1/* 2 * Driver for Marvell PPv2 network controller for Armada 375 SoC. 3 * 4 * Copyright (C) 2014 Marvell 5 * 6 * Marcin Wojtas <mw@semihalf.com> 7 * 8 * This file is licensed under the terms of the GNU General Public 9 * License version 2. This program is licensed "as is" without any 10 * warranty of any kind, whether express or implied. 11 */ 12 13#include <linux/kernel.h> 14#include <linux/netdevice.h> 15#include <linux/etherdevice.h> 16#include <linux/platform_device.h> 17#include <linux/skbuff.h> 18#include <linux/inetdevice.h> 19#include <linux/mbus.h> 20#include <linux/module.h> 21#include <linux/interrupt.h> 22#include <linux/cpumask.h> 23#include <linux/of.h> 24#include <linux/of_irq.h> 25#include <linux/of_mdio.h> 26#include <linux/of_net.h> 27#include <linux/of_address.h> 28#include <linux/phy.h> 29#include <linux/clk.h> 30#include <uapi/linux/ppp_defs.h> 31#include <net/ip.h> 32#include <net/ipv6.h> 33 34/* RX Fifo Registers */ 35#define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port)) 36#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port)) 37#define MVPP2_RX_MIN_PKT_SIZE_REG 0x60 38#define MVPP2_RX_FIFO_INIT_REG 0x64 39 40/* RX DMA Top Registers */ 41#define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port)) 42#define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16) 43#define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31) 44#define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool)) 45#define MVPP2_POOL_BUF_SIZE_OFFSET 5 46#define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq)) 47#define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff 48#define MVPP2_SNOOP_BUF_HDR_MASK BIT(9) 49#define MVPP2_RXQ_POOL_SHORT_OFFS 20 50#define MVPP2_RXQ_POOL_SHORT_MASK 0x700000 51#define MVPP2_RXQ_POOL_LONG_OFFS 24 52#define MVPP2_RXQ_POOL_LONG_MASK 0x7000000 53#define MVPP2_RXQ_PACKET_OFFSET_OFFS 28 54#define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000 55#define MVPP2_RXQ_DISABLE_MASK BIT(31) 56 57/* Parser Registers */ 58#define MVPP2_PRS_INIT_LOOKUP_REG 0x1000 59#define MVPP2_PRS_PORT_LU_MAX 0xf 60#define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4)) 61#define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4)) 62#define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4)) 63#define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8)) 64#define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8)) 65#define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4)) 66#define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8)) 67#define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8)) 68#define MVPP2_PRS_TCAM_IDX_REG 0x1100 69#define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4) 70#define MVPP2_PRS_TCAM_INV_MASK BIT(31) 71#define MVPP2_PRS_SRAM_IDX_REG 0x1200 72#define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4) 73#define MVPP2_PRS_TCAM_CTRL_REG 0x1230 74#define MVPP2_PRS_TCAM_EN_MASK BIT(0) 75 76/* Classifier Registers */ 77#define MVPP2_CLS_MODE_REG 0x1800 78#define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0) 79#define MVPP2_CLS_PORT_WAY_REG 0x1810 80#define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port)) 81#define MVPP2_CLS_LKP_INDEX_REG 0x1814 82#define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6 83#define MVPP2_CLS_LKP_TBL_REG 0x1818 84#define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff 85#define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25) 86#define MVPP2_CLS_FLOW_INDEX_REG 0x1820 87#define MVPP2_CLS_FLOW_TBL0_REG 0x1824 88#define MVPP2_CLS_FLOW_TBL1_REG 0x1828 89#define MVPP2_CLS_FLOW_TBL2_REG 0x182c 90#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4)) 91#define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3 92#define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7 93#define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4)) 94#define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0 95#define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port)) 96 97/* Descriptor Manager Top Registers */ 98#define MVPP2_RXQ_NUM_REG 0x2040 99#define MVPP2_RXQ_DESC_ADDR_REG 0x2044 100#define MVPP2_RXQ_DESC_SIZE_REG 0x2048 101#define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0 102#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq)) 103#define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0 104#define MVPP2_RXQ_NUM_NEW_OFFSET 16 105#define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq)) 106#define MVPP2_RXQ_OCCUPIED_MASK 0x3fff 107#define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16 108#define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000 109#define MVPP2_RXQ_THRESH_REG 0x204c 110#define MVPP2_OCCUPIED_THRESH_OFFSET 0 111#define MVPP2_OCCUPIED_THRESH_MASK 0x3fff 112#define MVPP2_RXQ_INDEX_REG 0x2050 113#define MVPP2_TXQ_NUM_REG 0x2080 114#define MVPP2_TXQ_DESC_ADDR_REG 0x2084 115#define MVPP2_TXQ_DESC_SIZE_REG 0x2088 116#define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0 117#define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090 118#define MVPP2_TXQ_THRESH_REG 0x2094 119#define MVPP2_TRANSMITTED_THRESH_OFFSET 16 120#define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000 121#define MVPP2_TXQ_INDEX_REG 0x2098 122#define MVPP2_TXQ_PREF_BUF_REG 0x209c 123#define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff) 124#define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13)) 125#define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14)) 126#define MVPP2_PREF_BUF_THRESH(val) ((val) << 17) 127#define MVPP2_TXQ_DRAIN_EN_MASK BIT(31) 128#define MVPP2_TXQ_PENDING_REG 0x20a0 129#define MVPP2_TXQ_PENDING_MASK 0x3fff 130#define MVPP2_TXQ_INT_STATUS_REG 0x20a4 131#define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq)) 132#define MVPP2_TRANSMITTED_COUNT_OFFSET 16 133#define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000 134#define MVPP2_TXQ_RSVD_REQ_REG 0x20b0 135#define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16 136#define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4 137#define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff 138#define MVPP2_TXQ_RSVD_CLR_REG 0x20b8 139#define MVPP2_TXQ_RSVD_CLR_OFFSET 16 140#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu)) 141#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu)) 142#define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0 143#define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu)) 144#define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff 145#define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu)) 146 147/* MBUS bridge registers */ 148#define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2)) 149#define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2)) 150#define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2)) 151#define MVPP2_BASE_ADDR_ENABLE 0x4060 152 153/* Interrupt Cause and Mask registers */ 154#define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq)) 155#define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq)) 156#define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port)) 157#define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff) 158#define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000) 159#define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port)) 160#define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 161#define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000 162#define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24) 163#define MVPP2_CAUSE_FCS_ERR_MASK BIT(25) 164#define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26) 165#define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29) 166#define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30) 167#define MVPP2_CAUSE_MISC_SUM_MASK BIT(31) 168#define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port)) 169#define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc 170#define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 171#define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000 172#define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31) 173#define MVPP2_ISR_MISC_CAUSE_REG 0x55b0 174 175/* Buffer Manager registers */ 176#define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4)) 177#define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80 178#define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4)) 179#define MVPP2_BM_POOL_SIZE_MASK 0xfff0 180#define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4)) 181#define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0 182#define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4)) 183#define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0 184#define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4)) 185#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4)) 186#define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff 187#define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16) 188#define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4)) 189#define MVPP2_BM_START_MASK BIT(0) 190#define MVPP2_BM_STOP_MASK BIT(1) 191#define MVPP2_BM_STATE_MASK BIT(4) 192#define MVPP2_BM_LOW_THRESH_OFFS 8 193#define MVPP2_BM_LOW_THRESH_MASK 0x7f00 194#define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \ 195 MVPP2_BM_LOW_THRESH_OFFS) 196#define MVPP2_BM_HIGH_THRESH_OFFS 16 197#define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000 198#define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \ 199 MVPP2_BM_HIGH_THRESH_OFFS) 200#define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4)) 201#define MVPP2_BM_RELEASED_DELAY_MASK BIT(0) 202#define MVPP2_BM_ALLOC_FAILED_MASK BIT(1) 203#define MVPP2_BM_BPPE_EMPTY_MASK BIT(2) 204#define MVPP2_BM_BPPE_FULL_MASK BIT(3) 205#define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4) 206#define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4)) 207#define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4)) 208#define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0) 209#define MVPP2_BM_VIRT_ALLOC_REG 0x6440 210#define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4)) 211#define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0) 212#define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1) 213#define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2) 214#define MVPP2_BM_VIRT_RLS_REG 0x64c0 215#define MVPP2_BM_MC_RLS_REG 0x64c4 216#define MVPP2_BM_MC_ID_MASK 0xfff 217#define MVPP2_BM_FORCE_RELEASE_MASK BIT(12) 218 219/* TX Scheduler registers */ 220#define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000 221#define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004 222#define MVPP2_TXP_SCHED_ENQ_MASK 0xff 223#define MVPP2_TXP_SCHED_DISQ_OFFSET 8 224#define MVPP2_TXP_SCHED_CMD_1_REG 0x8010 225#define MVPP2_TXP_SCHED_PERIOD_REG 0x8018 226#define MVPP2_TXP_SCHED_MTU_REG 0x801c 227#define MVPP2_TXP_MTU_MAX 0x7FFFF 228#define MVPP2_TXP_SCHED_REFILL_REG 0x8020 229#define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff 230#define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000 231#define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20) 232#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024 233#define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff 234#define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2)) 235#define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff 236#define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000 237#define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20) 238#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2)) 239#define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff 240#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2)) 241#define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff 242 243/* TX general registers */ 244#define MVPP2_TX_SNOOP_REG 0x8800 245#define MVPP2_TX_PORT_FLUSH_REG 0x8810 246#define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port)) 247 248/* LMS registers */ 249#define MVPP2_SRC_ADDR_MIDDLE 0x24 250#define MVPP2_SRC_ADDR_HIGH 0x28 251#define MVPP2_PHY_AN_CFG0_REG 0x34 252#define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7) 253#define MVPP2_MIB_COUNTERS_BASE(port) (0x1000 + ((port) >> 1) * \ 254 0x400 + (port) * 0x400) 255#define MVPP2_MIB_LATE_COLLISION 0x7c 256#define MVPP2_ISR_SUM_MASK_REG 0x220c 257#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c 258#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27 259 260/* Per-port registers */ 261#define MVPP2_GMAC_CTRL_0_REG 0x0 262#define MVPP2_GMAC_PORT_EN_MASK BIT(0) 263#define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2 264#define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc 265#define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15) 266#define MVPP2_GMAC_CTRL_1_REG 0x4 267#define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1) 268#define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5) 269#define MVPP2_GMAC_PCS_LB_EN_BIT 6 270#define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6) 271#define MVPP2_GMAC_SA_LOW_OFFS 7 272#define MVPP2_GMAC_CTRL_2_REG 0x8 273#define MVPP2_GMAC_INBAND_AN_MASK BIT(0) 274#define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3) 275#define MVPP2_GMAC_PORT_RGMII_MASK BIT(4) 276#define MVPP2_GMAC_PORT_RESET_MASK BIT(6) 277#define MVPP2_GMAC_AUTONEG_CONFIG 0xc 278#define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0) 279#define MVPP2_GMAC_FORCE_LINK_PASS BIT(1) 280#define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5) 281#define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6) 282#define MVPP2_GMAC_AN_SPEED_EN BIT(7) 283#define MVPP2_GMAC_FC_ADV_EN BIT(9) 284#define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12) 285#define MVPP2_GMAC_AN_DUPLEX_EN BIT(13) 286#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c 287#define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6 288#define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0 289#define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \ 290 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK) 291 292#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 293 294/* Descriptor ring Macros */ 295#define MVPP2_QUEUE_NEXT_DESC(q, index) \ 296 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 297 298/* Various constants */ 299 300/* Coalescing */ 301#define MVPP2_TXDONE_COAL_PKTS_THRESH 15 302#define MVPP2_RX_COAL_PKTS 32 303#define MVPP2_RX_COAL_USEC 100 304 305/* The two bytes Marvell header. Either contains a special value used 306 * by Marvell switches when a specific hardware mode is enabled (not 307 * supported by this driver) or is filled automatically by zeroes on 308 * the RX side. Those two bytes being at the front of the Ethernet 309 * header, they allow to have the IP header aligned on a 4 bytes 310 * boundary automatically: the hardware skips those two bytes on its 311 * own. 312 */ 313#define MVPP2_MH_SIZE 2 314#define MVPP2_ETH_TYPE_LEN 2 315#define MVPP2_PPPOE_HDR_SIZE 8 316#define MVPP2_VLAN_TAG_LEN 4 317 318/* Lbtd 802.3 type */ 319#define MVPP2_IP_LBDT_TYPE 0xfffa 320 321#define MVPP2_CPU_D_CACHE_LINE_SIZE 32 322#define MVPP2_TX_CSUM_MAX_SIZE 9800 323 324/* Timeout constants */ 325#define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000 326#define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000 327 328#define MVPP2_TX_MTU_MAX 0x7ffff 329 330/* Maximum number of T-CONTs of PON port */ 331#define MVPP2_MAX_TCONT 16 332 333/* Maximum number of supported ports */ 334#define MVPP2_MAX_PORTS 4 335 336/* Maximum number of TXQs used by single port */ 337#define MVPP2_MAX_TXQ 8 338 339/* Maximum number of RXQs used by single port */ 340#define MVPP2_MAX_RXQ 8 341 342/* Dfault number of RXQs in use */ 343#define MVPP2_DEFAULT_RXQ 4 344 345/* Total number of RXQs available to all ports */ 346#define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ) 347 348/* Max number of Rx descriptors */ 349#define MVPP2_MAX_RXD 128 350 351/* Max number of Tx descriptors */ 352#define MVPP2_MAX_TXD 1024 353 354/* Amount of Tx descriptors that can be reserved at once by CPU */ 355#define MVPP2_CPU_DESC_CHUNK 64 356 357/* Max number of Tx descriptors in each aggregated queue */ 358#define MVPP2_AGGR_TXQ_SIZE 256 359 360/* Descriptor aligned size */ 361#define MVPP2_DESC_ALIGNED_SIZE 32 362 363/* Descriptor alignment mask */ 364#define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1) 365 366/* RX FIFO constants */ 367#define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000 368#define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80 369#define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80 370 371/* RX buffer constants */ 372#define MVPP2_SKB_SHINFO_SIZE \ 373 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) 374 375#define MVPP2_RX_PKT_SIZE(mtu) \ 376 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \ 377 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE) 378 379#define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 380#define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE) 381#define MVPP2_RX_MAX_PKT_SIZE(total_size) \ 382 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE) 383 384#define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8) 385 386/* IPv6 max L3 address size */ 387#define MVPP2_MAX_L3_ADDR_SIZE 16 388 389/* Port flags */ 390#define MVPP2_F_LOOPBACK BIT(0) 391 392/* Marvell tag types */ 393enum mvpp2_tag_type { 394 MVPP2_TAG_TYPE_NONE = 0, 395 MVPP2_TAG_TYPE_MH = 1, 396 MVPP2_TAG_TYPE_DSA = 2, 397 MVPP2_TAG_TYPE_EDSA = 3, 398 MVPP2_TAG_TYPE_VLAN = 4, 399 MVPP2_TAG_TYPE_LAST = 5 400}; 401 402/* Parser constants */ 403#define MVPP2_PRS_TCAM_SRAM_SIZE 256 404#define MVPP2_PRS_TCAM_WORDS 6 405#define MVPP2_PRS_SRAM_WORDS 4 406#define MVPP2_PRS_FLOW_ID_SIZE 64 407#define MVPP2_PRS_FLOW_ID_MASK 0x3f 408#define MVPP2_PRS_TCAM_ENTRY_INVALID 1 409#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5) 410#define MVPP2_PRS_IPV4_HEAD 0x40 411#define MVPP2_PRS_IPV4_HEAD_MASK 0xf0 412#define MVPP2_PRS_IPV4_MC 0xe0 413#define MVPP2_PRS_IPV4_MC_MASK 0xf0 414#define MVPP2_PRS_IPV4_BC_MASK 0xff 415#define MVPP2_PRS_IPV4_IHL 0x5 416#define MVPP2_PRS_IPV4_IHL_MASK 0xf 417#define MVPP2_PRS_IPV6_MC 0xff 418#define MVPP2_PRS_IPV6_MC_MASK 0xff 419#define MVPP2_PRS_IPV6_HOP_MASK 0xff 420#define MVPP2_PRS_TCAM_PROTO_MASK 0xff 421#define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f 422#define MVPP2_PRS_DBL_VLANS_MAX 100 423 424/* Tcam structure: 425 * - lookup ID - 4 bits 426 * - port ID - 1 byte 427 * - additional information - 1 byte 428 * - header data - 8 bytes 429 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0). 430 */ 431#define MVPP2_PRS_AI_BITS 8 432#define MVPP2_PRS_PORT_MASK 0xff 433#define MVPP2_PRS_LU_MASK 0xf 434#define MVPP2_PRS_TCAM_DATA_BYTE(offs) \ 435 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2)) 436#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \ 437 (((offs) * 2) - ((offs) % 2) + 2) 438#define MVPP2_PRS_TCAM_AI_BYTE 16 439#define MVPP2_PRS_TCAM_PORT_BYTE 17 440#define MVPP2_PRS_TCAM_LU_BYTE 20 441#define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2) 442#define MVPP2_PRS_TCAM_INV_WORD 5 443/* Tcam entries ID */ 444#define MVPP2_PE_DROP_ALL 0 445#define MVPP2_PE_FIRST_FREE_TID 1 446#define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31) 447#define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30) 448#define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29) 449#define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28) 450#define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27) 451#define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26) 452#define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19) 453#define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18) 454#define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17) 455#define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16) 456#define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15) 457#define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14) 458#define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13) 459#define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12) 460#define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11) 461#define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10) 462#define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9) 463#define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8) 464#define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7) 465#define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6) 466#define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5) 467#define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4) 468#define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3) 469#define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2) 470#define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1) 471 472/* Sram structure 473 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0). 474 */ 475#define MVPP2_PRS_SRAM_RI_OFFS 0 476#define MVPP2_PRS_SRAM_RI_WORD 0 477#define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32 478#define MVPP2_PRS_SRAM_RI_CTRL_WORD 1 479#define MVPP2_PRS_SRAM_RI_CTRL_BITS 32 480#define MVPP2_PRS_SRAM_SHIFT_OFFS 64 481#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72 482#define MVPP2_PRS_SRAM_UDF_OFFS 73 483#define MVPP2_PRS_SRAM_UDF_BITS 8 484#define MVPP2_PRS_SRAM_UDF_MASK 0xff 485#define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81 486#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82 487#define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7 488#define MVPP2_PRS_SRAM_UDF_TYPE_L3 1 489#define MVPP2_PRS_SRAM_UDF_TYPE_L4 4 490#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85 491#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3 492#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1 493#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2 494#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3 495#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87 496#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2 497#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3 498#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0 499#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2 500#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3 501#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89 502#define MVPP2_PRS_SRAM_AI_OFFS 90 503#define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98 504#define MVPP2_PRS_SRAM_AI_CTRL_BITS 8 505#define MVPP2_PRS_SRAM_AI_MASK 0xff 506#define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106 507#define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf 508#define MVPP2_PRS_SRAM_LU_DONE_BIT 110 509#define MVPP2_PRS_SRAM_LU_GEN_BIT 111 510 511/* Sram result info bits assignment */ 512#define MVPP2_PRS_RI_MAC_ME_MASK 0x1 513#define MVPP2_PRS_RI_DSA_MASK 0x2 514#define MVPP2_PRS_RI_VLAN_MASK 0xc 515#define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3)) 516#define MVPP2_PRS_RI_VLAN_SINGLE BIT(2) 517#define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3) 518#define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3)) 519#define MVPP2_PRS_RI_CPU_CODE_MASK 0x70 520#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4) 521#define MVPP2_PRS_RI_L2_CAST_MASK 0x600 522#define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) 523#define MVPP2_PRS_RI_L2_MCAST BIT(9) 524#define MVPP2_PRS_RI_L2_BCAST BIT(10) 525#define MVPP2_PRS_RI_PPPOE_MASK 0x800 526#define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000 527#define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14)) 528#define MVPP2_PRS_RI_L3_IP4 BIT(12) 529#define MVPP2_PRS_RI_L3_IP4_OPT BIT(13) 530#define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13)) 531#define MVPP2_PRS_RI_L3_IP6 BIT(14) 532#define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14)) 533#define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14)) 534#define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000 535#define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16)) 536#define MVPP2_PRS_RI_L3_MCAST BIT(15) 537#define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16)) 538#define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000 539#define MVPP2_PRS_RI_UDF3_MASK 0x300000 540#define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21) 541#define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000 542#define MVPP2_PRS_RI_L4_TCP BIT(22) 543#define MVPP2_PRS_RI_L4_UDP BIT(23) 544#define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23)) 545#define MVPP2_PRS_RI_UDF7_MASK 0x60000000 546#define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29) 547#define MVPP2_PRS_RI_DROP_MASK 0x80000000 548 549/* Sram additional info bits assignment */ 550#define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0) 551#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0) 552#define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1) 553#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2) 554#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3) 555#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4) 556#define MVPP2_PRS_SINGLE_VLAN_AI 0 557#define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7) 558 559/* DSA/EDSA type */ 560#define MVPP2_PRS_TAGGED true 561#define MVPP2_PRS_UNTAGGED false 562#define MVPP2_PRS_EDSA true 563#define MVPP2_PRS_DSA false 564 565/* MAC entries, shadow udf */ 566enum mvpp2_prs_udf { 567 MVPP2_PRS_UDF_MAC_DEF, 568 