1/*******************************************************************************
2
3  Intel(R) 82576 Virtual Function Linux driver
4  Copyright(c) 2009 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, see <http://www.gnu.org/licenses/>.
17
18  The full GNU General Public License is included in this distribution in
19  the file called "COPYING".
20
21  Contact Information:
22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <linux/slab.h>
40#include <net/checksum.h>
41#include <net/ip6_checksum.h>
42#include <linux/mii.h>
43#include <linux/ethtool.h>
44#include <linux/if_vlan.h>
45#include <linux/prefetch.h>
46
47#include "igbvf.h"
48
49#define DRV_VERSION "2.0.2-k"
50char igbvf_driver_name[] = "igbvf";
51const char igbvf_driver_version[] = DRV_VERSION;
52static const char igbvf_driver_string[] =
53		  "Intel(R) Gigabit Virtual Function Network Driver";
54static const char igbvf_copyright[] =
55		  "Copyright (c) 2009 - 2012 Intel Corporation.";
56
57#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
58static int debug = -1;
59module_param(debug, int, 0);
60MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61
62static int igbvf_poll(struct napi_struct *napi, int budget);
63static void igbvf_reset(struct igbvf_adapter *);
64static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
65static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
66
67static struct igbvf_info igbvf_vf_info = {
68	.mac		= e1000_vfadapt,
69	.flags		= 0,
70	.pba		= 10,
71	.init_ops	= e1000_init_function_pointers_vf,
72};
73
74static struct igbvf_info igbvf_i350_vf_info = {
75	.mac		= e1000_vfadapt_i350,
76	.flags		= 0,
77	.pba		= 10,
78	.init_ops	= e1000_init_function_pointers_vf,
79};
80
81static const struct igbvf_info *igbvf_info_tbl[] = {
82	[board_vf]	= &igbvf_vf_info,
83	[board_i350_vf]	= &igbvf_i350_vf_info,
84};
85
86/**
87 * igbvf_desc_unused - calculate if we have unused descriptors
88 * @rx_ring: address of receive ring structure
89 **/
90static int igbvf_desc_unused(struct igbvf_ring *ring)
91{
92	if (ring->next_to_clean > ring->next_to_use)
93		return ring->next_to_clean - ring->next_to_use - 1;
94
95	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96}
97
98/**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106			      struct net_device *netdev,
107			      struct sk_buff *skb,
108			      u32 status, u16 vlan)
109{
110	u16 vid;
111
112	if (status & E1000_RXD_STAT_VP) {
113		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114		    (status & E1000_RXDEXT_STATERR_LB))
115			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116		else
117			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118		if (test_bit(vid, adapter->active_vlans))
119			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120	}
121
122	napi_gro_receive(&adapter->rx_ring->napi, skb);
123}
124
125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126					 u32 status_err, struct sk_buff *skb)
127{
128	skb_checksum_none_assert(skb);
129
130	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
131	if ((status_err & E1000_RXD_STAT_IXSM) ||
132	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133		return;
134
135	/* TCP/UDP checksum error bit is set */
136	if (status_err &
137	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138		/* let the stack verify checksum errors */
139		adapter->hw_csum_err++;
140		return;
141	}
142
143	/* It must be a TCP or UDP packet with a valid checksum */
144	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145		skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147	adapter->hw_csum_good++;
148}
149
150/**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156				   int cleaned_count)
157{
158	struct igbvf_adapter *adapter = rx_ring->adapter;
159	struct net_device *netdev = adapter->netdev;
160	struct pci_dev *pdev = adapter->pdev;
161	union e1000_adv_rx_desc *rx_desc;
162	struct igbvf_buffer *buffer_info;
163	struct sk_buff *skb;
164	unsigned int i;
165	int bufsz;
166
167	i = rx_ring->next_to_use;
168	buffer_info = &rx_ring->buffer_info[i];
169
170	if (adapter->rx_ps_hdr_size)
171		bufsz = adapter->rx_ps_hdr_size;
172	else
173		bufsz = adapter->rx_buffer_len;
174
175	while (cleaned_count--) {
176		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179			if (!buffer_info->page) {
180				buffer_info->page = alloc_page(GFP_ATOMIC);
181				if (!buffer_info->page) {
182					adapter->alloc_rx_buff_failed++;
183					goto no_buffers;
184				}
185				buffer_info->page_offset = 0;
186			} else {
187				buffer_info->page_offset ^= PAGE_SIZE / 2;
188			}
189			buffer_info->page_dma =
190				dma_map_page(&pdev->dev, buffer_info->page,
191					     buffer_info->page_offset,
192					     PAGE_SIZE / 2,
193					     DMA_FROM_DEVICE);
194			if (dma_mapping_error(&pdev->dev,
195					      buffer_info->page_dma)) {
196				__free_page(buffer_info->page);
197				buffer_info->page = NULL;
198				dev_err(&pdev->dev, "RX DMA map failed\n");
199				break;
200			}
201		}
202
203		if (!buffer_info->skb) {
204			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205			if (!skb) {
206				adapter->alloc_rx_buff_failed++;
207				goto no_buffers;
208			}
209
210			buffer_info->skb = skb;
211			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212							  bufsz,
213							  DMA_FROM_DEVICE);
214			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215				dev_kfree_skb(buffer_info->skb);
216				buffer_info->skb = NULL;
217				dev_err(&pdev->dev, "RX DMA map failed\n");
218				goto no_buffers;
219			}
220		}
221		/* Refresh the desc even if buffer_addrs didn't change because
222		 * each write-back erases this info.
223		 */
224		if (adapter->rx_ps_hdr_size) {
225			rx_desc->read.pkt_addr =
226			     cpu_to_le64(buffer_info->page_dma);
227			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
228		} else {
229			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
230			rx_desc->read.hdr_addr = 0;
231		}
232
233		i++;
234		if (i == rx_ring->count)
235			i = 0;
236		buffer_info = &rx_ring->buffer_info[i];
237	}
238
239no_buffers:
240	if (rx_ring->next_to_use != i) {
241		rx_ring->next_to_use = i;
242		if (i == 0)
243			i = (rx_ring->count - 1);
244		else
245			i--;
246
247		/* Force memory writes to complete before letting h/w
248		 * know there are new descriptors to fetch.  (Only
249		 * applicable for weak-ordered memory model archs,
250		 * such as IA-64).
251		*/
252		wmb();
253		writel(i, adapter->hw.hw_addr + rx_ring->tail);
254	}
255}
256
257/**
258 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
259 * @adapter: board private structure
260 *
261 * the return value indicates whether actual cleaning was done, there
262 * is no guarantee that everything was cleaned
263 **/
264static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
265			       int *work_done, int work_to_do)
266{
267	struct igbvf_ring *rx_ring = adapter->rx_ring;
268	struct net_device *netdev = adapter->netdev;
269	struct pci_dev *pdev = adapter->pdev;
270	union e1000_adv_rx_desc *rx_desc, *next_rxd;
271	struct igbvf_buffer *buffer_info, *next_buffer;
272	struct sk_buff *skb;
273	bool cleaned = false;
274	int cleaned_count = 0;
275	unsigned int total_bytes = 0, total_packets = 0;
276	unsigned int i;
277	u32 length, hlen, staterr;
278
279	i = rx_ring->next_to_clean;
280	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
281	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
282
283	while (staterr & E1000_RXD_STAT_DD) {
284		if (*work_done >= work_to_do)
285			break;
286		(*work_done)++;
287		rmb(); /* read descriptor and rx_buffer_info after status DD */
288
289		buffer_info = &rx_ring->buffer_info[i];
290
291		/* HW will not DMA in data larger than the given buffer, even
292		 * if it parses the (NFS, of course) header to be larger.  In
293		 * that case, it fills the header buffer and spills the rest
294		 * into the page.
