1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2006 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static const struct pci_device_id e1000_pci_tbl[] = {
50	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87	/* required last entry */
88	{0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                             struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                             struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                             struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                             struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133				    struct net_device *netdev);
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139			       struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142			       struct e1000_rx_ring *rx_ring,
143			       int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145				     struct e1000_rx_ring *rx_ring,
146				     int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148					 struct e1000_rx_ring *rx_ring,
149					 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153				   struct e1000_rx_ring *rx_ring,
154				   int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156					 struct e1000_rx_ring *rx_ring,
157					 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160			   int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167                                       struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171			    netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173				     bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175				 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177				  __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195	"Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                     pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203	.error_detected = e1000_io_error_detected,
204	.slot_reset = e1000_io_slot_reset,
205	.resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209	.name     = e1000_driver_name,
210	.id_table = e1000_pci_tbl,
211	.probe    = e1000_probe,
212	.remove   = e1000_remove,
213#ifdef CONFIG_PM
214	/* Power Management Hooks */
215	.suspend  = e1000_suspend,
216	.resume   = e1000_resume,
217#endif
218	.shutdown = e1000_shutdown,
219	.err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239	struct e1000_adapter *adapter = hw->back;
240	return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251	int ret;
252	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254	pr_info("%s\n", e1000_copyright);
255
256	ret = pci_register_driver(&e1000_driver);
257	if (copybreak != COPYBREAK_DEFAULT) {
258		if (copybreak == 0)
259			pr_info("copybreak disabled\n");
260		else
261			pr_info("copybreak enabled for "
262				   "packets <= %u bytes\n", copybreak);
263	}
264	return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277	pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284	struct net_device *netdev = adapter->netdev;
285	irq_handler_t handler = e1000_intr;
286	int irq_flags = IRQF_SHARED;
287	int err;
288
289	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290	                  netdev);
291	if (err) {
292		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293	}
294
295	return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300	struct net_device *netdev = adapter->netdev;
301
302	free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311	struct e1000_hw *hw = &adapter->hw;
312
313	ew32(IMC, ~0);
314	E1000_WRITE_FLUSH();
315	synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324	struct e1000_hw *hw = &adapter->hw;
325
326	ew32(IMS, IMS_ENABLE_MASK);
327	E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332	struct e1000_hw *hw = &adapter->hw;
333	struct net_device *netdev = adapter->netdev;
334	u16 vid = hw->mng_cookie.vlan_id;
335	u16 old_vid = adapter->mng_vlan_id;
336
337	if (!e1000_vlan_used(adapter))
338		return;
339
340	if (!test_bit(vid, adapter->active_vlans)) {
341		if (hw->mng_cookie.status &
342		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344			adapter->mng_vlan_id = vid;
345		} else {
346			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347		}
348		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349		    (vid != old_vid) &&
350		    !test_bit(old_vid, adapter->active_vlans))
351			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352					       old_vid);
353	} else {
354		adapter->mng_vlan_id = vid;
355	}
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360	struct e1000_hw *hw = &adapter->hw;
361
362	if (adapter->en_mng_pt) {
363		u32 manc = er32(MANC);
364
365		/* disable hardware interception of ARP */
366		manc &= ~(E1000_MANC_ARP_EN);
367
368		ew32(MANC, manc);
369	}
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374	struct e1000_hw *hw = &adapter->hw;
375
376	if (adapter->en_mng_pt) {
377		u32 manc = er32(MANC);
378
379		/* re-enable hardware interception of ARP */
