063 if (rx_proc(dev, hw, desc, status)) 5064 goto release_packet; 5065 received++; 5066 } 5067 5068release_packet: 5069 release_desc(desc); 5070 next++; 5071 next &= info->mask; 5072 } 5073 info->next = next; 5074 5075 return received; 5076} 5077 5078static int port_rcv_packets(struct dev_info *hw_priv) 5079{ 5080 int next; 5081 union desc_stat status; 5082 struct ksz_hw *hw = &hw_priv->hw; 5083 struct net_device *dev = hw->port_info[0].pdev; 5084 struct ksz_desc_info *info = &hw->rx_desc_info; 5085 int left = info->alloc; 5086 struct ksz_desc *desc; 5087 int received = 0; 5088 5089 next = info->next; 5090 while (left--) { 5091 /* Get next descriptor which is not hardware owned. */ 5092 desc = &info->ring[next]; 5093 status.data = le32_to_cpu(desc->phw->ctrl.data); 5094 if (status.rx.hw_owned) 5095 break; 5096 5097 if (hw->dev_count > 1) { 5098 /* Get received port number. */ 5099 int p = HW_TO_DEV_PORT(status.rx.src_port); 5100 5101 dev = hw->port_info[p].pdev; 5102 if (!netif_running(dev)) 5103 goto release_packet; 5104 } 5105 5106 /* Status valid only when last descriptor bit is set. */ 5107 if (status.rx.last_desc && status.rx.first_desc) { 5108 if (rx_proc(dev, hw, desc, status)) 5109 goto release_packet; 5110 received++; 5111 } 5112 5113release_packet: 5114 release_desc(desc); 5115 next++; 5116 next &= info->mask; 5117 } 5118 info->next = next; 5119 5120 return received; 5121} 5122 5123static int dev_rcv_special(struct dev_info *hw_priv) 5124{ 5125 int next; 5126 union desc_stat status; 5127 struct ksz_hw *hw = &hw_priv->hw; 5128 struct net_device *dev = hw->port_info[0].pdev; 5129 struct ksz_desc_info *info = &hw->rx_desc_info; 5130 int left = info->alloc; 5131 struct ksz_desc *desc; 5132 int received = 0; 5133 5134 next = info->next; 5135 while (left--) { 5136 /* Get next descriptor which is not hardware owned. */ 5137 desc = &info->ring[next]; 5138 status.data = le32_to_cpu(desc->phw->ctrl.data); 5139 if (status.rx.hw_owned) 5140 break; 5141 5142 if (hw->dev_count > 1) { 5143 /* Get received port number. */ 5144 int p = HW_TO_DEV_PORT(status.rx.src_port); 5145 5146 dev = hw->port_info[p].pdev; 5147 if (!netif_running(dev)) 5148 goto release_packet; 5149 } 5150 5151 /* Status valid only when last descriptor bit is set. */ 5152 if (status.rx.last_desc && status.rx.first_desc) { 5153 /* 5154 * Receive without error. With receive errors 5155 * disabled, packets with receive errors will be 5156 * dropped, so no need to check the error bit. 5157 */ 5158 if (!status.rx.error || (status.data & 5159 KS_DESC_RX_ERROR_COND) == 5160 KS_DESC_RX_ERROR_TOO_LONG) { 5161 if (rx_proc(dev, hw, desc, status)) 5162 goto release_packet; 5163 received++; 5164 } else { 5165 struct dev_priv *priv = netdev_priv(dev); 5166 5167 /* Update receive error statistics. */ 5168 priv->port.counter[OID_COUNTER_RCV_ERROR]++; 5169 } 5170 } 5171 5172release_packet: 5173 release_desc(desc); 5174 next++; 5175 next &= info->mask; 5176 } 5177 info->next = next; 5178 5179 return received; 5180} 5181 5182static void rx_proc_task(unsigned long data) 5183{ 5184 struct dev_info *hw_priv = (struct dev_info *) data; 5185 struct ksz_hw *hw = &hw_priv->hw; 5186 5187 if (!hw->enabled) 5188 return; 5189 if (unlikely(!hw_priv->dev_rcv(hw_priv))) { 5190 5191 /* In case receive process is suspended because of overrun. */ 5192 hw_resume_rx(hw); 5193 5194 /* tasklets are interruptible. */ 5195 spin_lock_irq(&hw_priv->hwlock); 5196 hw_turn_on_intr(hw, KS884X_INT_RX_MASK); 5197 spin_unlock_irq(&hw_priv->hwlock); 5198 } else { 5199 hw_ack_intr(hw, KS884X_INT_RX); 5200 tasklet_schedule(&hw_priv->rx_tasklet); 5201 } 5202} 5203 5204static void tx_proc_task(unsigned long data) 5205{ 5206 struct dev_info *hw_priv = (struct dev_info *) data; 5207 struct ksz_hw *hw = &hw_priv->hw; 5208 5209 hw_ack_intr(hw, KS884X_INT_TX_MASK); 5210 5211 tx_done(hw_priv); 5212 5213 /* tasklets are interruptible. */ 5214 spin_lock_irq(&hw_priv->hwlock); 5215 hw_turn_on_intr(hw, KS884X_INT_TX); 5216 spin_unlock_irq(&hw_priv->hwlock); 5217} 5218 5219static inline void handle_rx_stop(struct ksz_hw *hw) 5220{ 5221 /* Receive just has been stopped. */ 5222 if (0 == hw->rx_stop) 5223 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5224 else if (hw->rx_stop > 1) { 5225 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) { 5226 hw_start_rx(hw); 5227 } else { 5228 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5229 hw->rx_stop = 0; 5230 } 5231 } else 5232 /* Receive just has been started. */ 5233 hw->rx_stop++; 5234} 5235 5236/** 5237 * netdev_intr - interrupt handling 5238 * @irq: Interrupt number. 5239 * @dev_id: Network device. 5240 * 5241 * This function is called by upper network layer to signal interrupt. 5242 * 5243 * Return IRQ_HANDLED if interrupt is handled. 5244 */ 5245static irqreturn_t netdev_intr(int irq, void *dev_id) 5246{ 5247 uint int_enable = 0; 5248 struct net_device *dev = (struct net_device *) dev_id; 5249 struct dev_priv *priv = netdev_priv(dev); 5250 struct dev_info *hw_priv = priv->adapter; 5251 struct ksz_hw *hw = &hw_priv->hw; 5252 5253 spin_lock(&hw_priv->hwlock); 5254 5255 hw_read_intr(hw, &int_enable); 5256 5257 /* Not our interrupt! */ 5258 if (!int_enable) { 5259 spin_unlock(&hw_priv->hwlock); 5260 return IRQ_NONE; 5261 } 5262 5263 do { 5264 hw_ack_intr(hw, int_enable); 5265 int_enable &= hw->intr_mask; 5266 5267 if (unlikely(int_enable & KS884X_INT_TX_MASK)) { 5268 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK); 5269 tasklet_schedule(&hw_priv->tx_tasklet); 5270 } 5271 5272 if (likely(int_enable & KS884X_INT_RX)) { 5273 hw_dis_intr_bit(hw, KS884X_INT_RX); 5274 tasklet_schedule(&hw_priv->rx_tasklet); 5275 } 5276 5277 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) { 5278 dev->stats.rx_fifo_errors++; 5279 hw_resume_rx(hw); 5280 } 5281 5282 if (unlikely(int_enable & KS884X_INT_PHY)) { 5283 struct ksz_port *port = &priv->port; 5284 5285 hw->features |= LINK_INT_WORKING; 5286 port_get_link_speed(port); 5287 } 5288 5289 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) { 5290 handle_rx_stop(hw); 5291 break; 5292 } 5293 5294 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) { 5295 u32 data; 5296 5297 hw->intr_mask &= ~KS884X_INT_TX_STOPPED; 5298 pr_info("Tx stopped\n"); 5299 data = readl(hw->io + KS_DMA_TX_CTRL); 5300 if (!(data & DMA_TX_ENABLE)) 5301 pr_info("Tx disabled\n"); 5302 break; 5303 } 5304 } while (0); 5305 5306 hw_ena_intr(hw); 5307 5308 spin_unlock(&hw_priv->hwlock); 5309 5310 return IRQ_HANDLED; 5311} 5312 5313/* 5314 * Linux network device functions 5315 */ 5316 5317static unsigned long next_jiffies; 5318 5319#ifdef CONFIG_NET_POLL_CONTROLLER 5320static void netdev_netpoll(struct net_device *dev) 5321{ 5322 struct dev_priv *priv = netdev_priv(dev); 5323 struct dev_info *hw_priv = priv->adapter; 5324 5325 hw_dis_intr(&hw_priv->hw); 5326 netdev_intr(dev->irq, dev); 5327} 5328#endif 5329 5330static void bridge_change(struct ksz_hw *hw) 5331{ 5332 int port; 5333 u8 member; 5334 struct ksz_switch *sw = hw->ksz_switch; 5335 5336 /* No ports in forwarding state. */ 5337 if (!sw->member) { 5338 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 5339 sw_block_addr(hw); 5340 } 5341 for (port = 0; port < SWITCH_PORT_NUM; port++) { 5342 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state) 5343 member = HOST_MASK | sw->member; 5344 else 5345 member = HOST_MASK | (1 << port); 5346 if (member != sw->port_cfg[port].member) 5347 sw_cfg_port_base_vlan(hw, port, member); 5348 } 5349} 5350 5351/** 5352 * netdev_close - close network device 5353 * @dev: Network device. 5354 * 5355 * This function process the close operation of network device. This is caused 5356 * by the user command "ifconfig ethX down." 5357 * 5358 * Return 0 if successful; otherwise an error code indicating failure. 