1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/kernel.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/platform_device.h>
18#include <linux/skbuff.h>
19#include <linux/inetdevice.h>
20#include <linux/mbus.h>
21#include <linux/module.h>
22#include <linux/interrupt.h>
23#include <linux/if_vlan.h>
24#include <net/ip.h>
25#include <net/ipv6.h>
26#include <linux/io.h>
27#include <net/tso.h>
28#include <linux/of.h>
29#include <linux/of_irq.h>
30#include <linux/of_mdio.h>
31#include <linux/of_net.h>
32#include <linux/of_address.h>
33#include <linux/phy.h>
34#include <linux/clk.h>
35
36/* Registers */
37#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
38#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
39#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
40#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
41#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
42#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
43#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
44#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
45#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
46#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
47#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
48#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
49#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
50#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
51#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
52#define MVNETA_PORT_RX_RESET                    0x1cc0
53#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
54#define MVNETA_PHY_ADDR                         0x2000
55#define      MVNETA_PHY_ADDR_MASK               0x1f
56#define MVNETA_MBUS_RETRY                       0x2010
57#define MVNETA_UNIT_INTR_CAUSE                  0x2080
58#define MVNETA_UNIT_CONTROL                     0x20B0
59#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
60#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
61#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
62#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
63#define MVNETA_BASE_ADDR_ENABLE                 0x2290
64#define MVNETA_PORT_CONFIG                      0x2400
65#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
66#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
67#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
68#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
69#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
70#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
71#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
72#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
73#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
74						 MVNETA_DEF_RXQ_ARP(q)	 | \
75						 MVNETA_DEF_RXQ_TCP(q)	 | \
76						 MVNETA_DEF_RXQ_UDP(q)	 | \
77						 MVNETA_DEF_RXQ_BPDU(q)	 | \
78						 MVNETA_TX_UNSET_ERR_SUM | \
79						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
80#define MVNETA_PORT_CONFIG_EXTEND                0x2404
81#define MVNETA_MAC_ADDR_LOW                      0x2414
82#define MVNETA_MAC_ADDR_HIGH                     0x2418
83#define MVNETA_SDMA_CONFIG                       0x241c
84#define      MVNETA_SDMA_BRST_SIZE_16            4
85#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
86#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
87#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
88#define      MVNETA_DESC_SWAP                    BIT(6)
89#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
90#define MVNETA_PORT_STATUS                       0x2444
91#define      MVNETA_TX_IN_PRGRS                  BIT(1)
92#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
93#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
94#define MVNETA_SERDES_CFG			 0x24A0
95#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
96#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
97#define MVNETA_TYPE_PRIO                         0x24bc
98#define      MVNETA_FORCE_UNI                    BIT(21)
99#define MVNETA_TXQ_CMD_1                         0x24e4
100#define MVNETA_TXQ_CMD                           0x2448
101#define      MVNETA_TXQ_DISABLE_SHIFT            8
102#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
103#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
104#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
105#define MVNETA_ACC_MODE                          0x2500
106#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
107#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
108#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
109#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
110
111/* Exception Interrupt Port/Queue Cause register */
112
113#define MVNETA_INTR_NEW_CAUSE                    0x25a0
114#define MVNETA_INTR_NEW_MASK                     0x25a4
115
116/* bits  0..7  = TXQ SENT, one bit per queue.
117 * bits  8..15 = RXQ OCCUP, one bit per queue.
118 * bits 16..23 = RXQ FREE, one bit per queue.
119 * bit  29 = OLD_REG_SUM, see old reg ?
120 * bit  30 = TX_ERR_SUM, one bit for 4 ports
121 * bit  31 = MISC_SUM,   one bit for 4 ports
122 */
123#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
124#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
125#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
126#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
127#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
128
129#define MVNETA_INTR_OLD_CAUSE                    0x25a8
130#define MVNETA_INTR_OLD_MASK                     0x25ac
131
132/* Data Path Port/Queue Cause Register */
133#define MVNETA_INTR_MISC_CAUSE                   0x25b0
134#define MVNETA_INTR_MISC_MASK                    0x25b4
135
136#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
137#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
138#define      MVNETA_CAUSE_PTP                    BIT(4)
139
140#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
141#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
142#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
143#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
144#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
145#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
146#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
147#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
148
149#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
150#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
151#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
152
153#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
154#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
155#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
156
157#define MVNETA_INTR_ENABLE                       0x25b8
158#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
159#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF
160
161#define MVNETA_RXQ_CMD                           0x2680
162#define      MVNETA_RXQ_DISABLE_SHIFT            8
163#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
164#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
165#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
166#define MVNETA_GMAC_CTRL_0                       0x2c00
167#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
168#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
169#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
170#define MVNETA_GMAC_CTRL_2                       0x2c08
171#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
172#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
173#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
174#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
175#define MVNETA_GMAC_STATUS                       0x2c10
176#define      MVNETA_GMAC_LINK_UP                 BIT(0)
177#define      MVNETA_GMAC_SPEED_1000              BIT(1)
178#define      MVNETA_GMAC_SPEED_100               BIT(2)
179#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
180#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
181#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
182#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
183#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
184#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
185#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
186#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
187#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
188#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
189#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
190#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
191#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
192#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
193#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
194#define MVNETA_MIB_COUNTERS_BASE                 0x3080
195#define      MVNETA_MIB_LATE_COLLISION           0x7c
196#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
197#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
198#define MVNETA_DA_FILT_UCAST_BASE                0x3600
199#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
200#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
201#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
202#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
203#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
204#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
205#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
206#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
207#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
208#define MVNETA_PORT_TX_RESET                     0x3cf0
209#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
210#define MVNETA_TX_MTU                            0x3e0c
211#define MVNETA_TX_TOKEN_SIZE                     0x3e14
212#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
213#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
214#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
215
216#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
217
218/* Descriptor ring Macros */
219#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
220	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
221
222/* Various constants */
223
224/* Coalescing */
225#define MVNETA_TXDONE_COAL_PKTS		1
226#define MVNETA_RX_COAL_PKTS		32
227#define MVNETA_RX_COAL_USEC		100
228
229/* The two bytes Marvell header. Either contains a special value used
230 * by Marvell switches when a specific hardware mode is enabled (not
231 * supported by this driver) or is filled automatically by zeroes on
232 * the RX side. Those two bytes being at the front of the Ethernet
233 * header, they allow to have the IP header aligned on a 4 bytes
234 * boundary automatically: the hardware skips those two bytes on its
235 * own.
236 */
237#define MVNETA_MH_SIZE			2
238
239#define MVNETA_VLAN_TAG_LEN             4
240
241#define MVNETA_CPU_D_CACHE_LINE_SIZE    32
242#define MVNETA_TX_CSUM_MAX_SIZE		9800
243#define MVNETA_ACC_MODE_EXT		1
244
245/* Timeout constants */
246#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
247#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
248#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
249
250#define MVNETA_TX_MTU_MAX		0x3ffff
251
252/* TSO header size */
253#define TSO_HEADER_SIZE 128
254
255/* Max number of Rx descriptors */
256#define MVNETA_MAX_RXD 128
257
258/* Max number of Tx descriptors */
259#define MVNETA_MAX_TXD 532
260
261/* Max number of allowed TCP segments for software TSO */
262#define MVNETA_MAX_TSO_SEGS 100
263
264#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
265
266/* descriptor aligned size */
267#define MVNETA_DESC_ALIGNED_SIZE	32
268
269#define MVNETA_RX_PKT_SIZE(mtu) \
270	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
271	      ETH_HLEN + ETH_FCS_LEN,			     \
272	      MVNETA_CPU_D_CACHE_LINE_SIZE)
273
274#define IS_TSO_HEADER(txq, addr) \
275	((addr >= txq->tso_hdrs_phys) && \
276	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
277
278#define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
279
280struct mvneta_pcpu_stats {
281	struct	u64_stats_sync syncp;
282	u64	rx_packets;
283	u64	rx_bytes;
284	u64	tx_packets;
285	u64	tx_bytes;
286};
287
288struct mvneta_port {
289	int pkt_size;
290	unsigned int frag_size;
291	void __iomem *base;
292	struct mvneta_rx_queue *rxqs;
293	struct mvneta_tx_queue *txqs;
294	struct net_device *dev;
295
296	u32 cause_rx_tx;
297	struct napi_struct napi;
298
299	/* Core clock */
300	struct clk *clk;
301	u8 mcast_count[256];
302	u16 tx_ring_size;
303	u16 rx_ring_size;
304	struct mvneta_pcpu_stats *stats;
305
306	struct mii_bus *mii_bus;
307	struct phy_device *phy_dev;
308	phy_interface_t phy_interface;
309	struct device_node *phy_node;
310	unsigned int link;
311	unsigned int duplex;
312	unsigned int speed;
313	unsigned int tx_csum_limit;
314	int use_inband_status:1;
315};
316
317/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
318 * layout of the transmit and reception DMA descriptors, and their
319 * layout is therefore defined by the hardware design
320 */
321
322#define MVNETA_TX_L3_OFF_SHIFT	0
323#define MVNETA_TX_IP_HLEN_SHIFT	8
324#define MVNETA_TX_L4_UDP	BIT(16)
325#define MVNETA_TX_L3_IP6	BIT(17)
326#define MVNETA_TXD_IP_CSUM	BIT(18)
327#define MVNETA_TXD_Z_PAD	BIT(19)
328#define MVNETA_TXD_L_DESC	BIT(20)
329#define MVNETA_TXD_F_DESC	BIT(21)
330#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
331				 MVNETA_TXD_L_DESC | \
332				 MVNETA_TXD_F_DESC)
333#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
334#define MVNETA_TX_L4_CSUM_NOT	BIT(31)
335
336#define MVNETA_RXD_ERR_CRC		0x0
337#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
338#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
339#define MVNETA_RXD_ERR_LEN		BIT(18)
340#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
341#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
342#define MVNETA_RXD_L3_IP4		BIT(25)
343#define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
344#define MVNETA_RXD_L4_CSUM_OK		BIT(30)
345
346#if defined(__LITTLE_ENDIAN)
347struct mvneta_tx_desc {
348	u32  command;		/* Options used by HW for packet transmitting.*/
349	u16  reserverd1;	/* csum_l4 (for future use)		*/
350	u16  data_size;		/* Data size of transmitted packet in bytes */
351	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
352	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
353	u32  reserved3[4];	/* Reserved - (for future use)		*/
354};
355
356struct mvneta_rx_desc {
357	u32  status;		/* Info about received packet		*/
358	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
359	u16  data_size;		/* Size of received packet in bytes	*/
360
361	u32  buf_phys_addr;	/* Physical address of the buffer	*/
362	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
363
364	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
365	u16  reserved3;		/* prefetch_cmd, for future use		*/
366	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
367
368	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
369	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
370};
371#else
372struct mvneta_tx_desc {
373	u16  data_size;		/* Data size of transmitted packet in bytes */
374	u16  reserverd1;	/* csum_l4 (for future use)		*/
375	u32  command;		/* Options used by HW for packet transmitting.*/
376	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
377	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
378	u32  reserved3[4];	/* Reserved - (for future use)		*/
379};
380
381struct mvneta_rx_desc {
382	u16  data_size;		/* Size of received packet in bytes	*/
383	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
384	u32  status;		/* Info about received packet		*/
385
386	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
387	u32  buf_phys_addr;	/* Physical address of the buffer	*/
388
389	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
390	u16  reserved3;		/* prefetch_cmd, for future use		*/
391	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
392
393	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
394	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
395};
396#endif
397
398struct mvneta_tx_queue {
399	/* Number of this TX queue, in the range 0-7 */
400	u8 id;
401
402	/* Number of TX DMA descriptors in the descriptor ring */
403	int size;
404
405	/* Number of currently used TX DMA descriptor in the
406	 * descriptor ring
407	 */
408	int count;
409	int tx_stop_threshold;
410	int tx_wake_threshold;
411
412	/* Array of transmitted skb */
413	struct sk_buff **tx_skb;
414
415	/* Index of last TX DMA descriptor that was inserted */
416	int txq_put_index;
417
418	/* Index of the TX DMA descriptor to be cleaned up */
419	int txq_get_index;
420
421	u32 done_pkts_coal;
422
423	/* Virtual address of the TX DMA descriptors array */
424	struct mvneta_tx_desc *descs;
425
426	/* DMA address of the TX DMA descriptors array */
427	dma_addr_t descs_phys;
428
429	/* Index of the last TX DMA descriptor */
430	int last_desc;
431
432	/* Index of the next TX DMA descriptor to process */
433	int next_desc_to_proc;
434
435	/* DMA buffers for TSO headers */
436	char *tso_hdrs;
437
438	/* DMA address of TSO headers */
439	dma_addr_t tso_hdrs_phys;
440};
441
442struct mvneta_rx_queue {
443	/* rx queue number, in the range 0-7 */
444	u8 id;
445
446	/* num of rx descriptors in the rx descriptor ring */
447	int size;
448
449	/* counter of times when mvneta_refill() failed */
450	int missed;
451
452	u32 pkts_coal;
453	u32 time_coal;
454
455	/* Virtual address of the RX DMA descriptors array */
456	struct mvneta_rx_desc *descs;
457
458	/* DMA address of the RX DMA descriptors array */
459	dma_addr_t descs_phys;
460
461	/* Index of the last RX DMA descriptor */
462	int last_desc;
463
464	/* Index of the next RX DMA descriptor to process */
465	int next_desc_to_proc;
466};
467
468/* The hardware supports eight (8) rx queues, but we are only allowing
469 * the first one to be used. Therefore, let's just allocate one queue.
