1/**
2 * drivers/net/ethernet/micrel/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/* Supports:
20 * KS8851 16bit MLL chip from Micrel Inc.
21 */
22
23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25#include <linux/interrupt.h>
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/ethtool.h>
31#include <linux/cache.h>
32#include <linux/crc32.h>
33#include <linux/mii.h>
34#include <linux/platform_device.h>
35#include <linux/delay.h>
36#include <linux/slab.h>
37#include <linux/ks8851_mll.h>
38#include <linux/of.h>
39#include <linux/of_device.h>
40#include <linux/of_net.h>
41
42#define	DRV_NAME	"ks8851_mll"
43
44static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
45#define MAX_RECV_FRAMES			255
46#define MAX_BUF_SIZE			2048
47#define TX_BUF_SIZE			2000
48#define RX_BUF_SIZE			2000
49
50#define KS_CCR				0x08
51#define CCR_EEPROM			(1 << 9)
52#define CCR_SPI				(1 << 8)
53#define CCR_8BIT			(1 << 7)
54#define CCR_16BIT			(1 << 6)
55#define CCR_32BIT			(1 << 5)
56#define CCR_SHARED			(1 << 4)
57#define CCR_32PIN			(1 << 0)
58
59/* MAC address registers */
60#define KS_MARL				0x10
61#define KS_MARM				0x12
62#define KS_MARH				0x14
63
64#define KS_OBCR				0x20
65#define OBCR_ODS_16MA			(1 << 6)
66
67#define KS_EEPCR			0x22
68#define EEPCR_EESA			(1 << 4)
69#define EEPCR_EESB			(1 << 3)
70#define EEPCR_EEDO			(1 << 2)
71#define EEPCR_EESCK			(1 << 1)
72#define EEPCR_EECS			(1 << 0)
73
74#define KS_MBIR				0x24
75#define MBIR_TXMBF			(1 << 12)
76#define MBIR_TXMBFA			(1 << 11)
77#define MBIR_RXMBF			(1 << 4)
78#define MBIR_RXMBFA			(1 << 3)
79
80#define KS_GRR				0x26
81#define GRR_QMU				(1 << 1)
82#define GRR_GSR				(1 << 0)
83
84#define KS_WFCR				0x2A
85#define WFCR_MPRXE			(1 << 7)
86#define WFCR_WF3E			(1 << 3)
87#define WFCR_WF2E			(1 << 2)
88#define WFCR_WF1E			(1 << 1)
89#define WFCR_WF0E			(1 << 0)
90
91#define KS_WF0CRC0			0x30
92#define KS_WF0CRC1			0x32
93#define KS_WF0BM0			0x34
94#define KS_WF0BM1			0x36
95#define KS_WF0BM2			0x38
96#define KS_WF0BM3			0x3A
97
98#define KS_WF1CRC0			0x40
99#define KS_WF1CRC1			0x42
100#define KS_WF1BM0			0x44
101#define KS_WF1BM1			0x46
102#define KS_WF1BM2			0x48
103#define KS_WF1BM3			0x4A
104
105#define KS_WF2CRC0			0x50
106#define KS_WF2CRC1			0x52
107#define KS_WF2BM0			0x54
108#define KS_WF2BM1			0x56
109#define KS_WF2BM2			0x58
110#define KS_WF2BM3			0x5A
111
112#define KS_WF3CRC0			0x60
113#define KS_WF3CRC1			0x62
114#define KS_WF3BM0			0x64
115#define KS_WF3BM1			0x66
116#define KS_WF3BM2			0x68
117#define KS_WF3BM3			0x6A
118
119#define KS_TXCR				0x70
120#define TXCR_TCGICMP			(1 << 8)
121#define TXCR_TCGUDP			(1 << 7)
122#define TXCR_TCGTCP			(1 << 6)
123#define TXCR_TCGIP			(1 << 5)
124#define TXCR_FTXQ			(1 << 4)
125#define TXCR_TXFCE			(1 << 3)
126#define TXCR_TXPE			(1 << 2)
127#define TXCR_TXCRC			(1 << 1)
128#define TXCR_TXE			(1 << 0)
129
130#define KS_TXSR				0x72
131#define TXSR_TXLC			(1 << 13)
132#define TXSR_TXMC			(1 << 12)
133#define TXSR_TXFID_MASK			(0x3f << 0)
134#define TXSR_TXFID_SHIFT		(0)
135#define TXSR_TXFID_GET(_v)		(((_v) >> 0) & 0x3f)
136
137
138#define KS_RXCR1			0x74
139#define RXCR1_FRXQ			(1 << 15)
140#define RXCR1_RXUDPFCC			(1 << 14)
141#define RXCR1_RXTCPFCC			(1 << 13)
142#define RXCR1_RXIPFCC			(1 << 12)
143#define RXCR1_RXPAFMA			(1 << 11)
144#define RXCR1_RXFCE			(1 << 10)
145#define RXCR1_RXEFE			(1 << 9)
146#define RXCR1_RXMAFMA			(1 << 8)
147#define RXCR1_RXBE			(1 << 7)
148#define RXCR1_RXME			(1 << 6)
149#define RXCR1_RXUE			(1 << 5)
150#define RXCR1_RXAE			(1 << 4)
151#define RXCR1_RXINVF			(1 << 1)
152#define RXCR1_RXE			(1 << 0)
153#define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
154					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
155
156#define KS_RXCR2			0x76
157#define RXCR2_SRDBL_MASK		(0x7 << 5)
158#define RXCR2_SRDBL_SHIFT		(5)
159#define RXCR2_SRDBL_4B			(0x0 << 5)
160#define RXCR2_SRDBL_8B			(0x1 << 5)
161#define RXCR2_SRDBL_16B			(0x2 << 5)
162#define RXCR2_SRDBL_32B			(0x3 << 5)
163/* #define RXCR2_SRDBL_FRAME		(0x4 << 5) */
164#define RXCR2_IUFFP			(1 << 4)
165#define RXCR2_RXIUFCEZ			(1 << 3)
166#define RXCR2_UDPLFE			(1 << 2)
167#define RXCR2_RXICMPFCC			(1 << 1)
168#define RXCR2_RXSAF			(1 << 0)
169
170#define KS_TXMIR			0x78
171
172#define KS_RXFHSR			0x7C
173#define RXFSHR_RXFV			(1 << 15)
174#define RXFSHR_RXICMPFCS		(1 << 13)
175#define RXFSHR_RXIPFCS			(1 << 12)
176#define RXFSHR_RXTCPFCS			(1 << 11)
177#define RXFSHR_RXUDPFCS			(1 << 10)
178#define RXFSHR_RXBF			(1 << 7)
179#define RXFSHR_RXMF			(1 << 6)
180#define RXFSHR_RXUF			(1 << 5)
181#define RXFSHR_RXMR			(1 << 4)
182#define RXFSHR_RXFT			(1 << 3)
183#define RXFSHR_RXFTL			(1 << 2)
184#define RXFSHR_RXRF			(1 << 1)
185#define RXFSHR_RXCE			(1 << 0)