5359 */ 5360static int netdev_close(struct net_device *dev) 5361{ 5362 struct dev_priv *priv = netdev_priv(dev); 5363 struct dev_info *hw_priv = priv->adapter; 5364 struct ksz_port *port = &priv->port; 5365 struct ksz_hw *hw = &hw_priv->hw; 5366 int pi; 5367 5368 netif_stop_queue(dev); 5369 5370 ksz_stop_timer(&priv->monitor_timer_info); 5371 5372 /* Need to shut the port manually in multiple device interfaces mode. */ 5373 if (hw->dev_count > 1) { 5374 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED); 5375 5376 /* Port is closed. Need to change bridge setting. */ 5377 if (hw->features & STP_SUPPORT) { 5378 pi = 1 << port->first_port; 5379 if (hw->ksz_switch->member & pi) { 5380 hw->ksz_switch->member &= ~pi; 5381 bridge_change(hw); 5382 } 5383 } 5384 } 5385 if (port->first_port > 0) 5386 hw_del_addr(hw, dev->dev_addr); 5387 if (!hw_priv->wol_enable) 5388 port_set_power_saving(port, true); 5389 5390 if (priv->multicast) 5391 --hw->all_multi; 5392 if (priv->promiscuous) 5393 --hw->promiscuous; 5394 5395 hw_priv->opened--; 5396 if (!(hw_priv->opened)) { 5397 ksz_stop_timer(&hw_priv->mib_timer_info); 5398 flush_work(&hw_priv->mib_read); 5399 5400 hw_dis_intr(hw); 5401 hw_disable(hw); 5402 hw_clr_multicast(hw); 5403 5404 /* Delay for receive task to stop scheduling itself. */ 5405 msleep(2000 / HZ); 5406 5407 tasklet_kill(&hw_priv->rx_tasklet); 5408 tasklet_kill(&hw_priv->tx_tasklet); 5409 free_irq(dev->irq, hw_priv->dev); 5410 5411 transmit_cleanup(hw_priv, 0); 5412 hw_reset_pkts(&hw->rx_desc_info); 5413 hw_reset_pkts(&hw->tx_desc_info); 5414 5415 /* Clean out static MAC table when the switch is shutdown. */ 5416 if (hw->features & STP_SUPPORT) 5417 sw_clr_sta_mac_table(hw); 5418 } 5419 5420 return 0; 5421} 5422 5423static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw) 5424{ 5425 if (hw->ksz_switch) { 5426 u32 data; 5427 5428 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5429 if (hw->features & RX_HUGE_FRAME) 5430 data |= SWITCH_HUGE_PACKET; 5431 else 5432 data &= ~SWITCH_HUGE_PACKET; 5433 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5434 } 5435 if (hw->features & RX_HUGE_FRAME) { 5436 hw->rx_cfg |= DMA_RX_ERROR; 5437 hw_priv->dev_rcv = dev_rcv_special; 5438 } else { 5439 hw->rx_cfg &= ~DMA_RX_ERROR; 5440 if (hw->dev_count > 1) 5441 hw_priv->dev_rcv = port_rcv_packets; 5442 else 5443 hw_priv->dev_rcv = dev_rcv_packets; 5444 } 5445} 5446 5447static int prepare_hardware(struct net_device *dev) 5448{ 5449 struct dev_priv *priv = netdev_priv(dev); 5450 struct dev_info *hw_priv = priv->adapter; 5451 struct ksz_hw *hw = &hw_priv->hw; 5452 int rc = 0; 5453 5454 /* Remember the network device that requests interrupts. */ 5455 hw_priv->dev = dev; 5456 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev); 5457 if (rc) 5458 return rc; 5459 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task, 5460 (unsigned long) hw_priv); 5461 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task, 5462 (unsigned long) hw_priv); 5463 5464 hw->promiscuous = 0; 5465 hw->all_multi = 0; 5466 hw->multi_list_size = 0; 5467 5468 hw_reset(hw); 5469 5470 hw_set_desc_base(hw, 5471 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); 5472 hw_set_addr(hw); 5473 hw_cfg_huge_frame(hw_priv, hw); 5474 ksz_init_rx_buffers(hw_priv); 5475 return 0; 5476} 5477 5478static void set_media_state(struct net_device *dev, int media_state) 5479{ 5480 struct dev_priv *priv = netdev_priv(dev); 5481 5482 if (media_state == priv->media_state) 5483 netif_carrier_on(dev); 5484 else 5485 netif_carrier_off(dev); 5486 netif_info(priv, link, dev, "link %s\n", 5487 media_state == priv->media_state ? "on" : "off"); 5488} 5489 5490/** 5491 * netdev_open - open network device 5492 * @dev: Network device. 5493 * 5494 * This function process the open operation of network device. This is caused 5495 * by the user command "ifconfig ethX up." 5496 * 5497 * Return 0 if successful; otherwise an error code indicating failure. 5498 */ 5499static int netdev_open(struct net_device *dev) 5500{ 5501 struct dev_priv *priv = netdev_priv(dev); 5502 struct dev_info *hw_priv = priv->adapter; 5503 struct ksz_hw *hw = &hw_priv->hw; 5504 struct ksz_port *port = &priv->port; 5505 int i; 5506 int p; 5507 int rc = 0; 5508 5509 priv->multicast = 0; 5510 priv->promiscuous = 0; 5511 5512 /* Reset device statistics. */ 5513 memset(&dev->stats, 0, sizeof(struct net_device_stats)); 5514 memset((void *) port->counter, 0, 5515 (sizeof(u64) * OID_COUNTER_LAST)); 5516 5517 if (!(hw_priv->opened)) { 5518 rc = prepare_hardware(dev); 5519 if (rc) 5520 return rc; 5521 for (i = 0; i < hw->mib_port_cnt; i++) { 5522 if (next_jiffies < jiffies) 5523 next_jiffies = jiffies + HZ * 2; 5524 else 5525 next_jiffies += HZ * 1; 5526 hw_priv->counter[i].time = next_jiffies; 5527 hw->port_mib[i].state = media_disconnected; 5528 port_init_cnt(hw, i); 5529 } 5530 if (hw->ksz_switch) 5531 hw->port_mib[HOST_PORT].state = media_connected; 5532 else { 5533 hw_add_wol_bcast(hw); 5534 hw_cfg_wol_pme(hw, 0); 5535 hw_clr_wol_pme_status(&hw_priv->hw); 5536 } 5537 } 5538 port_set_power_saving(port, false); 5539 5540 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 5541 /* 5542 * Initialize to invalid value so that link detection 5543 * is done. 5544 */ 5545 hw->port_info[p].partner = 0xFF; 5546 hw->port_info[p].state = media_disconnected; 5547 } 5548 5549 /* Need to open the port in multiple device interfaces mode. */ 5550 if (hw->dev_count > 1) { 5551 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE); 5552 if (port->first_port > 0) 5553 hw_add_addr(hw, dev->dev_addr); 5554 } 5555 5556 port_get_link_speed(port); 5557 if (port->force_link) 5558 port_force_link_speed(port); 5559 else 5560 port_set_link_speed(port); 5561 5562 if (!(hw_priv->opened)) { 5563 hw_setup_intr(hw); 5564 hw_enable(hw); 5565 hw_ena_intr(hw); 5566 5567 if (hw->mib_port_cnt) 5568 ksz_start_timer(&hw_priv->mib_timer_info, 5569 hw_priv->mib_timer_info.period); 5570 } 5571 5572 hw_priv->opened++; 5573 5574 ksz_start_timer(&priv->monitor_timer_info, 5575 priv->monitor_timer_info.period); 5576 5577 priv->media_state = port->linked->state; 5578 5579 set_media_state(dev, media_connected); 5580 netif_start_queue(dev); 5581 5582 return 0; 5583} 5584 5585/* RX errors = rx_errors */ 5586/* RX dropped = rx_dropped */ 5587/* RX overruns = rx_fifo_errors */ 5588/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */ 5589/* TX errors = tx_errors */ 5590/* TX dropped = tx_dropped */ 5591/* TX overruns = tx_fifo_errors */ 5592/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */ 5593/* collisions = collisions */ 5594 5595/** 5596 * netdev_query_statistics - query network device statistics 5597 * @dev: Network device. 5598 * 5599 * This function returns the statistics of the network device. The device 5600 * needs not be opened. 5601 * 5602 * Return network device statistics. 