MVPP2_PRS_UDF_MAC_RANGE, 569 MVPP2_PRS_UDF_L2_DEF, 570 MVPP2_PRS_UDF_L2_DEF_COPY, 571 MVPP2_PRS_UDF_L2_USER, 572}; 573 574/* Lookup ID */ 575enum mvpp2_prs_lookup { 576 MVPP2_PRS_LU_MH, 577 MVPP2_PRS_LU_MAC, 578 MVPP2_PRS_LU_DSA, 579 MVPP2_PRS_LU_VLAN, 580 MVPP2_PRS_LU_L2, 581 MVPP2_PRS_LU_PPPOE, 582 MVPP2_PRS_LU_IP4, 583 MVPP2_PRS_LU_IP6, 584 MVPP2_PRS_LU_FLOWS, 585 MVPP2_PRS_LU_LAST, 586}; 587 588/* L3 cast enum */ 589enum mvpp2_prs_l3_cast { 590 MVPP2_PRS_L3_UNI_CAST, 591 MVPP2_PRS_L3_MULTI_CAST, 592 MVPP2_PRS_L3_BROAD_CAST 593}; 594 595/* Classifier constants */ 596#define MVPP2_CLS_FLOWS_TBL_SIZE 512 597#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3 598#define MVPP2_CLS_LKP_TBL_SIZE 64 599 600/* BM constants */ 601#define MVPP2_BM_POOLS_NUM 8 602#define MVPP2_BM_LONG_BUF_NUM 1024 603#define MVPP2_BM_SHORT_BUF_NUM 2048 604#define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4) 605#define MVPP2_BM_POOL_PTR_ALIGN 128 606#define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port) 607#define MVPP2_BM_SWF_SHORT_POOL 3 608 609/* BM cookie (32 bits) definition */ 610#define MVPP2_BM_COOKIE_POOL_OFFS 8 611#define MVPP2_BM_COOKIE_CPU_OFFS 24 612 613/* BM short pool packet size 614 * These value assure that for SWF the total number 615 * of bytes allocated for each buffer will be 512 616 */ 617#define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512) 618 619enum mvpp2_bm_type { 620 MVPP2_BM_FREE, 621 MVPP2_BM_SWF_LONG, 622 MVPP2_BM_SWF_SHORT 623}; 624 625/* Definitions */ 626 627/* Shared Packet Processor resources */ 628struct mvpp2 { 629 /* Shared registers' base addresses */ 630 void __iomem *base; 631 void __iomem *lms_base; 632 633 /* Common clocks */ 634 struct clk *pp_clk; 635 struct clk *gop_clk; 636 637 /* List of pointers to port structures */ 638 struct mvpp2_port **port_list; 639 640 /* Aggregated TXQs */ 641 struct mvpp2_tx_queue *aggr_txqs; 642 643 /* BM pools */ 644 struct mvpp2_bm_pool *bm_pools; 645 646 /* PRS shadow table */ 647 struct mvpp2_prs_shadow *prs_shadow; 648 /* PRS auxiliary table for double vlan entries control */ 649 bool *prs_double_vlans; 650 651 /* Tclk value */ 652 u32 tclk; 653}; 654 655struct mvpp2_pcpu_stats { 656 struct u64_stats_sync syncp; 657 u64 rx_packets; 658 u64 rx_bytes; 659 u64 tx_packets; 660 u64 tx_bytes; 661}; 662 663struct mvpp2_port { 664 u8 id; 665 666 int irq; 667 668 struct mvpp2 *priv; 669 670 /* Per-port registers' base address */ 671 void __iomem *base; 672 673 struct mvpp2_rx_queue **rxqs; 674 struct mvpp2_tx_queue **txqs; 675 struct net_device *dev; 676 677 int pkt_size; 678 679 u32 pending_cause_rx; 680 struct napi_struct napi; 681 682 /* Flags */ 683 unsigned long flags; 684 685 u16 tx_ring_size; 686 u16 rx_ring_size; 687 struct mvpp2_pcpu_stats __percpu *stats; 688 689 struct phy_device *phy_dev; 690 phy_interface_t phy_interface; 691 struct device_node *phy_node; 692 unsigned int link; 693 unsigned int duplex; 694 unsigned int speed; 695 696 struct mvpp2_bm_pool *pool_long; 697 struct mvpp2_bm_pool *pool_short; 698 699 /* Index of first port's physical RXQ */ 700 u8 first_rxq; 701}; 702 703/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the 704 * layout of the transmit and reception DMA descriptors, and their 705 * layout is therefore defined by the hardware design 706 */ 707 708#define MVPP2_TXD_L3_OFF_SHIFT 0 709#define MVPP2_TXD_IP_HLEN_SHIFT 8 710#define MVPP2_TXD_L4_CSUM_FRAG BIT(13) 711#define MVPP2_TXD_L4_CSUM_NOT BIT(14) 712#define MVPP2_TXD_IP_CSUM_DISABLE BIT(15) 713#define MVPP2_TXD_PADDING_DISABLE BIT(23) 714#define MVPP2_TXD_L4_UDP BIT(24) 715#define MVPP2_TXD_L3_IP6 BIT(26) 716#define MVPP2_TXD_L_DESC BIT(28) 717#define MVPP2_TXD_F_DESC BIT(29) 718 719#define MVPP2_RXD_ERR_SUMMARY BIT(15) 720#define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14)) 721#define MVPP2_RXD_ERR_CRC 0x0 722#define MVPP2_RXD_ERR_OVERRUN BIT(13) 723#define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14)) 724#define MVPP2_RXD_BM_POOL_ID_OFFS 16 725#define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18)) 726#define MVPP2_RXD_HWF_SYNC BIT(21) 727#define MVPP2_RXD_L4_CSUM_OK BIT(22) 728#define MVPP2_RXD_IP4_HEADER_ERR BIT(24) 729#define MVPP2_RXD_L4_TCP BIT(25) 730#define MVPP2_RXD_L4_UDP BIT(26) 731#define MVPP2_RXD_L3_IP4 BIT(28) 732#define MVPP2_RXD_L3_IP6 BIT(30) 733#define MVPP2_RXD_BUF_HDR BIT(31) 734 735struct mvpp2_tx_desc { 736 u32 command; /* Options used by HW for packet transmitting.*/ 737 u8 packet_offset; /* the offset from the buffer beginning */ 738 u8 phys_txq; /* destination queue ID */ 739 u16 data_size; /* data size of transmitted packet in bytes */ 740 u32 buf_phys_addr; /* physical addr of transmitted buffer */ 741 u32 buf_cookie; /* cookie for access to TX buffer in tx path */ 742 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */ 743 u32 reserved2; /* reserved (for future use) */ 744}; 745 746struct mvpp2_rx_desc { 747 u32 status; /* info about received packet */ 748 u16 reserved1; /* parser_info (for future use, PnC) */ 749 u16 data_size; /* size of received packet in bytes */ 750 u32 buf_phys_addr; /* physical address of the buffer */ 751 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 752 u16 reserved2; /* gem_port_id (for future use, PON) */ 753 u16 reserved3; /* csum_l4 (for future use, PnC) */ 754 u8 reserved4; /* bm_qset (for future use, BM) */ 755 u8 reserved5; 756 u16 reserved6; /* classify_info (for future use, PnC) */ 757 u32 reserved7; /* flow_id (for future use, PnC) */ 758 u32 reserved8; 759}; 760 761/* Per-CPU Tx queue control */ 762struct mvpp2_txq_pcpu { 763 int cpu; 764 765 /* Number of Tx DMA descriptors in the descriptor ring */ 766 int size; 767 768 /* Number of currently used Tx DMA descriptor in the 769 * descriptor ring 770 */ 771 int count; 772 773 /* Number of Tx DMA descriptors reserved for each CPU */ 774 int reserved_num; 775 776 /* Array of transmitted skb */ 777 struct sk_buff **tx_skb; 778 779 /* Index of last TX DMA descriptor that was inserted */ 780 int txq_put_index; 781 782 /* Index of the TX DMA descriptor to be cleaned up */ 783 int txq_get_index; 784}; 785 786struct mvpp2_tx_queue { 787 /* Physical number of this Tx queue */ 788 u8 id; 789 790 /* Logical number of this Tx queue */ 791 u8 log_id; 792 793 /* Number of Tx DMA descriptors in the descriptor ring */ 794 int size; 795 796 /* Number of currently used Tx DMA descriptor in the descriptor ring */ 797 int count; 798 799 /* Per-CPU control of physical Tx queues */ 800 struct mvpp2_txq_pcpu __percpu *pcpu; 801 802 /* Array of transmitted skb */ 803 struct sk_buff **tx_skb; 804 805 u32 done_pkts_coal; 806 807 /* Virtual address of thex Tx DMA descriptors array */ 808 struct mvpp2_tx_desc *descs; 809 810 /* DMA address of the Tx DMA descriptors array */ 811 dma_addr_t descs_phys; 812 813 /* Index of the last Tx DMA descriptor */ 814 int last_desc; 815 816 /* Index of the next Tx DMA descriptor to process */ 817 int next_desc_to_proc; 818}; 819 820struct mvpp2_rx_queue { 821 /* RX queue number, in the range 0-31 for physical RXQs */ 822 u8 id; 823 824 /* Num of rx descriptors in the rx descriptor ring */ 825 int size; 826 827 u32 pkts_coal; 828 u32 time_coal; 829 830 /* Virtual address of the RX DMA descriptors array */ 831 struct mvpp2_rx_desc *descs; 832 833 /* DMA address of the RX DMA descriptors array */ 834 dma_addr_t descs_phys; 835 836 /* Index of the last RX DMA descriptor */ 837 int last_desc; 838 839 /* Index of the next RX DMA descriptor to process */ 840 int next_desc_to_proc; 841 842 /* ID of port to which physical RXQ is mapped */ 843 int port; 844 845 /* Port's logic RXQ number to which physical RXQ is mapped */ 846 int logic_rxq; 847}; 848 849union mvpp2_prs_tcam_entry { 850 u32 word[MVPP2_PRS_TCAM_WORDS]; 851 u8 byte[MVPP2_PRS_TCAM_WORDS * 4]; 852}; 853 854union mvpp2_prs_sram_entry { 855 u32 word[MVPP2_PRS_SRAM_WORDS]; 856 u8 byte[MVPP2_PRS_SRAM_WORDS * 4]; 857}; 858 859struct mvpp2_prs_entry { 860 u32 index; 861 union mvpp2_prs_tcam_entry tcam; 862 union mvpp2_prs_sram_entry sram; 863}; 864 865struct mvpp2_prs_shadow { 866 bool valid; 867 bool finish; 868 869 /* Lookup ID */ 870 int lu; 871 872 /* User defined offset */ 873 int udf; 874 875 /* Result info */ 876 u32 ri; 877 u32 ri_mask; 878}; 879 880struct mvpp2_cls_flow_entry { 881 u32 index; 882 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS]; 883}; 884 885struct mvpp2_cls_lookup_entry { 886 u32 lkpid; 887 u32 way; 888 u32 data; 889}; 890 891struct mvpp2_bm_pool { 892 /* Pool number in the range 0-7 */ 893 int id; 894 enum mvpp2_bm_type type; 895 896 /* Buffer Pointers Pool External (BPPE) size */ 897 int size; 898 /* Number of buffers for this pool */ 899 int buf_num; 900 /* Pool buffer size */ 901 int buf_size; 902 /* Packet size */ 903 int pkt_size; 904 905 /* BPPE virtual base address */ 906 u32 *virt_addr; 907 /* BPPE physical base address */ 908 dma_addr_t phys_addr; 909 910 /* Ports using BM pool */ 911 u32 port_map; 912 913 /* Occupied buffers indicator */ 914 atomic_t in_use; 915 int in_use_thresh; 916 917 spinlock_t lock; 918}; 919 920struct mvpp2_buff_hdr { 921 u32 next_buff_phys_addr; 922 u32 next_buff_virt_addr; 923 u16 byte_count; 924 u16 info; 925 u8 reserved1; /* bm_qset (for future use, BM) */ 926}; 927 928/* Buffer header info bits */ 929#define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff 930#define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK) 931#define MVPP2_B_HDR_INFO_LAST_OFFS 12 932#define MVPP2_B_HDR_INFO_LAST_MASK BIT(12) 933#define MVPP2_B_HDR_INFO_IS_LAST(info) \ 934 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS) 935 936/* Static declaractions */ 937 938/* Number of RXQs used by single port */ 939static int rxq_number = MVPP2_DEFAULT_RXQ; 940/* Number of TXQs used by single port */ 941static int txq_number = MVPP2_MAX_TXQ; 942 943#define MVPP2_DRIVER_NAME "mvpp2" 944#define MVPP2_DRIVER_VERSION "1.0" 945 946/* Utility/helper methods */ 947 948static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data) 949{ 950 writel(data, priv->base + offset); 951} 952 953static u32 mvpp2_read(struct mvpp2 *priv, u32 offset) 954{ 955 return readl(priv->base + offset); 956} 957 958static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu) 959{ 960 txq_pcpu->txq_get_index++; 961 if (txq_pcpu->txq_get_index == txq_pcpu->size) 962 txq_pcpu->txq_get_index = 0; 963} 964 965static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu, 966 struct sk_buff *skb) 967{ 968 txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb; 969 txq_pcpu->txq_put_index++; 970 if (txq_pcpu->txq_put_index == txq_pcpu->size) 971 txq_pcpu->txq_put_index = 0; 972} 973 974/* Get number of physical egress port */ 975static inline int mvpp2_egress_port(struct mvpp2_port *port) 976{ 977 return MVPP2_MAX_TCONT + port->id; 978} 979 980/* Get number of physical TXQ */ 981static inline int mvpp2_txq_phys(int port, int txq) 982{ 983 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq; 984} 985 986/* Parser configuration routines */ 987 988/* Update parser tcam and sram hw entries */ 989static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 990{ 991 int i; 992 993 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 994 return -EINVAL; 995 996 /* Clear entry invalidation bit */ 997 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK; 998 999 /* Write tcam index - indirect access */ 1000 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1001 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1002 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]); 1003 1004 /* Write sram index - indirect access */ 1005 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1006 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1007 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]); 1008 1009 return 0; 1010} 1011 1012/* Read tcam entry from hw */ 1013static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 1014{ 1015 int i; 1016 1017 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 1018 return -EINVAL; 1019 1020 /* Write tcam index - indirect access */ 1021 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1022 1023 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv, 1024 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD)); 1025 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK) 1026 return MVPP2_PRS_TCAM_ENTRY_INVALID; 1027 1028 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1029 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i)); 1030 1031 /* Write sram index - indirect access */ 1032 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1033 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1034 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i)); 1035 1036 return 0; 1037} 1038 1039/* Invalidate tcam hw entry */ 1040static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index) 1041{ 1042 /* Write index - indirect access */ 1043 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 1044 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD), 1045 MVPP2_PRS_TCAM_INV_MASK); 1046} 1047 1048/* Enable shadow table entry and set its lookup ID */ 1049static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu) 1050{ 1051 priv->prs_shadow[index].valid = true; 1052 priv->prs_shadow[index].lu = lu; 1053} 1054 1055/* Update ri fields in shadow table entry */ 1056static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index, 1057 unsigned int ri, unsigned int ri_mask) 1058{ 1059 priv->prs_shadow[index].ri_mask = ri_mask; 1060 priv->prs_shadow[index].ri = ri; 1061} 1062 1063/* Update lookup field in tcam sw entry */ 1064static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu) 1065{ 1066 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE); 1067 1068 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu; 1069 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK; 1070} 1071 1072/* Update mask for single port in tcam sw entry */ 1073static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe, 1074 unsigned int port, bool add) 1075{ 1076 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1077 1078 if (add) 1079 pe->tcam.byte[enable_off] &= ~(1 << port); 1080 else 1081 pe->tcam.byte[enable_off] |= 1 << port; 1082} 1083 1084/* Update port map in tcam sw entry */ 1085static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe, 1086 unsigned int ports) 1087{ 1088 unsigned char port_mask = MVPP2_PRS_PORT_MASK; 1089 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1090 1091 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0; 1092 pe->tcam.byte[enable_off] &= ~port_mask; 1093 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK; 1094} 1095 1096/* Obtain port map from tcam sw entry */ 1097static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe) 1098{ 1099 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1100 1101 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK; 1102} 1103 1104/* Set byte of data and its enable bits in tcam sw entry */ 1105static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe, 1106 unsigned int offs, unsigned char byte, 1107 unsigned char enable) 1108{ 1109 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte; 1110 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable; 1111} 1112 1113/* Get byte of data and its enable bits from tcam sw entry */ 1114static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe, 1115 unsigned int offs, unsigned char *byte, 1116 unsigned char *enable) 1117{ 1118 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)]; 1119 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)]; 1120} 1121 1122/* Compare tcam data bytes with a pattern */ 1123static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs, 1124 u16 data) 1125{ 1126 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs); 1127 u16 tcam_data; 1128 1129 tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off]; 1130 if (tcam_data != data) 1131 return false; 1132 return true; 1133} 1134 1135/* Update ai bits in tcam sw entry */ 1136static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe, 1137 unsigned int bits, unsigned int enable) 1138{ 1139 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE; 1140 1141 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) { 1142 1143 if (!(enable & BIT(i))) 1144 continue; 1145 1146 if (bits & BIT(i)) 1147 pe->tcam.byte[ai_idx] |= 1 << i; 1148 else 1149 pe->tcam.byte[ai_idx] &= ~(1 << i); 1150 } 1151 1152 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable; 1153} 1154 1155/* Get ai bits from tcam sw entry */ 1156static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe) 1157{ 1158 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE]; 1159} 1160 1161/* Set ethertype in tcam sw entry */ 1162static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset, 1163 unsigned short ethertype) 1164{ 1165 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff); 1166 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff); 1167} 1168 1169/* Set bits in sram sw entry */ 1170static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num, 1171 int val) 1172{ 1173 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8)); 1174} 1175 1176/* Clear bits in sram sw entry */ 1177static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num, 1178 int val) 1179{ 1180 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8)); 1181} 1182 1183/* Update ri bits in sram sw entry */ 1184static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe, 1185 unsigned int bits, unsigned int mask) 1186{ 1187 unsigned int i; 1188 1189 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) { 1190 int ri_off = MVPP2_PRS_SRAM_RI_OFFS; 1191 1192 if (!(mask & BIT(i))) 1193 continue; 1194 1195 if (bits & BIT(i)) 1196 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1); 1197 else 1198 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1); 1199 1200 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1); 1201 } 1202} 1203 1204/* Obtain ri bits from sram sw entry */ 1205static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe) 1206{ 1207 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD]; 1208} 1209 1210/* Update ai bits in sram sw entry */ 1211static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe, 1212 unsigned int bits, unsigned int mask) 1213{ 1214 unsigned int i; 1215 int ai_off = MVPP2_PRS_SRAM_AI_OFFS; 1216 1217 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) { 1218 1219 if (!(mask & BIT(i))) 1220 continue; 1221 1222 if (bits & BIT(i)) 1223 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1); 1224 else 1225 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1); 1226 1227 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1); 1228 } 1229} 1230 1231/* Read ai bits from sram sw entry */ 1232static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe) 1233{ 1234 u8 bits; 1235 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS); 1236 int ai_en_off = ai_off + 1; 1237 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8; 1238 1239 bits = (pe->sram.byte[ai_off] >> ai_shift) | 1240 (pe->sram.byte[ai_en_off] << (8 - ai_shift)); 1241 1242 return bits; 1243} 1244 1245/* In sram sw entry set lookup ID field of the tcam key to be used in the next 1246 * lookup interation 1247 */ 1248static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe, 1249 unsigned int lu) 1250{ 1251 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS; 1252 1253 mvpp2_prs_sram_bits_clear(pe, sram_next_off, 1254 MVPP2_PRS_SRAM_NEXT_LU_MASK); 1255 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu); 1256} 1257 1258/* In the sram sw entry set sign and value of the next lookup offset 1259 * and the offset value generated to the classifier 1260 */ 1261static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift, 1262 unsigned int op) 1263{ 1264 /* Set sign */ 1265 if (shift < 0) { 1266 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1267 shift = 0 - shift; 1268 } else { 1269 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1270 } 1271 1272 /* Set value */ 1273 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] = 1274 (unsigned char)shift; 1275 1276 /* Reset and set operation */ 1277 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, 1278 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK); 1279 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op); 1280 1281 /* Set base offset as current */ 1282 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1283} 1284 1285/* In the sram sw entry set sign and value of the user defined offset 1286 * generated to the classifier 1287 */ 1288static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe, 1289 unsigned int type, int offset, 1290 unsigned int op) 1291{ 1292 /* Set sign */ 1293 if (offset < 0) { 1294 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1295 offset = 0 - offset; 1296 } else { 1297 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1298 } 1299 1300 /* Set value */ 1301 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS, 1302 MVPP2_PRS_SRAM_UDF_MASK); 1303 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset); 1304 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1305 MVPP2_PRS_SRAM_UDF_BITS)] &= 1306 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1307 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1308 MVPP2_PRS_SRAM_UDF_BITS)] |= 1309 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1310 1311 /* Set offset type */ 1312 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, 1313 MVPP2_PRS_SRAM_UDF_TYPE_MASK); 1314 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type); 1315 1316 /* Set offset operation */ 1317 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, 1318 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK); 1319 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op); 1320 1321 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1322 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &= 1323 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >> 1324 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1325 1326 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1327 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |= 1328 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1329 1330 /* Set base offset as current */ 1331 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1332} 1333 1334/* Find parser flow entry */ 1335static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow) 1336{ 1337 struct mvpp2_prs_entry *pe; 1338 int tid; 1339 1340 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1341 if (!pe) 1342 return NULL; 1343 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 1344 1345 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */ 1346 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) { 1347 u8 bits; 1348 1349 if (!priv->prs_shadow[tid].valid || 1350 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS) 1351 continue; 1352 1353 pe->index = tid; 1354 mvpp2_prs_hw_read(priv, pe); 1355 bits = mvpp2_prs_sram_ai_get(pe); 1356 1357 /* Sram store classification lookup ID in AI bits [5:0] */ 1358 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow) 1359 return pe; 1360 } 1361 kfree(pe); 1362 1363 return NULL; 1364} 1365 1366/* Return first free tcam index, seeking from start to end */ 1367static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start, 1368 unsigned char end) 1369{ 1370 int tid; 1371 1372 if (start > end) 1373 swap(start, end); 1374 1375 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE) 1376 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1; 1377 1378 for (tid = start; tid <= end; tid++) { 1379 if (!priv->prs_shadow[tid].valid) 1380 return tid; 1381 } 1382 1383 return -EINVAL; 1384} 1385 1386/* Enable/disable dropping all mac da's */ 1387static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add) 1388{ 1389 struct mvpp2_prs_entry pe; 1390 1391 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) { 1392 /* Entry exist - update port only */ 1393 pe.index = MVPP2_PE_DROP_ALL; 1394 mvpp2_prs_hw_read(priv, &pe); 1395 } else { 1396 /* Entry doesn't exist - create new */ 1397 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1398 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1399 pe.index = MVPP2_PE_DROP_ALL; 1400 1401 /* Non-promiscuous mode for all ports - DROP unknown packets */ 1402 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 1403 MVPP2_PRS_RI_DROP_MASK); 1404 1405 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 1406 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1407 1408 /* Update shadow table */ 1409 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1410 1411 /* Mask all ports */ 1412 mvpp2_prs_tcam_port_map_set(&pe, 0); 1413 } 1414 1415 /* Update port mask */ 1416 mvpp2_prs_tcam_port_set(&pe, port, add); 1417 1418 mvpp2_prs_hw_write(priv, &pe); 1419} 1420 1421/* Set port to promiscuous mode */ 1422static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add) 1423{ 1424 struct mvpp2_prs_entry pe; 1425 1426 /* Promiscuous mode - Accept unknown packets */ 1427 1428 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) { 1429 /* Entry exist - update port only */ 1430 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1431 mvpp2_prs_hw_read(priv, &pe); 1432 } else { 1433 /* Entry doesn't exist - create new */ 1434 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1435 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1436 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1437 1438 /* Continue - set next lookup */ 1439 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1440 1441 /* Set result info bits */ 1442 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, 