380		manc |= E1000_MANC_ARP_EN;
381
382		ew32(MANC, manc);
383	}
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392	struct net_device *netdev = adapter->netdev;
393	int i;
394
395	e1000_set_rx_mode(netdev);
396
397	e1000_restore_vlan(adapter);
398	e1000_init_manageability(adapter);
399
400	e1000_configure_tx(adapter);
401	e1000_setup_rctl(adapter);
402	e1000_configure_rx(adapter);
403	/* call E1000_DESC_UNUSED which always leaves
404	 * at least 1 descriptor unused to make sure
405	 * next_to_use != next_to_clean
406	 */
407	for (i = 0; i < adapter->num_rx_queues; i++) {
408		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409		adapter->alloc_rx_buf(adapter, ring,
410				      E1000_DESC_UNUSED(ring));
411	}
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416	struct e1000_hw *hw = &adapter->hw;
417
418	/* hardware has been reset, we need to reload some things */
419	e1000_configure(adapter);
420
421	clear_bit(__E1000_DOWN, &adapter->flags);
422
423	napi_enable(&adapter->napi);
424
425	e1000_irq_enable(adapter);
426
427	netif_wake_queue(adapter->netdev);
428
429	/* fire a link change interrupt to start the watchdog */
430	ew32(ICS, E1000_ICS_LSC);
431	return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444	struct e1000_hw *hw = &adapter->hw;
445	u16 mii_reg = 0;
446
447	/* Just clear the power down bit to wake the phy back up */
448	if (hw->media_type == e1000_media_type_copper) {
449		/* according to the manual, the phy will retain its
450		 * settings across a power-down/up cycle
451		 */
452		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453		mii_reg &= ~MII_CR_POWER_DOWN;
454		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455	}
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460	struct e1000_hw *hw = &adapter->hw;
461
462	/* Power down the PHY so no link is implied when interface is down *
463	 * The PHY cannot be powered down if any of the following is true *
464	 * (a) WoL is enabled
465	 * (b) AMT is active
466	 * (c) SoL/IDER session is active
467	 */
468	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469	   hw->media_type == e1000_media_type_copper) {
470		u16 mii_reg = 0;
471
472		switch (hw->mac_type) {
473		case e1000_82540:
474		case e1000_82545:
475		case e1000_82545_rev_3:
476		case e1000_82546:
477		case e1000_ce4100:
478		case e1000_82546_rev_3:
479		case e1000_82541:
480		case e1000_82541_rev_2:
481		case e1000_82547:
482		case e1000_82547_rev_2:
483			if (er32(MANC) & E1000_MANC_SMBUS_EN)
484				goto out;
485			break;
486		default:
487			goto out;
488		}
489		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490		mii_reg |= MII_CR_POWER_DOWN;
491		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492		msleep(1);
493	}
494out:
495	return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500	set_bit(__E1000_DOWN, &adapter->flags);
501
502	cancel_delayed_work_sync(&adapter->watchdog_task);
503
504	/*
505	 * Since the watchdog task can reschedule other tasks, we should cancel
506	 * it first, otherwise we can run into the situation when a work is
507	 * still running after the adapter has been turned down.
508	 */
509
510	cancel_delayed_work_sync(&adapter->phy_info_task);
511	cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513	/* Only kill reset task if adapter is not resetting */
514	if (!test_bit(__E1000_RESETTING, &adapter->flags))
515		cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520	struct e1000_hw *hw = &adapter->hw;
521	struct net_device *netdev = adapter->netdev;
522	u32 rctl, tctl;
523
524	netif_carrier_off(netdev);
525
526	/* disable receives in the hardware */
527	rctl = er32(RCTL);
528	ew32(RCTL, rctl & ~E1000_RCTL_EN);
529	/* flush and sleep below */
530
531	netif_tx_disable(netdev);
532
533	/* disable transmits in the hardware */
534	tctl = er32(TCTL);
535	tctl &= ~E1000_TCTL_EN;
536	ew32(TCTL, tctl);
537	/* flush both disables and wait for them to finish */
538	E1000_WRITE_FLUSH();
539	msleep(10);
540
541	napi_disable(&adapter->napi);
542
543	e1000_irq_disable(adapter);
544
545	/* Setting DOWN must be after irq_disable to prevent
546	 * a screaming interrupt.  Setting DOWN also prevents
547	 * tasks from rescheduling.
548	 */
549	e1000_down_and_stop(adapter);
550
551	adapter->link_speed = 0;
552	adapter->link_duplex = 0;
553
554	e1000_reset(adapter);
555	e1000_clean_all_tx_rings(adapter);
556	e1000_clean_all_rx_rings(adapter);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561	WARN_ON(in_interrupt());
562	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563		msleep(1);
564	e1000_down(adapter);
565	e1000_up(adapter);
566	clear_bit(__E1000_RESETTING, &adapter->flags);
567}
568
569void e1000_reset(struct e1000_adapter *adapter)
570{
571	struct e1000_hw *hw = &adapter->hw;
572	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573	bool legacy_pba_adjust = false;
574	u16 hwm;
575
576	/* Repartition Pba for greater than 9k mtu
577	 * To take effect CTRL.RST is required.