186#define	RXFSHR_ERR			(RXFSHR_RXCE | RXFSHR_RXRF |\
187					RXFSHR_RXFTL | RXFSHR_RXMR |\
188					RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
189					RXFSHR_RXTCPFCS)
190#define KS_RXFHBCR			0x7E
191#define RXFHBCR_CNT_MASK		0x0FFF
192
193#define KS_TXQCR			0x80
194#define TXQCR_AETFE			(1 << 2)
195#define TXQCR_TXQMAM			(1 << 1)
196#define TXQCR_METFE			(1 << 0)
197
198#define KS_RXQCR			0x82
199#define RXQCR_RXDTTS			(1 << 12)
200#define RXQCR_RXDBCTS			(1 << 11)
201#define RXQCR_RXFCTS			(1 << 10)
202#define RXQCR_RXIPHTOE			(1 << 9)
203#define RXQCR_RXDTTE			(1 << 7)
204#define RXQCR_RXDBCTE			(1 << 6)
205#define RXQCR_RXFCTE			(1 << 5)
206#define RXQCR_ADRFE			(1 << 4)
207#define RXQCR_SDA			(1 << 3)
208#define RXQCR_RRXEF			(1 << 0)
209#define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)
210
211#define KS_TXFDPR			0x84
212#define TXFDPR_TXFPAI			(1 << 14)
213#define TXFDPR_TXFP_MASK		(0x7ff << 0)
214#define TXFDPR_TXFP_SHIFT		(0)
215
216#define KS_RXFDPR			0x86
217#define RXFDPR_RXFPAI			(1 << 14)
218
219#define KS_RXDTTR			0x8C
220#define KS_RXDBCTR			0x8E
221
222#define KS_IER				0x90
223#define KS_ISR				0x92
224#define IRQ_LCI				(1 << 15)
225#define IRQ_TXI				(1 << 14)
226#define IRQ_RXI				(1 << 13)
227#define IRQ_RXOI			(1 << 11)
228#define IRQ_TXPSI			(1 << 9)
229#define IRQ_RXPSI			(1 << 8)
230#define IRQ_TXSAI			(1 << 6)
231#define IRQ_RXWFDI			(1 << 5)
232#define IRQ_RXMPDI			(1 << 4)
233#define IRQ_LDI				(1 << 3)
234#define IRQ_EDI				(1 << 2)
235#define IRQ_SPIBEI			(1 << 1)
236#define IRQ_DEDI			(1 << 0)
237
238#define KS_RXFCTR			0x9C
239#define RXFCTR_THRESHOLD_MASK     	0x00FF
240
241#define KS_RXFC				0x9D
242#define RXFCTR_RXFC_MASK		(0xff << 8)
243#define RXFCTR_RXFC_SHIFT		(8)
244#define RXFCTR_RXFC_GET(_v)		(((_v) >> 8) & 0xff)
245#define RXFCTR_RXFCT_MASK		(0xff << 0)
246#define RXFCTR_RXFCT_SHIFT		(0)
247
248#define KS_TXNTFSR			0x9E
249
250#define KS_MAHTR0			0xA0
251#define KS_MAHTR1			0xA2
252#define KS_MAHTR2			0xA4
253#define KS_MAHTR3			0xA6
254
255#define KS_FCLWR			0xB0
256#define KS_FCHWR			0xB2
257#define KS_FCOWR			0xB4
258
259#define KS_CIDER			0xC0
260#define CIDER_ID			0x8870
261#define CIDER_REV_MASK			(0x7 << 1)
262#define CIDER_REV_SHIFT			(1)
263#define CIDER_REV_GET(_v)		(((_v) >> 1) & 0x7)
264
265#define KS_CGCR				0xC6
266#define KS_IACR				0xC8
267#define IACR_RDEN			(1 << 12)
268#define IACR_TSEL_MASK			(0x3 << 10)
269#define IACR_TSEL_SHIFT			(10)
270#define IACR_TSEL_MIB			(0x3 << 10)
271#define IACR_ADDR_MASK			(0x1f << 0)
272#define IACR_ADDR_SHIFT			(0)
273
274#define KS_IADLR			0xD0
275#define KS_IAHDR			0xD2
276
277#define KS_PMECR			0xD4
278#define PMECR_PME_DELAY			(1 << 14)
279#define PMECR_PME_POL			(1 << 12)
280#define PMECR_WOL_WAKEUP		(1 << 11)
281#define PMECR_WOL_MAGICPKT		(1 << 10)
282#define PMECR_WOL_LINKUP		(1 << 9)
283#define PMECR_WOL_ENERGY		(1 << 8)
284#define PMECR_AUTO_WAKE_EN		(1 << 7)
285#define PMECR_WAKEUP_NORMAL		(1 << 6)
286#define PMECR_WKEVT_MASK		(0xf << 2)
287#define PMECR_WKEVT_SHIFT		(2)
288#define PMECR_WKEVT_GET(_v)		(((_v) >> 2) & 0xf)
289#define PMECR_WKEVT_ENERGY		(0x1 << 2)
290#define PMECR_WKEVT_LINK		(0x2 << 2)
291#define PMECR_WKEVT_MAGICPKT		(0x4 << 2)
292#define PMECR_WKEVT_FRAME		(0x8 << 2)
293#define PMECR_PM_MASK			(0x3 << 0)
294#define PMECR_PM_SHIFT			(0)
295#define PMECR_PM_NORMAL			(0x0 << 0)
296#define PMECR_PM_ENERGY			(0x1 << 0)
297#define PMECR_PM_SOFTDOWN		(0x2 << 0)
298#define PMECR_PM_POWERSAVE		(0x3 << 0)
299
300/* Standard MII PHY data */
301#define KS_P1MBCR			0xE4
302#define P1MBCR_FORCE_FDX		(1 << 8)
303
304#define KS_P1MBSR			0xE6
305#define P1MBSR_AN_COMPLETE		(1 << 5)
306#define P1MBSR_AN_CAPABLE		(1 << 3)
307#define P1MBSR_LINK_UP			(1 << 2)
308
309#define KS_PHY1ILR			0xE8
310#define KS_PHY1IHR			0xEA
311#define KS_P1ANAR			0xEC
312#define KS_P1ANLPR			0xEE
313
314#define KS_P1SCLMD			0xF4
315#define P1SCLMD_LEDOFF			(1 << 15)
316#define P1SCLMD_TXIDS			(1 << 14)
317#define P1SCLMD_RESTARTAN		(1 << 13)
318#define P1SCLMD_DISAUTOMDIX		(1 << 10)
319#define P1SCLMD_FORCEMDIX		(1 << 9)
320#define P1SCLMD_AUTONEGEN		(1 << 7)
321#define P1SCLMD_FORCE100		(1 << 6)
322#define P1SCLMD_FORCEFDX		(1 << 5)
323#define P1SCLMD_ADV_FLOW		(1 << 4)
324#define P1SCLMD_ADV_100BT_FDX		(1 << 3)
325#define P1SCLMD_ADV_100BT_HDX		(1 << 2)
326#define P1SCLMD_ADV_10BT_FDX		(1 << 1)
327#define P1SCLMD_ADV_10BT_HDX		(1 << 0)
328
329#define KS_P1CR				0xF6
330#define P1CR_HP_MDIX			(1 << 15)
331#define P1CR_REV_POL			(1 << 13)
332#define P1CR_OP_100M			(1 << 10)
333#define P1CR_OP_FDX			(1 << 9)
334#define P1CR_OP_MDI			(1 << 7)
335#define P1CR_AN_DONE			(1 << 6)
336#define P1CR_LINK_GOOD			(1 << 5)
337#define P1CR_PNTR_FLOW			(1 << 4)
338#define P1CR_PNTR_100BT_FDX		(1 << 3)
