1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22#include "e1000.h"
23
24/**
25 *  e1000e_get_bus_info_pcie - Get PCIe bus information
26 *  @hw: pointer to the HW structure
27 *
28 *  Determines and stores the system bus information for a particular
29 *  network interface.  The following bus information is determined and stored:
30 *  bus speed, bus width, type (PCIe), and PCIe function.
31 **/
32s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
33{
34	struct e1000_mac_info *mac = &hw->mac;
35	struct e1000_bus_info *bus = &hw->bus;
36	struct e1000_adapter *adapter = hw->adapter;
37	u16 pcie_link_status, cap_offset;
38
39	cap_offset = adapter->pdev->pcie_cap;
40	if (!cap_offset) {
41		bus->width = e1000_bus_width_unknown;
42	} else {
43		pci_read_config_word(adapter->pdev,
44				     cap_offset + PCIE_LINK_STATUS,
45				     &pcie_link_status);
46		bus->width = (enum e1000_bus_width)((pcie_link_status &
47						     PCIE_LINK_WIDTH_MASK) >>
48						    PCIE_LINK_WIDTH_SHIFT);
49	}
50
51	mac->ops.set_lan_id(hw);
52
53	return 0;
54}
55
56/**
57 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
58 *
59 *  @hw: pointer to the HW structure
60 *
61 *  Determines the LAN function id by reading memory-mapped registers
62 *  and swaps the port value if requested.
63 **/
64void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
65{
66	struct e1000_bus_info *bus = &hw->bus;
67	u32 reg;
68
69	/* The status register reports the correct function number
70	 * for the device regardless of function swap state.
71	 */
72	reg = er32(STATUS);
73	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
74}
75
76/**
77 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
78 *  @hw: pointer to the HW structure
79 *
80 *  Sets the LAN function id to zero for a single port device.
81 **/
82void e1000_set_lan_id_single_port(struct e1000_hw *hw)
83{
84	struct e1000_bus_info *bus = &hw->bus;
85
86	bus->func = 0;
87}
88
89/**
90 *  e1000_clear_vfta_generic - Clear VLAN filter table
91 *  @hw: pointer to the HW structure
92 *
93 *  Clears the register array which contains the VLAN filter table by
94 *  setting all the values to 0.
95 **/
96void e1000_clear_vfta_generic(struct e1000_hw *hw)
97{
98	u32 offset;
99
100	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
101		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
102		e1e_flush();
103	}
104}
105
106/**
107 *  e1000_write_vfta_generic - Write value to VLAN filter table
108 *  @hw: pointer to the HW structure
109 *  @offset: register offset in VLAN filter table
110 *  @value: register value written to VLAN filter table
111 *
112 *  Writes value at the given offset in the register array which stores
113 *  the VLAN filter table.
114 **/
115void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
116{
117	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
118	e1e_flush();
119}
120
121/**
122 *  e1000e_init_rx_addrs - Initialize receive address's
123 *  @hw: pointer to the HW structure
124 *  @rar_count: receive address registers
125 *
126 *  Setup the receive address registers by setting the base receive address
127 *  register to the devices MAC address and clearing all the other receive
128 *  address registers to 0.
129 **/
130void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
131{
132	u32 i;
133	u8 mac_addr[ETH_ALEN] = { 0 };
134
135	/* Setup the receive address */
136	e_dbg("Programming MAC Address into RAR[0]\n");
137
138	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
139
140	/* Zero out the other (rar_entry_count - 1) receive addresses */
141	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
142	for (i = 1; i < rar_count; i++)
143		hw->mac.ops.rar_set(hw, mac_addr, i);
144}
145
146/**
147 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
148 *  @hw: pointer to the HW structure
149 *
150 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
151 *  can be setup by pre-boot software and must be treated like a permanent
152 *  address and must override the actual permanent MAC address. If an
153 *  alternate MAC address is found it is programmed into RAR0, replacing
154 *  the permanent address that was installed into RAR0 by the Si on reset.
155 *  This function will return SUCCESS unless it encounters an error while
156 *  reading the EEPROM.
157 **/
158s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
159{
160	u32 i;
161	s32 ret_val;
162	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
163	u8 alt_mac_addr[ETH_ALEN];
164
165	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
166	if (ret_val)
167		return ret_val;
168
169	/* not supported on 82573 */
170	if (hw->mac.type == e1000_82573)
171		return 0;
172
173	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
174				 &nvm_alt_mac_addr_offset);
175	if (ret_val) {
176		e_dbg("NVM Read Error\n");
177		return ret_val;
178	}
179
180	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
181	    (nvm_alt_mac_addr_offset == 0x0000))
182		/* There is no Alternate MAC Address */
183		return 0;
184
185	if (hw->bus.func == E1000_FUNC_1)
186		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
187	for (i = 0; i < ETH_ALEN; i += 2) {
188		offset = nvm_alt_mac_addr_offset + (i >> 1);
189		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
190		if (ret_val) {
191			e_dbg("NVM Read Error\n");
192			return ret_val;
193		}
194
195		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
196		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
197	}
198
199	/* if multicast bit is set, the alternate address will not be used */
200	if (is_multicast_ether_addr(alt_mac_addr)) {
201		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
202		return 0;
203	}
204
205	/* We have a valid alternate MAC address, and we want to treat it the
206	 * same as the normal permanent MAC address stored by the HW into the
207	 * RAR. Do this by mapping this address into RAR0.
208	 */
209	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
210
211	return 0;
212}
213
214u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
215{
216	return hw->mac.rar_entry_count;
217}
218
219/**
220 *  e1000e_rar_set_generic - Set receive address register
221 *  @hw: pointer to the HW structure
222 *  @addr: pointer to the receive address
223 *  @index: receive address array register
224 *
225 *  Sets the receive address array register at index to the address passed
226 *  in by addr.
227 **/
228int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
229{
230	u32 rar_low, rar_high;
231
232	/* HW expects these in little endian so we reverse the byte order
233	 * from network order (big endian) to little endian
234	 */
235	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
236		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
237
238	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
239
240	/* If MAC address zero, no need to set the AV bit */
241	if (rar_low || rar_high)
242		rar_high |= E1000_RAH_AV;
243
244	/* Some bridges will combine consecutive 32-bit writes into
245	 * a single burst write, which will malfunction on some parts.
246	 * The flushes avoid this.
247	 */
248	ew32(RAL(index), rar_low);
249	e1e_flush();
250	ew32(RAH(index), rar_high);
251	e1e_flush();
252
253	return 0;
254}
255
256/**
257 *  e1000_hash_mc_addr - Generate a multicast hash value
258 *  @hw: pointer to the HW structure
259 *  @mc_addr: pointer to a multicast address
260 *
261 *  Generates a multicast address hash value which is used to determine
262 *  the multicast filter table array address and new table value.