578	 */
579
580	switch (hw->mac_type) {
581	case e1000_82542_rev2_0:
582	case e1000_82542_rev2_1:
583	case e1000_82543:
584	case e1000_82544:
585	case e1000_82540:
586	case e1000_82541:
587	case e1000_82541_rev_2:
588		legacy_pba_adjust = true;
589		pba = E1000_PBA_48K;
590		break;
591	case e1000_82545:
592	case e1000_82545_rev_3:
593	case e1000_82546:
594	case e1000_ce4100:
595	case e1000_82546_rev_3:
596		pba = E1000_PBA_48K;
597		break;
598	case e1000_82547:
599	case e1000_82547_rev_2:
600		legacy_pba_adjust = true;
601		pba = E1000_PBA_30K;
602		break;
603	case e1000_undefined:
604	case e1000_num_macs:
605		break;
606	}
607
608	if (legacy_pba_adjust) {
609		if (hw->max_frame_size > E1000_RXBUFFER_8192)
610			pba -= 8; /* allocate more FIFO for Tx */
611
612		if (hw->mac_type == e1000_82547) {
613			adapter->tx_fifo_head = 0;
614			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615			adapter->tx_fifo_size =
616				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617			atomic_set(&adapter->tx_fifo_stall, 0);
618		}
619	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
620		/* adjust PBA for jumbo frames */
621		ew32(PBA, pba);
622
623		/* To maintain wire speed transmits, the Tx FIFO should be
624		 * large enough to accommodate two full transmit packets,
625		 * rounded up to the next 1KB and expressed in KB.  Likewise,
626		 * the Rx FIFO should be large enough to accommodate at least
627		 * one full receive packet and is similarly rounded up and
628		 * expressed in KB.
629		 */
630		pba = er32(PBA);
631		/* upper 16 bits has Tx packet buffer allocation size in KB */
632		tx_space = pba >> 16;
633		/* lower 16 bits has Rx packet buffer allocation size in KB */
634		pba &= 0xffff;
635		/* the Tx fifo also stores 16 bytes of information about the Tx
636		 * but don't include ethernet FCS because hardware appends it
637		 */
638		min_tx_space = (hw->max_frame_size +
639		                sizeof(struct e1000_tx_desc) -
640		                ETH_FCS_LEN) * 2;
641		min_tx_space = ALIGN(min_tx_space, 1024);
642		min_tx_space >>= 10;
643		/* software strips receive CRC, so leave room for it */
644		min_rx_space = hw->max_frame_size;
645		min_rx_space = ALIGN(min_rx_space, 1024);
646		min_rx_space >>= 10;
647
648		/* If current Tx allocation is less than the min Tx FIFO size,
649		 * and the min Tx FIFO size is less than the current Rx FIFO
650		 * allocation, take space away from current Rx allocation
651		 */
652		if (tx_space < min_tx_space &&
653		    ((min_tx_space - tx_space) < pba)) {
654			pba = pba - (min_tx_space - tx_space);
655
656			/* PCI/PCIx hardware has PBA alignment constraints */
657			switch (hw->mac_type) {
658			case e1000_82545 ... e1000_82546_rev_3:
659				pba &= ~(E1000_PBA_8K - 1);
660				break;
661			default:
662				break;
663			}
664
665			/* if short on Rx space, Rx wins and must trump Tx
666			 * adjustment or use Early Receive if available
667			 */
668			if (pba < min_rx_space)
669				pba = min_rx_space;
670		}
671	}
672
673	ew32(PBA, pba);
674
675	/* flow control settings:
676	 * The high water mark must be low enough to fit one full frame
677	 * (or the size used for early receive) above it in the Rx FIFO.