1443 MVPP2_PRS_RI_L2_CAST_MASK); 1444 1445 /* Shift to ethertype */ 1446 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1447 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1448 1449 /* Mask all ports */ 1450 mvpp2_prs_tcam_port_map_set(&pe, 0); 1451 1452 /* Update shadow table */ 1453 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1454 } 1455 1456 /* Update port mask */ 1457 mvpp2_prs_tcam_port_set(&pe, port, add); 1458 1459 mvpp2_prs_hw_write(priv, &pe); 1460} 1461 1462/* Accept multicast */ 1463static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index, 1464 bool add) 1465{ 1466 struct mvpp2_prs_entry pe; 1467 unsigned char da_mc; 1468 1469 /* Ethernet multicast address first byte is 1470 * 0x01 for IPv4 and 0x33 for IPv6 1471 */ 1472 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33; 1473 1474 if (priv->prs_shadow[index].valid) { 1475 /* Entry exist - update port only */ 1476 pe.index = index; 1477 mvpp2_prs_hw_read(priv, &pe); 1478 } else { 1479 /* Entry doesn't exist - create new */ 1480 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1481 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1482 pe.index = index; 1483 1484 /* Continue - set next lookup */ 1485 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1486 1487 /* Set result info bits */ 1488 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST, 1489 MVPP2_PRS_RI_L2_CAST_MASK); 1490 1491 /* Update tcam entry data first byte */ 1492 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff); 1493 1494 /* Shift to ethertype */ 1495 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1496 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1497 1498 /* Mask all ports */ 1499 mvpp2_prs_tcam_port_map_set(&pe, 0); 1500 1501 /* Update shadow table */ 1502 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1503 } 1504 1505 /* Update port mask */ 1506 mvpp2_prs_tcam_port_set(&pe, port, add); 1507 1508 mvpp2_prs_hw_write(priv, &pe); 1509} 1510 1511/* Set entry for dsa packets */ 1512static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add, 1513 bool tagged, bool extend) 1514{ 1515 struct mvpp2_prs_entry pe; 1516 int tid, shift; 1517 1518 if (extend) { 1519 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED; 1520 shift = 8; 1521 } else { 1522 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED; 1523 shift = 4; 1524 } 1525 1526 if (priv->prs_shadow[tid].valid) { 1527 /* Entry exist - update port only */ 1528 pe.index = tid; 1529 mvpp2_prs_hw_read(priv, &pe); 1530 } else { 1531 /* Entry doesn't exist - create new */ 1532 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1533 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA); 1534 pe.index = tid; 1535 1536 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/ 1537 mvpp2_prs_sram_shift_set(&pe, shift, 1538 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1539 1540 /* Update shadow table */ 1541 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA); 1542 1543 if (tagged) { 1544 /* Set tagged bit in DSA tag */ 1545 mvpp2_prs_tcam_data_byte_set(&pe, 0, 1546 MVPP2_PRS_TCAM_DSA_TAGGED_BIT, 1547 MVPP2_PRS_TCAM_DSA_TAGGED_BIT); 1548 /* Clear all ai bits for next iteration */ 1549 mvpp2_prs_sram_ai_update(&pe, 0, 1550 MVPP2_PRS_SRAM_AI_MASK); 1551 /* If packet is tagged continue check vlans */ 1552 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN); 1553 } else { 1554 /* Set result info bits to 'no vlans' */ 1555 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE, 1556 MVPP2_PRS_RI_VLAN_MASK); 1557 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); 1558 } 1559 1560 /* Mask all ports */ 1561 mvpp2_prs_tcam_port_map_set(&pe, 0); 1562 } 1563 1564 /* Update port mask */ 1565 mvpp2_prs_tcam_port_set(&pe, port, add); 1566 1567 mvpp2_prs_hw_write(priv, &pe); 1568} 1569 1570/* Set entry for dsa ethertype */ 1571static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port, 1572 bool add, bool tagged, bool extend) 1573{ 1574 struct mvpp2_prs_entry pe; 1575 int tid, shift, port_mask; 1576 1577 if (extend) { 1578 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED : 1579 MVPP2_PE_ETYPE_EDSA_UNTAGGED; 1580 port_mask = 0; 1581 shift = 8; 1582 } else { 1583 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED : 1584 MVPP2_PE_ETYPE_DSA_UNTAGGED; 1585 port_mask = MVPP2_PRS_PORT_MASK; 1586 shift = 4; 1587 } 1588 1589 if (priv->prs_shadow[tid].valid) { 1590 /* Entry exist - update port only */ 1591 pe.index = tid; 1592 mvpp2_prs_hw_read(priv, &pe); 1593 } else { 1594 /* Entry doesn't exist - create new */ 1595 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1596 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA); 1597 pe.index = tid; 1598 1599 /* Set ethertype */ 1600 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA); 1601 mvpp2_prs_match_etype(&pe, 2, 0); 1602 1603 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK, 1604 MVPP2_PRS_RI_DSA_MASK); 1605 /* Shift ethertype + 2 byte reserved + tag*/ 1606 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift, 1607 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1608 1609 /* Update shadow table */ 1610 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA); 1611 1612 if (tagged) { 1613 /* Set tagged bit in DSA tag */ 1614 mvpp2_prs_tcam_data_byte_set(&pe, 1615 MVPP2_ETH_TYPE_LEN + 2 + 3, 1616 MVPP2_PRS_TCAM_DSA_TAGGED_BIT, 1617 MVPP2_PRS_TCAM_DSA_TAGGED_BIT); 1618 /* Clear all ai bits for next iteration */ 1619 mvpp2_prs_sram_ai_update(&pe, 0, 1620 MVPP2_PRS_SRAM_AI_MASK); 1621 /* If packet is tagged continue check vlans */ 1622 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN); 1623 } else { 1624 /* Set result info bits to 'no vlans' */ 1625 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE, 1626 MVPP2_PRS_RI_VLAN_MASK); 1627 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); 1628 } 1629 /* Mask/unmask all ports, depending on dsa type */ 1630 mvpp2_prs_tcam_port_map_set(&pe, port_mask); 1631 } 1632 1633 /* Update port mask */ 1634 mvpp2_prs_tcam_port_set(&pe, port, add); 1635 1636 mvpp2_prs_hw_write(priv, &pe); 1637} 1638 1639/* Search for existing single/triple vlan entry */ 1640static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv, 1641 unsigned short tpid, int ai) 1642{ 1643 struct mvpp2_prs_entry *pe; 1644 int tid; 1645 1646 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1647 if (!pe) 1648 return NULL; 1649 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); 1650 1651 /* Go through the all entries with MVPP2_PRS_LU_VLAN */ 1652 for (tid = MVPP2_PE_FIRST_FREE_TID; 1653 tid <= MVPP2_PE_LAST_FREE_TID; tid++) { 1654 unsigned int ri_bits, ai_bits; 1655 bool match; 1656 1657 if (!priv->prs_shadow[tid].valid || 1658 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN) 1659 continue; 1660 1661 pe->index = tid; 1662 1663 mvpp2_prs_hw_read(priv, pe); 1664 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid)); 1665 if (!match) 1666 continue; 1667 1668 /* Get vlan type */ 1669 ri_bits = mvpp2_prs_sram_ri_get(pe); 1670 ri_bits &= MVPP2_PRS_RI_VLAN_MASK; 1671 1672 /* Get current ai value from tcam */ 1673 ai_bits = mvpp2_prs_tcam_ai_get(pe); 1674 /* Clear double vlan bit */ 1675 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT; 1676 1677 if (ai != ai_bits) 1678 continue; 1679 1680 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE || 1681 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE) 1682 return pe; 1683 } 1684 kfree(pe); 1685 1686 return NULL; 1687} 1688 1689/* Add/update single/triple vlan entry */ 1690static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai, 1691 unsigned int port_map) 1692{ 1693 struct mvpp2_prs_entry *pe; 1694 int tid_aux, tid; 1695 int ret = 0; 1696 1697 pe = mvpp2_prs_vlan_find(priv, tpid, ai); 1698 1699 if (!pe) { 1700 /* Create new tcam entry */ 1701 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID, 1702 MVPP2_PE_FIRST_FREE_TID); 1703 if (tid < 0) 1704 return tid; 1705 1706 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1707 if (!pe) 1708 return -ENOMEM; 1709 1710 /* Get last double vlan tid */ 1711 for (tid_aux = MVPP2_PE_LAST_FREE_TID; 1712 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) { 1713 unsigned int ri_bits; 1714 1715 if (!priv->prs_shadow[tid_aux].valid || 1716 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN) 1717 continue; 1718 1719 pe->index = tid_aux; 1720 mvpp2_prs_hw_read(priv, pe); 1721 ri_bits = mvpp2_prs_sram_ri_get(pe); 1722 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) == 1723 MVPP2_PRS_RI_VLAN_DOUBLE) 1724 break; 1725 } 1726 1727 if (tid <= tid_aux) { 1728 ret = -EINVAL; 1729 goto error; 1730 } 1731 1732 memset(pe, 0 , sizeof(struct mvpp2_prs_entry)); 1733 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); 1734 pe->index = tid; 1735 1736 mvpp2_prs_match_etype(pe, 0, tpid); 1737 1738 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2); 1739 /* Shift 4 bytes - skip 1 vlan tag */ 1740 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN, 1741 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1742 /* Clear all ai bits for next iteration */ 1743 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK); 1744 1745 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) { 1746 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE, 1747 MVPP2_PRS_RI_VLAN_MASK); 1748 } else { 1749 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT; 1750 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE, 1751 MVPP2_PRS_RI_VLAN_MASK); 1752 } 1753 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK); 1754 1755 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN); 1756 } 1757 /* Update ports' mask */ 1758 mvpp2_prs_tcam_port_map_set(pe, port_map); 1759 1760 mvpp2_prs_hw_write(priv, pe); 1761 1762error: 1763 kfree(pe); 1764 1765 return ret; 1766} 1767 1768/* Get first free double vlan ai number */ 1769static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv) 1770{ 1771 int i; 1772 1773 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) { 1774 if (!priv->prs_double_vlans[i]) 1775 return i; 1776 } 1777 1778 return -EINVAL; 1779} 1780 1781/* Search for existing double vlan entry */ 1782static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv, 1783 unsigned short tpid1, 1784 unsigned short tpid2) 1785{ 1786 struct mvpp2_prs_entry *pe; 1787 int tid; 1788 1789 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1790 if (!pe) 1791 return NULL; 1792 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); 1793 1794 /* Go through the all entries with MVPP2_PRS_LU_VLAN */ 1795 for (tid = MVPP2_PE_FIRST_FREE_TID; 1796 tid <= MVPP2_PE_LAST_FREE_TID; tid++) { 1797 unsigned int ri_mask; 1798 bool match; 1799 1800 if (!priv->prs_shadow[tid].valid || 1801 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN) 1802 continue; 1803 1804 pe->index = tid; 1805 mvpp2_prs_hw_read(priv, pe); 1806 1807 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1)) 1808 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2)); 1809 1810 if (!match) 1811 continue; 1812 1813 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK; 1814 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE) 1815 return pe; 1816 } 1817 kfree(pe); 1818 1819 return NULL; 1820} 1821 1822/* Add or update double vlan entry */ 1823static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1, 1824 unsigned short tpid2, 1825 unsigned int port_map) 1826{ 1827 struct mvpp2_prs_entry *pe; 1828 int tid_aux, tid, ai, ret = 0; 1829 1830 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2); 1831 1832 if (!pe) { 1833 /* Create new tcam entry */ 1834 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 1835 MVPP2_PE_LAST_FREE_TID); 1836 if (tid < 0) 1837 return tid; 1838 1839 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1840 if (!pe) 1841 return -ENOMEM; 1842 1843 /* Set ai value for new double vlan entry */ 1844 ai = mvpp2_prs_double_vlan_ai_free_get(priv); 1845 if (ai < 0) { 1846 ret = ai; 1847 goto error; 1848 } 1849 1850 /* Get first single/triple vlan tid */ 1851 for (tid_aux = MVPP2_PE_FIRST_FREE_TID; 1852 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) { 1853 unsigned int ri_bits; 1854 1855 if (!priv->prs_shadow[tid_aux].valid || 1856 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN) 1857 continue; 1858 1859 pe->index = tid_aux; 1860 mvpp2_prs_hw_read(priv, pe); 1861 ri_bits = mvpp2_prs_sram_ri_get(pe); 1862 ri_bits &= MVPP2_PRS_RI_VLAN_MASK; 1863 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE || 1864 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE) 1865 break; 1866 } 1867 1868 if (tid >= tid_aux) { 1869 ret = -ERANGE; 1870 goto error; 1871 } 1872 1873 memset(pe, 0, sizeof(struct mvpp2_prs_entry)); 1874 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); 1875 pe->index = tid; 1876 1877 priv->prs_double_vlans[ai] = true; 1878 1879 mvpp2_prs_match_etype(pe, 0, tpid1); 1880 mvpp2_prs_match_etype(pe, 4, tpid2); 1881 1882 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN); 1883 /* Shift 8 bytes - skip 2 vlan tags */ 1884 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN, 1885 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1886 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE, 1887 MVPP2_PRS_RI_VLAN_MASK); 1888 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT, 1889 MVPP2_PRS_SRAM_AI_MASK); 1890 1891 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN); 1892 } 1893 1894 /* Update ports' mask */ 1895 mvpp2_prs_tcam_port_map_set(pe, port_map); 1896 mvpp2_prs_hw_write(priv, pe); 1897 1898error: 1899 kfree(pe); 1900 return ret; 1901} 1902 1903/* IPv4 header parsing for fragmentation and L4 offset */ 1904static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto, 1905 unsigned int ri, unsigned int ri_mask) 1906{ 1907 struct mvpp2_prs_entry pe; 1908 int tid; 1909 1910 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) && 1911 (proto != IPPROTO_IGMP)) 1912 return -EINVAL; 1913 1914 /* Fragmented packet */ 1915 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 1916 MVPP2_PE_LAST_FREE_TID); 1917 if (tid < 0) 1918 return tid; 1919 1920 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1921 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); 1922 pe.index = tid; 1923 1924 /* Set next lu to IPv4 */ 1925 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); 1926 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1927 /* Set L4 offset */ 1928 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, 1929 sizeof(struct iphdr) - 4, 1930 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 1931 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, 1932 MVPP2_PRS_IPV4_DIP_AI_BIT); 1933 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK, 1934 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK); 1935 1936 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK); 1937 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT); 1938 /* Unmask all ports */ 1939 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 1940 1941 /* Update shadow table and hw entry */ 1942 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 1943 mvpp2_prs_hw_write(priv, &pe); 1944 1945 /* Not fragmented packet */ 1946 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 1947 MVPP2_PE_LAST_FREE_TID); 1948 if (tid < 0) 1949 return tid; 1950 1951 pe.index = tid; 1952 /* Clear ri before updating */ 1953 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; 1954 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; 1955 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask); 1956 1957 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L); 1958 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK); 1959 1960 /* Update shadow table and hw entry */ 1961 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 1962 mvpp2_prs_hw_write(priv, &pe); 1963 1964 return 0; 1965} 1966 1967/* IPv4 L3 multicast or broadcast */ 1968static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast) 1969{ 1970 struct mvpp2_prs_entry pe; 1971 int mask, tid; 1972 1973 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 1974 MVPP2_PE_LAST_FREE_TID); 1975 if (tid < 0) 1976 return tid; 1977 1978 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1979 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); 1980 pe.index = tid; 1981 1982 switch (l3_cast) { 1983 case MVPP2_PRS_L3_MULTI_CAST: 1984 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC, 1985 MVPP2_PRS_IPV4_MC_MASK); 1986 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST, 1987 MVPP2_PRS_RI_L3_ADDR_MASK); 1988 break; 1989 case MVPP2_PRS_L3_BROAD_CAST: 1990 mask = MVPP2_PRS_IPV4_BC_MASK; 1991 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask); 1992 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask); 1993 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask); 1994 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask); 1995 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST, 1996 MVPP2_PRS_RI_L3_ADDR_MASK); 1997 break; 1998 default: 1999 return -EINVAL; 2000 } 2001 2002 /* Finished: go to flowid generation */ 2003 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2004 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2005 2006 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, 2007 MVPP2_PRS_IPV4_DIP_AI_BIT); 2008 /* Unmask all ports */ 2009 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2010 2011 /* Update shadow table and hw entry */ 2012 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 2013 mvpp2_prs_hw_write(priv, &pe); 2014 2015 return 0; 2016} 2017 2018/* Set entries for protocols over IPv6 */ 2019static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto, 2020 unsigned int ri, unsigned int ri_mask) 2021{ 2022 struct mvpp2_prs_entry pe; 2023 int tid; 2024 2025 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) && 2026 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP)) 2027 return -EINVAL; 2028 2029 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2030 MVPP2_PE_LAST_FREE_TID); 2031 if (tid < 0) 2032 return tid; 2033 2034 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2035 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); 2036 pe.index = tid; 2037 2038 /* Finished: go to flowid generation */ 2039 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2040 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2041 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask); 2042 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, 2043 sizeof(struct ipv6hdr) - 6, 2044 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2045 2046 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK); 2047 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, 2048 MVPP2_PRS_IPV6_NO_EXT_AI_BIT); 2049 /* Unmask all ports */ 2050 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2051 2052 /* Write HW */ 2053 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6); 2054 mvpp2_prs_hw_write(priv, &pe); 2055 2056 return 0; 2057} 2058 2059/* IPv6 L3 multicast entry */ 2060static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast) 2061{ 2062 struct mvpp2_prs_entry pe; 2063 int tid; 2064 2065 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST) 2066 return -EINVAL; 2067 2068 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2069 MVPP2_PE_LAST_FREE_TID); 2070 if (tid < 0) 2071 return tid; 2072 2073 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2074 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); 2075 pe.index = tid; 2076 2077 /* Finished: go to flowid generation */ 2078 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); 2079 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST, 2080 MVPP2_PRS_RI_L3_ADDR_MASK); 2081 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, 2082 MVPP2_PRS_IPV6_NO_EXT_AI_BIT); 2083 /* Shift back to IPv6 NH */ 2084 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2085 2086 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC, 2087 MVPP2_PRS_IPV6_MC_MASK); 2088 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT); 2089 /* Unmask all ports */ 2090 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2091 2092 /* Update shadow table and hw entry */ 2093 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6); 2094 mvpp2_prs_hw_write(priv, &pe); 2095 2096 return 0; 2097} 2098 2099/* Parser per-port initialization */ 2100static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first, 2101 int lu_max, int offset) 2102{ 2103 u32 val; 2104 2105 /* Set lookup ID */ 2106 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG); 2107 val &= ~MVPP2_PRS_PORT_LU_MASK(port); 2108 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first); 2109 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val); 2110 2111 /* Set maximum number of loops for packet received from port */ 2112 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port)); 2113 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port); 2114 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max); 2115 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val); 2116 2117 /* Set initial offset for packet header extraction for the first 2118 * searching loop 2119 */ 2120 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port)); 2121 val &= ~MVPP2_PRS_INIT_OFF_MASK(port); 2122 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset); 2123 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val); 2124} 2125 2126/* Default flow entries initialization for all ports */ 2127static void mvpp2_prs_def_flow_init(struct mvpp2 *priv) 2128{ 2129 struct mvpp2_prs_entry pe; 2130 int port; 2131 2132 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 2133 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2134 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2135 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port; 2136 2137 /* Mask all ports */ 2138 mvpp2_prs_tcam_port_map_set(&pe, 0); 2139 2140 /* Set flow ID*/ 2141 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK); 2142 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 2143 2144 /* Update shadow table and hw entry */ 2145 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS); 2146 mvpp2_prs_hw_write(priv, &pe); 2147 } 2148} 2149 2150/* Set default entry for Marvell Header field */ 2151static void mvpp2_prs_mh_init(struct mvpp2 *priv) 2152{ 2153 struct mvpp2_prs_entry pe; 2154 2155 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2156 2157 pe.index = MVPP2_PE_MH_DEFAULT; 2158 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH); 2159 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE, 2160 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2161 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC); 2162 2163 /* Unmask all ports */ 2164 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2165 2166 /* Update shadow table and hw entry */ 2167 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH); 2168 mvpp2_prs_hw_write(priv, &pe); 2169} 2170 2171/* Set default entires (place holder) for promiscuous, non-promiscuous and 2172 * multicast MAC addresses 2173 */ 2174static void mvpp2_prs_mac_init(struct mvpp2 *priv) 2175{ 2176 struct mvpp2_prs_entry pe; 2177 2178 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2179 2180 /* Non-promiscuous mode for all ports - DROP unknown packets */ 2181 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS; 2182 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 2183 2184 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 2185 MVPP2_PRS_RI_DROP_MASK); 2186 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2187 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2188 2189 /* Unmask all ports */ 2190 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2191 2192 /* Update shadow table and hw entry */ 2193 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 2194 mvpp2_prs_hw_write(priv, &pe); 2195 2196 /* place holders only - no ports */ 2197 mvpp2_prs_mac_drop_all_set(priv, 0, false); 2198 mvpp2_prs_mac_promisc_set(priv, 0, false); 2199 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false); 2200 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false); 2201} 2202 2203/* Set default entries for various types of dsa packets */ 2204static void mvpp2_prs_dsa_init(struct mvpp2 *priv) 2205{ 2206 struct mvpp2_prs_entry pe; 2207 2208 /* None tagged EDSA entry - place holder */ 2209 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED, 2210 MVPP2_PRS_EDSA); 2211 2212 /* Tagged EDSA entry - place holder */ 2213 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); 2214 2215 /* None tagged DSA entry - place holder */ 2216 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED, 2217 MVPP2_PRS_DSA); 2218 2219 /* Tagged DSA entry - place holder */ 2220 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); 2221 2222 /* None tagged EDSA ethertype entry - place holder*/ 2223 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false, 2224 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); 2225 2226 /* Tagged EDSA ethertype entry - place holder*/ 2227 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false, 2228 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); 2229 2230 /* None tagged DSA ethertype entry */ 2231 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true, 2232 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); 2233 2234 /* Tagged DSA ethertype entry */ 2235 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true, 2236 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); 2237 2238 /* Set default entry, in case DSA or EDSA tag not found */ 2239 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2240 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA); 2241 pe.index = MVPP2_PE_DSA_DEFAULT; 