5603 */ 5604static struct net_device_stats *netdev_query_statistics(struct net_device *dev) 5605{ 5606 struct dev_priv *priv = netdev_priv(dev); 5607 struct ksz_port *port = &priv->port; 5608 struct ksz_hw *hw = &priv->adapter->hw; 5609 struct ksz_port_mib *mib; 5610 int i; 5611 int p; 5612 5613 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR]; 5614 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR]; 5615 5616 /* Reset to zero to add count later. */ 5617 dev->stats.multicast = 0; 5618 dev->stats.collisions = 0; 5619 dev->stats.rx_length_errors = 0; 5620 dev->stats.rx_crc_errors = 0; 5621 dev->stats.rx_frame_errors = 0; 5622 dev->stats.tx_window_errors = 0; 5623 5624 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 5625 mib = &hw->port_mib[p]; 5626 5627 dev->stats.multicast += (unsigned long) 5628 mib->counter[MIB_COUNTER_RX_MULTICAST]; 5629 5630 dev->stats.collisions += (unsigned long) 5631 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION]; 5632 5633 dev->stats.rx_length_errors += (unsigned long)( 5634 mib->counter[MIB_COUNTER_RX_UNDERSIZE] + 5635 mib->counter[MIB_COUNTER_RX_FRAGMENT] + 5636 mib->counter[MIB_COUNTER_RX_OVERSIZE] + 5637 mib->counter[MIB_COUNTER_RX_JABBER]); 5638 dev->stats.rx_crc_errors += (unsigned long) 5639 mib->counter[MIB_COUNTER_RX_CRC_ERR]; 5640 dev->stats.rx_frame_errors += (unsigned long)( 5641 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] + 5642 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]); 5643 5644 dev->stats.tx_window_errors += (unsigned long) 5645 mib->counter[MIB_COUNTER_TX_LATE_COLLISION]; 5646 } 5647 5648 return &dev->stats; 5649} 5650 5651/** 5652 * netdev_set_mac_address - set network device MAC address 5653 * @dev: Network device. 5654 * @addr: Buffer of MAC address. 5655 * 5656 * This function is used to set the MAC address of the network device. 5657 * 5658 * Return 0 to indicate success. 5659 */ 5660static int netdev_set_mac_address(struct net_device *dev, void *addr) 5661{ 5662 struct dev_priv *priv = netdev_priv(dev); 5663 struct dev_info *hw_priv = priv->adapter; 5664 struct ksz_hw *hw = &hw_priv->hw; 5665 struct sockaddr *mac = addr; 5666 uint interrupt; 5667 5668 if (priv->port.first_port > 0) 5669 hw_del_addr(hw, dev->dev_addr); 5670 else { 5671 hw->mac_override = 1; 5672 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN); 5673 } 5674 5675 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN); 5676 5677 interrupt = hw_block_intr(hw); 5678 5679 if (priv->port.first_port > 0) 5680 hw_add_addr(hw, dev->dev_addr); 5681 else 5682 hw_set_addr(hw); 5683 hw_restore_intr(hw, interrupt); 5684 5685 return 0; 5686} 5687 5688static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv, 5689 struct ksz_hw *hw, int promiscuous) 5690{ 5691 if (promiscuous != priv->promiscuous) { 5692 u8 prev_state = hw->promiscuous; 5693 5694 if (promiscuous) 5695 ++hw->promiscuous; 5696 else 5697 --hw->promiscuous; 5698 priv->promiscuous = promiscuous; 5699 5700 /* Turn on/off promiscuous mode. */ 5701 if (hw->promiscuous <= 1 && prev_state <= 1) 5702 hw_set_promiscuous(hw, hw->promiscuous); 5703 5704 /* 5705 * Port is not in promiscuous mode, meaning it is released 5706 * from the bridge. 5707 */ 5708 if ((hw->features & STP_SUPPORT) && !promiscuous && 5709 (dev->priv_flags & IFF_BRIDGE_PORT)) { 5710 struct ksz_switch *sw = hw->ksz_switch; 5711 int port = priv->port.first_port; 5712 5713 port_set_stp_state(hw, port, STP_STATE_DISABLED); 5714 port = 1 << port; 5715 if (sw->member & port) { 5716 sw->member &= ~port; 5717 bridge_change(hw); 5718 } 5719 } 5720 } 5721} 5722 5723static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw, 5724 int multicast) 5725{ 5726 if (multicast != priv->multicast) { 5727 u8 all_multi = hw->all_multi; 5728 5729 if (multicast) 5730 ++hw->all_multi; 5731 else 5732 --hw->all_multi; 5733 priv->multicast = multicast; 5734 5735 /* Turn on/off all multicast mode. */ 5736 if (hw->all_multi <= 1 && all_multi <= 1) 5737 hw_set_multicast(hw, hw->all_multi); 5738 } 5739} 5740 5741/** 5742 * netdev_set_rx_mode 5743 * @dev: Network device. 5744 * 5745 * This routine is used to set multicast addresses or put the network device 5746 * into promiscuous mode. 5747 */ 5748static void netdev_set_rx_mode(struct net_device *dev) 5749{ 5750 struct dev_priv *priv = netdev_priv(dev); 5751 struct dev_info *hw_priv = priv->adapter; 5752 struct ksz_hw *hw = &hw_priv->hw; 5753 struct netdev_hw_addr *ha; 5754 int multicast = (dev->flags & IFF_ALLMULTI); 5755 5756 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC)); 5757 5758 if (hw_priv->hw.dev_count > 1) 5759 multicast |= (dev->flags & IFF_MULTICAST); 5760 dev_set_multicast(priv, hw, multicast); 5761 5762 /* Cannot use different hashes in multiple device interfaces mode. */ 5763 if (hw_priv->hw.dev_count > 1) 5764 return; 5765 5766 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { 5767 int i = 0; 5768 5769 /* List too big to support so turn on all multicast mode. */ 5770 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) { 5771 if (MAX_MULTICAST_LIST != hw->multi_list_size) { 5772 hw->multi_list_size = MAX_MULTICAST_LIST; 5773 ++hw->all_multi; 5774 hw_set_multicast(hw, hw->all_multi); 5775 } 5776 return; 5777 } 5778 5779 netdev_for_each_mc_addr(ha, dev) { 5780 if (i >= MAX_MULTICAST_LIST) 5781 break; 5782 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN); 5783 } 5784 hw->multi_list_size = (u8) i; 5785 hw_set_grp_addr(hw); 5786 } else { 5787 if (MAX_MULTICAST_LIST == hw->multi_list_size) { 5788 --hw->all_multi; 5789 hw_set_multicast(hw, hw->all_multi); 5790 } 5791 hw->multi_list_size = 0; 5792 hw_clr_multicast(hw); 5793 } 5794} 5795 5796static int netdev_change_mtu(struct net_device *dev, int new_mtu) 5797{ 5798 struct dev_priv *priv = netdev_priv(dev); 5799 struct dev_info *hw_priv = priv->adapter; 5800 struct ksz_hw *hw = &hw_priv->hw; 5801 int hw_mtu; 5802 5803 if (netif_running(dev)) 5804 return -EBUSY; 5805 5806 /* Cannot use different MTU in multiple device interfaces mode. */ 5807 if (hw->dev_count > 1) 5808 if (dev != hw_priv->dev) 5809 return 0; 5810 if (new_mtu < 60) 5811 return -EINVAL; 5812 5813 if (dev->mtu != new_mtu) { 5814 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4; 5815 if (hw_mtu > MAX_RX_BUF_SIZE) 5816 return -EINVAL; 5817 if (hw_mtu > REGULAR_RX_BUF_SIZE) { 5818 hw->features |= RX_HUGE_FRAME; 5819 hw_mtu = MAX_RX_BUF_SIZE; 5820 } else { 5821 hw->features &= ~RX_HUGE_FRAME; 5822 hw_mtu = REGULAR_RX_BUF_SIZE; 5823 } 5824 hw_mtu = (hw_mtu + 3) & ~3; 5825 hw_priv->mtu = hw_mtu; 5826 dev->mtu = new_mtu; 5827 } 5828 return 0; 5829} 5830 5831/** 5832 * netdev_ioctl - I/O control processing 5833 * @dev: Network device. 5834 * @ifr: Interface request structure. 5835 * @cmd: I/O control code. 5836 * 5837 * This function is used to process I/O control calls. 5838 * 5839 * Return 0 to indicate success. 5840 */ 5841static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 5842{ 5843 struct dev_priv *priv = netdev_priv(dev); 5844 struct dev_info *hw_priv = priv->adapter; 5845 struct ksz_hw *hw = &hw_priv->hw; 5846 struct ksz_port *port = &priv->port; 5847 int result = 0; 5848 struct mii_ioctl_data *data = if_mii(ifr); 5849 5850 if (down_interruptible(&priv->proc_sem)) 5851 return -ERESTARTSYS; 5852 5853 switch (cmd) { 5854 /* Get address of MII PHY in use. */ 5855 case SIOCGMIIPHY: 5856 data->phy_id = priv->id; 5857 5858 /* Fallthrough... */ 5859 5860 /* Read MII PHY register. */ 5861 case SIOCGMIIREG: 5862 if (data->phy_id != priv->id || data->reg_num >= 6) 5863 result = -EIO; 5864 else 5865 hw_r_phy(hw, port->linked->port_id, data->reg_num, 5866 &data->val_out); 5867 break; 5868 5869 /* Write MII PHY register. */ 5870 case SIOCSMIIREG: 5871 if (!capable(CAP_NET_ADMIN)) 5872 result = -EPERM; 5873 else if (data->phy_id != priv->id || data->reg_num >= 6) 5874 result = -EIO; 5875 else 5876 hw_w_phy(hw, port->linked->port_id, data->reg_num, 5877 data->val_in); 5878 break; 5879 5880 default: 5881 result = -EOPNOTSUPP; 5882 } 5883 5884 up(&priv->proc_sem); 5885 5886 return result; 5887} 5888 5889/* 5890 * MII support 5891 */ 5892 5893/** 5894 * mdio_read - read PHY register 5895 * @dev: Network device. 5896 * @phy_id: The PHY id. 5897 * @reg_num: The register number. 5898 * 5899 * This function returns the PHY register value. 5900 * 5901 * Return the register value. 5902 */ 5903static int mdio_read(struct net_device *dev, int phy_id, int reg_num) 5904{ 5905 struct dev_priv *priv = netdev_priv(dev); 5906 struct ksz_port *port = &priv->port; 5907 struct ksz_hw *hw = port->hw; 5908 u16 val_out; 5909 5910 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out); 5911 return val_out; 5912} 5913 5914/** 5915 * mdio_write - set PHY register 5916 * @dev: Network device. 