678	 * Set it to the lower of:
679	 * - 90% of the Rx FIFO size, and
680	 * - the full Rx FIFO size minus the early receive size (for parts
681	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
682	 * - the full Rx FIFO size minus one full frame
683	 */
684	hwm = min(((pba << 10) * 9 / 10),
685		  ((pba << 10) - hw->max_frame_size));
686
687	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
688	hw->fc_low_water = hw->fc_high_water - 8;
689	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690	hw->fc_send_xon = 1;
691	hw->fc = hw->original_fc;
692
693	/* Allow time for pending master requests to run */
694	e1000_reset_hw(hw);
695	if (hw->mac_type >= e1000_82544)
696		ew32(WUC, 0);
697
698	if (e1000_init_hw(hw))
699		e_dev_err("Hardware Error\n");
700	e1000_update_mng_vlan(adapter);
701
702	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703	if (hw->mac_type >= e1000_82544 &&
704	    hw->autoneg == 1 &&
705	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706		u32 ctrl = er32(CTRL);
707		/* clear phy power management bit if we are in gig only mode,
708		 * which if enabled will attempt negotiation to 100Mb, which
709		 * can cause a loss of link at power off or driver unload
710		 */
711		ctrl &= ~E1000_CTRL_SWDPIN3;
712		ew32(CTRL, ctrl);
713	}
714
715	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718	e1000_reset_adaptive(hw);
719	e1000_phy_get_info(hw, &adapter->phy_info);
720
721	e1000_release_manageability(adapter);
722}
723
724/* Dump the eeprom for users having checksum issues */
725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726{
727	struct net_device *netdev = adapter->netdev;
728	struct ethtool_eeprom eeprom;
729	const struct ethtool_ops *ops = netdev->ethtool_ops;
730	u8 *data;
731	int i;
732	u16 csum_old, csum_new = 0;
733
734	eeprom.len = ops->get_eeprom_len(netdev);
735	eeprom.offset = 0;
736
737	data = kmalloc(eeprom.len, GFP_KERNEL);
738	if (!data)
739		return;
740
741	ops->get_eeprom(netdev, &eeprom, data);
742
743	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746		csum_new += data[i] + (data[i + 1] << 8);
747	csum_new = EEPROM_SUM - csum_new;
748
749	pr_err("/*********************/\n");
750	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751	pr_err("Calculated              : 0x%04x\n", csum_new);
752
753	pr_err("Offset    Values\n");
754	pr_err("========  ======\n");
755	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757	pr_err("Include this output when contacting your support provider.\n");
758	pr_err("This is not a software error! Something bad happened to\n");
759	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760	pr_err("result in further problems, possibly loss of data,\n");
761	pr_err("corruption or system hangs!\n");
762	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763	pr_err("which is invalid and requires you to set the proper MAC\n");
764	pr_err("address manually before continuing to enable this network\n");
765	pr_err("device. Please inspect the EEPROM dump and report the\n");
766	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767	pr_err("/*********************/\n");
768
769	kfree(data);
770}
771
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780	switch (pdev->device) {
781	case E1000_DEV_ID_82540EM:
782	case E1000_DEV_ID_82540EM_LOM:
783	case E1000_DEV_ID_82540EP:
784	case E1000_DEV_ID_82540EP_LOM:
785	case E1000_DEV_ID_82540EP_LP:
786	case E1000_DEV_ID_82541EI:
787	case E1000_DEV_ID_82541EI_MOBILE:
788	case E1000_DEV_ID_82541ER:
789	case E1000_DEV_ID_82541ER_LOM:
790	case E1000_DEV_ID_82541GI:
791	case E1000_DEV_ID_82541GI_LF:
792	case E1000_DEV_ID_82541GI_MOBILE:
793	case E1000_DEV_ID_82544EI_COPPER:
794	case E1000_DEV_ID_82544EI_FIBER:
795	case E1000_DEV_ID_82544GC_COPPER:
796	case E1000_DEV_ID_82544GC_LOM:
797	case E1000_DEV_ID_82545EM_COPPER:
798	case E1000_DEV_ID_82545EM_FIBER:
799	case E1000_DEV_ID_82546EB_COPPER:
800	case E1000_DEV_ID_82546EB_FIBER:
801	case E1000_DEV_ID_82546EB_QUAD_COPPER:
802		return true;
803	default:
804		return false;
805	}
806}
807
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809	netdev_features_t features)
810{
811	/* Since there is no support for separate Rx/Tx vlan accel
812	 * enable/disable make sure Tx flag is always in same state as Rx.