470 */
471static int rxq_number = 1;
472static int txq_number = 8;
473
474static int rxq_def;
475
476static int rx_copybreak __read_mostly = 256;
477
478#define MVNETA_DRIVER_NAME "mvneta"
479#define MVNETA_DRIVER_VERSION "1.0"
480
481/* Utility/helper methods */
482
483/* Write helper method */
484static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
485{
486	writel(data, pp->base + offset);
487}
488
489/* Read helper method */
490static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
491{
492	return readl(pp->base + offset);
493}
494
495/* Increment txq get counter */
496static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
497{
498	txq->txq_get_index++;
499	if (txq->txq_get_index == txq->size)
500		txq->txq_get_index = 0;
501}
502
503/* Increment txq put counter */
504static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
505{
506	txq->txq_put_index++;
507	if (txq->txq_put_index == txq->size)
508		txq->txq_put_index = 0;
509}
510
511
512/* Clear all MIB counters */
513static void mvneta_mib_counters_clear(struct mvneta_port *pp)
514{
515	int i;
516	u32 dummy;
517
518	/* Perform dummy reads from MIB counters */
519	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
520		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
521}
522
523/* Get System Network Statistics */
524struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
525					     struct rtnl_link_stats64 *stats)
526{
527	struct mvneta_port *pp = netdev_priv(dev);
528	unsigned int start;
529	int cpu;
530
531	for_each_possible_cpu(cpu) {
532		struct mvneta_pcpu_stats *cpu_stats;
533		u64 rx_packets;
534		u64 rx_bytes;
535		u64 tx_packets;
536		u64 tx_bytes;
537
538		cpu_stats = per_cpu_ptr(pp->stats, cpu);
539		do {
540			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
541			rx_packets = cpu_stats->rx_packets;
542			rx_bytes   = cpu_stats->rx_bytes;
543			tx_packets = cpu_stats->tx_packets;
544			tx_bytes   = cpu_stats->tx_bytes;
545		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
546
547		stats->rx_packets += rx_packets;
548		stats->rx_bytes   += rx_bytes;
549		stats->tx_packets += tx_packets;
550		stats->tx_bytes   += tx_bytes;
551	}
552
553	stats->rx_errors	= dev->stats.rx_errors;
554	stats->rx_dropped	= dev->stats.rx_dropped;
555
556	stats->tx_dropped	= dev->stats.tx_dropped;
557
558	return stats;
559}
560
561/* Rx descriptors helper methods */
562
563/* Checks whether the RX descriptor having this status is both the first
564 * and the last descriptor for the RX packet. Each RX packet is currently
565 * received through a single RX descriptor, so not having each RX
566 * descriptor with its first and last bits set is an error
567 */
568static int mvneta_rxq_desc_is_first_last(u32 status)
569{
570	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
571		MVNETA_RXD_FIRST_LAST_DESC;
572}
573
574/* Add number of descriptors ready to receive new packets */
575static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
576					  struct mvneta_rx_queue *rxq,
577					  int ndescs)
578{
579	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
580	 * be added at once
581	 */
582	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
583		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
584			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
585			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
586		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
587	}
588
589	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
590		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
591}
592
593/* Get number of RX descriptors occupied by received packets */
594static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
595					struct mvneta_rx_queue *rxq)
596{
597	u32 val;
598
599	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
600	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
601}
602
603/* Update num of rx desc called upon return from rx path or
604 * from mvneta_rxq_drop_pkts().
605 */
606static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
607				       struct mvneta_rx_queue *rxq,
608				       int rx_done, int rx_filled)
609{
610	u32 val;
611
612	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
613		val = rx_done |
614		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
615		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
616		return;
617	}
618
619	/* Only 255 descriptors can be added at once */
620	while ((rx_done > 0) || (rx_filled > 0)) {
621		if (rx_done <= 0xff) {
622			val = rx_done;
623			rx_done = 0;
624		} else {
625			val = 0xff;
626			rx_done -= 0xff;
627		}
628		if (rx_filled <= 0xff) {
629			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
630			rx_filled = 0;
631		} else {
632			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
633			rx_filled -= 0xff;
634		}
635		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
636	}
637}
638
639/* Get pointer to next RX descriptor to be processed by SW */
640static struct mvneta_rx_desc *
641mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
642{
643	int rx_desc = rxq->next_desc_to_proc;
644
645	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
646	prefetch(rxq->descs + rxq->next_desc_to_proc);
647	return rxq->descs + rx_desc;
648}
649
650/* Change maximum receive size of the port. */
651static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
652{
653	u32 val;
654
655	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
656	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
657	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
658		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
659	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
660}
661
662
663/* Set rx queue offset */
664static void mvneta_rxq_offset_set(struct mvneta_port *pp,
665				  struct mvneta_rx_queue *rxq,
666				  int offset)
667{
668	u32 val;
669
670	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
671	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
672
673	/* Offset is in */
674	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
675	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
676}
677
678
679/* Tx descriptors helper methods */
680
681/* Update HW with number of TX descriptors to be sent */
682static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
683				     struct mvneta_tx_queue *txq,
684				     int pend_desc)
685{
686	u32 val;
687
688	/* Only 255 descriptors can be added at once ; Assume caller
689	 * process TX desriptors in quanta less than 256
690	 */
691	val = pend_desc;
692	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
693}
694
695/* Get pointer to next TX descriptor to be processed (send) by HW */
696static struct mvneta_tx_desc *
697mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
698{
699	int tx_desc = txq->next_desc_to_proc;
700
701	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
702	return txq->descs + tx_desc;
703}
704
705/* Release the last allocated TX descriptor. Useful to handle DMA
706 * mapping failures in the TX path.
707 */
708static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
709{
710	if (txq->next_desc_to_proc == 0)
711		txq->next_desc_to_proc = txq->last_desc - 1;
712	else
713		txq->next_desc_to_proc--;
714}
715
716/* Set rxq buf size */
717static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
718				    struct mvneta_rx_queue *rxq,
719				    int buf_size)
720{
721	u32 val;
722
723	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
724
725	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
726	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
727
728	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
729}
730
731/* Disable buffer management (BM) */
732static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
733				  struct mvneta_rx_queue *rxq)
734{
735	u32 val;
736
737	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
738	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
739	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
740}
741
742/* Start the Ethernet port RX and TX activity */
743static void mvneta_port_up(struct mvneta_port *pp)
744{
745	int queue;
746	u32 q_map;
747
748	/* Enable all initialized TXs. */
749	mvneta_mib_counters_clear(pp);
750	q_map = 0;
751	for (queue = 0; queue < txq_number; queue++) {
752		struct mvneta_tx_queue *txq = &pp->txqs[queue];
753		if (txq->descs != NULL)
754			q_map |= (1 << queue);
755	}
756	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
757
758	/* Enable all initialized RXQs. */
759	q_map = 0;
760	for (queue = 0; queue < rxq_number; queue++) {
761		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
762		if (rxq->descs != NULL)
763			q_map |= (1 << queue);
764	}
765
766	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
767}
768
769/* Stop the Ethernet port activity */
770static void mvneta_port_down(struct mvneta_port *pp)
771{
772	u32 val;
773	int count;
774
775	/* Stop Rx port activity. Check port Rx activity. */
776	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
777
778	/* Issue stop command for active channels only */
779	if (val != 0)
780		mvreg_write(pp, MVNETA_RXQ_CMD,
781			    val << MVNETA_RXQ_DISABLE_SHIFT);
782
783	/* Wait for all Rx activity to terminate. */
784	count = 0;
785	do {
786		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
787			netdev_warn(pp->dev,
788				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
789				    val);
790			break;
791		}
792		mdelay(1);
793
794		val = mvreg_read(pp, MVNETA_RXQ_CMD);
795	} while (val & 0xff);
796
797	/* Stop Tx port activity. Check port Tx activity. Issue stop
798	 * command for active channels only
799	 */
800	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
801
802	if (val != 0)
803		mvreg_write(pp, MVNETA_TXQ_CMD,
804			    (val << MVNETA_TXQ_DISABLE_SHIFT));
805
806	/* Wait for all Tx activity to terminate. */
807	count = 0;
808	do {
809		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
810			netdev_warn(pp->dev,
811				    "TIMEOUT for TX stopped status=0x%08x\n",
812				    val);
813			break;
814		}
815		mdelay(1);
816
817		/* Check TX Command reg that all Txqs are stopped */
818		val = mvreg_read(pp, MVNETA_TXQ_CMD);
819
820	} while (val & 0xff);
821
822	/* Double check to verify that TX FIFO is empty */
823	count = 0;
824	do {
825		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
826			netdev_warn(pp->dev,
827				    "TX FIFO empty timeout status=0x08%x\n",
828				    val);
829			break;
830		}
831		mdelay(1);
832
833		val = mvreg_read(pp, MVNETA_PORT_STATUS);
834	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
835		 (val & MVNETA_TX_IN_PRGRS));
836
837	udelay(200);
838}
839
840/* Enable the port by setting the port enable bit of the MAC control register */
841static void mvneta_port_enable(struct mvneta_port *pp)
842{
843	u32 val;
844
845	/* Enable port */
846	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
847	val |= MVNETA_GMAC0_PORT_ENABLE;
848	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
849}
850
851/* Disable the port and wait for about 200 usec before retuning */
852static void mvneta_port_disable(struct mvneta_port *pp)
853{
854	u32 val;
855
856	/* Reset the Enable bit in the Serial Control Register */
857	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
858	val &= ~MVNETA_GMAC0_PORT_ENABLE;
859	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
860
861	udelay(200);
862}
863
864/* Multicast tables methods */
865
866/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
867static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
868{
869	int offset;
870	u32 val;
871
872	if (queue == -1) {
873		val = 0;
874	} else {
875		val = 0x1 | (queue << 1);
876		val |= (val << 24) | (val << 16) | (val << 8);
877	}
878
879	for (offset = 0; offset <= 0xc; offset += 4)
880		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
881}
882
883/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
884static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
885{
886	int offset;
887	u32 val;
888
889	if (queue == -1) {
890		val = 0;
891	} else {
892		val = 0x1 | (queue << 1);
893		val |= (val << 24) | (val << 16) | (val << 8);
894	}
895
896	for (offset = 0; offset <= 0xfc; offset += 4)
897		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
898
899}
900
901/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
902static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
903{
904	int offset;
905	u32 val;
906
907	if (queue == -1) {
908		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
909		val = 0;
910	} else {
911		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
912		val = 0x1 | (queue << 1);
913		val |= (val << 24) | (val << 16) | (val << 8);
914	}
915
916	for (offset = 0; offset <= 0xfc; offset += 4)
917		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
918}
919
920/* This method sets defaults to the NETA port:
921 *	Clears interrupt Cause and Mask registers.