295		 */
296		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
297		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
298		       E1000_RXDADV_HDRBUFLEN_SHIFT;
299		if (hlen > adapter->rx_ps_hdr_size)
300			hlen = adapter->rx_ps_hdr_size;
301
302		length = le16_to_cpu(rx_desc->wb.upper.length);
303		cleaned = true;
304		cleaned_count++;
305
306		skb = buffer_info->skb;
307		prefetch(skb->data - NET_IP_ALIGN);
308		buffer_info->skb = NULL;
309		if (!adapter->rx_ps_hdr_size) {
310			dma_unmap_single(&pdev->dev, buffer_info->dma,
311					 adapter->rx_buffer_len,
312					 DMA_FROM_DEVICE);
313			buffer_info->dma = 0;
314			skb_put(skb, length);
315			goto send_up;
316		}
317
318		if (!skb_shinfo(skb)->nr_frags) {
319			dma_unmap_single(&pdev->dev, buffer_info->dma,
320					 adapter->rx_ps_hdr_size,
321					 DMA_FROM_DEVICE);
322			skb_put(skb, hlen);
323		}
324
325		if (length) {
326			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
327				       PAGE_SIZE / 2,
328				       DMA_FROM_DEVICE);
329			buffer_info->page_dma = 0;
330
331			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
332					   buffer_info->page,
333					   buffer_info->page_offset,
334					   length);
335
336			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
337			    (page_count(buffer_info->page) != 1))
338				buffer_info->page = NULL;
339			else
340				get_page(buffer_info->page);
341
342			skb->len += length;
343			skb->data_len += length;
344			skb->truesize += PAGE_SIZE / 2;
345		}
346send_up:
347		i++;
348		if (i == rx_ring->count)
349			i = 0;
350		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
351		prefetch(next_rxd);
352		next_buffer = &rx_ring->buffer_info[i];
353
354		if (!(staterr & E1000_RXD_STAT_EOP)) {
355			buffer_info->skb = next_buffer->skb;
356			buffer_info->dma = next_buffer->dma;
357			next_buffer->skb = skb;
358			next_buffer->dma = 0;
359			goto next_desc;
360		}
361
362		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
363			dev_kfree_skb_irq(skb);
364			goto next_desc;
365		}
366
367		total_bytes += skb->len;
368		total_packets++;
369
370		igbvf_rx_checksum_adv(adapter, staterr, skb);
371
372		skb->protocol = eth_type_trans(skb, netdev);
373
374		igbvf_receive_skb(adapter, netdev, skb, staterr,
375				  rx_desc->wb.upper.vlan);
376
377next_desc:
378		rx_desc->wb.upper.status_error = 0;
379
380		/* return some buffers to hardware, one at a time is too slow */
381		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
382			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
383			cleaned_count = 0;
384		}
385
386		/* use prefetched values */
387		rx_desc = next_rxd;
388		buffer_info = next_buffer;
389
390		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
391	}
392
393	rx_ring->next_to_clean = i;
394	cleaned_count = igbvf_desc_unused(rx_ring);
395
396	if (cleaned_count)
397		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
398
399	adapter->total_rx_packets += total_packets;
400	adapter->total_rx_bytes += total_bytes;
401	adapter->net_stats.rx_bytes += total_bytes;
402	adapter->net_stats.rx_packets += total_packets;
403	return cleaned;
404}
405
406static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
407			    struct igbvf_buffer *buffer_info)
408{
409	if (buffer_info->dma) {
410		if (buffer_info->mapped_as_page)
411			dma_unmap_page(&adapter->pdev->dev,
412				       buffer_info->dma,
413				       buffer_info->length,
414				       DMA_TO_DEVICE);
415		else
416			dma_unmap_single(&adapter->pdev->dev,
417					 buffer_info->dma,
418					 buffer_info->length,
419					 DMA_TO_DEVICE);
420		buffer_info->dma = 0;
421	}
422	if (buffer_info->skb) {
423		dev_kfree_skb_any(buffer_info->skb);
424		buffer_info->skb = NULL;
425	}
426	buffer_info->time_stamp = 0;
427}
428
429/**
430 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
431 * @adapter: board private structure
432 *
433 * Return 0 on success, negative on failure
434 **/
435int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
436			     struct igbvf_ring *tx_ring)
437{
438	struct pci_dev *pdev = adapter->pdev;
439	int size;
440
441	size = sizeof(struct igbvf_buffer) * tx_ring->count;
442	tx_ring->buffer_info = vzalloc(size);
443	if (!tx_ring->buffer_info)
444		goto err;
445
446	/* round up to nearest 4K */
447	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
448	tx_ring->size = ALIGN(tx_ring->size, 4096);
449
450	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
451					   &tx_ring->dma, GFP_KERNEL);
452	if (!tx_ring->desc)
453		goto err;
454
455	tx_ring->adapter = adapter;
456	tx_ring->next_to_use = 0;
457	tx_ring->next_to_clean = 0;
458
459	return 0;
460err:
461	vfree(tx_ring->buffer_info);
462	dev_err(&adapter->pdev->dev,
463		"Unable to allocate memory for the transmit descriptor ring\n");
464	return -ENOMEM;
465}
466
467/**
468 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
469 * @adapter: board private structure
470 *
471 * Returns 0 on success, negative on failure
472 **/
473int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
474			     struct igbvf_ring *rx_ring)
475{
476	struct pci_dev *pdev = adapter->pdev;
477	int size, desc_len;
478
479	size = sizeof(struct igbvf_buffer) * rx_ring->count;
480	rx_ring->buffer_info = vzalloc(size);
481	if (!rx_ring->buffer_info)
482		goto err;
483
484	desc_len = sizeof(union e1000_adv_rx_desc);
485
486	/* Round up to nearest 4K */
487	rx_ring->size = rx_ring->count * desc_len;
488	rx_ring->size = ALIGN(rx_ring->size, 4096);
489
490	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
491					   &rx_ring->dma, GFP_KERNEL);
492	if (!rx_ring->desc)
493		goto err;
494
495	rx_ring->next_to_clean = 0;
496	rx_ring->next_to_use = 0;
497
498	rx_ring->adapter = adapter;
499
500	return 0;
501
502err:
503	vfree(rx_ring->buffer_info);
504	rx_ring->buffer_info = NULL;
505	dev_err(&adapter->pdev->dev,
506		"Unable to allocate memory for the receive descriptor ring\n");
507	return -ENOMEM;
508}
509
510/**
511 * igbvf_clean_tx_ring - Free Tx Buffers
512 * @tx_ring: ring to be cleaned
513 **/
514static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515{
516	struct igbvf_adapter *adapter = tx_ring->adapter;
517	struct igbvf_buffer *buffer_info;
518	unsigned long size;
519	unsigned int i;
520
521	if (!tx_ring->buffer_info)
522		return;
523
524	/* Free all the Tx ring sk_buffs */
525	for (i = 0; i < tx_ring->count; i++) {
526		buffer_info = &tx_ring->buffer_info[i];
527		igbvf_put_txbuf(adapter, buffer_info);
528	}
529
530	size = sizeof(struct igbvf_buffer) * tx_ring->count;
531	memset(tx_ring->buffer_info, 0, size);
532
533	/* Zero out the descriptor ring */
534	memset(tx_ring->desc, 0, tx_ring->size);
535
536	tx_ring->next_to_use = 0;
537	tx_ring->next_to_clean = 0;
538
539	writel(0, adapter->hw.hw_addr + tx_ring->head);
540	writel(0, adapter->hw.hw_addr + tx_ring->tail);
541}
542
543/**
544 * igbvf_free_tx_resources - Free Tx Resources per Queue
545 * @tx_ring: ring to free resources from
546 *
547 * Free all transmit software resources
548 **/
549void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550{
551	struct pci_dev *pdev = tx_ring->adapter->pdev;
552
553	igbvf_clean_tx_ring(tx_ring);
554
555	vfree(tx_ring->buffer_info);
556	tx_ring->buffer_info = NULL;
557
558	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559			  tx_ring->dma);
560
561	tx_ring->desc = NULL;
562}
563
564/**
565 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566 * @adapter: board private structure
567 **/
568static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569{
570	struct igbvf_adapter *adapter = rx_ring->adapter;
571	struct igbvf_buffer *buffer_info;
572	struct pci_dev *pdev = adapter->pdev;
573	unsigned long size;
574	unsigned int i;
575
576	if (!rx_ring->buffer_info)
577		return;
578
579	/* Free all the Rx ring sk_buffs */
580	for (i = 0; i < rx_ring->count; i++) {
581		buffer_info = &rx_ring->buffer_info[i];
582		if (buffer_info->dma) {
583			if (adapter->rx_ps_hdr_size) {
584				dma_unmap_single(&pdev->dev, buffer_info->dma,
585						 adapter->rx_ps_hdr_size,
586						 DMA_FROM_DEVICE);
587			} else {
588				dma_unmap_single(&pdev->dev, buffer_info->dma,
589						 adapter->rx_buffer_len,
590						 DMA_FROM_DEVICE);
591			}
592			buffer_info->dma = 0;
593		}
594
595		if (buffer_info->skb) {
596			dev_kfree_skb(buffer_info->skb);
597			buffer_info->skb = NULL;
598		}
599
600		if (buffer_info->page) {
601			if (buffer_info->page_dma)
602				dma_unmap_page(&pdev->dev,
603					       buffer_info->page_dma,
604					       PAGE_SIZE / 2,
605					       DMA_FROM_DEVICE);
606			put_page(buffer_info->page);
607			buffer_info->page = NULL;
608			buffer_info->page_dma = 0;
609			buffer_info->page_offset = 0;
610		}
611	}
612
613	size = sizeof(struct igbvf_buffer) * rx_ring->count;
614	memset(rx_ring->buffer_info, 0, size);
615
616	/* Zero out the descriptor ring */
617	memset(rx_ring->desc, 0, rx_ring->size);
618
619	rx_ring->next_to_clean = 0;
620	rx_ring->next_to_use = 0;
621
622	writel(0, adapter->hw.hw_addr + rx_ring->head);
623	writel(0, adapter->hw.hw_addr + rx_ring->tail);
624}
625
626/**
627 * igbvf_free_rx_resources - Free Rx Resources
628 * @rx_ring: ring to clean the resources from
629 *
630 * Free all receive software resources
631 **/
632
633void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634{
635	struct pci_dev *pdev = rx_ring->adapter->pdev;
636
637	igbvf_clean_rx_ring(rx_ring);
638
639	vfree(rx_ring->buffer_info);
640	rx_ring->buffer_info = NULL;
641
642	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643			  rx_ring->dma);
644	rx_ring->desc = NULL;
645}
646
647/**
648 * igbvf_update_itr - update the dynamic ITR value based on statistics
649 * @adapter: pointer to adapter
650 * @itr_setting: current adapter->itr
651 * @packets: the number of packets during this measurement interval
652 * @bytes: the number of bytes during this measurement interval
653 *
654 * Stores a new ITR value based on packets and byte counts during the last
655 * interrupt.  The advantage of per interrupt computation is faster updates
656 * and more accurate ITR for the current traffic pattern.  Constants in this
657 * function were computed based on theoretical maximum wire speed and thresholds
658 * were set based on testing data as well as attempting to minimize response
659 * time while increasing bulk throughput.
660 **/
661static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
662					   enum latency_range itr_setting,
663					   int packets, int bytes)
664{
665	enum latency_range retval = itr_setting;
666
667	if (packets == 0)
668		goto update_itr_done;
669
670	switch (itr_setting) {
671	case lowest_latency:
672		/* handle TSO and jumbo frames */
673		if (bytes/packets > 8000)
674			retval = bulk_latency;
675		else if ((packets < 5) && (bytes > 512))
676			retval = low_latency;
677		break;
678	case low_latency:  /* 50 usec aka 20000 ints/s */
679		if (bytes > 10000) {
680			/* this if handles the TSO accounting */
681			if (bytes/packets > 8000)
682				retval = bulk_latency;
683			else if ((packets < 10) || ((bytes/packets) > 1200))
684				retval = bulk_latency;
685			else if ((packets > 35))
686				retval = lowest_latency;
687		} else if (bytes/packets > 2000) {
688			retval = bulk_latency;
689		} else if (packets <= 2 && bytes < 512) {
690			retval = lowest_latency;
691		}
692		break;
693	case bulk_latency: /* 250 usec aka 4000 ints/s */
694		if (bytes > 25000) {
695			if (packets > 35)
696				retval = low_latency;
697		} else if (bytes < 6000) {
698			retval = low_latency;
699		}
700		break;
701	default:
702		break;
703	}
704
705update_itr_done:
706	return retval;
707}
708
709static int igbvf_range_to_itr(enum latency_range current_range)
710{
711	int new_itr;
712
713	switch (current_range) {
714	/* counts and packets in update_itr are dependent on these numbers */
715	case lowest_latency:
716		new_itr = IGBVF_70K_ITR;
717		break;
718	case low_latency:
719		new_itr = IGBVF_20K_ITR;
720		break;
721	case bulk_latency:
722		new_itr = IGBVF_4K_ITR;
723		break;
724	default:
725		new_itr = IGBVF_START_ITR;
726		break;
727	}
728	return new_itr;
729}
730
731static void igbvf_set_itr(struct igbvf_adapter *adapter)
732{
733	u32 new_itr;
734
735	adapter->tx_ring->itr_range =
736			igbvf_update_itr(adapter,
737					 adapter->tx_ring->itr_val,
738					 adapter->total_tx_packets,
739					 adapter->total_tx_bytes);
740
741	/* conservative mode (itr 3) eliminates the lowest_latency setting */
742	if (adapter->requested_itr == 3 &&
743	    adapter->tx_ring->itr_range == lowest_latency)
744		adapter->tx_ring->itr_range = low_latency;
745
746	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
747
748	if (new_itr != adapter->tx_ring->itr_val) {
749		u32 current_itr = adapter->tx_ring->itr_val;
750		/* this attempts to bias the interrupt rate towards Bulk
751		 * by adding intermediate steps when interrupt rate is
752		 * increasing
753		 */
754		new_itr = new_itr > current_itr ?
