1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24/* e1000_i210
25 * e1000_i211
26 */
27
28#include <linux/types.h>
29#include <linux/if_ether.h>
30
31#include "e1000_hw.h"
32#include "e1000_i210.h"
33
34static s32 igb_update_flash_i210(struct e1000_hw *hw);
35
36/**
37 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
38 *  @hw: pointer to the HW structure
39 *
40 *  Acquire the HW semaphore to access the PHY or NVM
41 */
42static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
43{
44	u32 swsm;
45	s32 timeout = hw->nvm.word_size + 1;
46	s32 i = 0;
47
48	/* Get the SW semaphore */
49	while (i < timeout) {
50		swsm = rd32(E1000_SWSM);
51		if (!(swsm & E1000_SWSM_SMBI))
52			break;
53
54		udelay(50);
55		i++;
56	}
57
58	if (i == timeout) {
59		/* In rare circumstances, the SW semaphore may already be held
60		 * unintentionally. Clear the semaphore once before giving up.
61		 */
62		if (hw->dev_spec._82575.clear_semaphore_once) {
63			hw->dev_spec._82575.clear_semaphore_once = false;
64			igb_put_hw_semaphore(hw);
65			for (i = 0; i < timeout; i++) {
66				swsm = rd32(E1000_SWSM);
67				if (!(swsm & E1000_SWSM_SMBI))
68					break;
69
70				udelay(50);
71			}
72		}
73
74		/* If we do not have the semaphore here, we have to give up. */
75		if (i == timeout) {
76			hw_dbg("Driver can't access device - SMBI bit is set.\n");
77			return -E1000_ERR_NVM;
78		}
79	}
80
81	/* Get the FW semaphore. */
82	for (i = 0; i < timeout; i++) {
83		swsm = rd32(E1000_SWSM);
84		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
85
86		/* Semaphore acquired if bit latched */
87		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
88			break;
89
90		udelay(50);
91	}
92
93	if (i == timeout) {
94		/* Release semaphores */
95		igb_put_hw_semaphore(hw);
96		hw_dbg("Driver can't access the NVM\n");
97		return -E1000_ERR_NVM;
98	}
99
100	return 0;
101}
102
103/**
104 *  igb_acquire_nvm_i210 - Request for access to EEPROM
105 *  @hw: pointer to the HW structure
106 *
107 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
108 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
109 *  Return successful if access grant bit set, else clear the request for
110 *  EEPROM access and return -E1000_ERR_NVM (-1).
111 **/
112static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
113{
114	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
115}
116
117/**
118 *  igb_release_nvm_i210 - Release exclusive access to EEPROM
119 *  @hw: pointer to the HW structure
120 *
121 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
122 *  then release the semaphores acquired.
123 **/
124static void igb_release_nvm_i210(struct e1000_hw *hw)
125{
126	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
127}
128
129/**
130 *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
131 *  @hw: pointer to the HW structure
132 *  @mask: specifies which semaphore to acquire
133 *
134 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
135 *  will also specify which port we're acquiring the lock for.
136 **/
137s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
138{
139	u32 swfw_sync;
140	u32 swmask = mask;
141	u32 fwmask = mask << 16;
142	s32 ret_val = 0;
143	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
144
145	while (i < timeout) {
146		if (igb_get_hw_semaphore_i210(hw)) {
147			ret_val = -E1000_ERR_SWFW_SYNC;
148			goto out;
149		}
150
151		swfw_sync = rd32(E1000_SW_FW_SYNC);
152		if (!(swfw_sync & (fwmask | swmask)))
153			break;
154
155		/* Firmware currently using resource (fwmask) */
156		igb_put_hw_semaphore(hw);
157		mdelay(5);
158		i++;
159	}
160
161	if (i == timeout) {
162		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
163		ret_val = -E1000_ERR_SWFW_SYNC;
164		goto out;
165	}
166
167	swfw_sync |= swmask;
168	wr32(E1000_SW_FW_SYNC, swfw_sync);
169
170	igb_put_hw_semaphore(hw);
171out:
172	return ret_val;
173}
174
175/**
176 *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
177 *  @hw: pointer to the HW structure
178 *  @mask: specifies which semaphore to acquire
179 *
180 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
181 *  will also specify which port we're releasing the lock for.
