1/*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
11 */
12
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/platform_device.h>
17#include <linux/skbuff.h>
18#include <linux/inetdevice.h>
19#include <linux/mbus.h>
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/cpumask.h>
23#include <linux/of.h>
24#include <linux/of_irq.h>
25#include <linux/of_mdio.h>
26#include <linux/of_net.h>
27#include <linux/of_address.h>
28#include <linux/phy.h>
29#include <linux/clk.h>
30#include <uapi/linux/ppp_defs.h>
31#include <net/ip.h>
32#include <net/ipv6.h>
33
34/* RX Fifo Registers */
35#define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
36#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
37#define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
38#define MVPP2_RX_FIFO_INIT_REG			0x64
39
40/* RX DMA Top Registers */
41#define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
42#define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
43#define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
44#define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
45#define     MVPP2_POOL_BUF_SIZE_OFFSET		5
46#define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
47#define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
48#define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
49#define     MVPP2_RXQ_POOL_SHORT_OFFS		20
50#define     MVPP2_RXQ_POOL_SHORT_MASK		0x700000
51#define     MVPP2_RXQ_POOL_LONG_OFFS		24
52#define     MVPP2_RXQ_POOL_LONG_MASK		0x7000000
53#define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
54#define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
55#define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
56
57/* Parser Registers */
58#define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
59#define     MVPP2_PRS_PORT_LU_MAX		0xf
60#define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
61#define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
62#define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
63#define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
64#define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
65#define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
66#define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
67#define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
68#define MVPP2_PRS_TCAM_IDX_REG			0x1100
69#define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
70#define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
71#define MVPP2_PRS_SRAM_IDX_REG			0x1200
72#define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
73#define MVPP2_PRS_TCAM_CTRL_REG			0x1230
74#define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
75
76/* Classifier Registers */
77#define MVPP2_CLS_MODE_REG			0x1800
78#define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
79#define MVPP2_CLS_PORT_WAY_REG			0x1810
80#define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
81#define MVPP2_CLS_LKP_INDEX_REG			0x1814
82#define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
83#define MVPP2_CLS_LKP_TBL_REG			0x1818
84#define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
85#define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
86#define MVPP2_CLS_FLOW_INDEX_REG		0x1820
87#define MVPP2_CLS_FLOW_TBL0_REG			0x1824
88#define MVPP2_CLS_FLOW_TBL1_REG			0x1828
89#define MVPP2_CLS_FLOW_TBL2_REG			0x182c
90#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
91#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
92#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
93#define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
94#define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
95#define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
96
97/* Descriptor Manager Top Registers */
98#define MVPP2_RXQ_NUM_REG			0x2040
99#define MVPP2_RXQ_DESC_ADDR_REG			0x2044
100#define MVPP2_RXQ_DESC_SIZE_REG			0x2048
101#define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
102#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
103#define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
104#define     MVPP2_RXQ_NUM_NEW_OFFSET		16
105#define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
106#define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
107#define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
108#define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
109#define MVPP2_RXQ_THRESH_REG			0x204c
110#define     MVPP2_OCCUPIED_THRESH_OFFSET	0
111#define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
112#define MVPP2_RXQ_INDEX_REG			0x2050
113#define MVPP2_TXQ_NUM_REG			0x2080
114#define MVPP2_TXQ_DESC_ADDR_REG			0x2084
115#define MVPP2_TXQ_DESC_SIZE_REG			0x2088
116#define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
117#define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
118#define MVPP2_TXQ_THRESH_REG			0x2094
119#define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
120#define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
121#define MVPP2_TXQ_INDEX_REG			0x2098
122#define MVPP2_TXQ_PREF_BUF_REG			0x209c
123#define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
124#define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
125#define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
126#define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
127#define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
128#define MVPP2_TXQ_PENDING_REG			0x20a0
129#define     MVPP2_TXQ_PENDING_MASK		0x3fff
130#define MVPP2_TXQ_INT_STATUS_REG		0x20a4
131#define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
132#define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
133#define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
134#define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
135#define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
136#define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
137#define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
138#define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
139#define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
140#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
141#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
142#define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
143#define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
144#define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
145#define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
146
147/* MBUS bridge registers */
148#define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
149#define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
150#define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
151#define MVPP2_BASE_ADDR_ENABLE			0x4060
152
153/* Interrupt Cause and Mask registers */
154#define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
155#define MVPP2_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
156#define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
157#define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
158#define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
159#define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
160#define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
161#define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
162#define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
163#define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
164#define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
165#define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
166#define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
167#define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
168#define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
169#define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
170#define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
171#define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
172#define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
173#define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
174
175/* Buffer Manager registers */
176#define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
177#define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
178#define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
179#define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
180#define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
181#define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
182#define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
183#define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
184#define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
185#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
186#define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
187#define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
188#define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
189#define     MVPP2_BM_START_MASK			BIT(0)
190#define     MVPP2_BM_STOP_MASK			BIT(1)
191#define     MVPP2_BM_STATE_MASK			BIT(4)
192#define     MVPP2_BM_LOW_THRESH_OFFS		8
193#define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
194#define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
195						MVPP2_BM_LOW_THRESH_OFFS)
196#define     MVPP2_BM_HIGH_THRESH_OFFS		16
197#define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
198#define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
199						MVPP2_BM_HIGH_THRESH_OFFS)
200#define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
201#define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
202#define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
203#define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
204#define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
205#define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
206#define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
207#define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
208#define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
209#define MVPP2_BM_VIRT_ALLOC_REG			0x6440
210#define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
211#define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
212#define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
213#define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
214#define MVPP2_BM_VIRT_RLS_REG			0x64c0
215#define MVPP2_BM_MC_RLS_REG			0x64c4
216#define     MVPP2_BM_MC_ID_MASK			0xfff
217#define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
218
219/* TX Scheduler registers */
220#define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
221#define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
222#define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
223#define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
224#define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
225#define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
226#define MVPP2_TXP_SCHED_MTU_REG			0x801c
227#define     MVPP2_TXP_MTU_MAX			0x7FFFF
228#define MVPP2_TXP_SCHED_REFILL_REG		0x8020
229#define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
230#define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
231#define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
232#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
233#define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
234#define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
235#define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
236#define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
237#define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
238#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
239#define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
240#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
241#define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
242
243/* TX general registers */
244#define MVPP2_TX_SNOOP_REG			0x8800
245#define MVPP2_TX_PORT_FLUSH_REG			0x8810
246#define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
247
248/* LMS registers */
249#define MVPP2_SRC_ADDR_MIDDLE			0x24
250#define MVPP2_SRC_ADDR_HIGH			0x28
251#define MVPP2_PHY_AN_CFG0_REG			0x34
252#define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
253#define MVPP2_MIB_COUNTERS_BASE(port)		(0x1000 + ((port) >> 1) * \
254						0x400 + (port) * 0x400)
255#define     MVPP2_MIB_LATE_COLLISION		0x7c
256#define MVPP2_ISR_SUM_MASK_REG			0x220c
257#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
258#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT		0x27
259
260/* Per-port registers */
261#define MVPP2_GMAC_CTRL_0_REG			0x0
262#define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
263#define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
264#define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
265#define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
266#define MVPP2_GMAC_CTRL_1_REG			0x4
267#define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
268#define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
269#define      MVPP2_GMAC_PCS_LB_EN_BIT		6
270#define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
271#define      MVPP2_GMAC_SA_LOW_OFFS		7
272#define MVPP2_GMAC_CTRL_2_REG			0x8
273#define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
274#define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
275#define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
276#define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
277#define MVPP2_GMAC_AUTONEG_CONFIG		0xc
278#define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
279#define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
280#define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
281#define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
282#define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
283#define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
284#define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
285#define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
286#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
287#define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
288#define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
289#define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
290					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
291
292#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
293
294/* Descriptor ring Macros */
295#define MVPP2_QUEUE_NEXT_DESC(q, index) \
296	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
297
298/* Various constants */
299
300/* Coalescing */
301#define MVPP2_TXDONE_COAL_PKTS_THRESH	15
302#define MVPP2_RX_COAL_PKTS		32
303#define MVPP2_RX_COAL_USEC		100
304
305/* The two bytes Marvell header. Either contains a special value used
306 * by Marvell switches when a specific hardware mode is enabled (not
307 * supported by this driver) or is filled automatically by zeroes on
308 * the RX side. Those two bytes being at the front of the Ethernet
309 * header, they allow to have the IP header aligned on a 4 bytes
310 * boundary automatically: the hardware skips those two bytes on its
311 * own.
312 */
313#define MVPP2_MH_SIZE			2
314#define MVPP2_ETH_TYPE_LEN		2
315#define MVPP2_PPPOE_HDR_SIZE		8
316#define MVPP2_VLAN_TAG_LEN		4
317
318/* Lbtd 802.3 type */
319#define MVPP2_IP_LBDT_TYPE		0xfffa
320
321#define MVPP2_CPU_D_CACHE_LINE_SIZE	32
322#define MVPP2_TX_CSUM_MAX_SIZE		9800
323
324/* Timeout constants */
325#define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
326#define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
327
328#define MVPP2_TX_MTU_MAX		0x7ffff
329
330/* Maximum number of T-CONTs of PON port */
331#define MVPP2_MAX_TCONT			16
332
333/* Maximum number of supported ports */
334#define MVPP2_MAX_PORTS			4
335
336/* Maximum number of TXQs used by single port */
337#define MVPP2_MAX_TXQ			8
338
339/* Maximum number of RXQs used by single port */
340#define MVPP2_MAX_RXQ			8
341
342/* Dfault number of RXQs in use */
343#define MVPP2_DEFAULT_RXQ		4
344
345/* Total number of RXQs available to all ports */
346#define MVPP2_RXQ_TOTAL_NUM		(MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
347
348/* Max number of Rx descriptors */
349#define MVPP2_MAX_RXD			128
350
351/* Max number of Tx descriptors */
352#define MVPP2_MAX_TXD			1024
353
354/* Amount of Tx descriptors that can be reserved at once by CPU */
355#define MVPP2_CPU_DESC_CHUNK		64
356
357/* Max number of Tx descriptors in each aggregated queue */
358#define MVPP2_AGGR_TXQ_SIZE		256
359
360/* Descriptor aligned size */
361#define MVPP2_DESC_ALIGNED_SIZE		32
362
363/* Descriptor alignment mask */
364#define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
365
366/* RX FIFO constants */
367#define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
368#define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
369#define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80
370
371/* RX buffer constants */
372#define MVPP2_SKB_SHINFO_SIZE \
373	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
374
375#define MVPP2_RX_PKT_SIZE(mtu) \
376	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
377	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
378
379#define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
380#define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
381#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
382	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
383
384#define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
385
386/* IPv6 max L3 address size */
387#define MVPP2_MAX_L3_ADDR_SIZE		16
388
389/* Port flags */
390#define MVPP2_F_LOOPBACK		BIT(0)
391
392/* Marvell tag types */
393enum mvpp2_tag_type {
394	MVPP2_TAG_TYPE_NONE = 0,
395	MVPP2_TAG_TYPE_MH   = 1,
396	MVPP2_TAG_TYPE_DSA  = 2,
397	MVPP2_TAG_TYPE_EDSA = 3,
398	MVPP2_TAG_TYPE_VLAN = 4,
399	MVPP2_TAG_TYPE_LAST = 5
400};
401
402/* Parser constants */
403#define MVPP2_PRS_TCAM_SRAM_SIZE	256
404#define MVPP2_PRS_TCAM_WORDS		6
405#define MVPP2_PRS_SRAM_WORDS		4
406#define MVPP2_PRS_FLOW_ID_SIZE		64
407#define MVPP2_PRS_FLOW_ID_MASK		0x3f
408#define MVPP2_PRS_TCAM_ENTRY_INVALID	1
409#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
410#define MVPP2_PRS_IPV4_HEAD		0x40
411#define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
412#define MVPP2_PRS_IPV4_MC		0xe0
413#define MVPP2_PRS_IPV4_MC_MASK		0xf0
414#define MVPP2_PRS_IPV4_BC_MASK		0xff
415#define MVPP2_PRS_IPV4_IHL		0x5
416#define MVPP2_PRS_IPV4_IHL_MASK		0xf
417#define MVPP2_PRS_IPV6_MC		0xff
418#define MVPP2_PRS_IPV6_MC_MASK		0xff
419#define MVPP2_PRS_IPV6_HOP_MASK		0xff
420#define MVPP2_PRS_TCAM_PROTO_MASK	0xff
421#define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
422#define MVPP2_PRS_DBL_VLANS_MAX		100
423
424/* Tcam structure:
425 * - lookup ID - 4 bits
426 * - port ID - 1 byte
427 * - additional information - 1 byte
428 * - header data - 8 bytes
429 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
430 */
431#define MVPP2_PRS_AI_BITS			8
432#define MVPP2_PRS_PORT_MASK			0xff
433#define MVPP2_PRS_LU_MASK			0xf
434#define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
435				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
436#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
437					      (((offs) * 2) - ((offs) % 2)  + 2)
438#define MVPP2_PRS_TCAM_AI_BYTE			16
439#define MVPP2_PRS_TCAM_PORT_BYTE		17
440#define MVPP2_PRS_TCAM_LU_BYTE			20
441#define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
442#define MVPP2_PRS_TCAM_INV_WORD			5
443/* Tcam entries ID */
444#define MVPP2_PE_DROP_ALL		0
445#define MVPP2_PE_FIRST_FREE_TID		1
446#define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
447#define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
448#define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
449#define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
450#define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
451#define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
452#define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
453#define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
454#define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
455#define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
456#define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
457#define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
458#define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
459#define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
460#define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
461#define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
462#define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
463#define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
464#define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
465#define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
466#define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
467#define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
468#define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
469#define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
470#define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
471
472/* Sram structure
473 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
474 */
475#define MVPP2_PRS_SRAM_RI_OFFS			0
476#define MVPP2_PRS_SRAM_RI_WORD			0
477#define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
478#define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
479#define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
480#define MVPP2_PRS_SRAM_SHIFT_OFFS		64
481#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
482#define MVPP2_PRS_SRAM_UDF_OFFS			73
483#define MVPP2_PRS_SRAM_UDF_BITS			8
484#define MVPP2_PRS_SRAM_UDF_MASK			0xff
485#define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
486#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
487#define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
488#define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
489#define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
490#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
491#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
492#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
493#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
494#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
495#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
496#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
497#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
498#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
499#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
500#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
501#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
502#define MVPP2_PRS_SRAM_AI_OFFS			90
503#define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
504#define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
505#define MVPP2_PRS_SRAM_AI_MASK			0xff
506#define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
507#define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
508#define MVPP2_PRS_SRAM_LU_DONE_BIT		110
509#define MVPP2_PRS_SRAM_LU_GEN_BIT		111
510
511/* Sram result info bits assignment */
512#define MVPP2_PRS_RI_MAC_ME_MASK		0x1
513#define MVPP2_PRS_RI_DSA_MASK			0x2
514#define MVPP2_PRS_RI_VLAN_MASK			0xc
515#define MVPP2_PRS_RI_VLAN_NONE			~(BIT(2) | BIT(3))
516#define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
517#define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
518#define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
519#define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
520#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
521#define MVPP2_PRS_RI_L2_CAST_MASK		0x600
522#define MVPP2_PRS_RI_L2_UCAST			~(BIT(9) | BIT(10))
523#define MVPP2_PRS_RI_L2_MCAST			BIT(9)
524#define MVPP2_PRS_RI_L2_BCAST			BIT(10)
525#define MVPP2_PRS_RI_PPPOE_MASK			0x800
526#define MVPP2_PRS_RI_L3_PROTO_MASK		0x7000
527#define MVPP2_PRS_RI_L3_UN			~(BIT(12) | BIT(13) | BIT(14))
528#define MVPP2_PRS_RI_L3_IP4			BIT(12)
529#define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
530#define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
531#define MVPP2_PRS_RI_L3_IP6			BIT(14)
532#define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
533#define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
534#define MVPP2_PRS_RI_L3_ADDR_MASK		0x18000
535#define MVPP2_PRS_RI_L3_UCAST			~(BIT(15) | BIT(16))
536#define MVPP2_PRS_RI_L3_MCAST			BIT(15)
537#define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
538#define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
539#define MVPP2_PRS_RI_UDF3_MASK			0x300000
540#define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
541#define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
542#define MVPP2_PRS_RI_L4_TCP			BIT(22)
543#define MVPP2_PRS_RI_L4_UDP			BIT(23)
544#define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
545#define MVPP2_PRS_RI_UDF7_MASK			0x60000000
546#define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
547#define MVPP2_PRS_RI_DROP_MASK			0x80000000
548
549/* Sram additional info bits assignment */
550#define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
551#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
552#define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
553#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
554#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
555#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
556#define MVPP2_PRS_SINGLE_VLAN_AI		0
557#define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
558
559/* DSA/EDSA type */
560#define MVPP2_PRS_TAGGED		true
561#define MVPP2_PRS_UNTAGGED		false
562#define MVPP2_PRS_EDSA			true
563#define MVPP2_PRS_DSA			false
564
565/* MAC entries, shadow udf */
566enum mvpp2_prs_udf {
567	MVPP2_PRS_UDF_MAC_DEF,
568	MVPP2_PRS_UDF_MAC_RANGE,
569	MVPP2_PRS_UDF_L2_DEF,
570	MVPP2_PRS_UDF_L2_DEF_COPY,
571	MVPP2_PRS_UDF_L2_USER,
572};
573
574/* Lookup ID */
575enum mvpp2_prs_lookup {
576	MVPP2_PRS_LU_MH,
577	MVPP2_PRS_LU_MAC,
578	MVPP2_PRS_LU_DSA,
579	MVPP2_PRS_LU_VLAN,
580	MVPP2_PRS_LU_L2,
581	MVPP2_PRS_LU_PPPOE,
582	MVPP2_PRS_LU_IP4,
583	MVPP2_PRS_LU_IP6,
584	MVPP2_PRS_LU_FLOWS,
585	MVPP2_PRS_LU_LAST,
586};
587
588/* L3 cast enum */
589enum mvpp2_prs_l3_cast {
590	MVPP2_PRS_L3_UNI_CAST,
591	MVPP2_PRS_L3_MULTI_CAST,
592	MVPP2_PRS_L3_BROAD_CAST
593};
594
595/* Classifier constants */
596#define MVPP2_CLS_FLOWS_TBL_SIZE	512
597#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
598#define MVPP2_CLS_LKP_TBL_SIZE		64
599
600/* BM constants */
601#define MVPP2_BM_POOLS_NUM		8
602#define MVPP2_BM_LONG_BUF_NUM		1024
603#define MVPP2_BM_SHORT_BUF_NUM		2048
604#define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
605#define MVPP2_BM_POOL_PTR_ALIGN		128
606#define MVPP2_BM_SWF_LONG_POOL(port)	((port > 2) ? 2 : port)
607#define MVPP2_BM_SWF_SHORT_POOL		3
608
609/* BM cookie (32 bits) definition */
610#define MVPP2_BM_COOKIE_POOL_OFFS	8
611#define MVPP2_BM_COOKIE_CPU_OFFS	24
612
613/* BM short pool packet size
614 * These value assure that for SWF the total number
615 * of bytes allocated for each buffer will be 512
616 */
617#define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
618
619enum mvpp2_bm_type {
620	MVPP2_BM_FREE,
621	MVPP2_BM_SWF_LONG,
622	MVPP2_BM_SWF_SHORT
623};
624
625/* Definitions */
626
627/* Shared Packet Processor resources */
628struct mvpp2 {
629	/* Shared registers' base addresses */
630	void __iomem *base;
631	void __iomem *lms_base;
632
633	/* Common clocks */
634	struct clk *pp_clk;
635	struct clk *gop_clk;
636
637	/* List of pointers to port structures */
638	struct mvpp2_port **port_list;
639
640	/* Aggregated TXQs */
641	struct mvpp2_tx_queue *aggr_txqs;
642
643	/* BM pools */
644	struct mvpp2_bm_pool *bm_pools;
645
646	/* PRS shadow table */
647	struct mvpp2_prs_shadow *prs_shadow;
648	/* PRS auxiliary table for double vlan entries control */
649	bool *prs_double_vlans;
650
651	/* Tclk value */
652	u32 tclk;
653};
654
655struct mvpp2_pcpu_stats {
656	struct	u64_stats_sync syncp;
657	u64	rx_packets;
658	u64	rx_bytes;
659	u64	tx_packets;
660	u64	tx_bytes;
661};
662
663struct mvpp2_port {
664	u8 id;
665
666	int irq;
667
668	struct mvpp2 *priv;
669
670	/* Per-port registers' base address */
671	void __iomem *base;
672
673	struct mvpp2_rx_queue **rxqs;
674	struct mvpp2_tx_queue **txqs;
675	struct net_device *dev;
676
677	int pkt_size;
678
679	u32 pending_cause_rx;
680	struct napi_struct napi;
681
682	/* Flags */
683	unsigned long flags;
684
685	u16 tx_ring_size;
686	u16 rx_ring_size;
687	struct mvpp2_pcpu_stats __percpu *stats;
688
689	struct phy_device *phy_dev;
690	phy_interface_t phy_interface;
691	struct device_node *phy_node;
692	unsigned int link;
693	unsigned int duplex;
694	unsigned int speed;
