1/*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/in.h>
29#include <linux/kernel.h>
30#include <linux/module.h>
31#include <linux/moduleparam.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/ethtool.h>
35#include <linux/pci.h>
36#include <linux/if_vlan.h>
37#include <linux/ip.h>
38#include <linux/delay.h>
39#include <linux/crc32.h>
40#include <linux/dma-mapping.h>
41#include <linux/debugfs.h>
42#include <linux/sched.h>
43#include <linux/seq_file.h>
44#include <linux/mii.h>
45#include <linux/slab.h>
46#include <linux/dmi.h>
47#include <linux/prefetch.h>
48#include <asm/irq.h>
49
50#include "skge.h"
51
52#define DRV_NAME		"skge"
53#define DRV_VERSION		"1.14"
54
55#define DEFAULT_TX_RING_SIZE	128
56#define DEFAULT_RX_RING_SIZE	512
57#define MAX_TX_RING_SIZE	1024
58#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
59#define MAX_RX_RING_SIZE	4096
60#define RX_COPY_THRESHOLD	128
61#define RX_BUF_SIZE		1536
62#define PHY_RETRIES	        1000
63#define ETH_JUMBO_MTU		9000
64#define TX_WATCHDOG		(5 * HZ)
65#define NAPI_WEIGHT		64
66#define BLINK_MS		250
67#define LINK_HZ			HZ
68
69#define SKGE_EEPROM_MAGIC	0x9933aabb
70
71
72MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74MODULE_LICENSE("GPL");
75MODULE_VERSION(DRV_VERSION);
76
77static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78				NETIF_MSG_LINK | NETIF_MSG_IFUP |
79				NETIF_MSG_IFDOWN);
80
81static int debug = -1;	/* defaults above */
82module_param(debug, int, 0);
83MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84
85static const struct pci_device_id skge_id_table[] = {
86	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
87	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
88#ifdef CONFIG_SKGE_GENESIS
89	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90#endif
91	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
93	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
94	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
95	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
96	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
97	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
98	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
99	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100	{ 0 }
101};
102MODULE_DEVICE_TABLE(pci, skge_id_table);
103
104static int skge_up(struct net_device *dev);
105static int skge_down(struct net_device *dev);
106static void skge_phy_reset(struct skge_port *skge);
107static void skge_tx_clean(struct net_device *dev);
108static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110static void genesis_get_stats(struct skge_port *skge, u64 *data);
111static void yukon_get_stats(struct skge_port *skge, u64 *data);
112static void yukon_init(struct skge_hw *hw, int port);
113static void genesis_mac_init(struct skge_hw *hw, int port);
114static void genesis_link_up(struct skge_port *skge);
115static void skge_set_multicast(struct net_device *dev);
116static irqreturn_t skge_intr(int irq, void *dev_id);
117
118/* Avoid conditionals by using array */
119static const int txqaddr[] = { Q_XA1, Q_XA2 };
120static const int rxqaddr[] = { Q_R1, Q_R2 };
121static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
125
126static inline bool is_genesis(const struct skge_hw *hw)
127{
128#ifdef CONFIG_SKGE_GENESIS
129	return hw->chip_id == CHIP_ID_GENESIS;
130#else
131	return false;
132#endif
133}
134
135static int skge_get_regs_len(struct net_device *dev)
136{
137	return 0x4000;
138}
139
140/*
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
143 * 	 cause bus hangs!
144 */
145static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146			  void *p)
147{
148	const struct skge_port *skge = netdev_priv(dev);
149	const void __iomem *io = skge->hw->regs;
150
151	regs->version = 1;
152	memset(p, 0, regs->len);
153	memcpy_fromio(p, io, B3_RAM_ADDR);
154
155	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
156		      regs->len - B3_RI_WTO_R1);
157}
158
159/* Wake on Lan only supported on Yukon chips with rev 1 or above */
160static u32 wol_supported(const struct skge_hw *hw)
161{
162	if (is_genesis(hw))
163		return 0;
164
165	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166		return 0;
167
168	return WAKE_MAGIC | WAKE_PHY;
169}
170
171static void skge_wol_init(struct skge_port *skge)
172{
173	struct skge_hw *hw = skge->hw;
174	int port = skge->port;
175	u16 ctrl;
176
177	skge_write16(hw, B0_CTST, CS_RST_CLR);
178	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179
180	/* Turn on Vaux */
181	skge_write8(hw, B0_POWER_CTRL,
182		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183
184	/* WA code for COMA mode -- clear PHY reset */
185	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187		u32 reg = skge_read32(hw, B2_GP_IO);
188		reg |= GP_DIR_9;
189		reg &= ~GP_IO_9;
190		skge_write32(hw, B2_GP_IO, reg);
191	}
192
193	skge_write32(hw, SK_REG(port, GPHY_CTRL),
194		     GPC_DIS_SLEEP |
195		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
196		     GPC_ANEG_1 | GPC_RST_SET);
197
198	skge_write32(hw, SK_REG(port, GPHY_CTRL),
199		     GPC_DIS_SLEEP |
200		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
201		     GPC_ANEG_1 | GPC_RST_CLR);
202
203	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204
205	/* Force to 10/100 skge_reset will re-enable on resume	 */
206	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
207		     (PHY_AN_100FULL | PHY_AN_100HALF |
208		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
209	/* no 1000 HD/FD */
210	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211	gm_phy_write(hw, port, PHY_MARV_CTRL,
212		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
213		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
214
215
216	/* Set GMAC to no flow control and auto update for speed/duplex */
217	gma_write16(hw, port, GM_GP_CTRL,
218		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
219		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220
221	/* Set WOL address */
222	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223		    skge->netdev->dev_addr, ETH_ALEN);
224
225	/* Turn on appropriate WOL control bits */
226	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227	ctrl = 0;
228	if (skge->wol & WAKE_PHY)
229		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230	else
231		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232
233	if (skge->wol & WAKE_MAGIC)
234		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235	else
236		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
237
238	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
239	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240
241	/* block receiver */
242	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
243}
244
245static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246{
247	struct skge_port *skge = netdev_priv(dev);
248
249	wol->supported = wol_supported(skge->hw);
250	wol->wolopts = skge->wol;
251}
252
253static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254{
255	struct skge_port *skge = netdev_priv(dev);
256	struct skge_hw *hw = skge->hw;
257
258	if ((wol->wolopts & ~wol_supported(hw)) ||
259	    !device_can_wakeup(&hw->pdev->dev))
260		return -EOPNOTSUPP;
261
262	skge->wol = wol->wolopts;
263
264	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
265
266	return 0;
267}
268
269/* Determine supported/advertised modes based on hardware.
270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
271 */
272static u32 skge_supported_modes(const struct skge_hw *hw)
273{
274	u32 supported;
275
276	if (hw->copper) {
277		supported = (SUPPORTED_10baseT_Half |
278			     SUPPORTED_10baseT_Full |
279			     SUPPORTED_100baseT_Half |
280			     SUPPORTED_100baseT_Full |
281			     SUPPORTED_1000baseT_Half |
282			     SUPPORTED_1000baseT_Full |
283			     SUPPORTED_Autoneg |
284			     SUPPORTED_TP);
285
286		if (is_genesis(hw))
287			supported &= ~(SUPPORTED_10baseT_Half |
288				       SUPPORTED_10baseT_Full |
289				       SUPPORTED_100baseT_Half |
290				       SUPPORTED_100baseT_Full);
291
292		else if (hw->chip_id == CHIP_ID_YUKON)
293			supported &= ~SUPPORTED_1000baseT_Half;
294	} else
295		supported = (SUPPORTED_1000baseT_Full |
296			     SUPPORTED_1000baseT_Half |
297			     SUPPORTED_FIBRE |
298			     SUPPORTED_Autoneg);
299
300	return supported;
301}
302
303static int skge_get_settings(struct net_device *dev,
304			     struct ethtool_cmd *ecmd)
305{
306	struct skge_port *skge = netdev_priv(dev);
307	struct skge_hw *hw = skge->hw;
308
309	ecmd->transceiver = XCVR_INTERNAL;
310	ecmd->supported = skge_supported_modes(hw);
311
312	if (hw->copper) {
313		ecmd->port = PORT_TP;
314		ecmd->phy_address = hw->phy_addr;
315	} else
316		ecmd->port = PORT_FIBRE;
317
318	ecmd->advertising = skge->advertising;
319	ecmd->autoneg = skge->autoneg;
320	ethtool_cmd_speed_set(ecmd, skge->speed);
321	ecmd->duplex = skge->duplex;
322	return 0;
323}
324
325static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
326{
327	struct skge_port *skge = netdev_priv(dev);
328	const struct skge_hw *hw = skge->hw;
329	u32 supported = skge_supported_modes(hw);
330	int err = 0;
331
332	if (ecmd->autoneg == AUTONEG_ENABLE) {
333		ecmd->advertising = supported;
334		skge->duplex = -1;
335		skge->speed = -1;
336	} else {
337		u32 setting;
338		u32 speed = ethtool_cmd_speed(ecmd);
339
340		switch (speed) {
341		case SPEED_1000:
342			if (ecmd->duplex == DUPLEX_FULL)
343				setting = SUPPORTED_1000baseT_Full;
344			else if (ecmd->duplex == DUPLEX_HALF)
345				setting = SUPPORTED_1000baseT_Half;
346			else
347				return -EINVAL;
348			break;
349		case SPEED_100:
350			if (ecmd->duplex == DUPLEX_FULL)
351				setting = SUPPORTED_100baseT_Full;
352			else if (ecmd->duplex == DUPLEX_HALF)
353				setting = SUPPORTED_100baseT_Half;
354			else
355				return -EINVAL;
356			break;
357
358		case SPEED_10:
359			if (ecmd->duplex == DUPLEX_FULL)
360				setting = SUPPORTED_10baseT_Full;
361			else if (ecmd->duplex == DUPLEX_HALF)
362				setting = SUPPORTED_10baseT_Half;
363			else
364				return -EINVAL;
365			break;
366		default:
367			return -EINVAL;
368		}
369
370		if ((setting & supported) == 0)
371			return -EINVAL;
372
373		skge->speed = speed;
374		skge->duplex = ecmd->duplex;
375	}
376
377	skge->autoneg = ecmd->autoneg;
378	skge->advertising = ecmd->advertising;
379
380	if (netif_running(dev)) {
381		skge_down(dev);
382		err = skge_up(dev);
383		if (err) {
384			dev_close(dev);
385			return err;
386		}
387	}
388
389	return 0;
390}
391
392static void skge_get_drvinfo(struct net_device *dev,
393			     struct ethtool_drvinfo *info)
394{
395	struct skge_port *skge = netdev_priv(dev);
396
397	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
398	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
399	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
400		sizeof(info->bus_info));
401}
402
403static const struct skge_stat {
404	char 	   name[ETH_GSTRING_LEN];
405	u16	   xmac_offset;
406	u16	   gma_offset;
407} skge_stats[] = {
408	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410
411	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419
420	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426
427	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432};
433
434static int skge_get_sset_count(struct net_device *dev, int sset)
435{
436	switch (sset) {
437	case ETH_SS_STATS:
438		return ARRAY_SIZE(skge_stats);
439	default:
440		return -EOPNOTSUPP;
441	}
442}
443
444static void skge_get_ethtool_stats(struct net_device *dev,
445				   struct ethtool_stats *stats, u64 *data)
446{
447	struct skge_port *skge = netdev_priv(dev);
448
449	if (is_genesis(skge->hw))
450		genesis_get_stats(skge, data);
451	else
452		yukon_get_stats(skge, data);
453}
454
455/* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
458 */
459static struct net_device_stats *skge_get_stats(struct net_device *dev)
460{
461	struct skge_port *skge = netdev_priv(dev);
462	u64 data[ARRAY_SIZE(skge_stats)];
463
464	if (is_genesis(skge->hw))
465		genesis_get_stats(skge, data);
466	else
467		yukon_get_stats(skge, data);
468
469	dev->stats.tx_bytes = data[0];
470	dev->stats.rx_bytes = data[1];
471	dev->stats.tx_packets = data[2] + data[4] + data[6];
472	dev->stats.rx_packets = data[3] + data[5] + data[7];
473	dev->stats.multicast = data[3] + data[5];
474	dev->stats.collisions = data[10];
475	dev->stats.tx_aborted_errors = data[12];
476
477	return &dev->stats;
478}
479
480static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481{
482	int i;
483
484	switch (stringset) {
485	case ETH_SS_STATS:
486		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487			memcpy(data + i * ETH_GSTRING_LEN,
488			       skge_stats[i].name, ETH_GSTRING_LEN);
489		break;
490	}
491}
492
493static void skge_get_ring_param(struct net_device *dev,
494				struct ethtool_ringparam *p)
495{
496	struct skge_port *skge = netdev_priv(dev);
497
498	p->rx_max_pending = MAX_RX_RING_SIZE;
499	p->tx_max_pending = MAX_TX_RING_SIZE;
500
501	p->rx_pending = skge->rx_ring.count;
502	p->tx_pending = skge->tx_ring.count;
503}
504
505static int skge_set_ring_param(struct net_device *dev,
506			       struct ethtool_ringparam *p)
507{
508	struct skge_port *skge = netdev_priv(dev);
509	int err = 0;
510
511	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
512	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
513		return -EINVAL;
514
515	skge->rx_ring.count = p->rx_pending;
516	skge->tx_ring.count = p->tx_pending;
517
518	if (netif_running(dev)) {