263 **/
264static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
265{
266	u32 hash_value, hash_mask;
267	u8 bit_shift = 0;
268
269	/* Register count multiplied by bits per register */
270	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
271
272	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273	 * where 0xFF would still fall within the hash mask.
274	 */
275	while (hash_mask >> bit_shift != 0xFF)
276		bit_shift++;
277
278	/* The portion of the address that is used for the hash table
279	 * is determined by the mc_filter_type setting.
280	 * The algorithm is such that there is a total of 8 bits of shifting.
281	 * The bit_shift for a mc_filter_type of 0 represents the number of
282	 * left-shifts where the MSB of mc_addr[5] would still fall within
283	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
284	 * of 8 bits of shifting, then mc_addr[4] will shift right the
285	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
286	 * cases are a variation of this algorithm...essentially raising the
287	 * number of bits to shift mc_addr[5] left, while still keeping the
288	 * 8-bit shifting total.
289	 *
290	 * For example, given the following Destination MAC Address and an
291	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
292	 * we can see that the bit_shift for case 0 is 4.  These are the hash
293	 * values resulting from each mc_filter_type...
294	 * [0] [1] [2] [3] [4] [5]
295	 * 01  AA  00  12  34  56
296	 * LSB           MSB
297	 *
298	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
299	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
300	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
301	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
302	 */
303	switch (hw->mac.mc_filter_type) {
304	default:
305	case 0:
306		break;
307	case 1:
308		bit_shift += 1;
309		break;
310	case 2:
311		bit_shift += 2;
312		break;
313	case 3:
314		bit_shift += 4;
315		break;
316	}
317
318	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319				   (((u16)mc_addr[5]) << bit_shift)));
320
321	return hash_value;
322}
323
324/**
325 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
326 *  @hw: pointer to the HW structure
327 *  @mc_addr_list: array of multicast addresses to program
328 *  @mc_addr_count: number of multicast addresses to program
329 *
330 *  Updates entire Multicast Table Array.
331 *  The caller must have a packed mc_addr_list of multicast addresses.
332 **/
333void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334					u8 *mc_addr_list, u32 mc_addr_count)
335{
336	u32 hash_value, hash_bit, hash_reg;
337	int i;
338
339	/* clear mta_shadow */
340	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
341
342	/* update mta_shadow from mc_addr_list */
343	for (i = 0; (u32)i < mc_addr_count; i++) {
344		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
345
346		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
347		hash_bit = hash_value & 0x1F;
348
349		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
350		mc_addr_list += (ETH_ALEN);
351	}
352
353	/* replace the entire MTA table */
354	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
355		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
356	e1e_flush();
357}
358
359/**
360 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
361 *  @hw: pointer to the HW structure
362 *
363 *  Clears the base hardware counters by reading the counter registers.
364 **/
365void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
366{
367	er32(CRCERRS);
368	er32(SYMERRS);
369	er32(MPC);
370	er32(SCC);
371	er32(ECOL);
372	er32(MCC);
373	er32(LATECOL);
374	er32(COLC);
375	er32(DC);
376	er32(SEC);
377	er32(RLEC);
378	er32(XONRXC);
379	er32(XONTXC);
380	er32(XOFFRXC);
381	er32(XOFFTXC);
382	er32(FCRUC);
383	er32(GPRC);
384	er32(BPRC);
385	er32(MPRC);
386	er32(GPTC);
387	er32(GORCL);
388	er32(GORCH);
389	er32(GOTCL);
390	er32(GOTCH);
391	er32(RNBC);
392	er32(RUC);
393	er32(RFC);
394	er32(ROC);
395	er32(RJC);
396	er32(TORL);
397	er32(TORH);
398	er32(TOTL);
399	er32(TOTH);
400	er32(TPR);
401	er32(TPT);
402	er32(MPTC);
403	er32(BPTC);
404}
405
406/**
407 *  e1000e_check_for_copper_link - Check for link (Copper)
408 *  @hw: pointer to the HW structure
409 *
410 *  Checks to see of the link status of the hardware has changed.  If a
411 *  change in link status has been detected, then we read the PHY registers
412 *  to get the current speed/duplex if link exists.
413 **/
414s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
415{
416	struct e1000_mac_info *mac = &hw->mac;
417	s32 ret_val;
418	bool link;
419
420	/* We only want to go out to the PHY registers to see if Auto-Neg
421	 * has completed and/or if our link status has changed.  The
422	 * get_link_status flag is set upon receiving a Link Status
423	 * Change or Rx Sequence Error interrupt.
424	 */
425	if (!mac->get_link_status)
426		return 0;
427
428	/* First we want to see if the MII Status Register reports
429	 * link.  If so, then we want to get the current speed/duplex
430	 * of the PHY.
431	 */
432	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
433	if (ret_val)
434		return ret_val;
435
436	if (!link)
437		return 0;	/* No link detected */
438
439	mac->get_link_status = false;
440
441	/* Check if there was DownShift, must be checked
442	 * immediately after link-up
443	 */
444	e1000e_check_downshift(hw);
445
446	/* If we are forcing speed/duplex, then we simply return since
447	 * we have already determined whether we have link or not.
448	 */
449	if (!mac->autoneg)
450		return -E1000_ERR_CONFIG;
451
452	/* Auto-Neg is enabled.  Auto Speed Detection takes care
453	 * of MAC speed/duplex configuration.  So we only need to
454	 * configure Collision Distance in the MAC.
455	 */
456	mac->ops.config_collision_dist(hw);
457
458	/* Configure Flow Control now that Auto-Neg has completed.
459	 * First, we need to restore the desired flow control
460	 * settings because we may have had to re-autoneg with a
461	 * different link partner.
462	 */
463	ret_val = e1000e_config_fc_after_link_up(hw);
464	if (ret_val)
465		e_dbg("Error configuring flow control\n");
466
467	return ret_val;
468}
469
470/**
471 *  e1000e_check_for_fiber_link - Check for link (Fiber)
472 *  @hw: pointer to the HW structure
473 *
474 *  Checks for link up on the hardware.  If link is not up and we have
475 *  a signal, then we need to force link up.
476 **/
477s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
478{
479	struct e1000_mac_info *mac = &hw->mac;
480	u32 rxcw;
481	u32 ctrl;
482	u32 status;
483	s32 ret_val;
484
485	ctrl = er32(CTRL);
486	status = er32(STATUS);
487	rxcw = er32(RXCW);
488
489	/* If we don't have link (auto-negotiation failed or link partner
490	 * cannot auto-negotiate), the cable is plugged in (we have signal),
491	 * and our link partner is not trying to auto-negotiate with us (we
492	 * are receiving idles or data), we need to force link up. We also
493	 * need to give auto-negotiation time to complete, in case the cable
494	 * was just plugged in. The autoneg_failed flag does this.