695
696	struct mvpp2_bm_pool *pool_long;
697	struct mvpp2_bm_pool *pool_short;
698
699	/* Index of first port's physical RXQ */
700	u8 first_rxq;
701};
702
703/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
704 * layout of the transmit and reception DMA descriptors, and their
705 * layout is therefore defined by the hardware design
706 */
707
708#define MVPP2_TXD_L3_OFF_SHIFT		0
709#define MVPP2_TXD_IP_HLEN_SHIFT		8
710#define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
711#define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
712#define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
713#define MVPP2_TXD_PADDING_DISABLE	BIT(23)
714#define MVPP2_TXD_L4_UDP		BIT(24)
715#define MVPP2_TXD_L3_IP6		BIT(26)
716#define MVPP2_TXD_L_DESC		BIT(28)
717#define MVPP2_TXD_F_DESC		BIT(29)
718
719#define MVPP2_RXD_ERR_SUMMARY		BIT(15)
720#define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
721#define MVPP2_RXD_ERR_CRC		0x0
722#define MVPP2_RXD_ERR_OVERRUN		BIT(13)
723#define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
724#define MVPP2_RXD_BM_POOL_ID_OFFS	16
725#define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
726#define MVPP2_RXD_HWF_SYNC		BIT(21)
727#define MVPP2_RXD_L4_CSUM_OK		BIT(22)
728#define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
729#define MVPP2_RXD_L4_TCP		BIT(25)
730#define MVPP2_RXD_L4_UDP		BIT(26)
731#define MVPP2_RXD_L3_IP4		BIT(28)
732#define MVPP2_RXD_L3_IP6		BIT(30)
733#define MVPP2_RXD_BUF_HDR		BIT(31)
734
735struct mvpp2_tx_desc {
736	u32 command;		/* Options used by HW for packet transmitting.*/
737	u8  packet_offset;	/* the offset from the buffer beginning	*/
738	u8  phys_txq;		/* destination queue ID			*/
739	u16 data_size;		/* data size of transmitted packet in bytes */
740	u32 buf_phys_addr;	/* physical addr of transmitted buffer	*/
741	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
742	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
743	u32 reserved2;		/* reserved (for future use)		*/
744};
745
746struct mvpp2_rx_desc {
747	u32 status;		/* info about received packet		*/
748	u16 reserved1;		/* parser_info (for future use, PnC)	*/
749	u16 data_size;		/* size of received packet in bytes	*/
750	u32 buf_phys_addr;	/* physical address of the buffer	*/
751	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
752	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
753	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
754	u8  reserved4;		/* bm_qset (for future use, BM)		*/
755	u8  reserved5;
756	u16 reserved6;		/* classify_info (for future use, PnC)	*/
757	u32 reserved7;		/* flow_id (for future use, PnC) */
758	u32 reserved8;
759};
760
761/* Per-CPU Tx queue control */
762struct mvpp2_txq_pcpu {
763	int cpu;
764
765	/* Number of Tx DMA descriptors in the descriptor ring */
766	int size;
767
768	/* Number of currently used Tx DMA descriptor in the
769	 * descriptor ring
770	 */
771	int count;
772
773	/* Number of Tx DMA descriptors reserved for each CPU */
774	int reserved_num;
775
776	/* Array of transmitted skb */
777	struct sk_buff **tx_skb;
778
779	/* Index of last TX DMA descriptor that was inserted */
780	int txq_put_index;
781
782	/* Index of the TX DMA descriptor to be cleaned up */
783	int txq_get_index;
784};
785
786struct mvpp2_tx_queue {
787	/* Physical number of this Tx queue */
788	u8 id;
789
790	/* Logical number of this Tx queue */
791	u8 log_id;
792
793	/* Number of Tx DMA descriptors in the descriptor ring */
794	int size;
795
796	/* Number of currently used Tx DMA descriptor in the descriptor ring */
797	int count;
798
799	/* Per-CPU control of physical Tx queues */
800	struct mvpp2_txq_pcpu __percpu *pcpu;
801
802	/* Array of transmitted skb */
803	struct sk_buff **tx_skb;
804
805	u32 done_pkts_coal;
806
807	/* Virtual address of thex Tx DMA descriptors array */
808	struct mvpp2_tx_desc *descs;
809
810	/* DMA address of the Tx DMA descriptors array */
811	dma_addr_t descs_phys;
812
813	/* Index of the last Tx DMA descriptor */
814	int last_desc;
815
816	/* Index of the next Tx DMA descriptor to process */
817	int next_desc_to_proc;
818};
819
820struct mvpp2_rx_queue {
821	/* RX queue number, in the range 0-31 for physical RXQs */
822	u8 id;
823
824	/* Num of rx descriptors in the rx descriptor ring */
825	int size;
826
827	u32 pkts_coal;
828	u32 time_coal;
829
830	/* Virtual address of the RX DMA descriptors array */
831	struct mvpp2_rx_desc *descs;
832
833	/* DMA address of the RX DMA descriptors array */
834	dma_addr_t descs_phys;
835
836	/* Index of the last RX DMA descriptor */
837	int last_desc;
838
839	/* Index of the next RX DMA descriptor to process */
840	int next_desc_to_proc;
841
842	/* ID of port to which physical RXQ is mapped */
843	int port;
844
845	/* Port's logic RXQ number to which physical RXQ is mapped */
846	int logic_rxq;
847};
848
849union mvpp2_prs_tcam_entry {
850	u32 word[MVPP2_PRS_TCAM_WORDS];
851	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
852};
853
854union mvpp2_prs_sram_entry {
855	u32 word[MVPP2_PRS_SRAM_WORDS];
856	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
857};
858
859struct mvpp2_prs_entry {
860	u32 index;
861	union mvpp2_prs_tcam_entry tcam;
862	union mvpp2_prs_sram_entry sram;
863};
864
865struct mvpp2_prs_shadow {
866	bool valid;
867	bool finish;
868
869	/* Lookup ID */
870	int lu;
871
872	/* User defined offset */
873	int udf;
874
875	/* Result info */
876	u32 ri;
877	u32 ri_mask;
878};
879
880struct mvpp2_cls_flow_entry {
881	u32 index;
882	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
883};
884
885struct mvpp2_cls_lookup_entry {
886	u32 lkpid;
887	u32 way;
888	u32 data;
889};
890
891struct mvpp2_bm_pool {
892	/* Pool number in the range 0-7 */
893	int id;
894	enum mvpp2_bm_type type;
895
896	/* Buffer Pointers Pool External (BPPE) size */
897	int size;
898	/* Number of buffers for this pool */
899	int buf_num;
900	/* Pool buffer size */
901	int buf_size;
902	/* Packet size */
903	int pkt_size;
904
905	/* BPPE virtual base address */
906	u32 *virt_addr;
907	/* BPPE physical base address */
908	dma_addr_t phys_addr;
909
910	/* Ports using BM pool */
911	u32 port_map;
912
913	/* Occupied buffers indicator */
914	atomic_t in_use;
915	int in_use_thresh;
916
917	spinlock_t lock;
918};
919
920struct mvpp2_buff_hdr {
921	u32 next_buff_phys_addr;
922	u32 next_buff_virt_addr;
923	u16 byte_count;
924	u16 info;
925	u8  reserved1;		/* bm_qset (for future use, BM)		*/
926};
927
928/* Buffer header info bits */
929#define MVPP2_B_HDR_INFO_MC_ID_MASK	0xfff
930#define MVPP2_B_HDR_INFO_MC_ID(info)	((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
931#define MVPP2_B_HDR_INFO_LAST_OFFS	12
932#define MVPP2_B_HDR_INFO_LAST_MASK	BIT(12)
933#define MVPP2_B_HDR_INFO_IS_LAST(info) \
934	   ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
935
936/* Static declaractions */
937
938/* Number of RXQs used by single port */
939static int rxq_number = MVPP2_DEFAULT_RXQ;
940/* Number of TXQs used by single port */
941static int txq_number = MVPP2_MAX_TXQ;
942
943#define MVPP2_DRIVER_NAME "mvpp2"
944#define MVPP2_DRIVER_VERSION "1.0"
945
946/* Utility/helper methods */
947
948static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
949{
950	writel(data, priv->base + offset);
951}
952
953static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
954{
955	return readl(priv->base + offset);
956}
957
958static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
959{
960	txq_pcpu->txq_get_index++;
961	if (txq_pcpu->txq_get_index == txq_pcpu->size)
962		txq_pcpu->txq_get_index = 0;
963}
964
965static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
966			      struct sk_buff *skb)
967{
968	txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
969	txq_pcpu->txq_put_index++;
970	if (txq_pcpu->txq_put_index == txq_pcpu->size)
971		txq_pcpu->txq_put_index = 0;
972}
973
974/* Get number of physical egress port */
975static inline int mvpp2_egress_port(struct mvpp2_port *port)
976{
977	return MVPP2_MAX_TCONT + port->id;
978}
979
980/* Get number of physical TXQ */
981static inline int mvpp2_txq_phys(int port, int txq)
982{
983	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
984}
985
986/* Parser configuration routines */
987
988/* Update parser tcam and sram hw entries */
989static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
990{
991	int i;
992
993	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
994		return -EINVAL;
995
996	/* Clear entry invalidation bit */
997	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
998
999	/* Write tcam index - indirect access */
1000	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1001	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1002		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1003
1004	/* Write sram index - indirect access */
1005	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1006	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1007		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1008
1009	return 0;
1010}
1011
1012/* Read tcam entry from hw */
1013static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1014{
1015	int i;
1016
1017	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1018		return -EINVAL;
1019
1020	/* Write tcam index - indirect access */
1021	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1022
1023	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1024			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1025	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1026		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1027
1028	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1029		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1030
1031	/* Write sram index - indirect access */
1032	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1033	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1034		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1035
1036	return 0;
1037}
1038
1039/* Invalidate tcam hw entry */
1040static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1041{
1042	/* Write index - indirect access */
1043	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1044	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1045		    MVPP2_PRS_TCAM_INV_MASK);
1046}
1047
1048/* Enable shadow table entry and set its lookup ID */
1049static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1050{
1051	priv->prs_shadow[index].valid = true;
1052	priv->prs_shadow[index].lu = lu;
1053}
1054
1055/* Update ri fields in shadow table entry */
1056static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1057				    unsigned int ri, unsigned int ri_mask)
1058{
1059	priv->prs_shadow[index].ri_mask = ri_mask;
1060	priv->prs_shadow[index].ri = ri;
1061}
1062
1063/* Update lookup field in tcam sw entry */
1064static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1065{
1066	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1067
1068	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1069	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1070}
1071
1072/* Update mask for single port in tcam sw entry */
1073static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1074				    unsigned int port, bool add)
1075{
1076	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1077
1078	if (add)
1079		pe->tcam.byte[enable_off] &= ~(1 << port);
1080	else
1081		pe->tcam.byte[enable_off] |= 1 << port;
1082}
1083
1084/* Update port map in tcam sw entry */
1085static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1086					unsigned int ports)
1087{
1088	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1089	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1090
1091	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1092	pe->tcam.byte[enable_off] &= ~port_mask;
1093	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1094}
1095
1096/* Obtain port map from tcam sw entry */
1097static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1098{
1099	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1100
1101	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1102}
1103
1104/* Set byte of data and its enable bits in tcam sw entry */
1105static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1106					 unsigned int offs, unsigned char byte,
1107					 unsigned char enable)
1108{
1109	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1110	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1111}
1112
1113/* Get byte of data and its enable bits from tcam sw entry */
1114static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1115					 unsigned int offs, unsigned char *byte,
1116					 unsigned char *enable)
1117{
1118	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1119	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1120}
1121
1122/* Compare tcam data bytes with a pattern */
1123static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1124				    u16 data)
1125{
1126	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1127	u16 tcam_data;
1128
1129	tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1130	if (tcam_data != data)
1131		return false;
1132	return true;
1133}
1134
1135/* Update ai bits in tcam sw entry */
1136static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1137				     unsigned int bits, unsigned int enable)
1138{
1139	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1140
1141	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1142
1143		if (!(enable & BIT(i)))
1144			continue;
1145
1146		if (bits & BIT(i))
1147			pe->tcam.byte[ai_idx] |= 1 << i;
1148		else
1149			pe->tcam.byte[ai_idx] &= ~(1 << i);
1150	}
1151
1152	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1153}
1154
1155/* Get ai bits from tcam sw entry */
1156static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1157{
1158	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1159}
1160
1161/* Set ethertype in tcam sw entry */
1162static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1163				  unsigned short ethertype)
1164{
1165	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1166	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1167}
1168
1169/* Set bits in sram sw entry */
1170static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1171				    int val)
1172{
1173	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1174}
1175
1176/* Clear bits in sram sw entry */
1177static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1178				      int val)
1179{
1180	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1181}
1182
1183/* Update ri bits in sram sw entry */
1184static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1185				     unsigned int bits, unsigned int mask)
1186{
1187	unsigned int i;
1188
1189	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1190		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1191
1192		if (!(mask & BIT(i)))
1193			continue;
1194
1195		if (bits & BIT(i))
1196			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1197		else
1198			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1199
1200		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1201	}
1202}
1203
1204/* Obtain ri bits from sram sw entry */
1205static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1206{
1207	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1208}
1209
1210/* Update ai bits in sram sw entry */
1211static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1212				     unsigned int bits, unsigned int mask)
1213{
1214	unsigned int i;
1215	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1216
1217	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1218
1219		if (!(mask & BIT(i)))
1220			continue;
1221
1222		if (bits & BIT(i))
1223			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1224		else
1225			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1226
1227		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1228	}
1229}
1230
1231/* Read ai bits from sram sw entry */
1232static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1233{
1234	u8 bits;
1235	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1236	int ai_en_off = ai_off + 1;
1237	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1238
1239	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1240	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1241
1242	return bits;
1243}
1244
1245/* In sram sw entry set lookup ID field of the tcam key to be used in the next
1246 * lookup interation
1247 */
1248static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1249				       unsigned int lu)
1250{
1251	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1252
1253	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1254				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1255	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1256}
1257
1258/* In the sram sw entry set sign and value of the next lookup offset
1259 * and the offset value generated to the classifier
1260 */
1261static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1262				     unsigned int op)
1263{
1264	/* Set sign */
1265	if (shift < 0) {
1266		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1267		shift = 0 - shift;
1268	} else {
1269		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1270	}
1271
1272	/* Set value */
1273	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1274							   (unsigned char)shift;
1275
1276	/* Reset and set operation */
1277	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1278				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1279	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1280
1281	/* Set base offset as current */
1282	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1283}
1284
1285/* In the sram sw entry set sign and value of the user defined offset
1286 * generated to the classifier
1287 */
1288static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1289				      unsigned int type, int offset,
1290				      unsigned int op)
1291{
1292	/* Set sign */
1293	if (offset < 0) {
1294		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1295		offset = 0 - offset;
1296	} else {
1297		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1298	}
1299
1300	/* Set value */
1301	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1302				  MVPP2_PRS_SRAM_UDF_MASK);
1303	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1304	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1305					MVPP2_PRS_SRAM_UDF_BITS)] &=
1306	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1307	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1308					MVPP2_PRS_SRAM_UDF_BITS)] |=
1309				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1310
1311	/* Set offset type */
1312	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1313				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1314	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1315
1316	/* Set offset operation */
1317	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1318				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1319	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1320
1321	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1322					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1323					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1324				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1325
1326	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1327					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1328			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1329
1330	/* Set base offset as current */
1331	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1332}
1333
1334/* Find parser flow entry */
1335static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1336{
1337	struct mvpp2_prs_entry *pe;
1338	int tid;
1339
1340	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1341	if (!pe)
1342		return NULL;
1343	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1344
1345	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1346	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1347		u8 bits;
1348
1349		if (!priv->prs_shadow[tid].valid ||
1350		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1351			continue;
1352
1353		pe->index = tid;
1354		mvpp2_prs_hw_read(priv, pe);
1355		bits = mvpp2_prs_sram_ai_get(pe);
1356
1357		/* Sram store classification lookup ID in AI bits [5:0] */
1358		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1359			return pe;
1360	}
1361	kfree(pe);
1362
1363	return NULL;
1364}
1365
1366/* Return first free tcam index, seeking from start to end */
1367static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1368				     unsigned char end)
1369{
1370	int tid;
1371
1372	if (start > end)
1373		swap(start, end);
1374
1375	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1376		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1377
1378	for (tid = start; tid <= end; tid++) {
1379		if (!priv->prs_shadow[tid].valid)
1380			return tid;
1381	}
1382
1383	return -EINVAL;
1384}
1385
1386/* Enable/disable dropping all mac da's */
1387static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1388{
1389	struct mvpp2_prs_entry pe;
1390
1391	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1392		/* Entry exist - update port only */
1393		pe.index = MVPP2_PE_DROP_ALL;
1394		mvpp2_prs_hw_read(priv, &pe);
1395	} else {
1396		/* Entry doesn't exist - create new */
1397		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1398		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1399		pe.index = MVPP2_PE_DROP_ALL;
1400
1401		/* Non-promiscuous mode for all ports - DROP unknown packets */
1402		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1403					 MVPP2_PRS_RI_DROP_MASK);
1404
1405		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1406		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1407
1408		/* Update shadow table */
1409		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1410
1411		/* Mask all ports */
1412		mvpp2_prs_tcam_port_map_set(&pe, 0);
1413	}
1414
1415	/* Update port mask */
1416	mvpp2_prs_tcam_port_set(&pe, port, add);
1417
1418	mvpp2_prs_hw_write(priv, &pe);
1419}
1420
1421/* Set port to promiscuous mode */
1422static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1423{
1424	struct mvpp2_prs_entry pe;
1425
1426	/* Promiscuous mode - Accept unknown packets */
1427
1428	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1429		/* Entry exist - update port only */
1430		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1431		mvpp2_prs_hw_read(priv, &pe);
1432	} else {
1433		/* Entry doesn't exist - create new */
1434		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1435		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1436		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1437
1438		/* Continue - set next lookup */
1439		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1440
1441		/* Set result info bits */
1442		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1443					 MVPP2_PRS_RI_L2_CAST_MASK);
1444
1445		/* Shift to ethertype */
1446		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1447					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1448
1449		/* Mask all ports */
1450		mvpp2_prs_tcam_port_map_set(&pe, 0);
1451
1452		/* Update shadow table */
1453		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1454	}
1455
1456	/* Update port mask */
1457	mvpp2_prs_tcam_port_set(&pe, port, add);
1458
1459	mvpp2_prs_hw_write(priv, &pe);
1460}
1461
1462/* Accept multicast */
1463static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1464				    bool add)
1465{
1466	struct mvpp2_prs_entry pe;
1467	unsigned char da_mc;
1468
1469	/* Ethernet multicast address first byte is
1470	 * 0x01 for IPv4 and 0x33 for IPv6
1471	 */
1472	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1473
1474	if (priv->prs_shadow[index].valid) {
1475		/* Entry exist - update port only */
1476		pe.index = index;
1477		mvpp2_prs_hw_read(priv, &pe);
1478	} else {
1479		/* Entry doesn't exist - create new */
1480		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1481		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1482		pe.index = index;
1483
1484		/* Continue - set next lookup */
1485		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1486
1487		/* Set result info bits */
1488		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1489					 MVPP2_PRS_RI_L2_CAST_MASK);
1490
1491		/* Update tcam entry data first byte */
1492		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1493
1494		/* Shift to ethertype */
1495		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1496					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1497
1498		/* Mask all ports */
1499		mvpp2_prs_tcam_port_map_set(&pe, 0);
1500
1501		/* Update shadow table */
1502		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1503	}
1504
1505	/* Update port mask */
1506	mvpp2_prs_tcam_port_set(&pe, port, add);
1507
1508	mvpp2_prs_hw_write(priv, &pe);
1509}
1510
1511/* Set entry for dsa packets */
1512static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1513				  bool tagged, bool extend)
1514{
1515	struct mvpp2_prs_entry pe;
1516	int tid, shift;
1517
1518	if (extend) {
1519		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1520		shift = 8;
1521	} else {
1522		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1523		shift = 4;
1524	}
1525
1526	if (priv->prs_shadow[tid].valid) {
1527		/* Entry exist - update port only */
1528		pe.index = tid;
1529		mvpp2_prs_hw_read(priv, &pe);
1530	} else {
1531		/* Entry doesn't exist - create new */
1532		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1533		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1534		pe.index = tid;
1535
1536		/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1537		mvpp2_prs_sram_shift_set(&pe, shift,
1538					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1539
1540		/* Update shadow table */
1541		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1542
1543		if (tagged) {
1544			/* Set tagged bit in DSA tag */
1545			mvpp2_prs_tcam_data_byte_set(&pe, 0,
1546						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1547						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1548			/* Clear all ai bits for next iteration */
1549			mvpp2_prs_sram_ai_update(&pe, 0,
1550						 MVPP2_PRS_SRAM_AI_MASK);
1551			/* If packet is tagged continue check vlans */
1552			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1553		} else {
1554			/* Set result info bits to 'no vlans' */
1555			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1556						 MVPP2_PRS_RI_VLAN_MASK);
1557			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1558		}
1559
1560		/* Mask all ports */
1561		mvpp2_prs_tcam_port_map_set(&pe, 0);
1562	}
1563
1564	/* Update port mask */
1565	mvpp2_prs_tcam_port_set(&pe, port, add);
1566
1567	mvpp2_prs_hw_write(priv, &pe);
1568}
1569
1570/* Set entry for dsa ethertype */
1571static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1572					    bool add, bool tagged, bool extend)
1573{
1574	struct mvpp2_prs_entry pe;
1575	int tid, shift, port_mask;
1576
1577	if (extend) {
1578		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1579		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1580		port_mask = 0;
1581		shift = 8;
1582	} else {
1583		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1584		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
1585		port_mask = MVPP2_PRS_PORT_MASK;
1586		shift = 4;
1587	}
1588
1589	if (priv->prs_shadow[tid].valid) {
1590		/* Entry exist - update port only */
1591		pe.index = tid;
1592		mvpp2_prs_hw_read(priv, &pe);
1593	} else {
1594		/* Entry doesn't exist - create new */
1595		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1596		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1597		pe.index = tid;
1598
1599		/* Set ethertype */
1600		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1601		mvpp2_prs_match_etype(&pe, 2, 0);
1602
1603		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1604					 MVPP2_PRS_RI_DSA_MASK);
1605		/* Shift ethertype + 2 byte reserved + tag*/
1606		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1607					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1608
1609		/* Update shadow table */
1610		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1611
1612		if (tagged) {
1613			/* Set tagged bit in DSA tag */
1614			mvpp2_prs_tcam_data_byte_set(&pe,
1615						     MVPP2_ETH_TYPE_LEN + 2 + 3,
1616						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1617						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1618			/* Clear all ai bits for next iteration */
1619			mvpp2_prs_sram_ai_update(&pe, 0,
1620						 MVPP2_PRS_SRAM_AI_MASK);
1621			/* If packet is tagged continue check vlans */
1622			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1623		} else {
1624			/* Set result info bits to 'no vlans' */
1625			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1626						 MVPP2_PRS_RI_VLAN_MASK);
1627			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1628		}