339#define P1CR_PNTR_100BT_HDX		(1 << 2)
340#define P1CR_PNTR_10BT_FDX		(1 << 1)
341#define P1CR_PNTR_10BT_HDX		(1 << 0)
342
343/* TX Frame control */
344
345#define TXFR_TXIC			(1 << 15)
346#define TXFR_TXFID_MASK			(0x3f << 0)
347#define TXFR_TXFID_SHIFT		(0)
348
349#define KS_P1SR				0xF8
350#define P1SR_HP_MDIX			(1 << 15)
351#define P1SR_REV_POL			(1 << 13)
352#define P1SR_OP_100M			(1 << 10)
353#define P1SR_OP_FDX			(1 << 9)
354#define P1SR_OP_MDI			(1 << 7)
355#define P1SR_AN_DONE			(1 << 6)
356#define P1SR_LINK_GOOD			(1 << 5)
357#define P1SR_PNTR_FLOW			(1 << 4)
358#define P1SR_PNTR_100BT_FDX		(1 << 3)
359#define P1SR_PNTR_100BT_HDX		(1 << 2)
360#define P1SR_PNTR_10BT_FDX		(1 << 1)
361#define P1SR_PNTR_10BT_HDX		(1 << 0)
362
363#define	ENUM_BUS_NONE			0
364#define	ENUM_BUS_8BIT			1
365#define	ENUM_BUS_16BIT			2
366#define	ENUM_BUS_32BIT			3
367
368#define MAX_MCAST_LST			32
369#define HW_MCAST_SIZE			8
370
371/**
372 * union ks_tx_hdr - tx header data
373 * @txb: The header as bytes
374 * @txw: The header as 16bit, little-endian words
375 *
376 * A dual representation of the tx header data to allow
377 * access to individual bytes, and to allow 16bit accesses
378 * with 16bit alignment.
379 */
380union ks_tx_hdr {
381	u8      txb[4];
382	__le16  txw[2];
383};
384
385/**
386 * struct ks_net - KS8851 driver private data
387 * @net_device 	: The network device we're bound to
388 * @hw_addr	: start address of data register.
389 * @hw_addr_cmd	: start address of command register.
390 * @txh    	: temporaly buffer to save status/length.
391 * @lock	: Lock to ensure that the device is not accessed when busy.
392 * @pdev	: Pointer to platform device.
393 * @mii		: The MII state information for the mii calls.
394 * @frame_head_info   	: frame header information for multi-pkt rx.
395 * @statelock	: Lock on this structure for tx list.
396 * @msg_enable	: The message flags controlling driver output (see ethtool).
397 * @frame_cnt  	: number of frames received.
398 * @bus_width  	: i/o bus width.
399 * @rc_rxqcr	: Cached copy of KS_RXQCR.
400 * @rc_txcr	: Cached copy of KS_TXCR.
401 * @rc_ier	: Cached copy of KS_IER.
402 * @sharedbus  	: Multipex(addr and data bus) mode indicator.
403 * @cmd_reg_cache	: command register cached.
404 * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
405 * @promiscuous	: promiscuous mode indicator.
406 * @all_mcast  	: mutlicast indicator.
407 * @mcast_lst_size   	: size of multicast list.
408 * @mcast_lst    	: multicast list.
409 * @mcast_bits    	: multicast enabed.
410 * @mac_addr   		: MAC address assigned to this device.
411 * @fid    		: frame id.
412 * @extra_byte    	: number of extra byte prepended rx pkt.
413 * @enabled    		: indicator this device works.
414 *
415 * The @lock ensures that the chip is protected when certain operations are
416 * in progress. When the read or write packet transfer is in progress, most
417 * of the chip registers are not accessible until the transfer is finished and
418 * the DMA has been de-asserted.
419 *
420 * The @statelock is used to protect information in the structure which may
421 * need to be accessed via several sources, such as the network driver layer
422 * or one of the work queues.
423 *
424 */
425
426/* Receive multiplex framer header info */
427struct type_frame_head {
428	u16	sts;         /* Frame status */
429	u16	len;         /* Byte count */
430};
431
432struct ks_net {
433	struct net_device	*netdev;
434	void __iomem    	*hw_addr;
435	void __iomem    	*hw_addr_cmd;
436	union ks_tx_hdr		txh ____cacheline_aligned;
437	struct mutex      	lock; /* spinlock to be interrupt safe */
438	struct platform_device *pdev;
439	struct mii_if_info	mii;
440	struct type_frame_head	*frame_head_info;
441	spinlock_t		statelock;
442	u32			msg_enable;
443	u32			frame_cnt;
444	int			bus_width;
445
446	u16			rc_rxqcr;
447	u16			rc_txcr;
448	u16			rc_ier;
449	u16			sharedbus;
450	u16			cmd_reg_cache;
451	u16			cmd_reg_cache_int;
452	u16			promiscuous;
453	u16			all_mcast;
454	u16			mcast_lst_size;
455	u8			mcast_lst[MAX_MCAST_LST][ETH_ALEN];
456	u8			mcast_bits[HW_MCAST_SIZE];
457	u8			mac_addr[6];
458	u8                      fid;
459	u8			extra_byte;
460	u8			enabled;
461};
462
463static int msg_enable;
464
465#define BE3             0x8000      /* Byte Enable 3 */
466#define BE2             0x4000      /* Byte Enable 2 */
467#define BE1             0x2000      /* Byte Enable 1 */
468#define BE0             0x1000      /* Byte Enable 0 */
469
470/* register read/write calls.
471 *
472 * All these calls issue transactions to access the chip's registers. They
473 * all require that the necessary lock is held to prevent accesses when the
474 * chip is busy transferring packet data (RX/TX FIFO accesses).