519		skge_down(dev);
520		err = skge_up(dev);
521		if (err)
522			dev_close(dev);
523	}
524
525	return err;
526}
527
528static u32 skge_get_msglevel(struct net_device *netdev)
529{
530	struct skge_port *skge = netdev_priv(netdev);
531	return skge->msg_enable;
532}
533
534static void skge_set_msglevel(struct net_device *netdev, u32 value)
535{
536	struct skge_port *skge = netdev_priv(netdev);
537	skge->msg_enable = value;
538}
539
540static int skge_nway_reset(struct net_device *dev)
541{
542	struct skge_port *skge = netdev_priv(dev);
543
544	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
545		return -EINVAL;
546
547	skge_phy_reset(skge);
548	return 0;
549}
550
551static void skge_get_pauseparam(struct net_device *dev,
552				struct ethtool_pauseparam *ecmd)
553{
554	struct skge_port *skge = netdev_priv(dev);
555
556	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
557			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
558	ecmd->tx_pause = (ecmd->rx_pause ||
559			  (skge->flow_control == FLOW_MODE_LOC_SEND));
560
561	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
562}
563
564static int skge_set_pauseparam(struct net_device *dev,
565			       struct ethtool_pauseparam *ecmd)
566{
567	struct skge_port *skge = netdev_priv(dev);
568	struct ethtool_pauseparam old;
569	int err = 0;
570
571	skge_get_pauseparam(dev, &old);
572
573	if (ecmd->autoneg != old.autoneg)
574		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
575	else {
576		if (ecmd->rx_pause && ecmd->tx_pause)
577			skge->flow_control = FLOW_MODE_SYMMETRIC;
578		else if (ecmd->rx_pause && !ecmd->tx_pause)
579			skge->flow_control = FLOW_MODE_SYM_OR_REM;
580		else if (!ecmd->rx_pause && ecmd->tx_pause)
581			skge->flow_control = FLOW_MODE_LOC_SEND;
582		else
583			skge->flow_control = FLOW_MODE_NONE;
584	}
585
586	if (netif_running(dev)) {
587		skge_down(dev);
588		err = skge_up(dev);
589		if (err) {
590			dev_close(dev);
591			return err;
592		}
593	}
594
595	return 0;
596}
597
598/* Chip internal frequency for clock calculations */
599static inline u32 hwkhz(const struct skge_hw *hw)
600{
601	return is_genesis(hw) ? 53125 : 78125;
602}
603
604/* Chip HZ to microseconds */
605static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
606{
607	return (ticks * 1000) / hwkhz(hw);
608}
609
610/* Microseconds to chip HZ */
611static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
612{
613	return hwkhz(hw) * usec / 1000;
614}
615
616static int skge_get_coalesce(struct net_device *dev,
617			     struct ethtool_coalesce *ecmd)
618{
619	struct skge_port *skge = netdev_priv(dev);
620	struct skge_hw *hw = skge->hw;
621	int port = skge->port;
622
623	ecmd->rx_coalesce_usecs = 0;
624	ecmd->tx_coalesce_usecs = 0;
625
626	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
627		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
628		u32 msk = skge_read32(hw, B2_IRQM_MSK);
629
630		if (msk & rxirqmask[port])
631			ecmd->rx_coalesce_usecs = delay;
632		if (msk & txirqmask[port])
633			ecmd->tx_coalesce_usecs = delay;
634	}
635
636	return 0;
637}
638
639/* Note: interrupt timer is per board, but can turn on/off per port */
640static int skge_set_coalesce(struct net_device *dev,
641			     struct ethtool_coalesce *ecmd)
642{
643	struct skge_port *skge = netdev_priv(dev);
644	struct skge_hw *hw = skge->hw;
645	int port = skge->port;
646	u32 msk = skge_read32(hw, B2_IRQM_MSK);
647	u32 delay = 25;
648
649	if (ecmd->rx_coalesce_usecs == 0)
650		msk &= ~rxirqmask[port];
651	else if (ecmd->rx_coalesce_usecs < 25 ||
652		 ecmd->rx_coalesce_usecs > 33333)
653		return -EINVAL;
654	else {
655		msk |= rxirqmask[port];
656		delay = ecmd->rx_coalesce_usecs;
657	}
658
659	if (ecmd->tx_coalesce_usecs == 0)
660		msk &= ~txirqmask[port];
661	else if (ecmd->tx_coalesce_usecs < 25 ||
662		 ecmd->tx_coalesce_usecs > 33333)
663		return -EINVAL;
664	else {
665		msk |= txirqmask[port];
666		delay = min(delay, ecmd->rx_coalesce_usecs);
667	}
668
669	skge_write32(hw, B2_IRQM_MSK, msk);
670	if (msk == 0)
671		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
672	else {
673		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
674		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
675	}
676	return 0;
677}
678
679enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
680static void skge_led(struct skge_port *skge, enum led_mode mode)
681{
682	struct skge_hw *hw = skge->hw;
683	int port = skge->port;
684
685	spin_lock_bh(&hw->phy_lock);
686	if (is_genesis(hw)) {
687		switch (mode) {
688		case LED_MODE_OFF:
689			if (hw->phy_type == SK_PHY_BCOM)
690				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
691			else {
692				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
693				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
694			}
695			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
696			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
697			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
698			break;
699
700		case LED_MODE_ON:
701			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
702			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
703
704			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
705			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
706
707			break;
708
709		case LED_MODE_TST:
710			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
711			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
712			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713
714			if (hw->phy_type == SK_PHY_BCOM)
715				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
716			else {
717				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
718				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
719				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
720			}
721
722		}
723	} else {
724		switch (mode) {
725		case LED_MODE_OFF:
726			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
727			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
728				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
729				     PHY_M_LED_MO_10(MO_LED_OFF)   |
730				     PHY_M_LED_MO_100(MO_LED_OFF)  |
731				     PHY_M_LED_MO_1000(MO_LED_OFF) |
732				     PHY_M_LED_MO_RX(MO_LED_OFF));
733			break;
734		case LED_MODE_ON:
735			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
736				     PHY_M_LED_PULS_DUR(PULS_170MS) |
737				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
738				     PHY_M_LEDC_TX_CTRL |
739				     PHY_M_LEDC_DP_CTRL);
740
741			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
742				     PHY_M_LED_MO_RX(MO_LED_OFF) |
743				     (skge->speed == SPEED_100 ?
744				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
745			break;
746		case LED_MODE_TST:
747			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
748			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
750				     PHY_M_LED_MO_10(MO_LED_ON)   |
751				     PHY_M_LED_MO_100(MO_LED_ON)  |
752				     PHY_M_LED_MO_1000(MO_LED_ON) |
753				     PHY_M_LED_MO_RX(MO_LED_ON));
754		}
755	}
756	spin_unlock_bh(&hw->phy_lock);
757}
758
759/* blink LED's for finding board */
760static int skge_set_phys_id(struct net_device *dev,
761			    enum ethtool_phys_id_state state)
762{
763	struct skge_port *skge = netdev_priv(dev);
764
765	switch (state) {
766	case ETHTOOL_ID_ACTIVE:
767		return 2;	/* cycle on/off twice per second */
768
769	case ETHTOOL_ID_ON:
770		skge_led(skge, LED_MODE_TST);
771		break;
772
773	case ETHTOOL_ID_OFF:
774		skge_led(skge, LED_MODE_OFF);
775		break;
776
777	case ETHTOOL_ID_INACTIVE:
778		/* back to regular LED state */
779		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
780	}
781
782	return 0;
783}
784
785static int skge_get_eeprom_len(struct net_device *dev)
786{
787	struct skge_port *skge = netdev_priv(dev);
788	u32 reg2;
789
790	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
791	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
792}
793
794static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
795{
796	u32 val;
797
798	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
799
800	do {
801		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
802	} while (!(offset & PCI_VPD_ADDR_F));
803
804	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
805	return val;
806}
807
808static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
809{
810	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
811	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
812			      offset | PCI_VPD_ADDR_F);
813
814	do {
815		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
816	} while (offset & PCI_VPD_ADDR_F);
817}
818
819static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
820			   u8 *data)
821{
822	struct skge_port *skge = netdev_priv(dev);
823	struct pci_dev *pdev = skge->hw->pdev;
824	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
825	int length = eeprom->len;
826	u16 offset = eeprom->offset;
827
828	if (!cap)
829		return -EINVAL;
830
831	eeprom->magic = SKGE_EEPROM_MAGIC;
832
833	while (length > 0) {
834		u32 val = skge_vpd_read(pdev, cap, offset);
835		int n = min_t(int, length, sizeof(val));
836
837		memcpy(data, &val, n);
838		length -= n;
839		data += n;
840		offset += n;
841	}
842	return 0;
843}
844
845static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
846			   u8 *data)
847{
848	struct skge_port *skge = netdev_priv(dev);
849	struct pci_dev *pdev = skge->hw->pdev;
850	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
851	int length = eeprom->len;
852	u16 offset = eeprom->offset;
853
854	if (!cap)
855		return -EINVAL;
856
857	if (eeprom->magic != SKGE_EEPROM_MAGIC)
858		return -EINVAL;
859
860	while (length > 0) {
861		u32 val;
862		int n = min_t(int, length, sizeof(val));
863
864		if (n < sizeof(val))
865			val = skge_vpd_read(pdev, cap, offset);
866		memcpy(&val, data, n);
867
868		skge_vpd_write(pdev, cap, offset, val);
869
870		length -= n;
871		data += n;
872		offset += n;
873	}
874	return 0;
875}
876
877static const struct ethtool_ops skge_ethtool_ops = {
878	.get_settings	= skge_get_settings,
879	.set_settings	= skge_set_settings,
880	.get_drvinfo	= skge_get_drvinfo,
881	.get_regs_len	= skge_get_regs_len,
882	.get_regs	= skge_get_regs,
883	.get_wol	= skge_get_wol,
884	.set_wol	= skge_set_wol,
885	.get_msglevel	= skge_get_msglevel,
886	.set_msglevel	= skge_set_msglevel,
887	.nway_reset	= skge_nway_reset,
888	.get_link	= ethtool_op_get_link,
889	.get_eeprom_len	= skge_get_eeprom_len,
890	.get_eeprom	= skge_get_eeprom,
891	.set_eeprom	= skge_set_eeprom,
892	.get_ringparam	= skge_get_ring_param,
893	.set_ringparam	= skge_set_ring_param,
894	.get_pauseparam = skge_get_pauseparam,
895	.set_pauseparam = skge_set_pauseparam,
896	.get_coalesce	= skge_get_coalesce,
897	.set_coalesce	= skge_set_coalesce,
898	.get_strings	= skge_get_strings,
899	.set_phys_id	= skge_set_phys_id,
900	.get_sset_count = skge_get_sset_count,
901	.get_ethtool_stats = skge_get_ethtool_stats,
902};
903
904/*
905 * Allocate ring elements and chain them together
906 * One-to-one association of board descriptors with ring elements
907 */
908static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
909{
910	struct skge_tx_desc *d;
911	struct skge_element *e;
912	int i;
913
914	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
915	if (!ring->start)
916		return -ENOMEM;
917
918	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
919		e->desc = d;
920		if (i == ring->count - 1) {
921			e->next = ring->start;
922			d->next_offset = base;
923		} else {
924			e->next = e + 1;
925			d->next_offset = base + (i+1) * sizeof(*d);
926		}
927	}
928	ring->to_use = ring->to_clean = ring->start;
929
930	return 0;
931}
932
933/* Allocate and setup a new buffer for receiving */
934static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
935			 struct sk_buff *skb, unsigned int bufsize)
936{
937	struct skge_rx_desc *rd = e->desc;
938	dma_addr_t map;
939
940	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
941			     PCI_DMA_FROMDEVICE);
942
943	if (pci_dma_mapping_error(skge->hw->pdev, map))
944		return -1;
945
946	rd->dma_lo = lower_32_bits(map);
947	rd->dma_hi = upper_32_bits(map);
948	e->skb = skb;
949	rd->csum1_start = ETH_HLEN;
950	rd->csum2_start = ETH_HLEN;
951	rd->csum1 = 0;
952	rd->csum2 = 0;
953
954	wmb();
955
956	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
957	dma_unmap_addr_set(e, mapaddr, map);
958	dma_unmap_len_set(e, maplen, bufsize);
959	return 0;
960}
961
962/* Resume receiving using existing skb,
963 * Note: DMA address is not changed by chip.
964 * 	 MTU not changed while receiver active.
965 */
966static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
967{
968	struct skge_rx_desc *rd = e->desc;
969
970	rd->csum2 = 0;
971	rd->csum2_start = ETH_HLEN;
972
973	wmb();
974
975	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
976}
977
978
979/* Free all  buffers in receive ring, assumes receiver stopped */
980static void skge_rx_clean(struct skge_port *skge)
981{
982	struct skge_hw *hw = skge->hw;
983	struct skge_ring *ring = &skge->rx_ring;
984	struct skge_element *e;
985
986	e = ring->start;
987	do {
988		struct skge_rx_desc *rd = e->desc;
989		rd->control = 0;
990		if (e->skb) {
991			pci_unmap_single(hw->pdev,
992					 dma_unmap_addr(e, mapaddr),
993					 dma_unmap_len(e, maplen),
994					 PCI_DMA_FROMDEVICE);
995			dev_kfree_skb(e->skb);
996			e->skb = NULL;
997		}
998	} while ((e = e->next) != ring->start);
999}
1000
1001
1002/* Allocate buffers for receive ring
1003 * For receive:  to_clean is next received frame.