922 *	Clears all MAC tables.
923 *	Sets defaults to all registers.
924 *	Resets RX and TX descriptor rings.
925 *	Resets PHY.
926 * This method can be called after mvneta_port_down() to return the port
927 *	settings to defaults.
928 */
929static void mvneta_defaults_set(struct mvneta_port *pp)
930{
931	int cpu;
932	int queue;
933	u32 val;
934
935	/* Clear all Cause registers */
936	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
937	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
938	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
939
940	/* Mask all interrupts */
941	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
942	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
943	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
944	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
945
946	/* Enable MBUS Retry bit16 */
947	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
948
949	/* Set CPU queue access map - all CPUs have access to all RX
950	 * queues and to all TX queues
951	 */
952	for_each_present_cpu(cpu)
953		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
954			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
955			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
956
957	/* Reset RX and TX DMAs */
958	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
959	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
960
961	/* Disable Legacy WRR, Disable EJP, Release from reset */
962	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
963	for (queue = 0; queue < txq_number; queue++) {
964		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
965		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
966	}
967
968	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
969	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
970
971	/* Set Port Acceleration Mode */
972	val = MVNETA_ACC_MODE_EXT;
973	mvreg_write(pp, MVNETA_ACC_MODE, val);
974
975	/* Update val of portCfg register accordingly with all RxQueue types */
976	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
977	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
978
979	val = 0;
980	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
981	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
982
983	/* Build PORT_SDMA_CONFIG_REG */
984	val = 0;
985
986	/* Default burst size */
987	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
988	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
989	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
990
991#if defined(__BIG_ENDIAN)
992	val |= MVNETA_DESC_SWAP;
993#endif
994
995	/* Assign port SDMA configuration */
996	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
997
998	/* Disable PHY polling in hardware, since we're using the
999	 * kernel phylib to do this.
1000	 */
1001	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1002	val &= ~MVNETA_PHY_POLLING_ENABLE;
1003	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1004
1005	if (pp->use_inband_status) {
1006		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1007		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1008			 MVNETA_GMAC_FORCE_LINK_DOWN |
1009			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1010		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1011		       MVNETA_GMAC_AN_SPEED_EN |
1012		       MVNETA_GMAC_AN_DUPLEX_EN;
1013		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1014		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1015		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1016		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1017	} else {
1018		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1019		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1020		       MVNETA_GMAC_AN_SPEED_EN |
1021		       MVNETA_GMAC_AN_DUPLEX_EN);
1022		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1023	}
1024
1025	mvneta_set_ucast_table(pp, -1);
1026	mvneta_set_special_mcast_table(pp, -1);
1027	mvneta_set_other_mcast_table(pp, -1);
1028
1029	/* Set port interrupt enable register - default enable all */
1030	mvreg_write(pp, MVNETA_INTR_ENABLE,
1031		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1032		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1033}
1034
1035/* Set max sizes for tx queues */
1036static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1037
1038{
1039	u32 val, size, mtu;
1040	int queue;
1041
1042	mtu = max_tx_size * 8;
1043	if (mtu > MVNETA_TX_MTU_MAX)
1044		mtu = MVNETA_TX_MTU_MAX;
1045
1046	/* Set MTU */
1047	val = mvreg_read(pp, MVNETA_TX_MTU);
1048	val &= ~MVNETA_TX_MTU_MAX;
1049	val |= mtu;
1050	mvreg_write(pp, MVNETA_TX_MTU, val);
1051
1052	/* TX token size and all TXQs token size must be larger that MTU */
1053	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1054
1055	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1056	if (size < mtu) {
1057		size = mtu;
1058		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1059		val |= size;
1060		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1061	}
1062	for (queue = 0; queue < txq_number; queue++) {
1063		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1064
1065		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1066		if (size < mtu) {
1067			size = mtu;
1068			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1069			val |= size;
1070			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1071		}
1072	}
1073}
1074
1075/* Set unicast address */
1076static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1077				  int queue)
1078{
1079	unsigned int unicast_reg;
1080	unsigned int tbl_offset;
1081	unsigned int reg_offset;
1082
1083	/* Locate the Unicast table entry */
1084	last_nibble = (0xf & last_nibble);
1085
1086	/* offset from unicast tbl base */
1087	tbl_offset = (last_nibble / 4) * 4;
1088
1089	/* offset within the above reg  */
1090	reg_offset = last_nibble % 4;
1091
1092	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1093
1094	if (queue == -1) {
1095		/* Clear accepts frame bit at specified unicast DA tbl entry */
1096		unicast_reg &= ~(0xff << (8 * reg_offset));
1097	} else {
1098		unicast_reg &= ~(0xff << (8 * reg_offset));
1099		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1100	}
1101
1102	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1103}
1104
1105/* Set mac address */
1106static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1107				int queue)
1108{
1109	unsigned int mac_h;
1110	unsigned int mac_l;
1111
1112	if (queue != -1) {
1113		mac_l = (addr[4] << 8) | (addr[5]);
1114		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1115			(addr[2] << 8) | (addr[3] << 0);
1116
1117		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1118		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1119	}
1120
1121	/* Accept frames of this address */
1122	mvneta_set_ucast_addr(pp, addr[5], queue);
1123}
1124
1125/* Set the number of packets that will be received before RX interrupt
1126 * will be generated by HW.
1127 */
1128static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1129				    struct mvneta_rx_queue *rxq, u32 value)
1130{
1131	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1132		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1133	rxq->pkts_coal = value;
1134}
1135
1136/* Set the time delay in usec before RX interrupt will be generated by
1137 * HW.
1138 */
1139static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1140				    struct mvneta_rx_queue *rxq, u32 value)
1141{
1142	u32 val;
1143	unsigned long clk_rate;
1144
1145	clk_rate = clk_get_rate(pp->clk);
1146	val = (clk_rate / 1000000) * value;
1147
1148	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1149	rxq->time_coal = value;
1150}
1151
1152/* Set threshold for TX_DONE pkts coalescing */
1153static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1154					 struct mvneta_tx_queue *txq, u32 value)
1155{
1156	u32 val;
1157
1158	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1159
1160	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1161	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1162
1163	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1164
1165	txq->done_pkts_coal = value;
1166}
1167
1168/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1169static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1170				u32 phys_addr, u32 cookie)
1171{
1172	rx_desc->buf_cookie = cookie;
1173	rx_desc->buf_phys_addr = phys_addr;
1174}
1175
1176/* Decrement sent descriptors counter */
1177static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1178				     struct mvneta_tx_queue *txq,
1179				     int sent_desc)
1180{
1181	u32 val;
1182
1183	/* Only 255 TX descriptors can be updated at once */
1184	while (sent_desc > 0xff) {
1185		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1186		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1187		sent_desc = sent_desc - 0xff;
1188	}
1189
1190	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1191	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1192}
1193
1194/* Get number of TX descriptors already sent by HW */
1195static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1196					struct mvneta_tx_queue *txq)
1197{
1198	u32 val;
1199	int sent_desc;
1200
1201	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1202	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1203		MVNETA_TXQ_SENT_DESC_SHIFT;
1204
1205	return sent_desc;
1206}
1207
1208/* Get number of sent descriptors and decrement counter.
1209 *  The number of sent descriptors is returned.
1210 */
1211static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1212				     struct mvneta_tx_queue *txq)
1213{
1214	int sent_desc;
1215
1216	/* Get number of sent descriptors */
1217	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1218
1219	/* Decrement sent descriptors counter */
1220	if (sent_desc)
1221		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1222
1223	return sent_desc;
1224}
1225
1226/* Set TXQ descriptors fields relevant for CSUM calculation */
1227static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1228				int ip_hdr_len, int l4_proto)
1229{
1230	u32 command;
1231
1232	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1233	 * G_L4_chk, L4_type; required only for checksum
1234	 * calculation
1235	 */
1236	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1237	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1238
1239	if (l3_proto == htons(ETH_P_IP))
1240		command |= MVNETA_TXD_IP_CSUM;
1241	else
1242		command |= MVNETA_TX_L3_IP6;
1243
1244	if (l4_proto == IPPROTO_TCP)
1245		command |=  MVNETA_TX_L4_CSUM_FULL;
1246	else if (l4_proto == IPPROTO_UDP)
1247		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1248	else
1249		command |= MVNETA_TX_L4_CSUM_NOT;
1250
1251	return command;
1252}
1253
1254
1255/* Display more error info */
1256static void mvneta_rx_error(struct mvneta_port *pp,
1257			    struct mvneta_rx_desc *rx_desc)
1258{
1259	u32 status = rx_desc->status;
1260
1261	if (!mvneta_rxq_desc_is_first_last(status)) {
1262		netdev_err(pp->dev,
1263			   "bad rx status %08x (buffer oversize), size=%d\n",
1264			   status, rx_desc->data_size);
1265		return;
1266	}
1267
1268	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1269	case MVNETA_RXD_ERR_CRC:
1270		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1271			   status, rx_desc->data_size);
1272		break;
1273	case MVNETA_RXD_ERR_OVERRUN:
1274		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1275			   status, rx_desc->data_size);
1276		break;
1277	case MVNETA_RXD_ERR_LEN:
1278		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1279			   status, rx_desc->data_size);
1280		break;
1281	case MVNETA_RXD_ERR_RESOURCE:
1282		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1283			   status, rx_desc->data_size);
1284		break;
1285	}
1286}
1287
1288/* Handle RX checksum offload based on the descriptor's status */
1289static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1290			   struct sk_buff *skb)
1291{
1292	if ((status & MVNETA_RXD_L3_IP4) &&
1293	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1294		skb->csum = 0;
1295		skb->ip_summed = CHECKSUM_UNNECESSARY;
1296		return;
1297	}
1298
1299	skb->ip_summed = CHECKSUM_NONE;
1300}
1301
1302/* Return tx queue pointer (find last set bit) according to <cause> returned
1303 * form tx_done reg. <cause> must not be null. The return value is always a
1304 * valid queue for matching the first one found in <cause>.