1629		/* Mask/unmask all ports, depending on dsa type */
1630		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1631	}
1632
1633	/* Update port mask */
1634	mvpp2_prs_tcam_port_set(&pe, port, add);
1635
1636	mvpp2_prs_hw_write(priv, &pe);
1637}
1638
1639/* Search for existing single/triple vlan entry */
1640static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1641						   unsigned short tpid, int ai)
1642{
1643	struct mvpp2_prs_entry *pe;
1644	int tid;
1645
1646	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1647	if (!pe)
1648		return NULL;
1649	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1650
1651	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1652	for (tid = MVPP2_PE_FIRST_FREE_TID;
1653	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1654		unsigned int ri_bits, ai_bits;
1655		bool match;
1656
1657		if (!priv->prs_shadow[tid].valid ||
1658		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1659			continue;
1660
1661		pe->index = tid;
1662
1663		mvpp2_prs_hw_read(priv, pe);
1664		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1665		if (!match)
1666			continue;
1667
1668		/* Get vlan type */
1669		ri_bits = mvpp2_prs_sram_ri_get(pe);
1670		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1671
1672		/* Get current ai value from tcam */
1673		ai_bits = mvpp2_prs_tcam_ai_get(pe);
1674		/* Clear double vlan bit */
1675		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1676
1677		if (ai != ai_bits)
1678			continue;
1679
1680		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1681		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1682			return pe;
1683	}
1684	kfree(pe);
1685
1686	return NULL;
1687}
1688
1689/* Add/update single/triple vlan entry */
1690static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1691			      unsigned int port_map)
1692{
1693	struct mvpp2_prs_entry *pe;
1694	int tid_aux, tid;
1695	int ret = 0;
1696
1697	pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1698
1699	if (!pe) {
1700		/* Create new tcam entry */
1701		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1702						MVPP2_PE_FIRST_FREE_TID);
1703		if (tid < 0)
1704			return tid;
1705
1706		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1707		if (!pe)
1708			return -ENOMEM;
1709
1710		/* Get last double vlan tid */
1711		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1712		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1713			unsigned int ri_bits;
1714
1715			if (!priv->prs_shadow[tid_aux].valid ||
1716			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1717				continue;
1718
1719			pe->index = tid_aux;
1720			mvpp2_prs_hw_read(priv, pe);
1721			ri_bits = mvpp2_prs_sram_ri_get(pe);
1722			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1723			    MVPP2_PRS_RI_VLAN_DOUBLE)
1724				break;
1725		}
1726
1727		if (tid <= tid_aux) {
1728			ret = -EINVAL;
1729			goto error;
1730		}
1731
1732		memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1733		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1734		pe->index = tid;
1735
1736		mvpp2_prs_match_etype(pe, 0, tpid);
1737
1738		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1739		/* Shift 4 bytes - skip 1 vlan tag */
1740		mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1741					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1742		/* Clear all ai bits for next iteration */
1743		mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1744
1745		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1746			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1747						 MVPP2_PRS_RI_VLAN_MASK);
1748		} else {
1749			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1750			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1751						 MVPP2_PRS_RI_VLAN_MASK);
1752		}
1753		mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1754
1755		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1756	}
1757	/* Update ports' mask */
1758	mvpp2_prs_tcam_port_map_set(pe, port_map);
1759
1760	mvpp2_prs_hw_write(priv, pe);
1761
1762error:
1763	kfree(pe);
1764
1765	return ret;
1766}
1767
1768/* Get first free double vlan ai number */
1769static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1770{
1771	int i;
1772
1773	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1774		if (!priv->prs_double_vlans[i])
1775			return i;
1776	}
1777
1778	return -EINVAL;
1779}
1780
1781/* Search for existing double vlan entry */
1782static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1783							  unsigned short tpid1,
1784							  unsigned short tpid2)
1785{
1786	struct mvpp2_prs_entry *pe;
1787	int tid;
1788
1789	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1790	if (!pe)
1791		return NULL;
1792	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1793
1794	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1795	for (tid = MVPP2_PE_FIRST_FREE_TID;
1796	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1797		unsigned int ri_mask;
1798		bool match;
1799
1800		if (!priv->prs_shadow[tid].valid ||
1801		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1802			continue;
1803
1804		pe->index = tid;
1805		mvpp2_prs_hw_read(priv, pe);
1806
1807		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1808			&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1809
1810		if (!match)
1811			continue;
1812
1813		ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1814		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1815			return pe;
1816	}
1817	kfree(pe);
1818
1819	return NULL;
1820}
1821
1822/* Add or update double vlan entry */
1823static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1824				     unsigned short tpid2,
1825				     unsigned int port_map)
1826{
1827	struct mvpp2_prs_entry *pe;
1828	int tid_aux, tid, ai, ret = 0;
1829
1830	pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1831
1832	if (!pe) {
1833		/* Create new tcam entry */
1834		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1835				MVPP2_PE_LAST_FREE_TID);
1836		if (tid < 0)
1837			return tid;
1838
1839		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1840		if (!pe)
1841			return -ENOMEM;
1842
1843		/* Set ai value for new double vlan entry */
1844		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1845		if (ai < 0) {
1846			ret = ai;
1847			goto error;
1848		}
1849
1850		/* Get first single/triple vlan tid */
1851		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1852		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1853			unsigned int ri_bits;
1854
1855			if (!priv->prs_shadow[tid_aux].valid ||
1856			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1857				continue;
1858
1859			pe->index = tid_aux;
1860			mvpp2_prs_hw_read(priv, pe);
1861			ri_bits = mvpp2_prs_sram_ri_get(pe);
1862			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1863			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1864			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1865				break;
1866		}
1867
1868		if (tid >= tid_aux) {
1869			ret = -ERANGE;
1870			goto error;
1871		}
1872
1873		memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1874		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1875		pe->index = tid;
1876
1877		priv->prs_double_vlans[ai] = true;
1878
1879		mvpp2_prs_match_etype(pe, 0, tpid1);
1880		mvpp2_prs_match_etype(pe, 4, tpid2);
1881
1882		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1883		/* Shift 8 bytes - skip 2 vlan tags */
1884		mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1885					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1886		mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1887					 MVPP2_PRS_RI_VLAN_MASK);
1888		mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1889					 MVPP2_PRS_SRAM_AI_MASK);
1890
1891		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1892	}
1893
1894	/* Update ports' mask */
1895	mvpp2_prs_tcam_port_map_set(pe, port_map);
1896	mvpp2_prs_hw_write(priv, pe);
1897
1898error:
1899	kfree(pe);
1900	return ret;
1901}
1902
1903/* IPv4 header parsing for fragmentation and L4 offset */
1904static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1905			       unsigned int ri, unsigned int ri_mask)
1906{
1907	struct mvpp2_prs_entry pe;
1908	int tid;
1909
1910	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1911	    (proto != IPPROTO_IGMP))
1912		return -EINVAL;
1913
1914	/* Fragmented packet */
1915	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1916					MVPP2_PE_LAST_FREE_TID);
1917	if (tid < 0)
1918		return tid;
1919
1920	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1921	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1922	pe.index = tid;
1923
1924	/* Set next lu to IPv4 */
1925	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1926	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1927	/* Set L4 offset */
1928	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1929				  sizeof(struct iphdr) - 4,
1930				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1931	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1932				 MVPP2_PRS_IPV4_DIP_AI_BIT);
1933	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1934				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1935
1936	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1937	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1938	/* Unmask all ports */
1939	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1940
1941	/* Update shadow table and hw entry */
1942	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1943	mvpp2_prs_hw_write(priv, &pe);
1944
1945	/* Not fragmented packet */
1946	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1947					MVPP2_PE_LAST_FREE_TID);
1948	if (tid < 0)
1949		return tid;
1950
1951	pe.index = tid;
1952	/* Clear ri before updating */
1953	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1954	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1955	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1956
1957	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1958	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1959
1960	/* Update shadow table and hw entry */
1961	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1962	mvpp2_prs_hw_write(priv, &pe);
1963
1964	return 0;
1965}
1966
1967/* IPv4 L3 multicast or broadcast */
1968static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1969{
1970	struct mvpp2_prs_entry pe;
1971	int mask, tid;
1972
1973	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1974					MVPP2_PE_LAST_FREE_TID);
1975	if (tid < 0)
1976		return tid;
1977
1978	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1979	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1980	pe.index = tid;
1981
1982	switch (l3_cast) {
1983	case MVPP2_PRS_L3_MULTI_CAST:
1984		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
1985					     MVPP2_PRS_IPV4_MC_MASK);
1986		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
1987					 MVPP2_PRS_RI_L3_ADDR_MASK);
1988		break;
1989	case  MVPP2_PRS_L3_BROAD_CAST:
1990		mask = MVPP2_PRS_IPV4_BC_MASK;
1991		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
1992		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
1993		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
1994		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
1995		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
1996					 MVPP2_PRS_RI_L3_ADDR_MASK);
1997		break;
1998	default:
1999		return -EINVAL;
2000	}
2001
2002	/* Finished: go to flowid generation */
2003	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2004	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2005
2006	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2007				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2008	/* Unmask all ports */
2009	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2010
2011	/* Update shadow table and hw entry */
2012	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2013	mvpp2_prs_hw_write(priv, &pe);
2014
2015	return 0;
2016}
2017
2018/* Set entries for protocols over IPv6  */
2019static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2020			       unsigned int ri, unsigned int ri_mask)
2021{
2022	struct mvpp2_prs_entry pe;
2023	int tid;
2024
2025	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2026	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2027		return -EINVAL;
2028
2029	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2030					MVPP2_PE_LAST_FREE_TID);
2031	if (tid < 0)
2032		return tid;
2033
2034	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2035	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2036	pe.index = tid;
2037
2038	/* Finished: go to flowid generation */
2039	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2040	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2041	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2042	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2043				  sizeof(struct ipv6hdr) - 6,
2044				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2045
2046	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2047	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2048				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2049	/* Unmask all ports */
2050	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2051
2052	/* Write HW */
2053	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2054	mvpp2_prs_hw_write(priv, &pe);
2055
2056	return 0;
2057}
2058
2059/* IPv6 L3 multicast entry */
2060static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2061{
2062	struct mvpp2_prs_entry pe;
2063	int tid;
2064
2065	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2066		return -EINVAL;
2067
2068	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2069					MVPP2_PE_LAST_FREE_TID);
2070	if (tid < 0)
2071		return tid;
2072
2073	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2074	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2075	pe.index = tid;
2076
2077	/* Finished: go to flowid generation */
2078	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2079	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2080				 MVPP2_PRS_RI_L3_ADDR_MASK);
2081	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2082				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2083	/* Shift back to IPv6 NH */
2084	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2085
2086	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2087				     MVPP2_PRS_IPV6_MC_MASK);
2088	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2089	/* Unmask all ports */
2090	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2091
2092	/* Update shadow table and hw entry */
2093	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2094	mvpp2_prs_hw_write(priv, &pe);
2095
2096	return 0;
2097}
2098
2099/* Parser per-port initialization */
2100static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2101				   int lu_max, int offset)
2102{
2103	u32 val;
2104
2105	/* Set lookup ID */
2106	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2107	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2108	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2109	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2110
2111	/* Set maximum number of loops for packet received from port */
2112	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2113	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2114	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2115	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2116
2117	/* Set initial offset for packet header extraction for the first
2118	 * searching loop
2119	 */
2120	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2121	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2122	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2123	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2124}
2125
2126/* Default flow entries initialization for all ports */
2127static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2128{
2129	struct mvpp2_prs_entry pe;
2130	int port;
2131
2132	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2133		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2134		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2135		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2136
2137		/* Mask all ports */
2138		mvpp2_prs_tcam_port_map_set(&pe, 0);
2139
2140		/* Set flow ID*/
2141		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2142		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2143
2144		/* Update shadow table and hw entry */
2145		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2146		mvpp2_prs_hw_write(priv, &pe);
2147	}
2148}
2149
2150/* Set default entry for Marvell Header field */
2151static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2152{
2153	struct mvpp2_prs_entry pe;
2154
2155	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2156
2157	pe.index = MVPP2_PE_MH_DEFAULT;
2158	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2159	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2160				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2161	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2162
2163	/* Unmask all ports */
2164	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2165
2166	/* Update shadow table and hw entry */
2167	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2168	mvpp2_prs_hw_write(priv, &pe);
2169}
2170
2171/* Set default entires (place holder) for promiscuous, non-promiscuous and
2172 * multicast MAC addresses
2173 */
2174static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2175{
2176	struct mvpp2_prs_entry pe;
2177
2178	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2179
2180	/* Non-promiscuous mode for all ports - DROP unknown packets */
2181	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2182	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2183
2184	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2185				 MVPP2_PRS_RI_DROP_MASK);
2186	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2187	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2188
2189	/* Unmask all ports */
2190	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2191
2192	/* Update shadow table and hw entry */
2193	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2194	mvpp2_prs_hw_write(priv, &pe);
2195
2196	/* place holders only - no ports */
2197	mvpp2_prs_mac_drop_all_set(priv, 0, false);
2198	mvpp2_prs_mac_promisc_set(priv, 0, false);
2199	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2200	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2201}
2202
2203/* Set default entries for various types of dsa packets */
2204static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2205{
2206	struct mvpp2_prs_entry pe;
2207
2208	/* None tagged EDSA entry - place holder */
2209	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2210			      MVPP2_PRS_EDSA);
2211
2212	/* Tagged EDSA entry - place holder */
2213	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2214
2215	/* None tagged DSA entry - place holder */
2216	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2217			      MVPP2_PRS_DSA);
2218
2219	/* Tagged DSA entry - place holder */
2220	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2221
2222	/* None tagged EDSA ethertype entry - place holder*/
2223	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2224					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2225
2226	/* Tagged EDSA ethertype entry - place holder*/
2227	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2228					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2229
2230	/* None tagged DSA ethertype entry */
2231	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2232					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2233
2234	/* Tagged DSA ethertype entry */
2235	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2236					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2237
2238	/* Set default entry, in case DSA or EDSA tag not found */
2239	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2240	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2241	pe.index = MVPP2_PE_DSA_DEFAULT;
2242	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2243
2244	/* Shift 0 bytes */
2245	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2246	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2247
2248	/* Clear all sram ai bits for next iteration */
2249	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2250
2251	/* Unmask all ports */
2252	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2253
2254	mvpp2_prs_hw_write(priv, &pe);
2255}
2256
2257/* Match basic ethertypes */
2258static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2259{
2260	struct mvpp2_prs_entry pe;
2261	int tid;
2262
2263	/* Ethertype: PPPoE */
2264	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2265					MVPP2_PE_LAST_FREE_TID);
2266	if (tid < 0)
2267		return tid;
2268
2269	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2270	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2271	pe.index = tid;
2272
2273	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2274
2275	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2276				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2277	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2278	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2279				 MVPP2_PRS_RI_PPPOE_MASK);
2280
2281	/* Update shadow table and hw entry */
2282	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2283	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2284	priv->prs_shadow[pe.index].finish = false;
2285	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2286				MVPP2_PRS_RI_PPPOE_MASK);
2287	mvpp2_prs_hw_write(priv, &pe);
2288
2289	/* Ethertype: ARP */
2290	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2291					MVPP2_PE_LAST_FREE_TID);
2292	if (tid < 0)
2293		return tid;
2294
2295	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2296	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2297	pe.index = tid;
2298
2299	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2300
2301	/* Generate flow in the next iteration*/
2302	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2303	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2304	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2305				 MVPP2_PRS_RI_L3_PROTO_MASK);
2306	/* Set L3 offset */
2307	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2308				  MVPP2_ETH_TYPE_LEN,
2309				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2310
2311	/* Update shadow table and hw entry */
2312	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2313	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2314	priv->prs_shadow[pe.index].finish = true;
2315	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2316				MVPP2_PRS_RI_L3_PROTO_MASK);
2317	mvpp2_prs_hw_write(priv, &pe);
2318
2319	/* Ethertype: LBTD */
2320	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2321					MVPP2_PE_LAST_FREE_TID);
2322	if (tid < 0)
2323		return tid;
2324
2325	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2326	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2327	pe.index = tid;
2328
2329	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2330
2331	/* Generate flow in the next iteration*/
2332	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2333	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2334	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2335				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2336				 MVPP2_PRS_RI_CPU_CODE_MASK |
2337				 MVPP2_PRS_RI_UDF3_MASK);
2338	/* Set L3 offset */
2339	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2340				  MVPP2_ETH_TYPE_LEN,
2341				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2342
2343	/* Update shadow table and hw entry */
2344	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2345	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2346	priv->prs_shadow[pe.index].finish = true;
2347	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2348				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2349				MVPP2_PRS_RI_CPU_CODE_MASK |
2350				MVPP2_PRS_RI_UDF3_MASK);
2351	mvpp2_prs_hw_write(priv, &pe);
2352
2353	/* Ethertype: IPv4 without options */
2354	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2355					MVPP2_PE_LAST_FREE_TID);
2356	if (tid < 0)
2357		return tid;
2358
2359	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2360	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2361	pe.index = tid;
2362
2363	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2364	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2365				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2366				     MVPP2_PRS_IPV4_HEAD_MASK |
2367				     MVPP2_PRS_IPV4_IHL_MASK);
2368
2369	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2370	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2371				 MVPP2_PRS_RI_L3_PROTO_MASK);
2372	/* Skip eth_type + 4 bytes of IP header */
2373	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2374				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2375	/* Set L3 offset */
2376	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2377				  MVPP2_ETH_TYPE_LEN,
2378				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2379
2380	/* Update shadow table and hw entry */
2381	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2382	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2383	priv->prs_shadow[pe.index].finish = false;
2384	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2385				MVPP2_PRS_RI_L3_PROTO_MASK);
2386	mvpp2_prs_hw_write(priv, &pe);
2387
2388	/* Ethertype: IPv4 with options */
2389	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2390					MVPP2_PE_LAST_FREE_TID);
2391	if (tid < 0)
2392		return tid;
2393
2394	pe.index = tid;
2395
2396	/* Clear tcam data before updating */
2397	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2398	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2399
2400	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2401				     MVPP2_PRS_IPV4_HEAD,
2402				     MVPP2_PRS_IPV4_HEAD_MASK);
2403
2404	/* Clear ri before updating */
2405	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2406	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2407	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2408				 MVPP2_PRS_RI_L3_PROTO_MASK);
2409
2410	/* Update shadow table and hw entry */
2411	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2412	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2413	priv->prs_shadow[pe.index].finish = false;
2414	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2415				MVPP2_PRS_RI_L3_PROTO_MASK);
2416	mvpp2_prs_hw_write(priv, &pe);
2417
2418	/* Ethertype: IPv6 without options */
2419	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2420					MVPP2_PE_LAST_FREE_TID);
2421	if (tid < 0)
2422		return tid;
2423
2424	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2425	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2426	pe.index = tid;
2427
2428	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2429
2430	/* Skip DIP of IPV6 header */
2431	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2432				 MVPP2_MAX_L3_ADDR_SIZE,
2433				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2434	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2435	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2436				 MVPP2_PRS_RI_L3_PROTO_MASK);
2437	/* Set L3 offset */
2438	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2439				  MVPP2_ETH_TYPE_LEN,
2440				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2441
2442	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2443	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2444	priv->prs_shadow[pe.index].finish = false;
2445	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2446				MVPP2_PRS_RI_L3_PROTO_MASK);
2447	mvpp2_prs_hw_write(priv, &pe);
2448
2449	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2450	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2451	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2452	pe.index = MVPP2_PE_ETH_TYPE_UN;
2453
2454	/* Unmask all ports */
2455	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2456
2457	/* Generate flow in the next iteration*/
2458	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2459	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2460	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2461				 MVPP2_PRS_RI_L3_PROTO_MASK);
2462	/* Set L3 offset even it's unknown L3 */
2463	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2464				  MVPP2_ETH_TYPE_LEN,
2465				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2466
2467	/* Update shadow table and hw entry */
2468	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2469	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2470	priv->prs_shadow[pe.index].finish = true;
2471	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2472				MVPP2_PRS_RI_L3_PROTO_MASK);
2473	mvpp2_prs_hw_write(priv, &pe);
2474
2475	return 0;
2476}
2477
2478/* Configure vlan entries and detect up to 2 successive VLAN tags.