5917 * @phy_id: The PHY id. 5918 * @reg_num: The register number. 5919 * @val: The register value. 5920 * 5921 * This procedure sets the PHY register value. 5922 */ 5923static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) 5924{ 5925 struct dev_priv *priv = netdev_priv(dev); 5926 struct ksz_port *port = &priv->port; 5927 struct ksz_hw *hw = port->hw; 5928 int i; 5929 int pi; 5930 5931 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++) 5932 hw_w_phy(hw, pi, reg_num << 1, val); 5933} 5934 5935/* 5936 * ethtool support 5937 */ 5938 5939#define EEPROM_SIZE 0x40 5940 5941static u16 eeprom_data[EEPROM_SIZE] = { 0 }; 5942 5943#define ADVERTISED_ALL \ 5944 (ADVERTISED_10baseT_Half | \ 5945 ADVERTISED_10baseT_Full | \ 5946 ADVERTISED_100baseT_Half | \ 5947 ADVERTISED_100baseT_Full) 5948 5949/* These functions use the MII functions in mii.c. */ 5950 5951/** 5952 * netdev_get_settings - get network device settings 5953 * @dev: Network device. 5954 * @cmd: Ethtool command. 5955 * 5956 * This function queries the PHY and returns its state in the ethtool command. 5957 * 5958 * Return 0 if successful; otherwise an error code. 5959 */ 5960static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 5961{ 5962 struct dev_priv *priv = netdev_priv(dev); 5963 struct dev_info *hw_priv = priv->adapter; 5964 5965 mutex_lock(&hw_priv->lock); 5966 mii_ethtool_gset(&priv->mii_if, cmd); 5967 cmd->advertising |= SUPPORTED_TP; 5968 mutex_unlock(&hw_priv->lock); 5969 5970 /* Save advertised settings for workaround in next function. */ 5971 priv->advertising = cmd->advertising; 5972 return 0; 5973} 5974 5975/** 5976 * netdev_set_settings - set network device settings 5977 * @dev: Network device. 5978 * @cmd: Ethtool command. 5979 * 5980 * This function sets the PHY according to the ethtool command. 5981 * 5982 * Return 0 if successful; otherwise an error code. 5983 */ 5984static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 5985{ 5986 struct dev_priv *priv = netdev_priv(dev); 5987 struct dev_info *hw_priv = priv->adapter; 5988 struct ksz_port *port = &priv->port; 5989 u32 speed = ethtool_cmd_speed(cmd); 5990 int rc; 5991 5992 /* 5993 * ethtool utility does not change advertised setting if auto 5994 * negotiation is not specified explicitly. 5995 */ 5996 if (cmd->autoneg && priv->advertising == cmd->advertising) { 5997 cmd->advertising |= ADVERTISED_ALL; 5998 if (10 == speed) 5999 cmd->advertising &= 6000 ~(ADVERTISED_100baseT_Full | 6001 ADVERTISED_100baseT_Half); 6002 else if (100 == speed) 6003 cmd->advertising &= 6004 ~(ADVERTISED_10baseT_Full | 6005 ADVERTISED_10baseT_Half); 6006 if (0 == cmd->duplex) 6007 cmd->advertising &= 6008 ~(ADVERTISED_100baseT_Full | 6009 ADVERTISED_10baseT_Full); 6010 else if (1 == cmd->duplex) 6011 cmd->advertising &= 6012 ~(ADVERTISED_100baseT_Half | 6013 ADVERTISED_10baseT_Half); 6014 } 6015 mutex_lock(&hw_priv->lock); 6016 if (cmd->autoneg && 6017 (cmd->advertising & ADVERTISED_ALL) == 6018 ADVERTISED_ALL) { 6019 port->duplex = 0; 6020 port->speed = 0; 6021 port->force_link = 0; 6022 } else { 6023 port->duplex = cmd->duplex + 1; 6024 if (1000 != speed) 6025 port->speed = speed; 6026 if (cmd->autoneg) 6027 port->force_link = 0; 6028 else 6029 port->force_link = 1; 6030 } 6031 rc = mii_ethtool_sset(&priv->mii_if, cmd); 6032 mutex_unlock(&hw_priv->lock); 6033 return rc; 6034} 6035 6036/** 6037 * netdev_nway_reset - restart auto-negotiation 6038 * @dev: Network device. 6039 * 6040 * This function restarts the PHY for auto-negotiation. 6041 * 6042 * Return 0 if successful; otherwise an error code. 6043 */ 6044static int netdev_nway_reset(struct net_device *dev) 6045{ 6046 struct dev_priv *priv = netdev_priv(dev); 6047 struct dev_info *hw_priv = priv->adapter; 6048 int rc; 6049 6050 mutex_lock(&hw_priv->lock); 6051 rc = mii_nway_restart(&priv->mii_if); 6052 mutex_unlock(&hw_priv->lock); 6053 return rc; 6054} 6055 6056/** 6057 * netdev_get_link - get network device link status 6058 * @dev: Network device. 6059 * 6060 * This function gets the link status from the PHY. 6061 * 6062 * Return true if PHY is linked and false otherwise. 6063 */ 6064static u32 netdev_get_link(struct net_device *dev) 6065{ 6066 struct dev_priv *priv = netdev_priv(dev); 6067 int rc; 6068 6069 rc = mii_link_ok(&priv->mii_if); 6070 return rc; 6071} 6072 6073/** 6074 * netdev_get_drvinfo - get network driver information 6075 * @dev: Network device. 6076 * @info: Ethtool driver info data structure. 6077 * 6078 * This procedure returns the driver information. 6079 */ 6080static void netdev_get_drvinfo(struct net_device *dev, 6081 struct ethtool_drvinfo *info) 6082{ 6083 struct dev_priv *priv = netdev_priv(dev); 6084 struct dev_info *hw_priv = priv->adapter; 6085 6086 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 6087 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 6088 strlcpy(info->bus_info, pci_name(hw_priv->pdev), 6089 sizeof(info->bus_info)); 6090} 6091 6092/** 6093 * netdev_get_regs_len - get length of register dump 6094 * @dev: Network device. 6095 * 6096 * This function returns the length of the register dump. 6097 * 6098 * Return length of the register dump. 6099 */ 6100static struct hw_regs { 6101 int start; 6102 int end; 6103} hw_regs_range[] = { 6104 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS }, 6105 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI }, 6106 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET }, 6107 { KS884X_SIDER_P, KS8842_SGCR7_P }, 6108 { KS8842_MACAR1_P, KS8842_TOSR8_P }, 6109 { KS884X_P1MBCR_P, KS8842_P3ERCR_P }, 6110 { 0, 0 } 6111}; 6112 6113static int netdev_get_regs_len(struct net_device *dev) 6114{ 6115 struct hw_regs *range = hw_regs_range; 6116 int regs_len = 0x10 * sizeof(u32); 6117 6118 while (range->end > range->start) { 6119 regs_len += (range->end - range->start + 3) / 4 * 4; 6120 range++; 6121 } 6122 return regs_len; 6123} 6124 6125/** 6126 * netdev_get_regs - get register dump 6127 * @dev: Network device. 6128 * @regs: Ethtool registers data structure. 6129 * @ptr: Buffer to store the register values. 6130 * 6131 * This procedure dumps the register values in the provided buffer. 6132 */ 6133static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs, 6134 void *ptr) 6135{ 6136 struct dev_priv *priv = netdev_priv(dev); 6137 struct dev_info *hw_priv = priv->adapter; 6138 struct ksz_hw *hw = &hw_priv->hw; 6139 int *buf = (int *) ptr; 6140 struct hw_regs *range = hw_regs_range; 6141 int len; 6142 6143 mutex_lock(&hw_priv->lock); 6144 regs->version = 0; 6145 for (len = 0; len < 0x40; len += 4) { 6146 pci_read_config_dword(hw_priv->pdev, len, buf); 6147 buf++; 6148 } 6149 while (range->end > range->start) { 6150 for (len = range->start; len < range->end; len += 4) { 6151 *buf = readl(hw->io + len); 6152 buf++; 6153 } 6154 range++; 6155 } 6156 mutex_unlock(&hw_priv->lock); 6157} 6158 6159#define WOL_SUPPORT \ 6160 (WAKE_PHY | WAKE_MAGIC | \ 6161 WAKE_UCAST | WAKE_MCAST | \ 6162 WAKE_BCAST | WAKE_ARP) 6163 6164/** 6165 * netdev_get_wol - get Wake-on-LAN support 6166 * @dev: Network device. 6167 * @wol: Ethtool Wake-on-LAN data structure. 6168 * 6169 * This procedure returns Wake-on-LAN support. 6170 */ 6171static void netdev_get_wol(struct net_device *dev, 6172 struct ethtool_wolinfo *wol) 6173{ 6174 struct dev_priv *priv = netdev_priv(dev); 6175 struct dev_info *hw_priv = priv->adapter; 6176 6177 wol->supported = hw_priv->wol_support; 6178 wol->wolopts = hw_priv->wol_enable; 6179 memset(&wol->sopass, 0, sizeof(wol->sopass)); 6180} 6181 6182/** 6183 * netdev_set_wol - set Wake-on-LAN support 6184 * @dev: Network device. 