755			  min(current_itr + (new_itr >> 2), new_itr) :
756			  new_itr;
757		adapter->tx_ring->itr_val = new_itr;
758
759		adapter->tx_ring->set_itr = 1;
760	}
761
762	adapter->rx_ring->itr_range =
763			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
764					 adapter->total_rx_packets,
765					 adapter->total_rx_bytes);
766	if (adapter->requested_itr == 3 &&
767	    adapter->rx_ring->itr_range == lowest_latency)
768		adapter->rx_ring->itr_range = low_latency;
769
770	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
771
772	if (new_itr != adapter->rx_ring->itr_val) {
773		u32 current_itr = adapter->rx_ring->itr_val;
774
775		new_itr = new_itr > current_itr ?
776			  min(current_itr + (new_itr >> 2), new_itr) :
777			  new_itr;
778		adapter->rx_ring->itr_val = new_itr;
779
780		adapter->rx_ring->set_itr = 1;
781	}
782}
783
784/**
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
787 *
788 * returns true if ring is completely cleaned
789 **/
790static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791{
792	struct igbvf_adapter *adapter = tx_ring->adapter;
793	struct net_device *netdev = adapter->netdev;
794	struct igbvf_buffer *buffer_info;
795	struct sk_buff *skb;
796	union e1000_adv_tx_desc *tx_desc, *eop_desc;
797	unsigned int total_bytes = 0, total_packets = 0;
798	unsigned int i, count = 0;
799	bool cleaned = false;
800
801	i = tx_ring->next_to_clean;
802	buffer_info = &tx_ring->buffer_info[i];
803	eop_desc = buffer_info->next_to_watch;
804
805	do {
806		/* if next_to_watch is not set then there is no work pending */
807		if (!eop_desc)
808			break;
809
810		/* prevent any other reads prior to eop_desc */
811		read_barrier_depends();
812
813		/* if DD is not set pending work has not been completed */
814		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815			break;
816
817		/* clear next_to_watch to prevent false hangs */
818		buffer_info->next_to_watch = NULL;
819
820		for (cleaned = false; !cleaned; count++) {
821			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822			cleaned = (tx_desc == eop_desc);
823			skb = buffer_info->skb;
824
825			if (skb) {
826				unsigned int segs, bytecount;
827
828				/* gso_segs is currently only valid for tcp */
829				segs = skb_shinfo(skb)->gso_segs ?: 1;
830				/* multiply data chunks by size of headers */
831				bytecount = ((segs - 1) * skb_headlen(skb)) +
832					    skb->len;
833				total_packets += segs;
834				total_bytes += bytecount;
835			}
836
837			igbvf_put_txbuf(adapter, buffer_info);
838			tx_desc->wb.status = 0;
839
840			i++;
841			if (i == tx_ring->count)
842				i = 0;
843
844			buffer_info = &tx_ring->buffer_info[i];
845		}
846
847		eop_desc = buffer_info->next_to_watch;
848	} while (count < tx_ring->count);
849
850	tx_ring->next_to_clean = i;
851
852	if (unlikely(count && netif_carrier_ok(netdev) &&
853	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
854		/* Make sure that anybody stopping the queue after this
855		 * sees the new next_to_clean.
856		 */
857		smp_mb();
858		if (netif_queue_stopped(netdev) &&
859		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
860			netif_wake_queue(netdev);
861			++adapter->restart_queue;
862		}
863	}
864
865	adapter->net_stats.tx_bytes += total_bytes;
866	adapter->net_stats.tx_packets += total_packets;
867	return count < tx_ring->count;
868}
869
870static irqreturn_t igbvf_msix_other(int irq, void *data)
871{
872	struct net_device *netdev = data;
873	struct igbvf_adapter *adapter = netdev_priv(netdev);
874	struct e1000_hw *hw = &adapter->hw;
875
876	adapter->int_counter1++;
877
878	netif_carrier_off(netdev);
879	hw->mac.get_link_status = 1;
880	if (!test_bit(__IGBVF_DOWN, &adapter->state))
881		mod_timer(&adapter->watchdog_timer, jiffies + 1);
882
883	ew32(EIMS, adapter->eims_other);
884
885	return IRQ_HANDLED;
886}
887
888static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
889{
890	struct net_device *netdev = data;
891	struct igbvf_adapter *adapter = netdev_priv(netdev);
892	struct e1000_hw *hw = &adapter->hw;
893	struct igbvf_ring *tx_ring = adapter->tx_ring;
894
895	if (tx_ring->set_itr) {
896		writel(tx_ring->itr_val,
897		       adapter->hw.hw_addr + tx_ring->itr_register);
898		adapter->tx_ring->set_itr = 0;
899	}
900
901	adapter->total_tx_bytes = 0;
902	adapter->total_tx_packets = 0;
903
904	/* auto mask will automatically re-enable the interrupt when we write
905	 * EICS
906	 */
907	if (!igbvf_clean_tx_irq(tx_ring))
908		/* Ring was not completely cleaned, so fire another interrupt */
909		ew32(EICS, tx_ring->eims_value);
910	else
911		ew32(EIMS, tx_ring->eims_value);
912
913	return IRQ_HANDLED;
914}
915
916static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917{
918	struct net_device *netdev = data;
919	struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921	adapter->int_counter0++;
922
923	/* Write the ITR value calculated at the end of the
924	 * previous interrupt.
925	 */
926	if (adapter->rx_ring->set_itr) {
927		writel(adapter->rx_ring->itr_val,
928		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929		adapter->rx_ring->set_itr = 0;
930	}
931
932	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933		adapter->total_rx_bytes = 0;
934		adapter->total_rx_packets = 0;
935		__napi_schedule(&adapter->rx_ring->napi);
936	}
937
938	return IRQ_HANDLED;
939}
940
941#define IGBVF_NO_QUEUE -1
942
943static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944				int tx_queue, int msix_vector)
945{
946	struct e1000_hw *hw = &adapter->hw;
947	u32 ivar, index;
948
949	/* 82576 uses a table-based method for assigning vectors.
950	 * Each queue has a single entry in the table to which we write
951	 * a vector number along with a "valid" bit.  Sadly, the layout
952	 * of the table is somewhat counterintuitive.
953	 */
954	if (rx_queue > IGBVF_NO_QUEUE) {
955		index = (rx_queue >> 1);
956		ivar = array_er32(IVAR0, index);
957		if (rx_queue & 0x1) {
958			/* vector goes into third byte of register */
959			ivar = ivar & 0xFF00FFFF;
960			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
961		} else {
962			/* vector goes into low byte of register */
963			ivar = ivar & 0xFFFFFF00;
964			ivar |= msix_vector | E1000_IVAR_VALID;
965		}
966		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
967		array_ew32(IVAR0, index, ivar);
968	}
969	if (tx_queue > IGBVF_NO_QUEUE) {
970		index = (tx_queue >> 1);
971		ivar = array_er32(IVAR0, index);
972		if (tx_queue & 0x1) {
973			/* vector goes into high byte of register */
974			ivar = ivar & 0x00FFFFFF;
975			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
976		} else {
977			/* vector goes into second byte of register */
978			ivar = ivar & 0xFFFF00FF;
979			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
980		}
981		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
982		array_ew32(IVAR0, index, ivar);
983	}
984}
985
986/**
987 * igbvf_configure_msix - Configure MSI-X hardware
988 * @adapter: board private structure
989 *
990 * igbvf_configure_msix sets up the hardware to properly
991 * generate MSI-X interrupts.
992 **/
993static void igbvf_configure_msix(struct igbvf_adapter *adapter)
994{
995	u32 tmp;
996	struct e1000_hw *hw = &adapter->hw;
997	struct igbvf_ring *tx_ring = adapter->tx_ring;
998	struct igbvf_ring *rx_ring = adapter->rx_ring;
999	int vector = 0;
1000
1001	adapter->eims_enable_mask = 0;
1002
1003	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1004	adapter->eims_enable_mask |= tx_ring->eims_value;
1005	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1006	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1007	adapter->eims_enable_mask |= rx_ring->eims_value;
1008	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1009
1010	/* set vector for other causes, i.e. link changes */
1011
1012	tmp = (vector++ | E1000_IVAR_VALID);
1013
1014	ew32(IVAR_MISC, tmp);
1015
1016	adapter->eims_enable_mask = (1 << (vector)) - 1;
1017	adapter->eims_other = 1 << (vector - 1);
1018	e1e_flush();
1019}
1020
1021static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1022{
1023	if (adapter->msix_entries) {
1024		pci_disable_msix(adapter->pdev);
1025		kfree(adapter->msix_entries);
1026		adapter->msix_entries = NULL;
1027	}
1028}
1029
1030/**
1031 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1032 * @adapter: board private structure
1033 *
1034 * Attempt to configure interrupts using the best available
1035 * capabilities of the hardware and kernel.
1036 **/
1037static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1038{
1039	int err = -ENOMEM;
1040	int i;
1041
1042	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1043	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1044					GFP_KERNEL);
1045	if (adapter->msix_entries) {
1046		for (i = 0; i < 3; i++)
1047			adapter->msix_entries[i].entry = i;
1048
1049		err = pci_enable_msix_range(adapter->pdev,
1050					    adapter->msix_entries, 3, 3);
1051	}
1052
1053	if (err < 0) {
1054		/* MSI-X failed */
1055		dev_err(&adapter->pdev->dev,
1056			"Failed to initialize MSI-X interrupts.\n");
1057		igbvf_reset_interrupt_capability(adapter);
1058	}
1059}
1060
1061/**
1062 * igbvf_request_msix - Initialize MSI-X interrupts
1063 * @adapter: board private structure
1064 *
1065 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1066 * kernel.
1067 **/
1068static int igbvf_request_msix(struct igbvf_adapter *adapter)
1069{
1070	struct net_device *netdev = adapter->netdev;
1071	int err = 0, vector = 0;
1072
1073	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1074		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1075		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1076	} else {
1077		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1078		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1079	}
1080
1081	err = request_irq(adapter->msix_entries[vector].vector,
1082			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1083			  netdev);
1084	if (err)
1085		goto out;
1086
1087	adapter->tx_ring->itr_register = E1000_EITR(vector);
1088	adapter->tx_ring->itr_val = adapter->current_itr;
1089	vector++;
1090
1091	err = request_irq(adapter->msix_entries[vector].vector,
1092			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1093			  netdev);
1094	if (err)
1095		goto out;
1096
1097	adapter->rx_ring->itr_register = E1000_EITR(vector);
1098	adapter->rx_ring->itr_val = adapter->current_itr;
1099	vector++;
1100
1101	err = request_irq(adapter->msix_entries[vector].vector,
1102			  igbvf_msix_other, 0, netdev->name, netdev);
1103	if (err)
1104		goto out;
1105
1106	igbvf_configure_msix(adapter);
1107	return 0;
1108out:
1109	return err;
1110}
1111
1112/**
1113 * igbvf_alloc_queues - Allocate memory for all rings
1114 * @adapter: board private structure to initialize
1115 **/
1116static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1117{
1118	struct net_device *netdev = adapter->netdev;
1119
1120	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121	if (!adapter->tx_ring)
1122		return -ENOMEM;
1123
1124	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1125	if (!adapter->rx_ring) {
1126		kfree(adapter->tx_ring);
1127		return -ENOMEM;
1128	}
1129
1130	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1131
1132	return 0;
1133}
1134
1135/**
1136 * igbvf_request_irq - initialize interrupts
1137 * @adapter: board private structure
1138 *
1139 * Attempts to configure interrupts using the best available
1140 * capabilities of the hardware and kernel.