1305 */
1306static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1307						     u32 cause)
1308{
1309	int queue = fls(cause) - 1;
1310
1311	return &pp->txqs[queue];
1312}
1313
1314/* Free tx queue skbuffs */
1315static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1316				 struct mvneta_tx_queue *txq, int num)
1317{
1318	int i;
1319
1320	for (i = 0; i < num; i++) {
1321		struct mvneta_tx_desc *tx_desc = txq->descs +
1322			txq->txq_get_index;
1323		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1324
1325		mvneta_txq_inc_get(txq);
1326
1327		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1328			dma_unmap_single(pp->dev->dev.parent,
1329					 tx_desc->buf_phys_addr,
1330					 tx_desc->data_size, DMA_TO_DEVICE);
1331		if (!skb)
1332			continue;
1333		dev_kfree_skb_any(skb);
1334	}
1335}
1336
1337/* Handle end of transmission */
1338static void mvneta_txq_done(struct mvneta_port *pp,
1339			   struct mvneta_tx_queue *txq)
1340{
1341	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1342	int tx_done;
1343
1344	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1345	if (!tx_done)
1346		return;
1347
1348	mvneta_txq_bufs_free(pp, txq, tx_done);
1349
1350	txq->count -= tx_done;
1351
1352	if (netif_tx_queue_stopped(nq)) {
1353		if (txq->count <= txq->tx_wake_threshold)
1354			netif_tx_wake_queue(nq);
1355	}
1356}
1357
1358static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1359{
1360	if (likely(pp->frag_size <= PAGE_SIZE))
1361		return netdev_alloc_frag(pp->frag_size);
1362	else
1363		return kmalloc(pp->frag_size, GFP_ATOMIC);
1364}
1365
1366static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1367{
1368	if (likely(pp->frag_size <= PAGE_SIZE))
1369		put_page(virt_to_head_page(data));
1370	else
1371		kfree(data);
1372}
1373
1374/* Refill processing */
1375static int mvneta_rx_refill(struct mvneta_port *pp,
1376			    struct mvneta_rx_desc *rx_desc)
1377
1378{
1379	dma_addr_t phys_addr;
1380	void *data;
1381
1382	data = mvneta_frag_alloc(pp);
1383	if (!data)
1384		return -ENOMEM;
1385
1386	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1387				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1388				   DMA_FROM_DEVICE);
1389	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1390		mvneta_frag_free(pp, data);
1391		return -ENOMEM;
1392	}
1393
1394	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1395	return 0;
1396}
1397
1398/* Handle tx checksum */
1399static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1400{
1401	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1402		int ip_hdr_len = 0;
1403		__be16 l3_proto = vlan_get_protocol(skb);
1404		u8 l4_proto;
1405
1406		if (l3_proto == htons(ETH_P_IP)) {
1407			struct iphdr *ip4h = ip_hdr(skb);
1408
1409			/* Calculate IPv4 checksum and L4 checksum */
1410			ip_hdr_len = ip4h->ihl;
1411			l4_proto = ip4h->protocol;
1412		} else if (l3_proto == htons(ETH_P_IPV6)) {
1413			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1414
1415			/* Read l4_protocol from one of IPv6 extra headers */
1416			if (skb_network_header_len(skb) > 0)
1417				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1418			l4_proto = ip6h->nexthdr;
1419		} else
1420			return MVNETA_TX_L4_CSUM_NOT;
1421
1422		return mvneta_txq_desc_csum(skb_network_offset(skb),
1423					    l3_proto, ip_hdr_len, l4_proto);
1424	}
1425
1426	return MVNETA_TX_L4_CSUM_NOT;
1427}
1428
1429/* Returns rx queue pointer (find last set bit) according to causeRxTx
1430 * value
1431 */
1432static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1433						u32 cause)
1434{
1435	int queue = fls(cause >> 8) - 1;
1436
1437	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1438}
1439
1440/* Drop packets received by the RXQ and free buffers */
1441static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1442				 struct mvneta_rx_queue *rxq)
1443{
1444	int rx_done, i;
1445
1446	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1447	for (i = 0; i < rxq->size; i++) {
1448		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1449		void *data = (void *)rx_desc->buf_cookie;
1450
1451		mvneta_frag_free(pp, data);
1452		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1453				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1454	}
1455
1456	if (rx_done)
1457		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1458}
1459
1460/* Main rx processing */
1461static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1462		     struct mvneta_rx_queue *rxq)
1463{
1464	struct net_device *dev = pp->dev;
1465	int rx_done, rx_filled;
1466	u32 rcvd_pkts = 0;
1467	u32 rcvd_bytes = 0;
1468
1469	/* Get number of received packets */
1470	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1471
1472	if (rx_todo > rx_done)
1473		rx_todo = rx_done;
1474
1475	rx_done = 0;
1476	rx_filled = 0;
1477
1478	/* Fairness NAPI loop */
1479	while (rx_done < rx_todo) {
1480		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1481		struct sk_buff *skb;
1482		unsigned char *data;
1483		u32 rx_status;
1484		int rx_bytes, err;
1485
1486		rx_done++;
1487		rx_filled++;
1488		rx_status = rx_desc->status;
1489		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1490		data = (unsigned char *)rx_desc->buf_cookie;
1491
1492		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1493		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1494		err_drop_frame:
1495			dev->stats.rx_errors++;
1496			mvneta_rx_error(pp, rx_desc);
1497			/* leave the descriptor untouched */
1498			continue;
1499		}
1500
1501		if (rx_bytes <= rx_copybreak) {
1502			/* better copy a small frame and not unmap the DMA region */
1503			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1504			if (unlikely(!skb))
1505				goto err_drop_frame;
1506
1507			dma_sync_single_range_for_cpu(dev->dev.parent,
1508			                              rx_desc->buf_phys_addr,
1509			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1510			                              rx_bytes,
1511			                              DMA_FROM_DEVICE);
1512			memcpy(skb_put(skb, rx_bytes),
1513			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1514			       rx_bytes);
1515
1516			skb->protocol = eth_type_trans(skb, dev);
1517			mvneta_rx_csum(pp, rx_status, skb);
1518			napi_gro_receive(&pp->napi, skb);
1519
1520			rcvd_pkts++;
1521			rcvd_bytes += rx_bytes;
1522
1523			/* leave the descriptor and buffer untouched */
1524			continue;
1525		}
1526
1527		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1528		if (!skb)
1529			goto err_drop_frame;
1530
1531		dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1532				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1533
1534		rcvd_pkts++;
1535		rcvd_bytes += rx_bytes;
1536
1537		/* Linux processing */
1538		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1539		skb_put(skb, rx_bytes);
1540
1541		skb->protocol = eth_type_trans(skb, dev);
1542
1543		mvneta_rx_csum(pp, rx_status, skb);
1544
1545		napi_gro_receive(&pp->napi, skb);
1546
1547		/* Refill processing */
1548		err = mvneta_rx_refill(pp, rx_desc);
1549		if (err) {
1550			netdev_err(dev, "Linux processing - Can't refill\n");
1551			rxq->missed++;
1552			rx_filled--;
1553		}
1554	}
1555
1556	if (rcvd_pkts) {
1557		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1558
1559		u64_stats_update_begin(&stats->syncp);
1560		stats->rx_packets += rcvd_pkts;
1561		stats->rx_bytes   += rcvd_bytes;
1562		u64_stats_update_end(&stats->syncp);
1563	}
1564
1565	/* Update rxq management counters */
1566	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1567
1568	return rx_done;
1569}
1570
1571static inline void
1572mvneta_tso_put_hdr(struct sk_buff *skb,
1573		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1574{
1575	struct mvneta_tx_desc *tx_desc;
1576	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1577
1578	txq->tx_skb[txq->txq_put_index] = NULL;
1579	tx_desc = mvneta_txq_next_desc_get(txq);
1580	tx_desc->data_size = hdr_len;
1581	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1582	tx_desc->command |= MVNETA_TXD_F_DESC;
1583	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1584				 txq->txq_put_index * TSO_HEADER_SIZE;
1585	mvneta_txq_inc_put(txq);
1586}
1587
1588static inline int
1589mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1590		    struct sk_buff *skb, char *data, int size,
1591		    bool last_tcp, bool is_last)
1592{
1593	struct mvneta_tx_desc *tx_desc;
1594
1595	tx_desc = mvneta_txq_next_desc_get(txq);
1596	tx_desc->data_size = size;
1597	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1598						size, DMA_TO_DEVICE);
1599	if (unlikely(dma_mapping_error(dev->dev.parent,
1600		     tx_desc->buf_phys_addr))) {
1601		mvneta_txq_desc_put(txq);
1602		return -ENOMEM;
1603	}
1604
1605	tx_desc->command = 0;
1606	txq->tx_skb[txq->txq_put_index] = NULL;
1607
1608	if (last_tcp) {
1609		/* last descriptor in the TCP packet */
1610		tx_desc->command = MVNETA_TXD_L_DESC;
1611
1612		/* last descriptor in SKB */
1613		if (is_last)
1614			txq->tx_skb[txq->txq_put_index] = skb;
1615	}
1616	mvneta_txq_inc_put(txq);
1617	return 0;
1618}
1619
1620static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1621			 struct mvneta_tx_queue *txq)
1622{
1623	int total_len, data_left;
1624	int desc_count = 0;
1625	struct mvneta_port *pp = netdev_priv(dev);
1626	struct tso_t tso;
1627	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1628	int i;
1629
1630	/* Count needed descriptors */
1631	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1632		return 0;
1633
1634	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1635		pr_info("*** Is this even  possible???!?!?\n");
1636		return 0;
1637	}
1638
1639	/* Initialize the TSO handler, and prepare the first payload */
1640	tso_start(skb, &tso);
1641
1642	total_len = skb->len - hdr_len;
1643	while (total_len > 0) {
1644		char *hdr;
1645
1646		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1647		total_len -= data_left;
1648		desc_count++;
1649
1650		/* prepare packet headers: MAC + IP + TCP */
1651		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1652		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1653
1654		mvneta_tso_put_hdr(skb, pp, txq);
1655
1656		while (data_left > 0) {
1657			int size;
1658			desc_count++;
1659
1660			size = min_t(int, tso.size, data_left);
1661
1662			if (mvneta_tso_put_data(dev, txq, skb,
1663						 tso.data, size,
1664						 size == data_left,
1665						 total_len == 0))
1666				goto err_release;
1667			data_left -= size;
1668
1669			tso_build_data(skb, &tso, size);
1670		}
1671	}
1672
1673	return desc_count;
1674
1675err_release:
1676	/* Release all used data descriptors; header descriptors must not
1677	 * be DMA-unmapped.
