1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
27#include <linux/prefetch.h>
28
29#include "fm10k.h"
30
31#define DRV_VERSION	"0.15.2-k"
32const char fm10k_driver_version[] = DRV_VERSION;
33char fm10k_driver_name[] = "fm10k";
34static const char fm10k_driver_string[] =
35	"Intel(R) Ethernet Switch Host Interface Driver";
36static const char fm10k_copyright[] =
37	"Copyright (c) 2013 Intel Corporation.";
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
44/* single workqueue for entire fm10k driver */
45struct workqueue_struct *fm10k_workqueue = NULL;
46
47/**
48 * fm10k_init_module - Driver Registration Routine
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded.  All it does is register with the PCI subsystem.
52 **/
53static int __init fm10k_init_module(void)
54{
55	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56	pr_info("%s\n", fm10k_copyright);
57
58	/* create driver workqueue */
59	if (!fm10k_workqueue)
60		fm10k_workqueue = create_workqueue("fm10k");
61
62	fm10k_dbg_init();
63
64	return fm10k_register_pci_driver();
65}
66module_init(fm10k_init_module);
67
68/**
69 * fm10k_exit_module - Driver Exit Cleanup Routine
70 *
71 * fm10k_exit_module is called just before the driver is removed
72 * from memory.
73 **/
74static void __exit fm10k_exit_module(void)
75{
76	fm10k_unregister_pci_driver();
77
78	fm10k_dbg_exit();
79
80	/* destroy driver workqueue */
81	flush_workqueue(fm10k_workqueue);
82	destroy_workqueue(fm10k_workqueue);
83	fm10k_workqueue = NULL;
84}
85module_exit(fm10k_exit_module);
86
87static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
88				    struct fm10k_rx_buffer *bi)
89{
90	struct page *page = bi->page;
91	dma_addr_t dma;
92
93	/* Only page will be NULL if buffer was consumed */
94	if (likely(page))
95		return true;
96
97	/* alloc new page for storage */
98	page = dev_alloc_page();
99	if (unlikely(!page)) {
100		rx_ring->rx_stats.alloc_failed++;
101		return false;
102	}
103
104	/* map page for use */
105	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
106
107	/* if mapping failed free memory back to system since
108	 * there isn't much point in holding memory we can't use
109	 */
110	if (dma_mapping_error(rx_ring->dev, dma)) {
111		__free_page(page);
112
113		rx_ring->rx_stats.alloc_failed++;
114		return false;
115	}
116
117	bi->dma = dma;
118	bi->page = page;
119	bi->page_offset = 0;
120
121	return true;
122}
123
124/**
125 * fm10k_alloc_rx_buffers - Replace used receive buffers
126 * @rx_ring: ring to place buffers on
127 * @cleaned_count: number of buffers to replace
128 **/
129void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
130{
131	union fm10k_rx_desc *rx_desc;
132	struct fm10k_rx_buffer *bi;
133	u16 i = rx_ring->next_to_use;
134
135	/* nothing to do */
136	if (!cleaned_count)
137		return;
138
139	rx_desc = FM10K_RX_DESC(rx_ring, i);
140	bi = &rx_ring->rx_buffer[i];
141	i -= rx_ring->count;
142
143	do {
144		if (!fm10k_alloc_mapped_page(rx_ring, bi))
145			break;
146
147		/* Refresh the desc even if buffer_addrs didn't change
148		 * because each write-back erases this info.
149		 */
150		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
151
152		rx_desc++;
153		bi++;
154		i++;
155		if (unlikely(!i)) {
156			rx_desc = FM10K_RX_DESC(rx_ring, 0);
157			bi = rx_ring->rx_buffer;
158			i -= rx_ring->count;
159		}
160
161		/* clear the status bits for the next_to_use descriptor */
162		rx_desc->d.staterr = 0;
163
164		cleaned_count--;
165	} while (cleaned_count);
166
167	i += rx_ring->count;
168
169	if (rx_ring->next_to_use != i) {
170		/* record the next descriptor to use */
171		rx_ring->next_to_use = i;
172
173		/* update next to alloc since we have filled the ring */
174		rx_ring->next_to_alloc = i;
175
176		/* Force memory writes to complete before letting h/w
177		 * know there are new descriptors to fetch.  (Only
178		 * applicable for weak-ordered memory model archs,
179		 * such as IA-64).
180		 */
181		wmb();
182
183		/* notify hardware of new descriptors */
184		writel(i, rx_ring->tail);
185	}
186}
187
188/**
189 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
190 * @rx_ring: rx descriptor ring to store buffers on
191 * @old_buff: donor buffer to have page reused
192 *
193 * Synchronizes page for reuse by the interface
194 **/
195static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
196				struct fm10k_rx_buffer *old_buff)
197{
198	struct fm10k_rx_buffer *new_buff;
199	u16 nta = rx_ring->next_to_alloc;
200
201	new_buff = &rx_ring->rx_buffer[nta];
202
203	/* update, and store next to alloc */
204	nta++;
205	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
206
207	/* transfer page from old buffer to new buffer */
208	*new_buff = *old_buff;
209
210	/* sync the buffer for use by the device */
211	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
212					 old_buff->page_offset,
213					 FM10K_RX_BUFSZ,
214					 DMA_FROM_DEVICE);
215}
216
217static inline bool fm10k_page_is_reserved(struct page *page)
218{
219	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
220}
221
222static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
223				    struct page *page,
224				    unsigned int __maybe_unused truesize)
225{
226	/* avoid re-using remote pages */
227	if (unlikely(fm10k_page_is_reserved(page)))
228		return false;
229
230#if (PAGE_SIZE < 8192)
231	/* if we are only owner of page we can reuse it */
232	if (unlikely(page_count(page) != 1))
233		return false;
234
235	/* flip page offset to other buffer */
236	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
237#else
238	/* move offset up to the next cache line */
239	rx_buffer->page_offset += truesize;
240
241	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
242		return false;
243#endif
244
245	/* Even if we own the page, we are not allowed to use atomic_set()
246	 * This would break get_page_unless_zero() users.
247	 */
248	atomic_inc(&page->_count);
249
250	return true;
251}
252
253/**
254 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
255 * @rx_buffer: buffer containing page to add
256 * @rx_desc: descriptor containing length of buffer written by hardware
257 * @skb: sk_buff to place the data into
258 *
259 * This function will add the data contained in rx_buffer->page to the skb.
260 * This is done either through a direct copy if the data in the buffer is
261 * less than the skb header size, otherwise it will just attach the page as
262 * a frag to the skb.
263 *
264 * The function will then update the page offset if necessary and return
265 * true if the buffer can be reused by the interface.