1141 **/
1142static int igbvf_request_irq(struct igbvf_adapter *adapter)
1143{
1144	int err = -1;
1145
1146	/* igbvf supports msi-x only */
1147	if (adapter->msix_entries)
1148		err = igbvf_request_msix(adapter);
1149
1150	if (!err)
1151		return err;
1152
1153	dev_err(&adapter->pdev->dev,
1154		"Unable to allocate interrupt, Error: %d\n", err);
1155
1156	return err;
1157}
1158
1159static void igbvf_free_irq(struct igbvf_adapter *adapter)
1160{
1161	struct net_device *netdev = adapter->netdev;
1162	int vector;
1163
1164	if (adapter->msix_entries) {
1165		for (vector = 0; vector < 3; vector++)
1166			free_irq(adapter->msix_entries[vector].vector, netdev);
1167	}
1168}
1169
1170/**
1171 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1172 * @adapter: board private structure
1173 **/
1174static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1175{
1176	struct e1000_hw *hw = &adapter->hw;
1177
1178	ew32(EIMC, ~0);
1179
1180	if (adapter->msix_entries)
1181		ew32(EIAC, 0);
1182}
1183
1184/**
1185 * igbvf_irq_enable - Enable default interrupt generation settings
1186 * @adapter: board private structure
1187 **/
1188static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1189{
1190	struct e1000_hw *hw = &adapter->hw;
1191
1192	ew32(EIAC, adapter->eims_enable_mask);
1193	ew32(EIAM, adapter->eims_enable_mask);
1194	ew32(EIMS, adapter->eims_enable_mask);
1195}
1196
1197/**
1198 * igbvf_poll - NAPI Rx polling callback
1199 * @napi: struct associated with this polling callback
1200 * @budget: amount of packets driver is allowed to process this poll
1201 **/
1202static int igbvf_poll(struct napi_struct *napi, int budget)
1203{
1204	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1205	struct igbvf_adapter *adapter = rx_ring->adapter;
1206	struct e1000_hw *hw = &adapter->hw;
1207	int work_done = 0;
1208
1209	igbvf_clean_rx_irq(adapter, &work_done, budget);
1210
1211	/* If not enough Rx work done, exit the polling mode */
1212	if (work_done < budget) {
1213		napi_complete(napi);
1214
1215		if (adapter->requested_itr & 3)
1216			igbvf_set_itr(adapter);
1217
1218		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1219			ew32(EIMS, adapter->rx_ring->eims_value);
1220	}
1221
1222	return work_done;
1223}
1224
1225/**
1226 * igbvf_set_rlpml - set receive large packet maximum length
1227 * @adapter: board private structure
1228 *
1229 * Configure the maximum size of packets that will be received
1230 */
1231static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1232{
1233	int max_frame_size;
1234	struct e1000_hw *hw = &adapter->hw;
1235
1236	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1237	e1000_rlpml_set_vf(hw, max_frame_size);
1238}
1239
1240static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1241				 __be16 proto, u16 vid)
1242{
1243	struct igbvf_adapter *adapter = netdev_priv(netdev);
1244	struct e1000_hw *hw = &adapter->hw;
1245
1246	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1247		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1248		return -EINVAL;
1249	}
1250	set_bit(vid, adapter->active_vlans);
1251	return 0;
1252}
1253
1254static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1255				  __be16 proto, u16 vid)
1256{
1257	struct igbvf_adapter *adapter = netdev_priv(netdev);
1258	struct e1000_hw *hw = &adapter->hw;
1259
1260	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1261		dev_err(&adapter->pdev->dev,
1262			"Failed to remove vlan id %d\n", vid);
1263		return -EINVAL;
1264	}
1265	clear_bit(vid, adapter->active_vlans);
1266	return 0;
1267}
1268
1269static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1270{
1271	u16 vid;
1272
1273	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1274		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1275}
1276
1277/**
1278 * igbvf_configure_tx - Configure Transmit Unit after Reset
1279 * @adapter: board private structure
1280 *
1281 * Configure the Tx unit of the MAC after a reset.
1282 **/
1283static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1284{
1285	struct e1000_hw *hw = &adapter->hw;
1286	struct igbvf_ring *tx_ring = adapter->tx_ring;
1287	u64 tdba;
1288	u32 txdctl, dca_txctrl;
1289
1290	/* disable transmits */
1291	txdctl = er32(TXDCTL(0));
1292	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1293	e1e_flush();
1294	msleep(10);
1295
1296	/* Setup the HW Tx Head and Tail descriptor pointers */
1297	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1298	tdba = tx_ring->dma;
1299	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1300	ew32(TDBAH(0), (tdba >> 32));
1301	ew32(TDH(0), 0);
1302	ew32(TDT(0), 0);
1303	tx_ring->head = E1000_TDH(0);
1304	tx_ring->tail = E1000_TDT(0);
1305
1306	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1307	 * MUST be delivered in order or it will completely screw up
1308	 * our bookkeeping.
1309	 */
1310	dca_txctrl = er32(DCA_TXCTRL(0));
1311	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1312	ew32(DCA_TXCTRL(0), dca_txctrl);
1313
1314	/* enable transmits */
1315	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1316	ew32(TXDCTL(0), txdctl);
1317
1318	/* Setup Transmit Descriptor Settings for eop descriptor */
1319	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1320
1321	/* enable Report Status bit */
1322	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1323}
1324
1325/**
1326 * igbvf_setup_srrctl - configure the receive control registers
1327 * @adapter: Board private structure
1328 **/
1329static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1330{
1331	struct e1000_hw *hw = &adapter->hw;
1332	u32 srrctl = 0;
1333
1334	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1335		    E1000_SRRCTL_BSIZEHDR_MASK |
1336		    E1000_SRRCTL_BSIZEPKT_MASK);
1337
1338	/* Enable queue drop to avoid head of line blocking */
1339	srrctl |= E1000_SRRCTL_DROP_EN;
1340
1341	/* Setup buffer sizes */
1342	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1343		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1344
1345	if (adapter->rx_buffer_len < 2048) {
1346		adapter->rx_ps_hdr_size = 0;
1347		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1348	} else {
1349		adapter->rx_ps_hdr_size = 128;
1350		srrctl |= adapter->rx_ps_hdr_size <<
1351			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1352		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1353	}
1354
1355	ew32(SRRCTL(0), srrctl);
1356}
1357
1358/**
1359 * igbvf_configure_rx - Configure Receive Unit after Reset
1360 * @adapter: board private structure
1361 *
1362 * Configure the Rx unit of the MAC after a reset.
1363 **/
1364static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1365{
1366	struct e1000_hw *hw = &adapter->hw;
1367	struct igbvf_ring *rx_ring = adapter->rx_ring;
1368	u64 rdba;
1369	u32 rdlen, rxdctl;
1370
1371	/* disable receives */
1372	rxdctl = er32(RXDCTL(0));
1373	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1374	e1e_flush();
1375	msleep(10);
1376
1377	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1378
1379	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1380	 * the Base and Length of the Rx Descriptor Ring
1381	 */
1382	rdba = rx_ring->dma;
1383	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384	ew32(RDBAH(0), (rdba >> 32));
1385	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386	rx_ring->head = E1000_RDH(0);
1387	rx_ring->tail = E1000_RDT(0);
1388	ew32(RDH(0), 0);
1389	ew32(RDT(0), 0);
1390
1391	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392	rxdctl &= 0xFFF00000;
1393	rxdctl |= IGBVF_RX_PTHRESH;
1394	rxdctl |= IGBVF_RX_HTHRESH << 8;
1395	rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397	igbvf_set_rlpml(adapter);
1398
1399	/* enable receives */
1400	ew32(RXDCTL(0), rxdctl);
1401}
1402
1403/**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated.  This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
1412static void igbvf_set_multi(struct net_device *netdev)
1413{
1414	struct igbvf_adapter *adapter = netdev_priv(netdev);
1415	struct e1000_hw *hw = &adapter->hw;
1416	struct netdev_hw_addr *ha;
1417	u8  *mta_list = NULL;
1418	int i;
1419
1420	if (!netdev_mc_empty(netdev)) {
1421		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422					 GFP_ATOMIC);
1423		if (!mta_list)
1424			return;
1425	}
1426
1427	/* prepare a packed array of only addresses. */
1428	i = 0;
1429	netdev_for_each_mc_addr(ha, netdev)
1430		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1433	kfree(mta_list);
1434}
1435
1436/**
1437 * igbvf_configure - configure the hardware for Rx and Tx
1438 * @adapter: private board structure
1439 **/
1440static void igbvf_configure(struct igbvf_adapter *adapter)
1441{
1442	igbvf_set_multi(adapter->netdev);
1443
1444	igbvf_restore_vlan(adapter);
1445
1446	igbvf_configure_tx(adapter);
1447	igbvf_setup_srrctl(adapter);
1448	igbvf_configure_rx(adapter);
1449	igbvf_alloc_rx_buffers(adapter->rx_ring,
1450			       igbvf_desc_unused(adapter->rx_ring));
1451}
1452
1453/* igbvf_reset - bring the hardware into a known good state
1454 * @adapter: private board structure
1455 *
1456 * This function boots the hardware and enables some settings that
1457 * require a configuration cycle of the hardware - those cannot be
1458 * set/changed during runtime. After reset the device needs to be
1459 * properly configured for Rx, Tx etc.