495	 */
496	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
497	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
498	    !(rxcw & E1000_RXCW_C)) {
499		if (!mac->autoneg_failed) {
500			mac->autoneg_failed = true;
501			return 0;
502		}
503		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
504
505		/* Disable auto-negotiation in the TXCW register */
506		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
507
508		/* Force link-up and also force full-duplex. */
509		ctrl = er32(CTRL);
510		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
511		ew32(CTRL, ctrl);
512
513		/* Configure Flow Control after forcing link up. */
514		ret_val = e1000e_config_fc_after_link_up(hw);
515		if (ret_val) {
516			e_dbg("Error configuring flow control\n");
517			return ret_val;
518		}
519	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
520		/* If we are forcing link and we are receiving /C/ ordered
521		 * sets, re-enable auto-negotiation in the TXCW register
522		 * and disable forced link in the Device Control register
523		 * in an attempt to auto-negotiate with our link partner.
524		 */
525		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
526		ew32(TXCW, mac->txcw);
527		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
528
529		mac->serdes_has_link = true;
530	}
531
532	return 0;
533}
534
535/**
536 *  e1000e_check_for_serdes_link - Check for link (Serdes)
537 *  @hw: pointer to the HW structure
538 *
539 *  Checks for link up on the hardware.  If link is not up and we have
540 *  a signal, then we need to force link up.
541 **/
542s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
543{
544	struct e1000_mac_info *mac = &hw->mac;
545	u32 rxcw;
546	u32 ctrl;
547	u32 status;
548	s32 ret_val;
549
550	ctrl = er32(CTRL);
551	status = er32(STATUS);
552	rxcw = er32(RXCW);
553
554	/* If we don't have link (auto-negotiation failed or link partner
555	 * cannot auto-negotiate), and our link partner is not trying to
556	 * auto-negotiate with us (we are receiving idles or data),
557	 * we need to force link up. We also need to give auto-negotiation
558	 * time to complete.
559	 */
560	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
561	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
562		if (!mac->autoneg_failed) {
563			mac->autoneg_failed = true;
564			return 0;
565		}
566		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
567
568		/* Disable auto-negotiation in the TXCW register */
569		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
570
571		/* Force link-up and also force full-duplex. */
572		ctrl = er32(CTRL);
573		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
574		ew32(CTRL, ctrl);
575
576		/* Configure Flow Control after forcing link up. */
577		ret_val = e1000e_config_fc_after_link_up(hw);
578		if (ret_val) {
579			e_dbg("Error configuring flow control\n");
580			return ret_val;
581		}
582	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
583		/* If we are forcing link and we are receiving /C/ ordered
584		 * sets, re-enable auto-negotiation in the TXCW register
585		 * and disable forced link in the Device Control register
586		 * in an attempt to auto-negotiate with our link partner.
587		 */
588		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
589		ew32(TXCW, mac->txcw);
590		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
591
592		mac->serdes_has_link = true;
593	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
594		/* If we force link for non-auto-negotiation switch, check
595		 * link status based on MAC synchronization for internal
596		 * serdes media type.
597		 */
598		/* SYNCH bit and IV bit are sticky. */
599		usleep_range(10, 20);
600		rxcw = er32(RXCW);
601		if (rxcw & E1000_RXCW_SYNCH) {
602			if (!(rxcw & E1000_RXCW_IV)) {
603				mac->serdes_has_link = true;
604				e_dbg("SERDES: Link up - forced.\n");
605			}
606		} else {
607			mac->serdes_has_link = false;
608			e_dbg("SERDES: Link down - force failed.\n");
609		}
610	}
611
612	if (E1000_TXCW_ANE & er32(TXCW)) {
613		status = er32(STATUS);
614		if (status & E1000_STATUS_LU) {
615			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
616			usleep_range(10, 20);
617			rxcw = er32(RXCW);
618			if (rxcw & E1000_RXCW_SYNCH) {
619				if (!(rxcw & E1000_RXCW_IV)) {
620					mac->serdes_has_link = true;
621					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
622				} else {
623					mac->serdes_has_link = false;
624					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
625				}
626			} else {
627				mac->serdes_has_link = false;
628				e_dbg("SERDES: Link down - no sync.\n");
629			}
630		} else {
631			mac->serdes_has_link = false;
632			e_dbg("SERDES: Link down - autoneg failed\n");
633		}
634	}
635
636	return 0;
637}
638
639/**
640 *  e1000_set_default_fc_generic - Set flow control default values
641 *  @hw: pointer to the HW structure
642 *
643 *  Read the EEPROM for the default values for flow control and store the
644 *  values.
645 **/
646static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
647{
648	s32 ret_val;
649	u16 nvm_data;
650
651	/* Read and store word 0x0F of the EEPROM. This word contains bits
652	 * that determine the hardware's default PAUSE (flow control) mode,
653	 * a bit that determines whether the HW defaults to enabling or
654	 * disabling auto-negotiation, and the direction of the
655	 * SW defined pins. If there is no SW over-ride of the flow
656	 * control setting, then the variable hw->fc will
657	 * be initialized based on a value in the EEPROM.
658	 */
659	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
660
661	if (ret_val) {
662		e_dbg("NVM Read Error\n");
663		return ret_val;
664	}
665
666	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
667		hw->fc.requested_mode = e1000_fc_none;
668	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
669		hw->fc.requested_mode = e1000_fc_tx_pause;
670	else
671		hw->fc.requested_mode = e1000_fc_full;
672
673	return 0;
674}
675
676/**
677 *  e1000e_setup_link_generic - Setup flow control and link settings
678 *  @hw: pointer to the HW structure
679 *
680 *  Determines which flow control settings to use, then configures flow
681 *  control.  Calls the appropriate media-specific link configuration
682 *  function.  Assuming the adapter has a valid link partner, a valid link
683 *  should be established.  Assumes the hardware has previously been reset
684 *  and the transmitter and receiver are not enabled.
685 **/
686s32 e1000e_setup_link_generic(struct e1000_hw *hw)
687{
688	s32 ret_val;
689
690	/* In the case of the phy reset being blocked, we already have a link.
691	 * We do not need to set it up again.
692	 */
693	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
694		return 0;
695
696	/* If requested flow control is set to default, set flow control
697	 * based on the EEPROM flow control settings.
698	 */
699	if (hw->fc.requested_mode == e1000_fc_default) {
700		ret_val = e1000_set_default_fc_generic(hw);
701		if (ret_val)
702			return ret_val;
703	}
704
705	/* Save off the requested flow control mode for use later.  Depending
706	 * on the link partner's capabilities, we may or may not use this mode.
