1/* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22/* 82571EB Gigabit Ethernet Controller 23 * 82571EB Gigabit Ethernet Controller (Copper) 24 * 82571EB Gigabit Ethernet Controller (Fiber) 25 * 82571EB Dual Port Gigabit Mezzanine Adapter 26 * 82571EB Quad Port Gigabit Mezzanine Adapter 27 * 82571PT Gigabit PT Quad Port Server ExpressModule 28 * 82572EI Gigabit Ethernet Controller (Copper) 29 * 82572EI Gigabit Ethernet Controller (Fiber) 30 * 82572EI Gigabit Ethernet Controller 31 * 82573V Gigabit Ethernet Controller (Copper) 32 * 82573E Gigabit Ethernet Controller (Copper) 33 * 82573L Gigabit Ethernet Controller 34 * 82574L Gigabit Network Connection 35 * 82583V Gigabit Network Connection 36 */ 37 38#include "e1000.h" 39 40static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); 41static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); 42static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); 43static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); 44static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, 45 u16 words, u16 *data); 46static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); 47static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); 48static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); 49static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); 50static s32 e1000_led_on_82574(struct e1000_hw *hw); 51static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); 52static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); 53static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); 54static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); 55static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); 56static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); 57static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); 58 59/** 60 * e1000_init_phy_params_82571 - Init PHY func ptrs. 61 * @hw: pointer to the HW structure 62 **/ 63static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) 64{ 65 struct e1000_phy_info *phy = &hw->phy; 66 s32 ret_val; 67 68 if (hw->phy.media_type != e1000_media_type_copper) { 69 phy->type = e1000_phy_none; 70 return 0; 71 } 72 73 phy->addr = 1; 74 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 75 phy->reset_delay_us = 100; 76 77 phy->ops.power_up = e1000_power_up_phy_copper; 78 phy->ops.power_down = e1000_power_down_phy_copper_82571; 79 80 switch (hw->mac.type) { 81 case e1000_82571: 82 case e1000_82572: 83 phy->type = e1000_phy_igp_2; 84 break; 85 case e1000_82573: 86 phy->type = e1000_phy_m88; 87 break; 88 case e1000_82574: 89 case e1000_82583: 90 phy->type = e1000_phy_bm; 91 phy->ops.acquire = e1000_get_hw_semaphore_82574; 92 phy->ops.release = e1000_put_hw_semaphore_82574; 93 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; 94 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; 95 break; 96 default: 97 return -E1000_ERR_PHY; 98 } 99 100 /* This can only be done after all function pointers are setup. */ 101 ret_val = e1000_get_phy_id_82571(hw); 102 if (ret_val) { 103 e_dbg("Error getting PHY ID\n"); 104 return ret_val; 105 } 106 107 /* Verify phy id */ 108 switch (hw->mac.type) { 109 case e1000_82571: 110 case e1000_82572: 111 if (phy->id != IGP01E1000_I_PHY_ID) 112 ret_val = -E1000_ERR_PHY; 113 break; 114 case e1000_82573: 115 if (phy->id != M88E1111_I_PHY_ID) 116 ret_val = -E1000_ERR_PHY; 117 break; 118 case e1000_82574: 119 case e1000_82583: 120 if (phy->id != BME1000_E_PHY_ID_R2) 121 ret_val = -E1000_ERR_PHY; 122 break; 123 default: 124 ret_val = -E1000_ERR_PHY; 125 break; 126 } 127 128 if (ret_val) 129 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); 130 131 return ret_val; 132} 133 134/** 135 * e1000_init_nvm_params_82571 - Init NVM func ptrs. 136 * @hw: pointer to the HW structure 137 **/ 138static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) 139{ 140 struct e1000_nvm_info *nvm = &hw->nvm; 141 u32 eecd = er32(EECD); 142 u16 size; 143 144 nvm->opcode_bits = 8; 145 nvm->delay_usec = 1; 146 switch (nvm->override) { 147 case e1000_nvm_override_spi_large: 148 nvm->page_size = 32; 149 nvm->address_bits = 16; 150 break; 151 case e1000_nvm_override_spi_small: 152 nvm->page_size = 8; 153 nvm->address_bits = 8; 154 break; 155 default: 156 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; 157 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; 158 break; 159 } 160 161 switch (hw->mac.type) { 162 case e1000_82573: 163 case e1000_82574: 164 case e1000_82583: 165 if (((eecd >> 15) & 0x3) == 0x3) { 166 nvm->type = e1000_nvm_flash_hw; 167 nvm->word_size = 2048; 168 /* Autonomous Flash update bit must be cleared due 169 * to Flash update issue. 170 */ 171 eecd &= ~E1000_EECD_AUPDEN; 172 ew32(EECD, eecd); 173 break; 174 } 175 /* Fall Through */ 176 default: 177 nvm->type = e1000_nvm_eeprom_spi; 178 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> 179 E1000_EECD_SIZE_EX_SHIFT); 180 /* Added to a constant, "size" becomes the left-shift value 181 * for setting word_size. 182 */ 183 size += NVM_WORD_SIZE_BASE_SHIFT; 184 185 /* EEPROM access above 16k is unsupported */ 186 if (size > 14) 187 size = 14; 188 nvm->word_size = 1 << size; 189 break; 190 } 191 192 /* Function Pointers */ 193 switch (hw->mac.type) { 194 case e1000_82574: 195 case e1000_82583: 196 nvm->ops.acquire = e1000_get_hw_semaphore_82574; 197 nvm->ops.release = e1000_put_hw_semaphore_82574; 198 break; 199 default: 200 break; 201 } 202 203 return 0; 204} 205 206/** 207 * e1000_init_mac_params_82571 - Init MAC func ptrs. 208 * @hw: pointer to the HW structure 209 **/ 210static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) 211{ 212 struct e1000_mac_info *mac = &hw->mac; 213 u32 swsm = 0; 214 u32 swsm2 = 0; 215 bool force_clear_smbi = false; 216 217 /* Set media type and media-dependent function pointers */ 218 switch (hw->adapter->pdev->device) { 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82572EI_FIBER: 221 case E1000_DEV_ID_82571EB_QUAD_FIBER: 222 hw->phy.media_type = e1000_media_type_fiber; 223 mac->ops.setup_physical_interface = 224 e1000_setup_fiber_serdes_link_82571; 225 mac->ops.check_for_link = e1000e_check_for_fiber_link; 226 mac->ops.get_link_up_info = 227 e1000e_get_speed_and_duplex_fiber_serdes; 228 break; 229 case E1000_DEV_ID_82571EB_SERDES: 230 case E1000_DEV_ID_82571EB_SERDES_DUAL: 231 case E1000_DEV_ID_82571EB_SERDES_QUAD: 232 case E1000_DEV_ID_82572EI_SERDES: 233 hw->phy.media_type = e1000_media_type_internal_serdes; 234 mac->ops.setup_physical_interface = 235 e1000_setup_fiber_serdes_link_82571; 236 mac->ops.check_for_link = e1000_check_for_serdes_link_82571; 237 mac->ops.get_link_up_info = 238 e1000e_get_speed_and_duplex_fiber_serdes; 239 break; 240 default: 241 hw->phy.media_type = e1000_media_type_copper; 242 mac->ops.setup_physical_interface = 243 e1000_setup_copper_link_82571; 244 mac->ops.check_for_link = e1000e_check_for_copper_link; 245 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper; 246 break; 247 } 248 249 /* Set mta register count */ 250 mac->mta_reg_count = 128; 251 /* Set rar entry count */ 252 mac->rar_entry_count = E1000_RAR_ENTRIES; 253 /* Adaptive IFS supported */ 254 mac->adaptive_ifs = true; 255 256 /* MAC-specific function pointers */ 257 switch (hw->mac.type) { 258 case e1000_82573: 259 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 260 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; 261 mac->ops.led_on = e1000e_led_on_generic; 262 mac->ops.blink_led = e1000e_blink_led_generic; 263 264 /* FWSM register */ 265 mac->has_fwsm = true; 266 /* ARC supported; valid only if manageability features are 267 * enabled. 