1/*******************************************************************************
2
3  Intel 10 Gigabit PCI Express Linux driver
4  Copyright(c) 1999 - 2014 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/pci.h>
30#include <linux/delay.h>
31#include <linux/sched.h>
32#include <linux/netdevice.h>
33
34#include "ixgbe.h"
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37
38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44					u16 count);
45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49
50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53					     u16 words, u16 *data);
54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55					     u16 words, u16 *data);
56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57						 u16 offset);
58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59
60/**
61 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62 *  control
63 *  @hw: pointer to hardware structure
64 *
65 *  There are several phys that do not support autoneg flow control. This
66 *  function check the device id to see if the associated phy supports
67 *  autoneg flow control.
68 **/
69bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70{
71	bool supported = false;
72	ixgbe_link_speed speed;
73	bool link_up;
74
75	switch (hw->phy.media_type) {
76	case ixgbe_media_type_fiber:
77		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78		/* if link is down, assume supported */
79		if (link_up)
80			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81				true : false;
82		else
83			supported = true;
84		break;
85	case ixgbe_media_type_backplane:
86		supported = true;
87		break;
88	case ixgbe_media_type_copper:
89		/* only some copper devices support flow control autoneg */
90		switch (hw->device_id) {
91		case IXGBE_DEV_ID_82599_T3_LOM:
92		case IXGBE_DEV_ID_X540T:
93		case IXGBE_DEV_ID_X540T1:
94			supported = true;
95			break;
96		default:
97			break;
98		}
99	default:
100		break;
101	}
102
103	return supported;
104}
105
106/**
107 *  ixgbe_setup_fc - Set up flow control
108 *  @hw: pointer to hardware structure
109 *
110 *  Called at init time to set up flow control.
111 **/
112static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113{
114	s32 ret_val = 0;
115	u32 reg = 0, reg_bp = 0;
116	u16 reg_cu = 0;
117	bool locked = false;
118
119	/*
120	 * Validate the requested mode.  Strict IEEE mode does not allow
121	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122	 */
123	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125		return IXGBE_ERR_INVALID_LINK_SETTINGS;
126	}
127
128	/*
129	 * 10gig parts do not have a word in the EEPROM to determine the
130	 * default flow control setting, so we explicitly set it to full.
131	 */
132	if (hw->fc.requested_mode == ixgbe_fc_default)
133		hw->fc.requested_mode = ixgbe_fc_full;
134
135	/*
136	 * Set up the 1G and 10G flow control advertisement registers so the
137	 * HW will be able to do fc autoneg once the cable is plugged in.  If
138	 * we link at 10G, the 1G advertisement is harmless and vice versa.
139	 */
140	switch (hw->phy.media_type) {
141	case ixgbe_media_type_backplane:
142		/* some MAC's need RMW protection on AUTOC */
143		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
144		if (ret_val)
145			return ret_val;
146
147		/* only backplane uses autoc so fall though */
148	case ixgbe_media_type_fiber:
149		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
150
151		break;
152	case ixgbe_media_type_copper:
153		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
154					MDIO_MMD_AN, &reg_cu);
155		break;
156	default:
157		break;
158	}
159
160	/*
161	 * The possible values of fc.requested_mode are:
162	 * 0: Flow control is completely disabled
163	 * 1: Rx flow control is enabled (we can receive pause frames,
164	 *    but not send pause frames).
165	 * 2: Tx flow control is enabled (we can send pause frames but
166	 *    we do not support receiving pause frames).
167	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
168	 * other: Invalid.
169	 */
170	switch (hw->fc.requested_mode) {
171	case ixgbe_fc_none:
172		/* Flow control completely disabled by software override. */
173		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
174		if (hw->phy.media_type == ixgbe_media_type_backplane)
175			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
176				    IXGBE_AUTOC_ASM_PAUSE);
177		else if (hw->phy.media_type == ixgbe_media_type_copper)
178			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
179		break;
180	case ixgbe_fc_tx_pause:
181		/*
182		 * Tx Flow control is enabled, and Rx Flow control is
183		 * disabled by software override.
184		 */
185		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
186		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
187		if (hw->phy.media_type == ixgbe_media_type_backplane) {
188			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
189			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
190		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
191			reg_cu |= IXGBE_TAF_ASM_PAUSE;
192			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
193		}
194		break;
195	case ixgbe_fc_rx_pause:
196		/*
197		 * Rx Flow control is enabled and Tx Flow control is
198		 * disabled by software override. Since there really
199		 * isn't a way to advertise that we are capable of RX
200		 * Pause ONLY, we will advertise that we support both
201		 * symmetric and asymmetric Rx PAUSE, as such we fall
202		 * through to the fc_full statement.  Later, we will
203		 * disable the adapter's ability to send PAUSE frames.
204		 */
205	case ixgbe_fc_full:
206		/* Flow control (both Rx and Tx) is enabled by SW override. */
207		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
208		if (hw->phy.media_type == ixgbe_media_type_backplane)
209			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
210				  IXGBE_AUTOC_ASM_PAUSE;
211		else if (hw->phy.media_type == ixgbe_media_type_copper)
212			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
213		break;
214	default:
215		hw_dbg(hw, "Flow control param set incorrectly\n");
216		return IXGBE_ERR_CONFIG;
217	}
218
219	if (hw->mac.type != ixgbe_mac_X540) {
220		/*
221		 * Enable auto-negotiation between the MAC & PHY;
222		 * the MAC will advertise clause 37 flow control.
223		 */
224		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
225		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
226
227		/* Disable AN timeout */
228		if (hw->fc.strict_ieee)
229			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
230
231		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
232		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
233	}
234
235	/*
236	 * AUTOC restart handles negotiation of 1G and 10G on backplane
237	 * and copper. There is no need to set the PCS1GCTL register.
238	 *
239	 */
240	if (hw->phy.media_type == ixgbe_media_type_backplane) {
241		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
242		 * LESM is on, likewise reset_pipeline requries the lock as
243		 * it also writes AUTOC.
244		 */
245		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
246		if (ret_val)
247			return ret_val;
248
249	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
250		   ixgbe_device_supports_autoneg_fc(hw)) {
251		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
252				      MDIO_MMD_AN, reg_cu);
253	}
254
255	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
256	return ret_val;
257}
258
259/**
260 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
261 *  @hw: pointer to hardware structure
262 *
263 *  Starts the hardware by filling the bus info structure and media type, clears
264 *  all on chip counters, initializes receive address registers, multicast
265 *  table, VLAN filter table, calls routine to set up link and flow control
266 *  settings, and leaves transmit and receive units disabled and uninitialized
267 **/
268s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
269{
270	s32 ret_val;
271	u32 ctrl_ext;
272
273	/* Set the media type */
274	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
275
276	/* Identify the PHY */
277	hw->phy.ops.identify(hw);
278
279	/* Clear the VLAN filter table */
280	hw->mac.ops.clear_vfta(hw);
281
282	/* Clear statistics registers */
283	hw->mac.ops.clear_hw_cntrs(hw);
284
285	/* Set No Snoop Disable */
286	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
287	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
288	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
289	IXGBE_WRITE_FLUSH(hw);
290
291	/* Setup flow control */
292	ret_val = ixgbe_setup_fc(hw);
293	if (!ret_val)
294		return 0;
295
296	/* Clear adapter stopped flag */
297	hw->adapter_stopped = false;
298
299	return ret_val;
300}
301
302/**
303 *  ixgbe_start_hw_gen2 - Init sequence for common device family
304 *  @hw: pointer to hw structure
305 *
306 * Performs the init sequence common to the second generation
307 * of 10 GbE devices.
308 * Devices in the second generation:
309 *     82599
310 *     X540
311 **/
312s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
313{
314	u32 i;
315
316	/* Clear the rate limiters */
317	for (i = 0; i < hw->mac.max_tx_queues; i++) {
318		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
319		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
320	}
321	IXGBE_WRITE_FLUSH(hw);
322
323#ifndef CONFIG_SPARC
324	/* Disable relaxed ordering */
325	for (i = 0; i < hw->mac.max_tx_queues; i++) {
326		u32 regval;
327
328		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
329		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
330		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
331	}
332
333	for (i = 0; i < hw->mac.max_rx_queues; i++) {
334		u32 regval;
335
336		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
337		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
338			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
339		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
340	}
341#endif
342	return 0;
343}
344
345/**
346 *  ixgbe_init_hw_generic - Generic hardware initialization
347 *  @hw: pointer to hardware structure
348 *
349 *  Initialize the hardware by resetting the hardware, filling the bus info
350 *  structure and media type, clears all on chip counters, initializes receive
351 *  address registers, multicast table, VLAN filter table, calls routine to set
352 *  up link and flow control settings, and leaves transmit and receive units
353 *  disabled and uninitialized
354 **/
355s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
356{
357	s32 status;
358
359	/* Reset the hardware */
360	status = hw->mac.ops.reset_hw(hw);
361
362	if (status == 0) {
363		/* Start the HW */
364		status = hw->mac.ops.start_hw(hw);
365	}
366
367	return status;
368}
369
370/**
371 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
372 *  @hw: pointer to hardware structure
373 *
374 *  Clears all hardware statistics counters by reading them from the hardware
375 *  Statistics counters are clear on read.
376 **/
377s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
378{
379	u16 i = 0;
380
381	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
382	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
383	IXGBE_READ_REG(hw, IXGBE_ERRBC);
384	IXGBE_READ_REG(hw, IXGBE_MSPDC);
385	for (i = 0; i < 8; i++)
386		IXGBE_READ_REG(hw, IXGBE_MPC(i));
387
388	IXGBE_READ_REG(hw, IXGBE_MLFC);
389	IXGBE_READ_REG(hw, IXGBE_MRFC);
390	IXGBE_READ_REG(hw, IXGBE_RLEC);
391	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
392	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
393	if (hw->mac.type >= ixgbe_mac_82599EB) {
394		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
395		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
396	} else {
397		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
398		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
399	}
400
401	for (i = 0; i < 8; i++) {
402		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
403		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
404		if (hw->mac.type >= ixgbe_mac_82599EB) {
405			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
406			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
407		} else {
408			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
409			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
410		}
411	}
412	if (hw->mac.type >= ixgbe_mac_82599EB)
413		for (i = 0; i < 8; i++)
414			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
415	IXGBE_READ_REG(hw, IXGBE_PRC64);
416	IXGBE_READ_REG(hw, IXGBE_PRC127);
417	IXGBE_READ_REG(hw, IXGBE_PRC255);
418	IXGBE_READ_REG(hw, IXGBE_PRC511);
419	IXGBE_READ_REG(hw, IXGBE_PRC1023);
420	IXGBE_READ_REG(hw, IXGBE_PRC1522);
421	IXGBE_READ_REG(hw, IXGBE_GPRC);
422	IXGBE_READ_REG(hw, IXGBE_BPRC);
423	IXGBE_READ_REG(hw, IXGBE_MPRC);
424	IXGBE_READ_REG(hw, IXGBE_GPTC);
425	IXGBE_READ_REG(hw, IXGBE_GORCL);
426	IXGBE_READ_REG(hw, IXGBE_GORCH);
427	IXGBE_READ_REG(hw, IXGBE_GOTCL);
428	IXGBE_READ_REG(hw, IXGBE_GOTCH);
429	if (hw->mac.type == ixgbe_mac_82598EB)
430		for (i = 0; i < 8; i++)
431			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
432	IXGBE_READ_REG(hw, IXGBE_RUC);
433	IXGBE_READ_REG(hw, IXGBE_RFC);
434	IXGBE_READ_REG(hw, IXGBE_ROC);
435	IXGBE_READ_REG(hw, IXGBE_RJC);
436	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
437	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
438	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
439	IXGBE_READ_REG(hw, IXGBE_TORL);
440	IXGBE_READ_REG(hw, IXGBE_TORH);
441	IXGBE_READ_REG(hw, IXGBE_TPR);
442	IXGBE_READ_REG(hw, IXGBE_TPT);
443	IXGBE_READ_REG(hw, IXGBE_PTC64);
444	IXGBE_READ_REG(hw, IXGBE_PTC127);
445	IXGBE_READ_REG(hw, IXGBE_PTC255);
446	IXGBE_READ_REG(hw, IXGBE_PTC511);
447	IXGBE_READ_REG(hw, IXGBE_PTC1023);
448	IXGBE_READ_REG(hw, IXGBE_PTC1522);
449	IXGBE_READ_REG(hw, IXGBE_MPTC);
450	IXGBE_READ_REG(hw, IXGBE_BPTC);
451	for (i = 0; i < 16; i++) {
452		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
453		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
454		if (hw->mac.type >= ixgbe_mac_82599EB) {
455			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
456			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
457			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
458			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
459			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
460		} else {
461			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
462			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
463		}
464	}
465
466	if (hw->mac.type == ixgbe_mac_X540) {
467		if (hw->phy.id == 0)
468			hw->phy.ops.identify(hw);
469		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
470		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
471		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
472		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
473	}
474
475	return 0;
476}
477
478/**
479 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
480 *  @hw: pointer to hardware structure
481 *  @pba_num: stores the part number string from the EEPROM
482 *  @pba_num_size: part number string buffer length
483 *
484 *  Reads the part number string from the EEPROM.