1004 */
1005static int skge_rx_fill(struct net_device *dev)
1006{
1007	struct skge_port *skge = netdev_priv(dev);
1008	struct skge_ring *ring = &skge->rx_ring;
1009	struct skge_element *e;
1010
1011	e = ring->start;
1012	do {
1013		struct sk_buff *skb;
1014
1015		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1016					 GFP_KERNEL);
1017		if (!skb)
1018			return -ENOMEM;
1019
1020		skb_reserve(skb, NET_IP_ALIGN);
1021		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1022			dev_kfree_skb(skb);
1023			return -EIO;
1024		}
1025	} while ((e = e->next) != ring->start);
1026
1027	ring->to_clean = ring->start;
1028	return 0;
1029}
1030
1031static const char *skge_pause(enum pause_status status)
1032{
1033	switch (status) {
1034	case FLOW_STAT_NONE:
1035		return "none";
1036	case FLOW_STAT_REM_SEND:
1037		return "rx only";
1038	case FLOW_STAT_LOC_SEND:
1039		return "tx_only";
1040	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1041		return "both";
1042	default:
1043		return "indeterminated";
1044	}
1045}
1046
1047
1048static void skge_link_up(struct skge_port *skge)
1049{
1050	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1051		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1052
1053	netif_carrier_on(skge->netdev);
1054	netif_wake_queue(skge->netdev);
1055
1056	netif_info(skge, link, skge->netdev,
1057		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1058		   skge->speed,
1059		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1060		   skge_pause(skge->flow_status));
1061}
1062
1063static void skge_link_down(struct skge_port *skge)
1064{
1065	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1066	netif_carrier_off(skge->netdev);
1067	netif_stop_queue(skge->netdev);
1068
1069	netif_info(skge, link, skge->netdev, "Link is down\n");
1070}
1071
1072static void xm_link_down(struct skge_hw *hw, int port)
1073{
1074	struct net_device *dev = hw->dev[port];
1075	struct skge_port *skge = netdev_priv(dev);
1076
1077	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1078
1079	if (netif_carrier_ok(dev))
1080		skge_link_down(skge);
1081}
1082
1083static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1084{
1085	int i;
1086
1087	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1088	*val = xm_read16(hw, port, XM_PHY_DATA);
1089
1090	if (hw->phy_type == SK_PHY_XMAC)
1091		goto ready;
1092
1093	for (i = 0; i < PHY_RETRIES; i++) {
1094		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1095			goto ready;
1096		udelay(1);
1097	}
1098
1099	return -ETIMEDOUT;
1100 ready:
1101	*val = xm_read16(hw, port, XM_PHY_DATA);
1102
1103	return 0;
1104}
1105
1106static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1107{
1108	u16 v = 0;
1109	if (__xm_phy_read(hw, port, reg, &v))
1110		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1111	return v;
1112}
1113
1114static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1115{
1116	int i;
1117
1118	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1119	for (i = 0; i < PHY_RETRIES; i++) {
1120		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1121			goto ready;
1122		udelay(1);
1123	}
1124	return -EIO;
1125
1126 ready:
1127	xm_write16(hw, port, XM_PHY_DATA, val);
1128	for (i = 0; i < PHY_RETRIES; i++) {
1129		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130			return 0;
1131		udelay(1);
1132	}
1133	return -ETIMEDOUT;
1134}
1135
1136static void genesis_init(struct skge_hw *hw)
1137{
1138	/* set blink source counter */
1139	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1140	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1141
1142	/* configure mac arbiter */
1143	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1144
1145	/* configure mac arbiter timeout values */
1146	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1147	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1148	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1149	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1150
1151	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1152	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1153	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1154	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1155
1156	/* configure packet arbiter timeout */
1157	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1158	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1159	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1160	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1161	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1162}
1163
1164static void genesis_reset(struct skge_hw *hw, int port)
1165{
1166	static const u8 zero[8]  = { 0 };
1167	u32 reg;
1168
1169	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1170
1171	/* reset the statistics module */
1172	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1173	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1174	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1175	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1176	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1177
1178	/* disable Broadcom PHY IRQ */
1179	if (hw->phy_type == SK_PHY_BCOM)
1180		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1181
1182	xm_outhash(hw, port, XM_HSM, zero);
1183
1184	/* Flush TX and RX fifo */
1185	reg = xm_read32(hw, port, XM_MODE);
1186	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1187	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1188}
1189
1190/* Convert mode to MII values  */
1191static const u16 phy_pause_map[] = {
1192	[FLOW_MODE_NONE] =	0,
1193	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1194	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1195	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1196};
1197
1198/* special defines for FIBER (88E1011S only) */
1199static const u16 fiber_pause_map[] = {
1200	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1201	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1202	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1203	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1204};
1205
1206
1207/* Check status of Broadcom phy link */
1208static void bcom_check_link(struct skge_hw *hw, int port)
1209{
1210	struct net_device *dev = hw->dev[port];
1211	struct skge_port *skge = netdev_priv(dev);
1212	u16 status;
1213
1214	/* read twice because of latch */
1215	xm_phy_read(hw, port, PHY_BCOM_STAT);
1216	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1217
1218	if ((status & PHY_ST_LSYNC) == 0) {
1219		xm_link_down(hw, port);
1220		return;
1221	}
1222
1223	if (skge->autoneg == AUTONEG_ENABLE) {
1224		u16 lpa, aux;
1225
1226		if (!(status & PHY_ST_AN_OVER))
1227			return;
1228
1229		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1230		if (lpa & PHY_B_AN_RF) {
1231			netdev_notice(dev, "remote fault\n");
1232			return;
1233		}
1234
1235		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1236
1237		/* Check Duplex mismatch */
1238		switch (aux & PHY_B_AS_AN_RES_MSK) {
1239		case PHY_B_RES_1000FD:
1240			skge->duplex = DUPLEX_FULL;
1241			break;
1242		case PHY_B_RES_1000HD:
1243			skge->duplex = DUPLEX_HALF;
1244			break;
1245		default:
1246			netdev_notice(dev, "duplex mismatch\n");
1247			return;
1248		}
1249
1250		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1251		switch (aux & PHY_B_AS_PAUSE_MSK) {
1252		case PHY_B_AS_PAUSE_MSK:
1253			skge->flow_status = FLOW_STAT_SYMMETRIC;
1254			break;
1255		case PHY_B_AS_PRR:
1256			skge->flow_status = FLOW_STAT_REM_SEND;
1257			break;
1258		case PHY_B_AS_PRT:
1259			skge->flow_status = FLOW_STAT_LOC_SEND;
1260			break;
1261		default:
1262			skge->flow_status = FLOW_STAT_NONE;
1263		}
1264		skge->speed = SPEED_1000;
1265	}
1266
1267	if (!netif_carrier_ok(dev))
1268		genesis_link_up(skge);
1269}
1270
1271/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1272 * Phy on for 100 or 10Mbit operation
1273 */
1274static void bcom_phy_init(struct skge_port *skge)
1275{
1276	struct skge_hw *hw = skge->hw;
1277	int port = skge->port;
1278	int i;
1279	u16 id1, r, ext, ctl;
1280
1281	/* magic workaround patterns for Broadcom */
1282	static const struct {
1283		u16 reg;
1284		u16 val;
1285	} A1hack[] = {
1286		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1287		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1288		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1289		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1290	}, C0hack[] = {
1291		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1292		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1293	};
1294
1295	/* read Id from external PHY (all have the same address) */
1296	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1297
1298	/* Optimize MDIO transfer by suppressing preamble. */
1299	r = xm_read16(hw, port, XM_MMU_CMD);
1300	r |=  XM_MMU_NO_PRE;
1301	xm_write16(hw, port, XM_MMU_CMD, r);
1302
1303	switch (id1) {
1304	case PHY_BCOM_ID1_C0:
1305		/*
1306		 * Workaround BCOM Errata for the C0 type.
1307		 * Write magic patterns to reserved registers.
1308		 */
1309		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1310			xm_phy_write(hw, port,
1311				     C0hack[i].reg, C0hack[i].val);
1312
1313		break;
1314	case PHY_BCOM_ID1_A1:
1315		/*
1316		 * Workaround BCOM Errata for the A1 type.
1317		 * Write magic patterns to reserved registers.
1318		 */
1319		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1320			xm_phy_write(hw, port,
1321				     A1hack[i].reg, A1hack[i].val);
1322		break;
1323	}
1324
1325	/*
1326	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1327	 * Disable Power Management after reset.
1328	 */
1329	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1330	r |= PHY_B_AC_DIS_PM;
1331	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1332
1333	/* Dummy read */
1334	xm_read16(hw, port, XM_ISRC);
1335
1336	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1337	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1338
1339	if (skge->autoneg == AUTONEG_ENABLE) {
1340		/*
1341		 * Workaround BCOM Errata #1 for the C5 type.
1342		 * 1000Base-T Link Acquisition Failure in Slave Mode
1343		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1344		 */
1345		u16 adv = PHY_B_1000C_RD;
1346		if (skge->advertising & ADVERTISED_1000baseT_Half)
1347			adv |= PHY_B_1000C_AHD;
1348		if (skge->advertising & ADVERTISED_1000baseT_Full)
1349			adv |= PHY_B_1000C_AFD;
1350		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1351
1352		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1353	} else {
1354		if (skge->duplex == DUPLEX_FULL)
1355			ctl |= PHY_CT_DUP_MD;
1356		/* Force to slave */
1357		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1358	}
1359
1360	/* Set autonegotiation pause parameters */
1361	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1362		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1363
1364	/* Handle Jumbo frames */
1365	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1366		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1367			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1368
1369		ext |= PHY_B_PEC_HIGH_LA;
1370
1371	}
1372
1373	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1374	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1375
1376	/* Use link status change interrupt */
1377	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1378}
1379
1380static void xm_phy_init(struct skge_port *skge)
1381{
1382	struct skge_hw *hw = skge->hw;
1383	int port = skge->port;
1384	u16 ctrl = 0;
1385
1386	if (skge->autoneg == AUTONEG_ENABLE) {
1387		if (skge->advertising & ADVERTISED_1000baseT_Half)
1388			ctrl |= PHY_X_AN_HD;
1389		if (skge->advertising & ADVERTISED_1000baseT_Full)
1390			ctrl |= PHY_X_AN_FD;
1391
1392		ctrl |= fiber_pause_map[skge->flow_control];
1393
1394		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1395
1396		/* Restart Auto-negotiation */
1397		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1398	} else {
1399		/* Set DuplexMode in Config register */
1400		if (skge->duplex == DUPLEX_FULL)
1401			ctrl |= PHY_CT_DUP_MD;
1402		/*
1403		 * Do NOT enable Auto-negotiation here. This would hold
1404		 * the link down because no IDLEs are transmitted
1405		 */
1406	}
1407
1408	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1409
1410	/* Poll PHY for status changes */
1411	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1412}
1413
1414static int xm_check_link(struct net_device *dev)
1415{
1416	struct skge_port *skge = netdev_priv(dev);
1417	struct skge_hw *hw = skge->hw;
1418	int port = skge->port;
1419	u16 status;
1420
1421	/* read twice because of latch */
1422	xm_phy_read(hw, port, PHY_XMAC_STAT);
1423	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1424
1425	if ((status & PHY_ST_LSYNC) == 0) {
1426		xm_link_down(hw, port);
1427		return 0;
1428	}
1429
1430	if (skge->autoneg == AUTONEG_ENABLE) {
1431		u16 lpa, res;
1432
1433		if (!(status & PHY_ST_AN_OVER))
1434			return 0;
1435
1436		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1437		if (lpa & PHY_B_AN_RF) {
1438			netdev_notice(dev, "remote fault\n");
1439			return 0;
1440		}
1441
1442		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1443
1444		/* Check Duplex mismatch */
1445		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1446		case PHY_X_RS_FD:
1447			skge->duplex = DUPLEX_FULL;
1448			break;
1449		case PHY_X_RS_HD:
1450			skge->duplex = DUPLEX_HALF;
1451			break;
1452		default:
1453			netdev_notice(dev, "duplex mismatch\n");
1454			return 0;
1455		}
1456
1457		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1458		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1459		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1460		    (lpa & PHY_X_P_SYM_MD))
1461			skge->flow_status = FLOW_STAT_SYMMETRIC;
1462		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1463			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1464			/* Enable PAUSE receive, disable PAUSE transmit */
1465			skge->flow_status  = FLOW_STAT_REM_SEND;
1466		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1467			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1468			/* Disable PAUSE receive, enable PAUSE transmit */
1469			skge->flow_status = FLOW_STAT_LOC_SEND;
1470		else
1471			skge->flow_status = FLOW_STAT_NONE;
1472
1473		skge->speed = SPEED_1000;
1474	}
1475
1476	if (!netif_carrier_ok(dev))
1477		genesis_link_up(skge);
1478	return 1;
1479}
1480
1481/* Poll to check for link coming up.
1482 *
1483 * Since internal PHY is wired to a level triggered pin, can't
1484 * get an interrupt when carrier is detected, need to poll for
1485 * link coming up.
1486 */
1487static void xm_link_timer(unsigned long arg)
1488{
1489	struct skge_port *skge = (struct skge_port *) arg;
1490	struct net_device *dev = skge->netdev;
1491	struct skge_hw *hw = skge->hw;
1492	int port = skge->port;
1493	int i;
1494	unsigned long flags;
1495
1496	if (!netif_running(dev))
1497		return;
1498
1499	spin_lock_irqsave(&hw->phy_lock, flags);
1500
1501	/*
1502	 * Verify that the link by checking GPIO register three times.
1503	 * This pin has the signal from the link_sync pin connected to it.
1504	 */
1505	for (i = 0; i < 3; i++) {
1506		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1507			goto link_down;
1508	}
1509
1510	/* Re-enable interrupt to detect link down */
1511	if (xm_check_link(dev)) {
1512		u16 msk = xm_read16(hw, port, XM_IMSK);
1513		msk &= ~XM_IS_INP_ASS;
1514		xm_write16(hw, port, XM_IMSK, msk);
1515		xm_read16(hw, port, XM_ISRC);
1516	} else {
1517link_down:
1518		mod_timer(&skge->link_timer,
1519			  round_jiffies(jiffies + LINK_HZ));
1520	}
1521	spin_unlock_irqrestore(&hw->phy_lock, flags);
1522}
1523
1524static void genesis_mac_init(struct skge_hw *hw, int port)
1525{
1526	struct net_device *dev = hw->dev[port];
1527	struct skge_port *skge = netdev_priv(dev);
1528	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1529	int i;
1530	u32 r;
1531	static const u8 zero[6]  = { 0 };
1532
1533	for (i = 0; i < 10; i++) {
1534		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1535			     MFF_SET_MAC_RST);
1536		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1537			goto reset_ok;
1538		udelay(1);
1539	}
1540
1541	netdev_warn(dev, "genesis reset failed\n");
1542
1543 reset_ok:
1544	/* Unreset the XMAC. */
1545	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1546
1547	/*
1548	 * Perform additional initialization for external PHYs,
1549	 * namely for the 1000baseTX cards that use the XMAC's
1550	 * GMII mode.
1551	 */
1552	if (hw->phy_type != SK_PHY_XMAC) {
1553		/* Take external Phy out of reset */
1554		r = skge_read32(hw, B2_GP_IO);
1555		if (port == 0)
1556			r |= GP_DIR_0|GP_IO_0;
1557		else
1558			r |= GP_DIR_2|GP_IO_2;
1559
1560		skge_write32(hw, B2_GP_IO, r);
1561
1562		/* Enable GMII interface */
1563		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1564	}
1565
1566
1567	switch (hw->phy_type) {
1568	case SK_PHY_XMAC:
1569		xm_phy_init(skge);
1570		break;
1571	case SK_PHY_BCOM:
1572		bcom_phy_init(skge);
1573		bcom_check_link(hw, port);
1574	}
1575
1576	/* Set Station Address */
1577	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1578
1579	/* We don't use match addresses so clear */
1580	for (i = 1; i < 16; i++)
1581		xm_outaddr(hw, port, XM_EXM(i), zero);
1582
1583	/* Clear MIB counters */
1584	xm_write16(hw, port, XM_STAT_CMD,
1585			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1586	/* Clear two times according to Errata #3 */
1587	xm_write16(hw, port, XM_STAT_CMD,
1588			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1589
1590	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1591	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1592
1593	/* We don't need the FCS appended to the packet. */
1594	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1595	if (jumbo)
1596		r |= XM_RX_BIG_PK_OK;
1597
1598	if (skge->duplex == DUPLEX_HALF) {
1599		/*
1600		 * If in manual half duplex mode the other side might be in
1601		 * full duplex mode, so ignore if a carrier extension is not seen
1602		 * on frames received
1603		 */
1604		r |= XM_RX_DIS_CEXT;
1605	}
1606	xm_write16(hw, port, XM_RX_CMD, r);
1607
1608	/* We want short frames padded to 60 bytes. */
1609	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1610
1611	/* Increase threshold for jumbo frames on dual port */
1612	if (hw->ports > 1 && jumbo)
1613		xm_write16(hw, port, XM_TX_THR, 1020);
1614	else
1615		xm_write16(hw, port, XM_TX_THR, 512);
1616
1617	/*
1618	 * Enable the reception of all error frames. This is is
1619	 * a necessary evil due to the design of the XMAC. The
1620	 * XMAC's receive FIFO is only 8K in size, however jumbo
1621	 * frames can be up to 9000 bytes in length. When bad
1622	 * frame filtering is enabled, the XMAC's RX FIFO operates
1623	 * in 'store and forward' mode. For this to work, the
1624	 * entire frame has to fit into the FIFO, but that means
1625	 * that jumbo frames larger than 8192 bytes will be
1626	 * truncated. Disabling all bad frame filtering causes
1627	 * the RX FIFO to operate in streaming mode, in which
1628	 * case the XMAC will start transferring frames out of the
1629	 * RX FIFO as soon as the FIFO threshold is reached.