268 */ 269 mac->arc_subsystem_valid = !!(er32(FWSM) & 270 E1000_FWSM_MODE_MASK); 271 break; 272 case e1000_82574: 273 case e1000_82583: 274 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 275 mac->ops.check_mng_mode = e1000_check_mng_mode_82574; 276 mac->ops.led_on = e1000_led_on_82574; 277 break; 278 default: 279 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; 280 mac->ops.led_on = e1000e_led_on_generic; 281 mac->ops.blink_led = e1000e_blink_led_generic; 282 283 /* FWSM register */ 284 mac->has_fwsm = true; 285 break; 286 } 287 288 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before 289 * first NVM or PHY access. This should be done for single-port 290 * devices, and for one port only on dual-port devices so that 291 * for those devices we can still use the SMBI lock to synchronize 292 * inter-port accesses to the PHY & NVM. 293 */ 294 switch (hw->mac.type) { 295 case e1000_82571: 296 case e1000_82572: 297 swsm2 = er32(SWSM2); 298 299 if (!(swsm2 & E1000_SWSM2_LOCK)) { 300 /* Only do this for the first interface on this card */ 301 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK); 302 force_clear_smbi = true; 303 } else { 304 force_clear_smbi = false; 305 } 306 break; 307 default: 308 force_clear_smbi = true; 309 break; 310 } 311 312 if (force_clear_smbi) { 313 /* Make sure SWSM.SMBI is clear */ 314 swsm = er32(SWSM); 315 if (swsm & E1000_SWSM_SMBI) { 316 /* This bit should not be set on a first interface, and 317 * indicates that the bootagent or EFI code has 318 * improperly left this bit enabled 319 */ 320 e_dbg("Please update your 82571 Bootagent\n"); 321 } 322 ew32(SWSM, swsm & ~E1000_SWSM_SMBI); 323 } 324 325 /* Initialize device specific counter of SMBI acquisition timeouts. */ 326 hw->dev_spec.e82571.smb_counter = 0; 327 328 return 0; 329} 330 331static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) 332{ 333 struct e1000_hw *hw = &adapter->hw; 334 static int global_quad_port_a; /* global port a indication */ 335 struct pci_dev *pdev = adapter->pdev; 336 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; 337 s32 rc; 338 339 rc = e1000_init_mac_params_82571(hw); 340 if (rc) 341 return rc; 342 343 rc = e1000_init_nvm_params_82571(hw); 344 if (rc) 345 return rc; 346 347 rc = e1000_init_phy_params_82571(hw); 348 if (rc) 349 return rc; 350 351 /* tag quad port adapters first, it's used below */ 352 switch (pdev->device) { 353 case E1000_DEV_ID_82571EB_QUAD_COPPER: 354 case E1000_DEV_ID_82571EB_QUAD_FIBER: 355 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 356 case E1000_DEV_ID_82571PT_QUAD_COPPER: 357 adapter->flags |= FLAG_IS_QUAD_PORT; 358 /* mark the first port */ 359 if (global_quad_port_a == 0) 360 adapter->flags |= FLAG_IS_QUAD_PORT_A; 361 /* Reset for multiple quad port adapters */ 362 global_quad_port_a++; 363 if (global_quad_port_a == 4) 364 global_quad_port_a = 0; 365 break; 366 default: 367 break; 368 } 369 370 switch (adapter->hw.mac.type) { 371 case e1000_82571: 372 /* these dual ports don't have WoL on port B at all */ 373 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || 374 (pdev->device == E1000_DEV_ID_82571EB_SERDES) || 375 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && 376 (is_port_b)) 377 adapter->flags &= ~FLAG_HAS_WOL; 378 /* quad ports only support WoL on port A */ 379 if (adapter->flags & FLAG_IS_QUAD_PORT && 380 (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) 381 adapter->flags &= ~FLAG_HAS_WOL; 382 /* Does not support WoL on any port */ 383 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) 384 adapter->flags &= ~FLAG_HAS_WOL; 385 break; 386 case e1000_82573: 387 if (pdev->device == E1000_DEV_ID_82573L) { 388 adapter->flags |= FLAG_HAS_JUMBO_FRAMES; 389 adapter->max_hw_frame_size = DEFAULT_JUMBO; 390 } 391 break; 392 default: 393 break; 394 } 395 396 return 0; 397} 398 399/** 400 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision 401 * @hw: pointer to the HW structure 402 * 403 * Reads the PHY registers and stores the PHY ID and possibly the PHY 404 * revision in the hardware structure. 405 **/ 406static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) 407{ 408 struct e1000_phy_info *phy = &hw->phy; 409 s32 ret_val; 410 u16 phy_id = 0; 411 412 switch (hw->mac.type) { 413 case e1000_82571: 414 case e1000_82572: 415 /* The 82571 firmware may still be configuring the PHY. 416 * In this case, we cannot access the PHY until the 417 * configuration is done. So we explicitly set the 418 * PHY ID. 419 */ 420 phy->id = IGP01E1000_I_PHY_ID; 421 break; 422 case e1000_82573: 423 return e1000e_get_phy_id(hw); 424 case e1000_82574: 425 case e1000_82583: 426 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); 427 if (ret_val) 428 return ret_val; 429 430 phy->id = (u32)(phy_id << 16); 431 usleep_range(20, 40); 432 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); 433 if (ret_val) 434 return ret_val; 435 436 phy->id |= (u32)(phy_id); 437 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 438 break; 439 default: 440 return -E1000_ERR_PHY; 441 } 442 443 return 0; 444} 445 446/** 447 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore 448 * @hw: pointer to the HW structure 449 * 450 * Acquire the HW semaphore to access the PHY or NVM 451 **/ 452static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) 453{ 454 u32 swsm; 455 s32 sw_timeout = hw->nvm.word_size + 1; 456 s32 fw_timeout = hw->nvm.word_size + 1; 457 s32 i = 0; 458 459 /* If we have timedout 3 times on trying to acquire 460 * the inter-port SMBI semaphore, there is old code 461 * operating on the other port, and it is not 462 * releasing SMBI. Modify the number of times that 463 * we try for the semaphore to interwork with this 464 * older code. 465 */ 466 if (hw->dev_spec.e82571.smb_counter > 2) 467 sw_timeout = 1; 468 469 /* Get the SW semaphore */ 470 while (i < sw_timeout) { 471 swsm = er32(SWSM); 472 if (!(swsm & E1000_SWSM_SMBI)) 473 break; 474 475 usleep_range(50, 100); 476 i++; 477 } 478 479 if (i == sw_timeout) { 480 e_dbg("Driver can't access device - SMBI bit is set.\n"); 481 hw->dev_spec.e82571.smb_counter++; 482 } 483 /* Get the FW semaphore. */ 484 for (i = 0; i < fw_timeout; i++) { 485 swsm = er32(SWSM); 486 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 487 488 /* Semaphore acquired if bit latched */ 489 if (er32(SWSM) & E1000_SWSM_SWESMBI) 490 break; 491 492 usleep_range(50, 100); 493 } 494 495 if (i == fw_timeout) { 496 /* Release semaphores */ 497 e1000_put_hw_semaphore_82571(hw); 498 e_dbg("Driver can't access the NVM\n"); 499 return -E1000_ERR_NVM; 500 } 501 502 return 0; 503} 504 505/** 506 * e1000_put_hw_semaphore_82571 - Release hardware semaphore 507 * @hw: pointer to the HW structure 508 * 509 * Release hardware semaphore used to access the PHY or NVM 510 **/ 511static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) 512{ 513 u32 swsm; 514 515 swsm = er32(SWSM); 516 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 517 ew32(SWSM, swsm); 518} 519 520/** 521 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore 522 * @hw: pointer to the HW structure 523 * 524 * Acquire the HW semaphore during reset. 