485 **/
486s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
487				  u32 pba_num_size)
488{
489	s32 ret_val;
490	u16 data;
491	u16 pba_ptr;
492	u16 offset;
493	u16 length;
494
495	if (pba_num == NULL) {
496		hw_dbg(hw, "PBA string buffer was null\n");
497		return IXGBE_ERR_INVALID_ARGUMENT;
498	}
499
500	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
501	if (ret_val) {
502		hw_dbg(hw, "NVM Read Error\n");
503		return ret_val;
504	}
505
506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
507	if (ret_val) {
508		hw_dbg(hw, "NVM Read Error\n");
509		return ret_val;
510	}
511
512	/*
513	 * if data is not ptr guard the PBA must be in legacy format which
514	 * means pba_ptr is actually our second data word for the PBA number
515	 * and we can decode it into an ascii string
516	 */
517	if (data != IXGBE_PBANUM_PTR_GUARD) {
518		hw_dbg(hw, "NVM PBA number is not stored as string\n");
519
520		/* we will need 11 characters to store the PBA */
521		if (pba_num_size < 11) {
522			hw_dbg(hw, "PBA string buffer too small\n");
523			return IXGBE_ERR_NO_SPACE;
524		}
525
526		/* extract hex string from data and pba_ptr */
527		pba_num[0] = (data >> 12) & 0xF;
528		pba_num[1] = (data >> 8) & 0xF;
529		pba_num[2] = (data >> 4) & 0xF;
530		pba_num[3] = data & 0xF;
531		pba_num[4] = (pba_ptr >> 12) & 0xF;
532		pba_num[5] = (pba_ptr >> 8) & 0xF;
533		pba_num[6] = '-';
534		pba_num[7] = 0;
535		pba_num[8] = (pba_ptr >> 4) & 0xF;
536		pba_num[9] = pba_ptr & 0xF;
537
538		/* put a null character on the end of our string */
539		pba_num[10] = '\0';
540
541		/* switch all the data but the '-' to hex char */
542		for (offset = 0; offset < 10; offset++) {
543			if (pba_num[offset] < 0xA)
544				pba_num[offset] += '0';
545			else if (pba_num[offset] < 0x10)
546				pba_num[offset] += 'A' - 0xA;
547		}
548
549		return 0;
550	}
551
552	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
553	if (ret_val) {
554		hw_dbg(hw, "NVM Read Error\n");
555		return ret_val;
556	}
557
558	if (length == 0xFFFF || length == 0) {
559		hw_dbg(hw, "NVM PBA number section invalid length\n");
560		return IXGBE_ERR_PBA_SECTION;
561	}
562
563	/* check if pba_num buffer is big enough */
564	if (pba_num_size  < (((u32)length * 2) - 1)) {
565		hw_dbg(hw, "PBA string buffer too small\n");
566		return IXGBE_ERR_NO_SPACE;
567	}
568
569	/* trim pba length from start of string */
570	pba_ptr++;
571	length--;
572
573	for (offset = 0; offset < length; offset++) {
574		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
575		if (ret_val) {
576			hw_dbg(hw, "NVM Read Error\n");
577			return ret_val;
578		}
579		pba_num[offset * 2] = (u8)(data >> 8);
580		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
581	}
582	pba_num[offset * 2] = '\0';
583
584	return 0;
585}
586
587/**
588 *  ixgbe_get_mac_addr_generic - Generic get MAC address
589 *  @hw: pointer to hardware structure
590 *  @mac_addr: Adapter MAC address
591 *
592 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
593 *  A reset of the adapter must be performed prior to calling this function
594 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
595 **/
596s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
597{
598	u32 rar_high;
599	u32 rar_low;
600	u16 i;
601
602	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
603	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
604
605	for (i = 0; i < 4; i++)
606		mac_addr[i] = (u8)(rar_low >> (i*8));
607
608	for (i = 0; i < 2; i++)
609		mac_addr[i+4] = (u8)(rar_high >> (i*8));
610
611	return 0;
612}
613
614enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
615{
616	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
617	case IXGBE_PCI_LINK_WIDTH_1:
618		return ixgbe_bus_width_pcie_x1;
619	case IXGBE_PCI_LINK_WIDTH_2:
620		return ixgbe_bus_width_pcie_x2;
621	case IXGBE_PCI_LINK_WIDTH_4:
622		return ixgbe_bus_width_pcie_x4;
623	case IXGBE_PCI_LINK_WIDTH_8:
624		return ixgbe_bus_width_pcie_x8;
625	default:
626		return ixgbe_bus_width_unknown;
627	}
628}
629
630enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
631{
632	switch (link_status & IXGBE_PCI_LINK_SPEED) {
633	case IXGBE_PCI_LINK_SPEED_2500:
634		return ixgbe_bus_speed_2500;
635	case IXGBE_PCI_LINK_SPEED_5000:
636		return ixgbe_bus_speed_5000;
637	case IXGBE_PCI_LINK_SPEED_8000:
638		return ixgbe_bus_speed_8000;
639	default:
640		return ixgbe_bus_speed_unknown;
641	}
642}
643
644/**
645 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
646 *  @hw: pointer to hardware structure
647 *
648 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
649 **/
650s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
651{
652	u16 link_status;
653
654	hw->bus.type = ixgbe_bus_type_pci_express;
655
656	/* Get the negotiated link width and speed from PCI config space */
657	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
658
659	hw->bus.width = ixgbe_convert_bus_width(link_status);
660	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
661
662	hw->mac.ops.set_lan_id(hw);
663
664	return 0;
665}
666
667/**
668 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
669 *  @hw: pointer to the HW structure
670 *
671 *  Determines the LAN function id by reading memory-mapped registers
672 *  and swaps the port value if requested.
673 **/
674void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
675{
676	struct ixgbe_bus_info *bus = &hw->bus;
677	u32 reg;
678
679	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
680	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
681	bus->lan_id = bus->func;
682
683	/* check for a port swap */
684	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
685	if (reg & IXGBE_FACTPS_LFS)
686		bus->func ^= 0x1;
687}
688
689/**
690 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
691 *  @hw: pointer to hardware structure
692 *
693 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
694 *  disables transmit and receive units. The adapter_stopped flag is used by
695 *  the shared code and drivers to determine if the adapter is in a stopped
696 *  state and should not touch the hardware.
697 **/
698s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
699{
700	u32 reg_val;
701	u16 i;
702
703	/*
704	 * Set the adapter_stopped flag so other driver functions stop touching
705	 * the hardware
706	 */
707	hw->adapter_stopped = true;
708
709	/* Disable the receive unit */
710	hw->mac.ops.disable_rx(hw);
711
712	/* Clear interrupt mask to stop interrupts from being generated */
713	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
714
715	/* Clear any pending interrupts, flush previous writes */
716	IXGBE_READ_REG(hw, IXGBE_EICR);
717
718	/* Disable the transmit unit.  Each queue must be disabled. */
719	for (i = 0; i < hw->mac.max_tx_queues; i++)
720		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
721
722	/* Disable the receive unit by stopping each queue */
723	for (i = 0; i < hw->mac.max_rx_queues; i++) {
724		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
725		reg_val &= ~IXGBE_RXDCTL_ENABLE;
726		reg_val |= IXGBE_RXDCTL_SWFLSH;
727		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
728	}
729
730	/* flush all queues disables */
731	IXGBE_WRITE_FLUSH(hw);
732	usleep_range(1000, 2000);
733
734	/*
735	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
736	 * access and verify no pending requests
737	 */
738	return ixgbe_disable_pcie_master(hw);
739}
740
741/**
742 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
743 *  @hw: pointer to hardware structure
744 *  @index: led number to turn on
745 **/
746s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
747{
748	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
749
750	/* To turn on the LED, set mode to ON. */
751	led_reg &= ~IXGBE_LED_MODE_MASK(index);
752	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
753	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
754	IXGBE_WRITE_FLUSH(hw);
755
756	return 0;
757}
758
759/**
760 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
761 *  @hw: pointer to hardware structure
762 *  @index: led number to turn off
763 **/
764s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
765{
766	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
767
768	/* To turn off the LED, set mode to OFF. */
769	led_reg &= ~IXGBE_LED_MODE_MASK(index);
770	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
771	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
772	IXGBE_WRITE_FLUSH(hw);
773
774	return 0;
775}
776
777/**
778 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
779 *  @hw: pointer to hardware structure
780 *
781 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
782 *  ixgbe_hw struct in order to set up EEPROM access.
783 **/
784s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
785{
786	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
787	u32 eec;
788	u16 eeprom_size;
789
790	if (eeprom->type == ixgbe_eeprom_uninitialized) {
791		eeprom->type = ixgbe_eeprom_none;
792		/* Set default semaphore delay to 10ms which is a well
793		 * tested value */
794		eeprom->semaphore_delay = 10;
795		/* Clear EEPROM page size, it will be initialized as needed */
796		eeprom->word_page_size = 0;
797
798		/*
799		 * Check for EEPROM present first.
800		 * If not present leave as none
801		 */
802		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
803		if (eec & IXGBE_EEC_PRES) {
804			eeprom->type = ixgbe_eeprom_spi;
805
806			/*
807			 * SPI EEPROM is assumed here.  This code would need to
808			 * change if a future EEPROM is not SPI.
809			 */
810			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
811					    IXGBE_EEC_SIZE_SHIFT);
812			eeprom->word_size = 1 << (eeprom_size +
813						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
814		}
815
816		if (eec & IXGBE_EEC_ADDR_SIZE)
817			eeprom->address_bits = 16;
818		else
819			eeprom->address_bits = 8;
820		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
821		       eeprom->type, eeprom->word_size, eeprom->address_bits);
822	}
823
824	return 0;
825}
826
827/**
828 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
829 *  @hw: pointer to hardware structure
830 *  @offset: offset within the EEPROM to write
831 *  @words: number of words
832 *  @data: 16 bit word(s) to write to EEPROM
833 *
834 *  Reads 16 bit word(s) from EEPROM through bit-bang method
835 **/
836s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
837					       u16 words, u16 *data)
838{
839	s32 status;
840	u16 i, count;
841
842	hw->eeprom.ops.init_params(hw);
843
844	if (words == 0)
845		return IXGBE_ERR_INVALID_ARGUMENT;
846
847	if (offset + words > hw->eeprom.word_size)
848		return IXGBE_ERR_EEPROM;
849
850	/*
851	 * The EEPROM page size cannot be queried from the chip. We do lazy
852	 * initialization. It is worth to do that when we write large buffer.
853	 */
854	if ((hw->eeprom.word_page_size == 0) &&
855	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
856		ixgbe_detect_eeprom_page_size_generic(hw, offset);
857
858	/*
859	 * We cannot hold synchronization semaphores for too long
860	 * to avoid other entity starvation. However it is more efficient
861	 * to read in bursts than synchronizing access for each word.
862	 */
863	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
864		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
865			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
866		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
867							    count, &data[i]);
868
869		if (status != 0)
870			break;
871	}
872
873	return status;
874}
875
876/**
877 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
878 *  @hw: pointer to hardware structure
879 *  @offset: offset within the EEPROM to be written to
880 *  @words: number of word(s)
881 *  @data: 16 bit word(s) to be written to the EEPROM
882 *
883 *  If ixgbe_eeprom_update_checksum is not called after this function, the
884 *  EEPROM will most likely contain an invalid checksum.
885 **/
886static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
887					      u16 words, u16 *data)
888{
889	s32 status;
890	u16 word;
891	u16 page_size;
892	u16 i;
893	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
894
895	/* Prepare the EEPROM for writing  */
896	status = ixgbe_acquire_eeprom(hw);
897	if (status)
898		return status;
899
900	if (ixgbe_ready_eeprom(hw) != 0) {
901		ixgbe_release_eeprom(hw);
902		return IXGBE_ERR_EEPROM;
903	}
904
905	for (i = 0; i < words; i++) {
906		ixgbe_standby_eeprom(hw);
907
908		/* Send the WRITE ENABLE command (8 bit opcode) */
909		ixgbe_shift_out_eeprom_bits(hw,
910					    IXGBE_EEPROM_WREN_OPCODE_SPI,
911					    IXGBE_EEPROM_OPCODE_BITS);
912
913		ixgbe_standby_eeprom(hw);
914
915		/* Some SPI eeproms use the 8th address bit embedded
916		 * in the opcode
917		 */
918		if ((hw->eeprom.address_bits == 8) &&
919		    ((offset + i) >= 128))
920			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
921
922		/* Send the Write command (8-bit opcode + addr) */
923		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
924					    IXGBE_EEPROM_OPCODE_BITS);
925		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
926					    hw->eeprom.address_bits);
927
928		page_size = hw->eeprom.word_page_size;
929
930		/* Send the data in burst via SPI */
931		do {
932			word = data[i];
933			word = (word >> 8) | (word << 8);
934			ixgbe_shift_out_eeprom_bits(hw, word, 16);
935
936			if (page_size == 0)
937				break;
938
939			/* do not wrap around page */
940			if (((offset + i) & (page_size - 1)) ==
941			    (page_size - 1))
942				break;
943		} while (++i < words);
944
945		ixgbe_standby_eeprom(hw);
946		usleep_range(10000, 20000);
947	}
948	/* Done with writing - release the EEPROM */
949	ixgbe_release_eeprom(hw);
950
951	return 0;
952}
953
954/**
955 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
956 *  @hw: pointer to hardware structure
957 *  @offset: offset within the EEPROM to be written to
958 *  @data: 16 bit word to be written to the EEPROM
959 *
960 *  If ixgbe_eeprom_update_checksum is not called after this function, the
961 *  EEPROM will most likely contain an invalid checksum.