1630	 */
1631	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1632
1633
1634	/*
1635	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1636	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1637	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1638	 */
1639	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1640
1641	/*
1642	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1643	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1644	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1645	 */
1646	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1647
1648	/* Configure MAC arbiter */
1649	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1650
1651	/* configure timeout values */
1652	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1653	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1654	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1655	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1656
1657	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1658	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1659	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1660	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1661
1662	/* Configure Rx MAC FIFO */
1663	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1664	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1665	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1666
1667	/* Configure Tx MAC FIFO */
1668	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1669	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1670	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1671
1672	if (jumbo) {
1673		/* Enable frame flushing if jumbo frames used */
1674		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1675	} else {
1676		/* enable timeout timers if normal frames */
1677		skge_write16(hw, B3_PA_CTRL,
1678			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1679	}
1680}
1681
1682static void genesis_stop(struct skge_port *skge)
1683{
1684	struct skge_hw *hw = skge->hw;
1685	int port = skge->port;
1686	unsigned retries = 1000;
1687	u16 cmd;
1688
1689	/* Disable Tx and Rx */
1690	cmd = xm_read16(hw, port, XM_MMU_CMD);
1691	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1692	xm_write16(hw, port, XM_MMU_CMD, cmd);
1693
1694	genesis_reset(hw, port);
1695
1696	/* Clear Tx packet arbiter timeout IRQ */
1697	skge_write16(hw, B3_PA_CTRL,
1698		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1699
1700	/* Reset the MAC */
1701	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1702	do {
1703		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1704		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1705			break;
1706	} while (--retries > 0);
1707
1708	/* For external PHYs there must be special handling */
1709	if (hw->phy_type != SK_PHY_XMAC) {
1710		u32 reg = skge_read32(hw, B2_GP_IO);
1711		if (port == 0) {
1712			reg |= GP_DIR_0;
1713			reg &= ~GP_IO_0;
1714		} else {
1715			reg |= GP_DIR_2;
1716			reg &= ~GP_IO_2;
1717		}
1718		skge_write32(hw, B2_GP_IO, reg);
1719		skge_read32(hw, B2_GP_IO);
1720	}
1721
1722	xm_write16(hw, port, XM_MMU_CMD,
1723			xm_read16(hw, port, XM_MMU_CMD)
1724			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1725
1726	xm_read16(hw, port, XM_MMU_CMD);
1727}
1728
1729
1730static void genesis_get_stats(struct skge_port *skge, u64 *data)
1731{
1732	struct skge_hw *hw = skge->hw;
1733	int port = skge->port;
1734	int i;
1735	unsigned long timeout = jiffies + HZ;
1736
1737	xm_write16(hw, port,
1738			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1739
1740	/* wait for update to complete */
1741	while (xm_read16(hw, port, XM_STAT_CMD)
1742	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1743		if (time_after(jiffies, timeout))
1744			break;
1745		udelay(10);
1746	}
1747
1748	/* special case for 64 bit octet counter */
1749	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1750		| xm_read32(hw, port, XM_TXO_OK_LO);
1751	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1752		| xm_read32(hw, port, XM_RXO_OK_LO);
1753
1754	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1755		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1756}
1757
1758static void genesis_mac_intr(struct skge_hw *hw, int port)
1759{
1760	struct net_device *dev = hw->dev[port];
1761	struct skge_port *skge = netdev_priv(dev);
1762	u16 status = xm_read16(hw, port, XM_ISRC);
1763
1764	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1765		     "mac interrupt status 0x%x\n", status);
1766
1767	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1768		xm_link_down(hw, port);
1769		mod_timer(&skge->link_timer, jiffies + 1);
1770	}
1771
1772	if (status & XM_IS_TXF_UR) {
1773		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1774		++dev->stats.tx_fifo_errors;
1775	}
1776}
1777
1778static void genesis_link_up(struct skge_port *skge)
1779{
1780	struct skge_hw *hw = skge->hw;
1781	int port = skge->port;
1782	u16 cmd, msk;
1783	u32 mode;
1784
1785	cmd = xm_read16(hw, port, XM_MMU_CMD);
1786
1787	/*
1788	 * enabling pause frame reception is required for 1000BT
1789	 * because the XMAC is not reset if the link is going down
1790	 */
1791	if (skge->flow_status == FLOW_STAT_NONE ||
1792	    skge->flow_status == FLOW_STAT_LOC_SEND)
1793		/* Disable Pause Frame Reception */
1794		cmd |= XM_MMU_IGN_PF;
1795	else
1796		/* Enable Pause Frame Reception */
1797		cmd &= ~XM_MMU_IGN_PF;
1798
1799	xm_write16(hw, port, XM_MMU_CMD, cmd);
1800
1801	mode = xm_read32(hw, port, XM_MODE);
1802	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1803	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1804		/*
1805		 * Configure Pause Frame Generation
1806		 * Use internal and external Pause Frame Generation.
1807		 * Sending pause frames is edge triggered.
1808		 * Send a Pause frame with the maximum pause time if
1809		 * internal oder external FIFO full condition occurs.
1810		 * Send a zero pause time frame to re-start transmission.
1811		 */
1812		/* XM_PAUSE_DA = '010000C28001' (default) */
1813		/* XM_MAC_PTIME = 0xffff (maximum) */
1814		/* remember this value is defined in big endian (!) */
1815		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1816
1817		mode |= XM_PAUSE_MODE;
1818		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1819	} else {
1820		/*
1821		 * disable pause frame generation is required for 1000BT
1822		 * because the XMAC is not reset if the link is going down
1823		 */
1824		/* Disable Pause Mode in Mode Register */
1825		mode &= ~XM_PAUSE_MODE;
1826
1827		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1828	}
1829
1830	xm_write32(hw, port, XM_MODE, mode);
1831
1832	/* Turn on detection of Tx underrun */
1833	msk = xm_read16(hw, port, XM_IMSK);
1834	msk &= ~XM_IS_TXF_UR;
1835	xm_write16(hw, port, XM_IMSK, msk);
1836
1837	xm_read16(hw, port, XM_ISRC);
1838
1839	/* get MMU Command Reg. */
1840	cmd = xm_read16(hw, port, XM_MMU_CMD);
1841	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1842		cmd |= XM_MMU_GMII_FD;
1843
1844	/*
1845	 * Workaround BCOM Errata (#10523) for all BCom Phys
1846	 * Enable Power Management after link up
1847	 */
1848	if (hw->phy_type == SK_PHY_BCOM) {
1849		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1850			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1851			     & ~PHY_B_AC_DIS_PM);
1852		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1853	}
1854
1855	/* enable Rx/Tx */
1856	xm_write16(hw, port, XM_MMU_CMD,
1857			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1858	skge_link_up(skge);
1859}
1860
1861
1862static inline void bcom_phy_intr(struct skge_port *skge)
1863{
1864	struct skge_hw *hw = skge->hw;
1865	int port = skge->port;
1866	u16 isrc;
1867
1868	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1869	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1870		     "phy interrupt status 0x%x\n", isrc);
1871
1872	if (isrc & PHY_B_IS_PSE)
1873		pr_err("%s: uncorrectable pair swap error\n",
1874		       hw->dev[port]->name);
1875
1876	/* Workaround BCom Errata:
1877	 *	enable and disable loopback mode if "NO HCD" occurs.
1878	 */
1879	if (isrc & PHY_B_IS_NO_HDCL) {
1880		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1881		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1882				  ctrl | PHY_CT_LOOP);
1883		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884				  ctrl & ~PHY_CT_LOOP);
1885	}
1886
1887	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1888		bcom_check_link(hw, port);
1889
1890}
1891
1892static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1893{
1894	int i;
1895
1896	gma_write16(hw, port, GM_SMI_DATA, val);
1897	gma_write16(hw, port, GM_SMI_CTRL,
1898			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1899	for (i = 0; i < PHY_RETRIES; i++) {
1900		udelay(1);
1901
1902		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1903			return 0;
1904	}
1905
1906	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1907	return -EIO;
1908}
1909
1910static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1911{
1912	int i;
1913
1914	gma_write16(hw, port, GM_SMI_CTRL,
1915			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1916			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1917
1918	for (i = 0; i < PHY_RETRIES; i++) {
1919		udelay(1);
1920		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1921			goto ready;
1922	}
1923
1924	return -ETIMEDOUT;
1925 ready:
1926	*val = gma_read16(hw, port, GM_SMI_DATA);
1927	return 0;
1928}
1929
1930static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1931{
1932	u16 v = 0;
1933	if (__gm_phy_read(hw, port, reg, &v))
1934		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1935	return v;
1936}
1937
1938/* Marvell Phy Initialization */
1939static void yukon_init(struct skge_hw *hw, int port)
1940{
1941	struct skge_port *skge = netdev_priv(hw->dev[port]);
1942	u16 ctrl, ct1000, adv;
1943
1944	if (skge->autoneg == AUTONEG_ENABLE) {
1945		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1946
1947		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1948			  PHY_M_EC_MAC_S_MSK);
1949		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1950
1951		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1952
1953		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1954	}
1955
1956	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1957	if (skge->autoneg == AUTONEG_DISABLE)
1958		ctrl &= ~PHY_CT_ANE;
1959
1960	ctrl |= PHY_CT_RESET;
1961	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1962
1963	ctrl = 0;
1964	ct1000 = 0;
1965	adv = PHY_AN_CSMA;
1966
1967	if (skge->autoneg == AUTONEG_ENABLE) {
1968		if (hw->copper) {
1969			if (skge->advertising & ADVERTISED_1000baseT_Full)
1970				ct1000 |= PHY_M_1000C_AFD;
1971			if (skge->advertising & ADVERTISED_1000baseT_Half)
1972				ct1000 |= PHY_M_1000C_AHD;
1973			if (skge->advertising & ADVERTISED_100baseT_Full)
1974				adv |= PHY_M_AN_100_FD;
1975			if (skge->advertising & ADVERTISED_100baseT_Half)
1976				adv |= PHY_M_AN_100_HD;
1977			if (skge->advertising & ADVERTISED_10baseT_Full)
1978				adv |= PHY_M_AN_10_FD;
1979			if (skge->advertising & ADVERTISED_10baseT_Half)
1980				adv |= PHY_M_AN_10_HD;
1981
1982			/* Set Flow-control capabilities */
1983			adv |= phy_pause_map[skge->flow_control];
1984		} else {
1985			if (skge->advertising & ADVERTISED_1000baseT_Full)
1986				adv |= PHY_M_AN_1000X_AFD;
1987			if (skge->advertising & ADVERTISED_1000baseT_Half)
1988				adv |= PHY_M_AN_1000X_AHD;
1989
1990			adv |= fiber_pause_map[skge->flow_control];
1991		}
1992
1993		/* Restart Auto-negotiation */
1994		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1995	} else {
1996		/* forced speed/duplex settings */
1997		ct1000 = PHY_M_1000C_MSE;
1998
1999		if (skge->duplex == DUPLEX_FULL)
2000			ctrl |= PHY_CT_DUP_MD;
2001
2002		switch (skge->speed) {
2003		case SPEED_1000:
2004			ctrl |= PHY_CT_SP1000;
2005			break;
2006		case SPEED_100:
2007			ctrl |= PHY_CT_SP100;
2008			break;
2009		}
2010
2011		ctrl |= PHY_CT_RESET;
2012	}
2013
2014	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2015
2016	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2017	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2018
2019	/* Enable phy interrupt on autonegotiation complete (or link up) */
2020	if (skge->autoneg == AUTONEG_ENABLE)
2021		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2022	else
2023		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2024}
2025
2026static void yukon_reset(struct skge_hw *hw, int port)
2027{
2028	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2029	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2030	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2031	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2032	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2033
2034	gma_write16(hw, port, GM_RX_CTRL,
2035			 gma_read16(hw, port, GM_RX_CTRL)
2036			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2037}
2038
2039/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2040static int is_yukon_lite_a0(struct skge_hw *hw)
2041{
2042	u32 reg;
2043	int ret;
2044
2045	if (hw->chip_id != CHIP_ID_YUKON)
2046		return 0;
2047
2048	reg = skge_read32(hw, B2_FAR);
2049	skge_write8(hw, B2_FAR + 3, 0xff);
2050	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2051	skge_write32(hw, B2_FAR, reg);
2052	return ret;
2053}
2054
2055static void yukon_mac_init(struct skge_hw *hw, int port)
2056{
2057	struct skge_port *skge = netdev_priv(hw->dev[port]);
2058	int i;
2059	u32 reg;
2060	const u8 *addr = hw->dev[port]->dev_addr;
2061
2062	/* WA code for COMA mode -- set PHY reset */
2063	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2064	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2065		reg = skge_read32(hw, B2_GP_IO);
2066		reg |= GP_DIR_9 | GP_IO_9;
2067		skge_write32(hw, B2_GP_IO, reg);
2068	}
2069
2070	/* hard reset */
2071	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2072	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2073
2074	/* WA code for COMA mode -- clear PHY reset */
2075	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2076	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2077		reg = skge_read32(hw, B2_GP_IO);
2078		reg |= GP_DIR_9;
2079		reg &= ~GP_IO_9;
2080		skge_write32(hw, B2_GP_IO, reg);
2081	}
2082
2083	/* Set hardware config mode */
2084	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2085		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2086	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2087
2088	/* Clear GMC reset */
2089	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2090	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2091	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2092
2093	if (skge->autoneg == AUTONEG_DISABLE) {
2094		reg = GM_GPCR_AU_ALL_DIS;
2095		gma_write16(hw, port, GM_GP_CTRL,
2096				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2097
2098		switch (skge->speed) {
2099		case SPEED_1000:
2100			reg &= ~GM_GPCR_SPEED_100;
2101			reg |= GM_GPCR_SPEED_1000;
2102			break;
2103		case SPEED_100:
2104			reg &= ~GM_GPCR_SPEED_1000;
2105			reg |= GM_GPCR_SPEED_100;
2106			break;
2107		case SPEED_10:
2108			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2109			break;
2110		}
2111
2112		if (skge->duplex == DUPLEX_FULL)
2113			reg |= GM_GPCR_DUP_FULL;
2114	} else
2115		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2116
2117	switch (skge->flow_control) {
2118	case FLOW_MODE_NONE:
2119		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2120		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2121		break;
2122	case FLOW_MODE_LOC_SEND:
2123		/* disable Rx flow-control */
2124		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2125		break;
2126	case FLOW_MODE_SYMMETRIC:
2127	case FLOW_MODE_SYM_OR_REM:
2128		/* enable Tx & Rx flow-control */
2129		break;
2130	}
2131
2132	gma_write16(hw, port, GM_GP_CTRL, reg);
2133	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2134
2135	yukon_init(hw, port);
2136
2137	/* MIB clear */
2138	reg = gma_read16(hw, port, GM_PHY_ADDR);
2139	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2140
2141	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2142		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2143	gma_write16(hw, port, GM_PHY_ADDR, reg);
2144
2145	/* transmit control */
2146	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2147
2148	/* receive control reg: unicast + multicast + no FCS  */
2149	gma_write16(hw, port, GM_RX_CTRL,
2150			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2151
2152	/* transmit flow control */
2153	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2154
2155	/* transmit parameter */
2156	gma_write16(hw, port, GM_TX_PARAM,
2157			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2158			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2159			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2160
2161	/* configure the Serial Mode Register */
2162	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2163		| GM_SMOD_VLAN_ENA
2164		| IPG_DATA_VAL(IPG_DATA_DEF);
2165
2166	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2167		reg |= GM_SMOD_JUMBO_ENA;
2168
2169	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2170
2171	/* physical address: used for pause frames */
2172	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2173	/* virtual address for data */
2174	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2175
2176	/* enable interrupt mask for counter overflows */