707	 */
708	hw->fc.current_mode = hw->fc.requested_mode;
709
710	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
711
712	/* Call the necessary media_type subroutine to configure the link. */
713	ret_val = hw->mac.ops.setup_physical_interface(hw);
714	if (ret_val)
715		return ret_val;
716
717	/* Initialize the flow control address, type, and PAUSE timer
718	 * registers to their default values.  This is done even if flow
719	 * control is disabled, because it does not hurt anything to
720	 * initialize these registers.
721	 */
722	e_dbg("Initializing the Flow Control address, type and timer regs\n");
723	ew32(FCT, FLOW_CONTROL_TYPE);
724	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
725	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
726
727	ew32(FCTTV, hw->fc.pause_time);
728
729	return e1000e_set_fc_watermarks(hw);
730}
731
732/**
733 *  e1000_commit_fc_settings_generic - Configure flow control
734 *  @hw: pointer to the HW structure
735 *
736 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
737 *  base on the flow control settings in e1000_mac_info.
738 **/
739static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
740{
741	struct e1000_mac_info *mac = &hw->mac;
742	u32 txcw;
743
744	/* Check for a software override of the flow control settings, and
745	 * setup the device accordingly.  If auto-negotiation is enabled, then
746	 * software will have to set the "PAUSE" bits to the correct value in
747	 * the Transmit Config Word Register (TXCW) and re-start auto-
748	 * negotiation.  However, if auto-negotiation is disabled, then
749	 * software will have to manually configure the two flow control enable
750	 * bits in the CTRL register.
751	 *
752	 * The possible values of the "fc" parameter are:
753	 *      0:  Flow control is completely disabled
754	 *      1:  Rx flow control is enabled (we can receive pause frames,
755	 *          but not send pause frames).
756	 *      2:  Tx flow control is enabled (we can send pause frames but we
757	 *          do not support receiving pause frames).
758	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
759	 */
760	switch (hw->fc.current_mode) {
761	case e1000_fc_none:
762		/* Flow control completely disabled by a software over-ride. */
763		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
764		break;
765	case e1000_fc_rx_pause:
766		/* Rx Flow control is enabled and Tx Flow control is disabled
767		 * by a software over-ride. Since there really isn't a way to
768		 * advertise that we are capable of Rx Pause ONLY, we will
769		 * advertise that we support both symmetric and asymmetric Rx
770		 * PAUSE.  Later, we will disable the adapter's ability to send
771		 * PAUSE frames.
772		 */
773		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
774		break;
775	case e1000_fc_tx_pause:
776		/* Tx Flow control is enabled, and Rx Flow control is disabled,
777		 * by a software over-ride.
778		 */
779		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
780		break;
781	case e1000_fc_full:
782		/* Flow control (both Rx and Tx) is enabled by a software
783		 * over-ride.
784		 */
785		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
786		break;
787	default:
788		e_dbg("Flow control param set incorrectly\n");
789		return -E1000_ERR_CONFIG;
790	}
791
792	ew32(TXCW, txcw);
793	mac->txcw = txcw;
794
795	return 0;
796}
797
798/**
799 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
800 *  @hw: pointer to the HW structure
801 *
802 *  Polls for link up by reading the status register, if link fails to come
803 *  up with auto-negotiation, then the link is forced if a signal is detected.
804 **/
805static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
806{
807	struct e1000_mac_info *mac = &hw->mac;
808	u32 i, status;
809	s32 ret_val;
810
811	/* If we have a signal (the cable is plugged in, or assumed true for
812	 * serdes media) then poll for a "Link-Up" indication in the Device
813	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
814	 * seconds (Auto-negotiation should complete in less than 500
815	 * milliseconds even if the other end is doing it in SW).
816	 */
817	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
818		usleep_range(10000, 20000);
819		status = er32(STATUS);
820		if (status & E1000_STATUS_LU)
821			break;
822	}
823	if (i == FIBER_LINK_UP_LIMIT) {
824		e_dbg("Never got a valid link from auto-neg!!!\n");
825		mac->autoneg_failed = true;
826		/* AutoNeg failed to achieve a link, so we'll call
827		 * mac->check_for_link. This routine will force the
828		 * link up if we detect a signal. This will allow us to
829		 * communicate with non-autonegotiating link partners.
830		 */
831		ret_val = mac->ops.check_for_link(hw);
832		if (ret_val) {
833			e_dbg("Error while checking for link\n");
834			return ret_val;
835		}
836		mac->autoneg_failed = false;
837	} else {
838		mac->autoneg_failed = false;
839		e_dbg("Valid Link Found\n");
840	}
841
842	return 0;
843}
844
845/**
846 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
847 *  @hw: pointer to the HW structure
848 *
849 *  Configures collision distance and flow control for fiber and serdes
850 *  links.  Upon successful setup, poll for link.
851 **/
852s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
853{
854	u32 ctrl;
855	s32 ret_val;
856
857	ctrl = er32(CTRL);
858
859	/* Take the link out of reset */
860	ctrl &= ~E1000_CTRL_LRST;
861
862	hw->mac.ops.config_collision_dist(hw);
863
864	ret_val = e1000_commit_fc_settings_generic(hw);
865	if (ret_val)
866		return ret_val;
867
868	/* Since auto-negotiation is enabled, take the link out of reset (the
869	 * link will be in reset, because we previously reset the chip). This
870	 * will restart auto-negotiation.  If auto-negotiation is successful
871	 * then the link-up status bit will be set and the flow control enable
872	 * bits (RFCE and TFCE) will be set according to their negotiated value.
873	 */
874	e_dbg("Auto-negotiation enabled\n");
875
876	ew32(CTRL, ctrl);
877	e1e_flush();
878	usleep_range(1000, 2000);
879
880	/* For these adapters, the SW definable pin 1 is set when the optics
881	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
882	 * indication.
883	 */
884	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
885	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
886		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
887	} else {
888		e_dbg("No signal detected\n");
889	}
890
891	return ret_val;
892}
893
894/**
895 *  e1000e_config_collision_dist_generic - Configure collision distance
896 *  @hw: pointer to the HW structure
897 *
898 *  Configures the collision distance to the default value and is used
899 *  during link setup.
900 **/
901void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
902{
903	u32 tctl;
904
905	tctl = er32(TCTL);
906
907	tctl &= ~E1000_TCTL_COLD;
908	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
909
910	ew32(TCTL, tctl);
911	e1e_flush();
912}
913
914/**
915 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
916 *  @hw: pointer to the HW structure
917 *
918 *  Sets the flow control high/low threshold (watermark) registers.  If
919 *  flow control XON frame transmission is enabled, then set XON frame
920 *  transmission as well.
921 **/
922s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
923{
924	u32 fcrtl = 0, fcrth = 0;
925
926	/* Set the flow control receive threshold registers.  Normally,
927	 * these registers will be set to a default threshold that may be
928	 * adjusted later by the driver's runtime code.  However, if the
929	 * ability to transmit pause frames is not enabled, then these
930	 * registers will be set to 0.