962 **/
963s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
964{
965	hw->eeprom.ops.init_params(hw);
966
967	if (offset >= hw->eeprom.word_size)
968		return IXGBE_ERR_EEPROM;
969
970	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
971}
972
973/**
974 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
975 *  @hw: pointer to hardware structure
976 *  @offset: offset within the EEPROM to be read
977 *  @words: number of word(s)
978 *  @data: read 16 bit words(s) from EEPROM
979 *
980 *  Reads 16 bit word(s) from EEPROM through bit-bang method
981 **/
982s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
983					      u16 words, u16 *data)
984{
985	s32 status;
986	u16 i, count;
987
988	hw->eeprom.ops.init_params(hw);
989
990	if (words == 0)
991		return IXGBE_ERR_INVALID_ARGUMENT;
992
993	if (offset + words > hw->eeprom.word_size)
994		return IXGBE_ERR_EEPROM;
995
996	/*
997	 * We cannot hold synchronization semaphores for too long
998	 * to avoid other entity starvation. However it is more efficient
999	 * to read in bursts than synchronizing access for each word.
1000	 */
1001	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1002		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1003			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1004
1005		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1006							   count, &data[i]);
1007
1008		if (status)
1009			return status;
1010	}
1011
1012	return 0;
1013}
1014
1015/**
1016 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1017 *  @hw: pointer to hardware structure
1018 *  @offset: offset within the EEPROM to be read
1019 *  @words: number of word(s)
1020 *  @data: read 16 bit word(s) from EEPROM
1021 *
1022 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1023 **/
1024static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1025					     u16 words, u16 *data)
1026{
1027	s32 status;
1028	u16 word_in;
1029	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1030	u16 i;
1031
1032	/* Prepare the EEPROM for reading  */
1033	status = ixgbe_acquire_eeprom(hw);
1034	if (status)
1035		return status;
1036
1037	if (ixgbe_ready_eeprom(hw) != 0) {
1038		ixgbe_release_eeprom(hw);
1039		return IXGBE_ERR_EEPROM;
1040	}
1041
1042	for (i = 0; i < words; i++) {
1043		ixgbe_standby_eeprom(hw);
1044		/* Some SPI eeproms use the 8th address bit embedded
1045		 * in the opcode
1046		 */
1047		if ((hw->eeprom.address_bits == 8) &&
1048		    ((offset + i) >= 128))
1049			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1050
1051		/* Send the READ command (opcode + addr) */
1052		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1053					    IXGBE_EEPROM_OPCODE_BITS);
1054		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1055					    hw->eeprom.address_bits);
1056
1057		/* Read the data. */
1058		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1059		data[i] = (word_in >> 8) | (word_in << 8);
1060	}
1061
1062	/* End this read operation */
1063	ixgbe_release_eeprom(hw);
1064
1065	return 0;
1066}
1067
1068/**
1069 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1070 *  @hw: pointer to hardware structure
1071 *  @offset: offset within the EEPROM to be read
1072 *  @data: read 16 bit value from EEPROM
1073 *
1074 *  Reads 16 bit value from EEPROM through bit-bang method
1075 **/
1076s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1077				       u16 *data)
1078{
1079	hw->eeprom.ops.init_params(hw);
1080
1081	if (offset >= hw->eeprom.word_size)
1082		return IXGBE_ERR_EEPROM;
1083
1084	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1085}
1086
1087/**
1088 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1089 *  @hw: pointer to hardware structure
1090 *  @offset: offset of word in the EEPROM to read
1091 *  @words: number of word(s)
1092 *  @data: 16 bit word(s) from the EEPROM
1093 *
1094 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1095 **/
1096s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1097				   u16 words, u16 *data)
1098{
1099	u32 eerd;
1100	s32 status;
1101	u32 i;
1102
1103	hw->eeprom.ops.init_params(hw);
1104
1105	if (words == 0)
1106		return IXGBE_ERR_INVALID_ARGUMENT;
1107
1108	if (offset >= hw->eeprom.word_size)
1109		return IXGBE_ERR_EEPROM;
1110
1111	for (i = 0; i < words; i++) {
1112		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1113		       IXGBE_EEPROM_RW_REG_START;
1114
1115		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1116		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1117
1118		if (status == 0) {
1119			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1120				   IXGBE_EEPROM_RW_REG_DATA);
1121		} else {
1122			hw_dbg(hw, "Eeprom read timed out\n");
1123			return status;
1124		}
1125	}
1126
1127	return 0;
1128}
1129
1130/**
1131 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1132 *  @hw: pointer to hardware structure
1133 *  @offset: offset within the EEPROM to be used as a scratch pad
1134 *
1135 *  Discover EEPROM page size by writing marching data at given offset.
1136 *  This function is called only when we are writing a new large buffer
1137 *  at given offset so the data would be overwritten anyway.
1138 **/
1139static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1140						 u16 offset)
1141{
1142	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1143	s32 status;
1144	u16 i;
1145
1146	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1147		data[i] = i;
1148
1149	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1150	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1151					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1152	hw->eeprom.word_page_size = 0;
1153	if (status)
1154		return status;
1155
1156	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1157	if (status)
1158		return status;
1159
1160	/*
1161	 * When writing in burst more than the actual page size
1162	 * EEPROM address wraps around current page.
1163	 */
1164	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1165
1166	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1167	       hw->eeprom.word_page_size);
1168	return 0;
1169}
1170
1171/**
1172 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1173 *  @hw: pointer to hardware structure
1174 *  @offset: offset of  word in the EEPROM to read
1175 *  @data: word read from the EEPROM
1176 *
1177 *  Reads a 16 bit word from the EEPROM using the EERD register.
1178 **/
1179s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1180{
1181	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1182}
1183
1184/**
1185 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1186 *  @hw: pointer to hardware structure
1187 *  @offset: offset of  word in the EEPROM to write
1188 *  @words: number of words
1189 *  @data: word(s) write to the EEPROM
1190 *
1191 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1192 **/
1193s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1194				    u16 words, u16 *data)
1195{
1196	u32 eewr;
1197	s32 status;
1198	u16 i;
1199
1200	hw->eeprom.ops.init_params(hw);
1201
1202	if (words == 0)
1203		return IXGBE_ERR_INVALID_ARGUMENT;
1204
1205	if (offset >= hw->eeprom.word_size)
1206		return IXGBE_ERR_EEPROM;
1207
1208	for (i = 0; i < words; i++) {
1209		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1210		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1211		       IXGBE_EEPROM_RW_REG_START;
1212
1213		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1214		if (status) {
1215			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1216			return status;
1217		}
1218
1219		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1220
1221		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1222		if (status) {
1223			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1224			return status;
1225		}
1226	}
1227
1228	return 0;
1229}
1230
1231/**
1232 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1233 *  @hw: pointer to hardware structure
1234 *  @offset: offset of  word in the EEPROM to write
1235 *  @data: word write to the EEPROM
1236 *
1237 *  Write a 16 bit word to the EEPROM using the EEWR register.
1238 **/
1239s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1240{
1241	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1242}
1243
1244/**
1245 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1246 *  @hw: pointer to hardware structure
1247 *  @ee_reg: EEPROM flag for polling
1248 *
1249 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1250 *  read or write is done respectively.
1251 **/
1252static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1253{
1254	u32 i;
1255	u32 reg;
1256
1257	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1258		if (ee_reg == IXGBE_NVM_POLL_READ)
1259			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1260		else
1261			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1262
1263		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1264			return 0;
1265		}
1266		udelay(5);
1267	}
1268	return IXGBE_ERR_EEPROM;
1269}
1270
1271/**
1272 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1273 *  @hw: pointer to hardware structure
1274 *
1275 *  Prepares EEPROM for access using bit-bang method. This function should
1276 *  be called before issuing a command to the EEPROM.
1277 **/
1278static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1279{
1280	u32 eec;
1281	u32 i;
1282
1283	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1284		return IXGBE_ERR_SWFW_SYNC;
1285
1286	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1287
1288	/* Request EEPROM Access */
1289	eec |= IXGBE_EEC_REQ;
1290	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1291
1292	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1293		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1294		if (eec & IXGBE_EEC_GNT)
1295			break;
1296		udelay(5);
1297	}
1298
1299	/* Release if grant not acquired */
1300	if (!(eec & IXGBE_EEC_GNT)) {
1301		eec &= ~IXGBE_EEC_REQ;
1302		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1303		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1304
1305		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1306		return IXGBE_ERR_EEPROM;
1307	}
1308
1309	/* Setup EEPROM for Read/Write */
1310	/* Clear CS and SK */
1311	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1312	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1313	IXGBE_WRITE_FLUSH(hw);
1314	udelay(1);
1315	return 0;
1316}
1317
1318/**
1319 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1320 *  @hw: pointer to hardware structure
1321 *
1322 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1323 **/
1324static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1325{
1326	u32 timeout = 2000;
1327	u32 i;
1328	u32 swsm;
1329
1330	/* Get SMBI software semaphore between device drivers first */
1331	for (i = 0; i < timeout; i++) {
1332		/*
1333		 * If the SMBI bit is 0 when we read it, then the bit will be
1334		 * set and we have the semaphore
1335		 */
1336		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1337		if (!(swsm & IXGBE_SWSM_SMBI))
1338			break;
1339		usleep_range(50, 100);
1340	}
1341
1342	if (i == timeout) {
1343		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1344		/* this release is particularly important because our attempts
1345		 * above to get the semaphore may have succeeded, and if there
1346		 * was a timeout, we should unconditionally clear the semaphore
1347		 * bits to free the driver to make progress
1348		 */
1349		ixgbe_release_eeprom_semaphore(hw);
1350
1351		usleep_range(50, 100);
1352		/* one last try
1353		 * If the SMBI bit is 0 when we read it, then the bit will be
1354		 * set and we have the semaphore
1355		 */
1356		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1357		if (swsm & IXGBE_SWSM_SMBI) {
1358			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1359			return IXGBE_ERR_EEPROM;
1360		}
1361	}
1362
1363	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1364	for (i = 0; i < timeout; i++) {
1365		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1366
1367		/* Set the SW EEPROM semaphore bit to request access */
1368		swsm |= IXGBE_SWSM_SWESMBI;
1369		IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1370
1371		/* If we set the bit successfully then we got the
1372		 * semaphore.
1373		 */
1374		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1375		if (swsm & IXGBE_SWSM_SWESMBI)
1376			break;
1377
1378		usleep_range(50, 100);
1379	}
1380
1381	/* Release semaphores and return error if SW EEPROM semaphore
1382	 * was not granted because we don't have access to the EEPROM
1383	 */
1384	if (i >= timeout) {
1385		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1386		ixgbe_release_eeprom_semaphore(hw);
1387		return IXGBE_ERR_EEPROM;
1388	}
1389
1390	return 0;
1391}
1392
1393/**
1394 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1395 *  @hw: pointer to hardware structure
1396 *
1397 *  This function clears hardware semaphore bits.
1398 **/
1399static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1400{
1401	u32 swsm;
1402
1403	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1404
1405	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1406	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1407	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1408	IXGBE_WRITE_FLUSH(hw);
1409}
1410
1411/**
1412 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1413 *  @hw: pointer to hardware structure
1414 **/
1415static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1416{
1417	u16 i;
1418	u8 spi_stat_reg;
1419
1420	/*
1421	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1422	 * EEPROM will signal that the command has been completed by clearing
1423	 * bit 0 of the internal status register.  If it's not cleared within
1424	 * 5 milliseconds, then error out.
1425	 */
1426	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1427		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1428					    IXGBE_EEPROM_OPCODE_BITS);
1429		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1430		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1431			break;
1432
1433		udelay(5);
1434		ixgbe_standby_eeprom(hw);
1435	}
1436
1437	/*
1438	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1439	 * devices (and only 0-5mSec on 5V devices)
1440	 */
1441	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1442		hw_dbg(hw, "SPI EEPROM Status error\n");
1443		return IXGBE_ERR_EEPROM;
1444	}
1445
1446	return 0;
1447}
1448
1449/**
1450 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1451 *  @hw: pointer to hardware structure
1452 **/
1453static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1454{
1455	u32 eec;
1456
1457	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1458
1459	/* Toggle CS to flush commands */
1460	eec |= IXGBE_EEC_CS;
1461	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1462	IXGBE_WRITE_FLUSH(hw);
1463	udelay(1);
1464	eec &= ~IXGBE_EEC_CS;
1465	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1466	IXGBE_WRITE_FLUSH(hw);
1467	udelay(1);
1468}
1469
1470/**
1471 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1472 *  @hw: pointer to hardware structure
1473 *  @data: data to send to the EEPROM
1474 *  @count: number of bits to shift out
1475 **/
1476static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1477					u16 count)
1478{
1479	u32 eec;
1480	u32 mask;
1481	u32 i;
1482
1483	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1484
1485	/*
1486	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1487	 * one bit at a time.  Determine the starting bit based on count
1488	 */
1489	mask = 0x01 << (count - 1);
1490
1491	for (i = 0; i < count; i++) {
1492		/*
1493		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1494		 * "1", and then raising and then lowering the clock (the SK
1495		 * bit controls the clock input to the EEPROM).  A "0" is
1496		 * shifted out to the EEPROM by setting "DI" to "0" and then
1497		 * raising and then lowering the clock.