6185 * @wol: Ethtool Wake-on-LAN data structure. 6186 * 6187 * This function sets Wake-on-LAN support. 6188 * 6189 * Return 0 if successful; otherwise an error code. 6190 */ 6191static int netdev_set_wol(struct net_device *dev, 6192 struct ethtool_wolinfo *wol) 6193{ 6194 struct dev_priv *priv = netdev_priv(dev); 6195 struct dev_info *hw_priv = priv->adapter; 6196 6197 /* Need to find a way to retrieve the device IP address. */ 6198 static const u8 net_addr[] = { 192, 168, 1, 1 }; 6199 6200 if (wol->wolopts & ~hw_priv->wol_support) 6201 return -EINVAL; 6202 6203 hw_priv->wol_enable = wol->wolopts; 6204 6205 /* Link wakeup cannot really be disabled. */ 6206 if (wol->wolopts) 6207 hw_priv->wol_enable |= WAKE_PHY; 6208 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr); 6209 return 0; 6210} 6211 6212/** 6213 * netdev_get_msglevel - get debug message level 6214 * @dev: Network device. 6215 * 6216 * This function returns current debug message level. 6217 * 6218 * Return current debug message flags. 6219 */ 6220static u32 netdev_get_msglevel(struct net_device *dev) 6221{ 6222 struct dev_priv *priv = netdev_priv(dev); 6223 6224 return priv->msg_enable; 6225} 6226 6227/** 6228 * netdev_set_msglevel - set debug message level 6229 * @dev: Network device. 6230 * @value: Debug message flags. 6231 * 6232 * This procedure sets debug message level. 6233 */ 6234static void netdev_set_msglevel(struct net_device *dev, u32 value) 6235{ 6236 struct dev_priv *priv = netdev_priv(dev); 6237 6238 priv->msg_enable = value; 6239} 6240 6241/** 6242 * netdev_get_eeprom_len - get EEPROM length 6243 * @dev: Network device. 6244 * 6245 * This function returns the length of the EEPROM. 6246 * 6247 * Return length of the EEPROM. 6248 */ 6249static int netdev_get_eeprom_len(struct net_device *dev) 6250{ 6251 return EEPROM_SIZE * 2; 6252} 6253 6254/** 6255 * netdev_get_eeprom - get EEPROM data 6256 * @dev: Network device. 6257 * @eeprom: Ethtool EEPROM data structure. 6258 * @data: Buffer to store the EEPROM data. 6259 * 6260 * This function dumps the EEPROM data in the provided buffer. 6261 * 6262 * Return 0 if successful; otherwise an error code. 6263 */ 6264#define EEPROM_MAGIC 0x10A18842 6265 6266static int netdev_get_eeprom(struct net_device *dev, 6267 struct ethtool_eeprom *eeprom, u8 *data) 6268{ 6269 struct dev_priv *priv = netdev_priv(dev); 6270 struct dev_info *hw_priv = priv->adapter; 6271 u8 *eeprom_byte = (u8 *) eeprom_data; 6272 int i; 6273 int len; 6274 6275 len = (eeprom->offset + eeprom->len + 1) / 2; 6276 for (i = eeprom->offset / 2; i < len; i++) 6277 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6278 eeprom->magic = EEPROM_MAGIC; 6279 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len); 6280 6281 return 0; 6282} 6283 6284/** 6285 * netdev_set_eeprom - write EEPROM data 6286 * @dev: Network device. 6287 * @eeprom: Ethtool EEPROM data structure. 6288 * @data: Data buffer. 6289 * 6290 * This function modifies the EEPROM data one byte at a time. 6291 * 6292 * Return 0 if successful; otherwise an error code. 6293 */ 6294static int netdev_set_eeprom(struct net_device *dev, 6295 struct ethtool_eeprom *eeprom, u8 *data) 6296{ 6297 struct dev_priv *priv = netdev_priv(dev); 6298 struct dev_info *hw_priv = priv->adapter; 6299 u16 eeprom_word[EEPROM_SIZE]; 6300 u8 *eeprom_byte = (u8 *) eeprom_word; 6301 int i; 6302 int len; 6303 6304 if (eeprom->magic != EEPROM_MAGIC) 6305 return -EINVAL; 6306 6307 len = (eeprom->offset + eeprom->len + 1) / 2; 6308 for (i = eeprom->offset / 2; i < len; i++) 6309 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6310 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2); 6311 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len); 6312 for (i = 0; i < EEPROM_SIZE; i++) 6313 if (eeprom_word[i] != eeprom_data[i]) { 6314 eeprom_data[i] = eeprom_word[i]; 6315 eeprom_write(&hw_priv->hw, i, eeprom_data[i]); 6316 } 6317 6318 return 0; 6319} 6320 6321/** 6322 * netdev_get_pauseparam - get flow control parameters 6323 * @dev: Network device. 6324 * @pause: Ethtool PAUSE settings data structure. 6325 * 6326 * This procedure returns the PAUSE control flow settings. 6327 */ 6328static void netdev_get_pauseparam(struct net_device *dev, 6329 struct ethtool_pauseparam *pause) 6330{ 6331 struct dev_priv *priv = netdev_priv(dev); 6332 struct dev_info *hw_priv = priv->adapter; 6333 struct ksz_hw *hw = &hw_priv->hw; 6334 6335 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1; 6336 if (!hw->ksz_switch) { 6337 pause->rx_pause = 6338 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0; 6339 pause->tx_pause = 6340 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0; 6341 } else { 6342 pause->rx_pause = 6343 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6344 SWITCH_RX_FLOW_CTRL)) ? 1 : 0; 6345 pause->tx_pause = 6346 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6347 SWITCH_TX_FLOW_CTRL)) ? 1 : 0; 6348 } 6349} 6350 6351/** 6352 * netdev_set_pauseparam - set flow control parameters 6353 * @dev: Network device. 6354 * @pause: Ethtool PAUSE settings data structure. 6355 * 6356 * This function sets the PAUSE control flow settings. 6357 * Not implemented yet. 6358 * 6359 * Return 0 if successful; otherwise an error code. 6360 */ 6361static int netdev_set_pauseparam(struct net_device *dev, 6362 struct ethtool_pauseparam *pause) 6363{ 6364 struct dev_priv *priv = netdev_priv(dev); 6365 struct dev_info *hw_priv = priv->adapter; 6366 struct ksz_hw *hw = &hw_priv->hw; 6367 struct ksz_port *port = &priv->port; 6368 6369 mutex_lock(&hw_priv->lock); 6370 if (pause->autoneg) { 6371 if (!pause->rx_pause && !pause->tx_pause) 6372 port->flow_ctrl = PHY_NO_FLOW_CTRL; 6373 else 6374 port->flow_ctrl = PHY_FLOW_CTRL; 6375 hw->overrides &= ~PAUSE_FLOW_CTRL; 6376 port->force_link = 0; 6377 if (hw->ksz_switch) { 6378 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6379 SWITCH_RX_FLOW_CTRL, 1); 6380 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6381 SWITCH_TX_FLOW_CTRL, 1); 6382 } 6383 port_set_link_speed(port); 6384 } else { 6385 hw->overrides |= PAUSE_FLOW_CTRL; 6386 if (hw->ksz_switch) { 6387 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6388 SWITCH_RX_FLOW_CTRL, pause->rx_pause); 6389 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6390 SWITCH_TX_FLOW_CTRL, pause->tx_pause); 6391 } else 6392 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause); 6393 } 6394 mutex_unlock(&hw_priv->lock); 6395 6396 return 0; 6397} 6398 6399/** 6400 * netdev_get_ringparam - get tx/rx ring parameters 6401 * @dev: Network device. 6402 * @pause: Ethtool RING settings data structure. 6403 * 6404 * This procedure returns the TX/RX ring settings. 6405 */ 6406static void netdev_get_ringparam(struct net_device *dev, 6407 struct ethtool_ringparam *ring) 6408{ 6409 struct dev_priv *priv = netdev_priv(dev); 6410 struct dev_info *hw_priv = priv->adapter; 6411 struct ksz_hw *hw = &hw_priv->hw; 6412 6413 ring->tx_max_pending = (1 << 9); 6414 ring->tx_pending = hw->tx_desc_info.alloc; 6415 ring->rx_max_pending = (1 << 9); 6416 ring->rx_pending = hw->rx_desc_info.alloc; 6417} 6418 6419#define STATS_LEN (TOTAL_PORT_COUNTER_NUM) 6420 6421static struct { 6422 char string[ETH_GSTRING_LEN]; 6423} ethtool_stats_keys[STATS_LEN] = { 6424 { "rx_lo_priority_octets" }, 6425 { "rx_hi_priority_octets" }, 6426 { "rx_undersize_packets" }, 6427 { "rx_fragments" }, 6428 { "rx_oversize_packets" }, 6429 { "rx_jabbers" }, 6430 { "rx_symbol_errors" }, 6431 { "rx_crc_errors" }, 6432 { "rx_align_errors" }, 6433 { "rx_mac_ctrl_packets" }, 6434 { "rx_pause_packets" }, 6435 { "rx_bcast_packets" }, 6436 { "rx_mcast_packets" }, 6437 { "rx_ucast_packets" }, 6438 { "rx_64_or_less_octet_packets" }, 6439 { "rx_65_to_127_octet_packets" }, 6440 { "rx_128_to_255_octet_packets" }, 6441 { "rx_256_to_511_octet_packets" }, 6442 { "rx_512_to_1023_octet_packets" }, 6443 { "rx_1024_to_1522_octet_packets" }, 6444 6445 { "tx_lo_priority_octets" }, 6446 { "tx_hi_priority_octets" }, 6447 { "tx_late_collisions" }, 6448 { "tx_pause_packets" }, 6449 { "tx_bcast_packets" }, 6450 { "tx_mcast_packets" }, 6451 { "tx_ucast_packets" }, 6452 { "tx_deferred" }, 6453 { "tx_total_collisions" }, 6454 { "tx_excessive_collisions" }, 6455 { "tx_single_collisions" }, 6456 { "tx_mult_collisions" }, 6457 6458 { "rx_discards" }, 6459 { "tx_discards" }, 6460}; 6461 6462/** 6463 * netdev_get_strings - get statistics identity strings 6464 * @dev: Network device. 