1460 */
1461static void igbvf_reset(struct igbvf_adapter *adapter)
1462{
1463	struct e1000_mac_info *mac = &adapter->hw.mac;
1464	struct net_device *netdev = adapter->netdev;
1465	struct e1000_hw *hw = &adapter->hw;
1466
1467	/* Allow time for pending master requests to run */
1468	if (mac->ops.reset_hw(hw))
1469		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1470
1471	mac->ops.init_hw(hw);
1472
1473	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1474		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1475		       netdev->addr_len);
1476		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1477		       netdev->addr_len);
1478	}
1479
1480	adapter->last_reset = jiffies;
1481}
1482
1483int igbvf_up(struct igbvf_adapter *adapter)
1484{
1485	struct e1000_hw *hw = &adapter->hw;
1486
1487	/* hardware has been reset, we need to reload some things */
1488	igbvf_configure(adapter);
1489
1490	clear_bit(__IGBVF_DOWN, &adapter->state);
1491
1492	napi_enable(&adapter->rx_ring->napi);
1493	if (adapter->msix_entries)
1494		igbvf_configure_msix(adapter);
1495
1496	/* Clear any pending interrupts. */
1497	er32(EICR);
1498	igbvf_irq_enable(adapter);
1499
1500	/* start the watchdog */
1501	hw->mac.get_link_status = 1;
1502	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1503
1504	return 0;
1505}
1506
1507void igbvf_down(struct igbvf_adapter *adapter)
1508{
1509	struct net_device *netdev = adapter->netdev;
1510	struct e1000_hw *hw = &adapter->hw;
1511	u32 rxdctl, txdctl;
1512
1513	/* signal that we're down so the interrupt handler does not
1514	 * reschedule our watchdog timer
1515	 */
1516	set_bit(__IGBVF_DOWN, &adapter->state);
1517
1518	/* disable receives in the hardware */
1519	rxdctl = er32(RXDCTL(0));
1520	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1521
1522	netif_carrier_off(netdev);
1523	netif_stop_queue(netdev);
1524
1525	/* disable transmits in the hardware */
1526	txdctl = er32(TXDCTL(0));
1527	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1528
1529	/* flush both disables and wait for them to finish */
1530	e1e_flush();
1531	msleep(10);
1532
1533	napi_disable(&adapter->rx_ring->napi);
1534
1535	igbvf_irq_disable(adapter);
1536
1537	del_timer_sync(&adapter->watchdog_timer);
1538
1539	/* record the stats before reset*/
1540	igbvf_update_stats(adapter);
1541
1542	adapter->link_speed = 0;
1543	adapter->link_duplex = 0;
1544
1545	igbvf_reset(adapter);
1546	igbvf_clean_tx_ring(adapter->tx_ring);
1547	igbvf_clean_rx_ring(adapter->rx_ring);
1548}
1549
1550void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1551{
1552	might_sleep();
1553	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1554		usleep_range(1000, 2000);
1555	igbvf_down(adapter);
1556	igbvf_up(adapter);
1557	clear_bit(__IGBVF_RESETTING, &adapter->state);
1558}
1559
1560/**
1561 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1562 * @adapter: board private structure to initialize
1563 *
1564 * igbvf_sw_init initializes the Adapter private data structure.
1565 * Fields are initialized based on PCI device information and
1566 * OS network device settings (MTU size).
1567 **/
1568static int igbvf_sw_init(struct igbvf_adapter *adapter)
1569{
1570	struct net_device *netdev = adapter->netdev;
1571	s32 rc;
1572
1573	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1574	adapter->rx_ps_hdr_size = 0;
1575	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1576	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1577
1578	adapter->tx_int_delay = 8;
1579	adapter->tx_abs_int_delay = 32;
1580	adapter->rx_int_delay = 0;
1581	adapter->rx_abs_int_delay = 8;
1582	adapter->requested_itr = 3;
1583	adapter->current_itr = IGBVF_START_ITR;
1584
1585	/* Set various function pointers */
1586	adapter->ei->init_ops(&adapter->hw);
1587
1588	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1589	if (rc)
1590		return rc;
1591
1592	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1593	if (rc)
1594		return rc;
1595
1596	igbvf_set_interrupt_capability(adapter);
1597
1598	if (igbvf_alloc_queues(adapter))
1599		return -ENOMEM;
1600
1601	spin_lock_init(&adapter->tx_queue_lock);
1602
1603	/* Explicitly disable IRQ since the NIC can be in any state. */
1604	igbvf_irq_disable(adapter);
1605
1606	spin_lock_init(&adapter->stats_lock);
1607
1608	set_bit(__IGBVF_DOWN, &adapter->state);
1609	return 0;
1610}
1611
1612static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1613{
1614	struct e1000_hw *hw = &adapter->hw;
1615
1616	adapter->stats.last_gprc = er32(VFGPRC);
1617	adapter->stats.last_gorc = er32(VFGORC);
1618	adapter->stats.last_gptc = er32(VFGPTC);
1619	adapter->stats.last_gotc = er32(VFGOTC);
1620	adapter->stats.last_mprc = er32(VFMPRC);
1621	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1622	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1623	adapter->stats.last_gorlbc = er32(VFGORLBC);
1624	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1625
1626	adapter->stats.base_gprc = er32(VFGPRC);
1627	adapter->stats.base_gorc = er32(VFGORC);
1628	adapter->stats.base_gptc = er32(VFGPTC);
1629	adapter->stats.base_gotc = er32(VFGOTC);
1630	adapter->stats.base_mprc = er32(VFMPRC);
1631	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1632	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1633	adapter->stats.base_gorlbc = er32(VFGORLBC);
1634	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1635}
1636
1637/**
1638 * igbvf_open - Called when a network interface is made active
1639 * @netdev: network interface device structure
1640 *
1641 * Returns 0 on success, negative value on failure
1642 *
1643 * The open entry point is called when a network interface is made
1644 * active by the system (IFF_UP).  At this point all resources needed
1645 * for transmit and receive operations are allocated, the interrupt
1646 * handler is registered with the OS, the watchdog timer is started,
1647 * and the stack is notified that the interface is ready.
1648 **/
1649static int igbvf_open(struct net_device *netdev)
1650{
1651	struct igbvf_adapter *adapter = netdev_priv(netdev);
1652	struct e1000_hw *hw = &adapter->hw;
1653	int err;
1654
1655	/* disallow open during test */
1656	if (test_bit(__IGBVF_TESTING, &adapter->state))
1657		return -EBUSY;
1658
1659	/* allocate transmit descriptors */
1660	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1661	if (err)
1662		goto err_setup_tx;
1663
1664	/* allocate receive descriptors */
1665	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1666	if (err)
1667		goto err_setup_rx;
1668
1669	/* before we allocate an interrupt, we must be ready to handle it.
1670	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1671	 * as soon as we call pci_request_irq, so we have to setup our
1672	 * clean_rx handler before we do so.
1673	 */
1674	igbvf_configure(adapter);
1675
1676	err = igbvf_request_irq(adapter);
1677	if (err)
1678		goto err_req_irq;
1679
1680	/* From here on the code is the same as igbvf_up() */
1681	clear_bit(__IGBVF_DOWN, &adapter->state);
1682
1683	napi_enable(&adapter->rx_ring->napi);
1684
1685	/* clear any pending interrupts */
1686	er32(EICR);
1687
1688	igbvf_irq_enable(adapter);
1689
1690	/* start the watchdog */
1691	hw->mac.get_link_status = 1;
1692	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1693
1694	return 0;
1695
1696err_req_irq:
1697	igbvf_free_rx_resources(adapter->rx_ring);
1698err_setup_rx:
1699	igbvf_free_tx_resources(adapter->tx_ring);
1700err_setup_tx:
1701	igbvf_reset(adapter);
1702
1703	return err;
1704}
1705
1706/**
1707 * igbvf_close - Disables a network interface
1708 * @netdev: network interface device structure
1709 *
1710 * Returns 0, this is not allowed to fail
1711 *
1712 * The close entry point is called when an interface is de-activated
1713 * by the OS.  The hardware is still under the drivers control, but
1714 * needs to be disabled.  A global MAC reset is issued to stop the
1715 * hardware, and all transmit and receive resources are freed.
1716 **/
1717static int igbvf_close(struct net_device *netdev)
1718{
1719	struct igbvf_adapter *adapter = netdev_priv(netdev);
1720
1721	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1722	igbvf_down(adapter);
1723
1724	igbvf_free_irq(adapter);
1725
1726	igbvf_free_tx_resources(adapter->tx_ring);
1727	igbvf_free_rx_resources(adapter->rx_ring);
1728
1729	return 0;
1730}
1731
1732/**
1733 * igbvf_set_mac - Change the Ethernet Address of the NIC
1734 * @netdev: network interface device structure
1735 * @p: pointer to an address structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
1739static int igbvf_set_mac(struct net_device *netdev, void *p)
1740{
1741	struct igbvf_adapter *adapter = netdev_priv(netdev);
1742	struct e1000_hw *hw = &adapter->hw;
1743	struct sockaddr *addr = p;
1744
1745	if (!is_valid_ether_addr(addr->sa_data))
1746		return -EADDRNOTAVAIL;
1747
1748	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1749
1750	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1751
1752	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1753		return -EADDRNOTAVAIL;
1754
1755	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1756
1757	return 0;
1758}
1759
1760#define UPDATE_VF_COUNTER(reg, name) \
1761{ \
1762	u32 current_counter = er32(reg); \
1763	if (current_counter < adapter->stats.last_##name) \
1764		adapter->stats.name += 0x100000000LL; \
1765	adapter->stats.last_##name = current_counter; \
1766	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1767	adapter->stats.name |= current_counter; \
1768}
1769
1770/**
1771 * igbvf_update_stats - Update the board statistics counters
1772 * @adapter: board private structure
1773**/
1774void igbvf_update_stats(struct igbvf_adapter *adapter)
1775{
1776	struct e1000_hw *hw = &adapter->hw;
1777	struct pci_dev *pdev = adapter->pdev;
1778
1779	/* Prevent stats update while adapter is being reset, link is down
1780	 * or if the pci connection is down.
1781	 */
1782	if (adapter->link_speed == 0)
1783		return;
1784
1785	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1786		return;
1787
1788	if (pci_channel_offline(pdev))
1789		return;
1790
1791	UPDATE_VF_COUNTER(VFGPRC, gprc);
1792	UPDATE_VF_COUNTER(VFGORC, gorc);
1793	UPDATE_VF_COUNTER(VFGPTC, gptc);
1794	UPDATE_VF_COUNTER(VFGOTC, gotc);
1795	UPDATE_VF_COUNTER(VFMPRC, mprc);
1796	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1797	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1798	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1799	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1800
1801	/* Fill out the OS statistics structure */
1802	adapter->net_stats.multicast = adapter->stats.mprc;
1803}
1804
1805static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1806{
1807	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1808		 adapter->link_speed,
1809		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1810}
1811
1812static bool igbvf_has_link(struct igbvf_adapter *adapter)
1813{
1814	struct e1000_hw *hw = &adapter->hw;
1815	s32 ret_val = E1000_SUCCESS;
1816	bool link_active;
1817
1818	/* If interface is down, stay link down */
1819	if (test_bit(__IGBVF_DOWN, &adapter->state))
1820		return false;
1821
1822	ret_val = hw->mac.ops.check_for_link(hw);
1823	link_active = !hw->mac.get_link_status;
1824
1825	/* if check for link returns error we will need to reset */
1826	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1827		schedule_work(&adapter->reset_task);
1828
1829	return link_active;
1830}
1831
1832/**
1833 * igbvf_watchdog - Timer Call-back
1834 * @data: pointer to adapter cast into an unsigned long
1835 **/
1836static void igbvf_watchdog(unsigned long data)
1837{
1838	struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1839
1840	/* Do the rest outside of interrupt context */
1841	schedule_work(&adapter->watchdog_task);
1842}
1843
1844static void igbvf_watchdog_task(struct work_struct *work)
1845{
1846	struct igbvf_adapter *adapter = container_of(work,
1847						     struct igbvf_adapter,
1848						     watchdog_task);
1849	struct net_device *netdev = adapter->netdev;
1850	struct e1000_mac_info *mac = &adapter->hw.mac;
1851	struct igbvf_ring *tx_ring = adapter->tx_ring;
1852	struct e1000_hw *hw = &adapter->hw;
1853	u32 link;
1854	int tx_pending = 0;
1855
1856	link = igbvf_has_link(adapter);
1857
1858	if (link) {
1859		if (!netif_carrier_ok(netdev)) {
1860			mac->ops.get_link_up_info(&adapter->hw,
1861						  &adapter->link_speed,
1862						  &adapter->link_duplex);
1863			igbvf_print_link_info(adapter);
1864
1865			netif_carrier_on(netdev);
1866			netif_wake_queue(netdev);
1867		}
1868	} else {
1869		if (netif_carrier_ok(netdev)) {
1870			adapter->link_speed = 0;
1871			adapter->link_duplex = 0;
1872			dev_info(&adapter->pdev->dev, "Link is Down\n");
1873			netif_carrier_off(netdev);
1874			netif_stop_queue(netdev);
1875		}
1876	}
1877
1878	if (netif_carrier_ok(netdev)) {
1879		igbvf_update_stats(adapter);
1880	} else {
1881		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1882			      tx_ring->count);
1883		if (tx_pending) {
1884			/* We've lost link, so the controller stops DMA,
1885			 * but we've got queued Tx work that's never going
1886			 * to get done, so reset controller to flush Tx.