266 **/
267static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
268			      union fm10k_rx_desc *rx_desc,
269			      struct sk_buff *skb)
270{
271	struct page *page = rx_buffer->page;
272	unsigned int size = le16_to_cpu(rx_desc->w.length);
273#if (PAGE_SIZE < 8192)
274	unsigned int truesize = FM10K_RX_BUFSZ;
275#else
276	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
277#endif
278
279	if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
280		unsigned char *va = page_address(page) + rx_buffer->page_offset;
281
282		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
283
284		/* page is not reserved, we can reuse buffer as-is */
285		if (likely(!fm10k_page_is_reserved(page)))
286			return true;
287
288		/* this page cannot be reused so discard it */
289		__free_page(page);
290		return false;
291	}
292
293	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294			rx_buffer->page_offset, size, truesize);
295
296	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
297}
298
299static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300					     union fm10k_rx_desc *rx_desc,
301					     struct sk_buff *skb)
302{
303	struct fm10k_rx_buffer *rx_buffer;
304	struct page *page;
305
306	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
307	page = rx_buffer->page;
308	prefetchw(page);
309
310	if (likely(!skb)) {
311		void *page_addr = page_address(page) +
312				  rx_buffer->page_offset;
313
314		/* prefetch first cache line of first page */
315		prefetch(page_addr);
316#if L1_CACHE_BYTES < 128
317		prefetch(page_addr + L1_CACHE_BYTES);
318#endif
319
320		/* allocate a skb to store the frags */
321		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
322				     FM10K_RX_HDR_LEN);
323		if (unlikely(!skb)) {
324			rx_ring->rx_stats.alloc_failed++;
325			return NULL;
326		}
327
328		/* we will be copying header into skb->data in
329		 * pskb_may_pull so it is in our interest to prefetch
330		 * it now to avoid a possible cache miss
331		 */
332		prefetchw(skb->data);
333	}
334
335	/* we are reusing so sync this buffer for CPU use */
336	dma_sync_single_range_for_cpu(rx_ring->dev,
337				      rx_buffer->dma,
338				      rx_buffer->page_offset,
339				      FM10K_RX_BUFSZ,
340				      DMA_FROM_DEVICE);
341
342	/* pull page into skb */
343	if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
344		/* hand second half of page back to the ring */
345		fm10k_reuse_rx_page(rx_ring, rx_buffer);
346	} else {
347		/* we are not reusing the buffer so unmap it */
348		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
349			       PAGE_SIZE, DMA_FROM_DEVICE);
350	}
351
352	/* clear contents of rx_buffer */
353	rx_buffer->page = NULL;
354
355	return skb;
356}
357
358static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
359				     union fm10k_rx_desc *rx_desc,
360				     struct sk_buff *skb)
361{
362	skb_checksum_none_assert(skb);
363
364	/* Rx checksum disabled via ethtool */
365	if (!(ring->netdev->features & NETIF_F_RXCSUM))
366		return;
367
368	/* TCP/UDP checksum error bit is set */
369	if (fm10k_test_staterr(rx_desc,
370			       FM10K_RXD_STATUS_L4E |
371			       FM10K_RXD_STATUS_L4E2 |
372			       FM10K_RXD_STATUS_IPE |
373			       FM10K_RXD_STATUS_IPE2)) {
374		ring->rx_stats.csum_err++;
375		return;
376	}
377
378	/* It must be a TCP or UDP packet with a valid checksum */
379	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
380		skb->encapsulation = true;
381	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
382		return;
383
384	skb->ip_summed = CHECKSUM_UNNECESSARY;
385}
386
387#define FM10K_RSS_L4_TYPES_MASK \
388	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
389	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
390	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
391	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
392
393static inline void fm10k_rx_hash(struct fm10k_ring *ring,
394				 union fm10k_rx_desc *rx_desc,
395				 struct sk_buff *skb)
396{
397	u16 rss_type;
398
399	if (!(ring->netdev->features & NETIF_F_RXHASH))
400		return;
401
402	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
403	if (!rss_type)
404		return;
405
406	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
407		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
408		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
409}
410
411static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
412			      union fm10k_rx_desc *rx_desc,
413			      struct sk_buff *skb)
414{
415	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
416
417	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
418
419	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
420		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
421					  le64_to_cpu(rx_desc->q.timestamp));
422}
423
424static void fm10k_type_trans(struct fm10k_ring *rx_ring,
425			     union fm10k_rx_desc __maybe_unused *rx_desc,
426			     struct sk_buff *skb)
427{
428	struct net_device *dev = rx_ring->netdev;
429	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
430
431	/* check to see if DGLORT belongs to a MACVLAN */
432	if (l2_accel) {
433		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
434
435		idx -= l2_accel->dglort;
436		if (idx < l2_accel->size && l2_accel->macvlan[idx])
437			dev = l2_accel->macvlan[idx];
438		else
439			l2_accel = NULL;
440	}
441
442	skb->protocol = eth_type_trans(skb, dev);
443
444	if (!l2_accel)
445		return;
446
447	/* update MACVLAN statistics */
448	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
449			 !!(rx_desc->w.hdr_info &
450			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
451}
452
453/**
454 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
455 * @rx_ring: rx descriptor ring packet is being transacted on
456 * @rx_desc: pointer to the EOP Rx descriptor
457 * @skb: pointer to current skb being populated
458 *
459 * This function checks the ring, descriptor, and packet information in
460 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
461 * other fields within the skb.
462 **/
463static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
464					     union fm10k_rx_desc *rx_desc,
465					     struct sk_buff *skb)
466{
467	unsigned int len = skb->len;
468
469	fm10k_rx_hash(rx_ring, rx_desc, skb);
470
471	fm10k_rx_checksum(rx_ring, rx_desc, skb);
472
473	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
474
475	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
476
477	skb_record_rx_queue(skb, rx_ring->queue_index);
478
479	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
480
481	if (rx_desc->w.vlan) {
482		u16 vid = le16_to_cpu(rx_desc->w.vlan);
483
484		if (vid != rx_ring->vid)
485			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
486	}
487
488	fm10k_type_trans(rx_ring, rx_desc, skb);
489
490	return len;
491}
492
493/**
494 * fm10k_is_non_eop - process handling of non-EOP buffers
495 * @rx_ring: Rx ring being processed
496 * @rx_desc: Rx descriptor for current buffer
497 *
498 * This function updates next to clean.  If the buffer is an EOP buffer
499 * this function exits returning false, otherwise it will place the
500 * sk_buff in the next buffer to be chained and return true indicating
501 * that this is in fact a non-EOP buffer.
502 **/
503static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
504			     union fm10k_rx_desc *rx_desc)
505{
506	u32 ntc = rx_ring->next_to_clean + 1;
507
508	/* fetch, update, and store next to clean */
509	ntc = (ntc < rx_ring->count) ? ntc : 0;
510	rx_ring->next_to_clean = ntc;
511
512	prefetch(FM10K_RX_DESC(rx_ring, ntc));
513
514	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
515		return false;
516
517	return true;
518}
519
520/**
521 * fm10k_pull_tail - fm10k specific version of skb_pull_tail
522 * @skb: pointer to current skb being adjusted
523 *
524 * This function is an fm10k specific version of __pskb_pull_tail.  The
525 * main difference between this version and the original function is that
526 * this function can make several assumptions about the state of things
527 * that allow for significant optimizations versus the standard function.
528 * As a result we can do things like drop a frag and maintain an accurate
529 * truesize for the skb.
530 */
531static void fm10k_pull_tail(struct sk_buff *skb)
532{
533	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
534	unsigned char *va;
535	unsigned int pull_len;
536
537	/* it is valid to use page_address instead of kmap since we are
538	 * working with pages allocated out of the lomem pool per
539	 * alloc_page(GFP_ATOMIC)
540	 */
541	va = skb_frag_address(frag);
542
543	/* we need the header to contain the greater of either ETH_HLEN or
544	 * 60 bytes if the skb->len is less than 60 for skb_pad.