475 */
476
477/**
478 * ks_rdreg8 - read 8 bit register from device
479 * @ks	  : The chip information
480 * @offset: The register address
481 *
482 * Read a 8bit register from the chip, returning the result
483 */
484static u8 ks_rdreg8(struct ks_net *ks, int offset)
485{
486	u16 data;
487	u8 shift_bit = offset & 0x03;
488	u8 shift_data = (offset & 1) << 3;
489	ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
490	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
491	data  = ioread16(ks->hw_addr);
492	return (u8)(data >> shift_data);
493}
494
495/**
496 * ks_rdreg16 - read 16 bit register from device
497 * @ks	  : The chip information
498 * @offset: The register address
499 *
500 * Read a 16bit register from the chip, returning the result
501 */
502
503static u16 ks_rdreg16(struct ks_net *ks, int offset)
504{
505	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
506	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
507	return ioread16(ks->hw_addr);
508}
509
510/**
511 * ks_wrreg8 - write 8bit register value to chip
512 * @ks: The chip information
513 * @offset: The register address
514 * @value: The value to write
515 *
516 */
517static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
518{
519	u8  shift_bit = (offset & 0x03);
520	u16 value_write = (u16)(value << ((offset & 1) << 3));
521	ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
522	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
523	iowrite16(value_write, ks->hw_addr);
524}
525
526/**
527 * ks_wrreg16 - write 16bit register value to chip
528 * @ks: The chip information
529 * @offset: The register address
530 * @value: The value to write
531 *
532 */
533
534static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
535{
536	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
537	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
538	iowrite16(value, ks->hw_addr);
539}
540
541/**
542 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
543 * @ks: The chip state
544 * @wptr: buffer address to save data
545 * @len: length in byte to read
546 *
547 */
548static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
549{
550	len >>= 1;
551	while (len--)
552		*wptr++ = (u16)ioread16(ks->hw_addr);
553}
554
555/**
556 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
557 * @ks: The chip information
558 * @wptr: buffer address
559 * @len: length in byte to write
560 *
561 */
562static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
563{
564	len >>= 1;
565	while (len--)
566		iowrite16(*wptr++, ks->hw_addr);
567}
568
569static void ks_disable_int(struct ks_net *ks)
570{
571	ks_wrreg16(ks, KS_IER, 0x0000);
572}  /* ks_disable_int */
573
574static void ks_enable_int(struct ks_net *ks)
575{
576	ks_wrreg16(ks, KS_IER, ks->rc_ier);
577}  /* ks_enable_int */
578
579/**
580 * ks_tx_fifo_space - return the available hardware buffer size.
581 * @ks: The chip information
582 *
583 */
584static inline u16 ks_tx_fifo_space(struct ks_net *ks)
585{
586	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
587}
588
589/**
590 * ks_save_cmd_reg - save the command register from the cache.
591 * @ks: The chip information
592 *
593 */
594static inline void ks_save_cmd_reg(struct ks_net *ks)
595{
596	/*ks8851 MLL has a bug to read back the command register.
597	* So rely on software to save the content of command register.
598	*/
599	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
600}
601
602/**
603 * ks_restore_cmd_reg - restore the command register from the cache and
604 * 	write to hardware register.
605 * @ks: The chip information
606 *
607 */
608static inline void ks_restore_cmd_reg(struct ks_net *ks)
609{
610	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
611	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
612}
613
614/**
615 * ks_set_powermode - set power mode of the device
616 * @ks: The chip information
617 * @pwrmode: The power mode value to write to KS_PMECR.
618 *
619 * Change the power mode of the chip.
620 */
621static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
622{
623	unsigned pmecr;
624
625	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
626
627	ks_rdreg16(ks, KS_GRR);
628	pmecr = ks_rdreg16(ks, KS_PMECR);
629	pmecr &= ~PMECR_PM_MASK;
630	pmecr |= pwrmode;
631
632	ks_wrreg16(ks, KS_PMECR, pmecr);
633}
634
635/**
636 * ks_read_config - read chip configuration of bus width.
637 * @ks: The chip information
638 *
639 */
640static void ks_read_config(struct ks_net *ks)
641{
642	u16 reg_data = 0;
643
644	/* Regardless of bus width, 8 bit read should always work.*/
645	reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
646	reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
647
648	/* addr/data bus are multiplexed */
649	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
650
651	/* There are garbage data when reading data from QMU,
652	depending on bus-width.
653	*/
654
655	if (reg_data & CCR_8BIT) {
656		ks->bus_width = ENUM_BUS_8BIT;
657		ks->extra_byte = 1;
658	} else if (reg_data & CCR_16BIT) {
659		ks->bus_width = ENUM_BUS_16BIT;
660		ks->extra_byte = 2;
661	} else {
662		ks->bus_width = ENUM_BUS_32BIT;
663		ks->extra_byte = 4;
664	}
665}
666
667/**
668 * ks_soft_reset - issue one of the soft reset to the device
669 * @ks: The device state.
670 * @op: The bit(s) to set in the GRR
671 *
672 * Issue the relevant soft-reset command to the device's GRR register
673 * specified by @op.
674 *
675 * Note, the delays are in there as a caution to ensure that the reset
676 * has time to take effect and then complete. Since the datasheet does
677 * not currently specify the exact sequence, we have chosen something
678 * that seems to work with our device.
679 */
680static void ks_soft_reset(struct ks_net *ks, unsigned op)
681{
682	/* Disable interrupt first */
683	ks_wrreg16(ks, KS_IER, 0x0000);
684	ks_wrreg16(ks, KS_GRR, op);
685	mdelay(10);	/* wait a short time to effect reset */
686	ks_wrreg16(ks, KS_GRR, 0);
687	mdelay(1);	/* wait for condition to clear */
688}
689
690
691static void ks_enable_qmu(struct ks_net *ks)
692{
693	u16 w;
694
695	w = ks_rdreg16(ks, KS_TXCR);
696	/* Enables QMU Transmit (TXCR). */
697	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
698
699	/*
700	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
701	 * Enable
702	 */
703
704	w = ks_rdreg16(ks, KS_RXQCR);
705	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
706
707	/* Enables QMU Receive (RXCR1). */
708	w = ks_rdreg16(ks, KS_RXCR1);
709	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
710	ks->enabled = true;
711}  /* ks_enable_qmu */
712
713static void ks_disable_qmu(struct ks_net *ks)
714{
715	u16	w;
716
717	w = ks_rdreg16(ks, KS_TXCR);
718
719	/* Disables QMU Transmit (TXCR). */
720	w  &= ~TXCR_TXE;
721	ks_wrreg16(ks, KS_TXCR, w);
722
723	/* Disables QMU Receive (RXCR1). */
724	w = ks_rdreg16(ks, KS_RXCR1);
725	w &= ~RXCR1_RXE ;
726	ks_wrreg16(ks, KS_RXCR1, w);
727
728	ks->enabled = false;
729
730}  /* ks_disable_qmu */
731
732/**
733 * ks_read_qmu - read 1 pkt data from the QMU.
734 * @ks: The chip information
735 * @buf: buffer address to save 1 pkt
736 * @len: Pkt length
737 * Here is the sequence to read 1 pkt:
738 *	1. set sudo DMA mode
739 *	2. read prepend data
740 *	3. read pkt data
741 *	4. reset sudo DMA Mode
742 */
743static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
744{
745	u32 r =  ks->extra_byte & 0x1 ;
746	u32 w = ks->extra_byte - r;
747
748	/* 1. set sudo DMA mode */
749	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
750	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
751
752	/* 2. read prepend data */
753	/**
754	 * read 4 + extra bytes and discard them.
755	 * extra bytes for dummy, 2 for status, 2 for len
756	 */
757
758	/* use likely(r) for 8 bit access for performance */
759	if (unlikely(r))
760		ioread8(ks->hw_addr);
761	ks_inblk(ks, buf, w + 2 + 2);
762
763	/* 3. read pkt data */
764	ks_inblk(ks, buf, ALIGN(len, 4));
765
766	/* 4. reset sudo DMA Mode */
767	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
768}
769
770/**
771 * ks_rcv - read multiple pkts data from the QMU.