1498		 */
1499		if (data & mask)
1500			eec |= IXGBE_EEC_DI;
1501		else
1502			eec &= ~IXGBE_EEC_DI;
1503
1504		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1505		IXGBE_WRITE_FLUSH(hw);
1506
1507		udelay(1);
1508
1509		ixgbe_raise_eeprom_clk(hw, &eec);
1510		ixgbe_lower_eeprom_clk(hw, &eec);
1511
1512		/*
1513		 * Shift mask to signify next bit of data to shift in to the
1514		 * EEPROM
1515		 */
1516		mask = mask >> 1;
1517	}
1518
1519	/* We leave the "DI" bit set to "0" when we leave this routine. */
1520	eec &= ~IXGBE_EEC_DI;
1521	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1522	IXGBE_WRITE_FLUSH(hw);
1523}
1524
1525/**
1526 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1527 *  @hw: pointer to hardware structure
1528 **/
1529static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1530{
1531	u32 eec;
1532	u32 i;
1533	u16 data = 0;
1534
1535	/*
1536	 * In order to read a register from the EEPROM, we need to shift
1537	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1538	 * the clock input to the EEPROM (setting the SK bit), and then reading
1539	 * the value of the "DO" bit.  During this "shifting in" process the
1540	 * "DI" bit should always be clear.
1541	 */
1542	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1543
1544	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1545
1546	for (i = 0; i < count; i++) {
1547		data = data << 1;
1548		ixgbe_raise_eeprom_clk(hw, &eec);
1549
1550		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1551
1552		eec &= ~(IXGBE_EEC_DI);
1553		if (eec & IXGBE_EEC_DO)
1554			data |= 1;
1555
1556		ixgbe_lower_eeprom_clk(hw, &eec);
1557	}
1558
1559	return data;
1560}
1561
1562/**
1563 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1564 *  @hw: pointer to hardware structure
1565 *  @eec: EEC register's current value
1566 **/
1567static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1568{
1569	/*
1570	 * Raise the clock input to the EEPROM
1571	 * (setting the SK bit), then delay
1572	 */
1573	*eec = *eec | IXGBE_EEC_SK;
1574	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1575	IXGBE_WRITE_FLUSH(hw);
1576	udelay(1);
1577}
1578
1579/**
1580 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1581 *  @hw: pointer to hardware structure
1582 *  @eecd: EECD's current value
1583 **/
1584static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1585{
1586	/*
1587	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1588	 * delay
1589	 */
1590	*eec = *eec & ~IXGBE_EEC_SK;
1591	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1592	IXGBE_WRITE_FLUSH(hw);
1593	udelay(1);
1594}
1595
1596/**
1597 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1598 *  @hw: pointer to hardware structure
1599 **/
1600static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1601{
1602	u32 eec;
1603
1604	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1605
1606	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1607	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1608
1609	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1610	IXGBE_WRITE_FLUSH(hw);
1611
1612	udelay(1);
1613
1614	/* Stop requesting EEPROM access */
1615	eec &= ~IXGBE_EEC_REQ;
1616	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1617
1618	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1619
1620	/*
1621	 * Delay before attempt to obtain semaphore again to allow FW
1622	 * access. semaphore_delay is in ms we need us for usleep_range
1623	 */
1624	usleep_range(hw->eeprom.semaphore_delay * 1000,
1625		     hw->eeprom.semaphore_delay * 2000);
1626}
1627
1628/**
1629 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1630 *  @hw: pointer to hardware structure
1631 **/
1632s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1633{
1634	u16 i;
1635	u16 j;
1636	u16 checksum = 0;
1637	u16 length = 0;
1638	u16 pointer = 0;
1639	u16 word = 0;
1640
1641	/* Include 0x0-0x3F in the checksum */
1642	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1643		if (hw->eeprom.ops.read(hw, i, &word)) {
1644			hw_dbg(hw, "EEPROM read failed\n");
1645			break;
1646		}
1647		checksum += word;
1648	}
1649
1650	/* Include all data from pointers except for the fw pointer */
1651	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1652		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1653			hw_dbg(hw, "EEPROM read failed\n");
1654			return IXGBE_ERR_EEPROM;
1655		}
1656
1657		/* If the pointer seems invalid */
1658		if (pointer == 0xFFFF || pointer == 0)
1659			continue;
1660
1661		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1662			hw_dbg(hw, "EEPROM read failed\n");
1663			return IXGBE_ERR_EEPROM;
1664		}
1665
1666		if (length == 0xFFFF || length == 0)
1667			continue;
1668
1669		for (j = pointer + 1; j <= pointer + length; j++) {
1670			if (hw->eeprom.ops.read(hw, j, &word)) {
1671				hw_dbg(hw, "EEPROM read failed\n");
1672				return IXGBE_ERR_EEPROM;
1673			}
1674			checksum += word;
1675		}
1676	}
1677
1678	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1679
1680	return (s32)checksum;
1681}
1682
1683/**
1684 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1685 *  @hw: pointer to hardware structure
1686 *  @checksum_val: calculated checksum
1687 *
1688 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1689 *  caller does not need checksum_val, the value can be NULL.
1690 **/
1691s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1692					   u16 *checksum_val)
1693{
1694	s32 status;
1695	u16 checksum;
1696	u16 read_checksum = 0;
1697
1698	/*
1699	 * Read the first word from the EEPROM. If this times out or fails, do
1700	 * not continue or we could be in for a very long wait while every
1701	 * EEPROM read fails
1702	 */
1703	status = hw->eeprom.ops.read(hw, 0, &checksum);
1704	if (status) {
1705		hw_dbg(hw, "EEPROM read failed\n");
1706		return status;
1707	}
1708
1709	status = hw->eeprom.ops.calc_checksum(hw);
1710	if (status < 0)
1711		return status;
1712
1713	checksum = (u16)(status & 0xffff);
1714
1715	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1716	if (status) {
1717		hw_dbg(hw, "EEPROM read failed\n");
1718		return status;
1719	}
1720
1721	/* Verify read checksum from EEPROM is the same as
1722	 * calculated checksum
1723	 */
1724	if (read_checksum != checksum)
1725		status = IXGBE_ERR_EEPROM_CHECKSUM;
1726
1727	/* If the user cares, return the calculated checksum */
1728	if (checksum_val)
1729		*checksum_val = checksum;
1730
1731	return status;
1732}
1733
1734/**
1735 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1736 *  @hw: pointer to hardware structure
1737 **/
1738s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1739{
1740	s32 status;
1741	u16 checksum;
1742
1743	/*
1744	 * Read the first word from the EEPROM. If this times out or fails, do
1745	 * not continue or we could be in for a very long wait while every
1746	 * EEPROM read fails
1747	 */
1748	status = hw->eeprom.ops.read(hw, 0, &checksum);
1749	if (status) {
1750		hw_dbg(hw, "EEPROM read failed\n");
1751		return status;
1752	}
1753
1754	status = hw->eeprom.ops.calc_checksum(hw);
1755	if (status < 0)
1756		return status;
1757
1758	checksum = (u16)(status & 0xffff);
1759
1760	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1761
1762	return status;
1763}
1764
1765/**
1766 *  ixgbe_set_rar_generic - Set Rx address register
1767 *  @hw: pointer to hardware structure
1768 *  @index: Receive address register to write
1769 *  @addr: Address to put into receive address register
1770 *  @vmdq: VMDq "set" or "pool" index
1771 *  @enable_addr: set flag that address is active
1772 *
1773 *  Puts an ethernet address into a receive address register.
1774 **/
1775s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1776			  u32 enable_addr)
1777{
1778	u32 rar_low, rar_high;
1779	u32 rar_entries = hw->mac.num_rar_entries;
1780
1781	/* Make sure we are using a valid rar index range */
1782	if (index >= rar_entries) {
1783		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1784		return IXGBE_ERR_INVALID_ARGUMENT;
1785	}
1786
1787	/* setup VMDq pool selection before this RAR gets enabled */
1788	hw->mac.ops.set_vmdq(hw, index, vmdq);
1789
1790	/*
1791	 * HW expects these in little endian so we reverse the byte
1792	 * order from network order (big endian) to little endian
1793	 */
1794	rar_low = ((u32)addr[0] |
1795		   ((u32)addr[1] << 8) |
1796		   ((u32)addr[2] << 16) |
1797		   ((u32)addr[3] << 24));
1798	/*
1799	 * Some parts put the VMDq setting in the extra RAH bits,
1800	 * so save everything except the lower 16 bits that hold part
1801	 * of the address and the address valid bit.
1802	 */
1803	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1804	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1805	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1806
1807	if (enable_addr != 0)
1808		rar_high |= IXGBE_RAH_AV;
1809
1810	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1811	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1812
1813	return 0;
1814}
1815
1816/**
1817 *  ixgbe_clear_rar_generic - Remove Rx address register
1818 *  @hw: pointer to hardware structure
1819 *  @index: Receive address register to write
1820 *
1821 *  Clears an ethernet address from a receive address register.
1822 **/
1823s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1824{
1825	u32 rar_high;
1826	u32 rar_entries = hw->mac.num_rar_entries;
1827
1828	/* Make sure we are using a valid rar index range */
1829	if (index >= rar_entries) {
1830		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1831		return IXGBE_ERR_INVALID_ARGUMENT;
1832	}
1833
1834	/*
1835	 * Some parts put the VMDq setting in the extra RAH bits,
1836	 * so save everything except the lower 16 bits that hold part
1837	 * of the address and the address valid bit.
1838	 */
1839	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1840	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1841
1842	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1843	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1844
1845	/* clear VMDq pool/queue selection for this RAR */
1846	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1847
1848	return 0;
1849}
1850
1851/**
1852 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1853 *  @hw: pointer to hardware structure
1854 *
1855 *  Places the MAC address in receive address register 0 and clears the rest
1856 *  of the receive address registers. Clears the multicast table. Assumes
1857 *  the receiver is in reset when the routine is called.
1858 **/
1859s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1860{
1861	u32 i;
1862	u32 rar_entries = hw->mac.num_rar_entries;
1863
1864	/*
1865	 * If the current mac address is valid, assume it is a software override
1866	 * to the permanent address.
1867	 * Otherwise, use the permanent address from the eeprom.
1868	 */
1869	if (!is_valid_ether_addr(hw->mac.addr)) {
1870		/* Get the MAC address from the RAR0 for later reference */
1871		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1872
1873		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1874	} else {
1875		/* Setup the receive address. */
1876		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1877		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1878
1879		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1880
1881		/*  clear VMDq pool/queue selection for RAR 0 */
1882		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1883	}
1884	hw->addr_ctrl.overflow_promisc = 0;
1885
1886	hw->addr_ctrl.rar_used_count = 1;
1887
1888	/* Zero out the other receive addresses. */
1889	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1890	for (i = 1; i < rar_entries; i++) {
1891		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1892		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1893	}
1894
1895	/* Clear the MTA */
1896	hw->addr_ctrl.mta_in_use = 0;
1897	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1898
1899	hw_dbg(hw, " Clearing MTA\n");
1900	for (i = 0; i < hw->mac.mcft_size; i++)
1901		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1902
1903	if (hw->mac.ops.init_uta_tables)
1904		hw->mac.ops.init_uta_tables(hw);
1905
1906	return 0;
1907}
1908
1909/**
1910 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1911 *  @hw: pointer to hardware structure
1912 *  @mc_addr: the multicast address
1913 *
1914 *  Extracts the 12 bits, from a multicast address, to determine which
1915 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1916 *  incoming rx multicast addresses, to determine the bit-vector to check in
1917 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1918 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1919 *  to mc_filter_type.
1920 **/
1921static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1922{
1923	u32 vector = 0;
1924
1925	switch (hw->mac.mc_filter_type) {
1926	case 0:   /* use bits [47:36] of the address */
1927		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1928		break;
1929	case 1:   /* use bits [46:35] of the address */
1930		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1931		break;
1932	case 2:   /* use bits [45:34] of the address */
1933		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1934		break;
1935	case 3:   /* use bits [43:32] of the address */
1936		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1937		break;
1938	default:  /* Invalid mc_filter_type */
1939		hw_dbg(hw, "MC filter type param set incorrectly\n");
1940		break;
1941	}
1942
1943	/* vector can only be 12-bits or boundary will be exceeded */
1944	vector &= 0xFFF;
1945	return vector;
1946}
1947
1948/**
1949 *  ixgbe_set_mta - Set bit-vector in multicast table
1950 *  @hw: pointer to hardware structure
1951 *  @hash_value: Multicast address hash value
1952 *
1953 *  Sets the bit-vector in the multicast table.