2242 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN); 2243 2244 /* Shift 0 bytes */ 2245 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2246 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 2247 2248 /* Clear all sram ai bits for next iteration */ 2249 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK); 2250 2251 /* Unmask all ports */ 2252 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2253 2254 mvpp2_prs_hw_write(priv, &pe); 2255} 2256 2257/* Match basic ethertypes */ 2258static int mvpp2_prs_etype_init(struct mvpp2 *priv) 2259{ 2260 struct mvpp2_prs_entry pe; 2261 int tid; 2262 2263 /* Ethertype: PPPoE */ 2264 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2265 MVPP2_PE_LAST_FREE_TID); 2266 if (tid < 0) 2267 return tid; 2268 2269 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2270 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2271 pe.index = tid; 2272 2273 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES); 2274 2275 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE, 2276 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2277 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE); 2278 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK, 2279 MVPP2_PRS_RI_PPPOE_MASK); 2280 2281 /* Update shadow table and hw entry */ 2282 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2283 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2284 priv->prs_shadow[pe.index].finish = false; 2285 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK, 2286 MVPP2_PRS_RI_PPPOE_MASK); 2287 mvpp2_prs_hw_write(priv, &pe); 2288 2289 /* Ethertype: ARP */ 2290 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2291 MVPP2_PE_LAST_FREE_TID); 2292 if (tid < 0) 2293 return tid; 2294 2295 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2296 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2297 pe.index = tid; 2298 2299 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP); 2300 2301 /* Generate flow in the next iteration*/ 2302 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2303 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2304 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP, 2305 MVPP2_PRS_RI_L3_PROTO_MASK); 2306 /* Set L3 offset */ 2307 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2308 MVPP2_ETH_TYPE_LEN, 2309 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2310 2311 /* Update shadow table and hw entry */ 2312 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2313 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2314 priv->prs_shadow[pe.index].finish = true; 2315 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP, 2316 MVPP2_PRS_RI_L3_PROTO_MASK); 2317 mvpp2_prs_hw_write(priv, &pe); 2318 2319 /* Ethertype: LBTD */ 2320 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2321 MVPP2_PE_LAST_FREE_TID); 2322 if (tid < 0) 2323 return tid; 2324 2325 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2326 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2327 pe.index = tid; 2328 2329 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE); 2330 2331 /* Generate flow in the next iteration*/ 2332 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2333 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2334 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2335 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2336 MVPP2_PRS_RI_CPU_CODE_MASK | 2337 MVPP2_PRS_RI_UDF3_MASK); 2338 /* Set L3 offset */ 2339 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2340 MVPP2_ETH_TYPE_LEN, 2341 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2342 2343 /* Update shadow table and hw entry */ 2344 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2345 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2346 priv->prs_shadow[pe.index].finish = true; 2347 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2348 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2349 MVPP2_PRS_RI_CPU_CODE_MASK | 2350 MVPP2_PRS_RI_UDF3_MASK); 2351 mvpp2_prs_hw_write(priv, &pe); 2352 2353 /* Ethertype: IPv4 without options */ 2354 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2355 MVPP2_PE_LAST_FREE_TID); 2356 if (tid < 0) 2357 return tid; 2358 2359 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2360 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2361 pe.index = tid; 2362 2363 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP); 2364 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2365 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, 2366 MVPP2_PRS_IPV4_HEAD_MASK | 2367 MVPP2_PRS_IPV4_IHL_MASK); 2368 2369 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); 2370 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, 2371 MVPP2_PRS_RI_L3_PROTO_MASK); 2372 /* Skip eth_type + 4 bytes of IP header */ 2373 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, 2374 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2375 /* Set L3 offset */ 2376 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2377 MVPP2_ETH_TYPE_LEN, 2378 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2379 2380 /* Update shadow table and hw entry */ 2381 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2382 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2383 priv->prs_shadow[pe.index].finish = false; 2384 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4, 2385 MVPP2_PRS_RI_L3_PROTO_MASK); 2386 mvpp2_prs_hw_write(priv, &pe); 2387 2388 /* Ethertype: IPv4 with options */ 2389 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2390 MVPP2_PE_LAST_FREE_TID); 2391 if (tid < 0) 2392 return tid; 2393 2394 pe.index = tid; 2395 2396 /* Clear tcam data before updating */ 2397 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0; 2398 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0; 2399 2400 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2401 MVPP2_PRS_IPV4_HEAD, 2402 MVPP2_PRS_IPV4_HEAD_MASK); 2403 2404 /* Clear ri before updating */ 2405 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; 2406 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; 2407 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, 2408 MVPP2_PRS_RI_L3_PROTO_MASK); 2409 2410 /* Update shadow table and hw entry */ 2411 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2412 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2413 priv->prs_shadow[pe.index].finish = false; 2414 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT, 2415 MVPP2_PRS_RI_L3_PROTO_MASK); 2416 mvpp2_prs_hw_write(priv, &pe); 2417 2418 /* Ethertype: IPv6 without options */ 2419 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2420 MVPP2_PE_LAST_FREE_TID); 2421 if (tid < 0) 2422 return tid; 2423 2424 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2425 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2426 pe.index = tid; 2427 2428 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6); 2429 2430 /* Skip DIP of IPV6 header */ 2431 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 + 2432 MVPP2_MAX_L3_ADDR_SIZE, 2433 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2434 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); 2435 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, 2436 MVPP2_PRS_RI_L3_PROTO_MASK); 2437 /* Set L3 offset */ 2438 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2439 MVPP2_ETH_TYPE_LEN, 2440 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2441 2442 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2443 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2444 priv->prs_shadow[pe.index].finish = false; 2445 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6, 2446 MVPP2_PRS_RI_L3_PROTO_MASK); 2447 mvpp2_prs_hw_write(priv, &pe); 2448 2449 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */ 2450 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2451 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2452 pe.index = MVPP2_PE_ETH_TYPE_UN; 2453 2454 /* Unmask all ports */ 2455 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2456 2457 /* Generate flow in the next iteration*/ 2458 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2459 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2460 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, 2461 MVPP2_PRS_RI_L3_PROTO_MASK); 2462 /* Set L3 offset even it's unknown L3 */ 2463 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2464 MVPP2_ETH_TYPE_LEN, 2465 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2466 2467 /* Update shadow table and hw entry */ 2468 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2469 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2470 priv->prs_shadow[pe.index].finish = true; 2471 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN, 2472 MVPP2_PRS_RI_L3_PROTO_MASK); 2473 mvpp2_prs_hw_write(priv, &pe); 2474 2475 return 0; 2476} 2477 2478/* Configure vlan entries and detect up to 2 successive VLAN tags. 2479 * Possible options: 2480 * 0x8100, 0x88A8 2481 * 0x8100, 0x8100 2482 * 0x8100 2483 * 0x88A8 2484 */ 2485static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv) 2486{ 2487 struct mvpp2_prs_entry pe; 2488 int err; 2489 2490 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool), 2491 MVPP2_PRS_DBL_VLANS_MAX, 2492 GFP_KERNEL); 2493 if (!priv->prs_double_vlans) 2494 return -ENOMEM; 2495 2496 /* Double VLAN: 0x8100, 0x88A8 */ 2497 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD, 2498 MVPP2_PRS_PORT_MASK); 2499 if (err) 2500 return err; 2501 2502 /* Double VLAN: 0x8100, 0x8100 */ 2503 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q, 2504 MVPP2_PRS_PORT_MASK); 2505 if (err) 2506 return err; 2507 2508 /* Single VLAN: 0x88a8 */ 2509 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI, 2510 MVPP2_PRS_PORT_MASK); 2511 if (err) 2512 return err; 2513 2514 /* Single VLAN: 0x8100 */ 2515 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI, 2516 MVPP2_PRS_PORT_MASK); 2517 if (err) 2518 return err; 2519 2520 /* Set default double vlan entry */ 2521 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2522 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN); 2523 pe.index = MVPP2_PE_VLAN_DBL; 2524 2525 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); 2526 /* Clear ai for next iterations */ 2527 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK); 2528 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE, 2529 MVPP2_PRS_RI_VLAN_MASK); 2530 2531 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT, 2532 MVPP2_PRS_DBL_VLAN_AI_BIT); 2533 /* Unmask all ports */ 2534 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2535 2536 /* Update shadow table and hw entry */ 2537 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN); 2538 mvpp2_prs_hw_write(priv, &pe); 2539 2540 /* Set default vlan none entry */ 2541 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2542 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN); 2543 pe.index = MVPP2_PE_VLAN_NONE; 2544 2545 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); 2546 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE, 2547 MVPP2_PRS_RI_VLAN_MASK); 2548 2549 /* Unmask all ports */ 2550 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2551 2552 /* Update shadow table and hw entry */ 2553 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN); 2554 mvpp2_prs_hw_write(priv, &pe); 2555 2556 return 0; 2557} 2558 2559/* Set entries for PPPoE ethertype */ 2560static int mvpp2_prs_pppoe_init(struct mvpp2 *priv) 2561{ 2562 struct mvpp2_prs_entry pe; 2563 int tid; 2564 2565 /* IPv4 over PPPoE with options */ 2566 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2567 MVPP2_PE_LAST_FREE_TID); 2568 if (tid < 0) 2569 return tid; 2570 2571 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2572 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE); 2573 pe.index = tid; 2574 2575 mvpp2_prs_match_etype(&pe, 0, PPP_IP); 2576 2577 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); 2578 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, 2579 MVPP2_PRS_RI_L3_PROTO_MASK); 2580 /* Skip eth_type + 4 bytes of IP header */ 2581 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, 2582 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2583 /* Set L3 offset */ 2584 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2585 MVPP2_ETH_TYPE_LEN, 2586 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2587 2588 /* Update shadow table and hw entry */ 2589 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); 2590 mvpp2_prs_hw_write(priv, &pe); 2591 2592 /* IPv4 over PPPoE without options */ 2593 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2594 MVPP2_PE_LAST_FREE_TID); 2595 if (tid < 0) 2596 return tid; 2597 2598 pe.index = tid; 2599 2600 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2601 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, 2602 MVPP2_PRS_IPV4_HEAD_MASK | 2603 MVPP2_PRS_IPV4_IHL_MASK); 2604 2605 /* Clear ri before updating */ 2606 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; 2607 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; 2608 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, 2609 MVPP2_PRS_RI_L3_PROTO_MASK); 2610 2611 /* Update shadow table and hw entry */ 2612 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); 2613 mvpp2_prs_hw_write(priv, &pe); 2614 2615 /* IPv6 over PPPoE */ 2616 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2617 MVPP2_PE_LAST_FREE_TID); 2618 if (tid < 0) 2619 return tid; 2620 2621 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2622 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE); 2623 pe.index = tid; 2624 2625 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6); 2626 2627 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); 2628 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, 2629 MVPP2_PRS_RI_L3_PROTO_MASK); 2630 /* Skip eth_type + 4 bytes of IPv6 header */ 2631 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, 2632 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2633 /* Set L3 offset */ 2634 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2635 MVPP2_ETH_TYPE_LEN, 2636 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2637 2638 /* Update shadow table and hw entry */ 2639 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); 2640 mvpp2_prs_hw_write(priv, &pe); 2641 2642 /* Non-IP over PPPoE */ 2643 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2644 MVPP2_PE_LAST_FREE_TID); 2645 if (tid < 0) 2646 return tid; 2647 2648 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2649 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE); 2650 pe.index = tid; 2651 2652 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, 2653 MVPP2_PRS_RI_L3_PROTO_MASK); 2654 2655 /* Finished: go to flowid generation */ 2656 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2657 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2658 /* Set L3 offset even if it's unknown L3 */ 2659 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2660 MVPP2_ETH_TYPE_LEN, 2661 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2662 2663 /* Update shadow table and hw entry */ 2664 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); 2665 mvpp2_prs_hw_write(priv, &pe); 2666 2667 return 0; 2668} 2669 2670/* Initialize entries for IPv4 */ 2671static int mvpp2_prs_ip4_init(struct mvpp2 *priv) 2672{ 2673 struct mvpp2_prs_entry pe; 2674 int err; 2675 2676 /* Set entries for TCP, UDP and IGMP over IPv4 */ 2677 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP, 2678 MVPP2_PRS_RI_L4_PROTO_MASK); 2679 if (err) 2680 return err; 2681 2682 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP, 2683 MVPP2_PRS_RI_L4_PROTO_MASK); 2684 if (err) 2685 return err; 2686 2687 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP, 2688 MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2689 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2690 MVPP2_PRS_RI_CPU_CODE_MASK | 2691 MVPP2_PRS_RI_UDF3_MASK); 2692 if (err) 2693 return err; 2694 2695 /* IPv4 Broadcast */ 2696 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST); 2697 if (err) 2698 return err; 2699 2700 /* IPv4 Multicast */ 2701 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST); 2702 if (err) 2703 return err; 2704 2705 /* Default IPv4 entry for unknown protocols */ 2706 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2707 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); 2708 pe.index = MVPP2_PE_IP4_PROTO_UN; 2709 2710 /* Set next lu to IPv4 */ 2711 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); 2712 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2713 /* Set L4 offset */ 2714 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, 2715 sizeof(struct iphdr) - 4, 2716 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2717 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, 2718 MVPP2_PRS_IPV4_DIP_AI_BIT); 2719 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER, 2720 MVPP2_PRS_RI_L4_PROTO_MASK); 2721 2722 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT); 2723 /* Unmask all ports */ 2724 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2725 2726 /* Update shadow table and hw entry */ 2727 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 2728 mvpp2_prs_hw_write(priv, &pe); 2729 2730 /* Default IPv4 entry for unicast address */ 2731 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2732 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); 2733 pe.index = MVPP2_PE_IP4_ADDR_UN; 2734 2735 /* Finished: go to flowid generation */ 2736 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2737 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2738 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST, 2739 MVPP2_PRS_RI_L3_ADDR_MASK); 2740 2741 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, 2742 MVPP2_PRS_IPV4_DIP_AI_BIT); 2743 /* Unmask all ports */ 2744 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2745 2746 /* Update shadow table and hw entry */ 2747 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 2748 mvpp2_prs_hw_write(priv, &pe); 2749 2750 return 0; 2751} 2752 2753/* Initialize entries for IPv6 */ 2754static int mvpp2_prs_ip6_init(struct mvpp2 *priv) 2755{ 2756 struct mvpp2_prs_entry pe; 2757 int tid, err; 2758 2759 /* Set entries for TCP, UDP and ICMP over IPv6 */ 2760 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP, 2761 MVPP2_PRS_RI_L4_TCP, 2762 MVPP2_PRS_RI_L4_PROTO_MASK); 2763 if (err) 2764 return err; 2765 2766 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP, 2767 MVPP2_PRS_RI_L4_UDP, 2768 MVPP2_PRS_RI_L4_PROTO_MASK); 2769 if (err) 2770 return err; 2771 2772 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6, 2773 MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2774 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2775 MVPP2_PRS_RI_CPU_CODE_MASK | 2776 MVPP2_PRS_RI_UDF3_MASK); 2777 if (err) 2778 return err; 2779 2780 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */ 2781 /* Result Info: UDF7=1, DS lite */ 2782 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP, 2783 MVPP2_PRS_RI_UDF7_IP6_LITE, 2784 MVPP2_PRS_RI_UDF7_MASK); 2785 if (err) 2786 return err; 2787 2788 /* IPv6 multicast */ 2789 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST); 2790 if (err) 2791 return err; 2792 2793 /* Entry for checking hop limit */ 2794 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2795 MVPP2_PE_LAST_FREE_TID); 2796 if (tid < 0) 2797 return tid; 2798 2799 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2800 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); 2801 pe.index = tid; 2802 2803 /* Finished: go to flowid generation */ 2804 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2805 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2806 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN | 2807 MVPP2_PRS_RI_DROP_MASK, 2808 MVPP2_PRS_RI_L3_PROTO_MASK | 2809 MVPP2_PRS_RI_DROP_MASK); 2810 2811 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK); 2812 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, 2813 MVPP2_PRS_IPV6_NO_EXT_AI_BIT); 2814 2815 /* Update shadow table and hw entry */ 2816 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 2817 mvpp2_prs_hw_write(priv, &pe); 2818 2819 /* Default IPv6 entry for unknown protocols */ 2820 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2821 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); 2822 pe.index = MVPP2_PE_IP6_PROTO_UN; 2823 2824 /* Finished: go to flowid generation */ 2825 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2826 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2827 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER, 2828 MVPP2_PRS_RI_L4_PROTO_MASK); 2829 /* Set L4 offset relatively to our current place */ 2830 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, 2831 sizeof(struct ipv6hdr) - 4, 2832 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2833 2834 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, 2835 MVPP2_PRS_IPV6_NO_EXT_AI_BIT); 2836 /* Unmask all ports */ 2837 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2838 2839 /* Update shadow table and hw entry */ 2840 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 2841 mvpp2_prs_hw_write(priv, &pe); 2842 2843 /* Default IPv6 entry for unknown ext protocols */ 2844 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2845 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); 2846 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN; 2847 2848 /* Finished: go to flowid generation */ 2849 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2850 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2851 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER, 2852 MVPP2_PRS_RI_L4_PROTO_MASK); 2853 2854 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT, 2855 MVPP2_PRS_IPV6_EXT_AI_BIT); 2856 /* Unmask all ports */ 2857 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2858 2859 /* Update shadow table and hw entry */ 2860 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); 2861 mvpp2_prs_hw_write(priv, &pe); 2862 2863 /* Default IPv6 entry for unicast address */ 2864 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2865 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); 2866 pe.index = MVPP2_PE_IP6_ADDR_UN; 2867 2868 /* Finished: go to IPv6 again */ 2869 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); 2870 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST, 2871 MVPP2_PRS_RI_L3_ADDR_MASK); 2872 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, 2873 MVPP2_PRS_IPV6_NO_EXT_AI_BIT); 2874 /* Shift back to IPV6 NH */ 2875 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2876 2877 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT); 2878 /* Unmask all ports */ 2879 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2880 2881 /* Update shadow table and hw entry */ 2882 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6); 2883 mvpp2_prs_hw_write(priv, &pe); 2884 2885 return 0; 2886} 2887 2888/* Parser default initialization */ 2889static int mvpp2_prs_default_init(struct platform_device *pdev, 2890 struct mvpp2 *priv) 2891{ 2892 int err, index, i; 2893 2894 /* Enable tcam table */ 2895 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK); 2896 2897 /* Clear all tcam and sram entries */ 2898 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) { 2899 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 2900 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 2901 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0); 2902 2903 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index); 2904 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 2905 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0); 2906 } 2907 2908 /* Invalidate all tcam entries */ 2909 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) 2910 mvpp2_prs_hw_inv(priv, index); 2911 2912 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE, 2913 sizeof(struct mvpp2_prs_shadow), 2914 GFP_KERNEL); 2915 if (!priv->prs_shadow) 2916 return -ENOMEM; 2917 2918 /* Always start from lookup = 0 */ 2919 for (index = 0; index < MVPP2_MAX_PORTS; index++) 2920 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH, 2921 MVPP2_PRS_PORT_LU_MAX, 0); 2922 2923 mvpp2_prs_def_flow_init(priv); 2924 2925 mvpp2_prs_mh_init(priv); 2926 2927 mvpp2_prs_mac_init(priv); 2928 2929 mvpp2_prs_dsa_init(priv); 2930 2931 err = mvpp2_prs_etype_init(priv); 2932 if (err) 2933 return err; 2934 2935 err = mvpp2_prs_vlan_init(pdev, priv); 2936 if (err) 2937 return err; 2938 2939 err = mvpp2_prs_pppoe_init(priv); 2940 if (err) 2941 return err; 2942 2943 err = mvpp2_prs_ip6_init(priv); 2944 if (err) 2945 return err; 2946 2947 err = mvpp2_prs_ip4_init(priv); 2948 if (err) 2949 return err; 2950 2951 return 0; 2952} 2953 2954/* Compare MAC DA with tcam entry data */ 2955static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe, 2956 const u8 *da, unsigned char *mask) 2957{ 2958 unsigned char tcam_byte, tcam_mask; 2959 int index; 2960 2961 for (index = 0; index < ETH_ALEN; index++) { 2962 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask); 2963 if (tcam_mask != mask[index]) 2964 return false; 2965 2966 if ((tcam_mask & tcam_byte) != (da[index] & mask[index])) 2967 return false; 2968 } 2969 2970 return true; 2971} 2972 2973/* Find tcam entry with matched pair <MAC DA, port> */ 2974static struct mvpp2_prs_entry * 2975mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da, 2976 unsigned char *mask, int udf_type) 2977{ 2978 struct mvpp2_prs_entry *pe; 2979 int tid; 2980 2981 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2982 if (!pe) 2983 return NULL; 2984 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 2985 2986 /* Go through