2479 * Possible options:
2480 * 0x8100, 0x88A8
2481 * 0x8100, 0x8100
2482 * 0x8100
2483 * 0x88A8
2484 */
2485static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2486{
2487	struct mvpp2_prs_entry pe;
2488	int err;
2489
2490	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2491					      MVPP2_PRS_DBL_VLANS_MAX,
2492					      GFP_KERNEL);
2493	if (!priv->prs_double_vlans)
2494		return -ENOMEM;
2495
2496	/* Double VLAN: 0x8100, 0x88A8 */
2497	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2498					MVPP2_PRS_PORT_MASK);
2499	if (err)
2500		return err;
2501
2502	/* Double VLAN: 0x8100, 0x8100 */
2503	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2504					MVPP2_PRS_PORT_MASK);
2505	if (err)
2506		return err;
2507
2508	/* Single VLAN: 0x88a8 */
2509	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2510				 MVPP2_PRS_PORT_MASK);
2511	if (err)
2512		return err;
2513
2514	/* Single VLAN: 0x8100 */
2515	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2516				 MVPP2_PRS_PORT_MASK);
2517	if (err)
2518		return err;
2519
2520	/* Set default double vlan entry */
2521	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2522	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2523	pe.index = MVPP2_PE_VLAN_DBL;
2524
2525	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2526	/* Clear ai for next iterations */
2527	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2528	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2529				 MVPP2_PRS_RI_VLAN_MASK);
2530
2531	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2532				 MVPP2_PRS_DBL_VLAN_AI_BIT);
2533	/* Unmask all ports */
2534	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2535
2536	/* Update shadow table and hw entry */
2537	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2538	mvpp2_prs_hw_write(priv, &pe);
2539
2540	/* Set default vlan none entry */
2541	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2542	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2543	pe.index = MVPP2_PE_VLAN_NONE;
2544
2545	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2546	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2547				 MVPP2_PRS_RI_VLAN_MASK);
2548
2549	/* Unmask all ports */
2550	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2551
2552	/* Update shadow table and hw entry */
2553	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2554	mvpp2_prs_hw_write(priv, &pe);
2555
2556	return 0;
2557}
2558
2559/* Set entries for PPPoE ethertype */
2560static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2561{
2562	struct mvpp2_prs_entry pe;
2563	int tid;
2564
2565	/* IPv4 over PPPoE with options */
2566	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2567					MVPP2_PE_LAST_FREE_TID);
2568	if (tid < 0)
2569		return tid;
2570
2571	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2572	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2573	pe.index = tid;
2574
2575	mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2576
2577	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2578	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2579				 MVPP2_PRS_RI_L3_PROTO_MASK);
2580	/* Skip eth_type + 4 bytes of IP header */
2581	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2582				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2583	/* Set L3 offset */
2584	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2585				  MVPP2_ETH_TYPE_LEN,
2586				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2587
2588	/* Update shadow table and hw entry */
2589	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2590	mvpp2_prs_hw_write(priv, &pe);
2591
2592	/* IPv4 over PPPoE without options */
2593	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2594					MVPP2_PE_LAST_FREE_TID);
2595	if (tid < 0)
2596		return tid;
2597
2598	pe.index = tid;
2599
2600	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2601				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2602				     MVPP2_PRS_IPV4_HEAD_MASK |
2603				     MVPP2_PRS_IPV4_IHL_MASK);
2604
2605	/* Clear ri before updating */
2606	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2607	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2608	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2609				 MVPP2_PRS_RI_L3_PROTO_MASK);
2610
2611	/* Update shadow table and hw entry */
2612	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2613	mvpp2_prs_hw_write(priv, &pe);
2614
2615	/* IPv6 over PPPoE */
2616	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2617					MVPP2_PE_LAST_FREE_TID);
2618	if (tid < 0)
2619		return tid;
2620
2621	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2622	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2623	pe.index = tid;
2624
2625	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2626
2627	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2628	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2629				 MVPP2_PRS_RI_L3_PROTO_MASK);
2630	/* Skip eth_type + 4 bytes of IPv6 header */
2631	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2632				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2633	/* Set L3 offset */
2634	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2635				  MVPP2_ETH_TYPE_LEN,
2636				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2637
2638	/* Update shadow table and hw entry */
2639	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2640	mvpp2_prs_hw_write(priv, &pe);
2641
2642	/* Non-IP over PPPoE */
2643	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2644					MVPP2_PE_LAST_FREE_TID);
2645	if (tid < 0)
2646		return tid;
2647
2648	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2649	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2650	pe.index = tid;
2651
2652	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2653				 MVPP2_PRS_RI_L3_PROTO_MASK);
2654
2655	/* Finished: go to flowid generation */
2656	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2657	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2658	/* Set L3 offset even if it's unknown L3 */
2659	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2660				  MVPP2_ETH_TYPE_LEN,
2661				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2662
2663	/* Update shadow table and hw entry */
2664	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2665	mvpp2_prs_hw_write(priv, &pe);
2666
2667	return 0;
2668}
2669
2670/* Initialize entries for IPv4 */
2671static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2672{
2673	struct mvpp2_prs_entry pe;
2674	int err;
2675
2676	/* Set entries for TCP, UDP and IGMP over IPv4 */
2677	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2678				  MVPP2_PRS_RI_L4_PROTO_MASK);
2679	if (err)
2680		return err;
2681
2682	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2683				  MVPP2_PRS_RI_L4_PROTO_MASK);
2684	if (err)
2685		return err;
2686
2687	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2688				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2689				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2690				  MVPP2_PRS_RI_CPU_CODE_MASK |
2691				  MVPP2_PRS_RI_UDF3_MASK);
2692	if (err)
2693		return err;
2694
2695	/* IPv4 Broadcast */
2696	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2697	if (err)
2698		return err;
2699
2700	/* IPv4 Multicast */
2701	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2702	if (err)
2703		return err;
2704
2705	/* Default IPv4 entry for unknown protocols */
2706	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2707	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2708	pe.index = MVPP2_PE_IP4_PROTO_UN;
2709
2710	/* Set next lu to IPv4 */
2711	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2712	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2713	/* Set L4 offset */
2714	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2715				  sizeof(struct iphdr) - 4,
2716				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2717	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2718				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2719	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2720				 MVPP2_PRS_RI_L4_PROTO_MASK);
2721
2722	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2723	/* Unmask all ports */
2724	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2725
2726	/* Update shadow table and hw entry */
2727	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2728	mvpp2_prs_hw_write(priv, &pe);
2729
2730	/* Default IPv4 entry for unicast address */
2731	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2732	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2733	pe.index = MVPP2_PE_IP4_ADDR_UN;
2734
2735	/* Finished: go to flowid generation */
2736	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2737	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2738	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2739				 MVPP2_PRS_RI_L3_ADDR_MASK);
2740
2741	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2742				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2743	/* Unmask all ports */
2744	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2745
2746	/* Update shadow table and hw entry */
2747	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2748	mvpp2_prs_hw_write(priv, &pe);
2749
2750	return 0;
2751}
2752
2753/* Initialize entries for IPv6 */
2754static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2755{
2756	struct mvpp2_prs_entry pe;
2757	int tid, err;
2758
2759	/* Set entries for TCP, UDP and ICMP over IPv6 */
2760	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2761				  MVPP2_PRS_RI_L4_TCP,
2762				  MVPP2_PRS_RI_L4_PROTO_MASK);
2763	if (err)
2764		return err;
2765
2766	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2767				  MVPP2_PRS_RI_L4_UDP,
2768				  MVPP2_PRS_RI_L4_PROTO_MASK);
2769	if (err)
2770		return err;
2771
2772	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2773				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2774				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2775				  MVPP2_PRS_RI_CPU_CODE_MASK |
2776				  MVPP2_PRS_RI_UDF3_MASK);
2777	if (err)
2778		return err;
2779
2780	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2781	/* Result Info: UDF7=1, DS lite */
2782	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2783				  MVPP2_PRS_RI_UDF7_IP6_LITE,
2784				  MVPP2_PRS_RI_UDF7_MASK);
2785	if (err)
2786		return err;
2787
2788	/* IPv6 multicast */
2789	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2790	if (err)
2791		return err;
2792
2793	/* Entry for checking hop limit */
2794	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2795					MVPP2_PE_LAST_FREE_TID);
2796	if (tid < 0)
2797		return tid;
2798
2799	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2800	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2801	pe.index = tid;
2802
2803	/* Finished: go to flowid generation */
2804	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2805	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2806	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2807				 MVPP2_PRS_RI_DROP_MASK,
2808				 MVPP2_PRS_RI_L3_PROTO_MASK |
2809				 MVPP2_PRS_RI_DROP_MASK);
2810
2811	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2812	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2813				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2814
2815	/* Update shadow table and hw entry */
2816	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2817	mvpp2_prs_hw_write(priv, &pe);
2818
2819	/* Default IPv6 entry for unknown protocols */
2820	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2821	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2822	pe.index = MVPP2_PE_IP6_PROTO_UN;
2823
2824	/* Finished: go to flowid generation */
2825	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2826	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2827	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2828				 MVPP2_PRS_RI_L4_PROTO_MASK);
2829	/* Set L4 offset relatively to our current place */
2830	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2831				  sizeof(struct ipv6hdr) - 4,
2832				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2833
2834	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2835				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2836	/* Unmask all ports */
2837	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2838
2839	/* Update shadow table and hw entry */
2840	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2841	mvpp2_prs_hw_write(priv, &pe);
2842
2843	/* Default IPv6 entry for unknown ext protocols */
2844	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2845	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2846	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2847
2848	/* Finished: go to flowid generation */
2849	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2850	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2851	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2852				 MVPP2_PRS_RI_L4_PROTO_MASK);
2853
2854	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2855				 MVPP2_PRS_IPV6_EXT_AI_BIT);
2856	/* Unmask all ports */
2857	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2858
2859	/* Update shadow table and hw entry */
2860	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2861	mvpp2_prs_hw_write(priv, &pe);
2862
2863	/* Default IPv6 entry for unicast address */
2864	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2865	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2866	pe.index = MVPP2_PE_IP6_ADDR_UN;
2867
2868	/* Finished: go to IPv6 again */
2869	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2870	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2871				 MVPP2_PRS_RI_L3_ADDR_MASK);
2872	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2873				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2874	/* Shift back to IPV6 NH */
2875	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2876
2877	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2878	/* Unmask all ports */
2879	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2880
2881	/* Update shadow table and hw entry */
2882	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2883	mvpp2_prs_hw_write(priv, &pe);
2884
2885	return 0;
2886}
2887
2888/* Parser default initialization */
2889static int mvpp2_prs_default_init(struct platform_device *pdev,
2890				  struct mvpp2 *priv)
2891{
2892	int err, index, i;
2893
2894	/* Enable tcam table */
2895	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2896
2897	/* Clear all tcam and sram entries */
2898	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2899		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2900		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2901			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2902
2903		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2904		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2905			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2906	}
2907
2908	/* Invalidate all tcam entries */
2909	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2910		mvpp2_prs_hw_inv(priv, index);
2911
2912	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2913					sizeof(struct mvpp2_prs_shadow),
2914					GFP_KERNEL);
2915	if (!priv->prs_shadow)
2916		return -ENOMEM;
2917
2918	/* Always start from lookup = 0 */
2919	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2920		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2921				       MVPP2_PRS_PORT_LU_MAX, 0);
2922
2923	mvpp2_prs_def_flow_init(priv);
2924
2925	mvpp2_prs_mh_init(priv);
2926
2927	mvpp2_prs_mac_init(priv);
2928
2929	mvpp2_prs_dsa_init(priv);
2930
2931	err = mvpp2_prs_etype_init(priv);
2932	if (err)
2933		return err;
2934
2935	err = mvpp2_prs_vlan_init(pdev, priv);
2936	if (err)
2937		return err;
2938
2939	err = mvpp2_prs_pppoe_init(priv);
2940	if (err)
2941		return err;
2942
2943	err = mvpp2_prs_ip6_init(priv);
2944	if (err)
2945		return err;
2946
2947	err = mvpp2_prs_ip4_init(priv);
2948	if (err)
2949		return err;
2950
2951	return 0;
2952}
2953
2954/* Compare MAC DA with tcam entry data */
2955static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2956				       const u8 *da, unsigned char *mask)
2957{
2958	unsigned char tcam_byte, tcam_mask;
2959	int index;
2960
2961	for (index = 0; index < ETH_ALEN; index++) {
2962		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2963		if (tcam_mask != mask[index])
2964			return false;
2965
2966		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2967			return false;
2968	}
2969
2970	return true;
2971}
2972
2973/* Find tcam entry with matched pair <MAC DA, port> */
2974static struct mvpp2_prs_entry *
2975mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2976			    unsigned char *mask, int udf_type)
2977{
2978	struct mvpp2_prs_entry *pe;
2979	int tid;
2980
2981	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2982	if (!pe)
2983		return NULL;
2984	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2985
2986	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2987	for (tid = MVPP2_PE_FIRST_FREE_TID;
2988	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2989		unsigned int entry_pmap;
2990
2991		if (!priv->prs_shadow[tid].valid ||
2992		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2993		    (priv->prs_shadow[tid].udf != udf_type))
2994			continue;
2995
2996		pe->index = tid;
2997		mvpp2_prs_hw_read(priv, pe);
2998		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2999
3000		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3001		    entry_pmap == pmap)
3002			return pe;
3003	}
3004	kfree(pe);
3005
3006	return NULL;
3007}
3008
3009/* Update parser's mac da entry */
3010static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3011				   const u8 *da, bool add)
3012{
3013	struct mvpp2_prs_entry *pe;
3014	unsigned int pmap, len, ri;
3015	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3016	int tid;
3017
3018	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3019	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3020					 MVPP2_PRS_UDF_MAC_DEF);
3021
3022	/* No such entry */
3023	if (!pe) {
3024		if (!add)
3025			return 0;
3026
3027		/* Create new TCAM entry */
3028		/* Find first range mac entry*/
3029		for (tid = MVPP2_PE_FIRST_FREE_TID;
3030		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3031			if (priv->prs_shadow[tid].valid &&
3032			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3033			    (priv->prs_shadow[tid].udf ==
3034						       MVPP2_PRS_UDF_MAC_RANGE))
3035				break;
3036
3037		/* Go through the all entries from first to last */
3038		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3039						tid - 1);
3040		if (tid < 0)
3041			return tid;
3042
3043		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3044		if (!pe)
3045			return -1;
3046		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3047		pe->index = tid;
3048
3049		/* Mask all ports */
3050		mvpp2_prs_tcam_port_map_set(pe, 0);
3051	}
3052
3053	/* Update port mask */
3054	mvpp2_prs_tcam_port_set(pe, port, add);
3055
3056	/* Invalidate the entry if no ports are left enabled */
3057	pmap = mvpp2_prs_tcam_port_map_get(pe);
3058	if (pmap == 0) {
3059		if (add) {
3060			kfree(pe);
3061			return -1;
3062		}
3063		mvpp2_prs_hw_inv(priv, pe->index);
3064		priv->prs_shadow[pe->index].valid = false;
3065		kfree(pe);
3066		return 0;
3067	}
3068
3069	/* Continue - set next lookup */
3070	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3071
3072	/* Set match on DA */
3073	len = ETH_ALEN;
3074	while (len--)
3075		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3076
3077	/* Set result info bits */
3078	if (is_broadcast_ether_addr(da))
3079		ri = MVPP2_PRS_RI_L2_BCAST;
3080	else if (is_multicast_ether_addr(da))
3081		ri = MVPP2_PRS_RI_L2_MCAST;
3082	else
3083		ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3084
3085	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3086				 MVPP2_PRS_RI_MAC_ME_MASK);
3087	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3088				MVPP2_PRS_RI_MAC_ME_MASK);
3089
3090	/* Shift to ethertype */
3091	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3092				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3093
3094	/* Update shadow table and hw entry */
3095	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3096	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3097	mvpp2_prs_hw_write(priv, pe);
3098
3099	kfree(pe);
3100
3101	return 0;
3102}
3103
3104static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3105{
3106	struct mvpp2_port *port = netdev_priv(dev);
3107	int err;
3108
3109	/* Remove old parser entry */
3110	err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3111				      false);
3112	if (err)
3113		return err;
3114
3115	/* Add new parser entry */
3116	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3117	if (err)
3118		return err;
3119
3120	/* Set addr in the device */
3121	ether_addr_copy(dev->dev_addr, da);
3122
3123	return 0;
3124}
3125
3126/* Delete all port's multicast simple (not range) entries */
3127static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3128{
3129	struct mvpp2_prs_entry pe;
3130	int index, tid;
3131
3132	for (tid = MVPP2_PE_FIRST_FREE_TID;
3133	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3134		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3135
3136		if (!priv->prs_shadow[tid].valid ||
3137		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3138		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3139			continue;
3140
3141		/* Only simple mac entries */
3142		pe.index = tid;
3143		mvpp2_prs_hw_read(priv, &pe);
3144
3145		/* Read mac addr from entry */
3146		for (index = 0; index < ETH_ALEN; index++)
3147			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3148						     &da_mask[index]);
3149
3150		if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3151			/* Delete this entry */
3152			mvpp2_prs_mac_da_accept(priv, port, da, false);
3153	}
3154}
3155
3156static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3157{
3158	switch (type) {
3159	case MVPP2_TAG_TYPE_EDSA:
3160		/* Add port to EDSA entries */
3161		mvpp2_prs_dsa_tag_set(priv, port, true,
3162				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3163		mvpp2_prs_dsa_tag_set(priv, port, true,
3164				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3165		/* Remove port from DSA entries */
3166		mvpp2_prs_dsa_tag_set(priv, port, false,
3167				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3168		mvpp2_prs_dsa_tag_set(priv, port, false,
3169				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3170		break;
3171
3172	case MVPP2_TAG_TYPE_DSA:
3173		/* Add port to DSA entries */
3174		mvpp2_prs_dsa_tag_set(priv, port, true,
3175				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3176		mvpp2_prs_dsa_tag_set(priv, port, true,
3177				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3178		/* Remove port from EDSA entries */
3179		mvpp2_prs_dsa_tag_set(priv, port, false,
3180				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3181		mvpp2_prs_dsa_tag_set(priv, port, false,
3182				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3183		break;
3184
3185	case MVPP2_TAG_TYPE_MH:
3186	case MVPP2_TAG_TYPE_NONE:
3187		/* Remove port form EDSA and DSA entries */
3188		mvpp2_prs_dsa_tag_set(priv, port, false,
3189				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3190		mvpp2_prs_dsa_tag_set(priv, port, false,
3191				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3192		mvpp2_prs_dsa_tag_set(priv, port, false,
3193				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3194		mvpp2_prs_dsa_tag_set(priv, port, false,
3195				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3196		break;
3197
3198	default:
3199		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3200			return -EINVAL;
3201	}
3202
3203	return 0;
3204}
3205
3206/* Set prs flow for the port */
3207static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3208{
3209	struct mvpp2_prs_entry *pe;
3210	int tid;
3211
3212	pe = mvpp2_prs_flow_find(port->priv, port->id);
3213
3214	/* Such entry not exist */
3215	if (!pe) {
3216		/* Go through the all entires from last to first */
3217		tid = mvpp2_prs_tcam_first_free(port->priv,
3218						MVPP2_PE_LAST_FREE_TID,
3219					       MVPP2_PE_FIRST_FREE_TID);
3220		if (tid < 0)
3221			return tid;
3222
3223		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3224		if (!pe)
3225			return -ENOMEM;
3226
3227		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3228		pe->index = tid;
3229
3230		/* Set flow ID*/
3231		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3232		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3233
3234		/* Update shadow table */
3235		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3236	}
3237
3238	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3239	mvpp2_prs_hw_write(port->priv, pe);
3240	kfree(pe);
3241
3242	return 0;
3243}
3244
3245/* Classifier configuration routines */
3246
3247/* Update classification flow table registers */
3248static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3249				 struct mvpp2_cls_flow_entry *fe)
3250{
3251	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3252	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
3253	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
3254	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
3255}
3256
3257/* Update classification lookup table register */
3258static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3259				   struct mvpp2_cls_lookup_entry *le)
3260{
3261	u32 val;
3262
3263	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3264	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3265	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3266}
3267
3268/* Classifier default initialization */
3269static void mvpp2_cls_init(struct mvpp2 *priv)
3270{
3271	struct mvpp2_cls_lookup_entry le;
3272	struct mvpp2_cls_flow_entry fe;
3273	int index;
3274
3275	/* Enable classifier */
3276	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3277
3278	/* Clear classifier flow table */
3279	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3280	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3281		fe.index = index;
3282		mvpp2_cls_flow_write(priv, &fe);
3283	}
3284
3285	/* Clear classifier lookup table */
3286	le.data = 0;
3287	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3288		le.lkpid = index;
3289		le.way = 0;
3290		mvpp2_cls_lookup_write(priv, &le);
3291
3292		le.way = 1;
3293		mvpp2_cls_lookup_write(priv, &le);
3294	}
3295}
3296
3297static void mvpp2_cls_port_config(struct mvpp2_port *port)
3298{
3299	struct mvpp2_cls_lookup_entry le;
3300	u32 val;
3301
3302	/* Set way for the port */
3303	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3304	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3305	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3306
3307	/* Pick the entry to be accessed in lookup ID decoding table
3308	 * according to the way and lkpid.