2177	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2178	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2179	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2180
2181	/* Initialize Mac Fifo */
2182
2183	/* Configure Rx MAC FIFO */
2184	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2185	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2186
2187	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2188	if (is_yukon_lite_a0(hw))
2189		reg &= ~GMF_RX_F_FL_ON;
2190
2191	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2192	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2193	/*
2194	 * because Pause Packet Truncation in GMAC is not working
2195	 * we have to increase the Flush Threshold to 64 bytes
2196	 * in order to flush pause packets in Rx FIFO on Yukon-1
2197	 */
2198	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2199
2200	/* Configure Tx MAC FIFO */
2201	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2202	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2203}
2204
2205/* Go into power down mode */
2206static void yukon_suspend(struct skge_hw *hw, int port)
2207{
2208	u16 ctrl;
2209
2210	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2211	ctrl |= PHY_M_PC_POL_R_DIS;
2212	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2213
2214	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2215	ctrl |= PHY_CT_RESET;
2216	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2217
2218	/* switch IEEE compatible power down mode on */
2219	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2220	ctrl |= PHY_CT_PDOWN;
2221	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2222}
2223
2224static void yukon_stop(struct skge_port *skge)
2225{
2226	struct skge_hw *hw = skge->hw;
2227	int port = skge->port;
2228
2229	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2230	yukon_reset(hw, port);
2231
2232	gma_write16(hw, port, GM_GP_CTRL,
2233			 gma_read16(hw, port, GM_GP_CTRL)
2234			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2235	gma_read16(hw, port, GM_GP_CTRL);
2236
2237	yukon_suspend(hw, port);
2238
2239	/* set GPHY Control reset */
2240	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2241	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2242}
2243
2244static void yukon_get_stats(struct skge_port *skge, u64 *data)
2245{
2246	struct skge_hw *hw = skge->hw;
2247	int port = skge->port;
2248	int i;
2249
2250	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2251		| gma_read32(hw, port, GM_TXO_OK_LO);
2252	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2253		| gma_read32(hw, port, GM_RXO_OK_LO);
2254
2255	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2256		data[i] = gma_read32(hw, port,
2257					  skge_stats[i].gma_offset);
2258}
2259
2260static void yukon_mac_intr(struct skge_hw *hw, int port)
2261{
2262	struct net_device *dev = hw->dev[port];
2263	struct skge_port *skge = netdev_priv(dev);
2264	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2265
2266	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2267		     "mac interrupt status 0x%x\n", status);
2268
2269	if (status & GM_IS_RX_FF_OR) {
2270		++dev->stats.rx_fifo_errors;
2271		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2272	}
2273
2274	if (status & GM_IS_TX_FF_UR) {
2275		++dev->stats.tx_fifo_errors;
2276		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2277	}
2278
2279}
2280
2281static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2282{
2283	switch (aux & PHY_M_PS_SPEED_MSK) {
2284	case PHY_M_PS_SPEED_1000:
2285		return SPEED_1000;
2286	case PHY_M_PS_SPEED_100:
2287		return SPEED_100;
2288	default:
2289		return SPEED_10;
2290	}
2291}
2292
2293static void yukon_link_up(struct skge_port *skge)
2294{
2295	struct skge_hw *hw = skge->hw;
2296	int port = skge->port;
2297	u16 reg;
2298
2299	/* Enable Transmit FIFO Underrun */
2300	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2301
2302	reg = gma_read16(hw, port, GM_GP_CTRL);
2303	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2304		reg |= GM_GPCR_DUP_FULL;
2305
2306	/* enable Rx/Tx */
2307	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2308	gma_write16(hw, port, GM_GP_CTRL, reg);
2309
2310	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2311	skge_link_up(skge);
2312}
2313
2314static void yukon_link_down(struct skge_port *skge)
2315{
2316	struct skge_hw *hw = skge->hw;
2317	int port = skge->port;
2318	u16 ctrl;
2319
2320	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2321	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2322	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2323
2324	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2325		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2326		ctrl |= PHY_M_AN_ASP;
2327		/* restore Asymmetric Pause bit */
2328		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2329	}
2330
2331	skge_link_down(skge);
2332
2333	yukon_init(hw, port);
2334}
2335
2336static void yukon_phy_intr(struct skge_port *skge)
2337{
2338	struct skge_hw *hw = skge->hw;
2339	int port = skge->port;
2340	const char *reason = NULL;
2341	u16 istatus, phystat;
2342
2343	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2344	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2345
2346	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2347		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2348
2349	if (istatus & PHY_M_IS_AN_COMPL) {
2350		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2351		    & PHY_M_AN_RF) {
2352			reason = "remote fault";
2353			goto failed;
2354		}
2355
2356		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2357			reason = "master/slave fault";
2358			goto failed;
2359		}
2360
2361		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2362			reason = "speed/duplex";
2363			goto failed;
2364		}
2365
2366		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2367			? DUPLEX_FULL : DUPLEX_HALF;
2368		skge->speed = yukon_speed(hw, phystat);
2369
2370		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2371		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2372		case PHY_M_PS_PAUSE_MSK:
2373			skge->flow_status = FLOW_STAT_SYMMETRIC;
2374			break;
2375		case PHY_M_PS_RX_P_EN:
2376			skge->flow_status = FLOW_STAT_REM_SEND;
2377			break;
2378		case PHY_M_PS_TX_P_EN:
2379			skge->flow_status = FLOW_STAT_LOC_SEND;
2380			break;
2381		default:
2382			skge->flow_status = FLOW_STAT_NONE;
2383		}
2384
2385		if (skge->flow_status == FLOW_STAT_NONE ||
2386		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2387			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2388		else
2389			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2390		yukon_link_up(skge);
2391		return;
2392	}
2393
2394	if (istatus & PHY_M_IS_LSP_CHANGE)
2395		skge->speed = yukon_speed(hw, phystat);
2396
2397	if (istatus & PHY_M_IS_DUP_CHANGE)
2398		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2399	if (istatus & PHY_M_IS_LST_CHANGE) {
2400		if (phystat & PHY_M_PS_LINK_UP)
2401			yukon_link_up(skge);
2402		else
2403			yukon_link_down(skge);
2404	}
2405	return;
2406 failed:
2407	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2408
2409	/* XXX restart autonegotiation? */
2410}
2411
2412static void skge_phy_reset(struct skge_port *skge)
2413{
2414	struct skge_hw *hw = skge->hw;
2415	int port = skge->port;
2416	struct net_device *dev = hw->dev[port];
2417
2418	netif_stop_queue(skge->netdev);
2419	netif_carrier_off(skge->netdev);
2420
2421	spin_lock_bh(&hw->phy_lock);
2422	if (is_genesis(hw)) {
2423		genesis_reset(hw, port);
2424		genesis_mac_init(hw, port);
2425	} else {
2426		yukon_reset(hw, port);
2427		yukon_init(hw, port);
2428	}
2429	spin_unlock_bh(&hw->phy_lock);
2430
2431	skge_set_multicast(dev);
2432}
2433
2434/* Basic MII support */
2435static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2436{
2437	struct mii_ioctl_data *data = if_mii(ifr);
2438	struct skge_port *skge = netdev_priv(dev);
2439	struct skge_hw *hw = skge->hw;
2440	int err = -EOPNOTSUPP;
2441
2442	if (!netif_running(dev))
2443		return -ENODEV;	/* Phy still in reset */
2444
2445	switch (cmd) {
2446	case SIOCGMIIPHY:
2447		data->phy_id = hw->phy_addr;
2448
2449		/* fallthru */
2450	case SIOCGMIIREG: {
2451		u16 val = 0;
2452		spin_lock_bh(&hw->phy_lock);
2453
2454		if (is_genesis(hw))
2455			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2456		else
2457			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458		spin_unlock_bh(&hw->phy_lock);
2459		data->val_out = val;
2460		break;
2461	}
2462
2463	case SIOCSMIIREG:
2464		spin_lock_bh(&hw->phy_lock);
2465		if (is_genesis(hw))
2466			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2467				   data->val_in);
2468		else
2469			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2470				   data->val_in);
2471		spin_unlock_bh(&hw->phy_lock);
2472		break;
2473	}
2474	return err;
2475}
2476
2477static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2478{
2479	u32 end;
2480
2481	start /= 8;
2482	len /= 8;
2483	end = start + len - 1;
2484
2485	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2486	skge_write32(hw, RB_ADDR(q, RB_START), start);
2487	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2488	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2489	skge_write32(hw, RB_ADDR(q, RB_END), end);
2490
2491	if (q == Q_R1 || q == Q_R2) {
2492		/* Set thresholds on receive queue's */
2493		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2494			     start + (2*len)/3);
2495		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2496			     start + (len/3));
2497	} else {
2498		/* Enable store & forward on Tx queue's because
2499		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2500		 */
2501		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2502	}
2503
2504	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2505}
2506
2507/* Setup Bus Memory Interface */
2508static void skge_qset(struct skge_port *skge, u16 q,
2509		      const struct skge_element *e)
2510{
2511	struct skge_hw *hw = skge->hw;
2512	u32 watermark = 0x600;
2513	u64 base = skge->dma + (e->desc - skge->mem);
2514
2515	/* optimization to reduce window on 32bit/33mhz */
2516	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2517		watermark /= 2;
2518
2519	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2520	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2521	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2522	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2523}
2524
2525static int skge_up(struct net_device *dev)
2526{
2527	struct skge_port *skge = netdev_priv(dev);
2528	struct skge_hw *hw = skge->hw;
2529	int port = skge->port;
2530	u32 chunk, ram_addr;
2531	size_t rx_size, tx_size;
2532	int err;
2533
2534	if (!is_valid_ether_addr(dev->dev_addr))
2535		return -EINVAL;
2536
2537	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2538
2539	if (dev->mtu > RX_BUF_SIZE)
2540		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2541	else
2542		skge->rx_buf_size = RX_BUF_SIZE;
2543
2544
2545	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2546	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2547	skge->mem_size = tx_size + rx_size;
2548	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2549	if (!skge->mem)
2550		return -ENOMEM;
2551
2552	BUG_ON(skge->dma & 7);
2553
2554	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2555		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2556		err = -EINVAL;
2557		goto free_pci_mem;
2558	}
2559
2560	memset(skge->mem, 0, skge->mem_size);
2561
2562	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2563	if (err)
2564		goto free_pci_mem;
2565
2566	err = skge_rx_fill(dev);
2567	if (err)
2568		goto free_rx_ring;
2569
2570	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2571			      skge->dma + rx_size);
2572	if (err)
2573		goto free_rx_ring;
2574
2575	if (hw->ports == 1) {
2576		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2577				  dev->name, hw);
2578		if (err) {
2579			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2580				   hw->pdev->irq, err);
2581			goto free_tx_ring;
2582		}
2583	}
2584
2585	/* Initialize MAC */
2586	netif_carrier_off(dev);
2587	spin_lock_bh(&hw->phy_lock);
2588	if (is_genesis(hw))
2589		genesis_mac_init(hw, port);
2590	else
2591		yukon_mac_init(hw, port);
2592	spin_unlock_bh(&hw->phy_lock);
2593
2594	/* Configure RAMbuffers - equally between ports and tx/rx */
2595	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2596	ram_addr = hw->ram_offset + 2 * chunk * port;
2597
2598	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2599	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2600
2601	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2602	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2603	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2604
2605	/* Start receiver BMU */
2606	wmb();
2607	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2608	skge_led(skge, LED_MODE_ON);
2609
2610	spin_lock_irq(&hw->hw_lock);
2611	hw->intr_mask |= portmask[port];
2612	skge_write32(hw, B0_IMSK, hw->intr_mask);
2613	skge_read32(hw, B0_IMSK);
2614	spin_unlock_irq(&hw->hw_lock);
2615
2616	napi_enable(&skge->napi);
2617
2618	skge_set_multicast(dev);
2619
2620	return 0;
2621
2622 free_tx_ring:
2623	kfree(skge->tx_ring.start);
2624 free_rx_ring:
2625	skge_rx_clean(skge);
2626	kfree(skge->rx_ring.start);
2627 free_pci_mem:
2628	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2629	skge->mem = NULL;
2630
2631	return err;
2632}
2633
2634/* stop receiver */
2635static void skge_rx_stop(struct skge_hw *hw, int port)
2636{
2637	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2638	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2639		     RB_RST_SET|RB_DIS_OP_MD);
2640	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2641}
2642
2643static int skge_down(struct net_device *dev)
2644{
2645	struct skge_port *skge = netdev_priv(dev);
2646	struct skge_hw *hw = skge->hw;
2647	int port = skge->port;
2648
2649	if (skge->mem == NULL)
2650		return 0;
2651
2652	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2653
2654	netif_tx_disable(dev);
2655
2656	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2657		del_timer_sync(&skge->link_timer);
2658
2659	napi_disable(&skge->napi);
2660	netif_carrier_off(dev);
2661
2662	spin_lock_irq(&hw->hw_lock);
2663	hw->intr_mask &= ~portmask[port];
2664	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2665	skge_read32(hw, B0_IMSK);
2666	spin_unlock_irq(&hw->hw_lock);
2667
2668	if (hw->ports == 1)
2669		free_irq(hw->pdev->irq, hw);
2670
2671	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2672	if (is_genesis(hw))
2673		genesis_stop(skge);
2674	else
2675		yukon_stop(skge);
2676
2677	/* Stop transmitter */
2678	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2679	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2680		     RB_RST_SET|RB_DIS_OP_MD);
2681
2682
2683	/* Disable Force Sync bit and Enable Alloc bit */
2684	skge_write8(hw, SK_REG(port, TXA_CTRL),
2685		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2686
2687	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2688	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2689	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2690
2691	/* Reset PCI FIFO */
2692	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2693	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2694
2695	/* Reset the RAM Buffer async Tx queue */
2696	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2697
2698	skge_rx_stop(hw, port);
2699
2700	if (is_genesis(hw)) {
2701		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2702		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2703	} else {
2704		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2705		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2706	}
2707
2708	skge_led(skge, LED_MODE_OFF);
2709
2710	netif_tx_lock_bh(dev);
2711	skge_tx_clean(dev);
2712	netif_tx_unlock_bh(dev);
2713
2714	skge_rx_clean(skge);
2715
2716	kfree(skge->rx_ring.start);
2717	kfree(skge->tx_ring.start);
2718	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2719	skge->mem = NULL;
2720	return 0;
2721}
2722
2723static inline int skge_avail(const struct skge_ring *ring)
2724{
2725	smp_mb();
2726	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2727		+ (ring->to_clean - ring->to_use) - 1;
2728}
2729
2730static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2731				   struct net_device *dev)
2732{
2733	struct skge_port *skge = netdev_priv(dev);
2734	struct skge_hw *hw = skge->hw;
2735	struct skge_element *e;
2736	struct skge_tx_desc *td;
2737	int i;
2738	u32 control, len;
2739	dma_addr_t map;
2740
2741	if (skb_padto(skb, ETH_ZLEN))
2742		return NETDEV_TX_OK;
2743
2744	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2745		return NETDEV_TX_BUSY;
2746
2747	e = skge->tx_ring.to_use;
2748	td = e->desc;
2749	BUG_ON(td->control & BMU_OWN);
2750	e->skb = skb;
2751	len = skb_headlen(skb);
2752	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2753	if (pci_dma_mapping_error(hw->pdev, map))
2754		goto mapping_error;
2755
2756	dma_unmap_addr_set(e, mapaddr, map);
2757	dma_unmap_len_set(e, maplen, len);
2758
2759	td->dma_lo = lower_32_bits(map);
2760	td->dma_hi = upper_32_bits(map);
2761
2762	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2763		const int offset = skb_checksum_start_offset(skb);
2764
2765		/* This seems backwards, but it is what the sk98lin
2766		 * does.  Looks like hardware is wrong?