182 **/
183void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
184{
185	u32 swfw_sync;
186
187	while (igb_get_hw_semaphore_i210(hw))
188		; /* Empty */
189
190	swfw_sync = rd32(E1000_SW_FW_SYNC);
191	swfw_sync &= ~mask;
192	wr32(E1000_SW_FW_SYNC, swfw_sync);
193
194	igb_put_hw_semaphore(hw);
195}
196
197/**
198 *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
199 *  @hw: pointer to the HW structure
200 *  @offset: offset of word in the Shadow Ram to read
201 *  @words: number of words to read
202 *  @data: word read from the Shadow Ram
203 *
204 *  Reads a 16 bit word from the Shadow Ram using the EERD register.
205 *  Uses necessary synchronization semaphores.
206 **/
207static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
208				  u16 *data)
209{
210	s32 status = 0;
211	u16 i, count;
212
213	/* We cannot hold synchronization semaphores for too long,
214	 * because of forceful takeover procedure. However it is more efficient
215	 * to read in bursts than synchronizing access for each word.
216	 */
217	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
218		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
219			E1000_EERD_EEWR_MAX_COUNT : (words - i);
220		if (!(hw->nvm.ops.acquire(hw))) {
221			status = igb_read_nvm_eerd(hw, offset, count,
222						     data + i);
223			hw->nvm.ops.release(hw);
224		} else {
225			status = E1000_ERR_SWFW_SYNC;
226		}
227
228		if (status)
229			break;
230	}
231
232	return status;
233}
234
235/**
236 *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
237 *  @hw: pointer to the HW structure
238 *  @offset: offset within the Shadow Ram to be written to
239 *  @words: number of words to write
240 *  @data: 16 bit word(s) to be written to the Shadow Ram
241 *
242 *  Writes data to Shadow Ram at offset using EEWR register.
243 *
244 *  If igb_update_nvm_checksum is not called after this function , the
245 *  Shadow Ram will most likely contain an invalid checksum.
246 **/
247static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
248				u16 *data)
249{
250	struct e1000_nvm_info *nvm = &hw->nvm;
251	u32 i, k, eewr = 0;
252	u32 attempts = 100000;
253	s32 ret_val = 0;
254
255	/* A check for invalid values:  offset too large, too many words,
256	 * too many words for the offset, and not enough words.
257	 */
258	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
259	    (words == 0)) {
260		hw_dbg("nvm parameter(s) out of bounds\n");
261		ret_val = -E1000_ERR_NVM;
262		goto out;
263	}
264
265	for (i = 0; i < words; i++) {
266		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
267			(data[i] << E1000_NVM_RW_REG_DATA) |
268			E1000_NVM_RW_REG_START;
269
270		wr32(E1000_SRWR, eewr);
271
272		for (k = 0; k < attempts; k++) {
273			if (E1000_NVM_RW_REG_DONE &
274			    rd32(E1000_SRWR)) {
275				ret_val = 0;
276				break;
277			}
278			udelay(5);
279	}
280
281		if (ret_val) {
282			hw_dbg("Shadow RAM write EEWR timed out\n");
283			break;
284		}
285	}
286
287out:
288	return ret_val;
289}
290
291/**
292 *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
293 *  @hw: pointer to the HW structure
294 *  @offset: offset within the Shadow RAM to be written to
295 *  @words: number of words to write
296 *  @data: 16 bit word(s) to be written to the Shadow RAM
297 *
298 *  Writes data to Shadow RAM at offset using EEWR register.
299 *
300 *  If e1000_update_nvm_checksum is not called after this function , the
301 *  data will not be committed to FLASH and also Shadow RAM will most likely
302 *  contain an invalid checksum.
303 *
304 *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
305 *  partially written.