1954 **/
1955static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1956{
1957	u32 vector;
1958	u32 vector_bit;
1959	u32 vector_reg;
1960
1961	hw->addr_ctrl.mta_in_use++;
1962
1963	vector = ixgbe_mta_vector(hw, mc_addr);
1964	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1965
1966	/*
1967	 * The MTA is a register array of 128 32-bit registers. It is treated
1968	 * like an array of 4096 bits.  We want to set bit
1969	 * BitArray[vector_value]. So we figure out what register the bit is
1970	 * in, read it, OR in the new bit, then write back the new value.  The
1971	 * register is determined by the upper 7 bits of the vector value and
1972	 * the bit within that register are determined by the lower 5 bits of
1973	 * the value.
1974	 */
1975	vector_reg = (vector >> 5) & 0x7F;
1976	vector_bit = vector & 0x1F;
1977	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1978}
1979
1980/**
1981 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1982 *  @hw: pointer to hardware structure
1983 *  @netdev: pointer to net device structure
1984 *
1985 *  The given list replaces any existing list. Clears the MC addrs from receive
1986 *  address registers and the multicast table. Uses unused receive address
1987 *  registers for the first multicast addresses, and hashes the rest into the
1988 *  multicast table.
1989 **/
1990s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1991				      struct net_device *netdev)
1992{
1993	struct netdev_hw_addr *ha;
1994	u32 i;
1995
1996	/*
1997	 * Set the new number of MC addresses that we are being requested to
1998	 * use.
1999	 */
2000	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2001	hw->addr_ctrl.mta_in_use = 0;
2002
2003	/* Clear mta_shadow */
2004	hw_dbg(hw, " Clearing MTA\n");
2005	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2006
2007	/* Update mta shadow */
2008	netdev_for_each_mc_addr(ha, netdev) {
2009		hw_dbg(hw, " Adding the multicast addresses:\n");
2010		ixgbe_set_mta(hw, ha->addr);
2011	}
2012
2013	/* Enable mta */
2014	for (i = 0; i < hw->mac.mcft_size; i++)
2015		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2016				      hw->mac.mta_shadow[i]);
2017
2018	if (hw->addr_ctrl.mta_in_use > 0)
2019		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2020				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2021
2022	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2023	return 0;
2024}
2025
2026/**
2027 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2028 *  @hw: pointer to hardware structure
2029 *
2030 *  Enables multicast address in RAR and the use of the multicast hash table.
2031 **/
2032s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2033{
2034	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2035
2036	if (a->mta_in_use > 0)
2037		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2038				hw->mac.mc_filter_type);
2039
2040	return 0;
2041}
2042
2043/**
2044 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2045 *  @hw: pointer to hardware structure
2046 *
2047 *  Disables multicast address in RAR and the use of the multicast hash table.
2048 **/
2049s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2050{
2051	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2052
2053	if (a->mta_in_use > 0)
2054		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2055
2056	return 0;
2057}
2058
2059/**
2060 *  ixgbe_fc_enable_generic - Enable flow control
2061 *  @hw: pointer to hardware structure
2062 *
2063 *  Enable flow control according to the current settings.
2064 **/
2065s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2066{
2067	u32 mflcn_reg, fccfg_reg;
2068	u32 reg;
2069	u32 fcrtl, fcrth;
2070	int i;
2071
2072	/* Validate the water mark configuration. */
2073	if (!hw->fc.pause_time)
2074		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2075
2076	/* Low water mark of zero causes XOFF floods */
2077	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2078		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2079		    hw->fc.high_water[i]) {
2080			if (!hw->fc.low_water[i] ||
2081			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2082				hw_dbg(hw, "Invalid water mark configuration\n");
2083				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2084			}
2085		}
2086	}
2087
2088	/* Negotiate the fc mode to use */
2089	ixgbe_fc_autoneg(hw);
2090
2091	/* Disable any previous flow control settings */
2092	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2093	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2094
2095	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2096	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2097
2098	/*
2099	 * The possible values of fc.current_mode are:
2100	 * 0: Flow control is completely disabled
2101	 * 1: Rx flow control is enabled (we can receive pause frames,
2102	 *    but not send pause frames).
2103	 * 2: Tx flow control is enabled (we can send pause frames but
2104	 *    we do not support receiving pause frames).
2105	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2106	 * other: Invalid.
2107	 */
2108	switch (hw->fc.current_mode) {
2109	case ixgbe_fc_none:
2110		/*
2111		 * Flow control is disabled by software override or autoneg.
2112		 * The code below will actually disable it in the HW.
2113		 */
2114		break;
2115	case ixgbe_fc_rx_pause:
2116		/*
2117		 * Rx Flow control is enabled and Tx Flow control is
2118		 * disabled by software override. Since there really
2119		 * isn't a way to advertise that we are capable of RX
2120		 * Pause ONLY, we will advertise that we support both
2121		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2122		 * disable the adapter's ability to send PAUSE frames.
2123		 */
2124		mflcn_reg |= IXGBE_MFLCN_RFCE;
2125		break;
2126	case ixgbe_fc_tx_pause:
2127		/*
2128		 * Tx Flow control is enabled, and Rx Flow control is
2129		 * disabled by software override.
2130		 */
2131		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2132		break;
2133	case ixgbe_fc_full:
2134		/* Flow control (both Rx and Tx) is enabled by SW override. */
2135		mflcn_reg |= IXGBE_MFLCN_RFCE;
2136		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2137		break;
2138	default:
2139		hw_dbg(hw, "Flow control param set incorrectly\n");
2140		return IXGBE_ERR_CONFIG;
2141	}
2142
2143	/* Set 802.3x based flow control settings. */
2144	mflcn_reg |= IXGBE_MFLCN_DPF;
2145	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2146	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2147
2148	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2149	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2150		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2151		    hw->fc.high_water[i]) {
2152			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2153			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2154			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2155		} else {
2156			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2157			/*
2158			 * In order to prevent Tx hangs when the internal Tx
2159			 * switch is enabled we must set the high water mark
2160			 * to the maximum FCRTH value.  This allows the Tx
2161			 * switch to function even under heavy Rx workloads.
2162			 */
2163			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2164		}
2165
2166		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2167	}
2168
2169	/* Configure pause time (2 TCs per register) */
2170	reg = hw->fc.pause_time * 0x00010001;
2171	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2172		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2173
2174	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2175
2176	return 0;
2177}
2178
2179/**
2180 *  ixgbe_negotiate_fc - Negotiate flow control
2181 *  @hw: pointer to hardware structure
2182 *  @adv_reg: flow control advertised settings
2183 *  @lp_reg: link partner's flow control settings
2184 *  @adv_sym: symmetric pause bit in advertisement
2185 *  @adv_asm: asymmetric pause bit in advertisement
2186 *  @lp_sym: symmetric pause bit in link partner advertisement
2187 *  @lp_asm: asymmetric pause bit in link partner advertisement
2188 *
2189 *  Find the intersection between advertised settings and link partner's
2190 *  advertised settings
2191 **/
2192static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2193			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2194{
2195	if ((!(adv_reg)) ||  (!(lp_reg)))
2196		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2197
2198	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2199		/*
2200		 * Now we need to check if the user selected Rx ONLY
2201		 * of pause frames.  In this case, we had to advertise
2202		 * FULL flow control because we could not advertise RX
2203		 * ONLY. Hence, we must now check to see if we need to
2204		 * turn OFF the TRANSMISSION of PAUSE frames.
2205		 */
2206		if (hw->fc.requested_mode == ixgbe_fc_full) {
2207			hw->fc.current_mode = ixgbe_fc_full;
2208			hw_dbg(hw, "Flow Control = FULL.\n");
2209		} else {
2210			hw->fc.current_mode = ixgbe_fc_rx_pause;
2211			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2212		}
2213	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2214		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2215		hw->fc.current_mode = ixgbe_fc_tx_pause;
2216		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2217	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2218		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2219		hw->fc.current_mode = ixgbe_fc_rx_pause;
2220		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2221	} else {
2222		hw->fc.current_mode = ixgbe_fc_none;
2223		hw_dbg(hw, "Flow Control = NONE.\n");
2224	}
2225	return 0;
2226}
2227
2228/**
2229 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2230 *  @hw: pointer to hardware structure
2231 *
2232 *  Enable flow control according on 1 gig fiber.
2233 **/
2234static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2235{
2236	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2237	s32 ret_val;
2238
2239	/*
2240	 * On multispeed fiber at 1g, bail out if
2241	 * - link is up but AN did not complete, or if
2242	 * - link is up and AN completed but timed out
2243	 */
2244
2245	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2246	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2247	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2248		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2249
2250	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2251	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2252
2253	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2254			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2255			       IXGBE_PCS1GANA_ASM_PAUSE,
2256			       IXGBE_PCS1GANA_SYM_PAUSE,
2257			       IXGBE_PCS1GANA_ASM_PAUSE);
2258
2259	return ret_val;
2260}
2261
2262/**
2263 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2264 *  @hw: pointer to hardware structure
2265 *
2266 *  Enable flow control according to IEEE clause 37.
2267 **/
2268static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2269{
2270	u32 links2, anlp1_reg, autoc_reg, links;
2271	s32 ret_val;
2272
2273	/*
2274	 * On backplane, bail out if
2275	 * - backplane autoneg was not completed, or if
2276	 * - we are 82599 and link partner is not AN enabled
2277	 */
2278	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2279	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2280		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2281
2282	if (hw->mac.type == ixgbe_mac_82599EB) {
2283		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2284		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2285			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2286	}
2287	/*
2288	 * Read the 10g AN autoc and LP ability registers and resolve
2289	 * local flow control settings accordingly
2290	 */
2291	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2292	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2293
2294	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2295		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2296		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2297
2298	return ret_val;
2299}
2300
2301/**
2302 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2303 *  @hw: pointer to hardware structure
2304 *
2305 *  Enable flow control according to IEEE clause 37.
2306 **/
2307static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2308{
2309	u16 technology_ability_reg = 0;
2310	u16 lp_technology_ability_reg = 0;
2311
2312	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2313			     MDIO_MMD_AN,
2314			     &technology_ability_reg);
2315	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2316			     MDIO_MMD_AN,
2317			     &lp_technology_ability_reg);
2318
2319	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2320				  (u32)lp_technology_ability_reg,
2321				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2322				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2323}
2324
2325/**
2326 *  ixgbe_fc_autoneg - Configure flow control
2327 *  @hw: pointer to hardware structure
2328 *
2329 *  Compares our advertised flow control capabilities to those advertised by
2330 *  our link partner, and determines the proper flow control mode to use.
2331 **/
2332void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2333{
2334	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2335	ixgbe_link_speed speed;
2336	bool link_up;
2337
2338	/*
2339	 * AN should have completed when the cable was plugged in.
2340	 * Look for reasons to bail out.  Bail out if:
2341	 * - FC autoneg is disabled, or if
2342	 * - link is not up.
2343	 *
2344	 * Since we're being called from an LSC, link is already known to be up.
2345	 * So use link_up_wait_to_complete=false.
2346	 */
2347	if (hw->fc.disable_fc_autoneg)
2348		goto out;
2349
2350	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2351	if (!link_up)
2352		goto out;
2353
2354	switch (hw->phy.media_type) {
2355	/* Autoneg flow control on fiber adapters */
2356	case ixgbe_media_type_fiber:
2357		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2358			ret_val = ixgbe_fc_autoneg_fiber(hw);
2359		break;
2360
2361	/* Autoneg flow control on backplane adapters */
2362	case ixgbe_media_type_backplane:
2363		ret_val = ixgbe_fc_autoneg_backplane(hw);
2364		break;
2365
2366	/* Autoneg flow control on copper adapters */
2367	case ixgbe_media_type_copper:
2368		if (ixgbe_device_supports_autoneg_fc(hw))
2369			ret_val = ixgbe_fc_autoneg_copper(hw);
2370		break;
2371
2372	default:
2373		break;
2374	}
2375
2376out:
2377	if (ret_val == 0) {
2378		hw->fc.fc_was_autonegged = true;
2379	} else {
2380		hw->fc.fc_was_autonegged = false;
2381		hw->fc.current_mode = hw->fc.requested_mode;
2382	}
2383}
2384
2385/**
2386 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2387 * @hw: pointer to hardware structure
2388 *
2389 * System-wide timeout range is encoded in PCIe Device Control2 register.
2390 *
2391 *  Add 10% to specified maximum and return the number of times to poll for
2392 *  completion timeout, in units of 100 microsec.  Never return less than
2393 *  800 = 80 millisec.
2394 **/
2395static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2396{
2397	s16 devctl2;
2398	u32 pollcnt;
2399
2400	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2401	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2402
2403	switch (devctl2) {
2404	case IXGBE_PCIDEVCTRL2_65_130ms:
2405		 pollcnt = 1300;         /* 130 millisec */
2406		break;
2407	case IXGBE_PCIDEVCTRL2_260_520ms:
2408		pollcnt = 5200;         /* 520 millisec */
2409		break;
2410	case IXGBE_PCIDEVCTRL2_1_2s:
2411		pollcnt = 20000;        /* 2 sec */
2412		break;
2413	case IXGBE_PCIDEVCTRL2_4_8s:
2414		pollcnt = 80000;        /* 8 sec */
2415		break;
2416	case IXGBE_PCIDEVCTRL2_17_34s:
2417		pollcnt = 34000;        /* 34 sec */
2418		break;
2419	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2420	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2421	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2422	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2423	default:
2424		pollcnt = 800;          /* 80 millisec minimum */
2425		break;
2426	}
2427
2428	/* add 10% to spec maximum */
2429	return (pollcnt * 11) / 10;
2430}
2431
2432/**
2433 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2434 *  @hw: pointer to hardware structure
2435 *
2436 *  Disables PCI-Express master access and verifies there are no pending
2437 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2438 *  bit hasn't caused the master requests to be disabled, else 0
2439 *  is returned signifying master requests disabled.