the all entires with MVPP2_PRS_LU_MAC */ 2987 for (tid = MVPP2_PE_FIRST_FREE_TID; 2988 tid <= MVPP2_PE_LAST_FREE_TID; tid++) { 2989 unsigned int entry_pmap; 2990 2991 if (!priv->prs_shadow[tid].valid || 2992 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || 2993 (priv->prs_shadow[tid].udf != udf_type)) 2994 continue; 2995 2996 pe->index = tid; 2997 mvpp2_prs_hw_read(priv, pe); 2998 entry_pmap = mvpp2_prs_tcam_port_map_get(pe); 2999 3000 if (mvpp2_prs_mac_range_equals(pe, da, mask) && 3001 entry_pmap == pmap) 3002 return pe; 3003 } 3004 kfree(pe); 3005 3006 return NULL; 3007} 3008 3009/* Update parser's mac da entry */ 3010static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port, 3011 const u8 *da, bool add) 3012{ 3013 struct mvpp2_prs_entry *pe; 3014 unsigned int pmap, len, ri; 3015 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 3016 int tid; 3017 3018 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */ 3019 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask, 3020 MVPP2_PRS_UDF_MAC_DEF); 3021 3022 /* No such entry */ 3023 if (!pe) { 3024 if (!add) 3025 return 0; 3026 3027 /* Create new TCAM entry */ 3028 /* Find first range mac entry*/ 3029 for (tid = MVPP2_PE_FIRST_FREE_TID; 3030 tid <= MVPP2_PE_LAST_FREE_TID; tid++) 3031 if (priv->prs_shadow[tid].valid && 3032 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) && 3033 (priv->prs_shadow[tid].udf == 3034 MVPP2_PRS_UDF_MAC_RANGE)) 3035 break; 3036 3037 /* Go through the all entries from first to last */ 3038 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 3039 tid - 1); 3040 if (tid < 0) 3041 return tid; 3042 3043 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 3044 if (!pe) 3045 return -1; 3046 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 3047 pe->index = tid; 3048 3049 /* Mask all ports */ 3050 mvpp2_prs_tcam_port_map_set(pe, 0); 3051 } 3052 3053 /* Update port mask */ 3054 mvpp2_prs_tcam_port_set(pe, port, add); 3055 3056 /* Invalidate the entry if no ports are left enabled */ 3057 pmap = mvpp2_prs_tcam_port_map_get(pe); 3058 if (pmap == 0) { 3059 if (add) { 3060 kfree(pe); 3061 return -1; 3062 } 3063 mvpp2_prs_hw_inv(priv, pe->index); 3064 priv->prs_shadow[pe->index].valid = false; 3065 kfree(pe); 3066 return 0; 3067 } 3068 3069 /* Continue - set next lookup */ 3070 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA); 3071 3072 /* Set match on DA */ 3073 len = ETH_ALEN; 3074 while (len--) 3075 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff); 3076 3077 /* Set result info bits */ 3078 if (is_broadcast_ether_addr(da)) 3079 ri = MVPP2_PRS_RI_L2_BCAST; 3080 else if (is_multicast_ether_addr(da)) 3081 ri = MVPP2_PRS_RI_L2_MCAST; 3082 else 3083 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK; 3084 3085 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK | 3086 MVPP2_PRS_RI_MAC_ME_MASK); 3087 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK | 3088 MVPP2_PRS_RI_MAC_ME_MASK); 3089 3090 /* Shift to ethertype */ 3091 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN, 3092 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 3093 3094 /* Update shadow table and hw entry */ 3095 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF; 3096 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC); 3097 mvpp2_prs_hw_write(priv, pe); 3098 3099 kfree(pe); 3100 3101 return 0; 3102} 3103 3104static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da) 3105{ 3106 struct mvpp2_port *port = netdev_priv(dev); 3107 int err; 3108 3109 /* Remove old parser entry */ 3110 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr, 3111 false); 3112 if (err) 3113 return err; 3114 3115 /* Add new parser entry */ 3116 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true); 3117 if (err) 3118 return err; 3119 3120 /* Set addr in the device */ 3121 ether_addr_copy(dev->dev_addr, da); 3122 3123 return 0; 3124} 3125 3126/* Delete all port's multicast simple (not range) entries */ 3127static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port) 3128{ 3129 struct mvpp2_prs_entry pe; 3130 int index, tid; 3131 3132 for (tid = MVPP2_PE_FIRST_FREE_TID; 3133 tid <= MVPP2_PE_LAST_FREE_TID; tid++) { 3134 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN]; 3135 3136 if (!priv->prs_shadow[tid].valid || 3137 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || 3138 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF)) 3139 continue; 3140 3141 /* Only simple mac entries */ 3142 pe.index = tid; 3143 mvpp2_prs_hw_read(priv, &pe); 3144 3145 /* Read mac addr from entry */ 3146 for (index = 0; index < ETH_ALEN; index++) 3147 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index], 3148 &da_mask[index]); 3149 3150 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da)) 3151 /* Delete this entry */ 3152 mvpp2_prs_mac_da_accept(priv, port, da, false); 3153 } 3154} 3155 3156static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type) 3157{ 3158 switch (type) { 3159 case MVPP2_TAG_TYPE_EDSA: 3160 /* Add port to EDSA entries */ 3161 mvpp2_prs_dsa_tag_set(priv, port, true, 3162 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); 3163 mvpp2_prs_dsa_tag_set(priv, port, true, 3164 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); 3165 /* Remove port from DSA entries */ 3166 mvpp2_prs_dsa_tag_set(priv, port, false, 3167 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); 3168 mvpp2_prs_dsa_tag_set(priv, port, false, 3169 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); 3170 break; 3171 3172 case MVPP2_TAG_TYPE_DSA: 3173 /* Add port to DSA entries */ 3174 mvpp2_prs_dsa_tag_set(priv, port, true, 3175 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); 3176 mvpp2_prs_dsa_tag_set(priv, port, true, 3177 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); 3178 /* Remove port from EDSA entries */ 3179 mvpp2_prs_dsa_tag_set(priv, port, false, 3180 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); 3181 mvpp2_prs_dsa_tag_set(priv, port, false, 3182 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); 3183 break; 3184 3185 case MVPP2_TAG_TYPE_MH: 3186 case MVPP2_TAG_TYPE_NONE: 3187 /* Remove port form EDSA and DSA entries */ 3188 mvpp2_prs_dsa_tag_set(priv, port, false, 3189 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); 3190 mvpp2_prs_dsa_tag_set(priv, port, false, 3191 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); 3192 mvpp2_prs_dsa_tag_set(priv, port, false, 3193 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); 3194 mvpp2_prs_dsa_tag_set(priv, port, false, 3195 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); 3196 break; 3197 3198 default: 3199 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA)) 3200 return -EINVAL; 3201 } 3202 3203 return 0; 3204} 3205 3206/* Set prs flow for the port */ 3207static int mvpp2_prs_def_flow(struct mvpp2_port *port) 3208{ 3209 struct mvpp2_prs_entry *pe; 3210 int tid; 3211 3212 pe = mvpp2_prs_flow_find(port->priv, port->id); 3213 3214 /* Such entry not exist */ 3215 if (!pe) { 3216 /* Go through the all entires from last to first */ 3217 tid = mvpp2_prs_tcam_first_free(port->priv, 3218 MVPP2_PE_LAST_FREE_TID, 3219 MVPP2_PE_FIRST_FREE_TID); 3220 if (tid < 0) 3221 return tid; 3222 3223 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 3224 if (!pe) 3225 return -ENOMEM; 3226 3227 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 3228 pe->index = tid; 3229 3230 /* Set flow ID*/ 3231 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK); 3232 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 3233 3234 /* Update shadow table */ 3235 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS); 3236 } 3237 3238 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id)); 3239 mvpp2_prs_hw_write(port->priv, pe); 3240 kfree(pe); 3241 3242 return 0; 3243} 3244 3245/* Classifier configuration routines */ 3246 3247/* Update classification flow table registers */ 3248static void mvpp2_cls_flow_write(struct mvpp2 *priv, 3249 struct mvpp2_cls_flow_entry *fe) 3250{ 3251 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); 3252 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); 3253 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); 3254 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); 3255} 3256 3257/* Update classification lookup table register */ 3258static void mvpp2_cls_lookup_write(struct mvpp2 *priv, 3259 struct mvpp2_cls_lookup_entry *le) 3260{ 3261 u32 val; 3262 3263 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; 3264 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); 3265 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); 3266} 3267 3268/* Classifier default initialization */ 3269static void mvpp2_cls_init(struct mvpp2 *priv) 3270{ 3271 struct mvpp2_cls_lookup_entry le; 3272 struct mvpp2_cls_flow_entry fe; 3273 int index; 3274 3275 /* Enable classifier */ 3276 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); 3277 3278 /* Clear classifier flow table */ 3279 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS); 3280 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { 3281 fe.index = index; 3282 mvpp2_cls_flow_write(priv, &fe); 3283 } 3284 3285 /* Clear classifier lookup table */ 3286 le.data = 0; 3287 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { 3288 le.lkpid = index; 3289 le.way = 0; 3290 mvpp2_cls_lookup_write(priv, &le); 3291 3292 le.way = 1; 3293 mvpp2_cls_lookup_write(priv, &le); 3294 } 3295} 3296 3297static void mvpp2_cls_port_config(struct mvpp2_port *port) 3298{ 3299 struct mvpp2_cls_lookup_entry le; 3300 u32 val; 3301 3302 /* Set way for the port */ 3303 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); 3304 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); 3305 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); 3306 3307 /* Pick the entry to be accessed in lookup ID decoding table 3308 * according to the way and lkpid. 3309 */ 3310 le.lkpid = port->id; 3311 le.way = 0; 3312 le.data = 0; 3313 3314 /* Set initial CPU queue for receiving packets */ 3315 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; 3316 le.data |= port->first_rxq; 3317 3318 /* Disable classification engines */ 3319 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; 3320 3321 /* Update lookup ID table entry */ 3322 mvpp2_cls_lookup_write(port->priv, &le); 3323} 3324 3325/* Set CPU queue number for oversize packets */ 3326static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) 3327{ 3328 u32 val; 3329 3330 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), 3331 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); 3332 3333 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), 3334 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); 3335 3336 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); 3337 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); 3338 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); 3339} 3340 3341/* Buffer Manager configuration routines */ 3342 3343/* Create pool */ 3344static int mvpp2_bm_pool_create(struct platform_device *pdev, 3345 struct mvpp2 *priv, 3346 struct mvpp2_bm_pool *bm_pool, int size) 3347{ 3348 int size_bytes; 3349 u32 val; 3350 3351 size_bytes = sizeof(u32) * size; 3352 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes, 3353 &bm_pool->phys_addr, 3354 GFP_KERNEL); 3355 if (!bm_pool->virt_addr) 3356 return -ENOMEM; 3357 3358 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) { 3359 dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr, 3360 bm_pool->phys_addr); 3361 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n", 3362 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN); 3363 return -ENOMEM; 3364 } 3365 3366 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id), 3367 bm_pool->phys_addr); 3368 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size); 3369 3370 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 3371 val |= MVPP2_BM_START_MASK; 3372 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 3373 3374 bm_pool->type = MVPP2_BM_FREE; 3375 bm_pool->size = size; 3376 bm_pool->pkt_size = 0; 3377 bm_pool->buf_num = 0; 3378 atomic_set(&bm_pool->in_use, 0); 3379 spin_lock_init(&bm_pool->lock); 3380 3381 return 0; 3382} 3383 3384/* Set pool buffer size */ 3385static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv, 3386 struct mvpp2_bm_pool *bm_pool, 3387 int buf_size) 3388{ 3389 u32 val; 3390 3391 bm_pool->buf_size = buf_size; 3392 3393 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET); 3394 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val); 3395} 3396 3397/* Free all buffers from the pool */ 3398static void mvpp2_bm_bufs_free(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool) 3399{ 3400 int i; 3401 3402 for (i = 0; i < bm_pool->buf_num; i++) { 3403 u32 vaddr; 3404 3405 /* Get buffer virtual address (indirect access) */ 3406 mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id)); 3407 vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG); 3408 if (!vaddr) 3409 break; 3410 dev_kfree_skb_any((struct sk_buff *)vaddr); 3411 } 3412 3413 /* Update BM driver with number of buffers removed from pool */ 3414 bm_pool->buf_num -= i; 3415} 3416 3417/* Cleanup pool */ 3418static int mvpp2_bm_pool_destroy(struct platform_device *pdev, 3419 struct mvpp2 *priv, 3420 struct mvpp2_bm_pool *bm_pool) 3421{ 3422 u32 val; 3423 3424 mvpp2_bm_bufs_free(priv, bm_pool); 3425 if (bm_pool->buf_num) { 3426 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id); 3427 return 0; 3428 } 3429 3430 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 3431 val |= MVPP2_BM_STOP_MASK; 3432 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 3433 3434 dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size, 3435 bm_pool->virt_addr, 3436 bm_pool->phys_addr); 3437 return 0; 3438} 3439 3440static int mvpp2_bm_pools_init(struct platform_device *pdev, 3441 struct mvpp2 *priv) 3442{ 3443 int i, err, size; 3444 struct mvpp2_bm_pool *bm_pool; 3445 3446 /* Create all pools with maximum size */ 3447 size = MVPP2_BM_POOL_SIZE_MAX; 3448 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 3449 bm_pool = &priv->bm_pools[i]; 3450 bm_pool->id = i; 3451 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size); 3452 if (err) 3453 goto err_unroll_pools; 3454 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0); 3455 } 3456 return 0; 3457 3458err_unroll_pools: 3459 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size); 3460 for (i = i - 1; i >= 0; i--) 3461 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]); 3462 return err; 3463} 3464 3465static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv) 3466{ 3467 int i, err; 3468 3469 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 3470 /* Mask BM all interrupts */ 3471 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0); 3472 /* Clear BM cause register */ 3473 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0); 3474 } 3475 3476 /* Allocate and initialize BM pools */ 3477 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM, 3478 sizeof(struct mvpp2_bm_pool), GFP_KERNEL); 3479 if (!priv->bm_pools) 3480 return -ENOMEM; 3481 3482 err = mvpp2_bm_pools_init(pdev, priv); 3483 if (err < 0) 3484 return err; 3485 return 0; 3486} 3487 3488/* Attach long pool to rxq */ 3489static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port, 3490 int lrxq, int long_pool) 3491{ 3492 u32 val; 3493 int prxq; 3494 3495 /* Get queue physical ID */ 3496 prxq = port->rxqs[lrxq]->id; 3497 3498 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 3499 val &= ~MVPP2_RXQ_POOL_LONG_MASK; 3500 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & 3501 MVPP2_RXQ_POOL_LONG_MASK); 3502 3503 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 3504} 3505 3506/* Attach short pool to rxq */ 3507static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port, 3508 int lrxq, int short_pool) 3509{ 3510 u32 val; 3511 int prxq; 3512 3513 /* Get queue physical ID */ 3514 prxq = port->rxqs[lrxq]->id; 3515 3516 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 3517 val &= ~MVPP2_RXQ_POOL_SHORT_MASK; 3518 val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & 3519 MVPP2_RXQ_POOL_SHORT_MASK); 3520 3521 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 3522} 3523 3524/* Allocate skb for BM pool */ 3525static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port, 3526 struct mvpp2_bm_pool *bm_pool, 3527 dma_addr_t *buf_phys_addr, 3528 gfp_t gfp_mask) 3529{ 3530 struct sk_buff *skb; 3531 dma_addr_t phys_addr; 3532 3533 skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask); 3534 if (!skb) 3535 return NULL; 3536 3537 phys_addr = dma_map_single(port->dev->dev.parent, skb->head, 3538 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size), 3539 DMA_FROM_DEVICE); 3540 if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) { 3541 dev_kfree_skb_any(skb); 3542 return NULL; 3543 } 3544 *buf_phys_addr = phys_addr; 3545 3546 return skb; 3547} 3548 3549/* Set pool number in a BM cookie */ 3550static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool) 3551{ 3552 u32 bm; 3553 3554 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS); 3555 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS); 3556 3557 return bm; 3558} 3559 3560/* Get pool number from a BM cookie */ 3561static inline int mvpp2_bm_cookie_pool_get(u32 cookie) 3562{ 3563 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF; 3564} 3565 3566/* Release buffer to BM */ 3567static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool, 3568 u32 buf_phys_addr, u32 buf_virt_addr) 3569{ 3570 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr); 3571 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr); 3572} 3573 3574/* Release multicast buffer */ 3575static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool, 3576 u32 buf_phys_addr, u32 buf_virt_addr, 3577 int mc_id) 3578{ 3579 u32 val = 0; 3580 3581 val |= (mc_id & MVPP2_BM_MC_ID_MASK); 3582 mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val); 3583 3584 mvpp2_bm_pool_put(port, pool, 3585 buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK, 3586 buf_virt_addr); 3587} 3588 3589/* Refill BM pool */ 3590static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm, 3591 u32 phys_addr, u32 cookie) 3592{ 3593 int pool = mvpp2_bm_cookie_pool_get(bm); 3594 3595 mvpp2_bm_pool_put(port, pool, phys_addr, cookie); 3596} 3597 3598/* Allocate buffers for the pool */ 3599static int mvpp2_bm_bufs_add(struct mvpp2_port *port, 3600 struct mvpp2_bm_pool *bm_pool, int buf_num) 3601{ 3602 struct sk_buff *skb; 3603 int i, buf_size, total_size; 3604 u32 bm; 3605 dma_addr_t phys_addr; 3606 3607 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size); 3608 total_size = MVPP2_RX_TOTAL_SIZE(buf_size); 3609 3610 if (buf_num < 0 || 3611 (buf_num + bm_pool->buf_num > bm_pool->size)) { 3612 netdev_err(port->dev, 3613 "cannot allocate %d buffers for pool %d\n", 3614 buf_num, bm_pool->id); 3615 return 0; 3616 } 3617 3618 bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id); 3619 for (i = 0; i < buf_num; i++) { 3620 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL); 3621 if (!skb) 3622 break; 3623 3624 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb); 3625 } 3626 3627 /* Update BM driver with number of buffers added to pool */ 3628 bm_pool->buf_num += i; 3629 bm_pool->in_use_thresh = bm_pool->buf_num / 4; 3630 3631 netdev_dbg(port->dev, 3632 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n", 3633 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long", 3634 bm_pool->id, bm_pool->pkt_size, buf_size, total_size); 3635 3636 netdev_dbg(port->dev, 3637 "%s pool %d: %d of %d buffers added\n", 3638 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long", 3639 bm_pool->id, i, buf_num); 3640 return i; 3641} 3642 3643/* Notify the driver that BM pool is being used as specific type and return the 3644 * pool pointer on success 3645 */ 3646static struct mvpp2_bm_pool * 3647mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type, 3648 int pkt_size) 3649{ 3650 unsigned long flags = 0; 3651 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; 3652 int num; 3653 3654 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) { 3655 netdev_err(port->dev, "mixing pool types is forbidden\n"); 3656 return NULL; 3657 } 3658 3659 spin_lock_irqsave(&new_pool->lock, flags); 3660 3661 if (new_pool->type == MVPP2_BM_FREE) 3662 new_pool->type = type; 3663 3664 /* Allocate buffers in case BM pool is used as long pool, but packet 3665 * size doesn't match MTU or BM pool hasn't being used yet 3666 */ 3667 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) || 3668 (new_pool->pkt_size == 0)) { 3669 int pkts_num; 3670 3671 /* Set default buffer number or free all the buffers in case 3672 * the pool is not empty 3673 */ 3674 pkts_num = new_pool->buf_num; 3675 if (pkts_num == 0) 3676 pkts_num = type == MVPP2_BM_SWF_LONG ? 3677 MVPP2_BM_LONG_BUF_NUM : 3678 MVPP2_BM_SHORT_BUF_NUM; 3679 else 3680 mvpp2_bm_bufs_free(port->priv, new_pool); 3681 3682 new_pool->pkt_size = pkt_size; 3683 3684 /* Allocate buffers for this pool */ 3685 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); 3686 if (num != pkts_num) { 3687 WARN(1, "pool %d: %d of %d allocated\n", 3688 new_pool->id, num, pkts_num); 3689 /* We need to undo the bufs_add() allocations */ 3690 spin_unlock_irqrestore(&new_pool->lock, flags); 3691 return NULL; 3692 } 3693 } 3694 3695 mvpp2_bm_pool_bufsize_set(port->priv, new_pool, 3696 MVPP2_RX_BUF_SIZE(new_pool->pkt_size)); 3697 3698 spin_unlock_irqrestore(&new_pool->lock, flags); 3699 3700 return new_pool; 3701} 3702 3703/* Initialize pools for swf */ 3704static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port) 3705{ 3706 unsigned long flags = 0; 3707 int rxq; 3708 3709 if (!port->pool_long) { 3710 port->pool_long = 3711 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id), 3712 MVPP2_BM_SWF_LONG, 3713 port->pkt_size); 3714 if (!port->pool_long) 3715 return -ENOMEM; 3716 3717 spin_lock_irqsave(&port->pool_long->lock, flags); 3718 port->pool_long->port_map |= (1 << port->id); 3719 spin_unlock_irqrestore(&port->pool_long->lock, flags); 3720 3721 for (rxq = 0; rxq < rxq_number; rxq++) 3722 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id); 3723 } 3724 3725 if (!port->pool_short) { 3726 port->pool_short = 3727 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL, 3728 MVPP2_BM_SWF_SHORT, 3729 MVPP2_BM_SHORT_PKT_SIZE); 3730 if (!port->pool_short) 3731 return -ENOMEM; 3732 3733 spin_lock_irqsave(&port->pool_short->lock, flags); 3734 port->pool_short->port_map |= (1 << port->id); 3735 spin_unlock_irqrestore(&port->pool_short->lock, flags); 3736 3737 for (rxq = 0; rxq < rxq_number; rxq++) 3738 mvpp2_rxq_short_pool_set(port, rxq, 3739 port->pool_short->id); 3740 } 3741 3742 return 0; 3743} 3744 3745static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu) 3746{ 3747 struct mvpp2_port *port = netdev_priv(dev); 3748 struct mvpp2_bm_pool *port_pool = port->pool_long; 3749 int num, pkts_num = port_pool->buf_num; 3750 int pkt_size = MVPP2_RX_PKT_SIZE(mtu); 3751 3752 /* Update BM pool with new buffer size */ 3753 mvpp2_bm_bufs_free(port->priv, port_pool); 3754 if (port_pool->buf_num) { 3755 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id); 3756 return -EIO; 3757 } 3758 3759 port_pool->pkt_size = pkt_size; 3760 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num); 3761 if (num != pkts_num) { 3762 WARN(1, "pool %d: %d of %d allocated\n", 3763 port_pool->id, num, pkts_num); 3764 return -EIO; 3765 } 3766 3767 mvpp2_bm_pool_bufsize_set(port->priv, port_pool, 3768 MVPP2_RX_BUF_SIZE(port_pool->pkt_size)); 3769 dev->mtu = mtu; 3770 netdev_update_features(dev); 3771 return 0; 3772} 3773 3774static inline void mvpp2_interrupts_enable(struct mvpp2_port *port) 3775{ 3776 int cpu, cpu_mask = 0; 3777 3778 for_each_present_cpu(cpu) 3779 cpu_mask |= 1 << cpu; 3780 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), 3781 MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask)); 3782} 3783 3784static inline void mvpp2_interrupts_disable(struct mvpp2_port *port) 3785{ 3786 int cpu, cpu_mask = 0; 3787 3788 for_each_present_cpu(cpu) 3789 cpu_mask |= 1 << cpu; 3790 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), 3791 MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask)); 3792} 3793 3794/* Mask the current CPU's Rx/Tx interrupts */ 3795static void mvpp2_interrupts_mask(void *arg) 3796{ 3797 struct mvpp2_port *port = arg; 3798 3799 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0); 3800} 3801 3802/* Unmask the current CPU's Rx/Tx interrupts */ 3803static void mvpp2_interrupts_unmask(void *arg) 3804{ 3805 struct mvpp2_port *port = arg; 3806 3807 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 3808 (MVPP2_CAUSE_MISC_SUM_MASK | 3809 MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK | 3810 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK)); 3811} 3812 3813/* Port configuration routines */ 3814 3815static void mvpp2_port_mii_set(struct mvpp2_port *port) 3816{ 3817 u32 val; 3818 3819 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3820 3821 switch (port->phy_interface) { 3822 case PHY_INTERFACE_MODE_SGMII: 3823 val |= MVPP2_GMAC_INBAND_AN_MASK; 3824 break; 3825 case PHY_INTERFACE_MODE_RGMII: 3826 val |= MVPP2_GMAC_PORT_RGMII_MASK; 3827 default: 3828 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; 3829 } 3830 3831 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3832} 3833 3834static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port) 3835{ 3836 u32 val; 3837 3838 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3839 val |= MVPP2_GMAC_FC_ADV_EN; 3840 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3841} 