306 **/
307static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
308				   u16 *data)
309{
310	s32 status = 0;
311	u16 i, count;
312
313	/* We cannot hold synchronization semaphores for too long,
314	 * because of forceful takeover procedure. However it is more efficient
315	 * to write in bursts than synchronizing access for each word.
316	 */
317	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
318		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
319			E1000_EERD_EEWR_MAX_COUNT : (words - i);
320		if (!(hw->nvm.ops.acquire(hw))) {
321			status = igb_write_nvm_srwr(hw, offset, count,
322						      data + i);
323			hw->nvm.ops.release(hw);
324		} else {
325			status = E1000_ERR_SWFW_SYNC;
326		}
327
328		if (status)
329			break;
330	}
331
332	return status;
333}
334
335/**
336 *  igb_read_invm_word_i210 - Reads OTP
337 *  @hw: pointer to the HW structure
338 *  @address: the word address (aka eeprom offset) to read
339 *  @data: pointer to the data read
340 *
341 *  Reads 16-bit words from the OTP. Return error when the word is not
342 *  stored in OTP.
343 **/
344static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
345{
346	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
347	u32 invm_dword;
348	u16 i;
349	u8 record_type, word_address;
350
351	for (i = 0; i < E1000_INVM_SIZE; i++) {
352		invm_dword = rd32(E1000_INVM_DATA_REG(i));
353		/* Get record type */
354		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
355		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
356			break;
357		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
358			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
359		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
360			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
361		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
362			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
363			if (word_address == address) {
364				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
365				hw_dbg("Read INVM Word 0x%02x = %x\n",
366					  address, *data);
367				status = 0;
368				break;
369			}
370		}
371	}
372	if (status)
373		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
374	return status;
375}
376
377/**
378 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
379 *  @hw: pointer to the HW structure
380 *  @words: number of words to read
381 *  @data: pointer to the data read
382 *
383 *  Wrapper function to return data formerly found in the NVM.
384 **/
385static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
386				u16 words __always_unused, u16 *data)
387{
388	s32 ret_val = 0;
389
390	/* Only the MAC addr is required to be present in the iNVM */
391	switch (offset) {
392	case NVM_MAC_ADDR:
393		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
394		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
395						     &data[1]);
396		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
397						     &data[2]);
398		if (ret_val)
399			hw_dbg("MAC Addr not found in iNVM\n");
400		break;
401	case NVM_INIT_CTRL_2:
402		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
403		if (ret_val) {
404			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
405			ret_val = 0;
406		}
407		break;
408	case NVM_INIT_CTRL_4:
409		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
410		if (ret_val) {
411			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
412			ret_val = 0;
413		}
414		break;
415	case NVM_LED_1_CFG:
416		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
417		if (ret_val) {
418			*data = NVM_LED_1_CFG_DEFAULT_I211;
419			ret_val = 0;
420		}
421		break;
422	case NVM_LED_0_2_CFG:
423		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
424		if (ret_val) {
425			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
426			ret_val = 0;
427		}
428		break;
429	case NVM_ID_LED_SETTINGS:
430		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
431		if (ret_val) {
432			*data = ID_LED_RESERVED_FFFF;
433			ret_val = 0;
434		}
435		break;
436	case NVM_SUB_DEV_ID:
437		*data = hw->subsystem_device_id;
438		break;
439	case NVM_SUB_VEN_ID:
440		*data = hw->subsystem_vendor_id;
441		break;
442	case NVM_DEV_ID:
443		*data = hw->device_id;
444		break;
445	case NVM_VEN_ID:
446		*data = hw->vendor_id;
447		break;
448	default:
449		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
450		*data = NVM_RESERVED_WORD;
451		break;
452	}
453	return ret_val;
454}
455
456/**
457 *  igb_read_invm_version - Reads iNVM version and image type
458 *  @hw: pointer to the HW structure
459 *  @invm_ver: version structure for the version read
460 *
461 *  Reads iNVM version and image type.