3309	 */
3310	le.lkpid = port->id;
3311	le.way = 0;
3312	le.data = 0;
3313
3314	/* Set initial CPU queue for receiving packets */
3315	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3316	le.data |= port->first_rxq;
3317
3318	/* Disable classification engines */
3319	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3320
3321	/* Update lookup ID table entry */
3322	mvpp2_cls_lookup_write(port->priv, &le);
3323}
3324
3325/* Set CPU queue number for oversize packets */
3326static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3327{
3328	u32 val;
3329
3330	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3331		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3332
3333	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3334		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3335
3336	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3337	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3338	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3339}
3340
3341/* Buffer Manager configuration routines */
3342
3343/* Create pool */
3344static int mvpp2_bm_pool_create(struct platform_device *pdev,
3345				struct mvpp2 *priv,
3346				struct mvpp2_bm_pool *bm_pool, int size)
3347{
3348	int size_bytes;
3349	u32 val;
3350
3351	size_bytes = sizeof(u32) * size;
3352	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3353						&bm_pool->phys_addr,
3354						GFP_KERNEL);
3355	if (!bm_pool->virt_addr)
3356		return -ENOMEM;
3357
3358	if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3359		dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3360				  bm_pool->phys_addr);
3361		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3362			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3363		return -ENOMEM;
3364	}
3365
3366	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3367		    bm_pool->phys_addr);
3368	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3369
3370	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3371	val |= MVPP2_BM_START_MASK;
3372	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3373
3374	bm_pool->type = MVPP2_BM_FREE;
3375	bm_pool->size = size;
3376	bm_pool->pkt_size = 0;
3377	bm_pool->buf_num = 0;
3378	atomic_set(&bm_pool->in_use, 0);
3379	spin_lock_init(&bm_pool->lock);
3380
3381	return 0;
3382}
3383
3384/* Set pool buffer size */
3385static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3386				      struct mvpp2_bm_pool *bm_pool,
3387				      int buf_size)
3388{
3389	u32 val;
3390
3391	bm_pool->buf_size = buf_size;
3392
3393	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3394	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3395}
3396
3397/* Free all buffers from the pool */
3398static void mvpp2_bm_bufs_free(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool)
3399{
3400	int i;
3401
3402	for (i = 0; i < bm_pool->buf_num; i++) {
3403		u32 vaddr;
3404
3405		/* Get buffer virtual address (indirect access) */
3406		mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3407		vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3408		if (!vaddr)
3409			break;
3410		dev_kfree_skb_any((struct sk_buff *)vaddr);
3411	}
3412
3413	/* Update BM driver with number of buffers removed from pool */
3414	bm_pool->buf_num -= i;
3415}
3416
3417/* Cleanup pool */
3418static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3419				 struct mvpp2 *priv,
3420				 struct mvpp2_bm_pool *bm_pool)
3421{
3422	u32 val;
3423
3424	mvpp2_bm_bufs_free(priv, bm_pool);
3425	if (bm_pool->buf_num) {
3426		WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3427		return 0;
3428	}
3429
3430	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3431	val |= MVPP2_BM_STOP_MASK;
3432	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3433
3434	dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3435			  bm_pool->virt_addr,
3436			  bm_pool->phys_addr);
3437	return 0;
3438}
3439
3440static int mvpp2_bm_pools_init(struct platform_device *pdev,
3441			       struct mvpp2 *priv)
3442{
3443	int i, err, size;
3444	struct mvpp2_bm_pool *bm_pool;
3445
3446	/* Create all pools with maximum size */
3447	size = MVPP2_BM_POOL_SIZE_MAX;
3448	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3449		bm_pool = &priv->bm_pools[i];
3450		bm_pool->id = i;
3451		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3452		if (err)
3453			goto err_unroll_pools;
3454		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3455	}
3456	return 0;
3457
3458err_unroll_pools:
3459	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3460	for (i = i - 1; i >= 0; i--)
3461		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3462	return err;
3463}
3464
3465static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3466{
3467	int i, err;
3468
3469	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3470		/* Mask BM all interrupts */
3471		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3472		/* Clear BM cause register */
3473		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3474	}
3475
3476	/* Allocate and initialize BM pools */
3477	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3478				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3479	if (!priv->bm_pools)
3480		return -ENOMEM;
3481
3482	err = mvpp2_bm_pools_init(pdev, priv);
3483	if (err < 0)
3484		return err;
3485	return 0;
3486}
3487
3488/* Attach long pool to rxq */
3489static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3490				    int lrxq, int long_pool)
3491{
3492	u32 val;
3493	int prxq;
3494
3495	/* Get queue physical ID */
3496	prxq = port->rxqs[lrxq]->id;
3497
3498	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3499	val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3500	val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3501		    MVPP2_RXQ_POOL_LONG_MASK);
3502
3503	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3504}
3505
3506/* Attach short pool to rxq */
3507static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3508				     int lrxq, int short_pool)
3509{
3510	u32 val;
3511	int prxq;
3512
3513	/* Get queue physical ID */
3514	prxq = port->rxqs[lrxq]->id;
3515
3516	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3517	val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3518	val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3519		    MVPP2_RXQ_POOL_SHORT_MASK);
3520
3521	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3522}
3523
3524/* Allocate skb for BM pool */
3525static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3526				       struct mvpp2_bm_pool *bm_pool,
3527				       dma_addr_t *buf_phys_addr,
3528				       gfp_t gfp_mask)
3529{
3530	struct sk_buff *skb;
3531	dma_addr_t phys_addr;
3532
3533	skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3534	if (!skb)
3535		return NULL;
3536
3537	phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3538				   MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3539				    DMA_FROM_DEVICE);
3540	if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3541		dev_kfree_skb_any(skb);
3542		return NULL;
3543	}
3544	*buf_phys_addr = phys_addr;
3545
3546	return skb;
3547}
3548
3549/* Set pool number in a BM cookie */
3550static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3551{
3552	u32 bm;
3553
3554	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3555	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3556
3557	return bm;
3558}
3559
3560/* Get pool number from a BM cookie */
3561static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3562{
3563	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3564}
3565
3566/* Release buffer to BM */
3567static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3568				     u32 buf_phys_addr, u32 buf_virt_addr)
3569{
3570	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3571	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3572}
3573
3574/* Release multicast buffer */
3575static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3576				 u32 buf_phys_addr, u32 buf_virt_addr,
3577				 int mc_id)
3578{
3579	u32 val = 0;
3580
3581	val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3582	mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3583
3584	mvpp2_bm_pool_put(port, pool,
3585			  buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3586			  buf_virt_addr);
3587}
3588
3589/* Refill BM pool */
3590static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3591			      u32 phys_addr, u32 cookie)
3592{
3593	int pool = mvpp2_bm_cookie_pool_get(bm);
3594
3595	mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3596}
3597
3598/* Allocate buffers for the pool */
3599static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3600			     struct mvpp2_bm_pool *bm_pool, int buf_num)
3601{
3602	struct sk_buff *skb;
3603	int i, buf_size, total_size;
3604	u32 bm;
3605	dma_addr_t phys_addr;
3606
3607	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3608	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3609
3610	if (buf_num < 0 ||
3611	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
3612		netdev_err(port->dev,
3613			   "cannot allocate %d buffers for pool %d\n",
3614			   buf_num, bm_pool->id);
3615		return 0;
3616	}
3617
3618	bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3619	for (i = 0; i < buf_num; i++) {
3620		skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3621		if (!skb)
3622			break;
3623
3624		mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3625	}
3626
3627	/* Update BM driver with number of buffers added to pool */
3628	bm_pool->buf_num += i;
3629	bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3630
3631	netdev_dbg(port->dev,
3632		   "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3633		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3634		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3635
3636	netdev_dbg(port->dev,
3637		   "%s pool %d: %d of %d buffers added\n",
3638		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3639		   bm_pool->id, i, buf_num);
3640	return i;
3641}
3642
3643/* Notify the driver that BM pool is being used as specific type and return the
3644 * pool pointer on success
3645 */
3646static struct mvpp2_bm_pool *
3647mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3648		  int pkt_size)
3649{
3650	unsigned long flags = 0;
3651	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3652	int num;
3653
3654	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3655		netdev_err(port->dev, "mixing pool types is forbidden\n");
3656		return NULL;
3657	}
3658
3659	spin_lock_irqsave(&new_pool->lock, flags);
3660
3661	if (new_pool->type == MVPP2_BM_FREE)
3662		new_pool->type = type;
3663
3664	/* Allocate buffers in case BM pool is used as long pool, but packet
3665	 * size doesn't match MTU or BM pool hasn't being used yet
3666	 */
3667	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3668	    (new_pool->pkt_size == 0)) {
3669		int pkts_num;
3670
3671		/* Set default buffer number or free all the buffers in case
3672		 * the pool is not empty
3673		 */
3674		pkts_num = new_pool->buf_num;
3675		if (pkts_num == 0)
3676			pkts_num = type == MVPP2_BM_SWF_LONG ?
3677				   MVPP2_BM_LONG_BUF_NUM :
3678				   MVPP2_BM_SHORT_BUF_NUM;
3679		else
3680			mvpp2_bm_bufs_free(port->priv, new_pool);
3681
3682		new_pool->pkt_size = pkt_size;
3683
3684		/* Allocate buffers for this pool */
3685		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3686		if (num != pkts_num) {
3687			WARN(1, "pool %d: %d of %d allocated\n",
3688			     new_pool->id, num, pkts_num);
3689			/* We need to undo the bufs_add() allocations */
3690			spin_unlock_irqrestore(&new_pool->lock, flags);
3691			return NULL;
3692		}
3693	}
3694
3695	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3696				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3697
3698	spin_unlock_irqrestore(&new_pool->lock, flags);
3699
3700	return new_pool;
3701}
3702
3703/* Initialize pools for swf */
3704static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3705{
3706	unsigned long flags = 0;
3707	int rxq;
3708
3709	if (!port->pool_long) {
3710		port->pool_long =
3711		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3712					 MVPP2_BM_SWF_LONG,
3713					 port->pkt_size);
3714		if (!port->pool_long)
3715			return -ENOMEM;
3716
3717		spin_lock_irqsave(&port->pool_long->lock, flags);
3718		port->pool_long->port_map |= (1 << port->id);
3719		spin_unlock_irqrestore(&port->pool_long->lock, flags);
3720
3721		for (rxq = 0; rxq < rxq_number; rxq++)
3722			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3723	}
3724
3725	if (!port->pool_short) {
3726		port->pool_short =
3727			mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3728					  MVPP2_BM_SWF_SHORT,
3729					  MVPP2_BM_SHORT_PKT_SIZE);
3730		if (!port->pool_short)
3731			return -ENOMEM;
3732
3733		spin_lock_irqsave(&port->pool_short->lock, flags);
3734		port->pool_short->port_map |= (1 << port->id);
3735		spin_unlock_irqrestore(&port->pool_short->lock, flags);
3736
3737		for (rxq = 0; rxq < rxq_number; rxq++)
3738			mvpp2_rxq_short_pool_set(port, rxq,
3739						 port->pool_short->id);
3740	}
3741
3742	return 0;
3743}
3744
3745static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3746{
3747	struct mvpp2_port *port = netdev_priv(dev);
3748	struct mvpp2_bm_pool *port_pool = port->pool_long;
3749	int num, pkts_num = port_pool->buf_num;
3750	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3751
3752	/* Update BM pool with new buffer size */
3753	mvpp2_bm_bufs_free(port->priv, port_pool);
3754	if (port_pool->buf_num) {
3755		WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3756		return -EIO;
3757	}
3758
3759	port_pool->pkt_size = pkt_size;
3760	num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3761	if (num != pkts_num) {
3762		WARN(1, "pool %d: %d of %d allocated\n",
3763		     port_pool->id, num, pkts_num);
3764		return -EIO;
3765	}
3766
3767	mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3768				  MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3769	dev->mtu = mtu;
3770	netdev_update_features(dev);
3771	return 0;
3772}
3773
3774static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3775{
3776	int cpu, cpu_mask = 0;
3777
3778	for_each_present_cpu(cpu)
3779		cpu_mask |= 1 << cpu;
3780	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3781		    MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3782}
3783
3784static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3785{
3786	int cpu, cpu_mask = 0;
3787
3788	for_each_present_cpu(cpu)
3789		cpu_mask |= 1 << cpu;
3790	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3791		    MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3792}
3793
3794/* Mask the current CPU's Rx/Tx interrupts */
3795static void mvpp2_interrupts_mask(void *arg)
3796{
3797	struct mvpp2_port *port = arg;
3798
3799	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3800}
3801
3802/* Unmask the current CPU's Rx/Tx interrupts */
3803static void mvpp2_interrupts_unmask(void *arg)
3804{
3805	struct mvpp2_port *port = arg;
3806
3807	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3808		    (MVPP2_CAUSE_MISC_SUM_MASK |
3809		     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK |
3810		     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3811}
3812
3813/* Port configuration routines */
3814
3815static void mvpp2_port_mii_set(struct mvpp2_port *port)
3816{
3817	u32 val;
3818
3819	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3820
3821	switch (port->phy_interface) {
3822	case PHY_INTERFACE_MODE_SGMII:
3823		val |= MVPP2_GMAC_INBAND_AN_MASK;
3824		break;
3825	case PHY_INTERFACE_MODE_RGMII:
3826		val |= MVPP2_GMAC_PORT_RGMII_MASK;
3827	default:
3828		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3829	}
3830
3831	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3832}
3833
3834static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3835{
3836	u32 val;
3837
3838	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3839	val |= MVPP2_GMAC_FC_ADV_EN;
3840	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3841}
3842
3843static void mvpp2_port_enable(struct mvpp2_port *port)
3844{
3845	u32 val;
3846
3847	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3848	val |= MVPP2_GMAC_PORT_EN_MASK;
3849	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3850	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3851}
3852
3853static void mvpp2_port_disable(struct mvpp2_port *port)
3854{
3855	u32 val;
3856
3857	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3858	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3859	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3860}
3861
3862/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3863static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3864{
3865	u32 val;
3866
3867	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3868		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3869	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3870}
3871
3872/* Configure loopback port */
3873static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3874{
3875	u32 val;
3876
3877	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3878
3879	if (port->speed == 1000)
3880		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3881	else
3882		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3883
3884	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3885		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3886	else
3887		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3888
3889	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3890}
3891
3892static void mvpp2_port_reset(struct mvpp2_port *port)
3893{
3894	u32 val;
3895
3896	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3897		    ~MVPP2_GMAC_PORT_RESET_MASK;
3898	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3899
3900	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3901	       MVPP2_GMAC_PORT_RESET_MASK)
3902		continue;
3903}
3904
3905/* Change maximum receive size of the port */
3906static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3907{
3908	u32 val;
3909
3910	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3911	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3912	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3913		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3914	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3915}
3916
3917/* Set defaults to the MVPP2 port */
3918static void mvpp2_defaults_set(struct mvpp2_port *port)
3919{
3920	int tx_port_num, val, queue, ptxq, lrxq;
3921
3922	/* Configure port to loopback if needed */
3923	if (port->flags & MVPP2_F_LOOPBACK)
3924		mvpp2_port_loopback_set(port);
3925
3926	/* Update TX FIFO MIN Threshold */
3927	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3928	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3929	/* Min. TX threshold must be less than minimal packet length */
3930	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3931	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3932
3933	/* Disable Legacy WRR, Disable EJP, Release from reset */
3934	tx_port_num = mvpp2_egress_port(port);
3935	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3936		    tx_port_num);
3937	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3938
3939	/* Close bandwidth for all queues */
3940	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3941		ptxq = mvpp2_txq_phys(port->id, queue);
3942		mvpp2_write(port->priv,
3943			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3944	}
3945
3946	/* Set refill period to 1 usec, refill tokens
3947	 * and bucket size to maximum
3948	 */
3949	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3950		    port->priv->tclk / USEC_PER_SEC);
3951	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3952	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3953	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3954	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3955	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3956	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3957	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3958
3959	/* Set MaximumLowLatencyPacketSize value to 256 */
3960	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3961		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3962		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3963
3964	/* Enable Rx cache snoop */
3965	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3966		queue = port->rxqs[lrxq]->id;
3967		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3968		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3969			   MVPP2_SNOOP_BUF_HDR_MASK;
3970		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3971	}
3972
3973	/* At default, mask all interrupts to all present cpus */
3974	mvpp2_interrupts_disable(port);
3975}
3976
3977/* Enable/disable receiving packets */
3978static void mvpp2_ingress_enable(struct mvpp2_port *port)
3979{
3980	u32 val;
3981	int lrxq, queue;
3982
3983	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3984		queue = port->rxqs[lrxq]->id;
3985		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3986		val &= ~MVPP2_RXQ_DISABLE_MASK;
3987		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3988	}
3989}
3990
3991static void mvpp2_ingress_disable(struct mvpp2_port *port)
3992{
3993	u32 val;
3994	int lrxq, queue;
3995
3996	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3997		queue = port->rxqs[lrxq]->id;
3998		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3999		val |= MVPP2_RXQ_DISABLE_MASK;
4000		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4001	}
4002}
4003
4004/* Enable transmit via physical egress queue
4005 * - HW starts take descriptors from DRAM
4006 */
4007static void mvpp2_egress_enable(struct mvpp2_port *port)
4008{
4009	u32 qmap;
4010	int queue;
4011	int tx_port_num = mvpp2_egress_port(port);
4012
4013	/* Enable all initialized TXs. */
4014	qmap = 0;
4015	for (queue = 0; queue < txq_number; queue++) {
4016		struct mvpp2_tx_queue *txq = port->txqs[queue];
4017
4018		if (txq->descs != NULL)
4019			qmap |= (1 << queue);
4020	}
4021
4022	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4023	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4024}
4025
4026/* Disable transmit via physical egress queue
4027 * - HW doesn't take descriptors from DRAM
4028 */
4029static void mvpp2_egress_disable(struct mvpp2_port *port)
4030{
4031	u32 reg_data;
4032	int delay;
4033	int tx_port_num = mvpp2_egress_port(port);
4034
4035	/* Issue stop command for active channels only */
4036	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4037	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4038		    MVPP2_TXP_SCHED_ENQ_MASK;
4039	if (reg_data != 0)
4040		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4041			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4042
4043	/* Wait for all Tx activity to terminate. */
4044	delay = 0;
4045	do {
4046		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4047			netdev_warn(port->dev,
4048				    "Tx stop timed out, status=0x%08x\n",
4049				    reg_data);
4050			break;
4051		}
4052		mdelay(1);
4053		delay++;
4054
4055		/* Check port TX Command register that all
4056		 * Tx queues are stopped
4057		 */
4058		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4059	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4060}
4061
4062/* Rx descriptors helper methods */
4063
4064/* Get number of Rx descriptors occupied by received packets */
4065static inline int
4066mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4067{
4068	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4069
4070	return val & MVPP2_RXQ_OCCUPIED_MASK;
4071}
4072
4073/* Update Rx queue status with the number of occupied and available
4074 * Rx descriptor slots.
4075 */
4076static inline void
4077mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4078			int used_count, int free_count)
4079{
4080	/* Decrement the number of used descriptors and increment count
4081	 * increment the number of free descriptors.
4082	 */
4083	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4084
4085	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4086}
4087
4088/* Get pointer to next RX descriptor to be processed by SW */
4089static inline struct mvpp2_rx_desc *
4090mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4091{
4092	int rx_desc = rxq->next_desc_to_proc;
4093
4094	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4095	prefetch(rxq->descs + rxq->next_desc_to_proc);
4096	return rxq->descs + rx_desc;
4097}
4098
4099/* Set rx queue offset */
4100static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4101				 int prxq, int offset)
4102{
4103	u32 val;
4104
4105	/* Convert offset from bytes to units of 32 bytes */
4106	offset = offset >> 5;
4107
4108	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4109	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4110
4111	/* Offset is in */
4112	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4113		    MVPP2_RXQ_PACKET_OFFSET_MASK);
4114
4115	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4116}
4117
4118/* Obtain BM cookie information from descriptor */
4119static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4120{
4121	int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4122		   MVPP2_RXD_BM_POOL_ID_OFFS;
4123	int cpu = smp_processor_id();
4124
4125	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4126	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4127}
4128
4129/* Tx descriptors helper methods */
4130
4131/* Get number of Tx descriptors waiting to be transmitted by HW */
4132static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4133				       struct mvpp2_tx_queue *txq)
4134{
4135	u32 val;
4136
4137	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4138	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4139
4140	return val & MVPP2_TXQ_PENDING_MASK;
4141}
4142
4143/* Get pointer to next Tx descriptor to be processed (send) by HW */
4144static struct mvpp2_tx_desc *
4145mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4146{
4147	int tx_desc = txq->next_desc_to_proc;
4148
4149	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4150	return txq->descs + tx_desc;
4151}
4152
4153/* Update HW with number of aggregated Tx descriptors to be sent */
4154static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4155{
4156	/* aggregated access - relevant TXQ number is written in TX desc */
4157	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4158}
4159
4160
4161/* Check if there are enough free descriptors in aggregated txq.
4162 * If not, update the number of occupied descriptors and repeat the check.
4163 */
4164static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4165				     struct mvpp2_tx_queue *aggr_txq, int num)
4166{
4167	if ((aggr_txq->count + num) > aggr_txq->size) {
4168		/* Update number of occupied aggregated Tx descriptors */
4169		int cpu = smp_processor_id();
4170		u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4171
4172		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4173	}
4174
4175	if ((aggr_txq->count + num) > aggr_txq->size)
4176		return -ENOMEM;
4177
4178	return 0;
4179}
4180
4181/* Reserved Tx descriptors allocation request */
4182static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4183					 struct mvpp2_tx_queue *txq, int num)
4184{
4185	u32 val;
4186
4187	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4188	mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4189
4190	val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4191
4192	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4193}
4194
4195/* Check if there are enough reserved descriptors for transmission.
4196 * If not, request chunk of reserved descriptors and check again.
4197 */
4198static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4199					    struct mvpp2_tx_queue *txq,
4200					    struct mvpp2_txq_pcpu *txq_pcpu,
4201					    int num)
4202{
4203	int req, cpu, desc_count;
4204
4205	if (txq_pcpu->reserved_num >= num)
4206		return 0;
4207
4208	/* Not enough descriptors reserved! Update the reserved descriptor
4209	 * count and check again.