931	 */
932	if (hw->fc.current_mode & e1000_fc_tx_pause) {
933		/* We need to set up the Receive Threshold high and low water
934		 * marks as well as (optionally) enabling the transmission of
935		 * XON frames.
936		 */
937		fcrtl = hw->fc.low_water;
938		if (hw->fc.send_xon)
939			fcrtl |= E1000_FCRTL_XONE;
940
941		fcrth = hw->fc.high_water;
942	}
943	ew32(FCRTL, fcrtl);
944	ew32(FCRTH, fcrth);
945
946	return 0;
947}
948
949/**
950 *  e1000e_force_mac_fc - Force the MAC's flow control settings
951 *  @hw: pointer to the HW structure
952 *
953 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
954 *  device control register to reflect the adapter settings.  TFCE and RFCE
955 *  need to be explicitly set by software when a copper PHY is used because
956 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
957 *  also configure these bits when link is forced on a fiber connection.
958 **/
959s32 e1000e_force_mac_fc(struct e1000_hw *hw)
960{
961	u32 ctrl;
962
963	ctrl = er32(CTRL);
964
965	/* Because we didn't get link via the internal auto-negotiation
966	 * mechanism (we either forced link or we got link via PHY
967	 * auto-neg), we have to manually enable/disable transmit an
968	 * receive flow control.
969	 *
970	 * The "Case" statement below enables/disable flow control
971	 * according to the "hw->fc.current_mode" parameter.
972	 *
973	 * The possible values of the "fc" parameter are:
974	 *      0:  Flow control is completely disabled
975	 *      1:  Rx flow control is enabled (we can receive pause
976	 *          frames but not send pause frames).
977	 *      2:  Tx flow control is enabled (we can send pause frames
978	 *          frames but we do not receive pause frames).
979	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
980	 *  other:  No other values should be possible at this point.
981	 */
982	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
983
984	switch (hw->fc.current_mode) {
985	case e1000_fc_none:
986		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
987		break;
988	case e1000_fc_rx_pause:
989		ctrl &= (~E1000_CTRL_TFCE);
990		ctrl |= E1000_CTRL_RFCE;
991		break;
992	case e1000_fc_tx_pause:
993		ctrl &= (~E1000_CTRL_RFCE);
994		ctrl |= E1000_CTRL_TFCE;
995		break;
996	case e1000_fc_full:
997		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
998		break;
999	default:
1000		e_dbg("Flow control param set incorrectly\n");
1001		return -E1000_ERR_CONFIG;
1002	}
1003
1004	ew32(CTRL, ctrl);
1005
1006	return 0;
1007}
1008
1009/**
1010 *  e1000e_config_fc_after_link_up - Configures flow control after link
1011 *  @hw: pointer to the HW structure
1012 *
1013 *  Checks the status of auto-negotiation after link up to ensure that the
1014 *  speed and duplex were not forced.  If the link needed to be forced, then
1015 *  flow control needs to be forced also.  If auto-negotiation is enabled
1016 *  and did not fail, then we configure flow control based on our link
1017 *  partner.
1018 **/
1019s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1020{
1021	struct e1000_mac_info *mac = &hw->mac;
1022	s32 ret_val = 0;
1023	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1024	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1025	u16 speed, duplex;
1026
1027	/* Check for the case where we have fiber media and auto-neg failed
1028	 * so we had to force link.  In this case, we need to force the
1029	 * configuration of the MAC to match the "fc" parameter.
1030	 */
1031	if (mac->autoneg_failed) {
1032		if (hw->phy.media_type == e1000_media_type_fiber ||
1033		    hw->phy.media_type == e1000_media_type_internal_serdes)
1034			ret_val = e1000e_force_mac_fc(hw);
1035	} else {
1036		if (hw->phy.media_type == e1000_media_type_copper)
1037			ret_val = e1000e_force_mac_fc(hw);
1038	}
1039
1040	if (ret_val) {
1041		e_dbg("Error forcing flow control settings\n");
1042		return ret_val;
1043	}
1044
1045	/* Check for the case where we have copper media and auto-neg is
1046	 * enabled.  In this case, we need to check and see if Auto-Neg
1047	 * has completed, and if so, how the PHY and link partner has
1048	 * flow control configured.
1049	 */
1050	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1051		/* Read the MII Status Register and check to see if AutoNeg
1052		 * has completed.  We read this twice because this reg has
1053		 * some "sticky" (latched) bits.
1054		 */
1055		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1056		if (ret_val)
1057			return ret_val;
1058		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1059		if (ret_val)
1060			return ret_val;
1061
1062		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1063			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1064			return ret_val;
1065		}
1066
1067		/* The AutoNeg process has completed, so we now need to
1068		 * read both the Auto Negotiation Advertisement
1069		 * Register (Address 4) and the Auto_Negotiation Base
1070		 * Page Ability Register (Address 5) to determine how
1071		 * flow control was negotiated.
1072		 */
1073		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1074		if (ret_val)
1075			return ret_val;
1076		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1077		if (ret_val)
1078			return ret_val;
1079
1080		/* Two bits in the Auto Negotiation Advertisement Register
1081		 * (Address 4) and two bits in the Auto Negotiation Base
1082		 * Page Ability Register (Address 5) determine flow control
1083		 * for both the PHY and the link partner.  The following
1084		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1085		 * 1999, describes these PAUSE resolution bits and how flow
1086		 * control is determined based upon these settings.
1087		 * NOTE:  DC = Don't Care
1088		 *
1089		 *   LOCAL DEVICE  |   LINK PARTNER
1090		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1091		 *-------|---------|-------|---------|--------------------
1092		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1093		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1094		 *   0   |    1    |   1   |    0    | e1000_fc_none
1095		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1096		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1097		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1098		 *   1   |    1    |   0   |    0    | e1000_fc_none
1099		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1100		 *
1101		 * Are both PAUSE bits set to 1?  If so, this implies
1102		 * Symmetric Flow Control is enabled at both ends.  The
1103		 * ASM_DIR bits are irrelevant per the spec.
1104		 *
1105		 * For Symmetric Flow Control:
1106		 *
1107		 *   LOCAL DEVICE  |   LINK PARTNER
1108		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1109		 *-------|---------|-------|---------|--------------------
1110		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1111		 *
1112		 */
1113		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1114		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1115			/* Now we need to check if the user selected Rx ONLY
1116			 * of pause frames.  In this case, we had to advertise
1117			 * FULL flow control because we could not advertise Rx
1118			 * ONLY. Hence, we must now check to see if we need to
1119			 * turn OFF the TRANSMISSION of PAUSE frames.