545	 */
546	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
547
548	/* align pull length to size of long to optimize memcpy performance */
549	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
550
551	/* update all of the pointers */
552	skb_frag_size_sub(frag, pull_len);
553	frag->page_offset += pull_len;
554	skb->data_len -= pull_len;
555	skb->tail += pull_len;
556}
557
558/**
559 * fm10k_cleanup_headers - Correct corrupted or empty headers
560 * @rx_ring: rx descriptor ring packet is being transacted on
561 * @rx_desc: pointer to the EOP Rx descriptor
562 * @skb: pointer to current skb being fixed
563 *
564 * Address the case where we are pulling data in on pages only
565 * and as such no data is present in the skb header.
566 *
567 * In addition if skb is not at least 60 bytes we need to pad it so that
568 * it is large enough to qualify as a valid Ethernet frame.
569 *
570 * Returns true if an error was encountered and skb was freed.
571 **/
572static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
573				  union fm10k_rx_desc *rx_desc,
574				  struct sk_buff *skb)
575{
576	if (unlikely((fm10k_test_staterr(rx_desc,
577					 FM10K_RXD_STATUS_RXE)))) {
578		dev_kfree_skb_any(skb);
579		rx_ring->rx_stats.errors++;
580		return true;
581	}
582
583	/* place header in linear portion of buffer */
584	if (skb_is_nonlinear(skb))
585		fm10k_pull_tail(skb);
586
587	/* if eth_skb_pad returns an error the skb was freed */
588	if (eth_skb_pad(skb))
589		return true;
590
591	return false;
592}
593
594/**
595 * fm10k_receive_skb - helper function to handle rx indications
596 * @q_vector: structure containing interrupt and ring information
597 * @skb: packet to send up
598 **/
599static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
600			      struct sk_buff *skb)
601{
602	napi_gro_receive(&q_vector->napi, skb);
603}
604
605static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
606			       struct fm10k_ring *rx_ring,
607			       int budget)
608{
609	struct sk_buff *skb = rx_ring->skb;
610	unsigned int total_bytes = 0, total_packets = 0;
611	u16 cleaned_count = fm10k_desc_unused(rx_ring);
612
613	while (likely(total_packets < budget)) {
614		union fm10k_rx_desc *rx_desc;
615
616		/* return some buffers to hardware, one at a time is too slow */
617		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
618			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
619			cleaned_count = 0;
620		}
621
622		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
623
624		if (!rx_desc->d.staterr)
625			break;
626
627		/* This memory barrier is needed to keep us from reading
628		 * any other fields out of the rx_desc until we know the
629		 * descriptor has been written back
630		 */
631		dma_rmb();
632
633		/* retrieve a buffer from the ring */
634		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
635
636		/* exit if we failed to retrieve a buffer */
637		if (!skb)
638			break;
639
640		cleaned_count++;
641
642		/* fetch next buffer in frame if non-eop */
643		if (fm10k_is_non_eop(rx_ring, rx_desc))
644			continue;
645
646		/* verify the packet layout is correct */
647		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
648			skb = NULL;
649			continue;
650		}
651
652		/* populate checksum, timestamp, VLAN, and protocol */
653		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
654
655		fm10k_receive_skb(q_vector, skb);
656
657		/* reset skb pointer */
658		skb = NULL;
659
660		/* update budget accounting */
661		total_packets++;
662	}
663
664	/* place incomplete frames back on ring for completion */
665	rx_ring->skb = skb;
666
667	u64_stats_update_begin(&rx_ring->syncp);
668	rx_ring->stats.packets += total_packets;
669	rx_ring->stats.bytes += total_bytes;
670	u64_stats_update_end(&rx_ring->syncp);
671	q_vector->rx.total_packets += total_packets;
672	q_vector->rx.total_bytes += total_bytes;
673
674	return total_packets < budget;
675}
676
677#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
678static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
679{
680	struct fm10k_intfc *interface = netdev_priv(skb->dev);
681	struct fm10k_vxlan_port *vxlan_port;
682
683	/* we can only offload a vxlan if we recognize it as such */
684	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
685					      struct fm10k_vxlan_port, list);
686
687	if (!vxlan_port)
688		return NULL;
689	if (vxlan_port->port != udp_hdr(skb)->dest)
690		return NULL;
691
692	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
693	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
694}
695
696#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
697#define NVGRE_TNI htons(0x2000)
698struct fm10k_nvgre_hdr {
699	__be16 flags;
700	__be16 proto;
701	__be32 tni;
702};
703
704static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
705{
706	struct fm10k_nvgre_hdr *nvgre_hdr;
707	int hlen = ip_hdrlen(skb);
708
709	/* currently only IPv4 is supported due to hlen above */
710	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
711		return NULL;
712
713	/* our transport header should be NVGRE */
714	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
715
716	/* verify all reserved flags are 0 */
717	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
718		return NULL;
719
720	/* report start of ethernet header */
721	if (nvgre_hdr->flags & NVGRE_TNI)
722		return (struct ethhdr *)(nvgre_hdr + 1);
723
724	return (struct ethhdr *)(&nvgre_hdr->tni);
725}
726
727__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
728{
729	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
730	struct ethhdr *eth_hdr;
731
732	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
733	    skb->inner_protocol != htons(ETH_P_TEB))
734		return 0;
735
736	switch (vlan_get_protocol(skb)) {
737	case htons(ETH_P_IP):
738		l4_hdr = ip_hdr(skb)->protocol;
739		break;
740	case htons(ETH_P_IPV6):
741		l4_hdr = ipv6_hdr(skb)->nexthdr;
742		break;
743	default:
744		return 0;
745	}
746
747	switch (l4_hdr) {
748	case IPPROTO_UDP:
749		eth_hdr = fm10k_port_is_vxlan(skb);
750		break;
751	case IPPROTO_GRE:
752		eth_hdr = fm10k_gre_is_nvgre(skb);
753		break;
754	default:
755		return 0;
756	}
757
758	if (!eth_hdr)
759		return 0;
760
761	switch (eth_hdr->h_proto) {
762	case htons(ETH_P_IP):
763		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
764		break;
765	case htons(ETH_P_IPV6):
766		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
767		break;
768	default:
769		return 0;
770	}
771
772	switch (inner_l4_hdr) {
773	case IPPROTO_TCP:
774		inner_l4_hlen = inner_tcp_hdrlen(skb);
775		break;
776	case IPPROTO_UDP:
777		inner_l4_hlen = 8;
778		break;
779	default:
780		return 0;
781	}
782
783	/* The hardware allows tunnel offloads only if the combined inner and
784	 * outer header is 184 bytes or less
785	 */
786	if (skb_inner_transport_header(skb) + inner_l4_hlen -
787	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
788		return 0;
789
790	return eth_hdr->h_proto;
791}
792
793static int fm10k_tso(struct fm10k_ring *tx_ring,
794		     struct fm10k_tx_buffer *first)
795{
796	struct sk_buff *skb = first->skb;
797	struct fm10k_tx_desc *tx_desc;
798	unsigned char *th;
799	u8 hdrlen;
800
801	if (skb->ip_summed != CHECKSUM_PARTIAL)
802		return 0;
803
804	if (!skb_is_gso(skb))
805		return 0;
806
807	/* compute header lengths */
808	if (skb->encapsulation) {
809		if (!fm10k_tx_encap_offload(skb))
810			goto err_vxlan;