525 * 526 **/ 527static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) 528{ 529 u32 extcnf_ctrl; 530 s32 i = 0; 531 532 extcnf_ctrl = er32(EXTCNF_CTRL); 533 do { 534 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; 535 ew32(EXTCNF_CTRL, extcnf_ctrl); 536 extcnf_ctrl = er32(EXTCNF_CTRL); 537 538 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) 539 break; 540 541 usleep_range(2000, 4000); 542 i++; 543 } while (i < MDIO_OWNERSHIP_TIMEOUT); 544 545 if (i == MDIO_OWNERSHIP_TIMEOUT) { 546 /* Release semaphores */ 547 e1000_put_hw_semaphore_82573(hw); 548 e_dbg("Driver can't access the PHY\n"); 549 return -E1000_ERR_PHY; 550 } 551 552 return 0; 553} 554 555/** 556 * e1000_put_hw_semaphore_82573 - Release hardware semaphore 557 * @hw: pointer to the HW structure 558 * 559 * Release hardware semaphore used during reset. 560 * 561 **/ 562static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) 563{ 564 u32 extcnf_ctrl; 565 566 extcnf_ctrl = er32(EXTCNF_CTRL); 567 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; 568 ew32(EXTCNF_CTRL, extcnf_ctrl); 569} 570 571static DEFINE_MUTEX(swflag_mutex); 572 573/** 574 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore 575 * @hw: pointer to the HW structure 576 * 577 * Acquire the HW semaphore to access the PHY or NVM. 578 * 579 **/ 580static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) 581{ 582 s32 ret_val; 583 584 mutex_lock(&swflag_mutex); 585 ret_val = e1000_get_hw_semaphore_82573(hw); 586 if (ret_val) 587 mutex_unlock(&swflag_mutex); 588 return ret_val; 589} 590 591/** 592 * e1000_put_hw_semaphore_82574 - Release hardware semaphore 593 * @hw: pointer to the HW structure 594 * 595 * Release hardware semaphore used to access the PHY or NVM 596 * 597 **/ 598static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) 599{ 600 e1000_put_hw_semaphore_82573(hw); 601 mutex_unlock(&swflag_mutex); 602} 603 604/** 605 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state 606 * @hw: pointer to the HW structure 607 * @active: true to enable LPLU, false to disable 608 * 609 * Sets the LPLU D0 state according to the active flag. 610 * LPLU will not be activated unless the 611 * device autonegotiation advertisement meets standards of 612 * either 10 or 10/100 or 10/100/1000 at all duplexes. 613 * This is a function pointer entry point only called by 614 * PHY setup routines. 615 **/ 616static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) 617{ 618 u32 data = er32(POEMB); 619 620 if (active) 621 data |= E1000_PHY_CTRL_D0A_LPLU; 622 else 623 data &= ~E1000_PHY_CTRL_D0A_LPLU; 624 625 ew32(POEMB, data); 626 return 0; 627} 628 629/** 630 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 631 * @hw: pointer to the HW structure 632 * @active: boolean used to enable/disable lplu 633 * 634 * The low power link up (lplu) state is set to the power management level D3 635 * when active is true, else clear lplu for D3. LPLU 636 * is used during Dx states where the power conservation is most important. 637 * During driver activity, SmartSpeed should be enabled so performance is 638 * maintained. 639 **/ 640static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) 641{ 642 u32 data = er32(POEMB); 643 644 if (!active) { 645 data &= ~E1000_PHY_CTRL_NOND0A_LPLU; 646 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 647 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || 648 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { 649 data |= E1000_PHY_CTRL_NOND0A_LPLU; 650 } 651 652 ew32(POEMB, data); 653 return 0; 654} 655 656/** 657 * e1000_acquire_nvm_82571 - Request for access to the EEPROM 658 * @hw: pointer to the HW structure 659 * 660 * To gain access to the EEPROM, first we must obtain a hardware semaphore. 661 * Then for non-82573 hardware, set the EEPROM access request bit and wait 662 * for EEPROM access grant bit. If the access grant bit is not set, release 663 * hardware semaphore. 664 **/ 665static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) 666{ 667 s32 ret_val; 668 669 ret_val = e1000_get_hw_semaphore_82571(hw); 670 if (ret_val) 671 return ret_val; 672 673 switch (hw->mac.type) { 674 case e1000_82573: 675 break; 676 default: 677 ret_val = e1000e_acquire_nvm(hw); 678 break; 679 } 680 681 if (ret_val) 682 e1000_put_hw_semaphore_82571(hw); 683 684 return ret_val; 685} 686 687/** 688 * e1000_release_nvm_82571 - Release exclusive access to EEPROM 689 * @hw: pointer to the HW structure 690 * 691 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 692 **/ 693static void e1000_release_nvm_82571(struct e1000_hw *hw) 694{ 695 e1000e_release_nvm(hw); 696 e1000_put_hw_semaphore_82571(hw); 697} 698 699/** 700 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface 701 * @hw: pointer to the HW structure 702 * @offset: offset within the EEPROM to be written to 703 * @words: number of words to write 704 * @data: 16 bit word(s) to be written to the EEPROM 705 * 706 * For non-82573 silicon, write data to EEPROM at offset using SPI interface. 707 * 708 * If e1000e_update_nvm_checksum is not called after this function, the 709 * EEPROM will most likely contain an invalid checksum. 710 **/ 711static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, 712 u16 *data) 713{ 714 s32 ret_val; 715 716 switch (hw->mac.type) { 717 case e1000_82573: 718 case e1000_82574: 719 case e1000_82583: 720 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); 721 break; 722 case e1000_82571: 723 case e1000_82572: 724 ret_val = e1000e_write_nvm_spi(hw, offset, words, data); 725 break; 726 default: 727 ret_val = -E1000_ERR_NVM; 728 break; 729 } 730 731 return ret_val; 732} 733 734/** 735 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum 736 * @hw: pointer to the HW structure 737 * 738 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 739 * up to the checksum. Then calculates the EEPROM checksum and writes the 740 * value to the EEPROM. 741 **/ 742static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) 743{ 744 u32 eecd; 745 s32 ret_val; 746 u16 i; 747 748 ret_val = e1000e_update_nvm_checksum_generic(hw); 749 if (ret_val) 750 return ret_val; 751 752 /* If our nvm is an EEPROM, then we're done 753 * otherwise, commit the checksum to the flash NVM. 754 */ 755 if (hw->nvm.type != e1000_nvm_flash_hw) 756 return 0; 757 758 /* Check for pending operations. */ 759 for (i = 0; i < E1000_FLASH_UPDATES; i++) { 760 usleep_range(1000, 2000); 761 if (!(er32(EECD) & E1000_EECD_FLUPD)) 762 break; 763 } 764 765 if (i == E1000_FLASH_UPDATES) 766 return -E1000_ERR_NVM; 767 768 /* Reset the firmware if using STM opcode. */ 769 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { 770 /* The enabling of and the actual reset must be done 771 * in two write cycles. 772 */ 773 ew32(HICR, E1000_HICR_FW_RESET_ENABLE); 774 e1e_flush(); 775 ew32(HICR, E1000_HICR_FW_RESET); 776 } 777 778 /* Commit the write to flash */ 779 eecd = er32(EECD) | E1000_EECD_FLUPD; 780 ew32(EECD, eecd); 781 782 for (i = 0; i < E1000_FLASH_UPDATES; i++) { 783 usleep_range(1000, 2000); 784 if (!(er32(EECD) & E1000_EECD_FLUPD)) 785 break; 786 } 787 788 if (i == E1000_FLASH_UPDATES) 789 return -E1000_ERR_NVM; 790 791 return 0; 792} 793 794/** 795 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum 796 * @hw: pointer to the HW structure 797 * 798 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 799 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 800 **/ 801static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) 802{ 803 if (hw->nvm.type == e1000_nvm_flash_hw) 804 e1000_fix_nvm_checksum_82571(hw); 805 806 return e1000e_validate_nvm_checksum_generic(hw); 807} 808 809/** 810 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon 811 * @hw: pointer to the HW structure 812 * @offset: offset within the EEPROM to be written to 813 * @words: number of words to write 814 * @data: 16 bit word(s) to be written to the EEPROM 815 * 816 * After checking for invalid values, poll the EEPROM to ensure the previous 817 * command has completed before trying to write the next word. After write 818 * poll for completion. 