462 **/
463s32 igb_read_invm_version(struct e1000_hw *hw,
464			  struct e1000_fw_version *invm_ver) {
465	u32 *record = NULL;
466	u32 *next_record = NULL;
467	u32 i = 0;
468	u32 invm_dword = 0;
469	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
470					     E1000_INVM_RECORD_SIZE_IN_BYTES);
471	u32 buffer[E1000_INVM_SIZE];
472	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
473	u16 version = 0;
474
475	/* Read iNVM memory */
476	for (i = 0; i < E1000_INVM_SIZE; i++) {
477		invm_dword = rd32(E1000_INVM_DATA_REG(i));
478		buffer[i] = invm_dword;
479	}
480
481	/* Read version number */
482	for (i = 1; i < invm_blocks; i++) {
483		record = &buffer[invm_blocks - i];
484		next_record = &buffer[invm_blocks - i + 1];
485
486		/* Check if we have first version location used */
487		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
488			version = 0;
489			status = 0;
490			break;
491		}
492		/* Check if we have second version location used */
493		else if ((i == 1) &&
494			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
495			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
496			status = 0;
497			break;
498		}
499		/* Check if we have odd version location
500		 * used and it is the last one used
501		 */
502		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
503			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
504			 (i != 1))) {
505			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
506				  >> 13;
507			status = 0;
508			break;
509		}
510		/* Check if we have even version location
511		 * used and it is the last one used
512		 */
513		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
514			 ((*record & 0x3) == 0)) {
515			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
516			status = 0;
517			break;
518		}
519	}
520
521	if (!status) {
522		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
523					>> E1000_INVM_MAJOR_SHIFT;
524		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
525	}
526	/* Read Image Type */
527	for (i = 1; i < invm_blocks; i++) {
528		record = &buffer[invm_blocks - i];
529		next_record = &buffer[invm_blocks - i + 1];
530
531		/* Check if we have image type in first location used */
532		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
533			invm_ver->invm_img_type = 0;
534			status = 0;
535			break;
536		}
537		/* Check if we have image type in first location used */
538		else if ((((*record & 0x3) == 0) &&
539			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
540			 ((((*record & 0x3) != 0) && (i != 1)))) {
541			invm_ver->invm_img_type =
542				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
543			status = 0;
544			break;
545		}
546	}
547	return status;
548}
549
550/**
551 *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
552 *  @hw: pointer to the HW structure
553 *
554 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
555 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
556 **/
557static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
558{
559	s32 status = 0;
560	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
561
562	if (!(hw->nvm.ops.acquire(hw))) {
563
564		/* Replace the read function with semaphore grabbing with
565		 * the one that skips this for a while.
566		 * We have semaphore taken already here.
567		 */
568		read_op_ptr = hw->nvm.ops.read;
569		hw->nvm.ops.read = igb_read_nvm_eerd;
570
571		status = igb_validate_nvm_checksum(hw);
572
573		/* Revert original read operation. */
574		hw->nvm.ops.read = read_op_ptr;
575
576		hw->nvm.ops.release(hw);
577	} else {
578		status = E1000_ERR_SWFW_SYNC;
579	}
580
581	return status;
582}
583
584/**
585 *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
586 *  @hw: pointer to the HW structure
587 *
588 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
589 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
590 *  value to the EEPROM. Next commit EEPROM data onto the Flash.
591 **/
592static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
593{
594	s32 ret_val = 0;
595	u16 checksum = 0;
596	u16 i, nvm_data;
597
598	/* Read the first word from the EEPROM. If this times out or fails, do
599	 * not continue or we could be in for a very long wait while every
600	 * EEPROM read fails
601	 */
602	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
603	if (ret_val) {
604		hw_dbg("EEPROM read failed\n");
605		goto out;
606	}
607
608	if (!(hw->nvm.ops.acquire(hw))) {
609		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
610		 * because we do not want to take the synchronization
611		 * semaphores twice here.