3842 3843static void mvpp2_port_enable(struct mvpp2_port *port) 3844{ 3845 u32 val; 3846 3847 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3848 val |= MVPP2_GMAC_PORT_EN_MASK; 3849 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK; 3850 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3851} 3852 3853static void mvpp2_port_disable(struct mvpp2_port *port) 3854{ 3855 u32 val; 3856 3857 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3858 val &= ~(MVPP2_GMAC_PORT_EN_MASK); 3859 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3860} 3861 3862/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */ 3863static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port) 3864{ 3865 u32 val; 3866 3867 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) & 3868 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; 3869 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 3870} 3871 3872/* Configure loopback port */ 3873static void mvpp2_port_loopback_set(struct mvpp2_port *port) 3874{ 3875 u32 val; 3876 3877 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 3878 3879 if (port->speed == 1000) 3880 val |= MVPP2_GMAC_GMII_LB_EN_MASK; 3881 else 3882 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK; 3883 3884 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) 3885 val |= MVPP2_GMAC_PCS_LB_EN_MASK; 3886 else 3887 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK; 3888 3889 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 3890} 3891 3892static void mvpp2_port_reset(struct mvpp2_port *port) 3893{ 3894 u32 val; 3895 3896 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 3897 ~MVPP2_GMAC_PORT_RESET_MASK; 3898 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3899 3900 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 3901 MVPP2_GMAC_PORT_RESET_MASK) 3902 continue; 3903} 3904 3905/* Change maximum receive size of the port */ 3906static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port) 3907{ 3908 u32 val; 3909 3910 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3911 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; 3912 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) << 3913 MVPP2_GMAC_MAX_RX_SIZE_OFFS); 3914 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3915} 3916 3917/* Set defaults to the MVPP2 port */ 3918static void mvpp2_defaults_set(struct mvpp2_port *port) 3919{ 3920 int tx_port_num, val, queue, ptxq, lrxq; 3921 3922 /* Configure port to loopback if needed */ 3923 if (port->flags & MVPP2_F_LOOPBACK) 3924 mvpp2_port_loopback_set(port); 3925 3926 /* Update TX FIFO MIN Threshold */ 3927 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3928 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3929 /* Min. TX threshold must be less than minimal packet length */ 3930 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2); 3931 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3932 3933 /* Disable Legacy WRR, Disable EJP, Release from reset */ 3934 tx_port_num = mvpp2_egress_port(port); 3935 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, 3936 tx_port_num); 3937 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0); 3938 3939 /* Close bandwidth for all queues */ 3940 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) { 3941 ptxq = mvpp2_txq_phys(port->id, queue); 3942 mvpp2_write(port->priv, 3943 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0); 3944 } 3945 3946 /* Set refill period to 1 usec, refill tokens 3947 * and bucket size to maximum 3948 */ 3949 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 3950 port->priv->tclk / USEC_PER_SEC); 3951 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG); 3952 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK; 3953 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1); 3954 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK; 3955 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val); 3956 val = MVPP2_TXP_TOKEN_SIZE_MAX; 3957 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 3958 3959 /* Set MaximumLowLatencyPacketSize value to 256 */ 3960 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id), 3961 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK | 3962 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256)); 3963 3964 /* Enable Rx cache snoop */ 3965 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3966 queue = port->rxqs[lrxq]->id; 3967 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3968 val |= MVPP2_SNOOP_PKT_SIZE_MASK | 3969 MVPP2_SNOOP_BUF_HDR_MASK; 3970 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3971 } 3972 3973 /* At default, mask all interrupts to all present cpus */ 3974 mvpp2_interrupts_disable(port); 3975} 3976 3977/* Enable/disable receiving packets */ 3978static void mvpp2_ingress_enable(struct mvpp2_port *port) 3979{ 3980 u32 val; 3981 int lrxq, queue; 3982 3983 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3984 queue = port->rxqs[lrxq]->id; 3985 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3986 val &= ~MVPP2_RXQ_DISABLE_MASK; 3987 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3988 } 3989} 3990 3991static void mvpp2_ingress_disable(struct mvpp2_port *port) 3992{ 3993 u32 val; 3994 int lrxq, queue; 3995 3996 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3997 queue = port->rxqs[lrxq]->id; 3998 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3999 val |= MVPP2_RXQ_DISABLE_MASK; 4000 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 4001 } 4002} 4003 4004/* Enable transmit via physical egress queue 4005 * - HW starts take descriptors from DRAM 4006 */ 4007static void mvpp2_egress_enable(struct mvpp2_port *port) 4008{ 4009 u32 qmap; 4010 int queue; 4011 int tx_port_num = mvpp2_egress_port(port); 4012 4013 /* Enable all initialized TXs. */ 4014 qmap = 0; 4015 for (queue = 0; queue < txq_number; queue++) { 4016 struct mvpp2_tx_queue *txq = port->txqs[queue]; 4017 4018 if (txq->descs != NULL) 4019 qmap |= (1 << queue); 4020 } 4021 4022 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 4023 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap); 4024} 4025 4026/* Disable transmit via physical egress queue 4027 * - HW doesn't take descriptors from DRAM 4028 */ 4029static void mvpp2_egress_disable(struct mvpp2_port *port) 4030{ 4031 u32 reg_data; 4032 int delay; 4033 int tx_port_num = mvpp2_egress_port(port); 4034 4035 /* Issue stop command for active channels only */ 4036 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 4037 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) & 4038 MVPP2_TXP_SCHED_ENQ_MASK; 4039 if (reg_data != 0) 4040 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, 4041 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET)); 4042 4043 /* Wait for all Tx activity to terminate. */ 4044 delay = 0; 4045 do { 4046 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) { 4047 netdev_warn(port->dev, 4048 "Tx stop timed out, status=0x%08x\n", 4049 reg_data); 4050 break; 4051 } 4052 mdelay(1); 4053 delay++; 4054 4055 /* Check port TX Command register that all 4056 * Tx queues are stopped 4057 */ 4058 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG); 4059 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK); 4060} 4061 4062/* Rx descriptors helper methods */ 4063 4064/* Get number of Rx descriptors occupied by received packets */ 4065static inline int 4066mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id) 4067{ 4068 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id)); 4069 4070 return val & MVPP2_RXQ_OCCUPIED_MASK; 4071} 4072 4073/* Update Rx queue status with the number of occupied and available 4074 * Rx descriptor slots. 4075 */ 4076static inline void 4077mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id, 4078 int used_count, int free_count) 4079{ 4080 /* Decrement the number of used descriptors and increment count 4081 * increment the number of free descriptors. 4082 */ 4083 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET); 4084 4085 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val); 4086} 4087 4088/* Get pointer to next RX descriptor to be processed by SW */ 4089static inline struct mvpp2_rx_desc * 4090mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq) 4091{ 4092 int rx_desc = rxq->next_desc_to_proc; 4093 4094 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc); 4095 prefetch(rxq->descs + rxq->next_desc_to_proc); 4096 return rxq->descs + rx_desc; 4097} 4098 4099/* Set rx queue offset */ 4100static void mvpp2_rxq_offset_set(struct mvpp2_port *port, 4101 int prxq, int offset) 4102{ 4103 u32 val; 4104 4105 /* Convert offset from bytes to units of 32 bytes */ 4106 offset = offset >> 5; 4107 4108 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 4109 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK; 4110 4111 /* Offset is in */ 4112 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) & 4113 MVPP2_RXQ_PACKET_OFFSET_MASK); 4114 4115 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 4116} 4117 4118/* Obtain BM cookie information from descriptor */ 4119static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc) 4120{ 4121 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >> 4122 MVPP2_RXD_BM_POOL_ID_OFFS; 4123 int cpu = smp_processor_id(); 4124 4125 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) | 4126 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS); 4127} 4128 4129/* Tx descriptors helper methods */ 4130 4131/* Get number of Tx descriptors waiting to be transmitted by HW */ 4132static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port, 4133 struct mvpp2_tx_queue *txq) 4134{ 4135 u32 val; 4136 4137 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4138 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 4139 4140 return val & MVPP2_TXQ_PENDING_MASK; 4141} 4142 4143/* Get pointer to next Tx descriptor to be processed (send) by HW */ 4144static struct mvpp2_tx_desc * 4145mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq) 4146{ 4147 int tx_desc = txq->next_desc_to_proc; 4148 4149 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc); 4150 return txq->descs + tx_desc; 4151} 4152 4153/* Update HW with number of aggregated Tx descriptors to be sent */ 4154static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending) 4155{ 4156 /* aggregated access - relevant TXQ number is written in TX desc */ 4157 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending); 4158} 4159 4160 4161/* Check if there are enough free descriptors in aggregated txq. 4162 * If not, update the number of occupied descriptors and repeat the check. 4163 */ 4164static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv, 4165 struct mvpp2_tx_queue *aggr_txq, int num) 4166{ 4167 if ((aggr_txq->count + num) > aggr_txq->size) { 4168 /* Update number of occupied aggregated Tx descriptors */ 4169 int cpu = smp_processor_id(); 4170 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu)); 4171 4172 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK; 4173 } 4174 4175 if ((aggr_txq->count + num) > aggr_txq->size) 4176 return -ENOMEM; 4177 4178 return 0; 4179} 4180 4181/* Reserved Tx descriptors allocation request */ 4182static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv, 4183 struct mvpp2_tx_queue *txq, int num) 4184{ 4185 u32 val; 4186 4187 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num; 4188 mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val); 4189 4190 val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG); 4191 4192 return val & MVPP2_TXQ_RSVD_RSLT_MASK; 4193} 4194 4195/* Check if there are enough reserved descriptors for transmission. 4196 * If not, request chunk of reserved descriptors and check again. 4197 */ 4198static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv, 4199 struct mvpp2_tx_queue *txq, 4200 struct mvpp2_txq_pcpu *txq_pcpu, 4201 int num) 4202{ 4203 int req, cpu, desc_count; 4204 4205 if (txq_pcpu->reserved_num >= num) 4206 return 0; 4207 4208 /* Not enough descriptors reserved! Update the reserved descriptor 4209 * count and check again. 4210 */ 4211 4212 desc_count = 0; 4213 /* Compute total of used descriptors */ 4214 for_each_present_cpu(cpu) { 4215 struct mvpp2_txq_pcpu *txq_pcpu_aux; 4216 4217 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu); 4218 desc_count += txq_pcpu_aux->count; 4219 desc_count += txq_pcpu_aux->reserved_num; 4220 } 4221 4222 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num); 4223 desc_count += req; 4224 4225 if (desc_count > 4226 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK))) 4227 return -ENOMEM; 4228 4229 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req); 4230 4231 /* OK, the descriptor cound has been updated: check again. */ 4232 if (txq_pcpu->reserved_num < num) 4233 return -ENOMEM; 4234 return 0; 4235} 4236 4237/* Release the last allocated Tx descriptor. Useful to handle DMA 4238 * mapping failures in the Tx path. 4239 */ 4240static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq) 4241{ 4242 if (txq->next_desc_to_proc == 0) 4243 txq->next_desc_to_proc = txq->last_desc - 1; 4244 else 4245 txq->next_desc_to_proc--; 4246} 4247 4248/* Set Tx descriptors fields relevant for CSUM calculation */ 4249static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto, 4250 int ip_hdr_len, int l4_proto) 4251{ 4252 u32 command; 4253 4254 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 4255 * G_L4_chk, L4_type required only for checksum calculation 4256 */ 4257 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT); 4258 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT); 4259 command |= MVPP2_TXD_IP_CSUM_DISABLE; 4260 4261 if (l3_proto == swab16(ETH_P_IP)) { 4262 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */ 4263 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */ 4264 } else { 4265 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */ 4266 } 4267 4268 if (l4_proto == IPPROTO_TCP) { 4269 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */ 4270 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */ 4271 } else if (l4_proto == IPPROTO_UDP) { 4272 command |= MVPP2_TXD_L4_UDP; /* enable UDP */ 4273 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */ 4274 } else { 4275 command |= MVPP2_TXD_L4_CSUM_NOT; 4276 } 4277 4278 return command; 4279} 4280 4281/* Get number of sent descriptors and decrement counter. 4282 * The number of sent descriptors is returned. 4283 * Per-CPU access 4284 */ 4285static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port, 4286 struct mvpp2_tx_queue *txq) 4287{ 4288 u32 val; 4289 4290 /* Reading status reg resets transmitted descriptor counter */ 4291 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id)); 4292 4293 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >> 4294 MVPP2_TRANSMITTED_COUNT_OFFSET; 4295} 4296 4297static void mvpp2_txq_sent_counter_clear(void *arg) 4298{ 4299 struct mvpp2_port *port = arg; 4300 int queue; 4301 4302 for (queue = 0; queue < txq_number; queue++) { 4303 int id = port->txqs[queue]->id; 4304 4305 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id)); 4306 } 4307} 4308 4309/* Set max sizes for Tx queues */ 4310static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port) 4311{ 4312 u32 val, size, mtu; 4313 int txq, tx_port_num; 4314 4315 mtu = port->pkt_size * 8; 4316 if (mtu > MVPP2_TXP_MTU_MAX) 4317 mtu = MVPP2_TXP_MTU_MAX; 4318 4319 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */ 4320 mtu = 3 * mtu; 4321 4322 /* Indirect access to registers */ 4323 tx_port_num = mvpp2_egress_port(port); 4324 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 4325 4326 /* Set MTU */ 4327 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG); 4328 val &= ~MVPP2_TXP_MTU_MAX; 4329 val |= mtu; 4330 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val); 4331 4332 /* TXP token size and all TXQs token size must be larger that MTU */ 4333 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG); 4334 size = val & MVPP2_TXP_TOKEN_SIZE_MAX; 4335 if (size < mtu) { 4336 size = mtu; 4337 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX; 4338 val |= size; 4339 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 4340 } 4341 4342 for (txq = 0; txq < txq_number; txq++) { 4343 val = mvpp2_read(port->priv, 4344 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq)); 4345 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX; 4346 4347 if (size < mtu) { 4348 size = mtu; 4349 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX; 4350 val |= size; 4351 mvpp2_write(port->priv, 4352 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq), 4353 val); 4354 } 4355 } 4356} 4357 4358/* Set the number of packets that will be received before Rx interrupt 4359 * will be generated by HW. 4360 */ 4361static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port, 4362 struct mvpp2_rx_queue *rxq, u32 pkts) 4363{ 4364 u32 val; 4365 4366 val = (pkts & MVPP2_OCCUPIED_THRESH_MASK); 4367 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4368 mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val); 4369 4370 rxq->pkts_coal = pkts; 4371} 4372 4373/* Set the time delay in usec before Rx interrupt */ 4374static void mvpp2_rx_time_coal_set(struct mvpp2_port *port, 4375 struct mvpp2_rx_queue *rxq, u32 usec) 4376{ 4377 u32 val; 4378 4379 val = (port->priv->tclk / USEC_PER_SEC) * usec; 4380 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val); 4381 4382 rxq->time_coal = usec; 4383} 4384 4385/* Set threshold for TX_DONE pkts coalescing */ 4386static void mvpp2_tx_done_pkts_coal_set(void *arg) 4387{ 4388 struct mvpp2_port *port = arg; 4389 int queue; 4390 u32 val; 4391 4392 for (queue = 0; queue < txq_number; queue++) { 4393 struct mvpp2_tx_queue *txq = port->txqs[queue]; 4394 4395 val = (txq->done_pkts_coal << MVPP2_TRANSMITTED_THRESH_OFFSET) & 4396 MVPP2_TRANSMITTED_THRESH_MASK; 4397 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4398 mvpp2_write(port->priv, MVPP2_TXQ_THRESH_REG, val); 4399 } 4400} 4401 4402/* Free Tx queue skbuffs */ 4403static void mvpp2_txq_bufs_free(struct mvpp2_port *port, 4404 struct mvpp2_tx_queue *txq, 4405 struct mvpp2_txq_pcpu *txq_pcpu, int num) 4406{ 4407 int i; 4408 4409 for (i = 0; i < num; i++) { 4410 struct mvpp2_tx_desc *tx_desc = txq->descs + 4411 txq_pcpu->txq_get_index; 4412 struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index]; 4413 4414 mvpp2_txq_inc_get(txq_pcpu); 4415 4416 if (!skb) 4417 continue; 4418 4419 dma_unmap_single(port->dev->dev.parent, tx_desc->buf_phys_addr, 4420 tx_desc->data_size, DMA_TO_DEVICE); 4421 dev_kfree_skb_any(skb); 4422 } 4423} 4424 4425static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port, 4426 u32 cause) 4427{ 4428 int queue = fls(cause) - 1; 4429 4430 return port->rxqs[queue]; 4431} 4432 4433static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port, 4434 u32 cause) 4435{ 4436 int queue = fls(cause >> 16) - 1; 4437 4438 return port->txqs[queue]; 4439} 4440 4441/* Handle end of transmission */ 4442static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, 4443 struct mvpp2_txq_pcpu *txq_pcpu) 4444{ 4445 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id); 4446 int tx_done; 4447 4448 if (txq_pcpu->cpu != smp_processor_id()) 4449 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n"); 4450 4451 tx_done = mvpp2_txq_sent_desc_proc(port, txq); 4452 if (!tx_done) 4453 return; 4454 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done); 4455 4456 txq_pcpu->count -= tx_done; 4457 4458 if (netif_tx_queue_stopped(nq)) 4459 if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1) 4460 netif_tx_wake_queue(nq); 4461} 4462 4463/* Rx/Tx queue initialization/cleanup methods */ 4464 4465/* Allocate and initialize descriptors for aggr TXQ */ 4466static int mvpp2_aggr_txq_init(struct platform_device *pdev, 4467 struct mvpp2_tx_queue *aggr_txq, 4468 int desc_num, int cpu, 4469 struct mvpp2 *priv) 4470{ 4471 /* Allocate memory for TX descriptors */ 4472 aggr_txq->descs = dma_alloc_coherent(&pdev->dev, 4473 desc_num * MVPP2_DESC_ALIGNED_SIZE, 4474 &aggr_txq->descs_phys, GFP_KERNEL); 4475 if (!aggr_txq->descs) 4476 return -ENOMEM; 4477 4478 /* Make sure descriptor address is cache line size aligned */ 4479 BUG_ON(aggr_txq->descs != 4480 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4481 4482 aggr_txq->last_desc = aggr_txq->size - 1; 4483 4484 /* Aggr TXQ no reset WA */ 4485 aggr_txq->next_desc_to_proc = mvpp2_read(priv, 4486 MVPP2_AGGR_TXQ_INDEX_REG(cpu)); 4487 4488 /* Set Tx descriptors queue starting address */ 4489 /* indirect access */ 4490 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), 4491 aggr_txq->descs_phys); 4492 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num); 4493 4494 return 0; 4495} 4496 4497/* Create a specified Rx queue */ 4498static int mvpp2_rxq_init(struct mvpp2_port *port, 4499 struct mvpp2_rx_queue *rxq) 4500 4501{ 4502 rxq->size = port->rx_ring_size; 4503 4504 /* Allocate memory for RX descriptors */ 4505 rxq->descs = dma_alloc_coherent(port->dev->dev.parent, 4506 rxq->size * MVPP2_DESC_ALIGNED_SIZE, 4507 &rxq->descs_phys, GFP_KERNEL); 4508 if (!rxq->descs) 4509 return -ENOMEM; 4510 4511 BUG_ON(rxq->descs != 4512 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4513 4514 rxq->last_desc = rxq->size - 1; 4515 4516 /* Zero occupied and non-occupied counters - direct access */ 4517 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4518 4519 /* Set Rx descriptors queue starting address - indirect access */ 4520 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4521 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys); 4522 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size); 4523 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0); 4524 4525 /* Set Offset */ 4526 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD); 4527 4528 /* Set coalescing pkts and time */ 4529 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal); 4530 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal); 4531 4532 /* Add number of descriptors ready for receiving packets */ 4533 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size); 4534 4535 return 0; 4536} 4537 4538/* Push packets received by the RXQ to BM pool */ 4539static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port, 4540 struct mvpp2_rx_queue *rxq) 4541{ 4542 int rx_received, i; 4543 4544 rx_received = mvpp2_rxq_received(port, rxq->id); 4545 if (!rx_received) 4546 return; 4547 4548 for (i = 0; i < rx_received; i++) { 4549 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); 4550 u32 bm = mvpp2_bm_cookie_build(rx_desc); 4551 4552 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr, 4553 rx_desc->buf_cookie); 4554 } 4555 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received); 4556} 4557 4558/* Cleanup Rx queue */ 4559static void mvpp2_rxq_deinit(struct mvpp2_port *port, 4560 struct mvpp2_rx_queue *rxq) 4561{ 4562 mvpp2_rxq_drop_pkts(port, rxq); 4563 4564 if (rxq->descs) 4565 dma_free_coherent(port->dev->dev.parent, 4566 rxq->size * MVPP2_DESC_ALIGNED_SIZE, 4567 rxq->descs, 4568 rxq->descs_phys); 4569 4570 rxq->descs = NULL; 4571 rxq->last_desc = 0; 4572 rxq->next_desc_to_proc = 0; 4573 rxq->descs_phys = 0; 4574 4575 /* Clear Rx descriptors queue starting address and size; 4576 * free descriptor number 4577 */ 4578 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4579 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4580 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0); 4581 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0); 4582} 4583 4584/* Create and initialize a Tx queue */ 4585static int mvpp2_txq_init(struct mvpp2_port *port, 4586 struct mvpp2_tx_queue *txq) 4587{ 4588 u32 val; 4589 int cpu, desc, desc_per_txq, tx_port_num; 4590 struct mvpp2_txq_pcpu *txq_pcpu; 4591 4592 txq->size = port->tx_ring_size; 4593 4594 /* Allocate memory for Tx descriptors */ 4595 txq->descs = dma_alloc_coherent(port->dev->dev.parent, 4596 txq->size * MVPP2_DESC_ALIGNED_SIZE, 4597 &txq->descs_phys, GFP_KERNEL); 4598 if (!txq->descs) 4599 return -ENOMEM; 4600 4601 /* Make sure descriptor address is cache line size aligned */ 4602 BUG_ON(txq->descs != 4603 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4604 4605 txq->last_desc = txq->size - 1; 4606 4607 /* Set Tx descriptors queue starting address - indirect access */ 4608 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4609 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys); 4610 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size & 4611 MVPP2_TXQ_DESC_SIZE_MASK); 4612 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0); 4613 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG, 4614 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET); 4615 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 4616 val &= ~MVPP2_TXQ_PENDING_MASK; 4617 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val); 4618 4619 /* Calculate base address in prefetch buffer. We reserve 16 descriptors 4620 * for each existing TXQ. 4621 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT 4622 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS 4623 */ 4624 desc_per_txq = 16; 4625 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) + 4626 (txq->log_id * desc_per_txq); 4627 4628 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, 4629 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 | 4630 MVPP2_PREF_BUF_THRESH(desc_per_txq/2)); 4631 4632 /* WRR / EJP configuration - indirect access */ 4633 tx_port_num = mvpp2_egress_port(port); 4634 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 4635 4636 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id)); 4637 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK; 4638 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1); 4639 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK; 4640 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val); 4641 4642 val = MVPP2_TXQ_TOKEN_SIZE_MAX; 4643 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id), 4644 val); 4645 4646 for_each_present_cpu(cpu) { 4647 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4648 txq_pcpu->size = txq->size; 4649 txq_pcpu->tx_skb = kmalloc(txq_pcpu->size * 4650 sizeof(*txq_pcpu->tx_skb), 4651 GFP_KERNEL); 4652 if (!txq_pcpu->tx_skb) { 4653 dma_free_coherent(port->dev->dev.parent, 4654 txq->size * MVPP2_DESC_ALIGNED_SIZE, 4655 txq->descs, txq->descs_phys); 4656 return -ENOMEM; 4657 } 4658 4659 txq_pcpu->count = 0; 4660 txq_pcpu->reserved_num = 0; 4661 txq_pcpu->txq_put_index = 0; 4662 txq_pcpu->txq_get_index = 0; 4663 } 4664 4665 return 0; 4666} 4667 4668/* Free allocated TXQ resources */ 4669static void mvpp2_txq_deinit(struct mvpp2_port *port, 4670 struct mvpp2_tx_queue *txq) 4671{ 4672 struct mvpp2_txq_pcpu *txq_pcpu; 4673 int cpu; 4674 4675 for_each_present_cpu(cpu) { 4676 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4677 kfree(txq_pcpu->tx_skb); 4678 } 4679 4680 if (txq->descs) 4681 dma_free_coherent(port->dev->dev.parent, 4682 txq->size * MVPP2_DESC_ALIGNED_SIZE, 4683 txq->descs, txq->descs_phys); 4684 4685 txq->descs = NULL; 4686 txq->last_desc = 0; 4687 txq->next_desc_to_proc = 0; 4688 txq->descs_phys = 0; 4689 4690 /* Set minimum bandwidth for disabled TXQs */ 4691 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0); 4692 4693 /* Set Tx descriptors queue starting address and size */ 4694 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4695 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0); 4696 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0); 4697} 4698 4699/* Cleanup Tx ports */ 4700static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) 4701{ 4702 struct mvpp2_txq_pcpu *txq_pcpu; 4703 int delay, pending, cpu; 4704 u32 val; 4705 4706 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4707 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); 4708 val |= MVPP2_TXQ_DRAIN_EN_MASK; 4709 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4710 4711 /* The napi queue has been stopped so wait for all packets 4712 * to be transmitted. 