819 * 820 * If e1000e_update_nvm_checksum is not called after this function, the 821 * EEPROM will most likely contain an invalid checksum. 822 **/ 823static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, 824 u16 words, u16 *data) 825{ 826 struct e1000_nvm_info *nvm = &hw->nvm; 827 u32 i, eewr = 0; 828 s32 ret_val = 0; 829 830 /* A check for invalid values: offset too large, too many words, 831 * and not enough words. 832 */ 833 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 834 (words == 0)) { 835 e_dbg("nvm parameter(s) out of bounds\n"); 836 return -E1000_ERR_NVM; 837 } 838 839 for (i = 0; i < words; i++) { 840 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | 841 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | 842 E1000_NVM_RW_REG_START); 843 844 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); 845 if (ret_val) 846 break; 847 848 ew32(EEWR, eewr); 849 850 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); 851 if (ret_val) 852 break; 853 } 854 855 return ret_val; 856} 857 858/** 859 * e1000_get_cfg_done_82571 - Poll for configuration done 860 * @hw: pointer to the HW structure 861 * 862 * Reads the management control register for the config done bit to be set. 863 **/ 864static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) 865{ 866 s32 timeout = PHY_CFG_TIMEOUT; 867 868 while (timeout) { 869 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) 870 break; 871 usleep_range(1000, 2000); 872 timeout--; 873 } 874 if (!timeout) { 875 e_dbg("MNG configuration cycle has not completed.\n"); 876 return -E1000_ERR_RESET; 877 } 878 879 return 0; 880} 881 882/** 883 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state 884 * @hw: pointer to the HW structure 885 * @active: true to enable LPLU, false to disable 886 * 887 * Sets the LPLU D0 state according to the active flag. When activating LPLU 888 * this function also disables smart speed and vice versa. LPLU will not be 889 * activated unless the device autonegotiation advertisement meets standards 890 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function 891 * pointer entry point only called by PHY setup routines. 892 **/ 893static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) 894{ 895 struct e1000_phy_info *phy = &hw->phy; 896 s32 ret_val; 897 u16 data; 898 899 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 900 if (ret_val) 901 return ret_val; 902 903 if (active) { 904 data |= IGP02E1000_PM_D0_LPLU; 905 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 906 if (ret_val) 907 return ret_val; 908 909 /* When LPLU is enabled, we should disable SmartSpeed */ 910 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 911 if (ret_val) 912 return ret_val; 913 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 914 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 915 if (ret_val) 916 return ret_val; 917 } else { 918 data &= ~IGP02E1000_PM_D0_LPLU; 919 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 920 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 921 * during Dx states where the power conservation is most 922 * important. During driver activity we should enable 923 * SmartSpeed, so performance is maintained. 924 */ 925 if (phy->smart_speed == e1000_smart_speed_on) { 926 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 927 &data); 928 if (ret_val) 929 return ret_val; 930 931 data |= IGP01E1000_PSCFR_SMART_SPEED; 932 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 933 data); 934 if (ret_val) 935 return ret_val; 936 } else if (phy->smart_speed == e1000_smart_speed_off) { 937 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 938 &data); 939 if (ret_val) 940 return ret_val; 941 942 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 943 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 944 data); 945 if (ret_val) 946 return ret_val; 947 } 948 } 949 950 return 0; 951} 952 953/** 954 * e1000_reset_hw_82571 - Reset hardware 955 * @hw: pointer to the HW structure 956 * 957 * This resets the hardware into a known state. 958 **/ 959static s32 e1000_reset_hw_82571(struct e1000_hw *hw) 960{ 961 u32 ctrl, ctrl_ext, eecd, tctl; 962 s32 ret_val; 963 964 /* Prevent the PCI-E bus from sticking if there is no TLP connection 965 * on the last TLP read/write transaction when MAC is reset. 966 */ 967 ret_val = e1000e_disable_pcie_master(hw); 968 if (ret_val) 969 e_dbg("PCI-E Master disable polling has failed.\n"); 970 971 e_dbg("Masking off all interrupts\n"); 972 ew32(IMC, 0xffffffff); 973 974 ew32(RCTL, 0); 975 tctl = er32(TCTL); 976 tctl &= ~E1000_TCTL_EN; 977 ew32(TCTL, tctl); 978 e1e_flush(); 979 980 usleep_range(10000, 20000); 981 982 /* Must acquire the MDIO ownership before MAC reset. 983 * Ownership defaults to firmware after a reset. 984 */ 985 switch (hw->mac.type) { 986 case e1000_82573: 987 ret_val = e1000_get_hw_semaphore_82573(hw); 988 break; 989 case e1000_82574: 990 case e1000_82583: 991 ret_val = e1000_get_hw_semaphore_82574(hw); 992 break; 993 default: 994 break; 995 } 996 997 ctrl = er32(CTRL); 998 999 e_dbg("Issuing a global reset to MAC\n"); 1000 ew32(CTRL, ctrl | E1000_CTRL_RST); 1001 1002 /* Must release MDIO ownership and mutex after MAC reset. */ 1003 switch (hw->mac.type) { 1004 case e1000_82573: 1005 /* Release mutex only if the hw semaphore is acquired */ 1006 if (!ret_val) 1007 e1000_put_hw_semaphore_82573(hw); 1008 break; 1009 case e1000_82574: 1010 case e1000_82583: 1011 /* Release mutex only if the hw semaphore is acquired */ 1012 if (!ret_val) 1013 e1000_put_hw_semaphore_82574(hw); 1014 break; 1015 default: 1016 break; 1017 } 1018 1019 if (hw->nvm.type == e1000_nvm_flash_hw) { 1020 usleep_range(10, 20); 1021 ctrl_ext = er32(CTRL_EXT); 1022 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 1023 ew32(CTRL_EXT, ctrl_ext); 1024 e1e_flush(); 1025 } 1026 1027 ret_val = e1000e_get_auto_rd_done(hw); 1028 if (ret_val) 1029 /* We don't want to continue accessing MAC registers. */ 1030 return ret_val; 1031 1032 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. 1033 * Need to wait for Phy configuration completion before accessing 1034 * NVM and Phy. 1035 */ 1036 1037 switch (hw->mac.type) { 1038 case e1000_82571: 1039 case e1000_82572: 1040 /* REQ and GNT bits need to be cleared when using AUTO_RD 1041 * to access the EEPROM. 1042 */ 1043 eecd = er32(EECD); 1044 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); 1045 ew32(EECD, eecd); 1046 break; 1047 case e1000_82573: 1048 case e1000_82574: 1049 case e1000_82583: 1050 msleep(25); 1051 break; 1052 default: 1053 break; 1054 } 1055 1056 /* Clear any pending interrupt events. */ 1057 ew32(IMC, 0xffffffff); 1058 er32(ICR); 1059 1060 if (hw->mac.type == e1000_82571) { 1061 /* Install any alternate MAC address into RAR0 */ 1062 ret_val = e1000_check_alt_mac_addr_generic(hw); 1063 if (ret_val) 1064 return ret_val; 1065 1066 e1000e_set_laa_state_82571(hw, true); 1067 } 1068 1069 /* Reinitialize the 82571 serdes link state machine */ 1070 if (hw->phy.media_type == e1000_media_type_internal_serdes) 1071 hw->mac.serdes_link_state = e1000_serdes_link_down; 1072 1073 return 0; 1074} 1075 1076/** 1077 * e1000_init_hw_82571 - Initialize hardware 1078 * @hw: pointer to the HW structure 1079 * 1080 * This inits the hardware readying it for operation. 