813	 */
814	if (features & NETIF_F_HW_VLAN_CTAG_RX)
815		features |= NETIF_F_HW_VLAN_CTAG_TX;
816	else
817		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819	return features;
820}
821
822static int e1000_set_features(struct net_device *netdev,
823	netdev_features_t features)
824{
825	struct e1000_adapter *adapter = netdev_priv(netdev);
826	netdev_features_t changed = features ^ netdev->features;
827
828	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829		e1000_vlan_mode(netdev, features);
830
831	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832		return 0;
833
834	netdev->features = features;
835	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837	if (netif_running(netdev))
838		e1000_reinit_locked(adapter);
839	else
840		e1000_reset(adapter);
841
842	return 0;
843}
844
845static const struct net_device_ops e1000_netdev_ops = {
846	.ndo_open		= e1000_open,
847	.ndo_stop		= e1000_close,
848	.ndo_start_xmit		= e1000_xmit_frame,
849	.ndo_get_stats		= e1000_get_stats,
850	.ndo_set_rx_mode	= e1000_set_rx_mode,
851	.ndo_set_mac_address	= e1000_set_mac,
852	.ndo_tx_timeout		= e1000_tx_timeout,
853	.ndo_change_mtu		= e1000_change_mtu,
854	.ndo_do_ioctl		= e1000_ioctl,
855	.ndo_validate_addr	= eth_validate_addr,
856	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
857	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859	.ndo_poll_controller	= e1000_netpoll,
860#endif
861	.ndo_fix_features	= e1000_fix_features,
862	.ndo_set_features	= e1000_set_features,
863};
864
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877				struct e1000_hw *hw)
878{
879	struct pci_dev *pdev = adapter->pdev;
880
881	/* PCI config space info */
882	hw->vendor_id = pdev->vendor;
883	hw->device_id = pdev->device;
884	hw->subsystem_vendor_id = pdev->subsystem_vendor;
885	hw->subsystem_id = pdev->subsystem_device;
886	hw->revision_id = pdev->revision;
887
888	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890	hw->max_frame_size = adapter->netdev->mtu +
891			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894	/* identify the MAC */
895	if (e1000_set_mac_type(hw)) {
896		e_err(probe, "Unknown MAC Type\n");
897		return -EIO;
898	}
899
900	switch (hw->mac_type) {
901	default:
902		break;
903	case e1000_82541:
904	case e1000_82547:
905	case e1000_82541_rev_2:
906	case e1000_82547_rev_2:
907		hw->phy_init_script = 1;
908		break;
909	}
910
911	e1000_set_media_type(hw);
912	e1000_get_bus_info(hw);
913
914	hw->wait_autoneg_complete = false;
915	hw->tbi_compatibility_en = true;
916	hw->adaptive_ifs = true;
917
918	/* Copper options */
919
920	if (hw->media_type == e1000_media_type_copper) {
921		hw->mdix = AUTO_ALL_MODES;
922		hw->disable_polarity_correction = false;
923		hw->master_slave = E1000_MASTER_SLAVE;
924	}
925
926	return 0;
927}
928
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941{
942	struct net_device *netdev;
943	struct e1000_adapter *adapter;
944	struct e1000_hw *hw;
945
946	static int cards_found = 0;
947	static int global_quad_port_a = 0; /* global ksp3 port a indication */
948	int i, err, pci_using_dac;
949	u16 eeprom_data = 0;
950	u16 tmp = 0;
951	u16 eeprom_apme_mask = E1000_EEPROM_APME;
952	int bars, need_ioport;
953
954	/* do not allocate ioport bars when not needed */
955	need_ioport = e1000_is_need_ioport(pdev);
956	if (need_ioport) {
957		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958		err = pci_enable_device(pdev);
959	} else {
960		bars = pci_select_bars(pdev, IORESOURCE_MEM);
961		err = pci_enable_device_mem(pdev);
962	}
963	if (err)
964		return err;
965
966	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967	if (err)
968		goto err_pci_reg;
969
970	pci_set_master(pdev);
971	err = pci_save_state(pdev);
972	if (err)
973		goto err_alloc_etherdev;
974
975	err = -ENOMEM;
976	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977	if (!netdev)
978		goto err_alloc_etherdev;
979
980	SET_NETDEV_DEV(netdev, &pdev->dev);
981
982	pci_set_drvdata(pdev, netdev);
983	adapter = netdev_priv(netdev);
984	adapter->netdev = netdev;
985	adapter->pdev = pdev;
986	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987	adapter->bars = bars;