772 * @ks: The chip information
773 * @netdev: The network device being opened.
774 *
775 * Read all of header information before reading pkt content.
776 * It is not allowed only port of pkts in QMU after issuing
777 * interrupt ack.
778 */
779static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
780{
781	u32	i;
782	struct type_frame_head *frame_hdr = ks->frame_head_info;
783	struct sk_buff *skb;
784
785	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
786
787	/* read all header information */
788	for (i = 0; i < ks->frame_cnt; i++) {
789		/* Checking Received packet status */
790		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
791		/* Get packet len from hardware */
792		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
793		frame_hdr++;
794	}
795
796	frame_hdr = ks->frame_head_info;
797	while (ks->frame_cnt--) {
798		if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
799			     frame_hdr->len >= RX_BUF_SIZE ||
800			     frame_hdr->len <= 0)) {
801
802			/* discard an invalid packet */
803			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
804			netdev->stats.rx_dropped++;
805			if (!(frame_hdr->sts & RXFSHR_RXFV))
806				netdev->stats.rx_frame_errors++;
807			else
808				netdev->stats.rx_length_errors++;
809			frame_hdr++;
810			continue;
811		}
812
813		skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
814		if (likely(skb)) {
815			skb_reserve(skb, 2);
816			/* read data block including CRC 4 bytes */
817			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
818			skb_put(skb, frame_hdr->len - 4);
819			skb->protocol = eth_type_trans(skb, netdev);
820			netif_rx(skb);
821			/* exclude CRC size */
822			netdev->stats.rx_bytes += frame_hdr->len - 4;
823			netdev->stats.rx_packets++;
824		} else {
825			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
826			netdev->stats.rx_dropped++;
827		}
828		frame_hdr++;
829	}
830}
831
832/**
833 * ks_update_link_status - link status update.
834 * @netdev: The network device being opened.
835 * @ks: The chip information
836 *
837 */
838
839static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
840{
841	/* check the status of the link */
842	u32 link_up_status;
843	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
844		netif_carrier_on(netdev);
845		link_up_status = true;
846	} else {
847		netif_carrier_off(netdev);
848		link_up_status = false;
849	}
850	netif_dbg(ks, link, ks->netdev,
851		  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
852}
853
854/**
855 * ks_irq - device interrupt handler
856 * @irq: Interrupt number passed from the IRQ handler.
857 * @pw: The private word passed to register_irq(), our struct ks_net.
858 *
859 * This is the handler invoked to find out what happened
860 *
861 * Read the interrupt status, work out what needs to be done and then clear
862 * any of the interrupts that are not needed.
863 */
864
865static irqreturn_t ks_irq(int irq, void *pw)
866{
867	struct net_device *netdev = pw;
868	struct ks_net *ks = netdev_priv(netdev);
869	u16 status;
870
871	/*this should be the first in IRQ handler */
872	ks_save_cmd_reg(ks);
873
874	status = ks_rdreg16(ks, KS_ISR);
875	if (unlikely(!status)) {
876		ks_restore_cmd_reg(ks);
877		return IRQ_NONE;
878	}
879
880	ks_wrreg16(ks, KS_ISR, status);
881
882	if (likely(status & IRQ_RXI))
883		ks_rcv(ks, netdev);
884
885	if (unlikely(status & IRQ_LCI))
886		ks_update_link_status(netdev, ks);
887
888	if (unlikely(status & IRQ_TXI))
889		netif_wake_queue(netdev);
890
891	if (unlikely(status & IRQ_LDI)) {
892
893		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
894		pmecr &= ~PMECR_WKEVT_MASK;
895		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
896	}
897
898	if (unlikely(status & IRQ_RXOI))
899		ks->netdev->stats.rx_over_errors++;
900	/* this should be the last in IRQ handler*/
901	ks_restore_cmd_reg(ks);
902	return IRQ_HANDLED;
903}
904
905
906/**
907 * ks_net_open - open network device
908 * @netdev: The network device being opened.
909 *
910 * Called when the network device is marked active, such as a user executing
911 * 'ifconfig up' on the device.
912 */
913static int ks_net_open(struct net_device *netdev)
914{
915	struct ks_net *ks = netdev_priv(netdev);
916	int err;
917
918#define	KS_INT_FLAGS	IRQF_TRIGGER_LOW
919	/* lock the card, even if we may not actually do anything
920	 * else at the moment.
921	 */
922
923	netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
924
925	/* reset the HW */
926	err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
927
928	if (err) {
929		pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
930		return err;
931	}
932
933	/* wake up powermode to normal mode */
934	ks_set_powermode(ks, PMECR_PM_NORMAL);
935	mdelay(1);	/* wait for normal mode to take effect */
936
937	ks_wrreg16(ks, KS_ISR, 0xffff);
938	ks_enable_int(ks);
939	ks_enable_qmu(ks);
940	netif_start_queue(ks->netdev);
941
942	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
943
944	return 0;
945}
946
947/**
948 * ks_net_stop - close network device
949 * @netdev: The device being closed.
950 *
951 * Called to close down a network device which has been active. Cancell any
952 * work, shutdown the RX and TX process and then place the chip into a low
953 * power state whilst it is not being used.
954 */
955static int ks_net_stop(struct net_device *netdev)
956{
957	struct ks_net *ks = netdev_priv(netdev);
958
959	netif_info(ks, ifdown, netdev, "shutting down\n");
960
961	netif_stop_queue(netdev);
962
963	mutex_lock(&ks->lock);
964
965	/* turn off the IRQs and ack any outstanding */
966	ks_wrreg16(ks, KS_IER, 0x0000);
967	ks_wrreg16(ks, KS_ISR, 0xffff);
968
969	/* shutdown RX/TX QMU */
970	ks_disable_qmu(ks);
971
972	/* set powermode to soft power down to save power */
973	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
974	free_irq(netdev->irq, netdev);
975	mutex_unlock(&ks->lock);
976	return 0;
977}
978
979
980/**
981 * ks_write_qmu - write 1 pkt data to the QMU.
982 * @ks: The chip information
983 * @pdata: buffer address to save 1 pkt
984 * @len: Pkt length in byte
985 * Here is the sequence to write 1 pkt:
986 *	1. set sudo DMA mode
987 *	2. write status/length
988 *	3. write pkt data
989 *	4. reset sudo DMA Mode
990 *	5. reset sudo DMA mode
991 *	6. Wait until pkt is out
992 */
993static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
994{
995	/* start header at txb[0] to align txw entries */
996	ks->txh.txw[0] = 0;
997	ks->txh.txw[1] = cpu_to_le16(len);
998
999	/* 1. set sudo-DMA mode */
1000	ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
1001	/* 2. write status/lenth info */
1002	ks_outblk(ks, ks->txh.txw, 4);
1003	/* 3. write pkt data */
1004	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
1005	/* 4. reset sudo-DMA mode */
1006	ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
1007	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1008	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
1009	/* 6. wait until TXQCR_METFE is auto-cleared */
1010	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
1011		;
1012}
1013
1014/**
1015 * ks_start_xmit - transmit packet
1016 * @skb		: The buffer to transmit
1017 * @netdev	: The device used to transmit the packet.