1081 **/ 1082static s32 e1000_init_hw_82571(struct e1000_hw *hw) 1083{ 1084 struct e1000_mac_info *mac = &hw->mac; 1085 u32 reg_data; 1086 s32 ret_val; 1087 u16 i, rar_count = mac->rar_entry_count; 1088 1089 e1000_initialize_hw_bits_82571(hw); 1090 1091 /* Initialize identification LED */ 1092 ret_val = mac->ops.id_led_init(hw); 1093 /* An error is not fatal and we should not stop init due to this */ 1094 if (ret_val) 1095 e_dbg("Error initializing identification LED\n"); 1096 1097 /* Disabling VLAN filtering */ 1098 e_dbg("Initializing the IEEE VLAN\n"); 1099 mac->ops.clear_vfta(hw); 1100 1101 /* Setup the receive address. 1102 * If, however, a locally administered address was assigned to the 1103 * 82571, we must reserve a RAR for it to work around an issue where 1104 * resetting one port will reload the MAC on the other port. 1105 */ 1106 if (e1000e_get_laa_state_82571(hw)) 1107 rar_count--; 1108 e1000e_init_rx_addrs(hw, rar_count); 1109 1110 /* Zero out the Multicast HASH table */ 1111 e_dbg("Zeroing the MTA\n"); 1112 for (i = 0; i < mac->mta_reg_count; i++) 1113 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 1114 1115 /* Setup link and flow control */ 1116 ret_val = mac->ops.setup_link(hw); 1117 1118 /* Set the transmit descriptor write-back policy */ 1119 reg_data = er32(TXDCTL(0)); 1120 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | 1121 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); 1122 ew32(TXDCTL(0), reg_data); 1123 1124 /* ...for both queues. */ 1125 switch (mac->type) { 1126 case e1000_82573: 1127 e1000e_enable_tx_pkt_filtering(hw); 1128 /* fall through */ 1129 case e1000_82574: 1130 case e1000_82583: 1131 reg_data = er32(GCR); 1132 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; 1133 ew32(GCR, reg_data); 1134 break; 1135 default: 1136 reg_data = er32(TXDCTL(1)); 1137 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | 1138 E1000_TXDCTL_FULL_TX_DESC_WB | 1139 E1000_TXDCTL_COUNT_DESC); 1140 ew32(TXDCTL(1), reg_data); 1141 break; 1142 } 1143 1144 /* Clear all of the statistics registers (clear on read). It is 1145 * important that we do this after we have tried to establish link 1146 * because the symbol error count will increment wildly if there 1147 * is no link. 1148 */ 1149 e1000_clear_hw_cntrs_82571(hw); 1150 1151 return ret_val; 1152} 1153 1154/** 1155 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits 1156 * @hw: pointer to the HW structure 1157 * 1158 * Initializes required hardware-dependent bits needed for normal operation. 1159 **/ 1160static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) 1161{ 1162 u32 reg; 1163 1164 /* Transmit Descriptor Control 0 */ 1165 reg = er32(TXDCTL(0)); 1166 reg |= (1 << 22); 1167 ew32(TXDCTL(0), reg); 1168 1169 /* Transmit Descriptor Control 1 */ 1170 reg = er32(TXDCTL(1)); 1171 reg |= (1 << 22); 1172 ew32(TXDCTL(1), reg); 1173 1174 /* Transmit Arbitration Control 0 */ 1175 reg = er32(TARC(0)); 1176 reg &= ~(0xF << 27); /* 30:27 */ 1177 switch (hw->mac.type) { 1178 case e1000_82571: 1179 case e1000_82572: 1180 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); 1181 break; 1182 case e1000_82574: 1183 case e1000_82583: 1184 reg |= (1 << 26); 1185 break; 1186 default: 1187 break; 1188 } 1189 ew32(TARC(0), reg); 1190 1191 /* Transmit Arbitration Control 1 */ 1192 reg = er32(TARC(1)); 1193 switch (hw->mac.type) { 1194 case e1000_82571: 1195 case e1000_82572: 1196 reg &= ~((1 << 29) | (1 << 30)); 1197 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); 1198 if (er32(TCTL) & E1000_TCTL_MULR) 1199 reg &= ~(1 << 28); 1200 else 1201 reg |= (1 << 28); 1202 ew32(TARC(1), reg); 1203 break; 1204 default: 1205 break; 1206 } 1207 1208 /* Device Control */ 1209 switch (hw->mac.type) { 1210 case e1000_82573: 1211 case e1000_82574: 1212 case e1000_82583: 1213 reg = er32(CTRL); 1214 reg &= ~(1 << 29); 1215 ew32(CTRL, reg); 1216 break; 1217 default: 1218 break; 1219 } 1220 1221 /* Extended Device Control */ 1222 switch (hw->mac.type) { 1223 case e1000_82573: 1224 case e1000_82574: 1225 case e1000_82583: 1226 reg = er32(CTRL_EXT); 1227 reg &= ~(1 << 23); 1228 reg |= (1 << 22); 1229 ew32(CTRL_EXT, reg); 1230 break; 1231 default: 1232 break; 1233 } 1234 1235 if (hw->mac.type == e1000_82571) { 1236 reg = er32(PBA_ECC); 1237 reg |= E1000_PBA_ECC_CORR_EN; 1238 ew32(PBA_ECC, reg); 1239 } 1240 1241 /* Workaround for hardware errata. 1242 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 1243 */ 1244 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { 1245 reg = er32(CTRL_EXT); 1246 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; 1247 ew32(CTRL_EXT, reg); 1248 } 1249 1250 /* Disable IPv6 extension header parsing because some malformed 1251 * IPv6 headers can hang the Rx. 1252 */ 1253 if (hw->mac.type <= e1000_82573) { 1254 reg = er32(RFCTL); 1255 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 1256 ew32(RFCTL, reg); 1257 } 1258 1259 /* PCI-Ex Control Registers */ 1260 switch (hw->mac.type) { 1261 case e1000_82574: 1262 case e1000_82583: 1263 reg = er32(GCR); 1264 reg |= (1 << 22); 1265 ew32(GCR, reg); 1266 1267 /* Workaround for hardware errata. 1268 * apply workaround for hardware errata documented in errata 1269 * docs Fixes issue where some error prone or unreliable PCIe 1270 * completions are occurring, particularly with ASPM enabled. 1271 * Without fix, issue can cause Tx timeouts. 1272 */ 1273 reg = er32(GCR2); 1274 reg |= 1; 1275 ew32(GCR2, reg); 1276 break; 1277 default: 1278 break; 1279 } 1280} 1281 1282/** 1283 * e1000_clear_vfta_82571 - Clear VLAN filter table 1284 * @hw: pointer to the HW structure 1285 * 1286 * Clears the register array which contains the VLAN filter table by 1287 * setting all the values to 0. 1288 **/ 1289static void e1000_clear_vfta_82571(struct e1000_hw *hw) 1290{ 1291 u32 offset; 1292 u32 vfta_value = 0; 1293 u32 vfta_offset = 0; 1294 u32 vfta_bit_in_reg = 0; 1295 1296 switch (hw->mac.type) { 1297 case e1000_82573: 1298 case e1000_82574: 1299 case e1000_82583: 1300 if (hw->mng_cookie.vlan_id != 0) { 1301 /* The VFTA is a 4096b bit-field, each identifying 1302 * a single VLAN ID. The following operations 1303 * determine which 32b entry (i.e. offset) into the 1304 * array we want to set the VLAN ID (i.e. bit) of 1305 * the manageability unit. 1306 */ 1307 vfta_offset = (hw->mng_cookie.vlan_id >> 1308 E1000_VFTA_ENTRY_SHIFT) & 1309 E1000_VFTA_ENTRY_MASK; 1310 vfta_bit_in_reg = 1311 1 << (hw->mng_cookie.vlan_id & 1312 E1000_VFTA_ENTRY_BIT_SHIFT_MASK); 1313 } 1314 break; 1315 default: 1316 break; 1317 } 1318 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 1319 /* If the offset we want to clear is the same offset of the 1320 * manageability VLAN ID, then clear all bits except that of 1321 * the manageability unit. 1322 */ 1323 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; 1324 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); 1325 e1e_flush(); 1326 } 1327} 1328 1329/** 1330 * e1000_check_mng_mode_82574 - Check manageability is enabled 1331 * @hw: pointer to the HW structure 1332 * 1333 * Reads the NVM Initialization Control Word 2 and returns true 1334 * (>0) if any manageability is enabled, else false (0). 