2440 **/
2441static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2442{
2443	u32 i, poll;
2444	u16 value;
2445
2446	/* Always set this bit to ensure any future transactions are blocked */
2447	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2448
2449	/* Exit if master requests are blocked */
2450	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2451	    ixgbe_removed(hw->hw_addr))
2452		return 0;
2453
2454	/* Poll for master request bit to clear */
2455	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2456		udelay(100);
2457		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2458			return 0;
2459	}
2460
2461	/*
2462	 * Two consecutive resets are required via CTRL.RST per datasheet
2463	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2464	 * of this need.  The first reset prevents new master requests from
2465	 * being issued by our device.  We then must wait 1usec or more for any
2466	 * remaining completions from the PCIe bus to trickle in, and then reset
2467	 * again to clear out any effects they may have had on our device.
2468	 */
2469	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2470	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2471
2472	/*
2473	 * Before proceeding, make sure that the PCIe block does not have
2474	 * transactions pending.
2475	 */
2476	poll = ixgbe_pcie_timeout_poll(hw);
2477	for (i = 0; i < poll; i++) {
2478		udelay(100);
2479		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2480		if (ixgbe_removed(hw->hw_addr))
2481			return 0;
2482		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2483			return 0;
2484	}
2485
2486	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2487	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2488}
2489
2490/**
2491 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2492 *  @hw: pointer to hardware structure
2493 *  @mask: Mask to specify which semaphore to acquire
2494 *
2495 *  Acquires the SWFW semaphore through the GSSR register for the specified
2496 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2497 **/
2498s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2499{
2500	u32 gssr = 0;
2501	u32 swmask = mask;
2502	u32 fwmask = mask << 5;
2503	u32 timeout = 200;
2504	u32 i;
2505
2506	for (i = 0; i < timeout; i++) {
2507		/*
2508		 * SW NVM semaphore bit is used for access to all
2509		 * SW_FW_SYNC bits (not just NVM)
2510		 */
2511		if (ixgbe_get_eeprom_semaphore(hw))
2512			return IXGBE_ERR_SWFW_SYNC;
2513
2514		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2515		if (!(gssr & (fwmask | swmask))) {
2516			gssr |= swmask;
2517			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2518			ixgbe_release_eeprom_semaphore(hw);
2519			return 0;
2520		} else {
2521			/* Resource is currently in use by FW or SW */
2522			ixgbe_release_eeprom_semaphore(hw);
2523			usleep_range(5000, 10000);
2524		}
2525	}
2526
2527	/* If time expired clear the bits holding the lock and retry */
2528	if (gssr & (fwmask | swmask))
2529		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2530
2531	usleep_range(5000, 10000);
2532	return IXGBE_ERR_SWFW_SYNC;
2533}
2534
2535/**
2536 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2537 *  @hw: pointer to hardware structure
2538 *  @mask: Mask to specify which semaphore to release
2539 *
2540 *  Releases the SWFW semaphore through the GSSR register for the specified
2541 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2542 **/
2543void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2544{
2545	u32 gssr;
2546	u32 swmask = mask;
2547
2548	ixgbe_get_eeprom_semaphore(hw);
2549
2550	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2551	gssr &= ~swmask;
2552	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2553
2554	ixgbe_release_eeprom_semaphore(hw);
2555}
2556
2557/**
2558 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2559 * @hw: pointer to hardware structure
2560 * @reg_val: Value we read from AUTOC
2561 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2562 *	    true in this the generic case.
2563 *
2564 * The default case requires no protection so just to the register read.
2565 **/
2566s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2567{
2568	*locked = false;
2569	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2570	return 0;
2571}
2572
2573/**
2574 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2575 * @hw: pointer to hardware structure
2576 * @reg_val: value to write to AUTOC
2577 * @locked: bool to indicate whether the SW/FW lock was already taken by
2578 *	    previous read.
2579 **/
2580s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2581{
2582	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2583	return 0;
2584}
2585
2586/**
2587 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2588 *  @hw: pointer to hardware structure
2589 *
2590 *  Stops the receive data path and waits for the HW to internally
2591 *  empty the Rx security block.
2592 **/
2593s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2594{
2595#define IXGBE_MAX_SECRX_POLL 40
2596	int i;
2597	int secrxreg;
2598
2599	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2600	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2601	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2602	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2603		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2604		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2605			break;
2606		else
2607			/* Use interrupt-safe sleep just in case */
2608			udelay(1000);
2609	}
2610
2611	/* For informational purposes only */
2612	if (i >= IXGBE_MAX_SECRX_POLL)
2613		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2614
2615	return 0;
2616
2617}
2618
2619/**
2620 *  ixgbe_enable_rx_buff - Enables the receive data path
2621 *  @hw: pointer to hardware structure
2622 *
2623 *  Enables the receive data path
2624 **/
2625s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2626{
2627	int secrxreg;
2628
2629	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2630	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2631	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2632	IXGBE_WRITE_FLUSH(hw);
2633
2634	return 0;
2635}
2636
2637/**
2638 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2639 *  @hw: pointer to hardware structure
2640 *  @regval: register value to write to RXCTRL
2641 *
2642 *  Enables the Rx DMA unit
2643 **/
2644s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2645{
2646	if (regval & IXGBE_RXCTRL_RXEN)
2647		hw->mac.ops.enable_rx(hw);
2648	else
2649		hw->mac.ops.disable_rx(hw);
2650
2651	return 0;
2652}
2653
2654/**
2655 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2656 *  @hw: pointer to hardware structure
2657 *  @index: led number to blink
2658 **/
2659s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2660{
2661	ixgbe_link_speed speed = 0;
2662	bool link_up = false;
2663	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2664	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2665	bool locked = false;
2666	s32 ret_val;
2667
2668	/*
2669	 * Link must be up to auto-blink the LEDs;
2670	 * Force it if link is down.
2671	 */
2672	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2673
2674	if (!link_up) {
2675		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2676		if (ret_val)
2677			return ret_val;
2678
2679		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2680		autoc_reg |= IXGBE_AUTOC_FLU;
2681
2682		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2683		if (ret_val)
2684			return ret_val;
2685
2686		IXGBE_WRITE_FLUSH(hw);
2687
2688		usleep_range(10000, 20000);
2689	}
2690
2691	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2692	led_reg |= IXGBE_LED_BLINK(index);
2693	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2694	IXGBE_WRITE_FLUSH(hw);
2695
2696	return 0;
2697}
2698
2699/**
2700 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2701 *  @hw: pointer to hardware structure
2702 *  @index: led number to stop blinking
2703 **/
2704s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2705{
2706	u32 autoc_reg = 0;
2707	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2708	bool locked = false;
2709	s32 ret_val;
2710
2711	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2712	if (ret_val)
2713		return ret_val;
2714
2715	autoc_reg &= ~IXGBE_AUTOC_FLU;
2716	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2717
2718	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2719	if (ret_val)
2720		return ret_val;
2721
2722	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2723	led_reg &= ~IXGBE_LED_BLINK(index);
2724	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2725	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2726	IXGBE_WRITE_FLUSH(hw);
2727
2728	return 0;
2729}
2730
2731/**
2732 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2733 *  @hw: pointer to hardware structure
2734 *  @san_mac_offset: SAN MAC address offset
2735 *
2736 *  This function will read the EEPROM location for the SAN MAC address
2737 *  pointer, and returns the value at that location.  This is used in both
2738 *  get and set mac_addr routines.
2739 **/
2740static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2741					u16 *san_mac_offset)
2742{
2743	s32 ret_val;
2744
2745	/*
2746	 * First read the EEPROM pointer to see if the MAC addresses are
2747	 * available.
2748	 */
2749	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2750				      san_mac_offset);
2751	if (ret_val)
2752		hw_err(hw, "eeprom read at offset %d failed\n",
2753		       IXGBE_SAN_MAC_ADDR_PTR);
2754
2755	return ret_val;
2756}
2757
2758/**
2759 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2760 *  @hw: pointer to hardware structure
2761 *  @san_mac_addr: SAN MAC address
2762 *
2763 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2764 *  per-port, so set_lan_id() must be called before reading the addresses.
2765 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2766 *  upon for non-SFP connections, so we must call it here.
2767 **/
2768s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2769{
2770	u16 san_mac_data, san_mac_offset;
2771	u8 i;
2772	s32 ret_val;
2773
2774	/*
2775	 * First read the EEPROM pointer to see if the MAC addresses are
2776	 * available.  If they're not, no point in calling set_lan_id() here.
2777	 */
2778	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2779	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2780
2781		goto san_mac_addr_clr;
2782
2783	/* make sure we know which port we need to program */
2784	hw->mac.ops.set_lan_id(hw);
2785	/* apply the port offset to the address offset */
2786	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2787			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2788	for (i = 0; i < 3; i++) {
2789		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2790					      &san_mac_data);
2791		if (ret_val) {
2792			hw_err(hw, "eeprom read at offset %d failed\n",
2793			       san_mac_offset);
2794			goto san_mac_addr_clr;
2795		}
2796		san_mac_addr[i * 2] = (u8)(san_mac_data);
2797		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2798		san_mac_offset++;
2799	}
2800	return 0;
2801
2802san_mac_addr_clr:
2803	/* No addresses available in this EEPROM.  It's not necessarily an
2804	 * error though, so just wipe the local address and return.
2805	 */
2806	for (i = 0; i < 6; i++)
2807		san_mac_addr[i] = 0xFF;
2808	return ret_val;
2809}
2810
2811/**
2812 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2813 *  @hw: pointer to hardware structure
2814 *
2815 *  Read PCIe configuration space, and get the MSI-X vector count from
2816 *  the capabilities table.
2817 **/
2818u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2819{
2820	u16 msix_count;
2821	u16 max_msix_count;
2822	u16 pcie_offset;
2823
2824	switch (hw->mac.type) {
2825	case ixgbe_mac_82598EB:
2826		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2827		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2828		break;
2829	case ixgbe_mac_82599EB:
2830	case ixgbe_mac_X540:
2831	case ixgbe_mac_X550:
2832	case ixgbe_mac_X550EM_x:
2833		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2834		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2835		break;
2836	default:
2837		return 1;
2838	}
2839
2840	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2841	if (ixgbe_removed(hw->hw_addr))
2842		msix_count = 0;
2843	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2844
2845	/* MSI-X count is zero-based in HW */
2846	msix_count++;
2847
2848	if (msix_count > max_msix_count)
2849		msix_count = max_msix_count;
2850
2851	return msix_count;
2852}
2853
2854/**
2855 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2856 *  @hw: pointer to hardware struct
2857 *  @rar: receive address register index to disassociate
2858 *  @vmdq: VMDq pool index to remove from the rar
2859 **/
2860s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2861{
2862	u32 mpsar_lo, mpsar_hi;
2863	u32 rar_entries = hw->mac.num_rar_entries;
2864
2865	/* Make sure we are using a valid rar index range */
2866	if (rar >= rar_entries) {
2867		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2868		return IXGBE_ERR_INVALID_ARGUMENT;
2869	}
2870
2871	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2872	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2873
2874	if (ixgbe_removed(hw->hw_addr))
2875		return 0;
2876
2877	if (!mpsar_lo && !mpsar_hi)
2878		return 0;
2879
2880	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2881		if (mpsar_lo) {
2882			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2883			mpsar_lo = 0;
2884		}
2885		if (mpsar_hi) {
2886			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2887			mpsar_hi = 0;
2888		}
2889	} else if (vmdq < 32) {
2890		mpsar_lo &= ~(1 << vmdq);
2891		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2892	} else {
2893		mpsar_hi &= ~(1 << (vmdq - 32));
2894		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2895	}
2896
2897	/* was that the last pool using this rar? */
2898	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2899		hw->mac.ops.clear_rar(hw, rar);
2900	return 0;
2901}
2902
2903/**
2904 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2905 *  @hw: pointer to hardware struct
2906 *  @rar: receive address register index to associate with a VMDq index
2907 *  @vmdq: VMDq pool index
2908 **/
2909s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2910{
2911	u32 mpsar;
2912	u32 rar_entries = hw->mac.num_rar_entries;
2913
2914	/* Make sure we are using a valid rar index range */
2915	if (rar >= rar_entries) {
2916		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2917		return IXGBE_ERR_INVALID_ARGUMENT;
2918	}
2919
2920	if (vmdq < 32) {
2921		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2922		mpsar |= 1 << vmdq;
2923		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2924	} else {
2925		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2926		mpsar |= 1 << (vmdq - 32);
2927		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2928	}
2929	return 0;
2930}
2931
2932/**
2933 *  This function should only be involved in the IOV mode.