1018 *
1019 * Called by the network layer to transmit the @skb.
1020 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1021 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1022 */
1023static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1024{
1025	int retv = NETDEV_TX_OK;
1026	struct ks_net *ks = netdev_priv(netdev);
1027
1028	disable_irq(netdev->irq);
1029	ks_disable_int(ks);
1030	spin_lock(&ks->statelock);
1031
1032	/* Extra space are required:
1033	*  4 byte for alignment, 4 for status/length, 4 for CRC
1034	*/
1035
1036	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1037		ks_write_qmu(ks, skb->data, skb->len);
1038		/* add tx statistics */
1039		netdev->stats.tx_bytes += skb->len;
1040		netdev->stats.tx_packets++;
1041		dev_kfree_skb(skb);
1042	} else
1043		retv = NETDEV_TX_BUSY;
1044	spin_unlock(&ks->statelock);
1045	ks_enable_int(ks);
1046	enable_irq(netdev->irq);
1047	return retv;
1048}
1049
1050/**
1051 * ks_start_rx - ready to serve pkts
1052 * @ks		: The chip information
1053 *
1054 */
1055static void ks_start_rx(struct ks_net *ks)
1056{
1057	u16 cntl;
1058
1059	/* Enables QMU Receive (RXCR1). */
1060	cntl = ks_rdreg16(ks, KS_RXCR1);
1061	cntl |= RXCR1_RXE ;
1062	ks_wrreg16(ks, KS_RXCR1, cntl);
1063}  /* ks_start_rx */
1064
1065/**
1066 * ks_stop_rx - stop to serve pkts
1067 * @ks		: The chip information
1068 *
1069 */
1070static void ks_stop_rx(struct ks_net *ks)
1071{
1072	u16 cntl;
1073
1074	/* Disables QMU Receive (RXCR1). */
1075	cntl = ks_rdreg16(ks, KS_RXCR1);
1076	cntl &= ~RXCR1_RXE ;
1077	ks_wrreg16(ks, KS_RXCR1, cntl);
1078
1079}  /* ks_stop_rx */
1080
1081static unsigned long const ethernet_polynomial = 0x04c11db7U;
1082
1083static unsigned long ether_gen_crc(int length, u8 *data)
1084{
1085	long crc = -1;
1086	while (--length >= 0) {
1087		u8 current_octet = *data++;
1088		int bit;
1089
1090		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1091			crc = (crc << 1) ^
1092				((crc < 0) ^ (current_octet & 1) ?
1093			ethernet_polynomial : 0);
1094		}
1095	}
1096	return (unsigned long)crc;
1097}  /* ether_gen_crc */
1098
1099/**
1100* ks_set_grpaddr - set multicast information
1101* @ks : The chip information
1102*/
1103
1104static void ks_set_grpaddr(struct ks_net *ks)
1105{
1106	u8	i;
1107	u32	index, position, value;
1108
1109	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1110
1111	for (i = 0; i < ks->mcast_lst_size; i++) {
1112		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1113		index = position >> 3;
1114		value = 1 << (position & 7);
1115		ks->mcast_bits[index] |= (u8)value;
1116	}
1117
1118	for (i  = 0; i < HW_MCAST_SIZE; i++) {
1119		if (i & 1) {
1120			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1121				(ks->mcast_bits[i] << 8) |
1122				ks->mcast_bits[i - 1]);
1123		}
1124	}
1125}  /* ks_set_grpaddr */
1126
1127/**
1128* ks_clear_mcast - clear multicast information
1129*
1130* @ks : The chip information
1131* This routine removes all mcast addresses set in the hardware.
1132*/
1133
1134static void ks_clear_mcast(struct ks_net *ks)
1135{
1136	u16	i, mcast_size;
1137	for (i = 0; i < HW_MCAST_SIZE; i++)
1138		ks->mcast_bits[i] = 0;
1139
1140	mcast_size = HW_MCAST_SIZE >> 2;
1141	for (i = 0; i < mcast_size; i++)
1142		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1143}
1144
1145static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1146{
1147	u16		cntl;
1148	ks->promiscuous = promiscuous_mode;
1149	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1150	cntl = ks_rdreg16(ks, KS_RXCR1);
1151
1152	cntl &= ~RXCR1_FILTER_MASK;
1153	if (promiscuous_mode)
1154		/* Enable Promiscuous mode */
1155		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1156	else
1157		/* Disable Promiscuous mode (default normal mode) */
1158		cntl |= RXCR1_RXPAFMA;
1159
1160	ks_wrreg16(ks, KS_RXCR1, cntl);
1161
1162	if (ks->enabled)
1163		ks_start_rx(ks);
1164
1165}  /* ks_set_promis */
1166
1167static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1168{
1169	u16	cntl;
1170
1171	ks->all_mcast = mcast;
1172	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1173	cntl = ks_rdreg16(ks, KS_RXCR1);
1174	cntl &= ~RXCR1_FILTER_MASK;
1175	if (mcast)
1176		/* Enable "Perfect with Multicast address passed mode" */
1177		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1178	else
1179		/**
1180		 * Disable "Perfect with Multicast address passed
1181		 * mode" (normal mode).
1182		 */
1183		cntl |= RXCR1_RXPAFMA;
1184
1185	ks_wrreg16(ks, KS_RXCR1, cntl);
1186
1187	if (ks->enabled)
1188		ks_start_rx(ks);
1189}  /* ks_set_mcast */
1190
1191static void ks_set_rx_mode(struct net_device *netdev)
1192{
1193	struct ks_net *ks = netdev_priv(netdev);
1194	struct netdev_hw_addr *ha;
1195
1196	/* Turn on/off promiscuous mode. */
1197	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1198		ks_set_promis(ks,
1199			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1200	/* Turn on/off all mcast mode. */
1201	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1202		ks_set_mcast(ks,
1203			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1204	else
1205		ks_set_promis(ks, false);
1206
1207	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1208		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1209			int i = 0;
1210
1211			netdev_for_each_mc_addr(ha, netdev) {
1212				if (i >= MAX_MCAST_LST)
1213					break;
1214				memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1215			}
1216			ks->mcast_lst_size = (u8)i;
1217			ks_set_grpaddr(ks);
1218		} else {
1219			/**
1220			 * List too big to support so
1221			 * turn on all mcast mode.