1335 **/ 1336static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) 1337{ 1338 u16 data; 1339 1340 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); 1341 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; 1342} 1343 1344/** 1345 * e1000_led_on_82574 - Turn LED on 1346 * @hw: pointer to the HW structure 1347 * 1348 * Turn LED on. 1349 **/ 1350static s32 e1000_led_on_82574(struct e1000_hw *hw) 1351{ 1352 u32 ctrl; 1353 u32 i; 1354 1355 ctrl = hw->mac.ledctl_mode2; 1356 if (!(E1000_STATUS_LU & er32(STATUS))) { 1357 /* If no link, then turn LED on by setting the invert bit 1358 * for each LED that's "on" (0x0E) in ledctl_mode2. 1359 */ 1360 for (i = 0; i < 4; i++) 1361 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == 1362 E1000_LEDCTL_MODE_LED_ON) 1363 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); 1364 } 1365 ew32(LEDCTL, ctrl); 1366 1367 return 0; 1368} 1369 1370/** 1371 * e1000_check_phy_82574 - check 82574 phy hung state 1372 * @hw: pointer to the HW structure 1373 * 1374 * Returns whether phy is hung or not 1375 **/ 1376bool e1000_check_phy_82574(struct e1000_hw *hw) 1377{ 1378 u16 status_1kbt = 0; 1379 u16 receive_errors = 0; 1380 s32 ret_val; 1381 1382 /* Read PHY Receive Error counter first, if its is max - all F's then 1383 * read the Base1000T status register If both are max then PHY is hung. 1384 */ 1385 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); 1386 if (ret_val) 1387 return false; 1388 if (receive_errors == E1000_RECEIVE_ERROR_MAX) { 1389 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); 1390 if (ret_val) 1391 return false; 1392 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == 1393 E1000_IDLE_ERROR_COUNT_MASK) 1394 return true; 1395 } 1396 1397 return false; 1398} 1399 1400/** 1401 * e1000_setup_link_82571 - Setup flow control and link settings 1402 * @hw: pointer to the HW structure 1403 * 1404 * Determines which flow control settings to use, then configures flow 1405 * control. Calls the appropriate media-specific link configuration 1406 * function. Assuming the adapter has a valid link partner, a valid link 1407 * should be established. Assumes the hardware has previously been reset 1408 * and the transmitter and receiver are not enabled. 1409 **/ 1410static s32 e1000_setup_link_82571(struct e1000_hw *hw) 1411{ 1412 /* 82573 does not have a word in the NVM to determine 1413 * the default flow control setting, so we explicitly 1414 * set it to full. 1415 */ 1416 switch (hw->mac.type) { 1417 case e1000_82573: 1418 case e1000_82574: 1419 case e1000_82583: 1420 if (hw->fc.requested_mode == e1000_fc_default) 1421 hw->fc.requested_mode = e1000_fc_full; 1422 break; 1423 default: 1424 break; 1425 } 1426 1427 return e1000e_setup_link_generic(hw); 1428} 1429 1430/** 1431 * e1000_setup_copper_link_82571 - Configure copper link settings 1432 * @hw: pointer to the HW structure 1433 * 1434 * Configures the link for auto-neg or forced speed and duplex. Then we check 1435 * for link, once link is established calls to configure collision distance 1436 * and flow control are called. 1437 **/ 1438static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) 1439{ 1440 u32 ctrl; 1441 s32 ret_val; 1442 1443 ctrl = er32(CTRL); 1444 ctrl |= E1000_CTRL_SLU; 1445 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1446 ew32(CTRL, ctrl); 1447 1448 switch (hw->phy.type) { 1449 case e1000_phy_m88: 1450 case e1000_phy_bm: 1451 ret_val = e1000e_copper_link_setup_m88(hw); 1452 break; 1453 case e1000_phy_igp_2: 1454 ret_val = e1000e_copper_link_setup_igp(hw); 1455 break; 1456 default: 1457 return -E1000_ERR_PHY; 1458 } 1459 1460 if (ret_val) 1461 return ret_val; 1462 1463 return e1000e_setup_copper_link(hw); 1464} 1465 1466/** 1467 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes 1468 * @hw: pointer to the HW structure 1469 * 1470 * Configures collision distance and flow control for fiber and serdes links. 1471 * Upon successful setup, poll for link. 1472 **/ 1473static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) 1474{ 1475 switch (hw->mac.type) { 1476 case e1000_82571: 1477 case e1000_82572: 1478 /* If SerDes loopback mode is entered, there is no form 1479 * of reset to take the adapter out of that mode. So we 1480 * have to explicitly take the adapter out of loopback 1481 * mode. This prevents drivers from twiddling their thumbs 1482 * if another tool failed to take it out of loopback mode. 1483 */ 1484 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1485 break; 1486 default: 1487 break; 1488 } 1489 1490 return e1000e_setup_fiber_serdes_link(hw); 1491} 1492 1493/** 1494 * e1000_check_for_serdes_link_82571 - Check for link (Serdes) 1495 * @hw: pointer to the HW structure 1496 * 1497 * Reports the link state as up or down. 1498 * 1499 * If autonegotiation is supported by the link partner, the link state is 1500 * determined by the result of autonegotiation. This is the most likely case. 1501 * If autonegotiation is not supported by the link partner, and the link 1502 * has a valid signal, force the link up. 1503 * 1504 * The link state is represented internally here by 4 states: 1505 * 1506 * 1) down 1507 * 2) autoneg_progress 1508 * 3) autoneg_complete (the link successfully autonegotiated) 1509 * 4) forced_up (the link has been forced up, it did not autonegotiate) 1510 * 1511 **/ 1512static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) 1513{ 1514 struct e1000_mac_info *mac = &hw->mac; 1515 u32 rxcw; 1516 u32 ctrl; 1517 u32 status; 1518 u32 txcw; 1519 u32 i; 1520 s32 ret_val = 0; 1521 1522 ctrl = er32(CTRL); 1523 status = er32(STATUS); 1524 er32(RXCW); 1525 /* SYNCH bit and IV bit are sticky */ 1526 usleep_range(10, 20); 1527 rxcw = er32(RXCW); 1528 1529 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { 1530 /* Receiver is synchronized with no invalid bits. */ 1531 switch (mac->serdes_link_state) { 1532 case e1000_serdes_link_autoneg_complete: 1533 if (!(status & E1000_STATUS_LU)) { 1534 /* We have lost link, retry autoneg before 1535 * reporting link failure 1536 */ 1537 mac->serdes_link_state = 1538 e1000_serdes_link_autoneg_progress; 1539 mac->serdes_has_link = false; 1540 e_dbg("AN_UP -> AN_PROG\n"); 1541 } else { 1542 mac->serdes_has_link = true; 1543 } 1544 break; 1545 1546 case e1000_serdes_link_forced_up: 1547 /* If we are receiving /C/ ordered sets, re-enable 1548 * auto-negotiation in the TXCW register and disable 1549 * forced link in the Device Control register in an 1550 * attempt to auto-negotiate with our link partner. 1551 */ 1552 if (rxcw & E1000_RXCW_C) { 1553 /* Enable autoneg, and unforce link up */ 1554 ew32(TXCW, mac->txcw); 1555 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 1556 mac->serdes_link_state = 1557 e1000_serdes_link_autoneg_progress; 1558 mac->serdes_has_link = false; 1559 e_dbg("FORCED_UP -> AN_PROG\n"); 1560 } else { 1561 mac->serdes_has_link = true; 1562 } 1563 break; 1564 1565 case e1000_serdes_link_autoneg_progress: 1566 if (rxcw & E1000_RXCW_C) { 1567 /* We received /C/ ordered sets, meaning the 1568 * link partner has autonegotiated, and we can 1569 * trust the Link Up (LU) status bit. 1570 */ 1571 if (status & E1000_STATUS_LU) { 1572 mac->serdes_link_state = 1573 e1000_serdes_link_autoneg_complete; 1574 e_dbg("AN_PROG -> AN_UP\n"); 1575 mac->serdes_has_link = true; 1576 } else { 1577 /* Autoneg completed, but failed. */ 1578 mac->serdes_link_state = 1579 e1000_serdes_link_down; 1580 e_dbg("AN_PROG -> DOWN\n"); 1581 } 1582 } else { 1583 /* The link partner did not autoneg. 