988	adapter->need_ioport = need_ioport;
989
990	hw = &adapter->hw;
991	hw->back = adapter;
992
993	err = -EIO;
994	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995	if (!hw->hw_addr)
996		goto err_ioremap;
997
998	if (adapter->need_ioport) {
999		for (i = BAR_1; i <= BAR_5; i++) {
1000			if (pci_resource_len(pdev, i) == 0)
1001				continue;
1002			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003				hw->io_base = pci_resource_start(pdev, i);
1004				break;
1005			}
1006		}
1007	}
1008
1009	/* make ready for any if (hw->...) below */
1010	err = e1000_init_hw_struct(adapter, hw);
1011	if (err)
1012		goto err_sw_init;
1013
1014	/* there is a workaround being applied below that limits
1015	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1016	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017	 */
1018	pci_using_dac = 0;
1019	if ((hw->bus_type == e1000_bus_type_pcix) &&
1020	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021		pci_using_dac = 1;
1022	} else {
1023		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024		if (err) {
1025			pr_err("No usable DMA config, aborting\n");
1026			goto err_dma;
1027		}
1028	}
1029
1030	netdev->netdev_ops = &e1000_netdev_ops;
1031	e1000_set_ethtool_ops(netdev);
1032	netdev->watchdog_timeo = 5 * HZ;
1033	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037	adapter->bd_number = cards_found;
1038
1039	/* setup the private structure */
1040
1041	err = e1000_sw_init(adapter);
1042	if (err)
1043		goto err_sw_init;
1044
1045	err = -EIO;
1046	if (hw->mac_type == e1000_ce4100) {
1047		hw->ce4100_gbe_mdio_base_virt =
1048					ioremap(pci_resource_start(pdev, BAR_1),
1049		                                pci_resource_len(pdev, BAR_1));
1050
1051		if (!hw->ce4100_gbe_mdio_base_virt)
1052			goto err_mdio_ioremap;
1053	}
1054
1055	if (hw->mac_type >= e1000_82543) {
1056		netdev->hw_features = NETIF_F_SG |
1057				   NETIF_F_HW_CSUM |
1058				   NETIF_F_HW_VLAN_CTAG_RX;
1059		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060				   NETIF_F_HW_VLAN_CTAG_FILTER;
1061	}
1062
1063	if ((hw->mac_type >= e1000_82544) &&
1064	   (hw->mac_type != e1000_82547))
1065		netdev->hw_features |= NETIF_F_TSO;
1066
1067	netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069	netdev->features |= netdev->hw_features;
1070	netdev->hw_features |= (NETIF_F_RXCSUM |
1071				NETIF_F_RXALL |
1072				NETIF_F_RXFCS);
1073
1074	if (pci_using_dac) {
1075		netdev->features |= NETIF_F_HIGHDMA;
1076		netdev->vlan_features |= NETIF_F_HIGHDMA;
1077	}
1078
1079	netdev->vlan_features |= (NETIF_F_TSO |
1080				  NETIF_F_HW_CSUM |
1081				  NETIF_F_SG);
1082
1083	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086		netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090	/* initialize eeprom parameters */
1091	if (e1000_init_eeprom_params(hw)) {
1092		e_err(probe, "EEPROM initialization failed\n");
1093		goto err_eeprom;
1094	}
1095
1096	/* before reading the EEPROM, reset the controller to
1097	 * put the device in a known good starting state
1098	 */
1099
1100	e1000_reset_hw(hw);
1101
1102	/* make sure the EEPROM is good */
1103	if (e1000_validate_eeprom_checksum(hw) < 0) {
1104		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105		e1000_dump_eeprom(adapter);
1106		/* set MAC address to all zeroes to invalidate and temporary
1107		 * disable this device for the user. This blocks regular
1108		 * traffic while still permitting ethtool ioctls from reaching
1109		 * the hardware as well as allowing the user to run the
1110		 * interface after manually setting a hw addr using
1111		 * `ip set address`
1112		 */
1113		memset(hw->mac_addr, 0, netdev->addr_len);
1114	} else {
1115		/* copy the MAC address out of the EEPROM */
1116		if (e1000_read_mac_addr(hw))
1117			e_err(probe, "EEPROM Read Error\n");
1118	}
1119	/* don't block initialization here due to bad MAC address */
1120	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122	if (!is_valid_ether_addr(netdev->dev_addr))
1123		e_err(probe, "Invalid MAC Address\n");
1124
1125