2767		 */
2768		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2769		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2770			control = BMU_TCP_CHECK;
2771		else
2772			control = BMU_UDP_CHECK;
2773
2774		td->csum_offs = 0;
2775		td->csum_start = offset;
2776		td->csum_write = offset + skb->csum_offset;
2777	} else
2778		control = BMU_CHECK;
2779
2780	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2781		control |= BMU_EOF | BMU_IRQ_EOF;
2782	else {
2783		struct skge_tx_desc *tf = td;
2784
2785		control |= BMU_STFWD;
2786		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2787			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2788
2789			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2790					       skb_frag_size(frag), DMA_TO_DEVICE);
2791			if (dma_mapping_error(&hw->pdev->dev, map))
2792				goto mapping_unwind;
2793
2794			e = e->next;
2795			e->skb = skb;
2796			tf = e->desc;
2797			BUG_ON(tf->control & BMU_OWN);
2798
2799			tf->dma_lo = lower_32_bits(map);
2800			tf->dma_hi = upper_32_bits(map);
2801			dma_unmap_addr_set(e, mapaddr, map);
2802			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2803
2804			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2805		}
2806		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2807	}
2808	/* Make sure all the descriptors written */
2809	wmb();
2810	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2811	wmb();
2812
2813	netdev_sent_queue(dev, skb->len);
2814
2815	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2816
2817	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2818		     "tx queued, slot %td, len %d\n",
2819		     e - skge->tx_ring.start, skb->len);
2820
2821	skge->tx_ring.to_use = e->next;
2822	smp_wmb();
2823
2824	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2825		netdev_dbg(dev, "transmit queue full\n");
2826		netif_stop_queue(dev);
2827	}
2828
2829	return NETDEV_TX_OK;
2830
2831mapping_unwind:
2832	e = skge->tx_ring.to_use;
2833	pci_unmap_single(hw->pdev,
2834			 dma_unmap_addr(e, mapaddr),
2835			 dma_unmap_len(e, maplen),
2836			 PCI_DMA_TODEVICE);
2837	while (i-- > 0) {
2838		e = e->next;
2839		pci_unmap_page(hw->pdev,
2840			       dma_unmap_addr(e, mapaddr),
2841			       dma_unmap_len(e, maplen),
2842			       PCI_DMA_TODEVICE);
2843	}
2844
2845mapping_error:
2846	if (net_ratelimit())
2847		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2848	dev_kfree_skb_any(skb);
2849	return NETDEV_TX_OK;
2850}
2851
2852
2853/* Free resources associated with this reing element */
2854static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2855				 u32 control)
2856{
2857	/* skb header vs. fragment */
2858	if (control & BMU_STF)
2859		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2860				 dma_unmap_len(e, maplen),
2861				 PCI_DMA_TODEVICE);
2862	else
2863		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2864			       dma_unmap_len(e, maplen),
2865			       PCI_DMA_TODEVICE);
2866}
2867
2868/* Free all buffers in transmit ring */
2869static void skge_tx_clean(struct net_device *dev)
2870{
2871	struct skge_port *skge = netdev_priv(dev);
2872	struct skge_element *e;
2873
2874	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2875		struct skge_tx_desc *td = e->desc;
2876
2877		skge_tx_unmap(skge->hw->pdev, e, td->control);
2878
2879		if (td->control & BMU_EOF)
2880			dev_kfree_skb(e->skb);
2881		td->control = 0;
2882	}
2883
2884	netdev_reset_queue(dev);
2885	skge->tx_ring.to_clean = e;
2886}
2887
2888static void skge_tx_timeout(struct net_device *dev)
2889{
2890	struct skge_port *skge = netdev_priv(dev);
2891
2892	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2893
2894	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2895	skge_tx_clean(dev);
2896	netif_wake_queue(dev);
2897}
2898
2899static int skge_change_mtu(struct net_device *dev, int new_mtu)
2900{
2901	int err;
2902
2903	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2904		return -EINVAL;
2905
2906	if (!netif_running(dev)) {
2907		dev->mtu = new_mtu;
2908		return 0;
2909	}
2910
2911	skge_down(dev);
2912
2913	dev->mtu = new_mtu;
2914
2915	err = skge_up(dev);
2916	if (err)
2917		dev_close(dev);
2918
2919	return err;
2920}
2921
2922static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2923
2924static void genesis_add_filter(u8 filter[8], const u8 *addr)
2925{
2926	u32 crc, bit;
2927
2928	crc = ether_crc_le(ETH_ALEN, addr);
2929	bit = ~crc & 0x3f;
2930	filter[bit/8] |= 1 << (bit%8);
2931}
2932
2933static void genesis_set_multicast(struct net_device *dev)
2934{
2935	struct skge_port *skge = netdev_priv(dev);
2936	struct skge_hw *hw = skge->hw;
2937	int port = skge->port;
2938	struct netdev_hw_addr *ha;
2939	u32 mode;
2940	u8 filter[8];
2941
2942	mode = xm_read32(hw, port, XM_MODE);
2943	mode |= XM_MD_ENA_HASH;
2944	if (dev->flags & IFF_PROMISC)
2945		mode |= XM_MD_ENA_PROM;
2946	else
2947		mode &= ~XM_MD_ENA_PROM;
2948
2949	if (dev->flags & IFF_ALLMULTI)
2950		memset(filter, 0xff, sizeof(filter));
2951	else {
2952		memset(filter, 0, sizeof(filter));
2953
2954		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2955		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2956			genesis_add_filter(filter, pause_mc_addr);
2957
2958		netdev_for_each_mc_addr(ha, dev)
2959			genesis_add_filter(filter, ha->addr);
2960	}
2961
2962	xm_write32(hw, port, XM_MODE, mode);
2963	xm_outhash(hw, port, XM_HSM, filter);
2964}
2965
2966static void yukon_add_filter(u8 filter[8], const u8 *addr)
2967{
2968	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2969	 filter[bit/8] |= 1 << (bit%8);
2970}
2971
2972static void yukon_set_multicast(struct net_device *dev)
2973{
2974	struct skge_port *skge = netdev_priv(dev);
2975	struct skge_hw *hw = skge->hw;
2976	int port = skge->port;
2977	struct netdev_hw_addr *ha;
2978	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2979			skge->flow_status == FLOW_STAT_SYMMETRIC);
2980	u16 reg;
2981	u8 filter[8];
2982
2983	memset(filter, 0, sizeof(filter));
2984
2985	reg = gma_read16(hw, port, GM_RX_CTRL);
2986	reg |= GM_RXCR_UCF_ENA;
2987
2988	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2989		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2990	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2991		memset(filter, 0xff, sizeof(filter));
2992	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2993		reg &= ~GM_RXCR_MCF_ENA;
2994	else {
2995		reg |= GM_RXCR_MCF_ENA;
2996
2997		if (rx_pause)
2998			yukon_add_filter(filter, pause_mc_addr);
2999
3000		netdev_for_each_mc_addr(ha, dev)
3001			yukon_add_filter(filter, ha->addr);
3002	}
3003
3004
3005	gma_write16(hw, port, GM_MC_ADDR_H1,
3006			 (u16)filter[0] | ((u16)filter[1] << 8));
3007	gma_write16(hw, port, GM_MC_ADDR_H2,
3008			 (u16)filter[2] | ((u16)filter[3] << 8));
3009	gma_write16(hw, port, GM_MC_ADDR_H3,
3010			 (u16)filter[4] | ((u16)filter[5] << 8));
3011	gma_write16(hw, port, GM_MC_ADDR_H4,
3012			 (u16)filter[6] | ((u16)filter[7] << 8));
3013
3014	gma_write16(hw, port, GM_RX_CTRL, reg);
3015}
3016
3017static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3018{
3019	if (is_genesis(hw))
3020		return status >> XMR_FS_LEN_SHIFT;
3021	else
3022		return status >> GMR_FS_LEN_SHIFT;
3023}
3024
3025static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3026{
3027	if (is_genesis(hw))
3028		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3029	else
3030		return (status & GMR_FS_ANY_ERR) ||
3031			(status & GMR_FS_RX_OK) == 0;
3032}
3033
3034static void skge_set_multicast(struct net_device *dev)
3035{
3036	struct skge_port *skge = netdev_priv(dev);
3037
3038	if (is_genesis(skge->hw))
3039		genesis_set_multicast(dev);
3040	else
3041		yukon_set_multicast(dev);
3042
3043}
3044
3045
3046/* Get receive buffer from descriptor.
3047 * Handles copy of small buffers and reallocation failures
3048 */
3049static struct sk_buff *skge_rx_get(struct net_device *dev,
3050				   struct skge_element *e,
3051				   u32 control, u32 status, u16 csum)
3052{
3053	struct skge_port *skge = netdev_priv(dev);
3054	struct sk_buff *skb;
3055	u16 len = control & BMU_BBC;
3056
3057	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3058		     "rx slot %td status 0x%x len %d\n",
3059		     e - skge->rx_ring.start, status, len);
3060
3061	if (len > skge->rx_buf_size)
3062		goto error;
3063
3064	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3065		goto error;
3066
3067	if (bad_phy_status(skge->hw, status))
3068		goto error;
3069
3070	if (phy_length(skge->hw, status) != len)
3071		goto error;
3072
3073	if (len < RX_COPY_THRESHOLD) {
3074		skb = netdev_alloc_skb_ip_align(dev, len);
3075		if (!skb)
3076			goto resubmit;
3077
3078		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3079					    dma_unmap_addr(e, mapaddr),
3080					    dma_unmap_len(e, maplen),
3081					    PCI_DMA_FROMDEVICE);
3082		skb_copy_from_linear_data(e->skb, skb->data, len);
3083		pci_dma_sync_single_for_device(skge->hw->pdev,
3084					       dma_unmap_addr(e, mapaddr),
3085					       dma_unmap_len(e, maplen),
3086					       PCI_DMA_FROMDEVICE);
3087		skge_rx_reuse(e, skge->rx_buf_size);
3088	} else {
3089		struct skge_element ee;
3090		struct sk_buff *nskb;
3091
3092		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3093		if (!nskb)
3094			goto resubmit;
3095
3096		ee = *e;
3097
3098		skb = ee.skb;
3099		prefetch(skb->data);
3100
3101		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3102			dev_kfree_skb(nskb);
3103			goto resubmit;
3104		}
3105
3106		pci_unmap_single(skge->hw->pdev,
3107				 dma_unmap_addr(&ee, mapaddr),
3108				 dma_unmap_len(&ee, maplen),
3109				 PCI_DMA_FROMDEVICE);
3110	}
3111
3112	skb_put(skb, len);
3113
3114	if (dev->features & NETIF_F_RXCSUM) {
3115		skb->csum = csum;
3116		skb->ip_summed = CHECKSUM_COMPLETE;
3117	}
3118
3119	skb->protocol = eth_type_trans(skb, dev);
3120
3121	return skb;
3122error:
3123
3124	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3125		     "rx err, slot %td control 0x%x status 0x%x\n",
3126		     e - skge->rx_ring.start, control, status);
3127
3128	if (is_genesis(skge->hw)) {
3129		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3130			dev->stats.rx_length_errors++;
3131		if (status & XMR_FS_FRA_ERR)
3132			dev->stats.rx_frame_errors++;
3133		if (status & XMR_FS_FCS_ERR)
3134			dev->stats.rx_crc_errors++;
3135	} else {
3136		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3137			dev->stats.rx_length_errors++;
3138		if (status & GMR_FS_FRAGMENT)
3139			dev->stats.rx_frame_errors++;
3140		if (status & GMR_FS_CRC_ERR)
3141			dev->stats.rx_crc_errors++;
3142	}
3143
3144resubmit:
3145	skge_rx_reuse(e, skge->rx_buf_size);
3146	return NULL;
3147}
3148
3149/* Free all buffers in Tx ring which are no longer owned by device */
3150static void skge_tx_done(struct net_device *dev)
3151{
3152	struct skge_port *skge = netdev_priv(dev);
3153	struct skge_ring *ring = &skge->tx_ring;
3154	struct skge_element *e;
3155	unsigned int bytes_compl = 0, pkts_compl = 0;
3156
3157	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3158
3159	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3160		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3161
3162		if (control & BMU_OWN)
3163			break;
3164
3165		skge_tx_unmap(skge->hw->pdev, e, control);
3166
3167		if (control & BMU_EOF) {
3168			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3169				     "tx done slot %td\n",
3170				     e - skge->tx_ring.start);
3171
3172			pkts_compl++;
3173			bytes_compl += e->skb->len;
3174
3175			dev_consume_skb_any(e->skb);
3176		}
3177	}
3178	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3179	skge->tx_ring.to_clean = e;
3180
3181	/* Can run lockless until we need to synchronize to restart queue. */
3182	smp_mb();
3183
3184	if (unlikely(netif_queue_stopped(dev) &&
3185		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186		netif_tx_lock(dev);
3187		if (unlikely(netif_queue_stopped(dev) &&
3188			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3189			netif_wake_queue(dev);
3190
3191		}
3192		netif_tx_unlock(dev);
3193	}
3194}
3195
3196static int skge_poll(struct napi_struct *napi, int to_do)
3197{
3198	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3199	struct net_device *dev = skge->netdev;
3200	struct skge_hw *hw = skge->hw;
3201	struct skge_ring *ring = &skge->rx_ring;
3202	struct skge_element *e;
3203	int work_done = 0;
3204
3205	skge_tx_done(dev);
3206
3207	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3208
3209	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3210		struct skge_rx_desc *rd = e->desc;
3211		struct sk_buff *skb;
3212		u32 control;
3213
3214		rmb();
3215		control = rd->control;
3216		if (control & BMU_OWN)
3217			break;
3218
3219		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3220		if (likely(skb)) {
3221			napi_gro_receive(napi, skb);
3222			++work_done;
3223		}
3224	}
3225	ring->to_clean = e;
3226
3227	/* restart receiver */
3228	wmb();
3229	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3230
3231	if (work_done < to_do) {
3232		unsigned long flags;
3233
3234		napi_gro_flush(napi, false);
3235		spin_lock_irqsave(&hw->hw_lock, flags);
3236		__napi_complete(napi);
3237		hw->intr_mask |= napimask[skge->port];
3238		skge_write32(hw, B0_IMSK, hw->intr_mask);
3239		skge_read32(hw, B0_IMSK);
3240		spin_unlock_irqrestore(&hw->hw_lock, flags);
3241	}
3242
3243	return work_done;
3244}
3245
3246/* Parity errors seem to happen when Genesis is connected to a switch
3247 * with no other ports present. Heartbeat error??