2934 *  In IOV mode, Default pool is next pool after the number of
2935 *  VFs advertized and not 0.
2936 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2937 *
2938 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2939 *  @hw: pointer to hardware struct
2940 *  @vmdq: VMDq pool index
2941 **/
2942s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2943{
2944	u32 rar = hw->mac.san_mac_rar_index;
2945
2946	if (vmdq < 32) {
2947		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2948		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2949	} else {
2950		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2951		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2952	}
2953
2954	return 0;
2955}
2956
2957/**
2958 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2959 *  @hw: pointer to hardware structure
2960 **/
2961s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2962{
2963	int i;
2964
2965	for (i = 0; i < 128; i++)
2966		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2967
2968	return 0;
2969}
2970
2971/**
2972 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2973 *  @hw: pointer to hardware structure
2974 *  @vlan: VLAN id to write to VLAN filter
2975 *
2976 *  return the VLVF index where this VLAN id should be placed
2977 *
2978 **/
2979static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2980{
2981	u32 bits = 0;
2982	u32 first_empty_slot = 0;
2983	s32 regindex;
2984
2985	/* short cut the special case */
2986	if (vlan == 0)
2987		return 0;
2988
2989	/*
2990	  * Search for the vlan id in the VLVF entries. Save off the first empty
2991	  * slot found along the way
2992	  */
2993	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2994		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2995		if (!bits && !(first_empty_slot))
2996			first_empty_slot = regindex;
2997		else if ((bits & 0x0FFF) == vlan)
2998			break;
2999	}
3000
3001	/*
3002	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3003	  * in the VLVF. Else use the first empty VLVF register for this
3004	  * vlan id.
3005	  */
3006	if (regindex >= IXGBE_VLVF_ENTRIES) {
3007		if (first_empty_slot)
3008			regindex = first_empty_slot;
3009		else {
3010			hw_dbg(hw, "No space in VLVF.\n");
3011			regindex = IXGBE_ERR_NO_SPACE;
3012		}
3013	}
3014
3015	return regindex;
3016}
3017
3018/**
3019 *  ixgbe_set_vfta_generic - Set VLAN filter table
3020 *  @hw: pointer to hardware structure
3021 *  @vlan: VLAN id to write to VLAN filter
3022 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3023 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3024 *
3025 *  Turn on/off specified VLAN in the VLAN filter table.
3026 **/
3027s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3028			   bool vlan_on)
3029{
3030	s32 regindex;
3031	u32 bitindex;
3032	u32 vfta;
3033	u32 bits;
3034	u32 vt;
3035	u32 targetbit;
3036	bool vfta_changed = false;
3037
3038	if (vlan > 4095)
3039		return IXGBE_ERR_PARAM;
3040
3041	/*
3042	 * this is a 2 part operation - first the VFTA, then the
3043	 * VLVF and VLVFB if VT Mode is set
3044	 * We don't write the VFTA until we know the VLVF part succeeded.
3045	 */
3046
3047	/* Part 1
3048	 * The VFTA is a bitstring made up of 128 32-bit registers
3049	 * that enable the particular VLAN id, much like the MTA:
3050	 *    bits[11-5]: which register
3051	 *    bits[4-0]:  which bit in the register
3052	 */
3053	regindex = (vlan >> 5) & 0x7F;
3054	bitindex = vlan & 0x1F;
3055	targetbit = (1 << bitindex);
3056	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3057
3058	if (vlan_on) {
3059		if (!(vfta & targetbit)) {
3060			vfta |= targetbit;
3061			vfta_changed = true;
3062		}
3063	} else {
3064		if ((vfta & targetbit)) {
3065			vfta &= ~targetbit;
3066			vfta_changed = true;
3067		}
3068	}
3069
3070	/* Part 2
3071	 * If VT Mode is set
3072	 *   Either vlan_on
3073	 *     make sure the vlan is in VLVF
3074	 *     set the vind bit in the matching VLVFB
3075	 *   Or !vlan_on
3076	 *     clear the pool bit and possibly the vind
3077	 */
3078	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3079	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3080		s32 vlvf_index;
3081
3082		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3083		if (vlvf_index < 0)
3084			return vlvf_index;
3085
3086		if (vlan_on) {
3087			/* set the pool bit */
3088			if (vind < 32) {
3089				bits = IXGBE_READ_REG(hw,
3090						IXGBE_VLVFB(vlvf_index*2));
3091				bits |= (1 << vind);
3092				IXGBE_WRITE_REG(hw,
3093						IXGBE_VLVFB(vlvf_index*2),
3094						bits);
3095			} else {
3096				bits = IXGBE_READ_REG(hw,
3097						IXGBE_VLVFB((vlvf_index*2)+1));
3098				bits |= (1 << (vind-32));
3099				IXGBE_WRITE_REG(hw,
3100						IXGBE_VLVFB((vlvf_index*2)+1),
3101						bits);
3102			}
3103		} else {
3104			/* clear the pool bit */
3105			if (vind < 32) {
3106				bits = IXGBE_READ_REG(hw,
3107						IXGBE_VLVFB(vlvf_index*2));
3108				bits &= ~(1 << vind);
3109				IXGBE_WRITE_REG(hw,
3110						IXGBE_VLVFB(vlvf_index*2),
3111						bits);
3112				bits |= IXGBE_READ_REG(hw,
3113						IXGBE_VLVFB((vlvf_index*2)+1));
3114			} else {
3115				bits = IXGBE_READ_REG(hw,
3116						IXGBE_VLVFB((vlvf_index*2)+1));
3117				bits &= ~(1 << (vind-32));
3118				IXGBE_WRITE_REG(hw,
3119						IXGBE_VLVFB((vlvf_index*2)+1),
3120						bits);
3121				bits |= IXGBE_READ_REG(hw,
3122						IXGBE_VLVFB(vlvf_index*2));
3123			}
3124		}
3125
3126		/*
3127		 * If there are still bits set in the VLVFB registers
3128		 * for the VLAN ID indicated we need to see if the
3129		 * caller is requesting that we clear the VFTA entry bit.
3130		 * If the caller has requested that we clear the VFTA
3131		 * entry bit but there are still pools/VFs using this VLAN
3132		 * ID entry then ignore the request.  We're not worried
3133		 * about the case where we're turning the VFTA VLAN ID
3134		 * entry bit on, only when requested to turn it off as
3135		 * there may be multiple pools and/or VFs using the
3136		 * VLAN ID entry.  In that case we cannot clear the
3137		 * VFTA bit until all pools/VFs using that VLAN ID have also
3138		 * been cleared.  This will be indicated by "bits" being
3139		 * zero.
3140		 */
3141		if (bits) {
3142			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3143					(IXGBE_VLVF_VIEN | vlan));
3144			if (!vlan_on) {
3145				/* someone wants to clear the vfta entry
3146				 * but some pools/VFs are still using it.
3147				 * Ignore it. */
3148				vfta_changed = false;
3149			}
3150		} else {
3151			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3152		}
3153	}
3154
3155	if (vfta_changed)
3156		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3157
3158	return 0;
3159}
3160
3161/**
3162 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3163 *  @hw: pointer to hardware structure
3164 *
3165 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3166 **/
3167s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3168{
3169	u32 offset;
3170
3171	for (offset = 0; offset < hw->mac.vft_size; offset++)
3172		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3173
3174	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3175		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3176		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3177		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3178	}
3179
3180	return 0;
3181}
3182
3183/**
3184 *  ixgbe_check_mac_link_generic - Determine link and speed status
3185 *  @hw: pointer to hardware structure
3186 *  @speed: pointer to link speed
3187 *  @link_up: true when link is up
3188 *  @link_up_wait_to_complete: bool used to wait for link up or not
3189 *
3190 *  Reads the links register to determine if link is up and the current speed
3191 **/
3192s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3193				 bool *link_up, bool link_up_wait_to_complete)
3194{
3195	u32 links_reg, links_orig;
3196	u32 i;
3197
3198	/* clear the old state */
3199	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3200
3201	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3202
3203	if (links_orig != links_reg) {
3204		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3205		       links_orig, links_reg);
3206	}
3207
3208	if (link_up_wait_to_complete) {
3209		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3210			if (links_reg & IXGBE_LINKS_UP) {
3211				*link_up = true;
3212				break;
3213			} else {
3214				*link_up = false;
3215			}
3216			msleep(100);
3217			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3218		}
3219	} else {
3220		if (links_reg & IXGBE_LINKS_UP)
3221			*link_up = true;
3222		else
3223			*link_up = false;
3224	}
3225
3226	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3227	case IXGBE_LINKS_SPEED_10G_82599:
3228		if ((hw->mac.type >= ixgbe_mac_X550) &&
3229		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3230			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3231		else
3232			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3233		break;
3234	case IXGBE_LINKS_SPEED_1G_82599:
3235		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3236		break;
3237	case IXGBE_LINKS_SPEED_100_82599:
3238		if ((hw->mac.type >= ixgbe_mac_X550) &&
3239		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3240			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3241		else
3242			*speed = IXGBE_LINK_SPEED_100_FULL;
3243		break;
3244	default:
3245		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3246	}
3247
3248	return 0;
3249}
3250
3251/**
3252 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3253 *  the EEPROM
3254 *  @hw: pointer to hardware structure
3255 *  @wwnn_prefix: the alternative WWNN prefix
3256 *  @wwpn_prefix: the alternative WWPN prefix
3257 *
3258 *  This function will read the EEPROM from the alternative SAN MAC address
3259 *  block to check the support for the alternative WWNN/WWPN prefix support.
3260 **/
3261s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3262					u16 *wwpn_prefix)
3263{
3264	u16 offset, caps;
3265	u16 alt_san_mac_blk_offset;
3266
3267	/* clear output first */
3268	*wwnn_prefix = 0xFFFF;
3269	*wwpn_prefix = 0xFFFF;
3270
3271	/* check if alternative SAN MAC is supported */
3272	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3273	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3274		goto wwn_prefix_err;
3275
3276	if ((alt_san_mac_blk_offset == 0) ||
3277	    (alt_san_mac_blk_offset == 0xFFFF))
3278		return 0;
3279
3280	/* check capability in alternative san mac address block */
3281	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3282	if (hw->eeprom.ops.read(hw, offset, &caps))
3283		goto wwn_prefix_err;
3284	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3285		return 0;
3286
3287	/* get the corresponding prefix for WWNN/WWPN */
3288	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3289	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3290		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3291
3292	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3293	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3294		goto wwn_prefix_err;
3295
3296	return 0;
3297
3298wwn_prefix_err:
3299	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3300	return 0;
3301}
3302
3303/**
3304 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3305 *  @hw: pointer to hardware structure
3306 *  @enable: enable or disable switch for anti-spoofing
3307 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3308 *
3309 **/
3310void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3311{
3312	int j;
3313	int pf_target_reg = pf >> 3;
3314	int pf_target_shift = pf % 8;
3315	u32 pfvfspoof = 0;
3316
3317	if (hw->mac.type == ixgbe_mac_82598EB)
3318		return;
3319
3320	if (enable)
3321		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3322
3323	/*
3324	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3325	 * MAC anti-spoof enables in each register array element.
3326	 */
3327	for (j = 0; j < pf_target_reg; j++)
3328		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3329
3330	/*
3331	 * The PF should be allowed to spoof so that it can support
3332	 * emulation mode NICs.  Do not set the bits assigned to the PF
3333	 */
3334	pfvfspoof &= (1 << pf_target_shift) - 1;
3335	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3336
3337	/*
3338	 * Remaining pools belong to the PF so they do not need to have
3339	 * anti-spoofing enabled.
3340	 */
3341	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3342		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3343}
3344
3345/**
3346 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3347 *  @hw: pointer to hardware structure
3348 *  @enable: enable or disable switch for VLAN anti-spoofing
3349 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3350 *
3351 **/
3352void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3353{
3354	int vf_target_reg = vf >> 3;
3355	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3356	u32 pfvfspoof;
3357
3358	if (hw->mac.type == ixgbe_mac_82598EB)
3359		return;
3360
3361	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3362	if (enable)
3363		pfvfspoof |= (1 << vf_target_shift);
3364	else
3365		pfvfspoof &= ~(1 << vf_target_shift);
3366	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3367}
3368
3369/**
3370 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3371 *  @hw: pointer to hardware structure
3372 *  @device_caps: the EEPROM word with the extra device capabilities
3373 *
3374 *  This function will read the EEPROM location for the device capabilities,
3375 *  and return the word through device_caps.
3376 **/
3377s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3378{
3379	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3380
3381	return 0;
3382}
3383
3384/**
3385 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3386 * @hw: pointer to hardware structure
3387 * @num_pb: number of packet buffers to allocate
3388 * @headroom: reserve n KB of headroom
3389 * @strategy: packet buffer allocation strategy
3390 **/
3391void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3392			     int num_pb,
3393			     u32 headroom,
3394			     int strategy)
3395{
3396	u32 pbsize = hw->mac.rx_pb_size;
3397	int i = 0;
3398	u32 rxpktsize, txpktsize, txpbthresh;
3399
3400	/* Reserve headroom */
3401	pbsize -= headroom;
3402
3403	if (!num_pb)
3404		num_pb = 1;
3405
3406	/* Divide remaining packet buffer space amongst the number
3407	 * of packet buffers requested using supplied strategy.