6465 * @stringset: String set identifier. 6466 * @buf: Buffer to store the strings. 6467 * 6468 * This procedure returns the strings used to identify the statistics. 6469 */ 6470static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 6471{ 6472 struct dev_priv *priv = netdev_priv(dev); 6473 struct dev_info *hw_priv = priv->adapter; 6474 struct ksz_hw *hw = &hw_priv->hw; 6475 6476 if (ETH_SS_STATS == stringset) 6477 memcpy(buf, ðtool_stats_keys, 6478 ETH_GSTRING_LEN * hw->mib_cnt); 6479} 6480 6481/** 6482 * netdev_get_sset_count - get statistics size 6483 * @dev: Network device. 6484 * @sset: The statistics set number. 6485 * 6486 * This function returns the size of the statistics to be reported. 6487 * 6488 * Return size of the statistics to be reported. 6489 */ 6490static int netdev_get_sset_count(struct net_device *dev, int sset) 6491{ 6492 struct dev_priv *priv = netdev_priv(dev); 6493 struct dev_info *hw_priv = priv->adapter; 6494 struct ksz_hw *hw = &hw_priv->hw; 6495 6496 switch (sset) { 6497 case ETH_SS_STATS: 6498 return hw->mib_cnt; 6499 default: 6500 return -EOPNOTSUPP; 6501 } 6502} 6503 6504/** 6505 * netdev_get_ethtool_stats - get network device statistics 6506 * @dev: Network device. 6507 * @stats: Ethtool statistics data structure. 6508 * @data: Buffer to store the statistics. 6509 * 6510 * This procedure returns the statistics. 6511 */ 6512static void netdev_get_ethtool_stats(struct net_device *dev, 6513 struct ethtool_stats *stats, u64 *data) 6514{ 6515 struct dev_priv *priv = netdev_priv(dev); 6516 struct dev_info *hw_priv = priv->adapter; 6517 struct ksz_hw *hw = &hw_priv->hw; 6518 struct ksz_port *port = &priv->port; 6519 int n_stats = stats->n_stats; 6520 int i; 6521 int n; 6522 int p; 6523 int rc; 6524 u64 counter[TOTAL_PORT_COUNTER_NUM]; 6525 6526 mutex_lock(&hw_priv->lock); 6527 n = SWITCH_PORT_NUM; 6528 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 6529 if (media_connected == hw->port_mib[p].state) { 6530 hw_priv->counter[p].read = 1; 6531 6532 /* Remember first port that requests read. */ 6533 if (n == SWITCH_PORT_NUM) 6534 n = p; 6535 } 6536 } 6537 mutex_unlock(&hw_priv->lock); 6538 6539 if (n < SWITCH_PORT_NUM) 6540 schedule_work(&hw_priv->mib_read); 6541 6542 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) { 6543 p = n; 6544 rc = wait_event_interruptible_timeout( 6545 hw_priv->counter[p].counter, 6546 2 == hw_priv->counter[p].read, 6547 HZ * 1); 6548 } else 6549 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) { 6550 if (0 == i) { 6551 rc = wait_event_interruptible_timeout( 6552 hw_priv->counter[p].counter, 6553 2 == hw_priv->counter[p].read, 6554 HZ * 2); 6555 } else if (hw->port_mib[p].cnt_ptr) { 6556 rc = wait_event_interruptible_timeout( 6557 hw_priv->counter[p].counter, 6558 2 == hw_priv->counter[p].read, 6559 HZ * 1); 6560 } 6561 } 6562 6563 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter); 6564 n = hw->mib_cnt; 6565 if (n > n_stats) 6566 n = n_stats; 6567 n_stats -= n; 6568 for (i = 0; i < n; i++) 6569 *data++ = counter[i]; 6570} 6571 6572/** 6573 * netdev_set_features - set receive checksum support 6574 * @dev: Network device. 6575 * @features: New device features (offloads). 6576 * 6577 * This function sets receive checksum support setting. 6578 * 6579 * Return 0 if successful; otherwise an error code. 6580 */ 6581static int netdev_set_features(struct net_device *dev, 6582 netdev_features_t features) 6583{ 6584 struct dev_priv *priv = netdev_priv(dev); 6585 struct dev_info *hw_priv = priv->adapter; 6586 struct ksz_hw *hw = &hw_priv->hw; 6587 6588 mutex_lock(&hw_priv->lock); 6589 6590 /* see note in hw_setup() */ 6591 if (features & NETIF_F_RXCSUM) 6592 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP; 6593 else 6594 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 6595 6596 if (hw->enabled) 6597 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 6598 6599 mutex_unlock(&hw_priv->lock); 6600 6601 return 0; 6602} 6603 6604static const struct ethtool_ops netdev_ethtool_ops = { 6605 .get_settings = netdev_get_settings, 6606 .set_settings = netdev_set_settings, 6607 .nway_reset = netdev_nway_reset, 6608 .get_link = netdev_get_link, 6609 .get_drvinfo = netdev_get_drvinfo, 6610 .get_regs_len = netdev_get_regs_len, 6611 .get_regs = netdev_get_regs, 6612 .get_wol = netdev_get_wol, 6613 .set_wol = netdev_set_wol, 6614 .get_msglevel = netdev_get_msglevel, 6615 .set_msglevel = netdev_set_msglevel, 6616 .get_eeprom_len = netdev_get_eeprom_len, 6617 .get_eeprom = netdev_get_eeprom, 6618 .set_eeprom = netdev_set_eeprom, 6619 .get_pauseparam = netdev_get_pauseparam, 6620 .set_pauseparam = netdev_set_pauseparam, 6621 .get_ringparam = netdev_get_ringparam, 6622 .get_strings = netdev_get_strings, 6623 .get_sset_count = netdev_get_sset_count, 6624 .get_ethtool_stats = netdev_get_ethtool_stats, 6625}; 6626 6627/* 6628 * Hardware monitoring 6629 */ 6630 6631static void update_link(struct net_device *dev, struct dev_priv *priv, 6632 struct ksz_port *port) 6633{ 6634 if (priv->media_state != port->linked->state) { 6635 priv->media_state = port->linked->state; 6636 if (netif_running(dev)) 6637 set_media_state(dev, media_connected); 6638 } 6639} 6640 6641static void mib_read_work(struct work_struct *work) 6642{ 6643 struct dev_info *hw_priv = 6644 container_of(work, struct dev_info, mib_read); 6645 struct ksz_hw *hw = &hw_priv->hw; 6646 struct ksz_port_mib *mib; 6647 int i; 6648 6649 next_jiffies = jiffies; 6650 for (i = 0; i < hw->mib_port_cnt; i++) { 6651 mib = &hw->port_mib[i]; 6652 6653 /* Reading MIB counters or requested to read. */ 6654 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) { 6655 6656 /* Need to process receive interrupt. */ 6657 if (port_r_cnt(hw, i)) 6658 break; 6659 hw_priv->counter[i].read = 0; 6660 6661 /* Finish reading counters. */ 6662 if (0 == mib->cnt_ptr) { 6663 hw_priv->counter[i].read = 2; 6664 wake_up_interruptible( 6665 &hw_priv->counter[i].counter); 6666 } 6667 } else if (jiffies >= hw_priv->counter[i].time) { 6668 /* Only read MIB counters when the port is connected. */ 6669 if (media_connected == mib->state) 6670 hw_priv->counter[i].read = 1; 6671 next_jiffies += HZ * 1 * hw->mib_port_cnt; 6672 hw_priv->counter[i].time = next_jiffies; 6673 6674 /* Port is just disconnected. */ 6675 } else if (mib->link_down) { 6676 mib->link_down = 0; 6677 6678 /* Read counters one last time after link is lost. */ 6679 hw_priv->counter[i].read = 1; 6680 } 6681 } 6682} 6683 6684static void mib_monitor(unsigned long ptr) 6685{ 6686 struct dev_info *hw_priv = (struct dev_info *) ptr; 6687 6688 mib_read_work(&hw_priv->mib_read); 6689 6690 /* This is used to verify Wake-on-LAN is working. */ 6691 if (hw_priv->pme_wait) { 6692 if (hw_priv->pme_wait <= jiffies) { 6693 hw_clr_wol_pme_status(&hw_priv->hw); 6694 hw_priv->pme_wait = 0; 6695 } 6696 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) { 6697 6698 /* PME is asserted. Wait 2 seconds to clear it. */ 6699 hw_priv->pme_wait = jiffies + HZ * 2; 6700 } 6701 6702 ksz_update_timer(&hw_priv->mib_timer_info); 6703} 6704 6705/** 6706 * dev_monitor - periodic monitoring 6707 * @ptr: Network device pointer. 