1678	 */
1679	for (i = desc_count - 1; i >= 0; i--) {
1680		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1681		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1682			dma_unmap_single(pp->dev->dev.parent,
1683					 tx_desc->buf_phys_addr,
1684					 tx_desc->data_size,
1685					 DMA_TO_DEVICE);
1686		mvneta_txq_desc_put(txq);
1687	}
1688	return 0;
1689}
1690
1691/* Handle tx fragmentation processing */
1692static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1693				  struct mvneta_tx_queue *txq)
1694{
1695	struct mvneta_tx_desc *tx_desc;
1696	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1697
1698	for (i = 0; i < nr_frags; i++) {
1699		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1700		void *addr = page_address(frag->page.p) + frag->page_offset;
1701
1702		tx_desc = mvneta_txq_next_desc_get(txq);
1703		tx_desc->data_size = frag->size;
1704
1705		tx_desc->buf_phys_addr =
1706			dma_map_single(pp->dev->dev.parent, addr,
1707				       tx_desc->data_size, DMA_TO_DEVICE);
1708
1709		if (dma_mapping_error(pp->dev->dev.parent,
1710				      tx_desc->buf_phys_addr)) {
1711			mvneta_txq_desc_put(txq);
1712			goto error;
1713		}
1714
1715		if (i == nr_frags - 1) {
1716			/* Last descriptor */
1717			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1718			txq->tx_skb[txq->txq_put_index] = skb;
1719		} else {
1720			/* Descriptor in the middle: Not First, Not Last */
1721			tx_desc->command = 0;
1722			txq->tx_skb[txq->txq_put_index] = NULL;
1723		}
1724		mvneta_txq_inc_put(txq);
1725	}
1726
1727	return 0;
1728
1729error:
1730	/* Release all descriptors that were used to map fragments of
1731	 * this packet, as well as the corresponding DMA mappings
1732	 */
1733	for (i = i - 1; i >= 0; i--) {
1734		tx_desc = txq->descs + i;
1735		dma_unmap_single(pp->dev->dev.parent,
1736				 tx_desc->buf_phys_addr,
1737				 tx_desc->data_size,
1738				 DMA_TO_DEVICE);
1739		mvneta_txq_desc_put(txq);
1740	}
1741
1742	return -ENOMEM;
1743}
1744
1745/* Main tx processing */
1746static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1747{
1748	struct mvneta_port *pp = netdev_priv(dev);
1749	u16 txq_id = skb_get_queue_mapping(skb);
1750	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1751	struct mvneta_tx_desc *tx_desc;
1752	int len = skb->len;
1753	int frags = 0;
1754	u32 tx_cmd;
1755
1756	if (!netif_running(dev))
1757		goto out;
1758
1759	if (skb_is_gso(skb)) {
1760		frags = mvneta_tx_tso(skb, dev, txq);
1761		goto out;
1762	}
1763
1764	frags = skb_shinfo(skb)->nr_frags + 1;
1765
1766	/* Get a descriptor for the first part of the packet */
1767	tx_desc = mvneta_txq_next_desc_get(txq);
1768
1769	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1770
1771	tx_desc->data_size = skb_headlen(skb);
1772
1773	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1774						tx_desc->data_size,
1775						DMA_TO_DEVICE);
1776	if (unlikely(dma_mapping_error(dev->dev.parent,
1777				       tx_desc->buf_phys_addr))) {
1778		mvneta_txq_desc_put(txq);
1779		frags = 0;
1780		goto out;
1781	}
1782
1783	if (frags == 1) {
1784		/* First and Last descriptor */
1785		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1786		tx_desc->command = tx_cmd;
1787		txq->tx_skb[txq->txq_put_index] = skb;
1788		mvneta_txq_inc_put(txq);
1789	} else {
1790		/* First but not Last */
1791		tx_cmd |= MVNETA_TXD_F_DESC;
1792		txq->tx_skb[txq->txq_put_index] = NULL;
1793		mvneta_txq_inc_put(txq);
1794		tx_desc->command = tx_cmd;
1795		/* Continue with other skb fragments */
1796		if (mvneta_tx_frag_process(pp, skb, txq)) {
1797			dma_unmap_single(dev->dev.parent,
1798					 tx_desc->buf_phys_addr,
1799					 tx_desc->data_size,
1800					 DMA_TO_DEVICE);
1801			mvneta_txq_desc_put(txq);
1802			frags = 0;
1803			goto out;
1804		}
1805	}
1806
1807out:
1808	if (frags > 0) {
1809		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1810		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1811
1812		txq->count += frags;
1813		mvneta_txq_pend_desc_add(pp, txq, frags);
1814
1815		if (txq->count >= txq->tx_stop_threshold)
1816			netif_tx_stop_queue(nq);
1817
1818		u64_stats_update_begin(&stats->syncp);
1819		stats->tx_packets++;
1820		stats->tx_bytes  += len;
1821		u64_stats_update_end(&stats->syncp);
1822	} else {
1823		dev->stats.tx_dropped++;
1824		dev_kfree_skb_any(skb);
1825	}
1826
1827	return NETDEV_TX_OK;
1828}
1829
1830
1831/* Free tx resources, when resetting a port */
1832static void mvneta_txq_done_force(struct mvneta_port *pp,
1833				  struct mvneta_tx_queue *txq)
1834
1835{
1836	int tx_done = txq->count;
1837
1838	mvneta_txq_bufs_free(pp, txq, tx_done);
1839
1840	/* reset txq */
1841	txq->count = 0;
1842	txq->txq_put_index = 0;
1843	txq->txq_get_index = 0;
1844}
1845
1846/* Handle tx done - called in softirq context. The <cause_tx_done> argument
1847 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1848 */
1849static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1850{
1851	struct mvneta_tx_queue *txq;
1852	struct netdev_queue *nq;
1853
1854	while (cause_tx_done) {
1855		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1856
1857		nq = netdev_get_tx_queue(pp->dev, txq->id);
1858		__netif_tx_lock(nq, smp_processor_id());
1859
1860		if (txq->count)
1861			mvneta_txq_done(pp, txq);
1862
1863		__netif_tx_unlock(nq);
1864		cause_tx_done &= ~((1 << txq->id));
1865	}
1866}
1867
1868/* Compute crc8 of the specified address, using a unique algorithm ,
1869 * according to hw spec, different than generic crc8 algorithm
1870 */
1871static int mvneta_addr_crc(unsigned char *addr)
1872{
1873	int crc = 0;
1874	int i;
1875
1876	for (i = 0; i < ETH_ALEN; i++) {
1877		int j;
1878
1879		crc = (crc ^ addr[i]) << 8;
1880		for (j = 7; j >= 0; j--) {
1881			if (crc & (0x100 << j))
1882				crc ^= 0x107 << j;
1883		}
1884	}
1885
1886	return crc;
1887}
1888
1889/* This method controls the net device special MAC multicast support.
1890 * The Special Multicast Table for MAC addresses supports MAC of the form
1891 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1892 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1893 * Table entries in the DA-Filter table. This method set the Special
1894 * Multicast Table appropriate entry.
1895 */
1896static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1897					  unsigned char last_byte,
1898					  int queue)
1899{
1900	unsigned int smc_table_reg;
1901	unsigned int tbl_offset;
1902	unsigned int reg_offset;
1903
1904	/* Register offset from SMC table base    */
1905	tbl_offset = (last_byte / 4);
1906	/* Entry offset within the above reg */
1907	reg_offset = last_byte % 4;
1908
1909	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1910					+ tbl_offset * 4));
1911
1912	if (queue == -1)
1913		smc_table_reg &= ~(0xff << (8 * reg_offset));
1914	else {
1915		smc_table_reg &= ~(0xff << (8 * reg_offset));
1916		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1917	}
1918
1919	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1920		    smc_table_reg);
1921}
1922
1923/* This method controls the network device Other MAC multicast support.
1924 * The Other Multicast Table is used for multicast of another type.
1925 * A CRC-8 is used as an index to the Other Multicast Table entries
1926 * in the DA-Filter table.
1927 * The method gets the CRC-8 value from the calling routine and
1928 * sets the Other Multicast Table appropriate entry according to the
1929 * specified CRC-8 .
1930 */
1931static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1932					unsigned char crc8,
1933					int queue)
1934{
1935	unsigned int omc_table_reg;
1936	unsigned int tbl_offset;
1937	unsigned int reg_offset;
1938
1939	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1940	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1941
1942	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1943
1944	if (queue == -1) {
1945		/* Clear accepts frame bit at specified Other DA table entry */
1946		omc_table_reg &= ~(0xff << (8 * reg_offset));
1947	} else {
1948		omc_table_reg &= ~(0xff << (8 * reg_offset));
1949		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1950	}
1951
1952	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1953}
1954
1955/* The network device supports multicast using two tables:
1956 *    1) Special Multicast Table for MAC addresses of the form
1957 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1958 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1959 *       Table entries in the DA-Filter table.
1960 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1961 *       is used as an index to the Other Multicast Table entries in the
1962 *       DA-Filter table.