3248 */
3249static void skge_mac_parity(struct skge_hw *hw, int port)
3250{
3251	struct net_device *dev = hw->dev[port];
3252
3253	++dev->stats.tx_heartbeat_errors;
3254
3255	if (is_genesis(hw))
3256		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3257			     MFF_CLR_PERR);
3258	else
3259		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3260		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3261			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3262			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3263}
3264
3265static void skge_mac_intr(struct skge_hw *hw, int port)
3266{
3267	if (is_genesis(hw))
3268		genesis_mac_intr(hw, port);
3269	else
3270		yukon_mac_intr(hw, port);
3271}
3272
3273/* Handle device specific framing and timeout interrupts */
3274static void skge_error_irq(struct skge_hw *hw)
3275{
3276	struct pci_dev *pdev = hw->pdev;
3277	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3278
3279	if (is_genesis(hw)) {
3280		/* clear xmac errors */
3281		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3282			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3283		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3284			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3285	} else {
3286		/* Timestamp (unused) overflow */
3287		if (hwstatus & IS_IRQ_TIST_OV)
3288			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3289	}
3290
3291	if (hwstatus & IS_RAM_RD_PAR) {
3292		dev_err(&pdev->dev, "Ram read data parity error\n");
3293		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3294	}
3295
3296	if (hwstatus & IS_RAM_WR_PAR) {
3297		dev_err(&pdev->dev, "Ram write data parity error\n");
3298		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3299	}
3300
3301	if (hwstatus & IS_M1_PAR_ERR)
3302		skge_mac_parity(hw, 0);
3303
3304	if (hwstatus & IS_M2_PAR_ERR)
3305		skge_mac_parity(hw, 1);
3306
3307	if (hwstatus & IS_R1_PAR_ERR) {
3308		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3309			hw->dev[0]->name);
3310		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3311	}
3312
3313	if (hwstatus & IS_R2_PAR_ERR) {
3314		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3315			hw->dev[1]->name);
3316		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3317	}
3318
3319	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3320		u16 pci_status, pci_cmd;
3321
3322		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3323		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3324
3325		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3326			pci_cmd, pci_status);
3327
3328		/* Write the error bits back to clear them. */
3329		pci_status &= PCI_STATUS_ERROR_BITS;
3330		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3331		pci_write_config_word(pdev, PCI_COMMAND,
3332				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3333		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3334		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3335
3336		/* if error still set then just ignore it */
3337		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3338		if (hwstatus & IS_IRQ_STAT) {
3339			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3340			hw->intr_mask &= ~IS_HW_ERR;
3341		}
3342	}
3343}
3344
3345/*
3346 * Interrupt from PHY are handled in tasklet (softirq)
3347 * because accessing phy registers requires spin wait which might
3348 * cause excess interrupt latency.
3349 */
3350static void skge_extirq(unsigned long arg)
3351{
3352	struct skge_hw *hw = (struct skge_hw *) arg;
3353	int port;
3354
3355	for (port = 0; port < hw->ports; port++) {
3356		struct net_device *dev = hw->dev[port];
3357
3358		if (netif_running(dev)) {
3359			struct skge_port *skge = netdev_priv(dev);
3360
3361			spin_lock(&hw->phy_lock);
3362			if (!is_genesis(hw))
3363				yukon_phy_intr(skge);
3364			else if (hw->phy_type == SK_PHY_BCOM)
3365				bcom_phy_intr(skge);
3366			spin_unlock(&hw->phy_lock);
3367		}
3368	}
3369
3370	spin_lock_irq(&hw->hw_lock);
3371	hw->intr_mask |= IS_EXT_REG;
3372	skge_write32(hw, B0_IMSK, hw->intr_mask);
3373	skge_read32(hw, B0_IMSK);
3374	spin_unlock_irq(&hw->hw_lock);
3375}
3376
3377static irqreturn_t skge_intr(int irq, void *dev_id)
3378{
3379	struct skge_hw *hw = dev_id;
3380	u32 status;
3381	int handled = 0;
3382
3383	spin_lock(&hw->hw_lock);
3384	/* Reading this register masks IRQ */
3385	status = skge_read32(hw, B0_SP_ISRC);
3386	if (status == 0 || status == ~0)
3387		goto out;
3388
3389	handled = 1;
3390	status &= hw->intr_mask;
3391	if (status & IS_EXT_REG) {
3392		hw->intr_mask &= ~IS_EXT_REG;
3393		tasklet_schedule(&hw->phy_task);
3394	}
3395
3396	if (status & (IS_XA1_F|IS_R1_F)) {
3397		struct skge_port *skge = netdev_priv(hw->dev[0]);
3398		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3399		napi_schedule(&skge->napi);
3400	}
3401
3402	if (status & IS_PA_TO_TX1)
3403		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3404
3405	if (status & IS_PA_TO_RX1) {
3406		++hw->dev[0]->stats.rx_over_errors;
3407		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3408	}
3409
3410
3411	if (status & IS_MAC1)
3412		skge_mac_intr(hw, 0);
3413
3414	if (hw->dev[1]) {
3415		struct skge_port *skge = netdev_priv(hw->dev[1]);
3416
3417		if (status & (IS_XA2_F|IS_R2_F)) {
3418			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3419			napi_schedule(&skge->napi);
3420		}
3421
3422		if (status & IS_PA_TO_RX2) {
3423			++hw->dev[1]->stats.rx_over_errors;
3424			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3425		}
3426
3427		if (status & IS_PA_TO_TX2)
3428			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3429
3430		if (status & IS_MAC2)
3431			skge_mac_intr(hw, 1);
3432	}
3433
3434	if (status & IS_HW_ERR)
3435		skge_error_irq(hw);
3436out:
3437	skge_write32(hw, B0_IMSK, hw->intr_mask);
3438	skge_read32(hw, B0_IMSK);
3439	spin_unlock(&hw->hw_lock);
3440
3441	return IRQ_RETVAL(handled);
3442}
3443
3444#ifdef CONFIG_NET_POLL_CONTROLLER
3445static void skge_netpoll(struct net_device *dev)
3446{
3447	struct skge_port *skge = netdev_priv(dev);
3448
3449	disable_irq(dev->irq);
3450	skge_intr(dev->irq, skge->hw);
3451	enable_irq(dev->irq);
3452}
3453#endif
3454
3455static int skge_set_mac_address(struct net_device *dev, void *p)
3456{
3457	struct skge_port *skge = netdev_priv(dev);
3458	struct skge_hw *hw = skge->hw;
3459	unsigned port = skge->port;
3460	const struct sockaddr *addr = p;
3461	u16 ctrl;
3462
3463	if (!is_valid_ether_addr(addr->sa_data))
3464		return -EADDRNOTAVAIL;
3465
3466	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3467
3468	if (!netif_running(dev)) {
3469		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3470		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471	} else {
3472		/* disable Rx */
3473		spin_lock_bh(&hw->phy_lock);
3474		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3475		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3476
3477		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3478		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3479
3480		if (is_genesis(hw))
3481			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3482		else {
3483			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3484			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3485		}
3486
3487		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3488		spin_unlock_bh(&hw->phy_lock);
3489	}
3490
3491	return 0;
3492}
3493
3494static const struct {
3495	u8 id;
3496	const char *name;
3497} skge_chips[] = {
3498	{ CHIP_ID_GENESIS,	"Genesis" },
3499	{ CHIP_ID_YUKON,	 "Yukon" },
3500	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3501	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3502};
3503
3504static const char *skge_board_name(const struct skge_hw *hw)
3505{
3506	int i;
3507	static char buf[16];
3508
3509	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3510		if (skge_chips[i].id == hw->chip_id)
3511			return skge_chips[i].name;
3512
3513	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3514	return buf;
3515}
3516
3517
3518/*
3519 * Setup the board data structure, but don't bring up
3520 * the port(s)
3521 */
3522static int skge_reset(struct skge_hw *hw)
3523{
3524	u32 reg;
3525	u16 ctst, pci_status;
3526	u8 t8, mac_cfg, pmd_type;
3527	int i;
3528
3529	ctst = skge_read16(hw, B0_CTST);
3530
3531	/* do a SW reset */
3532	skge_write8(hw, B0_CTST, CS_RST_SET);
3533	skge_write8(hw, B0_CTST, CS_RST_CLR);
3534
3535	/* clear PCI errors, if any */
3536	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3537	skge_write8(hw, B2_TST_CTRL2, 0);
3538
3539	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3540	pci_write_config_word(hw->pdev, PCI_STATUS,
3541			      pci_status | PCI_STATUS_ERROR_BITS);
3542	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3543	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3544
3545	/* restore CLK_RUN bits (for Yukon-Lite) */
3546	skge_write16(hw, B0_CTST,
3547		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3548
3549	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3550	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3551	pmd_type = skge_read8(hw, B2_PMD_TYP);
3552	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3553
3554	switch (hw->chip_id) {
3555	case CHIP_ID_GENESIS:
3556#ifdef CONFIG_SKGE_GENESIS
3557		switch (hw->phy_type) {
3558		case SK_PHY_XMAC:
3559			hw->phy_addr = PHY_ADDR_XMAC;
3560			break;
3561		case SK_PHY_BCOM:
3562			hw->phy_addr = PHY_ADDR_BCOM;
3563			break;
3564		default:
3565			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3566			       hw->phy_type);
3567			return -EOPNOTSUPP;
3568		}
3569		break;
3570#else
3571		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3572		return -EOPNOTSUPP;
3573#endif
3574
3575	case CHIP_ID_YUKON:
3576	case CHIP_ID_YUKON_LITE:
3577	case CHIP_ID_YUKON_LP:
3578		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3579			hw->copper = 1;
3580
3581		hw->phy_addr = PHY_ADDR_MARV;
3582		break;
3583
3584	default:
3585		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3586		       hw->chip_id);
3587		return -EOPNOTSUPP;
3588	}
3589
3590	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3591	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3592	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3593
3594	/* read the adapters RAM size */
3595	t8 = skge_read8(hw, B2_E_0);
3596	if (is_genesis(hw)) {
3597		if (t8 == 3) {
3598			/* special case: 4 x 64k x 36, offset = 0x80000 */
3599			hw->ram_size = 0x100000;
3600			hw->ram_offset = 0x80000;
3601		} else
3602			hw->ram_size = t8 * 512;
3603	} else if (t8 == 0)
3604		hw->ram_size = 0x20000;
3605	else
3606		hw->ram_size = t8 * 4096;
3607
3608	hw->intr_mask = IS_HW_ERR;
3609
3610	/* Use PHY IRQ for all but fiber based Genesis board */
3611	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3612		hw->intr_mask |= IS_EXT_REG;
3613
3614	if (is_genesis(hw))
3615		genesis_init(hw);
3616	else {
3617		/* switch power to VCC (WA for VAUX problem) */
3618		skge_write8(hw, B0_POWER_CTRL,
3619			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3620
3621		/* avoid boards with stuck Hardware error bits */
3622		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3623		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3624			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3625			hw->intr_mask &= ~IS_HW_ERR;
3626		}
3627
3628		/* Clear PHY COMA */
3629		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3630		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3631		reg &= ~PCI_PHY_COMA;
3632		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3633		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3634
3635
3636		for (i = 0; i < hw->ports; i++) {
3637			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3638			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3639		}
3640	}
3641
3642	/* turn off hardware timer (unused) */
3643	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3644	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3645	skge_write8(hw, B0_LED, LED_STAT_ON);
3646
3647	/* enable the Tx Arbiters */
3648	for (i = 0; i < hw->ports; i++)
3649		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3650
3651	/* Initialize ram interface */
3652	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3653
3654	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3655	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3656	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3657	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3658	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3659	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3660	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3661	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3662	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3663	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3664	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3665	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3666
3667	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3668
3669	/* Set interrupt moderation for Transmit only
3670	 * Receive interrupts avoided by NAPI
3671	 */
3672	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3673	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3674	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3675
3676	/* Leave irq disabled until first port is brought up. */
3677	skge_write32(hw, B0_IMSK, 0);
3678
3679	for (i = 0; i < hw->ports; i++) {
3680		if (is_genesis(hw))
3681			genesis_reset(hw, i);
3682		else
3683			yukon_reset(hw, i);
3684	}
3685
3686	return 0;
3687}
3688
3689
3690#ifdef CONFIG_SKGE_DEBUG
3691
3692static struct dentry *skge_debug;
3693
3694static int skge_debug_show(struct seq_file *seq, void *v)