612		 */
613
614		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
615			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
616			if (ret_val) {
617				hw->nvm.ops.release(hw);
618				hw_dbg("NVM Read Error while updating checksum.\n");
619				goto out;
620			}
621			checksum += nvm_data;
622		}
623		checksum = (u16) NVM_SUM - checksum;
624		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
625						&checksum);
626		if (ret_val) {
627			hw->nvm.ops.release(hw);
628			hw_dbg("NVM Write Error while updating checksum.\n");
629			goto out;
630		}
631
632		hw->nvm.ops.release(hw);
633
634		ret_val = igb_update_flash_i210(hw);
635	} else {
636		ret_val = -E1000_ERR_SWFW_SYNC;
637	}
638out:
639	return ret_val;
640}
641
642/**
643 *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
644 *  @hw: pointer to the HW structure
645 *
646 **/
647static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
648{
649	s32 ret_val = -E1000_ERR_NVM;
650	u32 i, reg;
651
652	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
653		reg = rd32(E1000_EECD);
654		if (reg & E1000_EECD_FLUDONE_I210) {
655			ret_val = 0;
656			break;
657		}
658		udelay(5);
659	}
660
661	return ret_val;
662}
663
664/**
665 *  igb_get_flash_presence_i210 - Check if flash device is detected.
666 *  @hw: pointer to the HW structure
667 *
668 **/
669bool igb_get_flash_presence_i210(struct e1000_hw *hw)
670{
671	u32 eec = 0;
672	bool ret_val = false;
673
674	eec = rd32(E1000_EECD);
675	if (eec & E1000_EECD_FLASH_DETECTED_I210)
676		ret_val = true;
677
678	return ret_val;
679}
680
681/**
682 *  igb_update_flash_i210 - Commit EEPROM to the flash
683 *  @hw: pointer to the HW structure
684 *
685 **/
686static s32 igb_update_flash_i210(struct e1000_hw *hw)
687{
688	s32 ret_val = 0;
689	u32 flup;
690
691	ret_val = igb_pool_flash_update_done_i210(hw);
692	if (ret_val == -E1000_ERR_NVM) {
693		hw_dbg("Flash update time out\n");
694		goto out;
695	}
696
697	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
698	wr32(E1000_EECD, flup);
699
700	ret_val = igb_pool_flash_update_done_i210(hw);
701	if (ret_val)
702		hw_dbg("Flash update complete\n");
703	else
704		hw_dbg("Flash update time out\n");
705
706out:
707	return ret_val;
708}
709
710/**
711 *  igb_valid_led_default_i210 - Verify a valid default LED config
712 *  @hw: pointer to the HW structure
713 *  @data: pointer to the NVM (EEPROM)
714 *
715 *  Read the EEPROM for the current default LED configuration.  If the
716 *  LED configuration is not valid, set to a valid LED configuration.
717 **/
718s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
719{
720	s32 ret_val;
721
722	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
723	if (ret_val) {
724		hw_dbg("NVM Read Error\n");
725		goto out;
726	}
727
728	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
729		switch (hw->phy.media_type) {
730		case e1000_media_type_internal_serdes:
731			*data = ID_LED_DEFAULT_I210_SERDES;
732			break;
733		case e1000_media_type_copper:
734		default:
735			*data = ID_LED_DEFAULT_I210;
736			break;
737		}
738	}
739out:
740	return ret_val;
741}
742
743/**
744 *  __igb_access_xmdio_reg - Read/write XMDIO register
745 *  @hw: pointer to the HW structure
746 *  @address: XMDIO address to program
747 *  @dev_addr: device address to program
748 *  @data: pointer to value to read/write from/to the XMDIO address
749 *  @read: boolean flag to indicate read or write
750 **/
751static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
752				  u8 dev_addr, u16 *data, bool read)
753{
754	s32 ret_val = 0;
755
756	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
757	if (ret_val)
758		return ret_val;
759
760	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
761	if (ret_val)
762		return ret_val;
763
764	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
765							 dev_addr);
766	if (ret_val)
767		return ret_val;
768
769	if (read)
770		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
771	else
772		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
773	if (ret_val)
774		return ret_val;
775
776	/* Recalibrate the device back to 0 */
777	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
778	if (ret_val)
779		return ret_val;
780
781	return ret_val;
782}
783
784/**
785 *  igb_read_xmdio_reg - Read XMDIO register
786 *  @hw: pointer to the HW structure
787 *  @addr: XMDIO address to program
788 *  @dev_addr: device address to program
789 *  @data: value to be read from the EMI address
790 **/
791s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
792{
793	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
794}
795
796/**
797 *  igb_write_xmdio_reg - Write XMDIO register
798 *  @hw: pointer to the HW structure
799 *  @addr: XMDIO address to program
800 *  @dev_addr: device address to program
801 *  @data: value to be written to the XMDIO address
802 **/
803s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
804{
805	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
806}
807
808/**
809 *  igb_init_nvm_params_i210 - Init NVM func ptrs.