1222			 */
1223			ks->mcast_lst_size = MAX_MCAST_LST;
1224			ks_set_mcast(ks, true);
1225		}
1226	} else {
1227		ks->mcast_lst_size = 0;
1228		ks_clear_mcast(ks);
1229	}
1230} /* ks_set_rx_mode */
1231
1232static void ks_set_mac(struct ks_net *ks, u8 *data)
1233{
1234	u16 *pw = (u16 *)data;
1235	u16 w, u;
1236
1237	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1238
1239	u = *pw++;
1240	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1241	ks_wrreg16(ks, KS_MARH, w);
1242
1243	u = *pw++;
1244	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1245	ks_wrreg16(ks, KS_MARM, w);
1246
1247	u = *pw;
1248	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1249	ks_wrreg16(ks, KS_MARL, w);
1250
1251	memcpy(ks->mac_addr, data, ETH_ALEN);
1252
1253	if (ks->enabled)
1254		ks_start_rx(ks);
1255}
1256
1257static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1258{
1259	struct ks_net *ks = netdev_priv(netdev);
1260	struct sockaddr *addr = paddr;
1261	u8 *da;
1262
1263	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1264
1265	da = (u8 *)netdev->dev_addr;
1266
1267	ks_set_mac(ks, da);
1268	return 0;
1269}
1270
1271static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1272{
1273	struct ks_net *ks = netdev_priv(netdev);
1274
1275	if (!netif_running(netdev))
1276		return -EINVAL;
1277
1278	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1279}
1280
1281static const struct net_device_ops ks_netdev_ops = {
1282	.ndo_open		= ks_net_open,
1283	.ndo_stop		= ks_net_stop,
1284	.ndo_do_ioctl		= ks_net_ioctl,
1285	.ndo_start_xmit		= ks_start_xmit,
1286	.ndo_set_mac_address	= ks_set_mac_address,
1287	.ndo_set_rx_mode	= ks_set_rx_mode,
1288	.ndo_change_mtu		= eth_change_mtu,
1289	.ndo_validate_addr	= eth_validate_addr,
1290};
1291
1292/* ethtool support */
1293
1294static void ks_get_drvinfo(struct net_device *netdev,
1295			       struct ethtool_drvinfo *di)
1296{
1297	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1298	strlcpy(di->version, "1.00", sizeof(di->version));
1299	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1300		sizeof(di->bus_info));
1301}
1302
1303static u32 ks_get_msglevel(struct net_device *netdev)
1304{
1305	struct ks_net *ks = netdev_priv(netdev);
1306	return ks->msg_enable;
1307}
1308
1309static void ks_set_msglevel(struct net_device *netdev, u32 to)
1310{
1311	struct ks_net *ks = netdev_priv(netdev);
1312	ks->msg_enable = to;
1313}
1314
1315static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1316{
1317	struct ks_net *ks = netdev_priv(netdev);
1318	return mii_ethtool_gset(&ks->mii, cmd);
1319}
1320
1321static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1322{
1323	struct ks_net *ks = netdev_priv(netdev);
1324	return mii_ethtool_sset(&ks->mii, cmd);
1325}
1326
1327static u32 ks_get_link(struct net_device *netdev)
1328{
1329	struct ks_net *ks = netdev_priv(netdev);
1330	return mii_link_ok(&ks->mii);
1331}
1332
1333static int ks_nway_reset(struct net_device *netdev)
1334{
1335	struct ks_net *ks = netdev_priv(netdev);
1336	return mii_nway_restart(&ks->mii);
1337}
1338
1339static const struct ethtool_ops ks_ethtool_ops = {
1340	.get_drvinfo	= ks_get_drvinfo,
1341	.get_msglevel	= ks_get_msglevel,
1342	.set_msglevel	= ks_set_msglevel,
1343	.get_settings	= ks_get_settings,
1344	.set_settings	= ks_set_settings,
1345	.get_link	= ks_get_link,
1346	.nway_reset	= ks_nway_reset,
1347};
1348
1349/* MII interface controls */
1350
1351/**
1352 * ks_phy_reg - convert MII register into a KS8851 register
1353 * @reg: MII register number.
1354 *
1355 * Return the KS8851 register number for the corresponding MII PHY register
1356 * if possible. Return zero if the MII register has no direct mapping to the
1357 * KS8851 register set.
1358 */
1359static int ks_phy_reg(int reg)
1360{
1361	switch (reg) {
1362	case MII_BMCR:
1363		return KS_P1MBCR;
1364	case MII_BMSR:
1365		return KS_P1MBSR;
1366	case MII_PHYSID1:
1367		return KS_PHY1ILR;
1368	case MII_PHYSID2:
1369		return KS_PHY1IHR;
1370	case MII_ADVERTISE:
1371		return KS_P1ANAR;
1372	case MII_LPA:
1373		return KS_P1ANLPR;
1374	}
1375
1376	return 0x0;
1377}
1378
1379/**
1380 * ks_phy_read - MII interface PHY register read.
1381 * @netdev: The network device the PHY is on.
1382 * @phy_addr: Address of PHY (ignored as we only have one)
1383 * @reg: The register to read.
1384 *
1385 * This call reads data from the PHY register specified in @reg. Since the
1386 * device does not support all the MII registers, the non-existent values
1387 * are always returned as zero.
1388 *
1389 * We return zero for unsupported registers as the MII code does not check
1390 * the value returned for any error status, and simply returns it to the
1391 * caller. The mii-tool that the driver was tested with takes any -ve error
1392 * as real PHY capabilities, thus displaying incorrect data to the user.
1393 */
1394static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1395{
1396	struct ks_net *ks = netdev_priv(netdev);
1397	int ksreg;
1398	int result;
1399
1400	ksreg = ks_phy_reg(reg);
1401	if (!ksreg)
1402		return 0x0;	/* no error return allowed, so use zero */
1403
1404	mutex_lock(&ks->lock);
1405	result = ks_rdreg16(ks, ksreg);
1406	mutex_unlock(&ks->lock);
1407
1408	return result;
1409}
1410
1411static void ks_phy_write(struct net_device *netdev,
1412			     int phy, int reg, int value)
1413{
1414	struct ks_net *ks = netdev_priv(netdev);
1415	int ksreg;
1416
1417	ksreg = ks_phy_reg(reg);
1418	if (ksreg) {
1419		mutex_lock(&ks->lock);
1420		ks_wrreg16(ks, ksreg, value);
1421		mutex_unlock(&ks->lock);
1422	}
1423}
1424
1425/**
1426 * ks_read_selftest - read the selftest memory info.
1427 * @ks: The device state
1428 *
1429 * Read and check the TX/RX memory selftest information.
1430 */
1431static int ks_read_selftest(struct ks_net *ks)
1432{
1433	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1434	int ret = 0;
1435	unsigned rd;
1436
1437	rd = ks_rdreg16(ks, KS_MBIR);
1438
1439	if ((rd & both_done) != both_done) {
1440		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1441		return 0;
1442	}
1443
1444	if (rd & MBIR_TXMBFA) {
1445		netdev_err(ks->netdev, "TX memory selftest fails\n");
1446		ret |= 1;
1447	}
1448
1449	if (rd & MBIR_RXMBFA) {
1450		netdev_err(ks->netdev, "RX memory selftest fails\n");
1451		ret |= 2;
1452	}
1453
1454	netdev_info(ks->netdev, "the selftest passes\n");
1455	return ret;
1456}
1457
1458static void ks_setup(struct ks_net *ks)
1459{
1460	u16	w;
1461
1462	/**
1463	 * Configure QMU Transmit
1464	 */
1465
1466	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1467	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1468
1469	/* Setup Receive Frame Data Pointer Auto-Increment */
1470	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1471
1472	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1473	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1474
1475	/* Setup RxQ Command Control (RXQCR) */
1476	ks->rc_rxqcr = RXQCR_CMD_CNTL;
1477	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1478
1479	/**
1480	 * set the force mode to half duplex, default is full duplex
1481	 *  because if the auto-negotiation fails, most switch uses
1482	 *  half-duplex.