1120			 */
1121			if (hw->fc.requested_mode == e1000_fc_full) {
1122				hw->fc.current_mode = e1000_fc_full;
1123				e_dbg("Flow Control = FULL.\n");
1124			} else {
1125				hw->fc.current_mode = e1000_fc_rx_pause;
1126				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1127			}
1128		}
1129		/* For receiving PAUSE frames ONLY.
1130		 *
1131		 *   LOCAL DEVICE  |   LINK PARTNER
1132		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1133		 *-------|---------|-------|---------|--------------------
1134		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135		 */
1136		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1137			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1138			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1139			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1140			hw->fc.current_mode = e1000_fc_tx_pause;
1141			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1142		}
1143		/* For transmitting PAUSE frames ONLY.
1144		 *
1145		 *   LOCAL DEVICE  |   LINK PARTNER
1146		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1147		 *-------|---------|-------|---------|--------------------
1148		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1149		 */
1150		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1151			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1152			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1153			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1154			hw->fc.current_mode = e1000_fc_rx_pause;
1155			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1156		} else {
1157			/* Per the IEEE spec, at this point flow control
1158			 * should be disabled.
1159			 */
1160			hw->fc.current_mode = e1000_fc_none;
1161			e_dbg("Flow Control = NONE.\n");
1162		}
1163
1164		/* Now we need to do one last check...  If we auto-
1165		 * negotiated to HALF DUPLEX, flow control should not be
1166		 * enabled per IEEE 802.3 spec.
1167		 */
1168		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1169		if (ret_val) {
1170			e_dbg("Error getting link speed and duplex\n");
1171			return ret_val;
1172		}
1173
1174		if (duplex == HALF_DUPLEX)
1175			hw->fc.current_mode = e1000_fc_none;
1176
1177		/* Now we call a subroutine to actually force the MAC
1178		 * controller to use the correct flow control settings.
1179		 */
1180		ret_val = e1000e_force_mac_fc(hw);
1181		if (ret_val) {
1182			e_dbg("Error forcing flow control settings\n");
1183			return ret_val;
1184		}
1185	}
1186
1187	/* Check for the case where we have SerDes media and auto-neg is
1188	 * enabled.  In this case, we need to check and see if Auto-Neg
1189	 * has completed, and if so, how the PHY and link partner has
1190	 * flow control configured.
1191	 */
1192	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1193	    mac->autoneg) {
1194		/* Read the PCS_LSTS and check to see if AutoNeg
1195		 * has completed.
1196		 */
1197		pcs_status_reg = er32(PCS_LSTAT);
1198
1199		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1200			e_dbg("PCS Auto Neg has not completed.\n");
1201			return ret_val;
1202		}
1203
1204		/* The AutoNeg process has completed, so we now need to
1205		 * read both the Auto Negotiation Advertisement
1206		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1207		 * Page Ability Register (PCS_LPAB) to determine how
1208		 * flow control was negotiated.
1209		 */
1210		pcs_adv_reg = er32(PCS_ANADV);
1211		pcs_lp_ability_reg = er32(PCS_LPAB);
1212
1213		/* Two bits in the Auto Negotiation Advertisement Register
1214		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1215		 * Page Ability Register (PCS_LPAB) determine flow control
1216		 * for both the PHY and the link partner.  The following
1217		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1218		 * 1999, describes these PAUSE resolution bits and how flow
1219		 * control is determined based upon these settings.
1220		 * NOTE:  DC = Don't Care
1221		 *
1222		 *   LOCAL DEVICE  |   LINK PARTNER
1223		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1224		 *-------|---------|-------|---------|--------------------
1225		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1226		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1227		 *   0   |    1    |   1   |    0    | e1000_fc_none
1228		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1229		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1230		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1231		 *   1   |    1    |   0   |    0    | e1000_fc_none
1232		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1233		 *
1234		 * Are both PAUSE bits set to 1?  If so, this implies
1235		 * Symmetric Flow Control is enabled at both ends.  The
1236		 * ASM_DIR bits are irrelevant per the spec.
1237		 *
1238		 * For Symmetric Flow Control:
1239		 *
1240		 *   LOCAL DEVICE  |   LINK PARTNER
1241		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1242		 *-------|---------|-------|---------|--------------------
1243		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1244		 *
1245		 */
1246		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1247		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1248			/* Now we need to check if the user selected Rx ONLY
1249			 * of pause frames.  In this case, we had to advertise
1250			 * FULL flow control because we could not advertise Rx
1251			 * ONLY. Hence, we must now check to see if we need to
1252			 * turn OFF the TRANSMISSION of PAUSE frames.
1253			 */
1254			if (hw->fc.requested_mode == e1000_fc_full) {
1255				hw->fc.current_mode = e1000_fc_full;
1256				e_dbg("Flow Control = FULL.\n");
1257			} else {
1258				hw->fc.current_mode = e1000_fc_rx_pause;
1259				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1260			}
1261		}
1262		/* For receiving PAUSE frames ONLY.
1263		 *
1264		 *   LOCAL DEVICE  |   LINK PARTNER
1265		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1266		 *-------|---------|-------|---------|--------------------
1267		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1268		 */
1269		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1270			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1271			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1272			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1273			hw->fc.current_mode = e1000_fc_tx_pause;
1274			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1275		}
1276		/* For transmitting PAUSE frames ONLY.
1277		 *
1278		 *   LOCAL DEVICE  |   LINK PARTNER
1279		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1280		 *-------|---------|-------|---------|--------------------
1281		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1282		 */
1283		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1284			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1285			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1286			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1287			hw->fc.current_mode = e1000_fc_rx_pause;
1288			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1289		} else {
1290			/* Per the IEEE spec, at this point flow control
1291			 * should be disabled.
1292			 */
1293			hw->fc.current_mode = e1000_fc_none;
1294			e_dbg("Flow Control = NONE.\n");
1295		}
1296
1297		/* Now we call a subroutine to actually force the MAC
1298		 * controller to use the correct flow control settings.
1299		 */
1300		pcs_ctrl_reg = er32(PCS_LCTL);
1301		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1302		ew32(PCS_LCTL, pcs_ctrl_reg);
1303
1304		ret_val = e1000e_force_mac_fc(hw);
1305		if (ret_val) {
1306			e_dbg("Error forcing flow control settings\n");
1307			return ret_val;
1308		}
1309	}
1310
1311	return 0;
1312}
1313
1314/**
1315 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1316 *  @hw: pointer to the HW structure
1317 *  @speed: stores the current speed
1318 *  @duplex: stores the current duplex
1319 *
1320 *  Read the status register for the current speed/duplex and store the current
1321 *  speed and duplex for copper connections.