811		th = skb_inner_transport_header(skb);
812	} else {
813		th = skb_transport_header(skb);
814	}
815
816	/* compute offset from SOF to transport header and add header len */
817	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
818
819	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
820
821	/* update gso size and bytecount with header size */
822	first->gso_segs = skb_shinfo(skb)->gso_segs;
823	first->bytecount += (first->gso_segs - 1) * hdrlen;
824
825	/* populate Tx descriptor header size and mss */
826	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
827	tx_desc->hdrlen = hdrlen;
828	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
829
830	return 1;
831err_vxlan:
832	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
833	if (!net_ratelimit())
834		netdev_err(tx_ring->netdev,
835			   "TSO requested for unsupported tunnel, disabling offload\n");
836	return -1;
837}
838
839static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
840			  struct fm10k_tx_buffer *first)
841{
842	struct sk_buff *skb = first->skb;
843	struct fm10k_tx_desc *tx_desc;
844	union {
845		struct iphdr *ipv4;
846		struct ipv6hdr *ipv6;
847		u8 *raw;
848	} network_hdr;
849	__be16 protocol;
850	u8 l4_hdr = 0;
851
852	if (skb->ip_summed != CHECKSUM_PARTIAL)
853		goto no_csum;
854
855	if (skb->encapsulation) {
856		protocol = fm10k_tx_encap_offload(skb);
857		if (!protocol) {
858			if (skb_checksum_help(skb)) {
859				dev_warn(tx_ring->dev,
860					 "failed to offload encap csum!\n");
861				tx_ring->tx_stats.csum_err++;
862			}
863			goto no_csum;
864		}
865		network_hdr.raw = skb_inner_network_header(skb);
866	} else {
867		protocol = vlan_get_protocol(skb);
868		network_hdr.raw = skb_network_header(skb);
869	}
870
871	switch (protocol) {
872	case htons(ETH_P_IP):
873		l4_hdr = network_hdr.ipv4->protocol;
874		break;
875	case htons(ETH_P_IPV6):
876		l4_hdr = network_hdr.ipv6->nexthdr;
877		break;
878	default:
879		if (unlikely(net_ratelimit())) {
880			dev_warn(tx_ring->dev,
881				 "partial checksum but ip version=%x!\n",
882				 protocol);
883		}
884		tx_ring->tx_stats.csum_err++;
885		goto no_csum;
886	}
887
888	switch (l4_hdr) {
889	case IPPROTO_TCP:
890	case IPPROTO_UDP:
891		break;
892	case IPPROTO_GRE:
893		if (skb->encapsulation)
894			break;
895	default:
896		if (unlikely(net_ratelimit())) {
897			dev_warn(tx_ring->dev,
898				 "partial checksum but l4 proto=%x!\n",
899				 l4_hdr);
900		}
901		tx_ring->tx_stats.csum_err++;
902		goto no_csum;
903	}
904
905	/* update TX checksum flag */
906	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
907
908no_csum:
909	/* populate Tx descriptor header size and mss */
910	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
911	tx_desc->hdrlen = 0;
912	tx_desc->mss = 0;
913}
914
915#define FM10K_SET_FLAG(_input, _flag, _result) \
916	((_flag <= _result) ? \
917	 ((u32)(_input & _flag) * (_result / _flag)) : \
918	 ((u32)(_input & _flag) / (_flag / _result)))
919
920static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
921{
922	/* set type for advanced descriptor with frame checksum insertion */
923	u32 desc_flags = 0;
924
925	/* set timestamping bits */
926	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
927	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
928			desc_flags |= FM10K_TXD_FLAG_TIME;
929
930	/* set checksum offload bits */
931	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
932				     FM10K_TXD_FLAG_CSUM);
933
934	return desc_flags;
935}
936
937static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
938			       struct fm10k_tx_desc *tx_desc, u16 i,
939			       dma_addr_t dma, unsigned int size, u8 desc_flags)
940{
941	/* set RS and INT for last frame in a cache line */
942	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
943		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
944
945	/* record values to descriptor */
946	tx_desc->buffer_addr = cpu_to_le64(dma);
947	tx_desc->flags = desc_flags;
948	tx_desc->buflen = cpu_to_le16(size);
949
950	/* return true if we just wrapped the ring */
951	return i == tx_ring->count;
952}
953
954static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
955{
956	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
957
958	/* Memory barrier before checking head and tail */
959	smp_mb();
960
961	/* Check again in a case another CPU has just made room available */
962	if (likely(fm10k_desc_unused(tx_ring) < size))
963		return -EBUSY;
964
965	/* A reprieve! - use start_queue because it doesn't call schedule */
966	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
967	++tx_ring->tx_stats.restart_queue;
968	return 0;
969}
970
971static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
972{
973	if (likely(fm10k_desc_unused(tx_ring) >= size))
974		return 0;
975	return __fm10k_maybe_stop_tx(tx_ring, size);
976}
977
978static void fm10k_tx_map(struct fm10k_ring *tx_ring,
979			 struct fm10k_tx_buffer *first)
980{
981	struct sk_buff *skb = first->skb;
982	struct fm10k_tx_buffer *tx_buffer;
983	struct fm10k_tx_desc *tx_desc;
984	struct skb_frag_struct *frag;
985	unsigned char *data;
986	dma_addr_t dma;
987	unsigned int data_len, size;
988	u32 tx_flags = first->tx_flags;
989	u16 i = tx_ring->next_to_use;
990	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
991
992	tx_desc = FM10K_TX_DESC(tx_ring, i);
993
994	/* add HW VLAN tag */
995	if (skb_vlan_tag_present(skb))
996		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
997	else
998		tx_desc->vlan = 0;
999
1000	size = skb_headlen(skb);
1001	data = skb->data;
1002
1003	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1004
1005	data_len = skb->data_len;
1006	tx_buffer = first;
1007
1008	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1009		if (dma_mapping_error(tx_ring->dev, dma))
1010			goto dma_error;
1011
1012		/* record length, and DMA address */
1013		dma_unmap_len_set(tx_buffer, len, size);
1014		dma_unmap_addr_set(tx_buffer, dma, dma);
1015
1016		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1017			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1018					       FM10K_MAX_DATA_PER_TXD, flags)) {
1019				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1020				i = 0;
1021			}
1022
1023			dma += FM10K_MAX_DATA_PER_TXD;
1024			size -= FM10K_MAX_DATA_PER_TXD;
1025		}
1026
1027		if (likely(!data_len))
1028			break;
1029
1030		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1031				       dma, size, flags)) {
1032			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1033			i = 0;
1034		}
1035
1036		size = skb_frag_size(frag);
1037		data_len -= size;
1038
1039		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1040				       DMA_TO_DEVICE);
1041
1042		tx_buffer = &tx_ring->tx_buffer[i];
1043	}
1044
1045	/* write last descriptor with LAST bit set */
1046	flags |= FM10K_TXD_FLAG_LAST;
1047
1048	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1049		i = 0;
1050
1051	/* record bytecount for BQL */
1052	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1053
1054	/* record SW timestamp if HW timestamp is not available */
1055	skb_tx_timestamp(first->skb);
1056
1057	/* Force memory writes to complete before letting h/w know there
1058	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1059	 * memory model archs, such as IA-64).
1060	 *
1061	 * We also need this memory barrier to make certain all of the
1062	 * status bits have been updated before next_to_watch is written.