1887			 * (Do the reset outside of interrupt context).
1888			 */
1889			adapter->tx_timeout_count++;
1890			schedule_work(&adapter->reset_task);
1891		}
1892	}
1893
1894	/* Cause software interrupt to ensure Rx ring is cleaned */
1895	ew32(EICS, adapter->rx_ring->eims_value);
1896
1897	/* Reset the timer */
1898	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1899		mod_timer(&adapter->watchdog_timer,
1900			  round_jiffies(jiffies + (2 * HZ)));
1901}
1902
1903#define IGBVF_TX_FLAGS_CSUM		0x00000001
1904#define IGBVF_TX_FLAGS_VLAN		0x00000002
1905#define IGBVF_TX_FLAGS_TSO		0x00000004
1906#define IGBVF_TX_FLAGS_IPV4		0x00000008
1907#define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1908#define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1909
1910static int igbvf_tso(struct igbvf_adapter *adapter,
1911		     struct igbvf_ring *tx_ring,
1912		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1913		     __be16 protocol)
1914{
1915	struct e1000_adv_tx_context_desc *context_desc;
1916	struct igbvf_buffer *buffer_info;
1917	u32 info = 0, tu_cmd = 0;
1918	u32 mss_l4len_idx, l4len;
1919	unsigned int i;
1920	int err;
1921
1922	*hdr_len = 0;
1923
1924	err = skb_cow_head(skb, 0);
1925	if (err < 0) {
1926		dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1927		return err;
1928	}
1929
1930	l4len = tcp_hdrlen(skb);
1931	*hdr_len += l4len;
1932
1933	if (protocol == htons(ETH_P_IP)) {
1934		struct iphdr *iph = ip_hdr(skb);
1935
1936		iph->tot_len = 0;
1937		iph->check = 0;
1938		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1939							 iph->daddr, 0,
1940							 IPPROTO_TCP,
1941							 0);
1942	} else if (skb_is_gso_v6(skb)) {
1943		ipv6_hdr(skb)->payload_len = 0;
1944		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1945						       &ipv6_hdr(skb)->daddr,
1946						       0, IPPROTO_TCP, 0);
1947	}
1948
1949	i = tx_ring->next_to_use;
1950
1951	buffer_info = &tx_ring->buffer_info[i];
1952	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1953	/* VLAN MACLEN IPLEN */
1954	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1955		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1956	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1957	*hdr_len += skb_network_offset(skb);
1958	info |= (skb_transport_header(skb) - skb_network_header(skb));
1959	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1960	context_desc->vlan_macip_lens = cpu_to_le32(info);
1961
1962	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1963	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1964
1965	if (protocol == htons(ETH_P_IP))
1966		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1967	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968
1969	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1970
1971	/* MSS L4LEN IDX */
1972	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1973	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1974
1975	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1976	context_desc->seqnum_seed = 0;
1977
1978	buffer_info->time_stamp = jiffies;
1979	buffer_info->dma = 0;
1980	i++;
1981	if (i == tx_ring->count)
1982		i = 0;
1983
1984	tx_ring->next_to_use = i;
1985
1986	return true;
1987}
1988
1989static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1990				 struct igbvf_ring *tx_ring,
1991				 struct sk_buff *skb, u32 tx_flags,
1992				 __be16 protocol)
1993{
1994	struct e1000_adv_tx_context_desc *context_desc;
1995	unsigned int i;
1996	struct igbvf_buffer *buffer_info;
1997	u32 info = 0, tu_cmd = 0;
1998
1999	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2000	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2001		i = tx_ring->next_to_use;
2002		buffer_info = &tx_ring->buffer_info[i];
2003		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2004
2005		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2006			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2007
2008		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2009		if (skb->ip_summed == CHECKSUM_PARTIAL)
2010			info |= (skb_transport_header(skb) -
2011				 skb_network_header(skb));
2012
2013		context_desc->vlan_macip_lens = cpu_to_le32(info);
2014
2015		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2016
2017		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2018			switch (protocol) {
2019			case htons(ETH_P_IP):
2020				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2021				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2022					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023				break;
2024			case htons(ETH_P_IPV6):
2025				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2026					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2027				break;
2028			default:
2029				break;
2030			}
2031		}
2032
2033		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2034		context_desc->seqnum_seed = 0;
2035		context_desc->mss_l4len_idx = 0;
2036
2037		buffer_info->time_stamp = jiffies;
2038		buffer_info->dma = 0;
2039		i++;
2040		if (i == tx_ring->count)
2041			i = 0;
2042		tx_ring->next_to_use = i;
2043
2044		return true;
2045	}
2046
2047	return false;
2048}
2049
2050static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2051{
2052	struct igbvf_adapter *adapter = netdev_priv(netdev);
2053
2054	/* there is enough descriptors then we don't need to worry  */
2055	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2056		return 0;
2057
2058	netif_stop_queue(netdev);
2059
2060	/* Herbert's original patch had:
2061	 *  smp_mb__after_netif_stop_queue();
2062	 * but since that doesn't exist yet, just open code it.
2063	 */
2064	smp_mb();
2065
2066	/* We need to check again just in case room has been made available */
2067	if (igbvf_desc_unused(adapter->tx_ring) < size)
2068		return -EBUSY;
2069
2070	netif_wake_queue(netdev);
2071
2072	++adapter->restart_queue;
2073	return 0;
2074}
2075
2076#define IGBVF_MAX_TXD_PWR	16
2077#define IGBVF_MAX_DATA_PER_TXD	(1 << IGBVF_MAX_TXD_PWR)
2078
2079static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2080				   struct igbvf_ring *tx_ring,
2081				   struct sk_buff *skb)
2082{
2083	struct igbvf_buffer *buffer_info;
2084	struct pci_dev *pdev = adapter->pdev;
2085	unsigned int len = skb_headlen(skb);
2086	unsigned int count = 0, i;
2087	unsigned int f;
2088
2089	i = tx_ring->next_to_use;
2090
2091	buffer_info = &tx_ring->buffer_info[i];
2092	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2093	buffer_info->length = len;
2094	/* set time_stamp *before* dma to help avoid a possible race */
2095	buffer_info->time_stamp = jiffies;
2096	buffer_info->mapped_as_page = false;
2097	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2098					  DMA_TO_DEVICE);
2099	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2100		goto dma_error;
2101
2102	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2103		const struct skb_frag_struct *frag;
2104
2105		count++;
2106		i++;
2107		if (i == tx_ring->count)
2108			i = 0;
2109
2110		frag = &skb_shinfo(skb)->frags[f];
2111		len = skb_frag_size(frag);
2112
2113		buffer_info = &tx_ring->buffer_info[i];
2114		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2115		buffer_info->length = len;
2116		buffer_info->time_stamp = jiffies;
2117		buffer_info->mapped_as_page = true;
2118		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2119						    DMA_TO_DEVICE);
2120		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2121			goto dma_error;
2122	}
2123
2124	tx_ring->buffer_info[i].skb = skb;
2125
2126	return ++count;
2127
2128dma_error:
2129	dev_err(&pdev->dev, "TX DMA map failed\n");
2130
2131	/* clear timestamp and dma mappings for failed buffer_info mapping */
2132	buffer_info->dma = 0;
2133	buffer_info->time_stamp = 0;
2134	buffer_info->length = 0;
2135	buffer_info->mapped_as_page = false;
2136	if (count)
2137		count--;
2138
2139	/* clear timestamp and dma mappings for remaining portion of packet */
2140	while (count--) {
2141		if (i == 0)
2142			i += tx_ring->count;
2143		i--;
2144		buffer_info = &tx_ring->buffer_info[i];
2145		igbvf_put_txbuf(adapter, buffer_info);
2146	}
2147
2148	return 0;
2149}
2150
2151static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2152				      struct igbvf_ring *tx_ring,
2153				      int tx_flags, int count,
2154				      unsigned int first, u32 paylen,
2155				      u8 hdr_len)
2156{
2157	union e1000_adv_tx_desc *tx_desc = NULL;
2158	struct igbvf_buffer *buffer_info;
2159	u32 olinfo_status = 0, cmd_type_len;
2160	unsigned int i;
2161
2162	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2163			E1000_ADVTXD_DCMD_DEXT);
2164
2165	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2166		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2167
2168	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2169		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2170
2171		/* insert tcp checksum */
2172		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173
2174		/* insert ip checksum */
2175		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2176			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2177
2178	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2179		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2180	}
2181
2182	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2183
2184	i = tx_ring->next_to_use;
2185	while (count--) {
2186		buffer_info = &tx_ring->buffer_info[i];
2187		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2188		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2189		tx_desc->read.cmd_type_len =
2190			 cpu_to_le32(cmd_type_len | buffer_info->length);
2191		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2192		i++;
2193		if (i == tx_ring->count)
2194			i = 0;
2195	}
2196
2197	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2198	/* Force memory writes to complete before letting h/w
2199	 * know there are new descriptors to fetch.  (Only
2200	 * applicable for weak-ordered memory model archs,
2201	 * such as IA-64).