1322 **/
1323s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1324				       u16 *duplex)
1325{
1326	u32 status;
1327
1328	status = er32(STATUS);
1329	if (status & E1000_STATUS_SPEED_1000)
1330		*speed = SPEED_1000;
1331	else if (status & E1000_STATUS_SPEED_100)
1332		*speed = SPEED_100;
1333	else
1334		*speed = SPEED_10;
1335
1336	if (status & E1000_STATUS_FD)
1337		*duplex = FULL_DUPLEX;
1338	else
1339		*duplex = HALF_DUPLEX;
1340
1341	e_dbg("%u Mbps, %s Duplex\n",
1342	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1343	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1344
1345	return 0;
1346}
1347
1348/**
1349 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1350 *  @hw: pointer to the HW structure
1351 *  @speed: stores the current speed
1352 *  @duplex: stores the current duplex
1353 *
1354 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1355 *  for fiber/serdes links.
1356 **/
1357s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1358					     *hw, u16 *speed, u16 *duplex)
1359{
1360	*speed = SPEED_1000;
1361	*duplex = FULL_DUPLEX;
1362
1363	return 0;
1364}
1365
1366/**
1367 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1368 *  @hw: pointer to the HW structure
1369 *
1370 *  Acquire the HW semaphore to access the PHY or NVM
1371 **/
1372s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1373{
1374	u32 swsm;
1375	s32 timeout = hw->nvm.word_size + 1;
1376	s32 i = 0;
1377
1378	/* Get the SW semaphore */
1379	while (i < timeout) {
1380		swsm = er32(SWSM);
1381		if (!(swsm & E1000_SWSM_SMBI))
1382			break;
1383
1384		usleep_range(50, 100);
1385		i++;
1386	}
1387
1388	if (i == timeout) {
1389		e_dbg("Driver can't access device - SMBI bit is set.\n");
1390		return -E1000_ERR_NVM;
1391	}
1392
1393	/* Get the FW semaphore. */
1394	for (i = 0; i < timeout; i++) {
1395		swsm = er32(SWSM);
1396		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1397
1398		/* Semaphore acquired if bit latched */
1399		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1400			break;
1401
1402		usleep_range(50, 100);
1403	}
1404
1405	if (i == timeout) {
1406		/* Release semaphores */
1407		e1000e_put_hw_semaphore(hw);
1408		e_dbg("Driver can't access the NVM\n");
1409		return -E1000_ERR_NVM;
1410	}
1411
1412	return 0;
1413}
1414
1415/**
1416 *  e1000e_put_hw_semaphore - Release hardware semaphore
1417 *  @hw: pointer to the HW structure
1418 *
1419 *  Release hardware semaphore used to access the PHY or NVM
1420 **/
1421void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1422{
1423	u32 swsm;
1424
1425	swsm = er32(SWSM);
1426	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1427	ew32(SWSM, swsm);
1428}
1429
1430/**
1431 *  e1000e_get_auto_rd_done - Check for auto read completion
1432 *  @hw: pointer to the HW structure
1433 *
1434 *  Check EEPROM for Auto Read done bit.
1435 **/
1436s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1437{
1438	s32 i = 0;
1439
1440	while (i < AUTO_READ_DONE_TIMEOUT) {
1441		if (er32(EECD) & E1000_EECD_AUTO_RD)
1442			break;
1443		usleep_range(1000, 2000);
1444		i++;
1445	}
1446
1447	if (i == AUTO_READ_DONE_TIMEOUT) {
1448		e_dbg("Auto read by HW from NVM has not completed.\n");
1449		return -E1000_ERR_RESET;
1450	}
1451
1452	return 0;
1453}
1454
1455/**
1456 *  e1000e_valid_led_default - Verify a valid default LED config
1457 *  @hw: pointer to the HW structure
1458 *  @data: pointer to the NVM (EEPROM)
1459 *
1460 *  Read the EEPROM for the current default LED configuration.  If the
1461 *  LED configuration is not valid, set to a valid LED configuration.
1462 **/
1463s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1464{
1465	s32 ret_val;
1466
1467	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1468	if (ret_val) {
1469		e_dbg("NVM Read Error\n");
1470		return ret_val;
1471	}
1472
1473	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1474		*data = ID_LED_DEFAULT;
1475
1476	return 0;
1477}
1478
1479/**
1480 *  e1000e_id_led_init_generic -
1481 *  @hw: pointer to the HW structure
1482 *
1483 **/
1484s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1485{
1486	struct e1000_mac_info *mac = &hw->mac;
1487	s32 ret_val;
1488	const u32 ledctl_mask = 0x000000FF;
1489	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1490	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1491	u16 data, i, temp;
1492	const u16 led_mask = 0x0F;
1493
1494	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1495	if (ret_val)
1496		return ret_val;
1497
1498	mac->ledctl_default = er32(LEDCTL);
1499	mac->ledctl_mode1 = mac->ledctl_default;
1500	mac->ledctl_mode2 = mac->ledctl_default;
1501
1502	for (i = 0; i < 4; i++) {
1503		temp = (data >> (i << 2)) & led_mask;
1504		switch (temp) {
1505		case ID_LED_ON1_DEF2:
1506		case ID_LED_ON1_ON2:
1507		case ID_LED_ON1_OFF2:
1508			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1509			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1510			break;
1511		case ID_LED_OFF1_DEF2:
1512		case ID_LED_OFF1_ON2:
1513		case ID_LED_OFF1_OFF2:
1514			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1515			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1516			break;
1517		default:
1518			/* Do nothing */
1519			break;
1520		}
1521		switch (temp) {
1522		case ID_LED_DEF1_ON2:
1523		case ID_LED_ON1_ON2:
1524		case ID_LED_OFF1_ON2:
1525			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1526			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1527			break;
1528		case ID_LED_DEF1_OFF2:
1529		case ID_LED_ON1_OFF2:
1530		case ID_LED_OFF1_OFF2:
1531			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1532			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1533			break;
1534		default:
1535			/* Do nothing */
1536			break;
1537		}
1538	}
1539
1540	return 0;
1541}
1542
1543/**
1544 *  e1000e_setup_led_generic - Configures SW controllable LED
1545 *  @hw: pointer to the HW structure
1546 *
1547 *  This prepares the SW controllable LED for use and saves the current state
1548 *  of the LED so it can be later restored.
1549 **/
1550s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1551{
1552	u32 ledctl;
1553
1554	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1555		return -E1000_ERR_CONFIG;
1556
1557	if (hw->phy.media_type == e1000_media_type_fiber) {
1558		ledctl = er32(LEDCTL);
1559		hw->mac.ledctl_default = ledctl;
1560		/* Turn off LED0 */
1561		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1562			    E1000_LEDCTL_LED0_MODE_MASK);
1563		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1564			   E1000_LEDCTL_LED0_MODE_SHIFT);
1565		ew32(LEDCTL, ledctl);
1566	} else if (hw->phy.media_type == e1000_media_type_copper) {
1567		ew32(LEDCTL, hw->mac.ledctl_mode1);
1568	}
1569
1570	return 0;
1571}
1572
1573/**
1574 *  e1000e_cleanup_led_generic - Set LED config to default operation
1575 *  @hw: pointer to the HW structure
1576 *
1577 *  Remove the current LED configuration and set the LED configuration
1578 *  to the default value, saved from the EEPROM.