1063	 */
1064	wmb();
1065
1066	/* set next_to_watch value indicating a packet is present */
1067	first->next_to_watch = tx_desc;
1068
1069	tx_ring->next_to_use = i;
1070
1071	/* Make sure there is space in the ring for the next send. */
1072	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1073
1074	/* notify HW of packet */
1075	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1076		writel(i, tx_ring->tail);
1077
1078		/* we need this if more than one processor can write to our tail
1079		 * at a time, it synchronizes IO on IA64/Altix systems
1080		 */
1081		mmiowb();
1082	}
1083
1084	return;
1085dma_error:
1086	dev_err(tx_ring->dev, "TX DMA map failed\n");
1087
1088	/* clear dma mappings for failed tx_buffer map */
1089	for (;;) {
1090		tx_buffer = &tx_ring->tx_buffer[i];
1091		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1092		if (tx_buffer == first)
1093			break;
1094		if (i == 0)
1095			i = tx_ring->count;
1096		i--;
1097	}
1098
1099	tx_ring->next_to_use = i;
1100}
1101
1102netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1103				  struct fm10k_ring *tx_ring)
1104{
1105	struct fm10k_tx_buffer *first;
1106	int tso;
1107	u32 tx_flags = 0;
1108#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1109	unsigned short f;
1110#endif
1111	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1112
1113	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1114	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1115	 *       + 2 desc gap to keep tail from touching head
1116	 * otherwise try next time
1117	 */
1118#if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1119	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1120		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1121#else
1122	count += skb_shinfo(skb)->nr_frags;
1123#endif
1124	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1125		tx_ring->tx_stats.tx_busy++;
1126		return NETDEV_TX_BUSY;
1127	}
1128
1129	/* record the location of the first descriptor for this packet */
1130	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1131	first->skb = skb;
1132	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1133	first->gso_segs = 1;
1134
1135	/* record initial flags and protocol */
1136	first->tx_flags = tx_flags;
1137
1138	tso = fm10k_tso(tx_ring, first);
1139	if (tso < 0)
1140		goto out_drop;
1141	else if (!tso)
1142		fm10k_tx_csum(tx_ring, first);
1143
1144	fm10k_tx_map(tx_ring, first);
1145
1146	return NETDEV_TX_OK;
1147
1148out_drop:
1149	dev_kfree_skb_any(first->skb);
1150	first->skb = NULL;
1151
1152	return NETDEV_TX_OK;
1153}
1154
1155static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1156{
1157	return ring->stats.packets;
1158}
1159
1160static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1161{
1162	/* use SW head and tail until we have real hardware */
1163	u32 head = ring->next_to_clean;
1164	u32 tail = ring->next_to_use;
1165
1166	return ((head <= tail) ? tail : tail + ring->count) - head;
1167}
1168
1169bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1170{
1171	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1172	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1173	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1174
1175	clear_check_for_tx_hang(tx_ring);
1176
1177	/* Check for a hung queue, but be thorough. This verifies
1178	 * that a transmit has been completed since the previous
1179	 * check AND there is at least one packet pending. By
1180	 * requiring this to fail twice we avoid races with
1181	 * clearing the ARMED bit and conditions where we
1182	 * run the check_tx_hang logic with a transmit completion
1183	 * pending but without time to complete it yet.
1184	 */
1185	if (!tx_pending || (tx_done_old != tx_done)) {
1186		/* update completed stats and continue */
1187		tx_ring->tx_stats.tx_done_old = tx_done;
1188		/* reset the countdown */
1189		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1190
1191		return false;
1192	}
1193
1194	/* make sure it is true for two checks in a row */
1195	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1196}
1197
1198/**
1199 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1200 * @interface: driver private struct
1201 **/
1202void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1203{
1204	/* Do the reset outside of interrupt context */
1205	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1206		interface->tx_timeout_count++;
1207		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1208		fm10k_service_event_schedule(interface);
1209	}
1210}
1211
1212/**
1213 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1214 * @q_vector: structure containing interrupt and ring information
1215 * @tx_ring: tx ring to clean
1216 **/
1217static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1218			       struct fm10k_ring *tx_ring)
1219{
1220	struct fm10k_intfc *interface = q_vector->interface;
1221	struct fm10k_tx_buffer *tx_buffer;
1222	struct fm10k_tx_desc *tx_desc;
1223	unsigned int total_bytes = 0, total_packets = 0;
1224	unsigned int budget = q_vector->tx.work_limit;
1225	unsigned int i = tx_ring->next_to_clean;
1226
1227	if (test_bit(__FM10K_DOWN, &interface->state))
1228		return true;
1229
1230	tx_buffer = &tx_ring->tx_buffer[i];
1231	tx_desc = FM10K_TX_DESC(tx_ring, i);
1232	i -= tx_ring->count;
1233
1234	do {
1235		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1236
1237		/* if next_to_watch is not set then there is no work pending */
1238		if (!eop_desc)
1239			break;
1240
1241		/* prevent any other reads prior to eop_desc */
1242		read_barrier_depends();
1243
1244		/* if DD is not set pending work has not been completed */
1245		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1246			break;
1247
1248		/* clear next_to_watch to prevent false hangs */
1249		tx_buffer->next_to_watch = NULL;
1250
1251		/* update the statistics for this packet */
1252		total_bytes += tx_buffer->bytecount;
1253		total_packets += tx_buffer->gso_segs;
1254
1255		/* free the skb */
1256		dev_consume_skb_any(tx_buffer->skb);
1257
1258		/* unmap skb header data */
1259		dma_unmap_single(tx_ring->dev,
1260				 dma_unmap_addr(tx_buffer, dma),
1261				 dma_unmap_len(tx_buffer, len),
1262				 DMA_TO_DEVICE);
1263
1264		/* clear tx_buffer data */
1265		tx_buffer->skb = NULL;
1266		dma_unmap_len_set(tx_buffer, len, 0);
1267
1268		/* unmap remaining buffers */
1269		while (tx_desc != eop_desc) {
1270			tx_buffer++;
1271			tx_desc++;
1272			i++;
1273			if (unlikely(!i)) {
1274				i -= tx_ring->count;
1275				tx_buffer = tx_ring->tx_buffer;
1276				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1277			}
1278
1279			/* unmap any remaining paged data */
1280			if (dma_unmap_len(tx_buffer, len)) {
1281				dma_unmap_page(tx_ring->dev,
1282					       dma_unmap_addr(tx_buffer, dma),
1283					       dma_unmap_len(tx_buffer, len),
1284					       DMA_TO_DEVICE);
1285				dma_unmap_len_set(tx_buffer, len, 0);
1286			}
1287		}
1288
1289		/* move us one more past the eop_desc for start of next pkt */
1290		tx_buffer++;
1291		tx_desc++;
1292		i++;
1293		if (unlikely(!i)) {
1294			i -= tx_ring->count;
1295			tx_buffer = tx_ring->tx_buffer;
1296			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1297		}
1298
1299		/* issue prefetch for next Tx descriptor */
1300		prefetch(tx_desc);
1301
1302		/* update budget accounting */
1303		budget--;
1304	} while (likely(budget));
1305
1306	i += tx_ring->count;
1307	tx_ring->next_to_clean = i;
1308	u64_stats_update_begin(&tx_ring->syncp);
1309	tx_ring->stats.bytes += total_bytes;
1310	tx_ring->stats.packets += total_packets;
1311	u64_stats_update_end(&tx_ring->syncp);
1312	q_vector->tx.total_bytes += total_bytes;
1313	q_vector->tx.total_packets += total_packets;
1314
1315	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1316		/* schedule immediate reset if we believe we hung */
1317		struct fm10k_hw *hw = &interface->hw;
1318
1319		netif_err(interface, drv, tx_ring->netdev,
1320			  "Detected Tx Unit Hang\n"
1321			  "  Tx Queue             <%d>\n"
1322			  "  TDH, TDT             <%x>, <%x>\n"
1323			  "  next_to_use          <%x>\n"
1324			  "  next_to_clean        <%x>\n",
1325			  tx_ring->queue_index,
1326			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1327			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1328			  tx_ring->next_to_use, i);
1329
1330		netif_stop_subqueue(tx_ring->netdev,
1331				    tx_ring->queue_index);
1332
1333		netif_info(interface, probe, tx_ring->netdev,
1334			   "tx hang %d detected on queue %d, resetting interface\n",
1335			   interface->tx_timeout_count + 1,
1336			   tx_ring->queue_index);
1337
1338		fm10k_tx_timeout_reset(interface);
1339
1340		/* the netdev is about to reset, no point in enabling stuff */
1341		return true;
1342	}
1343
1344	/* notify netdev of completed buffers */
1345	netdev_tx_completed_queue(txring_txq(tx_ring),
1346				  total_packets, total_bytes);
1347
1348#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1349	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1350		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1351		/* Make sure that anybody stopping the queue after this
1352		 * sees the new next_to_clean.