6708 * 6709 * This routine is run in a kernel timer to monitor the network device. 6710 */ 6711static void dev_monitor(unsigned long ptr) 6712{ 6713 struct net_device *dev = (struct net_device *) ptr; 6714 struct dev_priv *priv = netdev_priv(dev); 6715 struct dev_info *hw_priv = priv->adapter; 6716 struct ksz_hw *hw = &hw_priv->hw; 6717 struct ksz_port *port = &priv->port; 6718 6719 if (!(hw->features & LINK_INT_WORKING)) 6720 port_get_link_speed(port); 6721 update_link(dev, priv, port); 6722 6723 ksz_update_timer(&priv->monitor_timer_info); 6724} 6725 6726/* 6727 * Linux network device interface functions 6728 */ 6729 6730/* Driver exported variables */ 6731 6732static int msg_enable; 6733 6734static char *macaddr = ":"; 6735static char *mac1addr = ":"; 6736 6737/* 6738 * This enables multiple network device mode for KSZ8842, which contains a 6739 * switch with two physical ports. Some users like to take control of the 6740 * ports for running Spanning Tree Protocol. The driver will create an 6741 * additional eth? device for the other port. 6742 * 6743 * Some limitations are the network devices cannot have different MTU and 6744 * multicast hash tables. 6745 */ 6746static int multi_dev; 6747 6748/* 6749 * As most users select multiple network device mode to use Spanning Tree 6750 * Protocol, this enables a feature in which most unicast and multicast packets 6751 * are forwarded inside the switch and not passed to the host. Only packets 6752 * that need the host's attention are passed to it. This prevents the host 6753 * wasting CPU time to examine each and every incoming packets and do the 6754 * forwarding itself. 6755 * 6756 * As the hack requires the private bridge header, the driver cannot compile 6757 * with just the kernel headers. 6758 * 6759 * Enabling STP support also turns on multiple network device mode. 6760 */ 6761static int stp; 6762 6763/* 6764 * This enables fast aging in the KSZ8842 switch. Not sure what situation 6765 * needs that. However, fast aging is used to flush the dynamic MAC table when 6766 * STP support is enabled. 6767 */ 6768static int fast_aging; 6769 6770/** 6771 * netdev_init - initialize network device. 6772 * @dev: Network device. 6773 * 6774 * This function initializes the network device. 6775 * 6776 * Return 0 if successful; otherwise an error code indicating failure. 6777 */ 6778static int __init netdev_init(struct net_device *dev) 6779{ 6780 struct dev_priv *priv = netdev_priv(dev); 6781 6782 /* 500 ms timeout */ 6783 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000, 6784 dev_monitor, dev); 6785 6786 /* 500 ms timeout */ 6787 dev->watchdog_timeo = HZ / 2; 6788 6789 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; 6790 6791 /* 6792 * Hardware does not really support IPv6 checksum generation, but 6793 * driver actually runs faster with this on. 6794 */ 6795 dev->hw_features |= NETIF_F_IPV6_CSUM; 6796 6797 dev->features |= dev->hw_features; 6798 6799 sema_init(&priv->proc_sem, 1); 6800 6801 priv->mii_if.phy_id_mask = 0x1; 6802 priv->mii_if.reg_num_mask = 0x7; 6803 priv->mii_if.dev = dev; 6804 priv->mii_if.mdio_read = mdio_read; 6805 priv->mii_if.mdio_write = mdio_write; 6806 priv->mii_if.phy_id = priv->port.first_port + 1; 6807 6808 priv->msg_enable = netif_msg_init(msg_enable, 6809 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); 6810 6811 return 0; 6812} 6813 6814static const struct net_device_ops netdev_ops = { 6815 .ndo_init = netdev_init, 6816 .ndo_open = netdev_open, 6817 .ndo_stop = netdev_close, 6818 .ndo_get_stats = netdev_query_statistics, 6819 .ndo_start_xmit = netdev_tx, 6820 .ndo_tx_timeout = netdev_tx_timeout, 6821 .ndo_change_mtu = netdev_change_mtu, 6822 .ndo_set_features = netdev_set_features, 6823 .ndo_set_mac_address = netdev_set_mac_address, 6824 .ndo_validate_addr = eth_validate_addr, 6825 .ndo_do_ioctl = netdev_ioctl, 6826 .ndo_set_rx_mode = netdev_set_rx_mode, 6827#ifdef CONFIG_NET_POLL_CONTROLLER 6828 .ndo_poll_controller = netdev_netpoll, 6829#endif 6830}; 6831 6832static void netdev_free(struct net_device *dev) 6833{ 6834 if (dev->watchdog_timeo) 6835 unregister_netdev(dev); 6836 6837 free_netdev(dev); 6838} 6839 6840struct platform_info { 6841 struct dev_info dev_info; 6842 struct net_device *netdev[SWITCH_PORT_NUM]; 6843}; 6844 6845static int net_device_present; 6846 6847static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port) 6848{ 6849 int i; 6850 int j; 6851 int got_num; 6852 int num; 6853 6854 i = j = num = got_num = 0; 6855 while (j < ETH_ALEN) { 6856 if (macaddr[i]) { 6857 int digit; 6858 6859 got_num = 1; 6860 digit = hex_to_bin(macaddr[i]); 6861 if (digit >= 0) 6862 num = num * 16 + digit; 6863 else if (':' == macaddr[i]) 6864 got_num = 2; 6865 else 6866 break; 6867 } else if (got_num) 6868 got_num = 2; 6869 else 6870 break; 6871 if (2 == got_num) { 6872 if (MAIN_PORT == port) { 6873 hw_priv->hw.override_addr[j++] = (u8) num; 6874 hw_priv->hw.override_addr[5] += 6875 hw_priv->hw.id; 6876 } else { 6877 hw_priv->hw.ksz_switch->other_addr[j++] = 6878 (u8) num; 6879 hw_priv->hw.ksz_switch->other_addr[5] += 6880 hw_priv->hw.id; 6881 } 6882 num = got_num = 0; 6883 } 6884 i++; 6885 } 6886 if (ETH_ALEN == j) { 6887 if (MAIN_PORT == port) 6888 hw_priv->hw.mac_override = 1; 6889 } 6890} 6891 6892#define KS884X_DMA_MASK (~0x0UL) 6893 6894static void read_other_addr(struct ksz_hw *hw) 6895{ 6896 int i; 6897 u16 data[3]; 6898 struct ksz_switch *sw = hw->ksz_switch; 6899 6900 for (i = 0; i < 3; i++) 6901 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR); 6902 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) { 6903 sw->other_addr[5] = (u8) data[0]; 6904 sw->other_addr[4] = (u8)(data[0] >> 8); 6905 sw->other_addr[3] = (u8) data[1]; 6906 sw->other_addr[2] = (u8)(data[1] >> 8); 6907 sw->other_addr[1] = (u8) data[2]; 6908 sw->other_addr[0] = (u8)(data[2] >> 8); 6909 } 6910} 6911 6912#ifndef PCI_VENDOR_ID_MICREL_KS 6913#define PCI_VENDOR_ID_MICREL_KS 0x16c6 6914#endif 6915 6916static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id) 6917{ 6918 struct net_device *dev; 6919 struct dev_priv *priv; 6920 struct dev_info *hw_priv; 6921 struct ksz_hw *hw; 6922 struct platform_info *info; 6923 struct ksz_port *port; 6924 unsigned long reg_base; 6925 unsigned long reg_len; 6926 int cnt; 6927 int i; 6928 int mib_port_count; 6929 int pi; 6930 int port_count; 6931 int result; 6932 char banner[sizeof(version)]; 6933 struct ksz_switch *sw = NULL; 6934 6935 result = pci_enable_device(pdev); 6936 if (result) 6937 return result; 6938 6939 result = -ENODEV; 6940 6941 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) || 6942 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 6943 return result; 6944 6945 reg_base = pci_resource_start(pdev, 0); 6946 reg_len = pci_resource_len(pdev, 0); 6947 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) 6948 return result; 6949 6950 if (!request_mem_region(reg_base, reg_len, DRV_NAME)) 6951 return result; 6952 pci_set_master(pdev); 6953 6954 result = -ENOMEM; 6955 6956 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL); 6957 if (!info) 6958 goto pcidev_init_dev_err; 6959 6960 hw_priv = &info->dev_info; 6961 hw_priv->pdev = pdev; 6962 6963 hw = &hw_priv->hw; 6964 6965 hw->io = ioremap(reg_base, reg_len); 6966 if (!hw->io) 6967 goto pcidev_init_io_err; 6968 6969 cnt = hw_init(hw); 6970 if (!cnt) { 6971 if (msg_enable & NETIF_MSG_PROBE) 6972 pr_alert("chip not detected\n"); 6973 result = -ENODEV; 6974 goto pcidev_init_alloc_err; 6975 } 6976 6977 snprintf(banner, sizeof(banner), "%s", version); 6978 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */ 6979 dev_info(&hw_priv->pdev->dev, "%s\n", banner); 6980 