1579 **/
1580s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1581{
1582	ew32(LEDCTL, hw->mac.ledctl_default);
1583	return 0;
1584}
1585
1586/**
1587 *  e1000e_blink_led_generic - Blink LED
1588 *  @hw: pointer to the HW structure
1589 *
1590 *  Blink the LEDs which are set to be on.
1591 **/
1592s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1593{
1594	u32 ledctl_blink = 0;
1595	u32 i;
1596
1597	if (hw->phy.media_type == e1000_media_type_fiber) {
1598		/* always blink LED0 for PCI-E fiber */
1599		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1600		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1601	} else {
1602		/* Set the blink bit for each LED that's "on" (0x0E)
1603		 * (or "off" if inverted) in ledctl_mode2.  The blink
1604		 * logic in hardware only works when mode is set to "on"
1605		 * so it must be changed accordingly when the mode is
1606		 * "off" and inverted.
1607		 */
1608		ledctl_blink = hw->mac.ledctl_mode2;
1609		for (i = 0; i < 32; i += 8) {
1610			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1611			    E1000_LEDCTL_LED0_MODE_MASK;
1612			u32 led_default = hw->mac.ledctl_default >> i;
1613
1614			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1615			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1616			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1617			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1618				ledctl_blink &=
1619				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1620				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1621						 E1000_LEDCTL_MODE_LED_ON) << i;
1622			}
1623		}
1624	}
1625
1626	ew32(LEDCTL, ledctl_blink);
1627
1628	return 0;
1629}
1630
1631/**
1632 *  e1000e_led_on_generic - Turn LED on
1633 *  @hw: pointer to the HW structure
1634 *
1635 *  Turn LED on.
1636 **/
1637s32 e1000e_led_on_generic(struct e1000_hw *hw)
1638{
1639	u32 ctrl;
1640
1641	switch (hw->phy.media_type) {
1642	case e1000_media_type_fiber:
1643		ctrl = er32(CTRL);
1644		ctrl &= ~E1000_CTRL_SWDPIN0;
1645		ctrl |= E1000_CTRL_SWDPIO0;
1646		ew32(CTRL, ctrl);
1647		break;
1648	case e1000_media_type_copper:
1649		ew32(LEDCTL, hw->mac.ledctl_mode2);
1650		break;
1651	default:
1652		break;
1653	}
1654
1655	return 0;
1656}
1657
1658/**
1659 *  e1000e_led_off_generic - Turn LED off
1660 *  @hw: pointer to the HW structure
1661 *
1662 *  Turn LED off.
1663 **/
1664s32 e1000e_led_off_generic(struct e1000_hw *hw)
1665{
1666	u32 ctrl;
1667
1668	switch (hw->phy.media_type) {
1669	case e1000_media_type_fiber:
1670		ctrl = er32(CTRL);
1671		ctrl |= E1000_CTRL_SWDPIN0;
1672		ctrl |= E1000_CTRL_SWDPIO0;
1673		ew32(CTRL, ctrl);
1674		break;
1675	case e1000_media_type_copper:
1676		ew32(LEDCTL, hw->mac.ledctl_mode1);
1677		break;
1678	default:
1679		break;
1680	}
1681
1682	return 0;
1683}
1684
1685/**
1686 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1687 *  @hw: pointer to the HW structure
1688 *  @no_snoop: bitmap of snoop events
1689 *
1690 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1691 **/
1692void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1693{
1694	u32 gcr;
1695
1696	if (no_snoop) {
1697		gcr = er32(GCR);
1698		gcr &= ~(PCIE_NO_SNOOP_ALL);
1699		gcr |= no_snoop;
1700		ew32(GCR, gcr);
1701	}
1702}
1703
1704/**
1705 *  e1000e_disable_pcie_master - Disables PCI-express master access
1706 *  @hw: pointer to the HW structure
1707 *
1708 *  Returns 0 if successful, else returns -10
1709 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1710 *  the master requests to be disabled.
1711 *
1712 *  Disables PCI-Express master access and verifies there are no pending
1713 *  requests.
1714 **/
1715s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1716{
1717	u32 ctrl;
1718	s32 timeout = MASTER_DISABLE_TIMEOUT;
1719
1720	ctrl = er32(CTRL);
1721	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1722	ew32(CTRL, ctrl);
1723
1724	while (timeout) {
1725		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1726			break;
1727		usleep_range(100, 200);
1728		timeout--;
1729	}
1730
1731	if (!timeout) {
1732		e_dbg("Master requests are pending.\n");
1733		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1734	}
1735
1736	return 0;
1737}
1738
1739/**
1740 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1741 *  @hw: pointer to the HW structure
1742 *
1743 *  Reset the Adaptive Interframe Spacing throttle to default values.
1744 **/
1745void e1000e_reset_adaptive(struct e1000_hw *hw)
1746{
1747	struct e1000_mac_info *mac = &hw->mac;
1748
1749	if (!mac->adaptive_ifs) {
1750		e_dbg("Not in Adaptive IFS mode!\n");
1751		return;
1752	}
1753
1754	mac->current_ifs_val = 0;
1755	mac->ifs_min_val = IFS_MIN;
1756	mac->ifs_max_val = IFS_MAX;
1757	mac->ifs_step_size = IFS_STEP;
1758	mac->ifs_ratio = IFS_RATIO;
1759
1760	mac->in_ifs_mode = false;
1761	ew32(AIT, 0);
1762}
1763
1764/**
1765 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Update the Adaptive Interframe Spacing Throttle value based on the
1769 *  time between transmitted packets and time between collisions.
1770 **/
1771void e1000e_update_adaptive(struct e1000_hw *hw)
1772{
1773	struct e1000_mac_info *mac = &hw->mac;
1774
1775	if (!mac->adaptive_ifs) {
1776		e_dbg("Not in Adaptive IFS mode!\n");
1777		return;
1778	}
1779
1780	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1781		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1782			mac->in_ifs_mode = true;
1783			if (mac->current_ifs_val < mac->ifs_max_val) {
1784				if (!mac->current_ifs_val)
1785					mac->current_ifs_val = mac->ifs_min_val;
1786				else
1787					mac->current_ifs_val +=
1788					    mac->ifs_step_size;
1789				ew32(AIT, mac->current_ifs_val);
1790			}
1791		}
1792	} else {
1793		if (mac->in_ifs_mode &&
1794		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1795			mac->current_ifs_val = 0;
1796			mac->in_ifs_mode = false;
1797			ew32(AIT, 0);
1798		}
1799	}
1800}
1801