2202	 */
2203	wmb();
2204
2205	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2206	tx_ring->next_to_use = i;
2207	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2208	/* we need this if more than one processor can write to our tail
2209	 * at a time, it synchronizes IO on IA64/Altix systems
2210	 */
2211	mmiowb();
2212}
2213
2214static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2215					     struct net_device *netdev,
2216					     struct igbvf_ring *tx_ring)
2217{
2218	struct igbvf_adapter *adapter = netdev_priv(netdev);
2219	unsigned int first, tx_flags = 0;
2220	u8 hdr_len = 0;
2221	int count = 0;
2222	int tso = 0;
2223	__be16 protocol = vlan_get_protocol(skb);
2224
2225	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2226		dev_kfree_skb_any(skb);
2227		return NETDEV_TX_OK;
2228	}
2229
2230	if (skb->len <= 0) {
2231		dev_kfree_skb_any(skb);
2232		return NETDEV_TX_OK;
2233	}
2234
2235	/* need: count + 4 desc gap to keep tail from touching
2236	 *       + 2 desc gap to keep tail from touching head,
2237	 *       + 1 desc for skb->data,
2238	 *       + 1 desc for context descriptor,
2239	 * head, otherwise try next time
2240	 */
2241	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2242		/* this is a hard error */
2243		return NETDEV_TX_BUSY;
2244	}
2245
2246	if (skb_vlan_tag_present(skb)) {
2247		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2248		tx_flags |= (skb_vlan_tag_get(skb) <<
2249			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2250	}
2251
2252	if (protocol == htons(ETH_P_IP))
2253		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2254
2255	first = tx_ring->next_to_use;
2256
2257	tso = skb_is_gso(skb) ?
2258		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2259	if (unlikely(tso < 0)) {
2260		dev_kfree_skb_any(skb);
2261		return NETDEV_TX_OK;
2262	}
2263
2264	if (tso)
2265		tx_flags |= IGBVF_TX_FLAGS_TSO;
2266	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2267		 (skb->ip_summed == CHECKSUM_PARTIAL))
2268		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2269
2270	/* count reflects descriptors mapped, if 0 then mapping error
2271	 * has occurred and we need to rewind the descriptor queue
2272	 */
2273	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2274
2275	if (count) {
2276		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2277				   first, skb->len, hdr_len);
2278		/* Make sure there is space in the ring for the next send. */
2279		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2280	} else {
2281		dev_kfree_skb_any(skb);
2282		tx_ring->buffer_info[first].time_stamp = 0;
2283		tx_ring->next_to_use = first;
2284	}
2285
2286	return NETDEV_TX_OK;
2287}
2288
2289static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2290				    struct net_device *netdev)
2291{
2292	struct igbvf_adapter *adapter = netdev_priv(netdev);
2293	struct igbvf_ring *tx_ring;
2294
2295	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296		dev_kfree_skb_any(skb);
2297		return NETDEV_TX_OK;
2298	}
2299
2300	tx_ring = &adapter->tx_ring[0];
2301
2302	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2303}
2304
2305/**
2306 * igbvf_tx_timeout - Respond to a Tx Hang
2307 * @netdev: network interface device structure
2308 **/
2309static void igbvf_tx_timeout(struct net_device *netdev)
2310{
2311	struct igbvf_adapter *adapter = netdev_priv(netdev);
2312
2313	/* Do the reset outside of interrupt context */
2314	adapter->tx_timeout_count++;
2315	schedule_work(&adapter->reset_task);
2316}
2317
2318static void igbvf_reset_task(struct work_struct *work)
2319{
2320	struct igbvf_adapter *adapter;
2321
2322	adapter = container_of(work, struct igbvf_adapter, reset_task);
2323
2324	igbvf_reinit_locked(adapter);
2325}
2326
2327/**
2328 * igbvf_get_stats - Get System Network Statistics
2329 * @netdev: network interface device structure
2330 *
2331 * Returns the address of the device statistics structure.
2332 * The statistics are actually updated from the timer callback.
2333 **/
2334static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2335{
2336	struct igbvf_adapter *adapter = netdev_priv(netdev);
2337
2338	/* only return the current stats */
2339	return &adapter->net_stats;
2340}
2341
2342/**
2343 * igbvf_change_mtu - Change the Maximum Transfer Unit
2344 * @netdev: network interface device structure
2345 * @new_mtu: new value for maximum frame size
2346 *
2347 * Returns 0 on success, negative on failure
2348 **/
2349static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2350{
2351	struct igbvf_adapter *adapter = netdev_priv(netdev);
2352	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2353
2354	if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2355	    max_frame > MAX_JUMBO_FRAME_SIZE)
2356		return -EINVAL;
2357
2358#define MAX_STD_JUMBO_FRAME_SIZE 9234
2359	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2360		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2361		return -EINVAL;
2362	}
2363
2364	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2365		usleep_range(1000, 2000);
2366	/* igbvf_down has a dependency on max_frame_size */
2367	adapter->max_frame_size = max_frame;
2368	if (netif_running(netdev))
2369		igbvf_down(adapter);
2370
2371	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2372	 * means we reserve 2 more, this pushes us to allocate from the next
2373	 * larger slab size.
2374	 * i.e. RXBUFFER_2048 --> size-4096 slab
2375	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2376	 * fragmented skbs
2377	 */
2378
2379	if (max_frame <= 1024)
2380		adapter->rx_buffer_len = 1024;
2381	else if (max_frame <= 2048)
2382		adapter->rx_buffer_len = 2048;
2383	else
2384#if (PAGE_SIZE / 2) > 16384
2385		adapter->rx_buffer_len = 16384;
2386#else
2387		adapter->rx_buffer_len = PAGE_SIZE / 2;
2388#endif
2389
2390	/* adjust allocation if LPE protects us, and we aren't using SBP */
2391	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2392	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2393		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2394					 ETH_FCS_LEN;
2395
2396	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2397		 netdev->mtu, new_mtu);
2398	netdev->mtu = new_mtu;
2399
2400	if (netif_running(netdev))
2401		igbvf_up(adapter);
2402	else
2403		igbvf_reset(adapter);
2404
2405	clear_bit(__IGBVF_RESETTING, &adapter->state);
2406
2407	return 0;
2408}
2409
2410static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2411{
2412	switch (cmd) {
2413	default:
2414		return -EOPNOTSUPP;
2415	}
2416}
2417
2418static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2419{
2420	struct net_device *netdev = pci_get_drvdata(pdev);
2421	struct igbvf_adapter *adapter = netdev_priv(netdev);
2422#ifdef CONFIG_PM
2423	int retval = 0;
2424#endif
2425
2426	netif_device_detach(netdev);
2427
2428	if (netif_running(netdev)) {
2429		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2430		igbvf_down(adapter);
2431		igbvf_free_irq(adapter);
2432	}
2433
2434#ifdef CONFIG_PM
2435	retval = pci_save_state(pdev);
2436	if (retval)
2437		return retval;
2438#endif
2439
2440	pci_disable_device(pdev);
2441
2442	return 0;
2443}
2444
2445#ifdef CONFIG_PM
2446static int igbvf_resume(struct pci_dev *pdev)
2447{
2448	struct net_device *netdev = pci_get_drvdata(pdev);
2449	struct igbvf_adapter *adapter = netdev_priv(netdev);
2450	u32 err;
2451
2452	pci_restore_state(pdev);
2453	err = pci_enable_device_mem(pdev);
2454	if (err) {
2455		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2456		return err;
2457	}
2458
2459	pci_set_master(pdev);
2460
2461	if (netif_running(netdev)) {
2462		err = igbvf_request_irq(adapter);
2463		if (err)
2464			return err;
2465	}
2466
2467	igbvf_reset(adapter);
2468
2469	if (netif_running(netdev))
2470		igbvf_up(adapter);
2471
2472	netif_device_attach(netdev);
2473
2474	return 0;
2475}
2476#endif
2477
2478static void igbvf_shutdown(struct pci_dev *pdev)
2479{
2480	igbvf_suspend(pdev, PMSG_SUSPEND);
2481}
2482
2483#ifdef CONFIG_NET_POLL_CONTROLLER
2484/* Polling 'interrupt' - used by things like netconsole to send skbs
2485 * without having to re-enable interrupts. It's not called while
2486 * the interrupt routine is executing.
2487 */
2488static void igbvf_netpoll(struct net_device *netdev)
2489{
2490	struct igbvf_adapter *adapter = netdev_priv(netdev);
2491
2492	disable_irq(adapter->pdev->irq);
2493
2494	igbvf_clean_tx_irq(adapter->tx_ring);
2495
2496	enable_irq(adapter->pdev->irq);
2497}
2498#endif
2499
2500/**
2501 * igbvf_io_error_detected - called when PCI error is detected
2502 * @pdev: Pointer to PCI device
2503 * @state: The current pci connection state
2504 *
2505 * This function is called after a PCI bus error affecting
2506 * this device has been detected.
2507 */
2508static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2509						pci_channel_state_t state)
2510{
2511	struct net_device *netdev = pci_get_drvdata(pdev);
2512	struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514	netif_device_detach(netdev);
2515
2516	if (state == pci_channel_io_perm_failure)
2517		return PCI_ERS_RESULT_DISCONNECT;
2518
2519	if (netif_running(netdev))
2520		igbvf_down(adapter);
2521	pci_disable_device(pdev);
2522
2523	/* Request a slot slot reset. */
2524	return PCI_ERS_RESULT_NEED_RESET;
2525}
2526
2527/**
2528 * igbvf_io_slot_reset - called after the pci bus has been reset.
2529 * @pdev: Pointer to PCI device
2530 *
2531 * Restart the card from scratch, as if from a cold-boot. Implementation
2532 * resembles the first-half of the igbvf_resume routine.
2533 */
2534static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2535{
2536	struct net_device *netdev = pci_get_drvdata(pdev);
2537	struct igbvf_adapter *adapter = netdev_priv(netdev);
2538
2539	if (pci_enable_device_mem(pdev)) {
2540		dev_err(&pdev->dev,
2541			"Cannot re-enable PCI device after reset.\n");
2542		return PCI_ERS_RESULT_DISCONNECT;
2543	}
2544	pci_set_master(pdev);
2545
2546	igbvf_reset(adapter);
2547
2548	return PCI_ERS_RESULT_RECOVERED;
2549}
2550
2551/**
2552 * igbvf_io_resume - called when traffic can start flowing again.
2553 * @pdev: Pointer to PCI device
2554 *
2555 * This callback is called when the error recovery driver tells us that
2556 * its OK to resume normal operation. Implementation resembles the
2557 * second-half of the igbvf_resume routine.