1963 */
1964static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1965				 int queue)
1966{
1967	unsigned char crc_result = 0;
1968
1969	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1970		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1971		return 0;
1972	}
1973
1974	crc_result = mvneta_addr_crc(p_addr);
1975	if (queue == -1) {
1976		if (pp->mcast_count[crc_result] == 0) {
1977			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1978				    crc_result);
1979			return -EINVAL;
1980		}
1981
1982		pp->mcast_count[crc_result]--;
1983		if (pp->mcast_count[crc_result] != 0) {
1984			netdev_info(pp->dev,
1985				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1986				    pp->mcast_count[crc_result], crc_result);
1987			return -EINVAL;
1988		}
1989	} else
1990		pp->mcast_count[crc_result]++;
1991
1992	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1993
1994	return 0;
1995}
1996
1997/* Configure Fitering mode of Ethernet port */
1998static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1999					  int is_promisc)
2000{
2001	u32 port_cfg_reg, val;
2002
2003	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2004
2005	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2006
2007	/* Set / Clear UPM bit in port configuration register */
2008	if (is_promisc) {
2009		/* Accept all Unicast addresses */
2010		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2011		val |= MVNETA_FORCE_UNI;
2012		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2013		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2014	} else {
2015		/* Reject all Unicast addresses */
2016		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2017		val &= ~MVNETA_FORCE_UNI;
2018	}
2019
2020	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2021	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2022}
2023
2024/* register unicast and multicast addresses */
2025static void mvneta_set_rx_mode(struct net_device *dev)
2026{
2027	struct mvneta_port *pp = netdev_priv(dev);
2028	struct netdev_hw_addr *ha;
2029
2030	if (dev->flags & IFF_PROMISC) {
2031		/* Accept all: Multicast + Unicast */
2032		mvneta_rx_unicast_promisc_set(pp, 1);
2033		mvneta_set_ucast_table(pp, rxq_def);
2034		mvneta_set_special_mcast_table(pp, rxq_def);
2035		mvneta_set_other_mcast_table(pp, rxq_def);
2036	} else {
2037		/* Accept single Unicast */
2038		mvneta_rx_unicast_promisc_set(pp, 0);
2039		mvneta_set_ucast_table(pp, -1);
2040		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2041
2042		if (dev->flags & IFF_ALLMULTI) {
2043			/* Accept all multicast */
2044			mvneta_set_special_mcast_table(pp, rxq_def);
2045			mvneta_set_other_mcast_table(pp, rxq_def);
2046		} else {
2047			/* Accept only initialized multicast */
2048			mvneta_set_special_mcast_table(pp, -1);
2049			mvneta_set_other_mcast_table(pp, -1);
2050
2051			if (!netdev_mc_empty(dev)) {
2052				netdev_for_each_mc_addr(ha, dev) {
2053					mvneta_mcast_addr_set(pp, ha->addr,
2054							      rxq_def);
2055				}
2056			}
2057		}
2058	}
2059}
2060
2061/* Interrupt handling - the callback for request_irq() */
2062static irqreturn_t mvneta_isr(int irq, void *dev_id)
2063{
2064	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2065
2066	/* Mask all interrupts */
2067	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2068
2069	napi_schedule(&pp->napi);
2070
2071	return IRQ_HANDLED;
2072}
2073
2074static int mvneta_fixed_link_update(struct mvneta_port *pp,
2075				    struct phy_device *phy)
2076{
2077	struct fixed_phy_status status;
2078	struct fixed_phy_status changed = {};
2079	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2080
2081	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2082	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2083		status.speed = SPEED_1000;
2084	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2085		status.speed = SPEED_100;
2086	else
2087		status.speed = SPEED_10;
2088	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2089	changed.link = 1;
2090	changed.speed = 1;
2091	changed.duplex = 1;
2092	fixed_phy_update_state(phy, &status, &changed);
2093	return 0;
2094}
2095
2096/* NAPI handler
2097 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2098 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2099 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2100 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2101 * Each CPU has its own causeRxTx register
2102 */
2103static int mvneta_poll(struct napi_struct *napi, int budget)
2104{
2105	int rx_done = 0;
2106	u32 cause_rx_tx;
2107	unsigned long flags;
2108	struct mvneta_port *pp = netdev_priv(napi->dev);
2109
2110	if (!netif_running(pp->dev)) {
2111		napi_complete(napi);
2112		return rx_done;
2113	}
2114
2115	/* Read cause register */
2116	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2117	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2118		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2119
2120		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2121		if (pp->use_inband_status && (cause_misc &
2122				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2123				 MVNETA_CAUSE_LINK_CHANGE |
2124				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2125			mvneta_fixed_link_update(pp, pp->phy_dev);
2126		}
2127	}
2128
2129	/* Release Tx descriptors */
2130	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2131		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2132		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2133	}
2134
2135	/* For the case where the last mvneta_poll did not process all
2136	 * RX packets
2137	 */
2138	cause_rx_tx |= pp->cause_rx_tx;
2139	if (rxq_number > 1) {
2140		while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2141			int count;
2142			struct mvneta_rx_queue *rxq;
2143			/* get rx queue number from cause_rx_tx */
2144			rxq = mvneta_rx_policy(pp, cause_rx_tx);
2145			if (!rxq)
2146				break;
2147
2148			/* process the packet in that rx queue */
2149			count = mvneta_rx(pp, budget, rxq);
2150			rx_done += count;
2151			budget -= count;
2152			if (budget > 0) {
2153				/* set off the rx bit of the
2154				 * corresponding bit in the cause rx
2155				 * tx register, so that next iteration
2156				 * will find the next rx queue where
2157				 * packets are received on
2158				 */
2159				cause_rx_tx &= ~((1 << rxq->id) << 8);
2160			}
2161		}
2162	} else {
2163		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2164		budget -= rx_done;
2165	}
2166
2167	if (budget > 0) {
2168		cause_rx_tx = 0;
2169		napi_complete(napi);
2170		local_irq_save(flags);
2171		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2172			    MVNETA_RX_INTR_MASK(rxq_number) |
2173			    MVNETA_TX_INTR_MASK(txq_number) |
2174			    MVNETA_MISCINTR_INTR_MASK);
2175		local_irq_restore(flags);
2176	}
2177
2178	pp->cause_rx_tx = cause_rx_tx;
2179	return rx_done;
2180}
2181
2182/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2183static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2184			   int num)
2185{
2186	int i;
2187
2188	for (i = 0; i < num; i++) {
2189		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2190		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2191			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2192				__func__, rxq->id, i, num);
2193			break;
2194		}
2195	}
2196
2197	/* Add this number of RX descriptors as non occupied (ready to
2198	 * get packets)
2199	 */
2200	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2201
2202	return i;
2203}
2204
2205/* Free all packets pending transmit from all TXQs and reset TX port */
2206static void mvneta_tx_reset(struct mvneta_port *pp)
2207{
2208	int queue;
2209
2210	/* free the skb's in the tx ring */
2211	for (queue = 0; queue < txq_number; queue++)
2212		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2213
2214	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2215	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2216}
2217
2218static void mvneta_rx_reset(struct mvneta_port *pp)
2219{
2220	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2221	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2222}
2223
2224/* Rx/Tx queue initialization/cleanup methods */
2225
2226/* Create a specified RX queue */
2227static int mvneta_rxq_init(struct mvneta_port *pp,
2228			   struct mvneta_rx_queue *rxq)
2229
2230{
2231	rxq->size = pp->rx_ring_size;
2232
2233	/* Allocate memory for RX descriptors */
2234	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2235					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2236					&rxq->descs_phys, GFP_KERNEL);
2237	if (rxq->descs == NULL)
2238		return -ENOMEM;
2239
2240	BUG_ON(rxq->descs !=
2241	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2242
2243	rxq->last_desc = rxq->size - 1;
2244
2245	/* Set Rx descriptors queue starting address */
2246	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2247	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2248
2249	/* Set Offset */
2250	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2251
2252	/* Set coalescing pkts and time */
2253	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2254	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2255
2256	/* Fill RXQ with buffers from RX pool */
2257	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2258	mvneta_rxq_bm_disable(pp, rxq);
2259	mvneta_rxq_fill(pp, rxq, rxq->size);
2260
2261	return 0;
2262}
2263
2264/* Cleanup Rx queue */
2265static void mvneta_rxq_deinit(struct mvneta_port *pp,
2266			      struct mvneta_rx_queue *rxq)
2267{
2268	mvneta_rxq_drop_pkts(pp, rxq);
2269
2270	if (rxq->descs)
2271		dma_free_coherent(pp->dev->dev.parent,
2272				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2273				  rxq->descs,
2274				  rxq->descs_phys);
2275
2276	rxq->descs             = NULL;
2277	rxq->last_desc         = 0;
2278	rxq->next_desc_to_proc = 0;
2279	rxq->descs_phys        = 0;
2280}
2281
2282/* Create and initialize a tx queue */
2283static int mvneta_txq_init(struct mvneta_port *pp,
2284			   struct mvneta_tx_queue *txq)
2285{
2286	txq->size = pp->tx_ring_size;
2287
2288	/* A queue must always have room for at least one skb.
2289	 * Therefore, stop the queue when the free entries reaches
2290	 * the maximum number of descriptors per skb.
2291	 */
2292	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2293	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2294
2295
2296	/* Allocate memory for TX descriptors */
2297	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2298					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2299					&txq->descs_phys, GFP_KERNEL);
2300	if (txq->descs == NULL)
2301		return -ENOMEM;
2302
2303	/* Make sure descriptor address is cache line size aligned  */
2304	BUG_ON(txq->descs !=
2305	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2306
2307	txq->last_desc = txq->size - 1;
2308
2309	/* Set maximum bandwidth for enabled TXQs */
2310	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2311	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2312
2313	/* Set Tx descriptors queue starting address */
2314	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2315	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2316
2317	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2318	if (txq->tx_skb == NULL) {
2319		dma_free_coherent(pp->dev->dev.parent,
2320				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2321				  txq->descs, txq->descs_phys);
2322		return -ENOMEM;
2323	}
2324
2325	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2326	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2327					   txq->size * TSO_HEADER_SIZE,
2328					   &txq->tso_hdrs_phys, GFP_KERNEL);
2329	if (txq->tso_hdrs == NULL) {
2330		kfree(txq->tx_skb);
2331		dma_free_coherent(pp->dev->dev.parent,
2332				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2333				  txq->descs, txq->descs_phys);
2334		return -ENOMEM;
2335	}
2336	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2337
2338	return 0;
2339}
2340
2341/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2342static void mvneta_txq_deinit(struct mvneta_port *pp,
2343			      struct mvneta_tx_queue *txq)
2344{
2345	kfree(txq->tx_skb);
2346
2347	if (txq->tso_hdrs)
2348		dma_free_coherent(pp->dev->dev.parent,
2349				  txq->size * TSO_HEADER_SIZE,
2350				  txq->tso_hdrs, txq->tso_hdrs_phys);
2351	if (txq->descs)
2352		dma_free_coherent(pp->dev->dev.parent,
2353				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2354				  txq->descs, txq->descs_phys);
2355
2356	txq->descs             = NULL;