4210	 */
4211
4212	desc_count = 0;
4213	/* Compute total of used descriptors */
4214	for_each_present_cpu(cpu) {
4215		struct mvpp2_txq_pcpu *txq_pcpu_aux;
4216
4217		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4218		desc_count += txq_pcpu_aux->count;
4219		desc_count += txq_pcpu_aux->reserved_num;
4220	}
4221
4222	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4223	desc_count += req;
4224
4225	if (desc_count >
4226	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4227		return -ENOMEM;
4228
4229	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4230
4231	/* OK, the descriptor cound has been updated: check again. */
4232	if (txq_pcpu->reserved_num < num)
4233		return -ENOMEM;
4234	return 0;
4235}
4236
4237/* Release the last allocated Tx descriptor. Useful to handle DMA
4238 * mapping failures in the Tx path.
4239 */
4240static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4241{
4242	if (txq->next_desc_to_proc == 0)
4243		txq->next_desc_to_proc = txq->last_desc - 1;
4244	else
4245		txq->next_desc_to_proc--;
4246}
4247
4248/* Set Tx descriptors fields relevant for CSUM calculation */
4249static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4250			       int ip_hdr_len, int l4_proto)
4251{
4252	u32 command;
4253
4254	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4255	 * G_L4_chk, L4_type required only for checksum calculation
4256	 */
4257	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4258	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4259	command |= MVPP2_TXD_IP_CSUM_DISABLE;
4260
4261	if (l3_proto == swab16(ETH_P_IP)) {
4262		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
4263		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
4264	} else {
4265		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
4266	}
4267
4268	if (l4_proto == IPPROTO_TCP) {
4269		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
4270		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4271	} else if (l4_proto == IPPROTO_UDP) {
4272		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
4273		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4274	} else {
4275		command |= MVPP2_TXD_L4_CSUM_NOT;
4276	}
4277
4278	return command;
4279}
4280
4281/* Get number of sent descriptors and decrement counter.
4282 * The number of sent descriptors is returned.
4283 * Per-CPU access
4284 */
4285static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4286					   struct mvpp2_tx_queue *txq)
4287{
4288	u32 val;
4289
4290	/* Reading status reg resets transmitted descriptor counter */
4291	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4292
4293	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4294		MVPP2_TRANSMITTED_COUNT_OFFSET;
4295}
4296
4297static void mvpp2_txq_sent_counter_clear(void *arg)
4298{
4299	struct mvpp2_port *port = arg;
4300	int queue;
4301
4302	for (queue = 0; queue < txq_number; queue++) {
4303		int id = port->txqs[queue]->id;
4304
4305		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4306	}
4307}
4308
4309/* Set max sizes for Tx queues */
4310static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4311{
4312	u32	val, size, mtu;
4313	int	txq, tx_port_num;
4314
4315	mtu = port->pkt_size * 8;
4316	if (mtu > MVPP2_TXP_MTU_MAX)
4317		mtu = MVPP2_TXP_MTU_MAX;
4318
4319	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4320	mtu = 3 * mtu;
4321
4322	/* Indirect access to registers */
4323	tx_port_num = mvpp2_egress_port(port);
4324	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4325
4326	/* Set MTU */
4327	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4328	val &= ~MVPP2_TXP_MTU_MAX;
4329	val |= mtu;
4330	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4331
4332	/* TXP token size and all TXQs token size must be larger that MTU */
4333	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4334	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4335	if (size < mtu) {
4336		size = mtu;
4337		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4338		val |= size;
4339		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4340	}
4341
4342	for (txq = 0; txq < txq_number; txq++) {
4343		val = mvpp2_read(port->priv,
4344				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4345		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4346
4347		if (size < mtu) {
4348			size = mtu;
4349			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4350			val |= size;
4351			mvpp2_write(port->priv,
4352				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4353				    val);
4354		}
4355	}
4356}
4357
4358/* Set the number of packets that will be received before Rx interrupt
4359 * will be generated by HW.
4360 */
4361static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4362				   struct mvpp2_rx_queue *rxq, u32 pkts)
4363{
4364	u32 val;
4365
4366	val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4367	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4368	mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4369
4370	rxq->pkts_coal = pkts;
4371}
4372
4373/* Set the time delay in usec before Rx interrupt */
4374static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4375				   struct mvpp2_rx_queue *rxq, u32 usec)
4376{
4377	u32 val;
4378
4379	val = (port->priv->tclk / USEC_PER_SEC) * usec;
4380	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4381
4382	rxq->time_coal = usec;
4383}
4384
4385/* Set threshold for TX_DONE pkts coalescing */
4386static void mvpp2_tx_done_pkts_coal_set(void *arg)
4387{
4388	struct mvpp2_port *port = arg;
4389	int queue;
4390	u32 val;
4391
4392	for (queue = 0; queue < txq_number; queue++) {
4393		struct mvpp2_tx_queue *txq = port->txqs[queue];
4394
4395		val = (txq->done_pkts_coal << MVPP2_TRANSMITTED_THRESH_OFFSET) &
4396		       MVPP2_TRANSMITTED_THRESH_MASK;
4397		mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4398		mvpp2_write(port->priv, MVPP2_TXQ_THRESH_REG, val);
4399	}
4400}
4401
4402/* Free Tx queue skbuffs */
4403static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4404				struct mvpp2_tx_queue *txq,
4405				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4406{
4407	int i;
4408
4409	for (i = 0; i < num; i++) {
4410		struct mvpp2_tx_desc *tx_desc = txq->descs +
4411							txq_pcpu->txq_get_index;
4412		struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4413
4414		mvpp2_txq_inc_get(txq_pcpu);
4415
4416		if (!skb)
4417			continue;
4418
4419		dma_unmap_single(port->dev->dev.parent, tx_desc->buf_phys_addr,
4420				 tx_desc->data_size, DMA_TO_DEVICE);
4421		dev_kfree_skb_any(skb);
4422	}
4423}
4424
4425static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4426							u32 cause)
4427{
4428	int queue = fls(cause) - 1;
4429
4430	return port->rxqs[queue];
4431}
4432
4433static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4434							u32 cause)
4435{
4436	int queue = fls(cause >> 16) - 1;
4437
4438	return port->txqs[queue];
4439}
4440
4441/* Handle end of transmission */
4442static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4443			   struct mvpp2_txq_pcpu *txq_pcpu)
4444{
4445	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4446	int tx_done;
4447
4448	if (txq_pcpu->cpu != smp_processor_id())
4449		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4450
4451	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4452	if (!tx_done)
4453		return;
4454	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4455
4456	txq_pcpu->count -= tx_done;
4457
4458	if (netif_tx_queue_stopped(nq))
4459		if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4460			netif_tx_wake_queue(nq);
4461}
4462
4463/* Rx/Tx queue initialization/cleanup methods */
4464
4465/* Allocate and initialize descriptors for aggr TXQ */
4466static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4467			       struct mvpp2_tx_queue *aggr_txq,
4468			       int desc_num, int cpu,
4469			       struct mvpp2 *priv)
4470{
4471	/* Allocate memory for TX descriptors */
4472	aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4473				desc_num * MVPP2_DESC_ALIGNED_SIZE,
4474				&aggr_txq->descs_phys, GFP_KERNEL);
4475	if (!aggr_txq->descs)
4476		return -ENOMEM;
4477
4478	/* Make sure descriptor address is cache line size aligned  */
4479	BUG_ON(aggr_txq->descs !=
4480	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4481
4482	aggr_txq->last_desc = aggr_txq->size - 1;
4483
4484	/* Aggr TXQ no reset WA */
4485	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4486						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4487
4488	/* Set Tx descriptors queue starting address */
4489	/* indirect access */
4490	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4491		    aggr_txq->descs_phys);
4492	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4493
4494	return 0;
4495}
4496
4497/* Create a specified Rx queue */
4498static int mvpp2_rxq_init(struct mvpp2_port *port,
4499			  struct mvpp2_rx_queue *rxq)
4500
4501{
4502	rxq->size = port->rx_ring_size;
4503
4504	/* Allocate memory for RX descriptors */
4505	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4506					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4507					&rxq->descs_phys, GFP_KERNEL);
4508	if (!rxq->descs)
4509		return -ENOMEM;
4510
4511	BUG_ON(rxq->descs !=
4512	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4513
4514	rxq->last_desc = rxq->size - 1;
4515
4516	/* Zero occupied and non-occupied counters - direct access */
4517	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4518
4519	/* Set Rx descriptors queue starting address - indirect access */
4520	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4521	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4522	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4523	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4524
4525	/* Set Offset */
4526	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4527
4528	/* Set coalescing pkts and time */
4529	mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4530	mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4531
4532	/* Add number of descriptors ready for receiving packets */
4533	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4534
4535	return 0;
4536}
4537
4538/* Push packets received by the RXQ to BM pool */
4539static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4540				struct mvpp2_rx_queue *rxq)
4541{
4542	int rx_received, i;
4543
4544	rx_received = mvpp2_rxq_received(port, rxq->id);
4545	if (!rx_received)
4546		return;
4547
4548	for (i = 0; i < rx_received; i++) {
4549		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4550		u32 bm = mvpp2_bm_cookie_build(rx_desc);
4551
4552		mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4553				  rx_desc->buf_cookie);
4554	}
4555	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4556}
4557
4558/* Cleanup Rx queue */
4559static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4560			     struct mvpp2_rx_queue *rxq)
4561{
4562	mvpp2_rxq_drop_pkts(port, rxq);
4563
4564	if (rxq->descs)
4565		dma_free_coherent(port->dev->dev.parent,
4566				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4567				  rxq->descs,
4568				  rxq->descs_phys);
4569
4570	rxq->descs             = NULL;
4571	rxq->last_desc         = 0;
4572	rxq->next_desc_to_proc = 0;
4573	rxq->descs_phys        = 0;
4574
4575	/* Clear Rx descriptors queue starting address and size;
4576	 * free descriptor number
4577	 */
4578	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4579	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4580	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4581	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4582}
4583
4584/* Create and initialize a Tx queue */
4585static int mvpp2_txq_init(struct mvpp2_port *port,
4586			  struct mvpp2_tx_queue *txq)
4587{
4588	u32 val;
4589	int cpu, desc, desc_per_txq, tx_port_num;
4590	struct mvpp2_txq_pcpu *txq_pcpu;
4591
4592	txq->size = port->tx_ring_size;
4593
4594	/* Allocate memory for Tx descriptors */
4595	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4596				txq->size * MVPP2_DESC_ALIGNED_SIZE,
4597				&txq->descs_phys, GFP_KERNEL);
4598	if (!txq->descs)
4599		return -ENOMEM;
4600
4601	/* Make sure descriptor address is cache line size aligned  */
4602	BUG_ON(txq->descs !=
4603	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4604
4605	txq->last_desc = txq->size - 1;
4606
4607	/* Set Tx descriptors queue starting address - indirect access */
4608	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4609	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4610	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4611					     MVPP2_TXQ_DESC_SIZE_MASK);
4612	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4613	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4614		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4615	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4616	val &= ~MVPP2_TXQ_PENDING_MASK;
4617	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4618
4619	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4620	 * for each existing TXQ.
4621	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4622	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4623	 */
4624	desc_per_txq = 16;
4625	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4626	       (txq->log_id * desc_per_txq);
4627
4628	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4629		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4630		    MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4631
4632	/* WRR / EJP configuration - indirect access */
4633	tx_port_num = mvpp2_egress_port(port);
4634	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4635
4636	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4637	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4638	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4639	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4640	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4641
4642	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4643	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4644		    val);
4645
4646	for_each_present_cpu(cpu) {
4647		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4648		txq_pcpu->size = txq->size;
4649		txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4650					   sizeof(*txq_pcpu->tx_skb),
4651					   GFP_KERNEL);
4652		if (!txq_pcpu->tx_skb) {
4653			dma_free_coherent(port->dev->dev.parent,
4654					  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4655					  txq->descs, txq->descs_phys);
4656			return -ENOMEM;
4657		}
4658
4659		txq_pcpu->count = 0;
4660		txq_pcpu->reserved_num = 0;
4661		txq_pcpu->txq_put_index = 0;
4662		txq_pcpu->txq_get_index = 0;
4663	}
4664
4665	return 0;
4666}
4667
4668/* Free allocated TXQ resources */
4669static void mvpp2_txq_deinit(struct mvpp2_port *port,
4670			     struct mvpp2_tx_queue *txq)
4671{
4672	struct mvpp2_txq_pcpu *txq_pcpu;
4673	int cpu;
4674
4675	for_each_present_cpu(cpu) {
4676		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4677		kfree(txq_pcpu->tx_skb);
4678	}
4679
4680	if (txq->descs)
4681		dma_free_coherent(port->dev->dev.parent,
4682				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4683				  txq->descs, txq->descs_phys);
4684
4685	txq->descs             = NULL;
4686	txq->last_desc         = 0;
4687	txq->next_desc_to_proc = 0;
4688	txq->descs_phys        = 0;
4689
4690	/* Set minimum bandwidth for disabled TXQs */
4691	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4692
4693	/* Set Tx descriptors queue starting address and size */
4694	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4695	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4696	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4697}
4698
4699/* Cleanup Tx ports */
4700static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4701{
4702	struct mvpp2_txq_pcpu *txq_pcpu;
4703	int delay, pending, cpu;
4704	u32 val;
4705
4706	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4707	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4708	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4709	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4710
4711	/* The napi queue has been stopped so wait for all packets
4712	 * to be transmitted.
4713	 */
4714	delay = 0;
4715	do {
4716		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4717			netdev_warn(port->dev,
4718				    "port %d: cleaning queue %d timed out\n",
4719				    port->id, txq->log_id);
4720			break;
4721		}
4722		mdelay(1);
4723		delay++;
4724
4725		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4726	} while (pending);
4727
4728	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4729	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4730
4731	for_each_present_cpu(cpu) {
4732		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4733
4734		/* Release all packets */
4735		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4736
4737		/* Reset queue */
4738		txq_pcpu->count = 0;
4739		txq_pcpu->txq_put_index = 0;
4740		txq_pcpu->txq_get_index = 0;
4741	}
4742}
4743
4744/* Cleanup all Tx queues */
4745static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4746{
4747	struct mvpp2_tx_queue *txq;
4748	int queue;
4749	u32 val;
4750
4751	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4752
4753	/* Reset Tx ports and delete Tx queues */
4754	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4755	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4756
4757	for (queue = 0; queue < txq_number; queue++) {
4758		txq = port->txqs[queue];
4759		mvpp2_txq_clean(port, txq);
4760		mvpp2_txq_deinit(port, txq);
4761	}
4762
4763	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4764
4765	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4766	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4767}
4768
4769/* Cleanup all Rx queues */
4770static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4771{
4772	int queue;
4773
4774	for (queue = 0; queue < rxq_number; queue++)
4775		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4776}
4777
4778/* Init all Rx queues for port */
4779static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4780{
4781	int queue, err;
4782
4783	for (queue = 0; queue < rxq_number; queue++) {
4784		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4785		if (err)
4786			goto err_cleanup;
4787	}
4788	return 0;
4789
4790err_cleanup:
4791	mvpp2_cleanup_rxqs(port);
4792	return err;
4793}
4794
4795/* Init all tx queues for port */
4796static int mvpp2_setup_txqs(struct mvpp2_port *port)
4797{
4798	struct mvpp2_tx_queue *txq;
4799	int queue, err;
4800
4801	for (queue = 0; queue < txq_number; queue++) {
4802		txq = port->txqs[queue];
4803		err = mvpp2_txq_init(port, txq);
4804		if (err)
4805			goto err_cleanup;
4806	}
4807
4808	on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1);
4809	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4810	return 0;
4811
4812err_cleanup:
4813	mvpp2_cleanup_txqs(port);
4814	return err;
4815}
4816
4817/* The callback for per-port interrupt */
4818static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4819{
4820	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4821
4822	mvpp2_interrupts_disable(port);
4823
4824	napi_schedule(&port->napi);
4825
4826	return IRQ_HANDLED;
4827}
4828
4829/* Adjust link */
4830static void mvpp2_link_event(struct net_device *dev)
4831{
4832	struct mvpp2_port *port = netdev_priv(dev);
4833	struct phy_device *phydev = port->phy_dev;
4834	int status_change = 0;
4835	u32 val;
4836
4837	if (phydev->link) {
4838		if ((port->speed != phydev->speed) ||
4839		    (port->duplex != phydev->duplex)) {
4840			u32 val;
4841
4842			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4843			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4844				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4845				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4846				 MVPP2_GMAC_AN_SPEED_EN |
4847				 MVPP2_GMAC_AN_DUPLEX_EN);
4848
4849			if (phydev->duplex)
4850				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4851
4852			if (phydev->speed == SPEED_1000)
4853				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4854			else if (phydev->speed == SPEED_100)
4855				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4856
4857			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4858
4859			port->duplex = phydev->duplex;
4860			port->speed  = phydev->speed;
4861		}
4862	}
4863
4864	if (phydev->link != port->link) {
4865		if (!phydev->link) {
4866			port->duplex = -1;
4867			port->speed = 0;
4868		}
4869
4870		port->link = phydev->link;
4871		status_change = 1;
4872	}
4873
4874	if (status_change) {
4875		if (phydev->link) {
4876			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4877			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4878				MVPP2_GMAC_FORCE_LINK_DOWN);
4879			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4880			mvpp2_egress_enable(port);
4881			mvpp2_ingress_enable(port);
4882		} else {
4883			mvpp2_ingress_disable(port);
4884			mvpp2_egress_disable(port);
4885		}
4886		phy_print_status(phydev);
4887	}
4888}
4889
4890/* Main RX/TX processing routines */
4891
4892/* Display more error info */
4893static void mvpp2_rx_error(struct mvpp2_port *port,
4894			   struct mvpp2_rx_desc *rx_desc)
4895{
4896	u32 status = rx_desc->status;
4897
4898	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4899	case MVPP2_RXD_ERR_CRC:
4900		netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4901			   status, rx_desc->data_size);
4902		break;
4903	case MVPP2_RXD_ERR_OVERRUN:
4904		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4905			   status, rx_desc->data_size);
4906		break;
4907	case MVPP2_RXD_ERR_RESOURCE:
4908		netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4909			   status, rx_desc->data_size);
4910		break;
4911	}
4912}
4913
4914/* Handle RX checksum offload */
4915static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4916			  struct sk_buff *skb)
4917{
4918	if (((status & MVPP2_RXD_L3_IP4) &&
4919	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4920	    (status & MVPP2_RXD_L3_IP6))
4921		if (((status & MVPP2_RXD_L4_UDP) ||
4922		     (status & MVPP2_RXD_L4_TCP)) &&
4923		     (status & MVPP2_RXD_L4_CSUM_OK)) {
4924			skb->csum = 0;
4925			skb->ip_summed = CHECKSUM_UNNECESSARY;
4926			return;
4927		}
4928
4929	skb->ip_summed = CHECKSUM_NONE;
4930}
4931
4932/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4933static int mvpp2_rx_refill(struct mvpp2_port *port,
4934			   struct mvpp2_bm_pool *bm_pool,
4935			   u32 bm, int is_recycle)
4936{
4937	struct sk_buff *skb;
4938	dma_addr_t phys_addr;
4939
4940	if (is_recycle &&
4941	    (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
4942		return 0;
4943
4944	/* No recycle or too many buffers are in use, so allocate a new skb */
4945	skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
4946	if (!skb)
4947		return -ENOMEM;
4948
4949	mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
4950	atomic_dec(&bm_pool->in_use);
4951	return 0;
4952}
4953
4954/* Handle tx checksum */
4955static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
4956{
4957	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4958		int ip_hdr_len = 0;
4959		u8 l4_proto;
4960
4961		if (skb->protocol == htons(ETH_P_IP)) {
4962			struct iphdr *ip4h = ip_hdr(skb);
4963
4964			/* Calculate IPv4 checksum and L4 checksum */
4965			ip_hdr_len = ip4h->ihl;
4966			l4_proto = ip4h->protocol;
4967		} else if (skb->protocol == htons(ETH_P_IPV6)) {
4968			struct ipv6hdr *ip6h = ipv6_hdr(skb);
4969
4970			/* Read l4_protocol from one of IPv6 extra headers */
4971			if (skb_network_header_len(skb) > 0)
4972				ip_hdr_len = (skb_network_header_len(skb) >> 2);
4973			l4_proto = ip6h->nexthdr;
4974		} else {
4975			return MVPP2_TXD_L4_CSUM_NOT;
4976		}
4977
4978		return mvpp2_txq_desc_csum(skb_network_offset(skb),
4979				skb->protocol, ip_hdr_len, l4_proto);
4980	}
4981
4982	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
4983}
4984
4985static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
4986			      struct mvpp2_rx_desc *rx_desc)
4987{
4988	struct mvpp2_buff_hdr *buff_hdr;
4989	struct sk_buff *skb;
4990	u32 rx_status = rx_desc->status;
4991	u32 buff_phys_addr;
4992	u32 buff_virt_addr;
4993	u32 buff_phys_addr_next;
4994	u32 buff_virt_addr_next;
4995	int mc_id;
4996	int pool_id;
4997
4998	pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4999		   MVPP2_RXD_BM_POOL_ID_OFFS;
5000	buff_phys_addr = rx_desc->buf_phys_addr;
5001	buff_virt_addr = rx_desc->buf_cookie;
5002
5003	do {
5004		skb = (struct sk_buff *)buff_virt_addr;
5005		buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5006
5007		mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5008
5009		buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5010		buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5011
5012		/* Release buffer */
5013		mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5014				     buff_virt_addr, mc_id);
5015
5016		buff_phys_addr = buff_phys_addr_next;
5017		buff_virt_addr = buff_virt_addr_next;
5018
5019	} while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5020}
5021
5022/* Main rx processing */
5023static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5024		    struct mvpp2_rx_queue *rxq)
5025{
5026	struct net_device *dev = port->dev;
5027	int rx_received, rx_filled, i;
5028	u32 rcvd_pkts = 0;
5029	u32 rcvd_bytes = 0;
5030
5031	/* Get number of received packets and clamp the to-do */
5032	rx_received = mvpp2_rxq_received(port, rxq->id);
5033	if (rx_todo > rx_received)
5034		rx_todo = rx_received;
5035
5036	rx_filled = 0;
5037	for (i = 0; i < rx_todo; i++) {
5038		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5039		struct mvpp2_bm_pool *bm_pool;
5040		struct sk_buff *skb;
5041		u32 bm, rx_status;
5042		int pool, rx_bytes, err;
5043
5044		rx_filled++;
5045		rx_status = rx_desc->status;
5046		rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5047
5048		bm = mvpp2_bm_cookie_build(rx_desc);
5049		pool = mvpp2_bm_cookie_pool_get(bm);
5050		bm_pool = &port->priv->bm_pools[pool];
5051		/* Check if buffer header is used */
5052		if (rx_status & MVPP2_RXD_BUF_HDR) {
5053			mvpp2_buff_hdr_rx(port, rx_desc);
5054			continue;
5055		}
5056
5057		/* In case of an error, release the requested buffer pointer
5058		 * to the Buffer Manager. This request process is controlled
5059		 * by the hardware, and the information about the buffer is
5060		 * comprised by the RX descriptor.