1584 * Force link up and full duplex, and change 1585 * state to forced. 1586 */ 1587 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 1588 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 1589 ew32(CTRL, ctrl); 1590 1591 /* Configure Flow Control after link up. */ 1592 ret_val = e1000e_config_fc_after_link_up(hw); 1593 if (ret_val) { 1594 e_dbg("Error config flow control\n"); 1595 break; 1596 } 1597 mac->serdes_link_state = 1598 e1000_serdes_link_forced_up; 1599 mac->serdes_has_link = true; 1600 e_dbg("AN_PROG -> FORCED_UP\n"); 1601 } 1602 break; 1603 1604 case e1000_serdes_link_down: 1605 default: 1606 /* The link was down but the receiver has now gained 1607 * valid sync, so lets see if we can bring the link 1608 * up. 1609 */ 1610 ew32(TXCW, mac->txcw); 1611 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 1612 mac->serdes_link_state = 1613 e1000_serdes_link_autoneg_progress; 1614 mac->serdes_has_link = false; 1615 e_dbg("DOWN -> AN_PROG\n"); 1616 break; 1617 } 1618 } else { 1619 if (!(rxcw & E1000_RXCW_SYNCH)) { 1620 mac->serdes_has_link = false; 1621 mac->serdes_link_state = e1000_serdes_link_down; 1622 e_dbg("ANYSTATE -> DOWN\n"); 1623 } else { 1624 /* Check several times, if SYNCH bit and CONFIG 1625 * bit both are consistently 1 then simply ignore 1626 * the IV bit and restart Autoneg 1627 */ 1628 for (i = 0; i < AN_RETRY_COUNT; i++) { 1629 usleep_range(10, 20); 1630 rxcw = er32(RXCW); 1631 if ((rxcw & E1000_RXCW_SYNCH) && 1632 (rxcw & E1000_RXCW_C)) 1633 continue; 1634 1635 if (rxcw & E1000_RXCW_IV) { 1636 mac->serdes_has_link = false; 1637 mac->serdes_link_state = 1638 e1000_serdes_link_down; 1639 e_dbg("ANYSTATE -> DOWN\n"); 1640 break; 1641 } 1642 } 1643 1644 if (i == AN_RETRY_COUNT) { 1645 txcw = er32(TXCW); 1646 txcw |= E1000_TXCW_ANE; 1647 ew32(TXCW, txcw); 1648 mac->serdes_link_state = 1649 e1000_serdes_link_autoneg_progress; 1650 mac->serdes_has_link = false; 1651 e_dbg("ANYSTATE -> AN_PROG\n"); 1652 } 1653 } 1654 } 1655 1656 return ret_val; 1657} 1658 1659/** 1660 * e1000_valid_led_default_82571 - Verify a valid default LED config 1661 * @hw: pointer to the HW structure 1662 * @data: pointer to the NVM (EEPROM) 1663 * 1664 * Read the EEPROM for the current default LED configuration. If the 1665 * LED configuration is not valid, set to a valid LED configuration. 1666 **/ 1667static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) 1668{ 1669 s32 ret_val; 1670 1671 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1672 if (ret_val) { 1673 e_dbg("NVM Read Error\n"); 1674 return ret_val; 1675 } 1676 1677 switch (hw->mac.type) { 1678 case e1000_82573: 1679 case e1000_82574: 1680 case e1000_82583: 1681 if (*data == ID_LED_RESERVED_F746) 1682 *data = ID_LED_DEFAULT_82573; 1683 break; 1684 default: 1685 if (*data == ID_LED_RESERVED_0000 || 1686 *data == ID_LED_RESERVED_FFFF) 1687 *data = ID_LED_DEFAULT; 1688 break; 1689 } 1690 1691 return 0; 1692} 1693 1694/** 1695 * e1000e_get_laa_state_82571 - Get locally administered address state 1696 * @hw: pointer to the HW structure 1697 * 1698 * Retrieve and return the current locally administered address state. 1699 **/ 1700bool e1000e_get_laa_state_82571(struct e1000_hw *hw) 1701{ 1702 if (hw->mac.type != e1000_82571) 1703 return false; 1704 1705 return hw->dev_spec.e82571.laa_is_present; 1706} 1707 1708/** 1709 * e1000e_set_laa_state_82571 - Set locally administered address state 1710 * @hw: pointer to the HW structure 1711 * @state: enable/disable locally administered address 1712 * 1713 * Enable/Disable the current locally administered address state. 1714 **/ 1715void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) 1716{ 1717 if (hw->mac.type != e1000_82571) 1718 return; 1719 1720 hw->dev_spec.e82571.laa_is_present = state; 1721 1722 /* If workaround is activated... */ 1723 if (state) 1724 /* Hold a copy of the LAA in RAR[14] This is done so that 1725 * between the time RAR[0] gets clobbered and the time it 1726 * gets fixed, the actual LAA is in one of the RARs and no 1727 * incoming packets directed to this port are dropped. 1728 * Eventually the LAA will be in RAR[0] and RAR[14]. 1729 */ 1730 hw->mac.ops.rar_set(hw, hw->mac.addr, 1731 hw->mac.rar_entry_count - 1); 1732} 1733 1734/** 1735 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum 1736 * @hw: pointer to the HW structure 1737 * 1738 * Verifies that the EEPROM has completed the update. After updating the 1739 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If 1740 * the checksum fix is not implemented, we need to set the bit and update 1741 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, 1742 * we need to return bad checksum. 1743 **/ 1744static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) 1745{ 1746 struct e1000_nvm_info *nvm = &hw->nvm; 1747 s32 ret_val; 1748 u16 data; 1749 1750 if (nvm->type != e1000_nvm_flash_hw) 1751 return 0; 1752 1753 /* Check bit 4 of word 10h. If it is 0, firmware is done updating 1754 * 10h-12h. Checksum may need to be fixed. 1755 */ 1756 ret_val = e1000_read_nvm(hw, 0x10, 1, &data); 1757 if (ret_val) 1758 return ret_val; 1759 1760 if (!(data & 0x10)) { 1761 /* Read 0x23 and check bit 15. This bit is a 1 1762 * when the checksum has already been fixed. If 1763 * the checksum is still wrong and this bit is a 1764 * 1, we need to return bad checksum. Otherwise, 1765 * we need to set this bit to a 1 and update the 1766 * checksum. 1767 */ 1768 ret_val = e1000_read_nvm(hw, 0x23, 1, &data); 1769 if (ret_val) 1770 return ret_val; 1771 1772 if (!(data & 0x8000)) { 1773 data |= 0x8000; 1774 ret_val = e1000_write_nvm(hw, 0x23, 1, &data); 1775 if (ret_val) 1776 return ret_val; 1777 ret_val = e1000e_update_nvm_checksum(hw); 1778 if (ret_val) 1779 return ret_val; 1780 } 1781 } 1782 1783 return 0; 1784} 1785 1786/** 1787 * e1000_read_mac_addr_82571 - Read device MAC address 1788 * @hw: pointer to the HW structure 1789 **/ 1790static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) 1791{ 1792 if (hw->mac.type == e1000_82571) { 1793 s32 ret_val; 1794 1795 /* If there's an alternate MAC address place it in RAR0 1796 * so that it will override the Si installed default perm 1797 * address. 1798 */ 1799 ret_val = e1000_check_alt_mac_addr_generic(hw); 1800 if (ret_val) 1801 return ret_val; 1802 } 1803 1804 return e1000_read_mac_addr_generic(hw); 1805} 1806 1807/** 1808 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down 1809 * @hw: pointer to the HW structure 1810 * 1811 * In the case of a PHY power down to save power, or to turn off link during a 1812 * driver unload, or wake on lan is not enabled, remove the link. 1813 **/ 1814static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) 1815{ 1816 struct e1000_phy_info *phy = &hw->phy; 1817 struct e1000_mac_info *mac = &hw->mac; 1818 1819 if (!phy->ops.check_reset_block) 1820 return; 1821 1822 /* If the management interface is not enabled, then power down */ 1823 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) 1824 e1000_power_down_phy_copper(hw); 1825} 1826 1827/** 1828 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters 1829 * @hw: pointer to the HW structure 1830 * 1831 * Clears the hardware counters by reading the counter registers. 