1353		 */
1354		smp_mb();
1355		if (__netif_subqueue_stopped(tx_ring->netdev,
1356					     tx_ring->queue_index) &&
1357		    !test_bit(__FM10K_DOWN, &interface->state)) {
1358			netif_wake_subqueue(tx_ring->netdev,
1359					    tx_ring->queue_index);
1360			++tx_ring->tx_stats.restart_queue;
1361		}
1362	}
1363
1364	return !!budget;
1365}
1366
1367/**
1368 * fm10k_update_itr - update the dynamic ITR value based on packet size
1369 *
1370 *      Stores a new ITR value based on strictly on packet size.  The
1371 *      divisors and thresholds used by this function were determined based
1372 *      on theoretical maximum wire speed and testing data, in order to
1373 *      minimize response time while increasing bulk throughput.
1374 *
1375 * @ring_container: Container for rings to have ITR updated
1376 **/
1377static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1378{
1379	unsigned int avg_wire_size, packets;
1380
1381	/* Only update ITR if we are using adaptive setting */
1382	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1383		goto clear_counts;
1384
1385	packets = ring_container->total_packets;
1386	if (!packets)
1387		goto clear_counts;
1388
1389	avg_wire_size = ring_container->total_bytes / packets;
1390
1391	/* Add 24 bytes to size to account for CRC, preamble, and gap */
1392	avg_wire_size += 24;
1393
1394	/* Don't starve jumbo frames */
1395	if (avg_wire_size > 3000)
1396		avg_wire_size = 3000;
1397
1398	/* Give a little boost to mid-size frames */
1399	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1400		avg_wire_size /= 3;
1401	else
1402		avg_wire_size /= 2;
1403
1404	/* write back value and retain adaptive flag */
1405	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1406
1407clear_counts:
1408	ring_container->total_bytes = 0;
1409	ring_container->total_packets = 0;
1410}
1411
1412static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1413{
1414	/* Enable auto-mask and clear the current mask */
1415	u32 itr = FM10K_ITR_ENABLE;
1416
1417	/* Update Tx ITR */
1418	fm10k_update_itr(&q_vector->tx);
1419
1420	/* Update Rx ITR */
1421	fm10k_update_itr(&q_vector->rx);
1422
1423	/* Store Tx itr in timer slot 0 */
1424	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1425
1426	/* Shift Rx itr to timer slot 1 */
1427	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1428
1429	/* Write the final value to the ITR register */
1430	writel(itr, q_vector->itr);
1431}
1432
1433static int fm10k_poll(struct napi_struct *napi, int budget)
1434{
1435	struct fm10k_q_vector *q_vector =
1436			       container_of(napi, struct fm10k_q_vector, napi);
1437	struct fm10k_ring *ring;
1438	int per_ring_budget;
1439	bool clean_complete = true;
1440
1441	fm10k_for_each_ring(ring, q_vector->tx)
1442		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1443
1444	/* attempt to distribute budget to each queue fairly, but don't
1445	 * allow the budget to go below 1 because we'll exit polling
1446	 */
1447	if (q_vector->rx.count > 1)
1448		per_ring_budget = max(budget/q_vector->rx.count, 1);
1449	else
1450		per_ring_budget = budget;
1451
1452	fm10k_for_each_ring(ring, q_vector->rx)
1453		clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1454						     per_ring_budget);
1455
1456	/* If all work not completed, return budget and keep polling */
1457	if (!clean_complete)
1458		return budget;
1459
1460	/* all work done, exit the polling mode */
1461	napi_complete(napi);
1462
1463	/* re-enable the q_vector */
1464	fm10k_qv_enable(q_vector);
1465
1466	return 0;
1467}
1468
1469/**
1470 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1471 * @interface: board private structure to initialize
1472 *
1473 * When QoS (Quality of Service) is enabled, allocate queues for
1474 * each traffic class.  If multiqueue isn't available,then abort QoS
1475 * initialization.
1476 *
1477 * This function handles all combinations of Qos and RSS.
1478 *
1479 **/
1480static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1481{
1482	struct net_device *dev = interface->netdev;
1483	struct fm10k_ring_feature *f;
1484	int rss_i, i;
1485	int pcs;
1486
1487	/* Map queue offset and counts onto allocated tx queues */
1488	pcs = netdev_get_num_tc(dev);
1489
1490	if (pcs <= 1)
1491		return false;
1492
1493	/* set QoS mask and indices */
1494	f = &interface->ring_feature[RING_F_QOS];
1495	f->indices = pcs;
1496	f->mask = (1 << fls(pcs - 1)) - 1;
1497
1498	/* determine the upper limit for our current DCB mode */
1499	rss_i = interface->hw.mac.max_queues / pcs;
1500	rss_i = 1 << (fls(rss_i) - 1);
1501
1502	/* set RSS mask and indices */
1503	f = &interface->ring_feature[RING_F_RSS];
1504	rss_i = min_t(u16, rss_i, f->limit);
1505	f->indices = rss_i;
1506	f->mask = (1 << fls(rss_i - 1)) - 1;
1507
1508	/* configure pause class to queue mapping */
1509	for (i = 0; i < pcs; i++)
1510		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1511
1512	interface->num_rx_queues = rss_i * pcs;
1513	interface->num_tx_queues = rss_i * pcs;
1514
1515	return true;
1516}
1517
1518/**
1519 * fm10k_set_rss_queues: Allocate queues for RSS
1520 * @interface: board private structure to initialize
1521 *
1522 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1523 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1524 *
1525 **/
1526static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1527{
1528	struct fm10k_ring_feature *f;
1529	u16 rss_i;
1530
1531	f = &interface->ring_feature[RING_F_RSS];
1532	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1533
1534	/* record indices and power of 2 mask for RSS */
1535	f->indices = rss_i;
1536	f->mask = (1 << fls(rss_i - 1)) - 1;
1537
1538	interface->num_rx_queues = rss_i;
1539	interface->num_tx_queues = rss_i;
1540
1541	return true;
1542}
1543
1544/**
1545 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1546 * @interface: board private structure to initialize
1547 *
1548 * This is the top level queue allocation routine.  The order here is very
1549 * important, starting with the "most" number of features turned on at once,
1550 * and ending with the smallest set of features.  This way large combinations
1551 * can be allocated if they're turned on, and smaller combinations are the
1552 * fallthrough conditions.