810 *  @hw: pointer to the HW structure
811 **/
812s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
813{
814	s32 ret_val = 0;
815	struct e1000_nvm_info *nvm = &hw->nvm;
816
817	nvm->ops.acquire = igb_acquire_nvm_i210;
818	nvm->ops.release = igb_release_nvm_i210;
819	nvm->ops.valid_led_default = igb_valid_led_default_i210;
820
821	/* NVM Function Pointers */
822	if (igb_get_flash_presence_i210(hw)) {
823		hw->nvm.type = e1000_nvm_flash_hw;
824		nvm->ops.read    = igb_read_nvm_srrd_i210;
825		nvm->ops.write   = igb_write_nvm_srwr_i210;
826		nvm->ops.validate = igb_validate_nvm_checksum_i210;
827		nvm->ops.update   = igb_update_nvm_checksum_i210;
828	} else {
829		hw->nvm.type = e1000_nvm_invm;
830		nvm->ops.read     = igb_read_invm_i210;
831		nvm->ops.write    = NULL;
832		nvm->ops.validate = NULL;
833		nvm->ops.update   = NULL;
834	}
835	return ret_val;
836}
837
838/**
839 * igb_pll_workaround_i210
840 * @hw: pointer to the HW structure
841 *
842 * Works around an errata in the PLL circuit where it occasionally
843 * provides the wrong clock frequency after power up.
844 **/
845s32 igb_pll_workaround_i210(struct e1000_hw *hw)
846{
847	s32 ret_val;
848	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
849	u16 nvm_word, phy_word, pci_word, tmp_nvm;
850	int i;
851
852	/* Get and set needed register values */
853	wuc = rd32(E1000_WUC);
854	mdicnfg = rd32(E1000_MDICNFG);
855	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
856	wr32(E1000_MDICNFG, reg_val);
857
858	/* Get data from NVM, or set default */
859	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
860					  &nvm_word);
861	if (ret_val)
862		nvm_word = E1000_INVM_DEFAULT_AL;
863	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
864	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
865		/* check current state directly from internal PHY */
866		igb_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE |
867					 E1000_PHY_PLL_FREQ_REG), &phy_word);
868		if ((phy_word & E1000_PHY_PLL_UNCONF)
869		    != E1000_PHY_PLL_UNCONF) {
870			ret_val = 0;
871			break;
872		} else {
873			ret_val = -E1000_ERR_PHY;
874		}
875		/* directly reset the internal PHY */
876		ctrl = rd32(E1000_CTRL);
877		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
878
879		ctrl_ext = rd32(E1000_CTRL_EXT);
880		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
881		wr32(E1000_CTRL_EXT, ctrl_ext);
882
883		wr32(E1000_WUC, 0);
884		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
885		wr32(E1000_EEARBC_I210, reg_val);
886
887		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
888		pci_word |= E1000_PCI_PMCSR_D3;
889		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
890		usleep_range(1000, 2000);
891		pci_word &= ~E1000_PCI_PMCSR_D3;
892		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
893		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
894		wr32(E1000_EEARBC_I210, reg_val);
895
896		/* restore WUC register */
897		wr32(E1000_WUC, wuc);
898	}
899	/* restore MDICNFG setting */
900	wr32(E1000_MDICNFG, mdicnfg);
901	return ret_val;
902}
903