2357	txq->last_desc         = 0;
2358	txq->next_desc_to_proc = 0;
2359	txq->descs_phys        = 0;
2360
2361	/* Set minimum bandwidth for disabled TXQs */
2362	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2363	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2364
2365	/* Set Tx descriptors queue starting address and size */
2366	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2367	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2368}
2369
2370/* Cleanup all Tx queues */
2371static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2372{
2373	int queue;
2374
2375	for (queue = 0; queue < txq_number; queue++)
2376		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2377}
2378
2379/* Cleanup all Rx queues */
2380static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2381{
2382	int queue;
2383
2384	for (queue = 0; queue < rxq_number; queue++)
2385		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2386}
2387
2388
2389/* Init all Rx queues */
2390static int mvneta_setup_rxqs(struct mvneta_port *pp)
2391{
2392	int queue;
2393
2394	for (queue = 0; queue < rxq_number; queue++) {
2395		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2396		if (err) {
2397			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2398				   __func__, queue);
2399			mvneta_cleanup_rxqs(pp);
2400			return err;
2401		}
2402	}
2403
2404	return 0;
2405}
2406
2407/* Init all tx queues */
2408static int mvneta_setup_txqs(struct mvneta_port *pp)
2409{
2410	int queue;
2411
2412	for (queue = 0; queue < txq_number; queue++) {
2413		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2414		if (err) {
2415			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2416				   __func__, queue);
2417			mvneta_cleanup_txqs(pp);
2418			return err;
2419		}
2420	}
2421
2422	return 0;
2423}
2424
2425static void mvneta_start_dev(struct mvneta_port *pp)
2426{
2427	mvneta_max_rx_size_set(pp, pp->pkt_size);
2428	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2429
2430	/* start the Rx/Tx activity */
2431	mvneta_port_enable(pp);
2432
2433	/* Enable polling on the port */
2434	napi_enable(&pp->napi);
2435
2436	/* Unmask interrupts */
2437	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2438		    MVNETA_RX_INTR_MASK(rxq_number) |
2439		    MVNETA_TX_INTR_MASK(txq_number) |
2440		    MVNETA_MISCINTR_INTR_MASK);
2441	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2442		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2443		    MVNETA_CAUSE_LINK_CHANGE |
2444		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2445
2446	phy_start(pp->phy_dev);
2447	netif_tx_start_all_queues(pp->dev);
2448}
2449
2450static void mvneta_stop_dev(struct mvneta_port *pp)
2451{
2452	phy_stop(pp->phy_dev);
2453
2454	napi_disable(&pp->napi);
2455
2456	netif_carrier_off(pp->dev);
2457
2458	mvneta_port_down(pp);
2459	netif_tx_stop_all_queues(pp->dev);
2460
2461	/* Stop the port activity */
2462	mvneta_port_disable(pp);
2463
2464	/* Clear all ethernet port interrupts */
2465	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2466	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2467
2468	/* Mask all ethernet port interrupts */
2469	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2470	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2471	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2472
2473	mvneta_tx_reset(pp);
2474	mvneta_rx_reset(pp);
2475}
2476
2477/* Return positive if MTU is valid */
2478static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2479{
2480	if (mtu < 68) {
2481		netdev_err(dev, "cannot change mtu to less than 68\n");
2482		return -EINVAL;
2483	}
2484
2485	/* 9676 == 9700 - 20 and rounding to 8 */
2486	if (mtu > 9676) {
2487		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2488		mtu = 9676;
2489	}
2490
2491	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2492		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2493			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2494		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2495	}
2496
2497	return mtu;
2498}
2499
2500/* Change the device mtu */
2501static int mvneta_change_mtu(struct net_device *dev, int mtu)
2502{
2503	struct mvneta_port *pp = netdev_priv(dev);
2504	int ret;
2505
2506	mtu = mvneta_check_mtu_valid(dev, mtu);
2507	if (mtu < 0)
2508		return -EINVAL;
2509
2510	dev->mtu = mtu;
2511
2512	if (!netif_running(dev)) {
2513		netdev_update_features(dev);
2514		return 0;
2515	}
2516
2517	/* The interface is running, so we have to force a
2518	 * reallocation of the queues
2519	 */
2520	mvneta_stop_dev(pp);
2521
2522	mvneta_cleanup_txqs(pp);
2523	mvneta_cleanup_rxqs(pp);
2524
2525	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2526	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2527	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2528
2529	ret = mvneta_setup_rxqs(pp);
2530	if (ret) {
2531		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2532		return ret;
2533	}
2534
2535	ret = mvneta_setup_txqs(pp);
2536	if (ret) {
2537		netdev_err(dev, "unable to setup txqs after MTU change\n");
2538		return ret;
2539	}
2540
2541	mvneta_start_dev(pp);
2542	mvneta_port_up(pp);
2543
2544	netdev_update_features(dev);
2545
2546	return 0;
2547}
2548
2549static netdev_features_t mvneta_fix_features(struct net_device *dev,
2550					     netdev_features_t features)
2551{
2552	struct mvneta_port *pp = netdev_priv(dev);
2553
2554	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2555		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2556		netdev_info(dev,
2557			    "Disable IP checksum for MTU greater than %dB\n",
2558			    pp->tx_csum_limit);
2559	}
2560
2561	return features;
2562}
2563
2564/* Get mac address */
2565static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2566{
2567	u32 mac_addr_l, mac_addr_h;
2568
2569	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2570	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2571	addr[0] = (mac_addr_h >> 24) & 0xFF;
2572	addr[1] = (mac_addr_h >> 16) & 0xFF;
2573	addr[2] = (mac_addr_h >> 8) & 0xFF;
2574	addr[3] = mac_addr_h & 0xFF;
2575	addr[4] = (mac_addr_l >> 8) & 0xFF;
2576	addr[5] = mac_addr_l & 0xFF;
2577}
2578
2579/* Handle setting mac address */
2580static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2581{
2582	struct mvneta_port *pp = netdev_priv(dev);
2583	struct sockaddr *sockaddr = addr;
2584	int ret;
2585
2586	ret = eth_prepare_mac_addr_change(dev, addr);
2587	if (ret < 0)
2588		return ret;
2589	/* Remove previous address table entry */
2590	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2591
2592	/* Set new addr in hw */
2593	mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2594
2595	eth_commit_mac_addr_change(dev, addr);
2596	return 0;
2597}
2598
2599static void mvneta_adjust_link(struct net_device *ndev)
2600{
2601	struct mvneta_port *pp = netdev_priv(ndev);
2602	struct phy_device *phydev = pp->phy_dev;
2603	int status_change = 0;
2604
2605	if (phydev->link) {
2606		if ((pp->speed != phydev->speed) ||
2607		    (pp->duplex != phydev->duplex)) {
2608			u32 val;
2609
2610			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2611			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2612				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2613				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2614
2615			if (phydev->duplex)
2616				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2617
2618			if (phydev->speed == SPEED_1000)
2619				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2620			else if (phydev->speed == SPEED_100)
2621				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2622
2623			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2624
2625			pp->duplex = phydev->duplex;
2626			pp->speed  = phydev->speed;
2627		}
2628	}
2629
2630	if (phydev->link != pp->link) {
2631		if (!phydev->link) {
2632			pp->duplex = -1;
2633			pp->speed = 0;
2634		}
2635
2636		pp->link = phydev->link;
2637		status_change = 1;
2638	}
2639
2640	if (status_change) {
2641		if (phydev->link) {
2642			if (!pp->use_inband_status) {
2643				u32 val = mvreg_read(pp,
2644						  MVNETA_GMAC_AUTONEG_CONFIG);
2645				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2646				val |= MVNETA_GMAC_FORCE_LINK_PASS;
2647				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2648					    val);
2649			}
2650			mvneta_port_up(pp);
2651		} else {
2652			if (!pp->use_inband_status) {
2653				u32 val = mvreg_read(pp,
2654						  MVNETA_GMAC_AUTONEG_CONFIG);
2655				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2656				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2657				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2658					    val);
2659			}
2660			mvneta_port_down(pp);
2661		}
2662		phy_print_status(phydev);
2663	}
2664}
2665
2666static int mvneta_mdio_probe(struct mvneta_port *pp)
2667{
2668	struct phy_device *phy_dev;
2669
2670	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2671				 pp->phy_interface);
2672	if (!phy_dev) {
2673		netdev_err(pp->dev, "could not find the PHY\n");
2674		return -ENODEV;
2675	}
2676
2677	phy_dev->supported &= PHY_GBIT_FEATURES;
2678	phy_dev->advertising = phy_dev->supported;
2679
2680	pp->phy_dev = phy_dev;
2681	pp->link    = 0;
2682	pp->duplex  = 0;
2683	pp->speed   = 0;
2684
2685	return 0;
2686}
2687
2688static void mvneta_mdio_remove(struct mvneta_port *pp)
2689{
2690	phy_disconnect(pp->phy_dev);
2691	pp->phy_dev = NULL;
2692}
2693
2694static int mvneta_open(struct net_device *dev)
2695{
2696	struct mvneta_port *pp = netdev_priv(dev);
2697	int ret;
2698
2699	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2700	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2701	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2702
2703	ret = mvneta_setup_rxqs(pp);
2704	if (ret)
2705		return ret;
2706
2707	ret = mvneta_setup_txqs(pp);
2708	if (ret)
2709		goto err_cleanup_rxqs;
2710
2711	/* Connect to port interrupt line */
2712	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2713			  MVNETA_DRIVER_NAME, pp);
2714	if (ret) {
2715		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2716		goto err_cleanup_txqs;
2717	}
2718
2719	/* In default link is down */
2720	netif_carrier_off(pp->dev);
2721
2722	ret = mvneta_mdio_probe(pp);
2723	if (ret < 0) {
2724		netdev_err(dev, "cannot probe MDIO bus\n");
2725		goto err_free_irq;
2726	}
2727
2728	mvneta_start_dev(pp);
2729
2730	return 0;
2731
2732err_free_irq:
2733	free_irq(pp->dev->irq, pp);
2734err_cleanup_txqs:
2735	mvneta_cleanup_txqs(pp);
2736err_cleanup_rxqs:
2737	mvneta_cleanup_rxqs(pp);
2738	return ret;
2739}
2740
2741/* Stop the port, free port interrupt line */
2742static int mvneta_stop(struct net_device *dev)
2743{
2744	struct mvneta_port *pp = netdev_priv(dev);
2745
2746	mvneta_stop_dev(pp);
2747	mvneta_mdio_remove(pp);
2748	free_irq(dev->irq, pp);
2749	mvneta_cleanup_rxqs(pp);
2750	mvneta_cleanup_txqs(pp);
2751
2752	return 0;
2753}
2754
2755static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2756{
2757	struct mvneta_port *pp = netdev_priv(dev);
2758
2759	if (!pp->phy_dev)
2760		return -ENOTSUPP;
2761
2762	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2763}
2764
2765/* Ethtool methods */
2766
2767/* Get settings (phy address, speed) for ethtools */
2768int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2769{
2770	struct mvneta_port *pp = netdev_priv(dev);
2771
2772	if (!pp->phy_dev)
2773		return -ENODEV;
2774
2775	return phy_ethtool_gset(pp->phy_dev, cmd);
2776}
2777
2778/* Set settings (phy address, speed) for ethtools */
2779int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2780{
2781	struct mvneta_port *pp = netdev_priv(dev);
2782
2783	if (!pp->phy_dev)
2784		return -ENODEV;
2785
2786	return phy_ethtool_sset(pp->phy_dev, cmd);
2787}
2788
2789/* Set interrupt coalescing for ethtools */
2790static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2791				       struct ethtool_coalesce *c)
2792{
2793	struct mvneta_port *pp = netdev_priv(dev);
2794	int queue;
2795
2796	for (queue = 0; queue < rxq_number; queue++) {
2797		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2798		rxq->time_coal = c->rx_coalesce_usecs;
2799		rxq->pkts_coal = c->rx_max_coalesced_frames;
2800		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2801		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2802	}
2803
2804	for (queue = 0; queue < txq_number; queue++) {
2805		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2806		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2807		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2808	}
2809
2810	return 0;