1553 *
1554 **/
1555static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1556{
1557	/* Start with base case */
1558	interface->num_rx_queues = 1;
1559	interface->num_tx_queues = 1;
1560
1561	if (fm10k_set_qos_queues(interface))
1562		return;
1563
1564	fm10k_set_rss_queues(interface);
1565}
1566
1567/**
1568 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1569 * @interface: board private structure to initialize
1570 * @v_count: q_vectors allocated on interface, used for ring interleaving
1571 * @v_idx: index of vector in interface struct
1572 * @txr_count: total number of Tx rings to allocate
1573 * @txr_idx: index of first Tx ring to allocate
1574 * @rxr_count: total number of Rx rings to allocate
1575 * @rxr_idx: index of first Rx ring to allocate
1576 *
1577 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1578 **/
1579static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1580				unsigned int v_count, unsigned int v_idx,
1581				unsigned int txr_count, unsigned int txr_idx,
1582				unsigned int rxr_count, unsigned int rxr_idx)
1583{
1584	struct fm10k_q_vector *q_vector;
1585	struct fm10k_ring *ring;
1586	int ring_count, size;
1587
1588	ring_count = txr_count + rxr_count;
1589	size = sizeof(struct fm10k_q_vector) +
1590	       (sizeof(struct fm10k_ring) * ring_count);
1591
1592	/* allocate q_vector and rings */
1593	q_vector = kzalloc(size, GFP_KERNEL);
1594	if (!q_vector)
1595		return -ENOMEM;
1596
1597	/* initialize NAPI */
1598	netif_napi_add(interface->netdev, &q_vector->napi,
1599		       fm10k_poll, NAPI_POLL_WEIGHT);
1600
1601	/* tie q_vector and interface together */
1602	interface->q_vector[v_idx] = q_vector;
1603	q_vector->interface = interface;
1604	q_vector->v_idx = v_idx;
1605
1606	/* initialize pointer to rings */
1607	ring = q_vector->ring;
1608
1609	/* save Tx ring container info */
1610	q_vector->tx.ring = ring;
1611	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1612	q_vector->tx.itr = interface->tx_itr;
1613	q_vector->tx.count = txr_count;
1614
1615	while (txr_count) {
1616		/* assign generic ring traits */
1617		ring->dev = &interface->pdev->dev;
1618		ring->netdev = interface->netdev;
1619
1620		/* configure backlink on ring */
1621		ring->q_vector = q_vector;
1622
1623		/* apply Tx specific ring traits */
1624		ring->count = interface->tx_ring_count;
1625		ring->queue_index = txr_idx;
1626
1627		/* assign ring to interface */
1628		interface->tx_ring[txr_idx] = ring;
1629
1630		/* update count and index */
1631		txr_count--;
1632		txr_idx += v_count;
1633
1634		/* push pointer to next ring */
1635		ring++;
1636	}
1637
1638	/* save Rx ring container info */
1639	q_vector->rx.ring = ring;
1640	q_vector->rx.itr = interface->rx_itr;
1641	q_vector->rx.count = rxr_count;
1642
1643	while (rxr_count) {
1644		/* assign generic ring traits */
1645		ring->dev = &interface->pdev->dev;
1646		ring->netdev = interface->netdev;
1647		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1648
1649		/* configure backlink on ring */
1650		ring->q_vector = q_vector;
1651
1652		/* apply Rx specific ring traits */
1653		ring->count = interface->rx_ring_count;
1654		ring->queue_index = rxr_idx;
1655
1656		/* assign ring to interface */
1657		interface->rx_ring[rxr_idx] = ring;
1658
1659		/* update count and index */
1660		rxr_count--;
1661		rxr_idx += v_count;
1662
1663		/* push pointer to next ring */
1664		ring++;
1665	}
1666
1667	fm10k_dbg_q_vector_init(q_vector);
1668
1669	return 0;
1670}
1671
1672/**
1673 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1674 * @interface: board private structure to initialize
1675 * @v_idx: Index of vector to be freed
1676 *
1677 * This function frees the memory allocated to the q_vector.  In addition if
1678 * NAPI is enabled it will delete any references to the NAPI struct prior
1679 * to freeing the q_vector.
1680 **/
1681static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1682{
1683	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1684	struct fm10k_ring *ring;
1685
1686	fm10k_dbg_q_vector_exit(q_vector);
1687
1688	fm10k_for_each_ring(ring, q_vector->tx)
1689		interface->tx_ring[ring->queue_index] = NULL;
1690
1691	fm10k_for_each_ring(ring, q_vector->rx)
1692		interface->rx_ring[ring->queue_index] = NULL;
1693
1694	interface->q_vector[v_idx] = NULL;
1695	netif_napi_del(&q_vector->napi);
1696	kfree_rcu(q_vector, rcu);
1697}
1698
1699/**
1700 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1701 * @interface: board private structure to initialize
1702 *
1703 * We allocate one q_vector per queue interrupt.  If allocation fails we
1704 * return -ENOMEM.
1705 **/
1706static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1707{
1708	unsigned int q_vectors = interface->num_q_vectors;
1709	unsigned int rxr_remaining = interface->num_rx_queues;
1710	unsigned int txr_remaining = interface->num_tx_queues;
1711	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1712	int err;
1713
1714	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1715		for (; rxr_remaining; v_idx++) {
1716			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1717						   0, 0, 1, rxr_idx);
1718			if (err)
1719				goto err_out;
1720
1721			/* update counts and index */
1722			rxr_remaining--;
1723			rxr_idx++;
1724		}
1725	}
1726
1727	for (; v_idx < q_vectors; v_idx++) {
1728		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1729		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1730
1731		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1732					   tqpv, txr_idx,
1733					   rqpv, rxr_idx);
1734
1735		if (err)
1736			goto err_out;
1737
1738		/* update counts and index */
1739		rxr_remaining -= rqpv;
1740		txr_remaining -= tqpv;
1741		rxr_idx++;
1742		txr_idx++;
1743	}
1744
1745	return 0;
1746
1747err_out:
1748	interface->num_tx_queues = 0;
1749	interface->num_rx_queues = 0;
1750	interface->num_q_vectors = 0;
1751
1752	while (v_idx--)
1753		fm10k_free_q_vector(interface, v_idx);
1754
1755	return -ENOMEM;
1756}
1757
1758/**
1759 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1760 * @interface: board private structure to initialize
1761 *
1762 * This function frees the memory allocated to the q_vectors.  In addition if
1763 * NAPI is enabled it will delete any references to the NAPI struct prior
1764 * to freeing the q_vector.