5061		 */
5062		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5063			dev->stats.rx_errors++;
5064			mvpp2_rx_error(port, rx_desc);
5065			mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5066					  rx_desc->buf_cookie);
5067			continue;
5068		}
5069
5070		skb = (struct sk_buff *)rx_desc->buf_cookie;
5071
5072		rcvd_pkts++;
5073		rcvd_bytes += rx_bytes;
5074		atomic_inc(&bm_pool->in_use);
5075
5076		skb_reserve(skb, MVPP2_MH_SIZE);
5077		skb_put(skb, rx_bytes);
5078		skb->protocol = eth_type_trans(skb, dev);
5079		mvpp2_rx_csum(port, rx_status, skb);
5080
5081		napi_gro_receive(&port->napi, skb);
5082
5083		err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5084		if (err) {
5085			netdev_err(port->dev, "failed to refill BM pools\n");
5086			rx_filled--;
5087		}
5088	}
5089
5090	if (rcvd_pkts) {
5091		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5092
5093		u64_stats_update_begin(&stats->syncp);
5094		stats->rx_packets += rcvd_pkts;
5095		stats->rx_bytes   += rcvd_bytes;
5096		u64_stats_update_end(&stats->syncp);
5097	}
5098
5099	/* Update Rx queue management counters */
5100	wmb();
5101	mvpp2_rxq_status_update(port, rxq->id, rx_todo, rx_filled);
5102
5103	return rx_todo;
5104}
5105
5106static inline void
5107tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5108		  struct mvpp2_tx_desc *desc)
5109{
5110	dma_unmap_single(dev, desc->buf_phys_addr,
5111			 desc->data_size, DMA_TO_DEVICE);
5112	mvpp2_txq_desc_put(txq);
5113}
5114
5115/* Handle tx fragmentation processing */
5116static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5117				 struct mvpp2_tx_queue *aggr_txq,
5118				 struct mvpp2_tx_queue *txq)
5119{
5120	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5121	struct mvpp2_tx_desc *tx_desc;
5122	int i;
5123	dma_addr_t buf_phys_addr;
5124
5125	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5126		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5127		void *addr = page_address(frag->page.p) + frag->page_offset;
5128
5129		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5130		tx_desc->phys_txq = txq->id;
5131		tx_desc->data_size = frag->size;
5132
5133		buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5134					       tx_desc->data_size,
5135					       DMA_TO_DEVICE);
5136		if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5137			mvpp2_txq_desc_put(txq);
5138			goto error;
5139		}
5140
5141		tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5142		tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5143
5144		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5145			/* Last descriptor */
5146			tx_desc->command = MVPP2_TXD_L_DESC;
5147			mvpp2_txq_inc_put(txq_pcpu, skb);
5148		} else {
5149			/* Descriptor in the middle: Not First, Not Last */
5150			tx_desc->command = 0;
5151			mvpp2_txq_inc_put(txq_pcpu, NULL);
5152		}
5153	}
5154
5155	return 0;
5156
5157error:
5158	/* Release all descriptors that were used to map fragments of
5159	 * this packet, as well as the corresponding DMA mappings
5160	 */
5161	for (i = i - 1; i >= 0; i--) {
5162		tx_desc = txq->descs + i;
5163		tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5164	}
5165
5166	return -ENOMEM;
5167}
5168
5169/* Main tx processing */
5170static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5171{
5172	struct mvpp2_port *port = netdev_priv(dev);
5173	struct mvpp2_tx_queue *txq, *aggr_txq;
5174	struct mvpp2_txq_pcpu *txq_pcpu;
5175	struct mvpp2_tx_desc *tx_desc;
5176	dma_addr_t buf_phys_addr;
5177	int frags = 0;
5178	u16 txq_id;
5179	u32 tx_cmd;
5180
5181	txq_id = skb_get_queue_mapping(skb);
5182	txq = port->txqs[txq_id];
5183	txq_pcpu = this_cpu_ptr(txq->pcpu);
5184	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5185
5186	frags = skb_shinfo(skb)->nr_frags + 1;
5187
5188	/* Check number of available descriptors */
5189	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5190	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5191					     txq_pcpu, frags)) {
5192		frags = 0;
5193		goto out;
5194	}
5195
5196	/* Get a descriptor for the first part of the packet */
5197	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5198	tx_desc->phys_txq = txq->id;
5199	tx_desc->data_size = skb_headlen(skb);
5200
5201	buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5202				       tx_desc->data_size, DMA_TO_DEVICE);
5203	if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5204		mvpp2_txq_desc_put(txq);
5205		frags = 0;
5206		goto out;
5207	}
5208	tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5209	tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5210
5211	tx_cmd = mvpp2_skb_tx_csum(port, skb);
5212
5213	if (frags == 1) {
5214		/* First and Last descriptor */
5215		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5216		tx_desc->command = tx_cmd;
5217		mvpp2_txq_inc_put(txq_pcpu, skb);
5218	} else {
5219		/* First but not Last */
5220		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5221		tx_desc->command = tx_cmd;
5222		mvpp2_txq_inc_put(txq_pcpu, NULL);
5223
5224		/* Continue with other skb fragments */
5225		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5226			tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5227			frags = 0;
5228			goto out;
5229		}
5230	}
5231
5232	txq_pcpu->reserved_num -= frags;
5233	txq_pcpu->count += frags;
5234	aggr_txq->count += frags;
5235
5236	/* Enable transmit */
5237	wmb();
5238	mvpp2_aggr_txq_pend_desc_add(port, frags);
5239
5240	if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5241		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5242
5243		netif_tx_stop_queue(nq);
5244	}
5245out:
5246	if (frags > 0) {
5247		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5248
5249		u64_stats_update_begin(&stats->syncp);
5250		stats->tx_packets++;
5251		stats->tx_bytes += skb->len;
5252		u64_stats_update_end(&stats->syncp);
5253	} else {
5254		dev->stats.tx_dropped++;
5255		dev_kfree_skb_any(skb);
5256	}
5257
5258	return NETDEV_TX_OK;
5259}
5260
5261static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5262{
5263	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5264		netdev_err(dev, "FCS error\n");
5265	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5266		netdev_err(dev, "rx fifo overrun error\n");
5267	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5268		netdev_err(dev, "tx fifo underrun error\n");
5269}
5270
5271static void mvpp2_txq_done_percpu(void *arg)
5272{
5273	struct mvpp2_port *port = arg;
5274	u32 cause_rx_tx, cause_tx, cause_misc;
5275
5276	/* Rx/Tx cause register
5277	 *
5278	 * Bits 0-15: each bit indicates received packets on the Rx queue
5279	 * (bit 0 is for Rx queue 0).
5280	 *
5281	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5282	 * (bit 16 is for Tx queue 0).
5283	 *
5284	 * Each CPU has its own Rx/Tx cause register
5285	 */
5286	cause_rx_tx = mvpp2_read(port->priv,
5287				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5288	cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5289	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5290
5291	if (cause_misc) {
5292		mvpp2_cause_error(port->dev, cause_misc);
5293
5294		/* Clear the cause register */
5295		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5296		mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5297			    cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5298	}
5299
5300	/* Release TX descriptors */
5301	if (cause_tx) {
5302		struct mvpp2_tx_queue *txq = mvpp2_get_tx_queue(port, cause_tx);
5303		struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5304
5305		if (txq_pcpu->count)
5306			mvpp2_txq_done(port, txq, txq_pcpu);
5307	}
5308}
5309
5310static int mvpp2_poll(struct napi_struct *napi, int budget)
5311{
5312	u32 cause_rx_tx, cause_rx;
5313	int rx_done = 0;
5314	struct mvpp2_port *port = netdev_priv(napi->dev);
5315
5316	on_each_cpu(mvpp2_txq_done_percpu, port, 1);
5317
5318	cause_rx_tx = mvpp2_read(port->priv,
5319				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5320	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5321
5322	/* Process RX packets */
5323	cause_rx |= port->pending_cause_rx;
5324	while (cause_rx && budget > 0) {
5325		int count;
5326		struct mvpp2_rx_queue *rxq;
5327
5328		rxq = mvpp2_get_rx_queue(port, cause_rx);
5329		if (!rxq)
5330			break;
5331
5332		count = mvpp2_rx(port, budget, rxq);
5333		rx_done += count;
5334		budget -= count;
5335		if (budget > 0) {
5336			/* Clear the bit associated to this Rx queue
5337			 * so that next iteration will continue from
5338			 * the next Rx queue.
5339			 */
5340			cause_rx &= ~(1 << rxq->logic_rxq);
5341		}
5342	}
5343
5344	if (budget > 0) {
5345		cause_rx = 0;
5346		napi_complete(napi);
5347
5348		mvpp2_interrupts_enable(port);
5349	}
5350	port->pending_cause_rx = cause_rx;
5351	return rx_done;
5352}
5353
5354/* Set hw internals when starting port */
5355static void mvpp2_start_dev(struct mvpp2_port *port)
5356{
5357	mvpp2_gmac_max_rx_size_set(port);
5358	mvpp2_txp_max_tx_size_set(port);
5359
5360	napi_enable(&port->napi);
5361
5362	/* Enable interrupts on all CPUs */
5363	mvpp2_interrupts_enable(port);
5364
5365	mvpp2_port_enable(port);
5366	phy_start(port->phy_dev);
5367	netif_tx_start_all_queues(port->dev);
5368}
5369
5370/* Set hw internals when stopping port */
5371static void mvpp2_stop_dev(struct mvpp2_port *port)
5372{
5373	/* Stop new packets from arriving to RXQs */
5374	mvpp2_ingress_disable(port);
5375
5376	mdelay(10);
5377
5378	/* Disable interrupts on all CPUs */
5379	mvpp2_interrupts_disable(port);
5380
5381	napi_disable(&port->napi);
5382
5383	netif_carrier_off(port->dev);
5384	netif_tx_stop_all_queues(port->dev);
5385
5386	mvpp2_egress_disable(port);
5387	mvpp2_port_disable(port);
5388	phy_stop(port->phy_dev);
5389}
5390
5391/* Return positive if MTU is valid */
5392static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5393{
5394	if (mtu < 68) {
5395		netdev_err(dev, "cannot change mtu to less than 68\n");
5396		return -EINVAL;
5397	}
5398
5399	/* 9676 == 9700 - 20 and rounding to 8 */
5400	if (mtu > 9676) {
5401		netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5402		mtu = 9676;
5403	}
5404
5405	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5406		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5407			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5408		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5409	}
5410
5411	return mtu;
5412}
5413
5414static int mvpp2_check_ringparam_valid(struct net_device *dev,
5415				       struct ethtool_ringparam *ring)
5416{
5417	u16 new_rx_pending = ring->rx_pending;
5418	u16 new_tx_pending = ring->tx_pending;
5419
5420	if (ring->rx_pending == 0 || ring->tx_pending == 0)
5421		return -EINVAL;
5422
5423	if (ring->rx_pending > MVPP2_MAX_RXD)
5424		new_rx_pending = MVPP2_MAX_RXD;
5425	else if (!IS_ALIGNED(ring->rx_pending, 16))
5426		new_rx_pending = ALIGN(ring->rx_pending, 16);
5427
5428	if (ring->tx_pending > MVPP2_MAX_TXD)
5429		new_tx_pending = MVPP2_MAX_TXD;
5430	else if (!IS_ALIGNED(ring->tx_pending, 32))
5431		new_tx_pending = ALIGN(ring->tx_pending, 32);
5432
5433	if (ring->rx_pending != new_rx_pending) {
5434		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5435			    ring->rx_pending, new_rx_pending);
5436		ring->rx_pending = new_rx_pending;
5437	}
5438
5439	if (ring->tx_pending != new_tx_pending) {
5440		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5441			    ring->tx_pending, new_tx_pending);
5442		ring->tx_pending = new_tx_pending;
5443	}
5444
5445	return 0;
5446}
5447
5448static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5449{
5450	u32 mac_addr_l, mac_addr_m, mac_addr_h;
5451
5452	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5453	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5454	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5455	addr[0] = (mac_addr_h >> 24) & 0xFF;
5456	addr[1] = (mac_addr_h >> 16) & 0xFF;
5457	addr[2] = (mac_addr_h >> 8) & 0xFF;
5458	addr[3] = mac_addr_h & 0xFF;
5459	addr[4] = mac_addr_m & 0xFF;
5460	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5461}
5462
5463static int mvpp2_phy_connect(struct mvpp2_port *port)
5464{
5465	struct phy_device *phy_dev;
5466
5467	phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5468				 port->phy_interface);
5469	if (!phy_dev) {
5470		netdev_err(port->dev, "cannot connect to phy\n");
5471		return -ENODEV;
5472	}
5473	phy_dev->supported &= PHY_GBIT_FEATURES;
5474	phy_dev->advertising = phy_dev->supported;
5475
5476	port->phy_dev = phy_dev;
5477	port->link    = 0;
5478	port->duplex  = 0;
5479	port->speed   = 0;
5480
5481	return 0;
5482}
5483
5484static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5485{
5486	phy_disconnect(port->phy_dev);
5487	port->phy_dev = NULL;
5488}
5489
5490static int mvpp2_open(struct net_device *dev)
5491{
5492	struct mvpp2_port *port = netdev_priv(dev);
5493	unsigned char mac_bcast[ETH_ALEN] = {
5494			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5495	int err;
5496
5497	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5498	if (err) {
5499		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5500		return err;
5501	}
5502	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5503				      dev->dev_addr, true);
5504	if (err) {
5505		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5506		return err;
5507	}
5508	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5509	if (err) {
5510		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5511		return err;
5512	}
5513	err = mvpp2_prs_def_flow(port);
5514	if (err) {
5515		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5516		return err;
5517	}
5518
5519	/* Allocate the Rx/Tx queues */
5520	err = mvpp2_setup_rxqs(port);
5521	if (err) {
5522		netdev_err(port->dev, "cannot allocate Rx queues\n");
5523		return err;
5524	}
5525
5526	err = mvpp2_setup_txqs(port);
5527	if (err) {
5528		netdev_err(port->dev, "cannot allocate Tx queues\n");
5529		goto err_cleanup_rxqs;
5530	}
5531
5532	err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5533	if (err) {
5534		netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5535		goto err_cleanup_txqs;
5536	}
5537
5538	/* In default link is down */
5539	netif_carrier_off(port->dev);
5540
5541	err = mvpp2_phy_connect(port);
5542	if (err < 0)
5543		goto err_free_irq;
5544
5545	/* Unmask interrupts on all CPUs */
5546	on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5547
5548	mvpp2_start_dev(port);
5549
5550	return 0;
5551
5552err_free_irq:
5553	free_irq(port->irq, port);
5554err_cleanup_txqs:
5555	mvpp2_cleanup_txqs(port);
5556err_cleanup_rxqs:
5557	mvpp2_cleanup_rxqs(port);
5558	return err;
5559}
5560
5561static int mvpp2_stop(struct net_device *dev)
5562{
5563	struct mvpp2_port *port = netdev_priv(dev);
5564
5565	mvpp2_stop_dev(port);
5566	mvpp2_phy_disconnect(port);
5567
5568	/* Mask interrupts on all CPUs */
5569	on_each_cpu(mvpp2_interrupts_mask, port, 1);
5570
5571	free_irq(port->irq, port);
5572	mvpp2_cleanup_rxqs(port);
5573	mvpp2_cleanup_txqs(port);
5574
5575	return 0;
5576}
5577
5578static void mvpp2_set_rx_mode(struct net_device *dev)
5579{
5580	struct mvpp2_port *port = netdev_priv(dev);
5581	struct mvpp2 *priv = port->priv;
5582	struct netdev_hw_addr *ha;
5583	int id = port->id;
5584	bool allmulti = dev->flags & IFF_ALLMULTI;
5585
5586	mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5587	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5588	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5589
5590	/* Remove all port->id's mcast enries */
5591	mvpp2_prs_mcast_del_all(priv, id);
5592
5593	if (allmulti && !netdev_mc_empty(dev)) {
5594		netdev_for_each_mc_addr(ha, dev)
5595			mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5596	}
5597}
5598
5599static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5600{
5601	struct mvpp2_port *port = netdev_priv(dev);
5602	const struct sockaddr *addr = p;
5603	int err;
5604
5605	if (!is_valid_ether_addr(addr->sa_data)) {
5606		err = -EADDRNOTAVAIL;
5607		goto error;
5608	}
5609
5610	if (!netif_running(dev)) {
5611		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5612		if (!err)
5613			return 0;
5614		/* Reconfigure parser to accept the original MAC address */
5615		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5616		if (err)
5617			goto error;
5618	}
5619
5620	mvpp2_stop_dev(port);
5621
5622	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5623	if (!err)
5624		goto out_start;
5625
5626	/* Reconfigure parser accept the original MAC address */
5627	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5628	if (err)
5629		goto error;
5630out_start:
5631	mvpp2_start_dev(port);
5632	mvpp2_egress_enable(port);
5633	mvpp2_ingress_enable(port);
5634	return 0;
5635
5636error:
5637	netdev_err(dev, "fail to change MAC address\n");
5638	return err;
5639}
5640
5641static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5642{
5643	struct mvpp2_port *port = netdev_priv(dev);
5644	int err;
5645
5646	mtu = mvpp2_check_mtu_valid(dev, mtu);
5647	if (mtu < 0) {
5648		err = mtu;
5649		goto error;
5650	}
5651
5652	if (!netif_running(dev)) {
5653		err = mvpp2_bm_update_mtu(dev, mtu);
5654		if (!err) {
5655			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5656			return 0;
5657		}
5658
5659		/* Reconfigure BM to the original MTU */
5660		err = mvpp2_bm_update_mtu(dev, dev->mtu);
5661		if (err)
5662			goto error;
5663	}
5664
5665	mvpp2_stop_dev(port);
5666
5667	err = mvpp2_bm_update_mtu(dev, mtu);
5668	if (!err) {
5669		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5670		goto out_start;
5671	}
5672
5673	/* Reconfigure BM to the original MTU */
5674	err = mvpp2_bm_update_mtu(dev, dev->mtu);
5675	if (err)
5676		goto error;
5677
5678out_start:
5679	mvpp2_start_dev(port);
5680	mvpp2_egress_enable(port);
5681	mvpp2_ingress_enable(port);
5682
5683	return 0;
5684
5685error:
5686	netdev_err(dev, "fail to change MTU\n");
5687	return err;
5688}
5689
5690static struct rtnl_link_stats64 *
5691mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5692{
5693	struct mvpp2_port *port = netdev_priv(dev);
5694	unsigned int start;
5695	int cpu;
5696
5697	for_each_possible_cpu(cpu) {
5698		struct mvpp2_pcpu_stats *cpu_stats;
5699		u64 rx_packets;
5700		u64 rx_bytes;
5701		u64 tx_packets;
5702		u64 tx_bytes;
5703
5704		cpu_stats = per_cpu_ptr(port->stats, cpu);
5705		do {
5706			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5707			rx_packets = cpu_stats->rx_packets;
5708			rx_bytes   = cpu_stats->rx_bytes;
5709			tx_packets = cpu_stats->tx_packets;
5710			tx_bytes   = cpu_stats->tx_bytes;
5711		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5712
5713		stats->rx_packets += rx_packets;
5714		stats->rx_bytes   += rx_bytes;
5715		stats->tx_packets += tx_packets;
5716		stats->tx_bytes   += tx_bytes;
5717	}
5718
5719	stats->rx_errors	= dev->stats.rx_errors;
5720	stats->rx_dropped	= dev->stats.rx_dropped;
5721	stats->tx_dropped	= dev->stats.tx_dropped;
5722
5723	return stats;
5724}
5725
5726static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5727{
5728	struct mvpp2_port *port = netdev_priv(dev);
5729	int ret;
5730
5731	if (!port->phy_dev)
5732		return -ENOTSUPP;
5733
5734	ret = phy_mii_ioctl(port->phy_dev, ifr, cmd);
5735	if (!ret)
5736		mvpp2_link_event(dev);
5737
5738	return ret;
5739}
5740
5741/* Ethtool methods */
5742
5743/* Get settings (phy address, speed) for ethtools */
5744static int mvpp2_ethtool_get_settings(struct net_device *dev,
5745				      struct ethtool_cmd *cmd)
5746{
5747	struct mvpp2_port *port = netdev_priv(dev);
5748
5749	if (!port->phy_dev)
5750		return -ENODEV;
5751	return phy_ethtool_gset(port->phy_dev, cmd);
5752}
5753
5754/* Set settings (phy address, speed) for ethtools */
5755static int mvpp2_ethtool_set_settings(struct net_device *dev,
5756				      struct ethtool_cmd *cmd)
5757{
5758	struct mvpp2_port *port = netdev_priv(dev);
5759