3695{
3696	struct net_device *dev = seq->private;
3697	const struct skge_port *skge = netdev_priv(dev);
3698	const struct skge_hw *hw = skge->hw;
3699	const struct skge_element *e;
3700
3701	if (!netif_running(dev))
3702		return -ENETDOWN;
3703
3704	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3705		   skge_read32(hw, B0_IMSK));
3706
3707	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3708	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3709		const struct skge_tx_desc *t = e->desc;
3710		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3711			   t->control, t->dma_hi, t->dma_lo, t->status,
3712			   t->csum_offs, t->csum_write, t->csum_start);
3713	}
3714
3715	seq_printf(seq, "\nRx Ring:\n");
3716	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3717		const struct skge_rx_desc *r = e->desc;
3718
3719		if (r->control & BMU_OWN)
3720			break;
3721
3722		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3723			   r->control, r->dma_hi, r->dma_lo, r->status,
3724			   r->timestamp, r->csum1, r->csum1_start);
3725	}
3726
3727	return 0;
3728}
3729
3730static int skge_debug_open(struct inode *inode, struct file *file)
3731{
3732	return single_open(file, skge_debug_show, inode->i_private);
3733}
3734
3735static const struct file_operations skge_debug_fops = {
3736	.owner		= THIS_MODULE,
3737	.open		= skge_debug_open,
3738	.read		= seq_read,
3739	.llseek		= seq_lseek,
3740	.release	= single_release,
3741};
3742
3743/*
3744 * Use network device events to create/remove/rename
3745 * debugfs file entries
3746 */
3747static int skge_device_event(struct notifier_block *unused,
3748			     unsigned long event, void *ptr)
3749{
3750	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3751	struct skge_port *skge;
3752	struct dentry *d;
3753
3754	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3755		goto done;
3756
3757	skge = netdev_priv(dev);
3758	switch (event) {
3759	case NETDEV_CHANGENAME:
3760		if (skge->debugfs) {
3761			d = debugfs_rename(skge_debug, skge->debugfs,
3762					   skge_debug, dev->name);
3763			if (d)
3764				skge->debugfs = d;
3765			else {
3766				netdev_info(dev, "rename failed\n");
3767				debugfs_remove(skge->debugfs);
3768			}
3769		}
3770		break;
3771
3772	case NETDEV_GOING_DOWN:
3773		if (skge->debugfs) {
3774			debugfs_remove(skge->debugfs);
3775			skge->debugfs = NULL;
3776		}
3777		break;
3778
3779	case NETDEV_UP:
3780		d = debugfs_create_file(dev->name, S_IRUGO,
3781					skge_debug, dev,
3782					&skge_debug_fops);
3783		if (!d || IS_ERR(d))
3784			netdev_info(dev, "debugfs create failed\n");
3785		else
3786			skge->debugfs = d;
3787		break;
3788	}
3789
3790done:
3791	return NOTIFY_DONE;
3792}
3793
3794static struct notifier_block skge_notifier = {
3795	.notifier_call = skge_device_event,
3796};
3797
3798
3799static __init void skge_debug_init(void)
3800{
3801	struct dentry *ent;
3802
3803	ent = debugfs_create_dir("skge", NULL);
3804	if (!ent || IS_ERR(ent)) {
3805		pr_info("debugfs create directory failed\n");
3806		return;
3807	}
3808
3809	skge_debug = ent;
3810	register_netdevice_notifier(&skge_notifier);
3811}
3812
3813static __exit void skge_debug_cleanup(void)
3814{
3815	if (skge_debug) {
3816		unregister_netdevice_notifier(&skge_notifier);
3817		debugfs_remove(skge_debug);
3818		skge_debug = NULL;
3819	}
3820}
3821
3822#else
3823#define skge_debug_init()
3824#define skge_debug_cleanup()
3825#endif
3826
3827static const struct net_device_ops skge_netdev_ops = {
3828	.ndo_open		= skge_up,
3829	.ndo_stop		= skge_down,
3830	.ndo_start_xmit		= skge_xmit_frame,
3831	.ndo_do_ioctl		= skge_ioctl,
3832	.ndo_get_stats		= skge_get_stats,
3833	.ndo_tx_timeout		= skge_tx_timeout,
3834	.ndo_change_mtu		= skge_change_mtu,
3835	.ndo_validate_addr	= eth_validate_addr,
3836	.ndo_set_rx_mode	= skge_set_multicast,
3837	.ndo_set_mac_address	= skge_set_mac_address,
3838#ifdef CONFIG_NET_POLL_CONTROLLER
3839	.ndo_poll_controller	= skge_netpoll,
3840#endif
3841};
3842
3843
3844/* Initialize network device */
3845static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3846				       int highmem)
3847{
3848	struct skge_port *skge;
3849	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3850
3851	if (!dev)
3852		return NULL;
3853
3854	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3855	dev->netdev_ops = &skge_netdev_ops;
3856	dev->ethtool_ops = &skge_ethtool_ops;
3857	dev->watchdog_timeo = TX_WATCHDOG;
3858	dev->irq = hw->pdev->irq;
3859
3860	if (highmem)
3861		dev->features |= NETIF_F_HIGHDMA;
3862
3863	skge = netdev_priv(dev);
3864	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3865	skge->netdev = dev;
3866	skge->hw = hw;
3867	skge->msg_enable = netif_msg_init(debug, default_msg);
3868
3869	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3870	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3871
3872	/* Auto speed and flow control */
3873	skge->autoneg = AUTONEG_ENABLE;
3874	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3875	skge->duplex = -1;
3876	skge->speed = -1;
3877	skge->advertising = skge_supported_modes(hw);
3878
3879	if (device_can_wakeup(&hw->pdev->dev)) {
3880		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3881		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3882	}
3883
3884	hw->dev[port] = dev;
3885
3886	skge->port = port;
3887
3888	/* Only used for Genesis XMAC */
3889	if (is_genesis(hw))
3890	    setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3891	else {
3892		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3893		                   NETIF_F_RXCSUM;
3894		dev->features |= dev->hw_features;
3895	}
3896
3897	/* read the mac address */
3898	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3899
3900	return dev;
3901}
3902
3903static void skge_show_addr(struct net_device *dev)
3904{
3905	const struct skge_port *skge = netdev_priv(dev);
3906
3907	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3908}
3909
3910static int only_32bit_dma;
3911
3912static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3913{
3914	struct net_device *dev, *dev1;
3915	struct skge_hw *hw;
3916	int err, using_dac = 0;
3917
3918	err = pci_enable_device(pdev);
3919	if (err) {
3920		dev_err(&pdev->dev, "cannot enable PCI device\n");
3921		goto err_out;
3922	}
3923
3924	err = pci_request_regions(pdev, DRV_NAME);
3925	if (err) {
3926		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3927		goto err_out_disable_pdev;
3928	}
3929
3930	pci_set_master(pdev);
3931
3932	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3933		using_dac = 1;
3934		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3935	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3936		using_dac = 0;
3937		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3938	}
3939
3940	if (err) {
3941		dev_err(&pdev->dev, "no usable DMA configuration\n");
3942		goto err_out_free_regions;
3943	}
3944
3945#ifdef __BIG_ENDIAN
3946	/* byte swap descriptors in hardware */
3947	{
3948		u32 reg;
3949
3950		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3951		reg |= PCI_REV_DESC;
3952		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3953	}
3954#endif
3955
3956	err = -ENOMEM;
3957	/* space for skge@pci:0000:04:00.0 */
3958	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3959		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3960	if (!hw)
3961		goto err_out_free_regions;
3962
3963	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3964
3965	hw->pdev = pdev;
3966	spin_lock_init(&hw->hw_lock);
3967	spin_lock_init(&hw->phy_lock);
3968	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3969
3970	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3971	if (!hw->regs) {
3972		dev_err(&pdev->dev, "cannot map device registers\n");
3973		goto err_out_free_hw;
3974	}
3975
3976	err = skge_reset(hw);
3977	if (err)
3978		goto err_out_iounmap;
3979
3980	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3981		DRV_VERSION,
3982		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3983		skge_board_name(hw), hw->chip_rev);
3984
3985	dev = skge_devinit(hw, 0, using_dac);
3986	if (!dev) {
3987		err = -ENOMEM;
3988		goto err_out_led_off;
3989	}
3990
3991	/* Some motherboards are broken and has zero in ROM. */
3992	if (!is_valid_ether_addr(dev->dev_addr))
3993		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3994
3995	err = register_netdev(dev);
3996	if (err) {
3997		dev_err(&pdev->dev, "cannot register net device\n");
3998		goto err_out_free_netdev;
3999	}
4000
4001	skge_show_addr(dev);
4002
4003	if (hw->ports > 1) {
4004		dev1 = skge_devinit(hw, 1, using_dac);
4005		if (!dev1) {
4006			err = -ENOMEM;
4007			goto err_out_unregister;
4008		}
4009
4010		err = register_netdev(dev1);
4011		if (err) {
4012			dev_err(&pdev->dev, "cannot register second net device\n");
4013			goto err_out_free_dev1;
4014		}
4015
4016		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4017				  hw->irq_name, hw);
4018		if (err) {
4019			dev_err(&pdev->dev, "cannot assign irq %d\n",
4020				pdev->irq);
4021			goto err_out_unregister_dev1;
4022		}
4023
4024		skge_show_addr(dev1);
4025	}
4026	pci_set_drvdata(pdev, hw);
4027
4028	return 0;
4029
4030err_out_unregister_dev1:
4031	unregister_netdev(dev1);
4032err_out_free_dev1:
4033	free_netdev(dev1);
4034err_out_unregister:
4035	unregister_netdev(dev);
4036err_out_free_netdev:
4037	free_netdev(dev);
4038err_out_led_off:
4039	skge_write16(hw, B0_LED, LED_STAT_OFF);
4040err_out_iounmap:
4041	iounmap(hw->regs);
4042err_out_free_hw:
4043	kfree(hw);
4044err_out_free_regions:
4045	pci_release_regions(pdev);
4046err_out_disable_pdev:
4047	pci_disable_device(pdev);
4048err_out:
4049	return err;
4050}
4051
4052static void skge_remove(struct pci_dev *pdev)
4053{
4054	struct skge_hw *hw  = pci_get_drvdata(pdev);
4055	struct net_device *dev0, *dev1;
4056
4057	if (!hw)
4058		return;
4059
4060	dev1 = hw->dev[1];
4061	if (dev1)
4062		unregister_netdev(dev1);
4063	dev0 = hw->dev[0];
4064	unregister_netdev(dev0);
4065
4066	tasklet_kill(&hw->phy_task);
4067
4068	spin_lock_irq(&hw->hw_lock);
4069	hw->intr_mask = 0;
4070
4071	if (hw->ports > 1) {
4072		skge_write32(hw, B0_IMSK, 0);
4073		skge_read32(hw, B0_IMSK);
4074		free_irq(pdev->irq, hw);
4075	}
4076	spin_unlock_irq(&hw->hw_lock);
4077
4078	skge_write16(hw, B0_LED, LED_STAT_OFF);
4079	skge_write8(hw, B0_CTST, CS_RST_SET);
4080
4081	if (hw->ports > 1)
4082		free_irq(pdev->irq, hw);
4083	pci_release_regions(pdev);
4084	pci_disable_device(pdev);
4085	if (dev1)
4086		free_netdev(dev1);
4087	free_netdev(dev0);
4088
4089	iounmap(hw->regs);
4090	kfree(hw);
4091}
4092
4093#ifdef CONFIG_PM_SLEEP
4094static int skge_suspend(struct device *dev)
4095{
4096	struct pci_dev *pdev = to_pci_dev(dev);
4097	struct skge_hw *hw  = pci_get_drvdata(pdev);
4098	int i;
4099
4100	if (!hw)
4101		return 0;
4102
4103	for (i = 0; i < hw->ports; i++) {
4104		struct net_device *dev = hw->dev[i];
4105		struct skge_port *skge = netdev_priv(dev);
4106
4107		if (netif_running(dev))
4108			skge_down(dev);
4109
4110		if (skge->wol)
4111			skge_wol_init(skge);
4112	}
4113
4114	skge_write32(hw, B0_IMSK, 0);
4115
4116	return 0;
4117}
4118
4119static int skge_resume(struct device *dev)
4120{
4121	struct pci_dev *pdev = to_pci_dev(dev);
4122	struct skge_hw *hw  = pci_get_drvdata(pdev);
4123	int i, err;
4124
4125	if (!hw)
4126		return 0;
4127
4128	err = skge_reset(hw);
4129	if (err)
4130		goto out;
4131
4132	for (i = 0; i < hw->ports; i++) {
4133		struct net_device *dev = hw->dev[i];
4134
4135		if (netif_running(dev)) {
4136			err = skge_up(dev);
4137
4138			if (err) {
4139				netdev_err(dev, "could not up: %d\n", err);
4140				dev_close(dev);
4141				goto out;
4142			}
4143		}
4144	}
4145out:
4146	return err;
4147}
4148
4149static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4150#define SKGE_PM_OPS (&skge_pm_ops)
4151
4152#else
4153
4154#define SKGE_PM_OPS NULL
4155#endif /* CONFIG_PM_SLEEP */
4156
4157static void skge_shutdown(struct pci_dev *pdev)
4158{
4159	struct skge_hw *hw  = pci_get_drvdata(pdev);
4160	int i;
4161
4162	if (!hw)
4163		return;
4164
4165	for (i = 0; i < hw->ports; i++) {
4166		struct net_device *dev = hw->dev[i];
4167		struct skge_port *skge = netdev_priv(dev);
4168
4169		if (skge->wol)
4170			skge_wol_init(skge);
4171	}
4172
4173	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4174	pci_set_power_state(pdev, PCI_D3hot);
4175}
4176
4177static struct pci_driver skge_driver = {
4178	.name =         DRV_NAME,
4179	.id_table =     skge_id_table,
4180	.probe =        skge_probe,
4181	.remove =       skge_remove,
4182	.shutdown =	skge_shutdown,
4183	.driver.pm =	SKGE_PM_OPS,
4184};
4185
4186static struct dmi_system_id skge_32bit_dma_boards[] = {
4187	{
4188		.ident = "Gigabyte nForce boards",
4189		.matches = {
4190			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4191			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4192		},
4193	},
4194	{
4195		.ident = "ASUS P5NSLI",
4196		.matches = {
4197			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4198			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4199		},
4200	},
4201	{
4202		.ident = "FUJITSU SIEMENS A8NE-FM",
4203		.matches = {
4204			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4205			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4206		},
4207	},
4208	{}
4209};
4210
4211static int __init skge_init_module(void)
4212{
4213	if (dmi_check_system(skge_32bit_dma_boards))
4214		only_32bit_dma = 1;
4215	skge_debug_init();
4216	return pci_register_driver(&skge_driver);
4217}
4218
4219static void __exit skge_cleanup_module(void)
4220{
4221	pci_unregister_driver(&skge_driver);
4222	skge_debug_cleanup();
4223}
4224
4225module_init(skge_init_module);
4226module_exit(skge_cleanup_module);
4227