4713 */ 4714 delay = 0; 4715 do { 4716 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) { 4717 netdev_warn(port->dev, 4718 "port %d: cleaning queue %d timed out\n", 4719 port->id, txq->log_id); 4720 break; 4721 } 4722 mdelay(1); 4723 delay++; 4724 4725 pending = mvpp2_txq_pend_desc_num_get(port, txq); 4726 } while (pending); 4727 4728 val &= ~MVPP2_TXQ_DRAIN_EN_MASK; 4729 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4730 4731 for_each_present_cpu(cpu) { 4732 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4733 4734 /* Release all packets */ 4735 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count); 4736 4737 /* Reset queue */ 4738 txq_pcpu->count = 0; 4739 txq_pcpu->txq_put_index = 0; 4740 txq_pcpu->txq_get_index = 0; 4741 } 4742} 4743 4744/* Cleanup all Tx queues */ 4745static void mvpp2_cleanup_txqs(struct mvpp2_port *port) 4746{ 4747 struct mvpp2_tx_queue *txq; 4748 int queue; 4749 u32 val; 4750 4751 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG); 4752 4753 /* Reset Tx ports and delete Tx queues */ 4754 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id); 4755 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4756 4757 for (queue = 0; queue < txq_number; queue++) { 4758 txq = port->txqs[queue]; 4759 mvpp2_txq_clean(port, txq); 4760 mvpp2_txq_deinit(port, txq); 4761 } 4762 4763 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1); 4764 4765 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id); 4766 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4767} 4768 4769/* Cleanup all Rx queues */ 4770static void mvpp2_cleanup_rxqs(struct mvpp2_port *port) 4771{ 4772 int queue; 4773 4774 for (queue = 0; queue < rxq_number; queue++) 4775 mvpp2_rxq_deinit(port, port->rxqs[queue]); 4776} 4777 4778/* Init all Rx queues for port */ 4779static int mvpp2_setup_rxqs(struct mvpp2_port *port) 4780{ 4781 int queue, err; 4782 4783 for (queue = 0; queue < rxq_number; queue++) { 4784 err = mvpp2_rxq_init(port, port->rxqs[queue]); 4785 if (err) 4786 goto err_cleanup; 4787 } 4788 return 0; 4789 4790err_cleanup: 4791 mvpp2_cleanup_rxqs(port); 4792 return err; 4793} 4794 4795/* Init all tx queues for port */ 4796static int mvpp2_setup_txqs(struct mvpp2_port *port) 4797{ 4798 struct mvpp2_tx_queue *txq; 4799 int queue, err; 4800 4801 for (queue = 0; queue < txq_number; queue++) { 4802 txq = port->txqs[queue]; 4803 err = mvpp2_txq_init(port, txq); 4804 if (err) 4805 goto err_cleanup; 4806 } 4807 4808 on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1); 4809 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1); 4810 return 0; 4811 4812err_cleanup: 4813 mvpp2_cleanup_txqs(port); 4814 return err; 4815} 4816 4817/* The callback for per-port interrupt */ 4818static irqreturn_t mvpp2_isr(int irq, void *dev_id) 4819{ 4820 struct mvpp2_port *port = (struct mvpp2_port *)dev_id; 4821 4822 mvpp2_interrupts_disable(port); 4823 4824 napi_schedule(&port->napi); 4825 4826 return IRQ_HANDLED; 4827} 4828 4829/* Adjust link */ 4830static void mvpp2_link_event(struct net_device *dev) 4831{ 4832 struct mvpp2_port *port = netdev_priv(dev); 4833 struct phy_device *phydev = port->phy_dev; 4834 int status_change = 0; 4835 u32 val; 4836 4837 if (phydev->link) { 4838 if ((port->speed != phydev->speed) || 4839 (port->duplex != phydev->duplex)) { 4840 u32 val; 4841 4842 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4843 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | 4844 MVPP2_GMAC_CONFIG_GMII_SPEED | 4845 MVPP2_GMAC_CONFIG_FULL_DUPLEX | 4846 MVPP2_GMAC_AN_SPEED_EN | 4847 MVPP2_GMAC_AN_DUPLEX_EN); 4848 4849 if (phydev->duplex) 4850 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX; 4851 4852 if (phydev->speed == SPEED_1000) 4853 val |= MVPP2_GMAC_CONFIG_GMII_SPEED; 4854 else if (phydev->speed == SPEED_100) 4855 val |= MVPP2_GMAC_CONFIG_MII_SPEED; 4856 4857 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4858 4859 port->duplex = phydev->duplex; 4860 port->speed = phydev->speed; 4861 } 4862 } 4863 4864 if (phydev->link != port->link) { 4865 if (!phydev->link) { 4866 port->duplex = -1; 4867 port->speed = 0; 4868 } 4869 4870 port->link = phydev->link; 4871 status_change = 1; 4872 } 4873 4874 if (status_change) { 4875 if (phydev->link) { 4876 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4877 val |= (MVPP2_GMAC_FORCE_LINK_PASS | 4878 MVPP2_GMAC_FORCE_LINK_DOWN); 4879 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4880 mvpp2_egress_enable(port); 4881 mvpp2_ingress_enable(port); 4882 } else { 4883 mvpp2_ingress_disable(port); 4884 mvpp2_egress_disable(port); 4885 } 4886 phy_print_status(phydev); 4887 } 4888} 4889 4890/* Main RX/TX processing routines */ 4891 4892/* Display more error info */ 4893static void mvpp2_rx_error(struct mvpp2_port *port, 4894 struct mvpp2_rx_desc *rx_desc) 4895{ 4896 u32 status = rx_desc->status; 4897 4898 switch (status & MVPP2_RXD_ERR_CODE_MASK) { 4899 case MVPP2_RXD_ERR_CRC: 4900 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n", 4901 status, rx_desc->data_size); 4902 break; 4903 case MVPP2_RXD_ERR_OVERRUN: 4904 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n", 4905 status, rx_desc->data_size); 4906 break; 4907 case MVPP2_RXD_ERR_RESOURCE: 4908 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n", 4909 status, rx_desc->data_size); 4910 break; 4911 } 4912} 4913 4914/* Handle RX checksum offload */ 4915static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status, 4916 struct sk_buff *skb) 4917{ 4918 if (((status & MVPP2_RXD_L3_IP4) && 4919 !(status & MVPP2_RXD_IP4_HEADER_ERR)) || 4920 (status & MVPP2_RXD_L3_IP6)) 4921 if (((status & MVPP2_RXD_L4_UDP) || 4922 (status & MVPP2_RXD_L4_TCP)) && 4923 (status & MVPP2_RXD_L4_CSUM_OK)) { 4924 skb->csum = 0; 4925 skb->ip_summed = CHECKSUM_UNNECESSARY; 4926 return; 4927 } 4928 4929 skb->ip_summed = CHECKSUM_NONE; 4930} 4931 4932/* Reuse skb if possible, or allocate a new skb and add it to BM pool */ 4933static int mvpp2_rx_refill(struct mvpp2_port *port, 4934 struct mvpp2_bm_pool *bm_pool, 4935 u32 bm, int is_recycle) 4936{ 4937 struct sk_buff *skb; 4938 dma_addr_t phys_addr; 4939 4940 if (is_recycle && 4941 (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh)) 4942 return 0; 4943 4944 /* No recycle or too many buffers are in use, so allocate a new skb */ 4945 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC); 4946 if (!skb) 4947 return -ENOMEM; 4948 4949 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb); 4950 atomic_dec(&bm_pool->in_use); 4951 return 0; 4952} 4953 4954/* Handle tx checksum */ 4955static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb) 4956{ 4957 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4958 int ip_hdr_len = 0; 4959 u8 l4_proto; 4960 4961 if (skb->protocol == htons(ETH_P_IP)) { 4962 struct iphdr *ip4h = ip_hdr(skb); 4963 4964 /* Calculate IPv4 checksum and L4 checksum */ 4965 ip_hdr_len = ip4h->ihl; 4966 l4_proto = ip4h->protocol; 4967 } else if (skb->protocol == htons(ETH_P_IPV6)) { 4968 struct ipv6hdr *ip6h = ipv6_hdr(skb); 4969 4970 /* Read l4_protocol from one of IPv6 extra headers */ 4971 if (skb_network_header_len(skb) > 0) 4972 ip_hdr_len = (skb_network_header_len(skb) >> 2); 4973 l4_proto = ip6h->nexthdr; 4974 } else { 4975 return MVPP2_TXD_L4_CSUM_NOT; 4976 } 4977 4978 return mvpp2_txq_desc_csum(skb_network_offset(skb), 4979 skb->protocol, ip_hdr_len, l4_proto); 4980 } 4981 4982 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE; 4983} 4984 4985static void mvpp2_buff_hdr_rx(struct mvpp2_port *port, 4986 struct mvpp2_rx_desc *rx_desc) 4987{ 4988 struct mvpp2_buff_hdr *buff_hdr; 4989 struct sk_buff *skb; 4990 u32 rx_status = rx_desc->status; 4991 u32 buff_phys_addr; 4992 u32 buff_virt_addr; 4993 u32 buff_phys_addr_next; 4994 u32 buff_virt_addr_next; 4995 int mc_id; 4996 int pool_id; 4997 4998 pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >> 4999 MVPP2_RXD_BM_POOL_ID_OFFS; 5000 buff_phys_addr = rx_desc->buf_phys_addr; 5001 buff_virt_addr = rx_desc->buf_cookie; 5002 5003 do { 5004 skb = (struct sk_buff *)buff_virt_addr; 5005 buff_hdr = (struct mvpp2_buff_hdr *)skb->head; 5006 5007 mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info); 5008 5009 buff_phys_addr_next = buff_hdr->next_buff_phys_addr; 5010 buff_virt_addr_next = buff_hdr->next_buff_virt_addr; 5011 5012 /* Release buffer */ 5013 mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr, 5014 buff_virt_addr, mc_id); 5015 5016 buff_phys_addr = buff_phys_addr_next; 5017 buff_virt_addr = buff_virt_addr_next; 5018 5019 } while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info)); 5020} 5021 5022/* Main rx processing */ 5023static int mvpp2_rx(struct mvpp2_port *port, int rx_todo, 5024 struct mvpp2_rx_queue *rxq) 5025{ 5026 struct net_device *dev = port->dev; 5027 int rx_received, rx_filled, i; 5028 u32 rcvd_pkts = 0; 5029 u32 rcvd_bytes = 0; 5030 5031 /* Get number of received packets and clamp the to-do */ 5032 rx_received = mvpp2_rxq_received(port, rxq->id); 5033 if (rx_todo > rx_received) 5034 rx_todo = rx_received; 5035 5036 rx_filled = 0; 5037 for (i = 0; i < rx_todo; i++) { 5038 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); 5039 struct mvpp2_bm_pool *bm_pool; 5040 struct sk_buff *skb; 5041 u32 bm, rx_status; 5042 int pool, rx_bytes, err; 5043 5044 rx_filled++; 5045 rx_status = rx_desc->status; 5046 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE; 5047 5048 bm = mvpp2_bm_cookie_build(rx_desc); 5049 pool = mvpp2_bm_cookie_pool_get(bm); 5050 bm_pool = &port->priv->bm_pools[pool]; 5051 /* Check if buffer header is used */ 5052 if (rx_status & MVPP2_RXD_BUF_HDR) { 5053 mvpp2_buff_hdr_rx(port, rx_desc); 5054 continue; 5055 } 5056 5057 /* In case of an error, release the requested buffer pointer 5058 * to the Buffer Manager. This request process is controlled 5059 * by the hardware, and the information about the buffer is 5060 * comprised by the RX descriptor. 5061 */ 5062 if (rx_status & MVPP2_RXD_ERR_SUMMARY) { 5063 dev->stats.rx_errors++; 5064 mvpp2_rx_error(port, rx_desc); 5065 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr, 5066 rx_desc->buf_cookie); 5067 continue; 5068 } 5069 5070 skb = (struct sk_buff *)rx_desc->buf_cookie; 5071 5072 rcvd_pkts++; 5073 rcvd_bytes += rx_bytes; 5074 atomic_inc(&bm_pool->in_use); 5075 5076 skb_reserve(skb, MVPP2_MH_SIZE); 5077 skb_put(skb, rx_bytes); 5078 skb->protocol = eth_type_trans(skb, dev); 5079 mvpp2_rx_csum(port, rx_status, skb); 5080 5081 napi_gro_receive(&port->napi, skb); 5082 5083 err = mvpp2_rx_refill(port, bm_pool, bm, 0); 5084 if (err) { 5085 netdev_err(port->dev, "failed to refill BM pools\n"); 5086 rx_filled--; 5087 } 5088 } 5089 5090 if (rcvd_pkts) { 5091 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats); 5092 5093 u64_stats_update_begin(&stats->syncp); 5094 stats->rx_packets += rcvd_pkts; 5095 stats->rx_bytes += rcvd_bytes; 5096 u64_stats_update_end(&stats->syncp); 5097 } 5098 5099 /* Update Rx queue management counters */ 5100 wmb(); 5101 mvpp2_rxq_status_update(port, rxq->id, rx_todo, rx_filled); 5102 5103 return rx_todo; 5104} 5105 5106static inline void 5107tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq, 5108 struct mvpp2_tx_desc *desc) 5109{ 5110 dma_unmap_single(dev, desc->buf_phys_addr, 5111 desc->data_size, DMA_TO_DEVICE); 5112 mvpp2_txq_desc_put(txq); 5113} 5114 5115/* Handle tx fragmentation processing */ 5116static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb, 5117 struct mvpp2_tx_queue *aggr_txq, 5118 struct mvpp2_tx_queue *txq) 5119{ 5120 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu); 5121 struct mvpp2_tx_desc *tx_desc; 5122 int i; 5123 dma_addr_t buf_phys_addr; 5124 5125 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5126 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5127 void *addr = page_address(frag->page.p) + frag->page_offset; 5128 5129 tx_desc = mvpp2_txq_next_desc_get(aggr_txq); 5130 tx_desc->phys_txq = txq->id; 5131 tx_desc->data_size = frag->size; 5132 5133 buf_phys_addr = dma_map_single(port->dev->dev.parent, addr, 5134 tx_desc->data_size, 5135 DMA_TO_DEVICE); 5136 if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) { 5137 mvpp2_txq_desc_put(txq); 5138 goto error; 5139 } 5140 5141 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN; 5142 tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN); 5143 5144 if (i == (skb_shinfo(skb)->nr_frags - 1)) { 5145 /* Last descriptor */ 5146 tx_desc->command = MVPP2_TXD_L_DESC; 5147 mvpp2_txq_inc_put(txq_pcpu, skb); 5148 } else { 5149 /* Descriptor in the middle: Not First, Not Last */ 5150 tx_desc->command = 0; 5151 mvpp2_txq_inc_put(txq_pcpu, NULL); 5152 } 5153 } 5154 5155 return 0; 5156 5157error: 5158 /* Release all descriptors that were used to map fragments of 5159 * this packet, as well as the corresponding DMA mappings 5160 */ 5161 for (i = i - 1; i >= 0; i--) { 5162 tx_desc = txq->descs + i; 5163 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc); 5164 } 5165 5166 return -ENOMEM; 5167} 5168 5169/* Main tx processing */ 5170static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev) 5171{ 5172 struct mvpp2_port *port = netdev_priv(dev); 5173 struct mvpp2_tx_queue *txq, *aggr_txq; 5174 struct mvpp2_txq_pcpu *txq_pcpu; 5175 struct mvpp2_tx_desc *tx_desc; 5176 dma_addr_t buf_phys_addr; 5177 int frags = 0; 5178 u16 txq_id; 5179 u32 tx_cmd; 5180 5181 txq_id = skb_get_queue_mapping(skb); 5182 txq = port->txqs[txq_id]; 5183 txq_pcpu = this_cpu_ptr(txq->pcpu); 5184 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()]; 5185 5186 frags = skb_shinfo(skb)->nr_frags + 1; 5187 5188 /* Check number of available descriptors */ 5189 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) || 5190 mvpp2_txq_reserved_desc_num_proc(port->priv, txq, 5191 txq_pcpu, frags)) { 5192 frags = 0; 5193 goto out; 5194 } 5195 5196 /* Get a descriptor for the first part of the packet */ 5197 tx_desc = mvpp2_txq_next_desc_get(aggr_txq); 5198 tx_desc->phys_txq = txq->id; 5199 tx_desc->data_size = skb_headlen(skb); 5200 5201 buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 5202 tx_desc->data_size, DMA_TO_DEVICE); 5203 if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) { 5204 mvpp2_txq_desc_put(txq); 5205 frags = 0; 5206 goto out; 5207 } 5208 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN; 5209 tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN; 5210 5211 tx_cmd = mvpp2_skb_tx_csum(port, skb); 5212 5213 if (frags == 1) { 5214 /* First and Last descriptor */ 5215 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC; 5216 tx_desc->command = tx_cmd; 5217 mvpp2_txq_inc_put(txq_pcpu, skb); 5218 } else { 5219 /* First but not Last */ 5220 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE; 5221 tx_desc->command = tx_cmd; 5222 mvpp2_txq_inc_put(txq_pcpu, NULL); 5223 5224 /* Continue with other skb fragments */ 5225 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) { 5226 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc); 5227 frags = 0; 5228 goto out; 5229 } 5230 } 5231 5232 txq_pcpu->reserved_num -= frags; 5233 txq_pcpu->count += frags; 5234 aggr_txq->count += frags; 5235 5236 /* Enable transmit */ 5237 wmb(); 5238 mvpp2_aggr_txq_pend_desc_add(port, frags); 5239 5240 if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) { 5241 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 5242 5243 netif_tx_stop_queue(nq); 5244 } 5245out: 5246 if (frags > 0) { 5247 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats); 5248 5249 u64_stats_update_begin(&stats->syncp); 5250 stats->tx_packets++; 5251 stats->tx_bytes += skb->len; 5252 u64_stats_update_end(&stats->syncp); 5253 } else { 5254 dev->stats.tx_dropped++; 5255 dev_kfree_skb_any(skb); 5256 } 5257 5258 return NETDEV_TX_OK; 5259} 5260 5261static inline void mvpp2_cause_error(struct net_device *dev, int cause) 5262{ 5263 if (cause & MVPP2_CAUSE_FCS_ERR_MASK) 5264 netdev_err(dev, "FCS error\n"); 5265 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK) 5266 netdev_err(dev, "rx fifo overrun error\n"); 5267 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK) 5268 netdev_err(dev, "tx fifo underrun error\n"); 5269} 5270 5271static void mvpp2_txq_done_percpu(void *arg) 5272{ 5273 struct mvpp2_port *port = arg; 5274 u32 cause_rx_tx, cause_tx, cause_misc; 5275 5276 /* Rx/Tx cause register 5277 * 5278 * Bits 0-15: each bit indicates received packets on the Rx queue 5279 * (bit 0 is for Rx queue 0). 5280 * 5281 * Bits 16-23: each bit indicates transmitted packets on the Tx queue 5282 * (bit 16 is for Tx queue 0). 5283 * 5284 * Each CPU has its own Rx/Tx cause register 5285 */ 5286 cause_rx_tx = mvpp2_read(port->priv, 5287 MVPP2_ISR_RX_TX_CAUSE_REG(port->id)); 5288 cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK; 5289 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK; 5290 5291 if (cause_misc) { 5292 mvpp2_cause_error(port->dev, cause_misc); 5293 5294 /* Clear the cause register */ 5295 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0); 5296 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id), 5297 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK); 5298 } 5299 5300 /* Release TX descriptors */ 5301 if (cause_tx) { 5302 struct mvpp2_tx_queue *txq = mvpp2_get_tx_queue(port, cause_tx); 5303 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu); 5304 5305 if (txq_pcpu->count) 5306 mvpp2_txq_done(port, txq, txq_pcpu); 5307 } 5308} 5309 5310static int mvpp2_poll(struct napi_struct *napi, int budget) 5311{ 5312 u32 cause_rx_tx, cause_rx; 5313 int rx_done = 0; 5314 struct mvpp2_port *port = netdev_priv(napi->dev); 5315 5316 on_each_cpu(mvpp2_txq_done_percpu, port, 1); 5317 5318 cause_rx_tx = mvpp2_read(port->priv, 5319 MVPP2_ISR_RX_TX_CAUSE_REG(port->id)); 5320 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK; 5321 5322 /* Process RX packets */ 5323 cause_rx |= port->pending_cause_rx; 5324 while (cause_rx && budget > 0) { 5325 int count; 5326 struct mvpp2_rx_queue *rxq; 5327 5328 rxq = mvpp2_get_rx_queue(port, cause_rx); 5329 if (!rxq) 5330 break; 5331 5332 count = mvpp2_rx(port, budget, rxq); 5333 rx_done += count; 5334 budget -= count; 5335 if (budget > 0) { 5336 /* Clear the bit associated to this Rx queue 5337 * so that next iteration will continue from 5338 * the next Rx queue. 5339 */ 5340 cause_rx &= ~(1 << rxq->logic_rxq); 5341 } 5342 } 5343 5344 if (budget > 0) { 5345 cause_rx = 0; 5346 napi_complete(napi); 5347 5348 mvpp2_interrupts_enable(port); 5349 } 5350 port->pending_cause_rx = cause_rx; 5351 return rx_done; 5352} 5353 5354/* Set hw internals when starting port */ 5355static void mvpp2_start_dev(struct mvpp2_port *port) 5356{ 5357 mvpp2_gmac_max_rx_size_set(port); 5358 mvpp2_txp_max_tx_size_set(port); 5359 5360 napi_enable(&port->napi); 5361 5362 /* Enable interrupts on all CPUs */ 5363 mvpp2_interrupts_enable(port); 5364 5365 mvpp2_port_enable(port); 5366 phy_start(port->phy_dev); 5367 netif_tx_start_all_queues(port->dev); 5368} 5369 5370/* Set hw internals when stopping port */ 5371static void mvpp2_stop_dev(struct mvpp2_port *port) 5372{ 5373 /* Stop new packets from arriving to RXQs */ 5374 mvpp2_ingress_disable(port); 5375 5376 mdelay(10); 5377 5378 /* Disable interrupts on all CPUs */ 5379 mvpp2_interrupts_disable(port); 5380 5381 napi_disable(&port->napi); 5382 5383 netif_carrier_off(port->dev); 5384 netif_tx_stop_all_queues(port->dev); 5385 5386 mvpp2_egress_disable(port); 5387 mvpp2_port_disable(port); 5388 phy_stop(port->phy_dev); 5389} 5390 5391/* Return positive if MTU is valid */ 5392static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu) 5393{ 5394 if (mtu < 68) { 5395 netdev_err(dev, "cannot change mtu to less than 68\n"); 5396 return -EINVAL; 5397 } 5398 5399 /* 9676 == 9700 - 20 and rounding to 8 */ 5400 if (mtu > 9676) { 5401 netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu); 5402 mtu = 9676; 5403 } 5404 5405 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) { 5406 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu, 5407 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8)); 5408 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8); 5409 } 5410 5411 return mtu; 5412} 5413 5414static int mvpp2_check_ringparam_valid(struct net_device *dev, 5415 struct ethtool_ringparam *ring) 5416{ 5417 u16 new_rx_pending = ring->rx_pending; 5418 u16 new_tx_pending = ring->tx_pending; 5419 5420 if (ring->rx_pending == 0 || ring->tx_pending == 0) 5421 return -EINVAL; 5422 5423 if (ring->rx_pending > MVPP2_MAX_RXD) 5424 new_rx_pending = MVPP2_MAX_RXD; 5425 else if (!IS_ALIGNED(ring->rx_pending, 16)) 5426 new_rx_pending = ALIGN(ring->rx_pending, 16); 5427 5428 if (ring->tx_pending > MVPP2_MAX_TXD) 5429 new_tx_pending = MVPP2_MAX_TXD; 5430 else if (!IS_ALIGNED(ring->tx_pending, 32)) 5431 new_tx_pending = ALIGN(ring->tx_pending, 32); 5432 5433 if (ring->rx_pending != new_rx_pending) { 5434 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n", 5435 ring->rx_pending, new_rx_pending); 5436 ring->rx_pending = new_rx_pending; 5437 } 5438 5439 if (ring->tx_pending != new_tx_pending) { 5440 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n", 5441 ring->tx_pending, new_tx_pending); 5442 ring->tx_pending = new_tx_pending; 5443 } 5444 5445 return 0; 5446} 5447 5448static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr) 5449{ 5450 u32 mac_addr_l, mac_addr_m, mac_addr_h; 5451 5452 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 5453 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE); 5454 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH); 5455 addr[0] = (mac_addr_h >> 24) & 0xFF; 5456 addr[1] = (mac_addr_h >> 16) & 0xFF; 5457 addr[2] = (mac_addr_h >> 8) & 0xFF; 5458 addr[3] = mac_addr_h & 0xFF; 5459 addr[4] = mac_addr_m & 0xFF; 5460 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF; 5461} 5462 5463static int mvpp2_phy_connect(struct mvpp2_port *port) 5464{ 5465 struct phy_device *phy_dev; 5466 5467 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0, 5468 port->phy_interface); 5469 if (!phy_dev) { 5470 netdev_err(port->dev, "cannot connect to phy\n"); 5471 return -ENODEV; 5472 } 5473 phy_dev->supported &= PHY_GBIT_FEATURES; 5474 phy_dev->advertising = phy_dev->supported; 5475 5476 port->phy_dev = phy_dev; 5477 port->link = 0; 5478 port->duplex = 0; 5479 port->speed = 0; 5480 5481 return 0; 5482} 5483 5484static void mvpp2_phy_disconnect(struct mvpp2_port *port) 5485{ 5486 phy_disconnect(port->phy_dev); 5487 port->phy_dev = NULL; 5488} 5489 5490static int mvpp2_open(struct net_device *dev) 5491{ 5492 struct mvpp2_port *port = netdev_priv(dev); 5493 unsigned char mac_bcast[ETH_ALEN] = { 5494 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 5495 int err; 5496 5497 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true); 5498 if (err) { 5499 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n"); 5500 return err; 5501 } 5502 err = mvpp2_prs_mac_da_accept(port->priv, port->id, 5503 dev->dev_addr, true); 5504 if (err) { 5505 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n"); 5506 return err; 5507 } 5508 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH); 5509 if (err) { 5510 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n"); 5511 return err; 5512 } 5513 err = mvpp2_prs_def_flow(port); 5514 if (err) { 5515 netdev_err(dev, "mvpp2_prs_def_flow failed\n"); 5516 return err; 5517 } 5518 5519 /* Allocate the