1832 **/ 1833static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) 1834{ 1835 e1000e_clear_hw_cntrs_base(hw); 1836 1837 er32(PRC64); 1838 er32(PRC127); 1839 er32(PRC255); 1840 er32(PRC511); 1841 er32(PRC1023); 1842 er32(PRC1522); 1843 er32(PTC64); 1844 er32(PTC127); 1845 er32(PTC255); 1846 er32(PTC511); 1847 er32(PTC1023); 1848 er32(PTC1522); 1849 1850 er32(ALGNERRC); 1851 er32(RXERRC); 1852 er32(TNCRS); 1853 er32(CEXTERR); 1854 er32(TSCTC); 1855 er32(TSCTFC); 1856 1857 er32(MGTPRC); 1858 er32(MGTPDC); 1859 er32(MGTPTC); 1860 1861 er32(IAC); 1862 er32(ICRXOC); 1863 1864 er32(ICRXPTC); 1865 er32(ICRXATC); 1866 er32(ICTXPTC); 1867 er32(ICTXATC); 1868 er32(ICTXQEC); 1869 er32(ICTXQMTC); 1870 er32(ICRXDMTC); 1871} 1872 1873static const struct e1000_mac_operations e82571_mac_ops = { 1874 /* .check_mng_mode: mac type dependent */ 1875 /* .check_for_link: media type dependent */ 1876 .id_led_init = e1000e_id_led_init_generic, 1877 .cleanup_led = e1000e_cleanup_led_generic, 1878 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, 1879 .get_bus_info = e1000e_get_bus_info_pcie, 1880 .set_lan_id = e1000_set_lan_id_multi_port_pcie, 1881 /* .get_link_up_info: media type dependent */ 1882 /* .led_on: mac type dependent */ 1883 .led_off = e1000e_led_off_generic, 1884 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 1885 .write_vfta = e1000_write_vfta_generic, 1886 .clear_vfta = e1000_clear_vfta_82571, 1887 .reset_hw = e1000_reset_hw_82571, 1888 .init_hw = e1000_init_hw_82571, 1889 .setup_link = e1000_setup_link_82571, 1890 /* .setup_physical_interface: media type dependent */ 1891 .setup_led = e1000e_setup_led_generic, 1892 .config_collision_dist = e1000e_config_collision_dist_generic, 1893 .read_mac_addr = e1000_read_mac_addr_82571, 1894 .rar_set = e1000e_rar_set_generic, 1895 .rar_get_count = e1000e_rar_get_count_generic, 1896}; 1897 1898static const struct e1000_phy_operations e82_phy_ops_igp = { 1899 .acquire = e1000_get_hw_semaphore_82571, 1900 .check_polarity = e1000_check_polarity_igp, 1901 .check_reset_block = e1000e_check_reset_block_generic, 1902 .commit = NULL, 1903 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, 1904 .get_cfg_done = e1000_get_cfg_done_82571, 1905 .get_cable_length = e1000e_get_cable_length_igp_2, 1906 .get_info = e1000e_get_phy_info_igp, 1907 .read_reg = e1000e_read_phy_reg_igp, 1908 .release = e1000_put_hw_semaphore_82571, 1909 .reset = e1000e_phy_hw_reset_generic, 1910 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1911 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1912 .write_reg = e1000e_write_phy_reg_igp, 1913 .cfg_on_link_up = NULL, 1914}; 1915 1916static const struct e1000_phy_operations e82_phy_ops_m88 = { 1917 .acquire = e1000_get_hw_semaphore_82571, 1918 .check_polarity = e1000_check_polarity_m88, 1919 .check_reset_block = e1000e_check_reset_block_generic, 1920 .commit = e1000e_phy_sw_reset, 1921 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, 1922 .get_cfg_done = e1000e_get_cfg_done_generic, 1923 .get_cable_length = e1000e_get_cable_length_m88, 1924 .get_info = e1000e_get_phy_info_m88, 1925 .read_reg = e1000e_read_phy_reg_m88, 1926 .release = e1000_put_hw_semaphore_82571, 1927 .reset = e1000e_phy_hw_reset_generic, 1928 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1929 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1930 .write_reg = e1000e_write_phy_reg_m88, 1931 .cfg_on_link_up = NULL, 1932}; 1933 1934static const struct e1000_phy_operations e82_phy_ops_bm = { 1935 .acquire = e1000_get_hw_semaphore_82571, 1936 .check_polarity = e1000_check_polarity_m88, 1937 .check_reset_block = e1000e_check_reset_block_generic, 1938 .commit = e1000e_phy_sw_reset, 1939 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, 1940 .get_cfg_done = e1000e_get_cfg_done_generic, 1941 .get_cable_length = e1000e_get_cable_length_m88, 1942 .get_info = e1000e_get_phy_info_m88, 1943 .read_reg = e1000e_read_phy_reg_bm2, 1944 .release = e1000_put_hw_semaphore_82571, 1945 .reset = e1000e_phy_hw_reset_generic, 1946 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, 1947 .set_d3_lplu_state = e1000e_set_d3_lplu_state, 1948 .write_reg = e1000e_write_phy_reg_bm2, 1949 .cfg_on_link_up = NULL, 1950}; 1951 1952static const struct e1000_nvm_operations e82571_nvm_ops = { 1953 .acquire = e1000_acquire_nvm_82571, 1954 .read = e1000e_read_nvm_eerd, 1955 .release = e1000_release_nvm_82571, 1956 .reload = e1000e_reload_nvm_generic, 1957 .update = e1000_update_nvm_checksum_82571, 1958 .valid_led_default = e1000_valid_led_default_82571, 1959 .validate = e1000_validate_nvm_checksum_82571, 1960 .write = e1000_write_nvm_82571, 1961}; 1962 1963const struct e1000_info e1000_82571_info = { 1964 .mac = e1000_82571, 1965 .flags = FLAG_HAS_HW_VLAN_FILTER 1966 | FLAG_HAS_JUMBO_FRAMES 1967 | FLAG_HAS_WOL 1968 | FLAG_APME_IN_CTRL3 1969 | FLAG_HAS_CTRLEXT_ON_LOAD 1970 | FLAG_HAS_SMART_POWER_DOWN 1971 | FLAG_RESET_OVERWRITES_LAA /* errata */ 1972 | FLAG_TARC_SPEED_MODE_BIT /* errata */ 1973 | FLAG_APME_CHECK_PORT_B, 1974 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ 1975 | FLAG2_DMA_BURST, 1976 .pba = 38, 1977 .max_hw_frame_size = DEFAULT_JUMBO, 1978 .get_variants = e1000_get_variants_82571, 1979 .mac_ops = &e82571_mac_ops, 1980 .phy_ops = &e82_phy_ops_igp, 1981 .nvm_ops = &e82571_nvm_ops, 1982}; 1983 1984const struct e1000_info e1000_82572_info = { 1985 .mac = e1000_82572, 1986 .flags = FLAG_HAS_HW_VLAN_FILTER 1987 | FLAG_HAS_JUMBO_FRAMES 1988 | FLAG_HAS_WOL 1989 | FLAG_APME_IN_CTRL3 1990 | FLAG_HAS_CTRLEXT_ON_LOAD 1991 | FLAG_TARC_SPEED_MODE_BIT, /* errata */ 1992 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ 1993 | FLAG2_DMA_BURST, 1994 .pba = 38, 1995 .max_hw_frame_size = DEFAULT_JUMBO, 1996 .get_variants = e1000_get_variants_82571, 1997 .mac_ops = &e82571_mac_ops, 1998 .phy_ops = &e82_phy_ops_igp, 1999 .nvm_ops = &e82571_nvm_ops, 2000}; 2001 2002const struct e1000_info e1000_82573_info = { 2003 .mac = e1000_82573, 2004 .flags = FLAG_HAS_HW_VLAN_FILTER 2005 | FLAG_HAS_WOL 2006 | FLAG_APME_IN_CTRL3 2007 | FLAG_HAS_SMART_POWER_DOWN 2008 | FLAG_HAS_AMT 2009 | FLAG_HAS_SWSM_ON_LOAD, 2010 .flags2 = FLAG2_DISABLE_ASPM_L1 2011 | FLAG2_DISABLE_ASPM_L0S, 2012 .pba = 20, 2013 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 2014 .get_variants = e1000_get_variants_82571, 2015 .mac_ops = &e82571_mac_ops, 2016 .phy_ops = &e82_phy_ops_m88, 2017 .nvm_ops = &e82571_nvm_ops, 2018}; 2019 2020const struct e1000_info e1000_82574_info = { 2021 .mac = e1000_82574, 2022 .flags = FLAG_HAS_HW_VLAN_FILTER 2023 | FLAG_HAS_MSIX 2024 | FLAG_HAS_JUMBO_FRAMES 2025 | FLAG_HAS_WOL 2026 | FLAG_HAS_HW_TIMESTAMP 2027 | FLAG_APME_IN_CTRL3 2028 | FLAG_HAS_SMART_POWER_DOWN 2029 | FLAG_HAS_AMT 2030 | FLAG_HAS_CTRLEXT_ON_LOAD, 2031 .flags2 = FLAG2_CHECK_PHY_HANG 2032 | FLAG2_DISABLE_ASPM_L0S 2033 | FLAG2_DISABLE_ASPM_L1 2034 | FLAG2_NO_DISABLE_RX 2035 | FLAG2_DMA_BURST, 2036 .pba = 32, 2037 .max_hw_frame_size = DEFAULT_JUMBO, 2038 .get_variants = e1000_get_variants_82571, 2039 .mac_ops = &e82571_mac_ops, 2040 .phy_ops = &e82_phy_ops_bm, 2041 .nvm_ops = &e82571_nvm_ops, 2042}; 2043 2044const struct e1000_info e1000_82583_info = { 2045 .mac = e1000_82583, 2046 .flags = FLAG_HAS_HW_VLAN_FILTER 2047 | FLAG_HAS_WOL 2048 | FLAG_HAS_HW_TIMESTAMP 2049 | FLAG_APME_IN_CTRL3 2050 | FLAG_HAS_SMART_POWER_DOWN 2051 | FLAG_HAS_AMT 2052 | FLAG_HAS_JUMBO_FRAMES 2053 | FLAG_HAS_CTRLEXT_ON_LOAD, 2054 .flags2 = FLAG2_DISABLE_ASPM_L0S 2055 | FLAG2_DISABLE_ASPM_L1 2056 | FLAG2_NO_DISABLE_RX, 2057 .pba = 32, 2058 .max_hw_frame_size = DEFAULT_JUMBO, 2059 .get_variants = e1000_get_variants_82571, 2060 .mac_ops = &e82571_mac_ops, 2061 .phy_ops = &e82_phy_ops_bm, 2062 .nvm_ops = &e82571_nvm_ops, 2063}; 2064