1765 **/
1766static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1767{
1768	int v_idx = interface->num_q_vectors;
1769
1770	interface->num_tx_queues = 0;
1771	interface->num_rx_queues = 0;
1772	interface->num_q_vectors = 0;
1773
1774	while (v_idx--)
1775		fm10k_free_q_vector(interface, v_idx);
1776}
1777
1778/**
1779 * f10k_reset_msix_capability - reset MSI-X capability
1780 * @interface: board private structure to initialize
1781 *
1782 * Reset the MSI-X capability back to its starting state
1783 **/
1784static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1785{
1786	pci_disable_msix(interface->pdev);
1787	kfree(interface->msix_entries);
1788	interface->msix_entries = NULL;
1789}
1790
1791/**
1792 * f10k_init_msix_capability - configure MSI-X capability
1793 * @interface: board private structure to initialize
1794 *
1795 * Attempt to configure the interrupts using the best available
1796 * capabilities of the hardware and the kernel.
1797 **/
1798static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1799{
1800	struct fm10k_hw *hw = &interface->hw;
1801	int v_budget, vector;
1802
1803	/* It's easy to be greedy for MSI-X vectors, but it really
1804	 * doesn't do us much good if we have a lot more vectors
1805	 * than CPU's.  So let's be conservative and only ask for
1806	 * (roughly) the same number of vectors as there are CPU's.
1807	 * the default is to use pairs of vectors
1808	 */
1809	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1810	v_budget = min_t(u16, v_budget, num_online_cpus());
1811
1812	/* account for vectors not related to queues */
1813	v_budget += NON_Q_VECTORS(hw);
1814
1815	/* At the same time, hardware can only support a maximum of
1816	 * hw.mac->max_msix_vectors vectors.  With features
1817	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1818	 * descriptor queues supported by our device.  Thus, we cap it off in
1819	 * those rare cases where the cpu count also exceeds our vector limit.
1820	 */
1821	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1822
1823	/* A failure in MSI-X entry allocation is fatal. */
1824	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1825					  GFP_KERNEL);
1826	if (!interface->msix_entries)
1827		return -ENOMEM;
1828
1829	/* populate entry values */
1830	for (vector = 0; vector < v_budget; vector++)
1831		interface->msix_entries[vector].entry = vector;
1832
1833	/* Attempt to enable MSI-X with requested value */
1834	v_budget = pci_enable_msix_range(interface->pdev,
1835					 interface->msix_entries,
1836					 MIN_MSIX_COUNT(hw),
1837					 v_budget);
1838	if (v_budget < 0) {
1839		kfree(interface->msix_entries);
1840		interface->msix_entries = NULL;
1841		return -ENOMEM;
1842	}
1843
1844	/* record the number of queues available for q_vectors */
1845	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1846
1847	return 0;
1848}
1849
1850/**
1851 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1852 * @interface: Interface structure continaining rings and devices
1853 *
1854 * Cache the descriptor ring offsets for Qos
1855 **/
1856static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1857{
1858	struct net_device *dev = interface->netdev;
1859	int pc, offset, rss_i, i, q_idx;
1860	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1861	u8 num_pcs = netdev_get_num_tc(dev);
1862
1863	if (num_pcs <= 1)
1864		return false;
1865
1866	rss_i = interface->ring_feature[RING_F_RSS].indices;
1867
1868	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1869		q_idx = pc;
1870		for (i = 0; i < rss_i; i++) {
1871			interface->tx_ring[offset + i]->reg_idx = q_idx;
1872			interface->tx_ring[offset + i]->qos_pc = pc;
1873			interface->rx_ring[offset + i]->reg_idx = q_idx;
1874			interface->rx_ring[offset + i]->qos_pc = pc;
1875			q_idx += pc_stride;
1876		}
1877	}
1878
1879	return true;
1880}
1881
1882/**
1883 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1884 * @interface: Interface structure continaining rings and devices
1885 *
1886 * Cache the descriptor ring offsets for RSS
1887 **/
1888static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1889{
1890	int i;
1891
1892	for (i = 0; i < interface->num_rx_queues; i++)
1893		interface->rx_ring[i]->reg_idx = i;
1894
1895	for (i = 0; i < interface->num_tx_queues; i++)
1896		interface->tx_ring[i]->reg_idx = i;
1897}
1898
1899/**
1900 * fm10k_assign_rings - Map rings to network devices
1901 * @interface: Interface structure containing rings and devices
1902 *
1903 * This function is meant to go though and configure both the network
1904 * devices so that they contain rings, and configure the rings so that
1905 * they function with their network devices.
1906 **/
1907static void fm10k_assign_rings(struct fm10k_intfc *interface)
1908{
1909	if (fm10k_cache_ring_qos(interface))
1910		return;
1911
1912	fm10k_cache_ring_rss(interface);
1913}
1914
1915static void fm10k_init_reta(struct fm10k_intfc *interface)
1916{
1917	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1918	u32 reta, base;
1919
1920	/* If the netdev is initialized we have to maintain table if possible */
1921	if (interface->netdev->reg_state) {
1922		for (i = FM10K_RETA_SIZE; i--;) {
1923			reta = interface->reta[i];
1924			if ((((reta << 24) >> 24) < rss_i) &&
1925			    (((reta << 16) >> 24) < rss_i) &&
1926			    (((reta <<  8) >> 24) < rss_i) &&
1927			    (((reta)       >> 24) < rss_i))
1928				continue;
1929			goto repopulate_reta;
1930		}
1931
1932		/* do nothing if all of the elements are in bounds */
1933		return;
1934	}
1935
1936repopulate_reta:
1937	/* Populate the redirection table 4 entries at a time.  To do this
1938	 * we are generating the results for n and n+2 and then interleaving
1939	 * those with the results with n+1 and n+3.
1940	 */
1941	for (i = FM10K_RETA_SIZE; i--;) {
1942		/* first pass generates n and n+2 */
1943		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1944		reta = (base & 0x3F803F80) >> 7;
1945
1946		/* second pass generates n+1 and n+3 */
1947		base += 0x00010001 * rss_i;
1948		reta |= (base & 0x3F803F80) << 1;
1949
1950		interface->reta[i] = reta;
1951	}
1952}
1953
1954/**
1955 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1956 * @interface: board private structure to initialize
1957 *
1958 * We determine which queueing scheme to use based on...
1959 * - Hardware queue count (num_*_queues)
1960 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1961 **/
1962int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1963{
1964	int err;
1965
1966	/* Number of supported queues */
1967	fm10k_set_num_queues(interface);
1968
1969	/* Configure MSI-X capability */
1970	err = fm10k_init_msix_capability(interface);
1971	if (err) {
1972		dev_err(&interface->pdev->dev,
1973			"Unable to initialize MSI-X capability\n");
1974		return err;
1975	}
1976
1977	/* Allocate memory for queues */
1978	err = fm10k_alloc_q_vectors(interface);
1979	if (err)
1980		return err;
1981
1982	/* Map rings to devices, and map devices to physical queues */
1983	fm10k_assign_rings(interface);
1984
1985	/* Initialize RSS redirection table */
1986	fm10k_init_reta(interface);
1987
1988	return 0;
1989}
1990
1991/**
1992 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1993 * @interface: board private structure to clear queueing scheme on
1994 *
1995 * We go through and clear queueing specific resources and reset the structure
1996 * to pre-load conditions
1997 **/
1998void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1999{
2000	fm10k_free_q_vectors(interface);
2001	fm10k_reset_msix_capability(interface);
2002}
2003