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq); 6981 6982 /* Assume device is KSZ8841. */ 6983 hw->dev_count = 1; 6984 port_count = 1; 6985 mib_port_count = 1; 6986 hw->addr_list_size = 0; 6987 hw->mib_cnt = PORT_COUNTER_NUM; 6988 hw->mib_port_cnt = 1; 6989 6990 /* KSZ8842 has a switch with multiple ports. */ 6991 if (2 == cnt) { 6992 if (fast_aging) 6993 hw->overrides |= FAST_AGING; 6994 6995 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM; 6996 6997 /* Multiple network device interfaces are required. */ 6998 if (multi_dev) { 6999 hw->dev_count = SWITCH_PORT_NUM; 7000 hw->addr_list_size = SWITCH_PORT_NUM - 1; 7001 } 7002 7003 /* Single network device has multiple ports. */ 7004 if (1 == hw->dev_count) { 7005 port_count = SWITCH_PORT_NUM; 7006 mib_port_count = SWITCH_PORT_NUM; 7007 } 7008 hw->mib_port_cnt = TOTAL_PORT_NUM; 7009 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL); 7010 if (!hw->ksz_switch) 7011 goto pcidev_init_alloc_err; 7012 7013 sw = hw->ksz_switch; 7014 } 7015 for (i = 0; i < hw->mib_port_cnt; i++) 7016 hw->port_mib[i].mib_start = 0; 7017 7018 hw->parent = hw_priv; 7019 7020 /* Default MTU is 1500. */ 7021 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3; 7022 7023 if (ksz_alloc_mem(hw_priv)) 7024 goto pcidev_init_mem_err; 7025 7026 hw_priv->hw.id = net_device_present; 7027 7028 spin_lock_init(&hw_priv->hwlock); 7029 mutex_init(&hw_priv->lock); 7030 7031 for (i = 0; i < TOTAL_PORT_NUM; i++) 7032 init_waitqueue_head(&hw_priv->counter[i].counter); 7033 7034 if (macaddr[0] != ':') 7035 get_mac_addr(hw_priv, macaddr, MAIN_PORT); 7036 7037 /* Read MAC address and initialize override address if not overrided. */ 7038 hw_read_addr(hw); 7039 7040 /* Multiple device interfaces mode requires a second MAC address. */ 7041 if (hw->dev_count > 1) { 7042 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN); 7043 read_other_addr(hw); 7044 if (mac1addr[0] != ':') 7045 get_mac_addr(hw_priv, mac1addr, OTHER_PORT); 7046 } 7047 7048 hw_setup(hw); 7049 if (hw->ksz_switch) 7050 sw_setup(hw); 7051 else { 7052 hw_priv->wol_support = WOL_SUPPORT; 7053 hw_priv->wol_enable = 0; 7054 } 7055 7056 INIT_WORK(&hw_priv->mib_read, mib_read_work); 7057 7058 /* 500 ms timeout */ 7059 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000, 7060 mib_monitor, hw_priv); 7061 7062 for (i = 0; i < hw->dev_count; i++) { 7063 dev = alloc_etherdev(sizeof(struct dev_priv)); 7064 if (!dev) 7065 goto pcidev_init_reg_err; 7066 SET_NETDEV_DEV(dev, &pdev->dev); 7067 info->netdev[i] = dev; 7068 7069 priv = netdev_priv(dev); 7070 priv->adapter = hw_priv; 7071 priv->id = net_device_present++; 7072 7073 port = &priv->port; 7074 port->port_cnt = port_count; 7075 port->mib_port_cnt = mib_port_count; 7076 port->first_port = i; 7077 port->flow_ctrl = PHY_FLOW_CTRL; 7078 7079 port->hw = hw; 7080 port->linked = &hw->port_info[port->first_port]; 7081 7082 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) { 7083 hw->port_info[pi].port_id = pi; 7084 hw->port_info[pi].pdev = dev; 7085 hw->port_info[pi].state = media_disconnected; 7086 } 7087 7088 dev->mem_start = (unsigned long) hw->io; 7089 dev->mem_end = dev->mem_start + reg_len - 1; 7090 dev->irq = pdev->irq; 7091 if (MAIN_PORT == i) 7092 memcpy(dev->dev_addr, hw_priv->hw.override_addr, 7093 ETH_ALEN); 7094 else { 7095 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN); 7096 if (ether_addr_equal(sw->other_addr, hw->override_addr)) 7097 dev->dev_addr[5] += port->first_port; 7098 } 7099 7100 dev->netdev_ops = &netdev_ops; 7101 dev->ethtool_ops = &netdev_ethtool_ops; 7102 if (register_netdev(dev)) 7103 goto pcidev_init_reg_err; 7104 port_set_power_saving(port, true); 7105 } 7106 7107 pci_dev_get(hw_priv->pdev); 7108 pci_set_drvdata(pdev, info); 7109 return 0; 7110 7111pcidev_init_reg_err: 7112 for (i = 0; i < hw->dev_count; i++) { 7113 if (info->netdev[i]) { 7114 netdev_free(info->netdev[i]); 7115 info->netdev[i] = NULL; 7116 } 7117 } 7118 7119pcidev_init_mem_err: 7120 ksz_free_mem(hw_priv); 7121 kfree(hw->ksz_switch); 7122 7123pcidev_init_alloc_err: 7124 iounmap(hw->io); 7125 7126pcidev_init_io_err: 7127 kfree(info); 7128 7129pcidev_init_dev_err: 7130 release_mem_region(reg_base, reg_len); 7131 7132 return result; 7133} 7134 7135static void pcidev_exit(struct pci_dev *pdev) 7136{ 7137 int i; 7138 struct platform_info *info = pci_get_drvdata(pdev); 7139 struct dev_info *hw_priv = &info->dev_info; 7140 7141 release_mem_region(pci_resource_start(pdev, 0), 7142 pci_resource_len(pdev, 0)); 7143 for (i = 0; i < hw_priv->hw.dev_count; i++) { 7144 if (info->netdev[i]) 7145 netdev_free(info->netdev[i]); 7146 } 7147 if (hw_priv->hw.io) 7148 iounmap(hw_priv->hw.io); 7149 ksz_free_mem(hw_priv); 7150 kfree(hw_priv->hw.ksz_switch); 7151 pci_dev_put(hw_priv->pdev); 7152 kfree(info); 7153} 7154 7155#ifdef CONFIG_PM 7156static int pcidev_resume(struct pci_dev *pdev) 7157{ 7158 int i; 7159 struct platform_info *info = pci_get_drvdata(pdev); 7160 struct dev_info *hw_priv = &info->dev_info; 7161 struct ksz_hw *hw = &hw_priv->hw; 7162 7163 pci_set_power_state(pdev, PCI_D0); 7164 pci_restore_state(pdev); 7165 pci_enable_wake(pdev, PCI_D0, 0); 7166 7167 if (hw_priv->wol_enable) 7168 hw_cfg_wol_pme(hw, 0); 7169 for (i = 0; i < hw->dev_count; i++) { 7170 if (info->netdev[i]) { 7171 struct net_device *dev = info->netdev[i]; 7172 7173 if (netif_running(dev)) { 7174 netdev_open(dev); 7175 netif_device_attach(dev); 7176 } 7177 } 7178 } 7179 return 0; 7180} 7181 7182static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state) 7183{ 7184 int i; 7185 struct platform_info *info = pci_get_drvdata(pdev); 7186 struct dev_info *hw_priv = &info->dev_info; 7187 struct ksz_hw *hw = &hw_priv->hw; 7188 7189 /* Need to find a way to retrieve the device IP address. */ 7190 static const u8 net_addr[] = { 192, 168, 1, 1 }; 7191 7192 for (i = 0; i < hw->dev_count; i++) { 7193 if (info->netdev[i]) { 7194 struct net_device *dev = info->netdev[i]; 7195 7196 if (netif_running(dev)) { 7197 netif_device_detach(dev); 7198 netdev_close(dev); 7199 } 7200 } 7201 } 7202 if (hw_priv->wol_enable) { 7203 hw_enable_wol(hw, hw_priv->wol_enable, net_addr); 7204 hw_cfg_wol_pme(hw, 1); 7205 } 7206 7207 pci_save_state(pdev); 7208 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); 7209 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 7210 return 0; 7211} 7212#endif 7213 7214static char pcidev_name[] = "ksz884xp"; 7215 7216static const struct pci_device_id pcidev_table[] = { 7217 { PCI_VENDOR_ID_MICREL_KS, 0x8841, 7218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7219 { PCI_VENDOR_ID_MICREL_KS, 0x8842, 7220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7221 { 0 } 7222}; 7223 7224MODULE_DEVICE_TABLE(pci, pcidev_table); 7225 7226static struct pci_driver pci_device_driver = { 7227#ifdef CONFIG_PM 7228 .suspend = pcidev_suspend, 7229 .resume = pcidev_resume, 7230#endif 7231 .name = pcidev_name, 7232 .id_table = pcidev_table, 7233 .probe = pcidev_init, 7234 .remove = pcidev_exit 7235}; 7236 7237module_pci_driver(pci_device_driver); 7238 7239MODULE_DESCRIPTION("KSZ8841/2 PCI network driver"); 7240MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>"); 7241MODULE_LICENSE("GPL"); 7242 7243module_param_named(message, msg_enable, int, 0); 7244MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); 7245 7246module_param(macaddr, charp, 0); 7247module_param(mac1addr, charp, 0); 7248module_param(fast_aging, int, 0); 7249module_param(multi_dev, int, 0); 7250module_param(stp, int, 0); 7251MODULE_PARM_DESC(macaddr, "MAC address"); 7252MODULE_PARM_DESC(mac1addr, "Second MAC address"); 7253MODULE_PARM_DESC(fast_aging, "Fast aging"); 7254MODULE_PARM_DESC(multi_dev, "Multiple device interfaces"); 7255MODULE_PARM_DESC(stp, "STP support"); 7256