2811}
2812
2813/* get coalescing for ethtools */
2814static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2815				       struct ethtool_coalesce *c)
2816{
2817	struct mvneta_port *pp = netdev_priv(dev);
2818
2819	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2820	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2821
2822	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2823	return 0;
2824}
2825
2826
2827static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2828				    struct ethtool_drvinfo *drvinfo)
2829{
2830	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2831		sizeof(drvinfo->driver));
2832	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2833		sizeof(drvinfo->version));
2834	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2835		sizeof(drvinfo->bus_info));
2836}
2837
2838
2839static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2840					 struct ethtool_ringparam *ring)
2841{
2842	struct mvneta_port *pp = netdev_priv(netdev);
2843
2844	ring->rx_max_pending = MVNETA_MAX_RXD;
2845	ring->tx_max_pending = MVNETA_MAX_TXD;
2846	ring->rx_pending = pp->rx_ring_size;
2847	ring->tx_pending = pp->tx_ring_size;
2848}
2849
2850static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2851					struct ethtool_ringparam *ring)
2852{
2853	struct mvneta_port *pp = netdev_priv(dev);
2854
2855	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2856		return -EINVAL;
2857	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2858		ring->rx_pending : MVNETA_MAX_RXD;
2859
2860	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
2861				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
2862	if (pp->tx_ring_size != ring->tx_pending)
2863		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
2864			    pp->tx_ring_size, ring->tx_pending);
2865
2866	if (netif_running(dev)) {
2867		mvneta_stop(dev);
2868		if (mvneta_open(dev)) {
2869			netdev_err(dev,
2870				   "error on opening device after ring param change\n");
2871			return -ENOMEM;
2872		}
2873	}
2874
2875	return 0;
2876}
2877
2878static const struct net_device_ops mvneta_netdev_ops = {
2879	.ndo_open            = mvneta_open,
2880	.ndo_stop            = mvneta_stop,
2881	.ndo_start_xmit      = mvneta_tx,
2882	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2883	.ndo_set_mac_address = mvneta_set_mac_addr,
2884	.ndo_change_mtu      = mvneta_change_mtu,
2885	.ndo_fix_features    = mvneta_fix_features,
2886	.ndo_get_stats64     = mvneta_get_stats64,
2887	.ndo_do_ioctl        = mvneta_ioctl,
2888};
2889
2890const struct ethtool_ops mvneta_eth_tool_ops = {
2891	.get_link       = ethtool_op_get_link,
2892	.get_settings   = mvneta_ethtool_get_settings,
2893	.set_settings   = mvneta_ethtool_set_settings,
2894	.set_coalesce   = mvneta_ethtool_set_coalesce,
2895	.get_coalesce   = mvneta_ethtool_get_coalesce,
2896	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2897	.get_ringparam  = mvneta_ethtool_get_ringparam,
2898	.set_ringparam	= mvneta_ethtool_set_ringparam,
2899};
2900
2901/* Initialize hw */
2902static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2903{
2904	int queue;
2905
2906	/* Disable port */
2907	mvneta_port_disable(pp);
2908
2909	/* Set port default values */
2910	mvneta_defaults_set(pp);
2911
2912	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2913				GFP_KERNEL);
2914	if (!pp->txqs)
2915		return -ENOMEM;
2916
2917	/* Initialize TX descriptor rings */
2918	for (queue = 0; queue < txq_number; queue++) {
2919		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2920		txq->id = queue;
2921		txq->size = pp->tx_ring_size;
2922		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2923	}
2924
2925	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2926				GFP_KERNEL);
2927	if (!pp->rxqs)
2928		return -ENOMEM;
2929
2930	/* Create Rx descriptor rings */
2931	for (queue = 0; queue < rxq_number; queue++) {
2932		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2933		rxq->id = queue;
2934		rxq->size = pp->rx_ring_size;
2935		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2936		rxq->time_coal = MVNETA_RX_COAL_USEC;
2937	}
2938
2939	return 0;
2940}
2941
2942/* platform glue : initialize decoding windows */
2943static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2944				     const struct mbus_dram_target_info *dram)
2945{
2946	u32 win_enable;
2947	u32 win_protect;
2948	int i;
2949
2950	for (i = 0; i < 6; i++) {
2951		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2952		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2953
2954		if (i < 4)
2955			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2956	}
2957
2958	win_enable = 0x3f;
2959	win_protect = 0;
2960
2961	for (i = 0; i < dram->num_cs; i++) {
2962		const struct mbus_dram_window *cs = dram->cs + i;
2963		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2964			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2965
2966		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2967			    (cs->size - 1) & 0xffff0000);
2968
2969		win_enable &= ~(1 << i);
2970		win_protect |= 3 << (2 * i);
2971	}
2972
2973	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2974}
2975
2976/* Power up the port */
2977static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2978{
2979	u32 ctrl;
2980
2981	/* MAC Cause register should be cleared */
2982	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2983
2984	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2985
2986	/* Even though it might look weird, when we're configured in
2987	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2988	 */
2989	switch(phy_mode) {
2990	case PHY_INTERFACE_MODE_QSGMII:
2991		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2992		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2993		break;
2994	case PHY_INTERFACE_MODE_SGMII:
2995		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2996		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2997		break;
2998	case PHY_INTERFACE_MODE_RGMII:
2999	case PHY_INTERFACE_MODE_RGMII_ID:
3000		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3001		break;
3002	default:
3003		return -EINVAL;
3004	}
3005
3006	if (pp->use_inband_status)
3007		ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3008
3009	/* Cancel Port Reset */
3010	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3011	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3012
3013	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3014		MVNETA_GMAC2_PORT_RESET) != 0)
3015		continue;
3016
3017	return 0;
3018}
3019
3020/* Device initialization routine */
3021static int mvneta_probe(struct platform_device *pdev)
3022{
3023	const struct mbus_dram_target_info *dram_target_info;
3024	struct resource *res;
3025	struct device_node *dn = pdev->dev.of_node;
3026	struct device_node *phy_node;
3027	struct mvneta_port *pp;
3028	struct net_device *dev;
3029	const char *dt_mac_addr;
3030	char hw_mac_addr[ETH_ALEN];
3031	const char *mac_from;
3032	const char *managed;
3033	int phy_mode;
3034	int err;
3035
3036	/* Our multiqueue support is not complete, so for now, only
3037	 * allow the usage of the first RX queue
3038	 */
3039	if (rxq_def != 0) {
3040		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
3041		return -EINVAL;
3042	}
3043
3044	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3045	if (!dev)
3046		return -ENOMEM;
3047
3048	dev->irq = irq_of_parse_and_map(dn, 0);
3049	if (dev->irq == 0) {
3050		err = -EINVAL;
3051		goto err_free_netdev;
3052	}
3053
3054	phy_node = of_parse_phandle(dn, "phy", 0);
3055	if (!phy_node) {
3056		if (!of_phy_is_fixed_link(dn)) {
3057			dev_err(&pdev->dev, "no PHY specified\n");
3058			err = -ENODEV;
3059			goto err_free_irq;
3060		}
3061
3062		err = of_phy_register_fixed_link(dn);
3063		if (err < 0) {
3064			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3065			goto err_free_irq;
3066		}
3067
3068		/* In the case of a fixed PHY, the DT node associated
3069		 * to the PHY is the Ethernet MAC DT node.
3070		 */
3071		phy_node = of_node_get(dn);
3072	}
3073
3074	phy_mode = of_get_phy_mode(dn);
3075	if (phy_mode < 0) {
3076		dev_err(&pdev->dev, "incorrect phy-mode\n");
3077		err = -EINVAL;
3078		goto err_put_phy_node;
3079	}
3080
3081	dev->tx_queue_len = MVNETA_MAX_TXD;
3082	dev->watchdog_timeo = 5 * HZ;
3083	dev->netdev_ops = &mvneta_netdev_ops;
3084
3085	dev->ethtool_ops = &mvneta_eth_tool_ops;
3086
3087	pp = netdev_priv(dev);
3088	pp->phy_node = phy_node;
3089	pp->phy_interface = phy_mode;
3090
3091	err = of_property_read_string(dn, "managed", &managed);
3092	pp->use_inband_status = (err == 0 &&
3093				 strcmp(managed, "in-band-status") == 0);
3094
3095	pp->clk = devm_clk_get(&pdev->dev, NULL);
3096	if (IS_ERR(pp->clk)) {
3097		err = PTR_ERR(pp->clk);
3098		goto err_put_phy_node;
3099	}
3100
3101	clk_prepare_enable(pp->clk);
3102
3103	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3104	pp->base = devm_ioremap_resource(&pdev->dev, res);
3105	if (IS_ERR(pp->base)) {
3106		err = PTR_ERR(pp->base);
3107		goto err_clk;
3108	}
3109
3110	/* Alloc per-cpu stats */
3111	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3112	if (!pp->stats) {
3113		err = -ENOMEM;
3114		goto err_clk;
3115	}
3116
3117	dt_mac_addr = of_get_mac_address(dn);
3118	if (dt_mac_addr) {
3119		mac_from = "device tree";
3120		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3121	} else {
3122		mvneta_get_mac_addr(pp, hw_mac_addr);
3123		if (is_valid_ether_addr(hw_mac_addr)) {
3124			mac_from = "hardware";
3125			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3126		} else {
3127			mac_from = "random";
3128			eth_hw_addr_random(dev);
3129		}
3130	}
3131
3132	if (of_device_is_compatible(dn, "marvell,armada-370-neta"))
3133		pp->tx_csum_limit = 1600;
3134
3135	pp->tx_ring_size = MVNETA_MAX_TXD;
3136	pp->rx_ring_size = MVNETA_MAX_RXD;
3137
3138	pp->dev = dev;
3139	SET_NETDEV_DEV(dev, &pdev->dev);
3140
3141	err = mvneta_init(&pdev->dev, pp);
3142	if (err < 0)
3143		goto err_free_stats;
3144
3145	err = mvneta_port_power_up(pp, phy_mode);
3146	if (err < 0) {
3147		dev_err(&pdev->dev, "can't power up port\n");
3148		goto err_free_stats;
3149	}
3150
3151	dram_target_info = mv_mbus_dram_info();
3152	if (dram_target_info)
3153		mvneta_conf_mbus_windows(pp, dram_target_info);
3154
3155	netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3156
3157	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3158	dev->hw_features |= dev->features;
3159	dev->vlan_features |= dev->features;
3160	dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
3161	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3162
3163	err = register_netdev(dev);
3164	if (err < 0) {
3165		dev_err(&pdev->dev, "failed to register\n");
3166		goto err_free_stats;
3167	}
3168
3169	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3170		    dev->dev_addr);
3171
3172	platform_set_drvdata(pdev, pp->dev);
3173
3174	if (pp->use_inband_status) {
3175		struct phy_device *phy = of_phy_find_device(dn);
3176
3177		mvneta_fixed_link_update(pp, phy);
3178	}
3179
3180	return 0;
3181
3182err_free_stats:
3183	free_percpu(pp->stats);
3184err_clk:
3185	clk_disable_unprepare(pp->clk);
3186err_put_phy_node:
3187	of_node_put(phy_node);
3188err_free_irq:
3189	irq_dispose_mapping(dev->irq);
3190err_free_netdev:
3191	free_netdev(dev);
3192	return err;
3193}
3194
3195/* Device removal routine */
3196static int mvneta_remove(struct platform_device *pdev)
3197{
3198	struct net_device  *dev = platform_get_drvdata(pdev);
3199	struct mvneta_port *pp = netdev_priv(dev);
3200
3201	unregister_netdev(dev);
3202	clk_disable_unprepare(pp->clk);
3203	free_percpu(pp->stats);
3204	irq_dispose_mapping(dev->irq);
3205	of_node_put(pp->phy_node);
3206	free_netdev(dev);
3207
3208	return 0;
3209}
3210
3211static const struct of_device_id mvneta_match[] = {
3212	{ .compatible = "marvell,armada-370-neta" },
3213	{ .compatible = "marvell,armada-xp-neta" },
3214	{ }
3215};
3216MODULE_DEVICE_TABLE(of, mvneta_match);
3217
3218static struct platform_driver mvneta_driver = {
3219	.probe = mvneta_probe,
3220	.remove = mvneta_remove,
3221	.driver = {
3222		.name = MVNETA_DRIVER_NAME,
3223		.of_match_table = mvneta_match,
3224	},
3225};
3226
3227module_platform_driver(mvneta_driver);
3228
3229MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3230MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3231MODULE_LICENSE("GPL");
3232
3233module_param(rxq_number, int, S_IRUGO);
3234module_param(txq_number, int, S_IRUGO);
3235
3236module_param(rxq_def, int, S_IRUGO);
3237module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3238