2558 */
2559static void igbvf_io_resume(struct pci_dev *pdev)
2560{
2561	struct net_device *netdev = pci_get_drvdata(pdev);
2562	struct igbvf_adapter *adapter = netdev_priv(netdev);
2563
2564	if (netif_running(netdev)) {
2565		if (igbvf_up(adapter)) {
2566			dev_err(&pdev->dev,
2567				"can't bring device back up after reset\n");
2568			return;
2569		}
2570	}
2571
2572	netif_device_attach(netdev);
2573}
2574
2575static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2576{
2577	struct e1000_hw *hw = &adapter->hw;
2578	struct net_device *netdev = adapter->netdev;
2579	struct pci_dev *pdev = adapter->pdev;
2580
2581	if (hw->mac.type == e1000_vfadapt_i350)
2582		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2583	else
2584		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2585	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2586}
2587
2588static int igbvf_set_features(struct net_device *netdev,
2589			      netdev_features_t features)
2590{
2591	struct igbvf_adapter *adapter = netdev_priv(netdev);
2592
2593	if (features & NETIF_F_RXCSUM)
2594		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2595	else
2596		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2597
2598	return 0;
2599}
2600
2601static const struct net_device_ops igbvf_netdev_ops = {
2602	.ndo_open		= igbvf_open,
2603	.ndo_stop		= igbvf_close,
2604	.ndo_start_xmit		= igbvf_xmit_frame,
2605	.ndo_get_stats		= igbvf_get_stats,
2606	.ndo_set_rx_mode	= igbvf_set_multi,
2607	.ndo_set_mac_address	= igbvf_set_mac,
2608	.ndo_change_mtu		= igbvf_change_mtu,
2609	.ndo_do_ioctl		= igbvf_ioctl,
2610	.ndo_tx_timeout		= igbvf_tx_timeout,
2611	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2612	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2613#ifdef CONFIG_NET_POLL_CONTROLLER
2614	.ndo_poll_controller	= igbvf_netpoll,
2615#endif
2616	.ndo_set_features	= igbvf_set_features,
2617};
2618
2619/**
2620 * igbvf_probe - Device Initialization Routine
2621 * @pdev: PCI device information struct
2622 * @ent: entry in igbvf_pci_tbl
2623 *
2624 * Returns 0 on success, negative on failure
2625 *
2626 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2627 * The OS initialization, configuring of the adapter private structure,
2628 * and a hardware reset occur.
2629 **/
2630static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2631{
2632	struct net_device *netdev;
2633	struct igbvf_adapter *adapter;
2634	struct e1000_hw *hw;
2635	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2636
2637	static int cards_found;
2638	int err, pci_using_dac;
2639
2640	err = pci_enable_device_mem(pdev);
2641	if (err)
2642		return err;
2643
2644	pci_using_dac = 0;
2645	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2646	if (!err) {
2647		pci_using_dac = 1;
2648	} else {
2649		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2650		if (err) {
2651			dev_err(&pdev->dev,
2652				"No usable DMA configuration, aborting\n");
2653			goto err_dma;
2654		}
2655	}
2656
2657	err = pci_request_regions(pdev, igbvf_driver_name);
2658	if (err)
2659		goto err_pci_reg;
2660
2661	pci_set_master(pdev);
2662
2663	err = -ENOMEM;
2664	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2665	if (!netdev)
2666		goto err_alloc_etherdev;
2667
2668	SET_NETDEV_DEV(netdev, &pdev->dev);
2669
2670	pci_set_drvdata(pdev, netdev);
2671	adapter = netdev_priv(netdev);
2672	hw = &adapter->hw;
2673	adapter->netdev = netdev;
2674	adapter->pdev = pdev;
2675	adapter->ei = ei;
2676	adapter->pba = ei->pba;
2677	adapter->flags = ei->flags;
2678	adapter->hw.back = adapter;
2679	adapter->hw.mac.type = ei->mac;
2680	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2681
2682	/* PCI config space info */
2683
2684	hw->vendor_id = pdev->vendor;
2685	hw->device_id = pdev->device;
2686	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2687	hw->subsystem_device_id = pdev->subsystem_device;
2688	hw->revision_id = pdev->revision;
2689
2690	err = -EIO;
2691	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2692				      pci_resource_len(pdev, 0));
2693
2694	if (!adapter->hw.hw_addr)
2695		goto err_ioremap;
2696
2697	if (ei->get_variants) {
2698		err = ei->get_variants(adapter);
2699		if (err)
2700			goto err_get_variants;
2701	}
2702
2703	/* setup adapter struct */
2704	err = igbvf_sw_init(adapter);
2705	if (err)
2706		goto err_sw_init;
2707
2708	/* construct the net_device struct */
2709	netdev->netdev_ops = &igbvf_netdev_ops;
2710
2711	igbvf_set_ethtool_ops(netdev);
2712	netdev->watchdog_timeo = 5 * HZ;
2713	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2714
2715	adapter->bd_number = cards_found++;
2716
2717	netdev->hw_features = NETIF_F_SG |
2718			   NETIF_F_IP_CSUM |
2719			   NETIF_F_IPV6_CSUM |
2720			   NETIF_F_TSO |
2721			   NETIF_F_TSO6 |
2722			   NETIF_F_RXCSUM;
2723
2724	netdev->features = netdev->hw_features |
2725			   NETIF_F_HW_VLAN_CTAG_TX |
2726			   NETIF_F_HW_VLAN_CTAG_RX |
2727			   NETIF_F_HW_VLAN_CTAG_FILTER;
2728
2729	if (pci_using_dac)
2730		netdev->features |= NETIF_F_HIGHDMA;
2731
2732	netdev->vlan_features |= NETIF_F_TSO;
2733	netdev->vlan_features |= NETIF_F_TSO6;
2734	netdev->vlan_features |= NETIF_F_IP_CSUM;
2735	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2736	netdev->vlan_features |= NETIF_F_SG;
2737
2738	/*reset the controller to put the device in a known good state */
2739	err = hw->mac.ops.reset_hw(hw);
2740	if (err) {
2741		dev_info(&pdev->dev,
2742			 "PF still in reset state. Is the PF interface up?\n");
2743	} else {
2744		err = hw->mac.ops.read_mac_addr(hw);
2745		if (err)
2746			dev_info(&pdev->dev, "Error reading MAC address.\n");
2747		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2748			dev_info(&pdev->dev,
2749				 "MAC address not assigned by administrator.\n");
2750		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2751		       netdev->addr_len);
2752	}
2753
2754	if (!is_valid_ether_addr(netdev->dev_addr)) {
2755		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2756		eth_hw_addr_random(netdev);
2757		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2758		       netdev->addr_len);
2759	}
2760
2761	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2762		    (unsigned long)adapter);
2763
2764	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2765	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2766
2767	/* ring size defaults */
2768	adapter->rx_ring->count = 1024;
2769	adapter->tx_ring->count = 1024;
2770
2771	/* reset the hardware with the new settings */
2772	igbvf_reset(adapter);
2773
2774	/* set hardware-specific flags */
2775	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2776		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2777
2778	strcpy(netdev->name, "eth%d");
2779	err = register_netdev(netdev);
2780	if (err)
2781		goto err_hw_init;
2782
2783	/* tell the stack to leave us alone until igbvf_open() is called */
2784	netif_carrier_off(netdev);
2785	netif_stop_queue(netdev);
2786
2787	igbvf_print_device_info(adapter);
2788
2789	igbvf_initialize_last_counter_stats(adapter);
2790
2791	return 0;
2792
2793err_hw_init:
2794	kfree(adapter->tx_ring);
2795	kfree(adapter->rx_ring);
2796err_sw_init:
2797	igbvf_reset_interrupt_capability(adapter);
2798err_get_variants:
2799	iounmap(adapter->hw.hw_addr);
2800err_ioremap:
2801	free_netdev(netdev);
2802err_alloc_etherdev:
2803	pci_release_regions(pdev);
2804err_pci_reg:
2805err_dma:
2806	pci_disable_device(pdev);
2807	return err;
2808}
2809
2810/**
2811 * igbvf_remove - Device Removal Routine
2812 * @pdev: PCI device information struct
2813 *
2814 * igbvf_remove is called by the PCI subsystem to alert the driver
2815 * that it should release a PCI device.  The could be caused by a
2816 * Hot-Plug event, or because the driver is going to be removed from
2817 * memory.
2818 **/
2819static void igbvf_remove(struct pci_dev *pdev)
2820{
2821	struct net_device *netdev = pci_get_drvdata(pdev);
2822	struct igbvf_adapter *adapter = netdev_priv(netdev);
2823	struct e1000_hw *hw = &adapter->hw;
2824
2825	/* The watchdog timer may be rescheduled, so explicitly
2826	 * disable it from being rescheduled.
2827	 */
2828	set_bit(__IGBVF_DOWN, &adapter->state);
2829	del_timer_sync(&adapter->watchdog_timer);
2830
2831	cancel_work_sync(&adapter->reset_task);
2832	cancel_work_sync(&adapter->watchdog_task);
2833
2834	unregister_netdev(netdev);
2835
2836	igbvf_reset_interrupt_capability(adapter);
2837
2838	/* it is important to delete the NAPI struct prior to freeing the
2839	 * Rx ring so that you do not end up with null pointer refs
2840	 */
2841	netif_napi_del(&adapter->rx_ring->napi);
2842	kfree(adapter->tx_ring);
2843	kfree(adapter->rx_ring);
2844
2845	iounmap(hw->hw_addr);
2846	if (hw->flash_address)
2847		iounmap(hw->flash_address);
2848	pci_release_regions(pdev);
2849
2850	free_netdev(netdev);
2851
2852	pci_disable_device(pdev);
2853}
2854
2855/* PCI Error Recovery (ERS) */
2856static const struct pci_error_handlers igbvf_err_handler = {
2857	.error_detected = igbvf_io_error_detected,
2858	.slot_reset = igbvf_io_slot_reset,
2859	.resume = igbvf_io_resume,
2860};
2861
2862static const struct pci_device_id igbvf_pci_tbl[] = {
2863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2865	{ } /* terminate list */
2866};
2867MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2868
2869/* PCI Device API Driver */
2870static struct pci_driver igbvf_driver = {
2871	.name		= igbvf_driver_name,
2872	.id_table	= igbvf_pci_tbl,
2873	.probe		= igbvf_probe,
2874	.remove		= igbvf_remove,
2875#ifdef CONFIG_PM
2876	/* Power Management Hooks */
2877	.suspend	= igbvf_suspend,
2878	.resume		= igbvf_resume,
2879#endif
2880	.shutdown	= igbvf_shutdown,
2881	.err_handler	= &igbvf_err_handler
2882};
2883
2884/**
2885 * igbvf_init_module - Driver Registration Routine
2886 *
2887 * igbvf_init_module is the first routine called when the driver is
2888 * loaded. All it does is register with the PCI subsystem.
2889 **/
2890static int __init igbvf_init_module(void)
2891{
2892	int ret;
2893
2894	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2895	pr_info("%s\n", igbvf_copyright);
2896
2897	ret = pci_register_driver(&igbvf_driver);
2898
2899	return ret;
2900}
2901module_init(igbvf_init_module);
2902
2903/**
2904 * igbvf_exit_module - Driver Exit Cleanup Routine
2905 *
2906 * igbvf_exit_module is called just before the driver is removed
2907 * from memory.
2908 **/
2909static void __exit igbvf_exit_module(void)
2910{
2911	pci_unregister_driver(&igbvf_driver);
2912}
2913module_exit(igbvf_exit_module);
2914
2915MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2916MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2917MODULE_LICENSE("GPL");
2918MODULE_VERSION(DRV_VERSION);
2919
2920/* netdev.c */
2921