1483	 */
1484
1485	w = ks_rdreg16(ks, KS_P1MBCR);
1486	w &= ~P1MBCR_FORCE_FDX;
1487	ks_wrreg16(ks, KS_P1MBCR, w);
1488
1489	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1490	ks_wrreg16(ks, KS_TXCR, w);
1491
1492	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1493
1494	if (ks->promiscuous)         /* bPromiscuous */
1495		w |= (RXCR1_RXAE | RXCR1_RXINVF);
1496	else if (ks->all_mcast) /* Multicast address passed mode */
1497		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1498	else                                   /* Normal mode */
1499		w |= RXCR1_RXPAFMA;
1500
1501	ks_wrreg16(ks, KS_RXCR1, w);
1502}  /*ks_setup */
1503
1504
1505static void ks_setup_int(struct ks_net *ks)
1506{
1507	ks->rc_ier = 0x00;
1508	/* Clear the interrupts status of the hardware. */
1509	ks_wrreg16(ks, KS_ISR, 0xffff);
1510
1511	/* Enables the interrupts of the hardware. */
1512	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1513}  /* ks_setup_int */
1514
1515static int ks_hw_init(struct ks_net *ks)
1516{
1517#define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1518	ks->promiscuous = 0;
1519	ks->all_mcast = 0;
1520	ks->mcast_lst_size = 0;
1521
1522	ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
1523					   GFP_KERNEL);
1524	if (!ks->frame_head_info)
1525		return false;
1526
1527	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1528	return true;
1529}
1530
1531#if defined(CONFIG_OF)
1532static const struct of_device_id ks8851_ml_dt_ids[] = {
1533	{ .compatible = "micrel,ks8851-mll" },
1534	{ /* sentinel */ }
1535};
1536MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
1537#endif
1538
1539static int ks8851_probe(struct platform_device *pdev)
1540{
1541	int err;
1542	struct resource *io_d, *io_c;
1543	struct net_device *netdev;
1544	struct ks_net *ks;
1545	u16 id, data;
1546	const char *mac;
1547
1548	netdev = alloc_etherdev(sizeof(struct ks_net));
1549	if (!netdev)
1550		return -ENOMEM;
1551
1552	SET_NETDEV_DEV(netdev, &pdev->dev);
1553
1554	ks = netdev_priv(netdev);
1555	ks->netdev = netdev;
1556
1557	io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1558	ks->hw_addr = devm_ioremap_resource(&pdev->dev, io_d);
1559	if (IS_ERR(ks->hw_addr)) {
1560		err = PTR_ERR(ks->hw_addr);
1561		goto err_free;
1562	}
1563
1564	io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1565	ks->hw_addr_cmd = devm_ioremap_resource(&pdev->dev, io_c);
1566	if (IS_ERR(ks->hw_addr_cmd)) {
1567		err = PTR_ERR(ks->hw_addr_cmd);
1568		goto err_free;
1569	}
1570
1571	netdev->irq = platform_get_irq(pdev, 0);
1572
1573	if ((int)netdev->irq < 0) {
1574		err = netdev->irq;
1575		goto err_free;
1576	}
1577
1578	ks->pdev = pdev;
1579
1580	mutex_init(&ks->lock);
1581	spin_lock_init(&ks->statelock);
1582
1583	netdev->netdev_ops = &ks_netdev_ops;
1584	netdev->ethtool_ops = &ks_ethtool_ops;
1585
1586	/* setup mii state */
1587	ks->mii.dev             = netdev;
1588	ks->mii.phy_id          = 1,
1589	ks->mii.phy_id_mask     = 1;
1590	ks->mii.reg_num_mask    = 0xf;
1591	ks->mii.mdio_read       = ks_phy_read;
1592	ks->mii.mdio_write      = ks_phy_write;
1593
1594	netdev_info(netdev, "message enable is %d\n", msg_enable);
1595	/* set the default message enable */
1596	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1597						     NETIF_MSG_PROBE |
1598						     NETIF_MSG_LINK));
1599	ks_read_config(ks);
1600
1601	/* simple check for a valid chip being connected to the bus */
1602	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1603		netdev_err(netdev, "failed to read device ID\n");
1604		err = -ENODEV;
1605		goto err_free;
1606	}
1607
1608	if (ks_read_selftest(ks)) {
1609		netdev_err(netdev, "failed to read device ID\n");
1610		err = -ENODEV;
1611		goto err_free;
1612	}
1613
1614	err = register_netdev(netdev);
1615	if (err)
1616		goto err_free;
1617
1618	platform_set_drvdata(pdev, netdev);
1619
1620	ks_soft_reset(ks, GRR_GSR);
1621	ks_hw_init(ks);
1622	ks_disable_qmu(ks);
1623	ks_setup(ks);
1624	ks_setup_int(ks);
1625
1626	data = ks_rdreg16(ks, KS_OBCR);
1627	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1628
1629	/* overwriting the default MAC address */
1630	if (pdev->dev.of_node) {
1631		mac = of_get_mac_address(pdev->dev.of_node);
1632		if (mac)
1633			memcpy(ks->mac_addr, mac, ETH_ALEN);
1634	} else {
1635		struct ks8851_mll_platform_data *pdata;
1636
1637		pdata = dev_get_platdata(&pdev->dev);
1638		if (!pdata) {
1639			netdev_err(netdev, "No platform data\n");
1640			err = -ENODEV;
1641			goto err_pdata;
1642		}
1643		memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1644	}
1645	if (!is_valid_ether_addr(ks->mac_addr)) {
1646		/* Use random MAC address if none passed */
1647		eth_random_addr(ks->mac_addr);
1648		netdev_info(netdev, "Using random mac address\n");
1649	}
1650	netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1651
1652	memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1653
1654	ks_set_mac(ks, netdev->dev_addr);
1655
1656	id = ks_rdreg16(ks, KS_CIDER);
1657
1658	netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1659		    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1660	return 0;
1661
1662err_pdata:
1663	unregister_netdev(netdev);
1664err_free:
1665	free_netdev(netdev);
1666	return err;
1667}
1668
1669static int ks8851_remove(struct platform_device *pdev)
1670{
1671	struct net_device *netdev = platform_get_drvdata(pdev);
1672
1673	unregister_netdev(netdev);
1674	free_netdev(netdev);
1675	return 0;
1676
1677}
1678
1679static struct platform_driver ks8851_platform_driver = {
1680	.driver = {
1681		.name = DRV_NAME,
1682		.of_match_table	= of_match_ptr(ks8851_ml_dt_ids),
1683	},
1684	.probe = ks8851_probe,
1685	.remove = ks8851_remove,
1686};
1687
1688module_platform_driver(ks8851_platform_driver);
1689
1690MODULE_DESCRIPTION("KS8851 MLL Network driver");
1691MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1692MODULE_LICENSE("GPL");
1693module_param_named(message, msg_enable, int, 0);
1694MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1695
1696