Rx/Tx queues */ 5520 err = mvpp2_setup_rxqs(port); 5521 if (err) { 5522 netdev_err(port->dev, "cannot allocate Rx queues\n"); 5523 return err; 5524 } 5525 5526 err = mvpp2_setup_txqs(port); 5527 if (err) { 5528 netdev_err(port->dev, "cannot allocate Tx queues\n"); 5529 goto err_cleanup_rxqs; 5530 } 5531 5532 err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port); 5533 if (err) { 5534 netdev_err(port->dev, "cannot request IRQ %d\n", port->irq); 5535 goto err_cleanup_txqs; 5536 } 5537 5538 /* In default link is down */ 5539 netif_carrier_off(port->dev); 5540 5541 err = mvpp2_phy_connect(port); 5542 if (err < 0) 5543 goto err_free_irq; 5544 5545 /* Unmask interrupts on all CPUs */ 5546 on_each_cpu(mvpp2_interrupts_unmask, port, 1); 5547 5548 mvpp2_start_dev(port); 5549 5550 return 0; 5551 5552err_free_irq: 5553 free_irq(port->irq, port); 5554err_cleanup_txqs: 5555 mvpp2_cleanup_txqs(port); 5556err_cleanup_rxqs: 5557 mvpp2_cleanup_rxqs(port); 5558 return err; 5559} 5560 5561static int mvpp2_stop(struct net_device *dev) 5562{ 5563 struct mvpp2_port *port = netdev_priv(dev); 5564 5565 mvpp2_stop_dev(port); 5566 mvpp2_phy_disconnect(port); 5567 5568 /* Mask interrupts on all CPUs */ 5569 on_each_cpu(mvpp2_interrupts_mask, port, 1); 5570 5571 free_irq(port->irq, port); 5572 mvpp2_cleanup_rxqs(port); 5573 mvpp2_cleanup_txqs(port); 5574 5575 return 0; 5576} 5577 5578static void mvpp2_set_rx_mode(struct net_device *dev) 5579{ 5580 struct mvpp2_port *port = netdev_priv(dev); 5581 struct mvpp2 *priv = port->priv; 5582 struct netdev_hw_addr *ha; 5583 int id = port->id; 5584 bool allmulti = dev->flags & IFF_ALLMULTI; 5585 5586 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC); 5587 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti); 5588 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti); 5589 5590 /* Remove all port->id's mcast enries */ 5591 mvpp2_prs_mcast_del_all(priv, id); 5592 5593 if (allmulti && !netdev_mc_empty(dev)) { 5594 netdev_for_each_mc_addr(ha, dev) 5595 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true); 5596 } 5597} 5598 5599static int mvpp2_set_mac_address(struct net_device *dev, void *p) 5600{ 5601 struct mvpp2_port *port = netdev_priv(dev); 5602 const struct sockaddr *addr = p; 5603 int err; 5604 5605 if (!is_valid_ether_addr(addr->sa_data)) { 5606 err = -EADDRNOTAVAIL; 5607 goto error; 5608 } 5609 5610 if (!netif_running(dev)) { 5611 err = mvpp2_prs_update_mac_da(dev, addr->sa_data); 5612 if (!err) 5613 return 0; 5614 /* Reconfigure parser to accept the original MAC address */ 5615 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr); 5616 if (err) 5617 goto error; 5618 } 5619 5620 mvpp2_stop_dev(port); 5621 5622 err = mvpp2_prs_update_mac_da(dev, addr->sa_data); 5623 if (!err) 5624 goto out_start; 5625 5626 /* Reconfigure parser accept the original MAC address */ 5627 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr); 5628 if (err) 5629 goto error; 5630out_start: 5631 mvpp2_start_dev(port); 5632 mvpp2_egress_enable(port); 5633 mvpp2_ingress_enable(port); 5634 return 0; 5635 5636error: 5637 netdev_err(dev, "fail to change MAC address\n"); 5638 return err; 5639} 5640 5641static int mvpp2_change_mtu(struct net_device *dev, int mtu) 5642{ 5643 struct mvpp2_port *port = netdev_priv(dev); 5644 int err; 5645 5646 mtu = mvpp2_check_mtu_valid(dev, mtu); 5647 if (mtu < 0) { 5648 err = mtu; 5649 goto error; 5650 } 5651 5652 if (!netif_running(dev)) { 5653 err = mvpp2_bm_update_mtu(dev, mtu); 5654 if (!err) { 5655 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu); 5656 return 0; 5657 } 5658 5659 /* Reconfigure BM to the original MTU */ 5660 err = mvpp2_bm_update_mtu(dev, dev->mtu); 5661 if (err) 5662 goto error; 5663 } 5664 5665 mvpp2_stop_dev(port); 5666 5667 err = mvpp2_bm_update_mtu(dev, mtu); 5668 if (!err) { 5669 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu); 5670 goto out_start; 5671 } 5672 5673 /* Reconfigure BM to the original MTU */ 5674 err = mvpp2_bm_update_mtu(dev, dev->mtu); 5675 if (err) 5676 goto error; 5677 5678out_start: 5679 mvpp2_start_dev(port); 5680 mvpp2_egress_enable(port); 5681 mvpp2_ingress_enable(port); 5682 5683 return 0; 5684 5685error: 5686 netdev_err(dev, "fail to change MTU\n"); 5687 return err; 5688} 5689 5690static struct rtnl_link_stats64 * 5691mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 5692{ 5693 struct mvpp2_port *port = netdev_priv(dev); 5694 unsigned int start; 5695 int cpu; 5696 5697 for_each_possible_cpu(cpu) { 5698 struct mvpp2_pcpu_stats *cpu_stats; 5699 u64 rx_packets; 5700 u64 rx_bytes; 5701 u64 tx_packets; 5702 u64 tx_bytes; 5703 5704 cpu_stats = per_cpu_ptr(port->stats, cpu); 5705 do { 5706 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 5707 rx_packets = cpu_stats->rx_packets; 5708 rx_bytes = cpu_stats->rx_bytes; 5709 tx_packets = cpu_stats->tx_packets; 5710 tx_bytes = cpu_stats->tx_bytes; 5711 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 5712 5713 stats->rx_packets += rx_packets; 5714 stats->rx_bytes += rx_bytes; 5715 stats->tx_packets += tx_packets; 5716 stats->tx_bytes += tx_bytes; 5717 } 5718 5719 stats->rx_errors = dev->stats.rx_errors; 5720 stats->rx_dropped = dev->stats.rx_dropped; 5721 stats->tx_dropped = dev->stats.tx_dropped; 5722 5723 return stats; 5724} 5725 5726static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 5727{ 5728 struct mvpp2_port *port = netdev_priv(dev); 5729 int ret; 5730 5731 if (!port->phy_dev) 5732 return -ENOTSUPP; 5733 5734 ret = phy_mii_ioctl(port->phy_dev, ifr, cmd); 5735 if (!ret) 5736 mvpp2_link_event(dev); 5737 5738 return ret; 5739} 5740 5741/* Ethtool methods */ 5742 5743/* Get settings (phy address, speed) for ethtools */ 5744static int mvpp2_ethtool_get_settings(struct net_device *dev, 5745 struct ethtool_cmd *cmd) 5746{ 5747 struct mvpp2_port *port = netdev_priv(dev); 5748 5749 if (!port->phy_dev) 5750 return -ENODEV; 5751 return phy_ethtool_gset(port->phy_dev, cmd); 5752} 5753 5754/* Set settings (phy address, speed) for ethtools */ 5755static int mvpp2_ethtool_set_settings(struct net_device *dev, 5756 struct ethtool_cmd *cmd) 5757{ 5758 struct mvpp2_port *port = netdev_priv(dev); 5759 5760 if (!port->phy_dev) 5761 return -ENODEV; 5762 return phy_ethtool_sset(port->phy_dev, cmd); 5763} 5764 5765/* Set interrupt coalescing for ethtools */ 5766static int mvpp2_ethtool_set_coalesce(struct net_device *dev, 5767 struct ethtool_coalesce *c) 5768{ 5769 struct mvpp2_port *port = netdev_priv(dev); 5770 int queue; 5771 5772 for (queue = 0; queue < rxq_number; queue++) { 5773 struct mvpp2_rx_queue *rxq = port->rxqs[queue]; 5774 5775 rxq->time_coal = c->rx_coalesce_usecs; 5776 rxq->pkts_coal = c->rx_max_coalesced_frames; 5777 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal); 5778 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal); 5779 } 5780 5781 for (queue = 0; queue < txq_number; queue++) { 5782 struct mvpp2_tx_queue *txq = port->txqs[queue]; 5783 5784 txq->done_pkts_coal = c->tx_max_coalesced_frames; 5785 } 5786 5787 on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1); 5788 return 0; 5789} 5790 5791/* get coalescing for ethtools */ 5792static int mvpp2_ethtool_get_coalesce(struct net_device *dev, 5793 struct ethtool_coalesce *c) 5794{ 5795 struct mvpp2_port *port = netdev_priv(dev); 5796 5797 c->rx_coalesce_usecs = port->rxqs[0]->time_coal; 5798 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal; 5799 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal; 5800 return 0; 5801} 5802 5803static void mvpp2_ethtool_get_drvinfo(struct net_device *dev, 5804 struct ethtool_drvinfo *drvinfo) 5805{ 5806 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME, 5807 sizeof(drvinfo->driver)); 5808 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION, 5809 sizeof(drvinfo->version)); 5810 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 5811 sizeof(drvinfo->bus_info)); 5812} 5813 5814static void mvpp2_ethtool_get_ringparam(struct net_device *dev, 5815 struct ethtool_ringparam *ring) 5816{ 5817 struct mvpp2_port *port = netdev_priv(dev); 5818 5819 ring->rx_max_pending = MVPP2_MAX_RXD; 5820 ring->tx_max_pending = MVPP2_MAX_TXD; 5821 ring->rx_pending = port->rx_ring_size; 5822 ring->tx_pending = port->tx_ring_size; 5823} 5824 5825static int mvpp2_ethtool_set_ringparam(struct net_device *dev, 5826 struct ethtool_ringparam *ring) 5827{ 5828 struct mvpp2_port *port = netdev_priv(dev); 5829 u16 prev_rx_ring_size = port->rx_ring_size; 5830 u16 prev_tx_ring_size = port->tx_ring_size; 5831 int err; 5832 5833 err = mvpp2_check_ringparam_valid(dev, ring); 5834 if (err) 5835 return err; 5836 5837 if (!netif_running(dev)) { 5838 port->rx_ring_size = ring->rx_pending; 5839 port->tx_ring_size = ring->tx_pending; 5840 return 0; 5841 } 5842 5843 /* The interface is running, so we have to force a 5844 * reallocation of the queues 5845 */ 5846 mvpp2_stop_dev(port); 5847 mvpp2_cleanup_rxqs(port); 5848 mvpp2_cleanup_txqs(port); 5849 5850 port->rx_ring_size = ring->rx_pending; 5851 port->tx_ring_size = ring->tx_pending; 5852 5853 err = mvpp2_setup_rxqs(port); 5854 if (err) { 5855 /* Reallocate Rx queues with the original ring size */ 5856 port->rx_ring_size = prev_rx_ring_size; 5857 ring->rx_pending = prev_rx_ring_size; 5858 err = mvpp2_setup_rxqs(port); 5859 if (err) 5860 goto err_out; 5861 } 5862 err = mvpp2_setup_txqs(port); 5863 if (err) { 5864 /* Reallocate Tx queues with the original ring size */ 5865 port->tx_ring_size = prev_tx_ring_size; 5866 ring->tx_pending = prev_tx_ring_size; 5867 err = mvpp2_setup_txqs(port); 5868 if (err) 5869 goto err_clean_rxqs; 5870 } 5871 5872 mvpp2_start_dev(port); 5873 mvpp2_egress_enable(port); 5874 mvpp2_ingress_enable(port); 5875 5876 return 0; 5877 5878err_clean_rxqs: 5879 mvpp2_cleanup_rxqs(port); 5880err_out: 5881 netdev_err(dev, "fail to change ring parameters"); 5882 return err; 5883} 5884 5885/* Device ops */ 5886 5887static const struct net_device_ops mvpp2_netdev_ops = { 5888 .ndo_open = mvpp2_open, 5889 .ndo_stop = mvpp2_stop, 5890 .ndo_start_xmit = mvpp2_tx, 5891 .ndo_set_rx_mode = mvpp2_set_rx_mode, 5892 .ndo_set_mac_address = mvpp2_set_mac_address, 5893 .ndo_change_mtu = mvpp2_change_mtu, 5894 .ndo_get_stats64 = mvpp2_get_stats64, 5895 .ndo_do_ioctl = mvpp2_ioctl, 5896}; 5897 5898static const struct ethtool_ops mvpp2_eth_tool_ops = { 5899 .get_link = ethtool_op_get_link, 5900 .get_settings = mvpp2_ethtool_get_settings, 5901 .set_settings = mvpp2_ethtool_set_settings, 5902 .set_coalesce = mvpp2_ethtool_set_coalesce, 5903 .get_coalesce = mvpp2_ethtool_get_coalesce, 5904 .get_drvinfo = mvpp2_ethtool_get_drvinfo, 5905 .get_ringparam = mvpp2_ethtool_get_ringparam, 5906 .set_ringparam = mvpp2_ethtool_set_ringparam, 5907}; 5908 5909/* Driver initialization */ 5910 5911static void mvpp2_port_power_up(struct mvpp2_port *port) 5912{ 5913 mvpp2_port_mii_set(port); 5914 mvpp2_port_periodic_xon_disable(port); 5915 mvpp2_port_fc_adv_enable(port); 5916 mvpp2_port_reset(port); 5917} 5918 5919/* Initialize port HW */ 5920static int mvpp2_port_init(struct mvpp2_port *port) 5921{ 5922 struct device *dev = port->dev->dev.parent; 5923 struct mvpp2 *priv = port->priv; 5924 struct mvpp2_txq_pcpu *txq_pcpu; 5925 int queue, cpu, err; 5926 5927 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM) 5928 return -EINVAL; 5929 5930 /* Disable port */ 5931 mvpp2_egress_disable(port); 5932 mvpp2_port_disable(port); 5933 5934 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs), 5935 GFP_KERNEL); 5936 if (!port->txqs) 5937 return -ENOMEM; 5938 5939 /* Associate physical Tx queues to this port and initialize. 5940 * The mapping is predefined. 5941 */ 5942 for (queue = 0; queue < txq_number; queue++) { 5943 int queue_phy_id = mvpp2_txq_phys(port->id, queue); 5944 struct mvpp2_tx_queue *txq; 5945 5946 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL); 5947 if (!txq) 5948 return -ENOMEM; 5949 5950 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu); 5951 if (!txq->pcpu) { 5952 err = -ENOMEM; 5953 goto err_free_percpu; 5954 } 5955 5956 txq->id = queue_phy_id; 5957 txq->log_id = queue; 5958 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH; 5959 for_each_present_cpu(cpu) { 5960 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 5961 txq_pcpu->cpu = cpu; 5962 } 5963 5964 port->txqs[queue] = txq; 5965 } 5966 5967 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs), 5968 GFP_KERNEL); 5969 if (!port->rxqs) { 5970 err = -ENOMEM; 5971 goto err_free_percpu; 5972 } 5973 5974 /* Allocate and initialize Rx queue for this port */ 5975 for (queue = 0; queue < rxq_number; queue++) { 5976 struct mvpp2_rx_queue *rxq; 5977 5978 /* Map physical Rx queue to port's logical Rx queue */ 5979 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL); 5980 if (!rxq) 5981 goto err_free_percpu; 5982 /* Map this Rx queue to a physical queue */ 5983 rxq->id = port->first_rxq + queue; 5984 rxq->port = port->id; 5985 rxq->logic_rxq = queue; 5986 5987 port->rxqs[queue] = rxq; 5988 } 5989 5990 /* Configure Rx queue group interrupt for this port */ 5991 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number); 5992 5993 /* Create Rx descriptor rings */ 5994 for (queue = 0; queue < rxq_number; queue++) { 5995 struct mvpp2_rx_queue *rxq = port->rxqs[queue]; 5996 5997 rxq->size = port->rx_ring_size; 5998 rxq->pkts_coal = MVPP2_RX_COAL_PKTS; 5999 rxq->time_coal = MVPP2_RX_COAL_USEC; 6000 } 6001 6002 mvpp2_ingress_disable(port); 6003 6004 /* Port default configuration */ 6005 mvpp2_defaults_set(port); 6006 6007 /* Port's classifier configuration */ 6008 mvpp2_cls_oversize_rxq_set(port); 6009 mvpp2_cls_port_config(port); 6010 6011 /* Provide an initial Rx packet size */ 6012 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu); 6013 6014 /* Initialize pools for swf */ 6015 err = mvpp2_swf_bm_pool_init(port); 6016 if (err) 6017 goto err_free_percpu; 6018 6019 return 0; 6020 6021err_free_percpu: 6022 for (queue = 0; queue < txq_number; queue++) { 6023 if (!port->txqs[queue]) 6024 continue; 6025 free_percpu(port->txqs[queue]->pcpu); 6026 } 6027 return err; 6028} 6029 6030/* Ports initialization */ 6031static int mvpp2_port_probe(struct platform_device *pdev, 6032 struct device_node *port_node, 6033 struct mvpp2 *priv, 6034 int *next_first_rxq) 6035{ 6036 struct device_node *phy_node; 6037 struct mvpp2_port *port; 6038 struct net_device *dev; 6039 struct resource *res; 6040 const char *dt_mac_addr; 6041 const char *mac_from; 6042 char hw_mac_addr[ETH_ALEN]; 6043 u32 id; 6044 int features; 6045 int phy_mode; 6046 int priv_common_regs_num = 2; 6047 int err, i; 6048 6049 dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number, 6050 rxq_number); 6051 if (!dev) 6052 return -ENOMEM; 6053 6054 phy_node = of_parse_phandle(port_node, "phy", 0); 6055 if (!phy_node) { 6056 dev_err(&pdev->dev, "missing phy\n"); 6057 err = -ENODEV; 6058 goto err_free_netdev; 6059 } 6060 6061 phy_mode = of_get_phy_mode(port_node); 6062 if (phy_mode < 0) { 6063 dev_err(&pdev->dev, "incorrect phy mode\n"); 6064 err = phy_mode; 6065 goto err_free_netdev; 6066 } 6067 6068 if (of_property_read_u32(port_node, "port-id", &id)) { 6069 err = -EINVAL; 6070 dev_err(&pdev->dev, "missing port-id value\n"); 6071 goto err_free_netdev; 6072 } 6073 6074 dev->tx_queue_len = MVPP2_MAX_TXD; 6075 dev->watchdog_timeo = 5 * HZ; 6076 dev->netdev_ops = &mvpp2_netdev_ops; 6077 dev->ethtool_ops = &mvpp2_eth_tool_ops; 6078 6079 port = netdev_priv(dev); 6080 6081 port->irq = irq_of_parse_and_map(port_node, 0); 6082 if (port->irq <= 0) { 6083 err = -EINVAL; 6084 goto err_free_netdev; 6085 } 6086 6087 if (of_property_read_bool(port_node, "marvell,loopback")) 6088 port->flags |= MVPP2_F_LOOPBACK; 6089 6090 port->priv = priv; 6091 port->id = id; 6092 port->first_rxq = *next_first_rxq; 6093 port->phy_node = phy_node; 6094 port->phy_interface = phy_mode; 6095 6096 res = platform_get_resource(pdev, IORESOURCE_MEM, 6097 priv_common_regs_num + id); 6098 port->base = devm_ioremap_resource(&pdev->dev, res); 6099 if (IS_ERR(port->base)) { 6100 err = PTR_ERR(port->base); 6101 goto err_free_irq; 6102 } 6103 6104 /* Alloc per-cpu stats */ 6105 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats); 6106 if (!port->stats) { 6107 err = -ENOMEM; 6108 goto err_free_irq; 6109 } 6110 6111 dt_mac_addr = of_get_mac_address(port_node); 6112 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) { 6113 mac_from = "device tree"; 6114 ether_addr_copy(dev->dev_addr, dt_mac_addr); 6115 } else { 6116 mvpp2_get_mac_address(port, hw_mac_addr); 6117 if (is_valid_ether_addr(hw_mac_addr)) { 6118 mac_from = "hardware"; 6119 ether_addr_copy(dev->dev_addr, hw_mac_addr); 6120 } else { 6121 mac_from = "random"; 6122 eth_hw_addr_random(dev); 6123 } 6124 } 6125 6126 port->tx_ring_size = MVPP2_MAX_TXD; 6127 port->rx_ring_size = MVPP2_MAX_RXD; 6128 port->dev = dev; 6129 SET_NETDEV_DEV(dev, &pdev->dev); 6130 6131 err = mvpp2_port_init(port); 6132 if (err < 0) { 6133 dev_err(&pdev->dev, "failed to init port %d\n", id); 6134 goto err_free_stats; 6135 } 6136 mvpp2_port_power_up(port); 6137 6138 netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT); 6139 features = NETIF_F_SG | NETIF_F_IP_CSUM; 6140 dev->features = features | NETIF_F_RXCSUM; 6141 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO; 6142 dev->vlan_features |= features; 6143 6144 err = register_netdev(dev); 6145 if (err < 0) { 6146 dev_err(&pdev->dev, "failed to register netdev\n"); 6147 goto err_free_txq_pcpu; 6148 } 6149 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr); 6150 6151 /* Increment the first Rx queue number to be used by the next port */ 6152 *next_first_rxq += rxq_number; 6153 priv->port_list[id] = port; 6154 return 0; 6155 6156err_free_txq_pcpu: 6157 for (i = 0; i < txq_number; i++) 6158 free_percpu(port->txqs[i]->pcpu); 6159err_free_stats: 6160 free_percpu(port->stats); 6161err_free_irq: 6162 irq_dispose_mapping(port->irq); 6163err_free_netdev: 6164 free_netdev(dev); 6165 return err; 6166} 6167 6168/* Ports removal routine */ 6169static void mvpp2_port_remove(struct mvpp2_port *port) 6170{ 6171 int i; 6172 6173 unregister_netdev(port->dev); 6174 free_percpu(port->stats); 6175 for (i = 0; i < txq_number; i++) 6176 free_percpu(port->txqs[i]->pcpu); 6177 irq_dispose_mapping(port->irq); 6178 free_netdev(port->dev); 6179} 6180 6181/* Initialize decoding windows */ 6182static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram, 6183 struct mvpp2 *priv) 6184{ 6185 u32 win_enable; 6186 int i; 6187 6188 for (i = 0; i < 6; i++) { 6189 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0); 6190 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0); 6191 6192 if (i < 4) 6193 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0); 6194 } 6195 6196 win_enable = 0; 6197 6198 for (i = 0; i < dram->num_cs; i++) { 6199 const struct mbus_dram_window *cs = dram->cs + i; 6200 6201 mvpp2_write(priv, MVPP2_WIN_BASE(i), 6202 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | 6203 dram->mbus_dram_target_id); 6204 6205 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 6206 (cs->size - 1) & 0xffff0000); 6207 6208 win_enable |= (1 << i); 6209 } 6210 6211 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable); 6212} 6213 6214/* Initialize Rx FIFO's */ 6215static void mvpp2_rx_fifo_init(struct mvpp2 *priv) 6216{ 6217 int port; 6218 6219 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 6220 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), 6221 MVPP2_RX_FIFO_PORT_DATA_SIZE); 6222 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 6223 MVPP2_RX_FIFO_PORT_ATTR_SIZE); 6224 } 6225 6226 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, 6227 MVPP2_RX_FIFO_PORT_MIN_PKT); 6228 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); 6229} 6230 6231/* Initialize network controller common part HW */ 6232static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv) 6233{ 6234 const struct mbus_dram_target_info *dram_target_info; 6235 int err, i; 6236 u32 val; 6237 6238 /* Checks for hardware constraints */ 6239 if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) || 6240 (txq_number > MVPP2_MAX_TXQ)) { 6241 dev_err(&pdev->dev, "invalid queue size parameter\n"); 6242 return -EINVAL; 6243 } 6244 6245 /* MBUS windows configuration */ 6246 dram_target_info = mv_mbus_dram_info(); 6247 if (dram_target_info) 6248 mvpp2_conf_mbus_windows(dram_target_info, priv); 6249 6250 /* Disable HW PHY polling */ 6251 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 6252 val |= MVPP2_PHY_AN_STOP_SMI0_MASK; 6253 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 6254 6255 /* Allocate and initialize aggregated TXQs */ 6256 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(), 6257 sizeof(struct mvpp2_tx_queue), 6258 GFP_KERNEL); 6259 if (!priv->aggr_txqs) 6260 return -ENOMEM; 6261 6262 for_each_present_cpu(i) { 6263 priv->aggr_txqs[i].id = i; 6264 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE; 6265 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], 6266 MVPP2_AGGR_TXQ_SIZE, i, priv); 6267 if (err < 0) 6268 return err; 6269 } 6270 6271 /* Rx Fifo Init */ 6272 mvpp2_rx_fifo_init(priv); 6273 6274 /* Reset Rx queue group interrupt configuration */ 6275 for (i = 0; i < MVPP2_MAX_PORTS; i++) 6276 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number); 6277 6278 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT, 6279 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG); 6280 6281 /* Allow cache snoop when transmiting packets */ 6282 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1); 6283 6284 /* Buffer Manager initialization */ 6285 err = mvpp2_bm_init(pdev, priv); 6286 if (err < 0) 6287 return err; 6288 6289 /* Parser default initialization */ 6290 err = mvpp2_prs_default_init(pdev, priv); 6291 if (err < 0) 6292 return err; 6293 6294 /* Classifier default initialization */ 6295 mvpp2_cls_init(priv); 6296 6297 return 0; 6298} 6299 6300static int mvpp2_probe(struct platform_device *pdev) 6301{ 6302 struct device_node *dn = pdev->dev.of_node; 6303 struct device_node *port_node; 6304 struct mvpp2 *priv; 6305 struct resource *res; 6306 int port_count, first_rxq; 6307 int err; 6308 6309 priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL); 6310 if (!priv) 6311 return -ENOMEM; 6312 6313 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 6314 priv->base = devm_ioremap_resource(&pdev->dev, res); 6315 if (IS_ERR(priv->base)) 6316 return PTR_ERR(priv->base); 6317 6318 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 6319 priv->lms_base = devm_ioremap_resource(&pdev->dev, res); 6320 if (IS_ERR(priv->lms_base)) 6321 return PTR_ERR(priv->lms_base); 6322 6323 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk"); 6324 if (IS_ERR(priv->pp_clk)) 6325 return PTR_ERR(priv->pp_clk); 6326 err = clk_prepare_enable(priv->pp_clk); 6327 if (err < 0) 6328 return err; 6329 6330 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk"); 6331 if (IS_ERR(priv->gop_clk)) { 6332 err = PTR_ERR(priv->gop_clk); 6333 goto err_pp_clk; 6334 } 6335 err = clk_prepare_enable(priv->gop_clk); 6336 if (err < 0) 6337 goto err_pp_clk; 6338 6339 /* Get system's tclk rate */ 6340 priv->tclk = clk_get_rate(priv->pp_clk); 6341 6342 /* Initialize network controller */ 6343 err = mvpp2_init(pdev, priv); 6344 if (err < 0) { 6345 dev_err(&pdev->dev, "failed to initialize controller\n"); 6346 goto err_gop_clk; 6347 } 6348 6349 port_count = of_get_available_child_count(dn); 6350 if (port_count == 0) { 6351 dev_err(&pdev->dev, "no ports enabled\n"); 6352 err = -ENODEV; 6353 goto err_gop_clk; 6354 } 6355 6356 priv->port_list = devm_kcalloc(&pdev->dev, port_count, 6357 sizeof(struct mvpp2_port *), 6358 GFP_KERNEL); 6359 if (!priv->port_list) { 6360 err = -ENOMEM; 6361 goto err_gop_clk; 6362 } 6363 6364 /* Initialize ports */ 6365 first_rxq = 0; 6366 for_each_available_child_of_node(dn, port_node) { 6367 err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq); 6368 if (err < 0) 6369 goto err_gop_clk; 6370 } 6371 6372 platform_set_drvdata(pdev, priv); 6373 return 0; 6374 6375err_gop_clk: 6376 clk_disable_unprepare(priv->gop_clk); 6377err_pp_clk: 6378 clk_disable_unprepare(priv->pp_clk); 6379 return err; 6380} 6381 6382static int mvpp2_remove(struct platform_device *pdev) 6383{ 6384 struct mvpp2 *priv = platform_get_drvdata(pdev); 6385 struct device_node *dn = pdev->dev.of_node; 6386 struct device_node *port_node; 6387 int i = 0; 6388 6389 for_each_available_child_of_node(dn, port_node) { 6390 if (priv->port_list[i]) 6391 mvpp2_port_remove(priv->port_list[i]); 6392 i++; 6393 } 6394 6395 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 6396 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i]; 6397 6398 mvpp2_bm_pool_destroy(pdev, priv, bm_pool); 6399 } 6400 6401 for_each_present_cpu(i) { 6402 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i]; 6403 6404 dma_free_coherent(&pdev->dev, 6405 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE, 6406 aggr_txq->descs, 6407 aggr_txq->descs_phys); 6408 } 6409 6410 clk_disable_unprepare(priv->pp_clk); 6411 clk_disable_unprepare(priv->gop_clk); 6412 6413 return 0; 6414} 6415 6416static const struct of_device_id mvpp2_match[] = { 6417 { .compatible = "marvell,armada-375-pp2" }, 6418 { } 6419}; 6420MODULE_DEVICE_TABLE(of, mvpp2_match); 6421 6422static struct platform_driver mvpp2_driver = { 6423 .probe = mvpp2_probe, 6424 .remove = mvpp2_remove, 6425 .driver = { 6426 .name = MVPP2_DRIVER_NAME, 6427 .of_match_table = mvpp2_match, 6428 }, 6429}; 6430 6431module_platform_driver(mvpp2_driver); 6432 6433MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com"); 6434MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>"); 6435MODULE_LICENSE("GPL v2"); 6436