5760	if (!port->phy_dev)
5761		return -ENODEV;
5762	return phy_ethtool_sset(port->phy_dev, cmd);
5763}
5764
5765/* Set interrupt coalescing for ethtools */
5766static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5767				      struct ethtool_coalesce *c)
5768{
5769	struct mvpp2_port *port = netdev_priv(dev);
5770	int queue;
5771
5772	for (queue = 0; queue < rxq_number; queue++) {
5773		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5774
5775		rxq->time_coal = c->rx_coalesce_usecs;
5776		rxq->pkts_coal = c->rx_max_coalesced_frames;
5777		mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5778		mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5779	}
5780
5781	for (queue = 0; queue < txq_number; queue++) {
5782		struct mvpp2_tx_queue *txq = port->txqs[queue];
5783
5784		txq->done_pkts_coal = c->tx_max_coalesced_frames;
5785	}
5786
5787	on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1);
5788	return 0;
5789}
5790
5791/* get coalescing for ethtools */
5792static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5793				      struct ethtool_coalesce *c)
5794{
5795	struct mvpp2_port *port = netdev_priv(dev);
5796
5797	c->rx_coalesce_usecs        = port->rxqs[0]->time_coal;
5798	c->rx_max_coalesced_frames  = port->rxqs[0]->pkts_coal;
5799	c->tx_max_coalesced_frames =  port->txqs[0]->done_pkts_coal;
5800	return 0;
5801}
5802
5803static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5804				      struct ethtool_drvinfo *drvinfo)
5805{
5806	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5807		sizeof(drvinfo->driver));
5808	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5809		sizeof(drvinfo->version));
5810	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5811		sizeof(drvinfo->bus_info));
5812}
5813
5814static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5815					struct ethtool_ringparam *ring)
5816{
5817	struct mvpp2_port *port = netdev_priv(dev);
5818
5819	ring->rx_max_pending = MVPP2_MAX_RXD;
5820	ring->tx_max_pending = MVPP2_MAX_TXD;
5821	ring->rx_pending = port->rx_ring_size;
5822	ring->tx_pending = port->tx_ring_size;
5823}
5824
5825static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5826				       struct ethtool_ringparam *ring)
5827{
5828	struct mvpp2_port *port = netdev_priv(dev);
5829	u16 prev_rx_ring_size = port->rx_ring_size;
5830	u16 prev_tx_ring_size = port->tx_ring_size;
5831	int err;
5832
5833	err = mvpp2_check_ringparam_valid(dev, ring);
5834	if (err)
5835		return err;
5836
5837	if (!netif_running(dev)) {
5838		port->rx_ring_size = ring->rx_pending;
5839		port->tx_ring_size = ring->tx_pending;
5840		return 0;
5841	}
5842
5843	/* The interface is running, so we have to force a
5844	 * reallocation of the queues
5845	 */
5846	mvpp2_stop_dev(port);
5847	mvpp2_cleanup_rxqs(port);
5848	mvpp2_cleanup_txqs(port);
5849
5850	port->rx_ring_size = ring->rx_pending;
5851	port->tx_ring_size = ring->tx_pending;
5852
5853	err = mvpp2_setup_rxqs(port);
5854	if (err) {
5855		/* Reallocate Rx queues with the original ring size */
5856		port->rx_ring_size = prev_rx_ring_size;
5857		ring->rx_pending = prev_rx_ring_size;
5858		err = mvpp2_setup_rxqs(port);
5859		if (err)
5860			goto err_out;
5861	}
5862	err = mvpp2_setup_txqs(port);
5863	if (err) {
5864		/* Reallocate Tx queues with the original ring size */
5865		port->tx_ring_size = prev_tx_ring_size;
5866		ring->tx_pending = prev_tx_ring_size;
5867		err = mvpp2_setup_txqs(port);
5868		if (err)
5869			goto err_clean_rxqs;
5870	}
5871
5872	mvpp2_start_dev(port);
5873	mvpp2_egress_enable(port);
5874	mvpp2_ingress_enable(port);
5875
5876	return 0;
5877
5878err_clean_rxqs:
5879	mvpp2_cleanup_rxqs(port);
5880err_out:
5881	netdev_err(dev, "fail to change ring parameters");
5882	return err;
5883}
5884
5885/* Device ops */
5886
5887static const struct net_device_ops mvpp2_netdev_ops = {
5888	.ndo_open		= mvpp2_open,
5889	.ndo_stop		= mvpp2_stop,
5890	.ndo_start_xmit		= mvpp2_tx,
5891	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
5892	.ndo_set_mac_address	= mvpp2_set_mac_address,
5893	.ndo_change_mtu		= mvpp2_change_mtu,
5894	.ndo_get_stats64	= mvpp2_get_stats64,
5895	.ndo_do_ioctl		= mvpp2_ioctl,
5896};
5897
5898static const struct ethtool_ops mvpp2_eth_tool_ops = {
5899	.get_link	= ethtool_op_get_link,
5900	.get_settings	= mvpp2_ethtool_get_settings,
5901	.set_settings	= mvpp2_ethtool_set_settings,
5902	.set_coalesce	= mvpp2_ethtool_set_coalesce,
5903	.get_coalesce	= mvpp2_ethtool_get_coalesce,
5904	.get_drvinfo	= mvpp2_ethtool_get_drvinfo,
5905	.get_ringparam	= mvpp2_ethtool_get_ringparam,
5906	.set_ringparam	= mvpp2_ethtool_set_ringparam,
5907};
5908
5909/* Driver initialization */
5910
5911static void mvpp2_port_power_up(struct mvpp2_port *port)
5912{
5913	mvpp2_port_mii_set(port);
5914	mvpp2_port_periodic_xon_disable(port);
5915	mvpp2_port_fc_adv_enable(port);
5916	mvpp2_port_reset(port);
5917}
5918
5919/* Initialize port HW */
5920static int mvpp2_port_init(struct mvpp2_port *port)
5921{
5922	struct device *dev = port->dev->dev.parent;
5923	struct mvpp2 *priv = port->priv;
5924	struct mvpp2_txq_pcpu *txq_pcpu;
5925	int queue, cpu, err;
5926
5927	if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5928		return -EINVAL;
5929
5930	/* Disable port */
5931	mvpp2_egress_disable(port);
5932	mvpp2_port_disable(port);
5933
5934	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
5935				  GFP_KERNEL);
5936	if (!port->txqs)
5937		return -ENOMEM;
5938
5939	/* Associate physical Tx queues to this port and initialize.
5940	 * The mapping is predefined.
5941	 */
5942	for (queue = 0; queue < txq_number; queue++) {
5943		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
5944		struct mvpp2_tx_queue *txq;
5945
5946		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
5947		if (!txq)
5948			return -ENOMEM;
5949
5950		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
5951		if (!txq->pcpu) {
5952			err = -ENOMEM;
5953			goto err_free_percpu;
5954		}
5955
5956		txq->id = queue_phy_id;
5957		txq->log_id = queue;
5958		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
5959		for_each_present_cpu(cpu) {
5960			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5961			txq_pcpu->cpu = cpu;
5962		}
5963
5964		port->txqs[queue] = txq;
5965	}
5966
5967	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
5968				  GFP_KERNEL);
5969	if (!port->rxqs) {
5970		err = -ENOMEM;
5971		goto err_free_percpu;
5972	}
5973
5974	/* Allocate and initialize Rx queue for this port */
5975	for (queue = 0; queue < rxq_number; queue++) {
5976		struct mvpp2_rx_queue *rxq;
5977
5978		/* Map physical Rx queue to port's logical Rx queue */
5979		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
5980		if (!rxq)
5981			goto err_free_percpu;
5982		/* Map this Rx queue to a physical queue */
5983		rxq->id = port->first_rxq + queue;
5984		rxq->port = port->id;
5985		rxq->logic_rxq = queue;
5986
5987		port->rxqs[queue] = rxq;
5988	}
5989
5990	/* Configure Rx queue group interrupt for this port */
5991	mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
5992
5993	/* Create Rx descriptor rings */
5994	for (queue = 0; queue < rxq_number; queue++) {
5995		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5996
5997		rxq->size = port->rx_ring_size;
5998		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
5999		rxq->time_coal = MVPP2_RX_COAL_USEC;
6000	}
6001
6002	mvpp2_ingress_disable(port);
6003
6004	/* Port default configuration */
6005	mvpp2_defaults_set(port);
6006
6007	/* Port's classifier configuration */
6008	mvpp2_cls_oversize_rxq_set(port);
6009	mvpp2_cls_port_config(port);
6010
6011	/* Provide an initial Rx packet size */
6012	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6013
6014	/* Initialize pools for swf */
6015	err = mvpp2_swf_bm_pool_init(port);
6016	if (err)
6017		goto err_free_percpu;
6018
6019	return 0;
6020
6021err_free_percpu:
6022	for (queue = 0; queue < txq_number; queue++) {
6023		if (!port->txqs[queue])
6024			continue;
6025		free_percpu(port->txqs[queue]->pcpu);
6026	}
6027	return err;
6028}
6029
6030/* Ports initialization */
6031static int mvpp2_port_probe(struct platform_device *pdev,
6032			    struct device_node *port_node,
6033			    struct mvpp2 *priv,
6034			    int *next_first_rxq)
6035{
6036	struct device_node *phy_node;
6037	struct mvpp2_port *port;
6038	struct net_device *dev;
6039	struct resource *res;
6040	const char *dt_mac_addr;
6041	const char *mac_from;
6042	char hw_mac_addr[ETH_ALEN];
6043	u32 id;
6044	int features;
6045	int phy_mode;
6046	int priv_common_regs_num = 2;
6047	int err, i;
6048
6049	dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6050				 rxq_number);
6051	if (!dev)
6052		return -ENOMEM;
6053
6054	phy_node = of_parse_phandle(port_node, "phy", 0);
6055	if (!phy_node) {
6056		dev_err(&pdev->dev, "missing phy\n");
6057		err = -ENODEV;
6058		goto err_free_netdev;
6059	}
6060
6061	phy_mode = of_get_phy_mode(port_node);
6062	if (phy_mode < 0) {
6063		dev_err(&pdev->dev, "incorrect phy mode\n");
6064		err = phy_mode;
6065		goto err_free_netdev;
6066	}
6067
6068	if (of_property_read_u32(port_node, "port-id", &id)) {
6069		err = -EINVAL;
6070		dev_err(&pdev->dev, "missing port-id value\n");
6071		goto err_free_netdev;
6072	}
6073
6074	dev->tx_queue_len = MVPP2_MAX_TXD;
6075	dev->watchdog_timeo = 5 * HZ;
6076	dev->netdev_ops = &mvpp2_netdev_ops;
6077	dev->ethtool_ops = &mvpp2_eth_tool_ops;
6078
6079	port = netdev_priv(dev);
6080
6081	port->irq = irq_of_parse_and_map(port_node, 0);
6082	if (port->irq <= 0) {
6083		err = -EINVAL;
6084		goto err_free_netdev;
6085	}
6086
6087	if (of_property_read_bool(port_node, "marvell,loopback"))
6088		port->flags |= MVPP2_F_LOOPBACK;
6089
6090	port->priv = priv;
6091	port->id = id;
6092	port->first_rxq = *next_first_rxq;
6093	port->phy_node = phy_node;
6094	port->phy_interface = phy_mode;
6095
6096	res = platform_get_resource(pdev, IORESOURCE_MEM,
6097				    priv_common_regs_num + id);
6098	port->base = devm_ioremap_resource(&pdev->dev, res);
6099	if (IS_ERR(port->base)) {
6100		err = PTR_ERR(port->base);
6101		goto err_free_irq;
6102	}
6103
6104	/* Alloc per-cpu stats */
6105	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6106	if (!port->stats) {
6107		err = -ENOMEM;
6108		goto err_free_irq;
6109	}
6110
6111	dt_mac_addr = of_get_mac_address(port_node);
6112	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6113		mac_from = "device tree";
6114		ether_addr_copy(dev->dev_addr, dt_mac_addr);
6115	} else {
6116		mvpp2_get_mac_address(port, hw_mac_addr);
6117		if (is_valid_ether_addr(hw_mac_addr)) {
6118			mac_from = "hardware";
6119			ether_addr_copy(dev->dev_addr, hw_mac_addr);
6120		} else {
6121			mac_from = "random";
6122			eth_hw_addr_random(dev);
6123		}
6124	}
6125
6126	port->tx_ring_size = MVPP2_MAX_TXD;
6127	port->rx_ring_size = MVPP2_MAX_RXD;
6128	port->dev = dev;
6129	SET_NETDEV_DEV(dev, &pdev->dev);
6130
6131	err = mvpp2_port_init(port);
6132	if (err < 0) {
6133		dev_err(&pdev->dev, "failed to init port %d\n", id);
6134		goto err_free_stats;
6135	}
6136	mvpp2_port_power_up(port);
6137
6138	netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6139	features = NETIF_F_SG | NETIF_F_IP_CSUM;
6140	dev->features = features | NETIF_F_RXCSUM;
6141	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6142	dev->vlan_features |= features;
6143
6144	err = register_netdev(dev);
6145	if (err < 0) {
6146		dev_err(&pdev->dev, "failed to register netdev\n");
6147		goto err_free_txq_pcpu;
6148	}
6149	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6150
6151	/* Increment the first Rx queue number to be used by the next port */
6152	*next_first_rxq += rxq_number;
6153	priv->port_list[id] = port;
6154	return 0;
6155
6156err_free_txq_pcpu:
6157	for (i = 0; i < txq_number; i++)
6158		free_percpu(port->txqs[i]->pcpu);
6159err_free_stats:
6160	free_percpu(port->stats);
6161err_free_irq:
6162	irq_dispose_mapping(port->irq);
6163err_free_netdev:
6164	free_netdev(dev);
6165	return err;
6166}
6167
6168/* Ports removal routine */
6169static void mvpp2_port_remove(struct mvpp2_port *port)
6170{
6171	int i;
6172
6173	unregister_netdev(port->dev);
6174	free_percpu(port->stats);
6175	for (i = 0; i < txq_number; i++)
6176		free_percpu(port->txqs[i]->pcpu);
6177	irq_dispose_mapping(port->irq);
6178	free_netdev(port->dev);
6179}
6180
6181/* Initialize decoding windows */
6182static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6183				    struct mvpp2 *priv)
6184{
6185	u32 win_enable;
6186	int i;
6187
6188	for (i = 0; i < 6; i++) {
6189		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6190		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6191
6192		if (i < 4)
6193			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6194	}
6195
6196	win_enable = 0;
6197
6198	for (i = 0; i < dram->num_cs; i++) {
6199		const struct mbus_dram_window *cs = dram->cs + i;
6200
6201		mvpp2_write(priv, MVPP2_WIN_BASE(i),
6202			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6203			    dram->mbus_dram_target_id);
6204
6205		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6206			    (cs->size - 1) & 0xffff0000);
6207
6208		win_enable |= (1 << i);
6209	}
6210
6211	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6212}
6213
6214/* Initialize Rx FIFO's */
6215static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6216{
6217	int port;
6218
6219	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6220		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6221			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
6222		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6223			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6224	}
6225
6226	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6227		    MVPP2_RX_FIFO_PORT_MIN_PKT);
6228	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6229}
6230
6231/* Initialize network controller common part HW */
6232static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6233{
6234	const struct mbus_dram_target_info *dram_target_info;
6235	int err, i;
6236	u32 val;
6237
6238	/* Checks for hardware constraints */
6239	if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6240	    (txq_number > MVPP2_MAX_TXQ)) {
6241		dev_err(&pdev->dev, "invalid queue size parameter\n");
6242		return -EINVAL;
6243	}
6244
6245	/* MBUS windows configuration */
6246	dram_target_info = mv_mbus_dram_info();
6247	if (dram_target_info)
6248		mvpp2_conf_mbus_windows(dram_target_info, priv);
6249
6250	/* Disable HW PHY polling */
6251	val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6252	val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6253	writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6254
6255	/* Allocate and initialize aggregated TXQs */
6256	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6257				       sizeof(struct mvpp2_tx_queue),
6258				       GFP_KERNEL);
6259	if (!priv->aggr_txqs)
6260		return -ENOMEM;
6261
6262	for_each_present_cpu(i) {
6263		priv->aggr_txqs[i].id = i;
6264		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6265		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6266					  MVPP2_AGGR_TXQ_SIZE, i, priv);
6267		if (err < 0)
6268			return err;
6269	}
6270
6271	/* Rx Fifo Init */
6272	mvpp2_rx_fifo_init(priv);
6273
6274	/* Reset Rx queue group interrupt configuration */
6275	for (i = 0; i < MVPP2_MAX_PORTS; i++)
6276		mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6277
6278	writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6279	       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6280
6281	/* Allow cache snoop when transmiting packets */
6282	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6283
6284	/* Buffer Manager initialization */
6285	err = mvpp2_bm_init(pdev, priv);
6286	if (err < 0)
6287		return err;
6288
6289	/* Parser default initialization */
6290	err = mvpp2_prs_default_init(pdev, priv);
6291	if (err < 0)
6292		return err;
6293
6294	/* Classifier default initialization */
6295	mvpp2_cls_init(priv);
6296
6297	return 0;
6298}
6299
6300static int mvpp2_probe(struct platform_device *pdev)
6301{
6302	struct device_node *dn = pdev->dev.of_node;
6303	struct device_node *port_node;
6304	struct mvpp2 *priv;
6305	struct resource *res;
6306	int port_count, first_rxq;
6307	int err;
6308
6309	priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6310	if (!priv)
6311		return -ENOMEM;
6312
6313	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6314	priv->base = devm_ioremap_resource(&pdev->dev, res);
6315	if (IS_ERR(priv->base))
6316		return PTR_ERR(priv->base);
6317
6318	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6319	priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6320	if (IS_ERR(priv->lms_base))
6321		return PTR_ERR(priv->lms_base);
6322
6323	priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6324	if (IS_ERR(priv->pp_clk))
6325		return PTR_ERR(priv->pp_clk);
6326	err = clk_prepare_enable(priv->pp_clk);
6327	if (err < 0)
6328		return err;
6329
6330	priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6331	if (IS_ERR(priv->gop_clk)) {
6332		err = PTR_ERR(priv->gop_clk);
6333		goto err_pp_clk;
6334	}
6335	err = clk_prepare_enable(priv->gop_clk);
6336	if (err < 0)
6337		goto err_pp_clk;
6338
6339	/* Get system's tclk rate */
6340	priv->tclk = clk_get_rate(priv->pp_clk);
6341
6342	/* Initialize network controller */
6343	err = mvpp2_init(pdev, priv);
6344	if (err < 0) {
6345		dev_err(&pdev->dev, "failed to initialize controller\n");
6346		goto err_gop_clk;
6347	}
6348
6349	port_count = of_get_available_child_count(dn);
6350	if (port_count == 0) {
6351		dev_err(&pdev->dev, "no ports enabled\n");
6352		err = -ENODEV;
6353		goto err_gop_clk;
6354	}
6355
6356	priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6357				      sizeof(struct mvpp2_port *),
6358				      GFP_KERNEL);
6359	if (!priv->port_list) {
6360		err = -ENOMEM;
6361		goto err_gop_clk;
6362	}
6363
6364	/* Initialize ports */
6365	first_rxq = 0;
6366	for_each_available_child_of_node(dn, port_node) {
6367		err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6368		if (err < 0)
6369			goto err_gop_clk;
6370	}
6371
6372	platform_set_drvdata(pdev, priv);
6373	return 0;
6374
6375err_gop_clk:
6376	clk_disable_unprepare(priv->gop_clk);
6377err_pp_clk:
6378	clk_disable_unprepare(priv->pp_clk);
6379	return err;
6380}
6381
6382static int mvpp2_remove(struct platform_device *pdev)
6383{
6384	struct mvpp2 *priv = platform_get_drvdata(pdev);
6385	struct device_node *dn = pdev->dev.of_node;
6386	struct device_node *port_node;
6387	int i = 0;
6388
6389	for_each_available_child_of_node(dn, port_node) {
6390		if (priv->port_list[i])
6391			mvpp2_port_remove(priv->port_list[i]);
6392		i++;
6393	}
6394
6395	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6396		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6397
6398		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6399	}
6400
6401	for_each_present_cpu(i) {
6402		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6403
6404		dma_free_coherent(&pdev->dev,
6405				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6406				  aggr_txq->descs,
6407				  aggr_txq->descs_phys);
6408	}
6409
6410	clk_disable_unprepare(priv->pp_clk);
6411	clk_disable_unprepare(priv->gop_clk);
6412
6413	return 0;
6414}
6415
6416static const struct of_device_id mvpp2_match[] = {
6417	{ .compatible = "marvell,armada-375-pp2" },
6418	{ }
6419};
6420MODULE_DEVICE_TABLE(of, mvpp2_match);
6421
6422static struct platform_driver mvpp2_driver = {
6423	.probe = mvpp2_probe,
6424	.remove = mvpp2_remove,
6425	.driver = {
6426		.name = MVPP2_DRIVER_NAME,
6427		.of_match_table = mvpp2_match,
6428	},
6429};
6430
6431module_platform_driver(mvpp2_driver);
6432
6433MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6434MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6435MODULE_LICENSE("GPL v2");
6436