3408	 */
3409	switch (strategy) {
3410	case (PBA_STRATEGY_WEIGHTED):
3411		/* pba_80_48 strategy weight first half of packet buffer with
3412		 * 5/8 of the packet buffer space.
3413		 */
3414		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3415		pbsize -= rxpktsize * (num_pb / 2);
3416		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3417		for (; i < (num_pb / 2); i++)
3418			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3419		/* Fall through to configure remaining packet buffers */
3420	case (PBA_STRATEGY_EQUAL):
3421		/* Divide the remaining Rx packet buffer evenly among the TCs */
3422		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3423		for (; i < num_pb; i++)
3424			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3425		break;
3426	default:
3427		break;
3428	}
3429
3430	/*
3431	 * Setup Tx packet buffer and threshold equally for all TCs
3432	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3433	 * 10 since the largest packet we support is just over 9K.
3434	 */
3435	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3436	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3437	for (i = 0; i < num_pb; i++) {
3438		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3439		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3440	}
3441
3442	/* Clear unused TCs, if any, to zero buffer size*/
3443	for (; i < IXGBE_MAX_PB; i++) {
3444		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3445		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3446		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3447	}
3448}
3449
3450/**
3451 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3452 *  @buffer: pointer to EEPROM
3453 *  @length: size of EEPROM to calculate a checksum for
3454 *
3455 *  Calculates the checksum for some buffer on a specified length.  The
3456 *  checksum calculated is returned.
3457 **/
3458static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3459{
3460	u32 i;
3461	u8 sum = 0;
3462
3463	if (!buffer)
3464		return 0;
3465
3466	for (i = 0; i < length; i++)
3467		sum += buffer[i];
3468
3469	return (u8) (0 - sum);
3470}
3471
3472/**
3473 *  ixgbe_host_interface_command - Issue command to manageability block
3474 *  @hw: pointer to the HW structure
3475 *  @buffer: contains the command to write and where the return status will
3476 *           be placed
3477 *  @length: length of buffer, must be multiple of 4 bytes
3478 *  @timeout: time in ms to wait for command completion
3479 *  @return_data: read and return data from the buffer (true) or not (false)
3480 *  Needed because FW structures are big endian and decoding of
3481 *  these fields can be 8 bit or 16 bit based on command. Decoding
3482 *  is not easily understood without making a table of commands.
3483 *  So we will leave this up to the caller to read back the data
3484 *  in these cases.
3485 *
3486 *  Communicates with the manageability block.  On success return 0
3487 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3488 **/
3489s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3490				 u32 length, u32 timeout,
3491				 bool return_data)
3492{
3493	u32 hicr, i, bi, fwsts;
3494	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3495	u16 buf_len, dword_len;
3496
3497	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3498		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3499		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3500	}
3501
3502	/* Set bit 9 of FWSTS clearing FW reset indication */
3503	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3504	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3505
3506	/* Check that the host interface is enabled. */
3507	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3508	if ((hicr & IXGBE_HICR_EN) == 0) {
3509		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3510		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3511	}
3512
3513	/* Calculate length in DWORDs. We must be DWORD aligned */
3514	if ((length % (sizeof(u32))) != 0) {
3515		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3516		return IXGBE_ERR_INVALID_ARGUMENT;
3517	}
3518
3519	dword_len = length >> 2;
3520
3521	/*
3522	 * The device driver writes the relevant command block
3523	 * into the ram area.
3524	 */
3525	for (i = 0; i < dword_len; i++)
3526		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3527				      i, cpu_to_le32(buffer[i]));
3528
3529	/* Setting this bit tells the ARC that a new command is pending. */
3530	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3531
3532	for (i = 0; i < timeout; i++) {
3533		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3534		if (!(hicr & IXGBE_HICR_C))
3535			break;
3536		usleep_range(1000, 2000);
3537	}
3538
3539	/* Check command successful completion. */
3540	if ((timeout != 0 && i == timeout) ||
3541	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3542		hw_dbg(hw, "Command has failed with no status valid.\n");
3543		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3544	}
3545
3546	if (!return_data)
3547		return 0;
3548
3549	/* Calculate length in DWORDs */
3550	dword_len = hdr_size >> 2;
3551
3552	/* first pull in the header so we know the buffer length */
3553	for (bi = 0; bi < dword_len; bi++) {
3554		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3555		le32_to_cpus(&buffer[bi]);
3556	}
3557
3558	/* If there is any thing in data position pull it in */
3559	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3560	if (buf_len == 0)
3561		return 0;
3562
3563	if (length < (buf_len + hdr_size)) {
3564		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3565		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3566	}
3567
3568	/* Calculate length in DWORDs, add 3 for odd lengths */
3569	dword_len = (buf_len + 3) >> 2;
3570
3571	/* Pull in the rest of the buffer (bi is where we left off)*/
3572	for (; bi <= dword_len; bi++) {
3573		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3574		le32_to_cpus(&buffer[bi]);
3575	}
3576
3577	return 0;
3578}
3579
3580/**
3581 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3582 *  @hw: pointer to the HW structure
3583 *  @maj: driver version major number
3584 *  @min: driver version minor number
3585 *  @build: driver version build number
3586 *  @sub: driver version sub build number
3587 *
3588 *  Sends driver version number to firmware through the manageability
3589 *  block.  On success return 0
3590 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3591 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3592 **/
3593s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3594				 u8 build, u8 sub)
3595{
3596	struct ixgbe_hic_drv_info fw_cmd;
3597	int i;
3598	s32 ret_val;
3599
3600	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3601		return IXGBE_ERR_SWFW_SYNC;
3602
3603	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3604	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3605	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3606	fw_cmd.port_num = (u8)hw->bus.func;
3607	fw_cmd.ver_maj = maj;
3608	fw_cmd.ver_min = min;
3609	fw_cmd.ver_build = build;
3610	fw_cmd.ver_sub = sub;
3611	fw_cmd.hdr.checksum = 0;
3612	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3613				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3614	fw_cmd.pad = 0;
3615	fw_cmd.pad2 = 0;
3616
3617	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3618		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3619						       sizeof(fw_cmd),
3620						       IXGBE_HI_COMMAND_TIMEOUT,
3621						       true);
3622		if (ret_val != 0)
3623			continue;
3624
3625		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3626		    FW_CEM_RESP_STATUS_SUCCESS)
3627			ret_val = 0;
3628		else
3629			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3630
3631		break;
3632	}
3633
3634	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3635	return ret_val;
3636}
3637
3638/**
3639 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3640 * @hw: pointer to the hardware structure
3641 *
3642 * The 82599 and x540 MACs can experience issues if TX work is still pending
3643 * when a reset occurs.  This function prevents this by flushing the PCIe
3644 * buffers on the system.
3645 **/
3646void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3647{
3648	u32 gcr_ext, hlreg0, i, poll;
3649	u16 value;
3650
3651	/*
3652	 * If double reset is not requested then all transactions should
3653	 * already be clear and as such there is no work to do
3654	 */
3655	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3656		return;
3657
3658	/*
3659	 * Set loopback enable to prevent any transmits from being sent
3660	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3661	 * has already been cleared.
3662	 */
3663	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3664	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3665
3666	/* wait for a last completion before clearing buffers */
3667	IXGBE_WRITE_FLUSH(hw);
3668	usleep_range(3000, 6000);
3669
3670	/* Before proceeding, make sure that the PCIe block does not have
3671	 * transactions pending.
3672	 */
3673	poll = ixgbe_pcie_timeout_poll(hw);
3674	for (i = 0; i < poll; i++) {
3675		usleep_range(100, 200);
3676		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3677		if (ixgbe_removed(hw->hw_addr))
3678			break;
3679		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3680			break;
3681	}
3682
3683	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3684	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3685	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3686			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3687
3688	/* Flush all writes and allow 20usec for all transactions to clear */
3689	IXGBE_WRITE_FLUSH(hw);
3690	udelay(20);
3691
3692	/* restore previous register values */
3693	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3694	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3695}
3696
3697static const u8 ixgbe_emc_temp_data[4] = {
3698	IXGBE_EMC_INTERNAL_DATA,
3699	IXGBE_EMC_DIODE1_DATA,
3700	IXGBE_EMC_DIODE2_DATA,
3701	IXGBE_EMC_DIODE3_DATA
3702};
3703static const u8 ixgbe_emc_therm_limit[4] = {
3704	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3705	IXGBE_EMC_DIODE1_THERM_LIMIT,
3706	IXGBE_EMC_DIODE2_THERM_LIMIT,
3707	IXGBE_EMC_DIODE3_THERM_LIMIT
3708};
3709
3710/**
3711 *  ixgbe_get_ets_data - Extracts the ETS bit data
3712 *  @hw: pointer to hardware structure
3713 *  @ets_cfg: extected ETS data
3714 *  @ets_offset: offset of ETS data
3715 *
3716 *  Returns error code.
3717 **/
3718static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3719			      u16 *ets_offset)
3720{
3721	s32 status;
3722
3723	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3724	if (status)
3725		return status;
3726
3727	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3728		return IXGBE_NOT_IMPLEMENTED;
3729
3730	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3731	if (status)
3732		return status;
3733
3734	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3735		return IXGBE_NOT_IMPLEMENTED;
3736
3737	return 0;
3738}
3739
3740/**
3741 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3742 *  @hw: pointer to hardware structure
3743 *
3744 *  Returns the thermal sensor data structure
3745 **/
3746s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3747{
3748	s32 status;
3749	u16 ets_offset;
3750	u16 ets_cfg;
3751	u16 ets_sensor;
3752	u8  num_sensors;
3753	u8  i;
3754	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3755
3756	/* Only support thermal sensors attached to physical port 0 */
3757	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3758		return IXGBE_NOT_IMPLEMENTED;
3759
3760	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3761	if (status)
3762		return status;
3763
3764	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3765	if (num_sensors > IXGBE_MAX_SENSORS)
3766		num_sensors = IXGBE_MAX_SENSORS;
3767
3768	for (i = 0; i < num_sensors; i++) {
3769		u8  sensor_index;
3770		u8  sensor_location;
3771
3772		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3773					     &ets_sensor);
3774		if (status)
3775			return status;
3776
3777		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3778				IXGBE_ETS_DATA_INDEX_SHIFT);
3779		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3780				   IXGBE_ETS_DATA_LOC_SHIFT);
3781
3782		if (sensor_location != 0) {
3783			status = hw->phy.ops.read_i2c_byte(hw,
3784					ixgbe_emc_temp_data[sensor_index],
3785					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3786					&data->sensor[i].temp);
3787			if (status)
3788				return status;
3789		}
3790	}
3791
3792	return 0;
3793}
3794
3795/**
3796 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3797 * @hw: pointer to hardware structure
3798 *
3799 * Inits the thermal sensor thresholds according to the NVM map
3800 * and save off the threshold and location values into mac.thermal_sensor_data
3801 **/
3802s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3803{
3804	s32 status;
3805	u16 ets_offset;
3806	u16 ets_cfg;
3807	u16 ets_sensor;
3808	u8  low_thresh_delta;
3809	u8  num_sensors;
3810	u8  therm_limit;
3811	u8  i;
3812	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3813
3814	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3815
3816	/* Only support thermal sensors attached to physical port 0 */
3817	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3818		return IXGBE_NOT_IMPLEMENTED;
3819
3820	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3821	if (status)
3822		return status;
3823
3824	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3825			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3826	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3827	if (num_sensors > IXGBE_MAX_SENSORS)
3828		num_sensors = IXGBE_MAX_SENSORS;
3829
3830	for (i = 0; i < num_sensors; i++) {
3831		u8  sensor_index;
3832		u8  sensor_location;
3833
3834		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3835			hw_err(hw, "eeprom read at offset %d failed\n",
3836			       ets_offset + 1 + i);
3837			continue;
3838		}
3839		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3840				IXGBE_ETS_DATA_INDEX_SHIFT);
3841		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3842				   IXGBE_ETS_DATA_LOC_SHIFT);
3843		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3844
3845		hw->phy.ops.write_i2c_byte(hw,
3846			ixgbe_emc_therm_limit[sensor_index],
3847			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3848
3849		if (sensor_location == 0)
3850			continue;
3851
3852		data->sensor[i].location = sensor_location;
3853		data->sensor[i].caution_thresh = therm_limit;
3854		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3855	}
3856
3857	return 0;
3858}
3859
3860void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3861{
3862	u32 rxctrl;
3863
3864	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3865	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3866		if (hw->mac.type != ixgbe_mac_82598EB) {
3867			u32 pfdtxgswc;
3868
3869			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3870			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3871				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3872				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3873				hw->mac.set_lben = true;
3874			} else {
3875				hw->mac.set_lben = false;
3876			}
3877		}
3878		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3879		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3880	}
3881}
3882
3883void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3884{
3885	u32 rxctrl;
3886
3887	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3888	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3889
3890	if (hw->mac.type != ixgbe_mac_82598EB) {
3891		if (hw->mac.set_lben) {
3892			u32 pfdtxgswc;
3893
3894			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3895			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3896			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3897			hw->mac.set_lben = false;
3898		}
3899	}
3900}
3901