1126	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128			  e1000_82547_tx_fifo_stall_task);
1129	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132	e1000_check_options(adapter);
1133
1134	/* Initial Wake on LAN setting
1135	 * If APM wake is enabled in the EEPROM,
1136	 * enable the ACPI Magic Packet filter
1137	 */
1138
1139	switch (hw->mac_type) {
1140	case e1000_82542_rev2_0:
1141	case e1000_82542_rev2_1:
1142	case e1000_82543:
1143		break;
1144	case e1000_82544:
1145		e1000_read_eeprom(hw,
1146			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148		break;
1149	case e1000_82546:
1150	case e1000_82546_rev_3:
1151		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1152			e1000_read_eeprom(hw,
1153				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154			break;
1155		}
1156		/* Fall Through */
1157	default:
1158		e1000_read_eeprom(hw,
1159			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160		break;
1161	}
1162	if (eeprom_data & eeprom_apme_mask)
1163		adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165	/* now that we have the eeprom settings, apply the special cases
1166	 * where the eeprom may be wrong or the board simply won't support
1167	 * wake on lan on a particular port
1168	 */
1169	switch (pdev->device) {
1170	case E1000_DEV_ID_82546GB_PCIE:
1171		adapter->eeprom_wol = 0;
1172		break;
1173	case E1000_DEV_ID_82546EB_FIBER:
1174	case E1000_DEV_ID_82546GB_FIBER:
1175		/* Wake events only supported on port A for dual fiber
1176		 * regardless of eeprom setting
1177		 */
1178		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179			adapter->eeprom_wol = 0;
1180		break;
1181	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182		/* if quad port adapter, disable WoL on all but port A */
1183		if (global_quad_port_a != 0)
1184			adapter->eeprom_wol = 0;
1185		else
1186			adapter->quad_port_a = true;
1187		/* Reset for multiple quad port adapters */
1188		if (++global_quad_port_a == 4)
1189			global_quad_port_a = 0;
1190		break;
1191	}
1192
1193	/* initialize the wol settings based on the eeprom settings */
1194	adapter->wol = adapter->eeprom_wol;
1195	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197	/* Auto detect PHY address */
1198	if (hw->mac_type == e1000_ce4100) {
1199		for (i = 0; i < 32; i++) {
1200			hw->phy_addr = i;
1201			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202			if (tmp == 0 || tmp == 0xFF) {
1203				if (i == 31)
1204					goto err_eeprom;
1205				continue;
1206			} else
1207				break;
1208		}
1209	}
1210
1211	/* reset the hardware with the new settings */
1212	e1000_reset(adapter);
1213
1214	strcpy(netdev->name, "eth%d");
1215	err = register_netdev(netdev);
1216	if (err)
1217		goto err_register;
1218
1219	e1000_vlan_filter_on_off(adapter, false);
1220
1221	/* print bus type/speed/width info */
1222	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229	       netdev->dev_addr);
1230
1231	/* carrier off reporting is important to ethtool even BEFORE open */
1232	netif_carrier_off(netdev);
1233
1234	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236	cards_found++;
1237	return 0;
1238
1239err_register:
1240err_eeprom:
1241	e1000_phy_hw_reset(hw);
1242
1243	if (hw->flash_address)
1244		iounmap(hw->flash_address);
1245	kfree(adapter->tx_ring);
1246	kfree(adapter->rx_ring);
1247err_dma:
1248err_sw_init:
1249err_mdio_ioremap:
1250	iounmap(hw->ce4100_gbe_mdio_base_virt);
1251	iounmap(hw->hw_addr);
1252err_ioremap:
1253	free_netdev(netdev);
1254err_alloc_etherdev:
1255	pci_release_selected_regions(pdev, bars);
1256err_pci_reg:
1257	pci_disable_device(pdev);
1258	return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device.  The could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270static void e1000_remove(struct pci_dev *pdev)
1271{
1272	struct net_device *netdev = pci_get_drvdata(pdev);
1273	struct e1000_adapter *adapter = netdev_priv(netdev);
1274	struct e1000_hw *hw = &adapter->hw;
1275
1276	e1000_down_and_stop(adapter);
1277	e1000_release_manageability(adapter);
1278
1279	unregister_netdev(netdev);
1280
1281	e1000_phy_hw_reset(hw);
1282
1283	kfree(adapter->tx_ring);
1284	kfree(adapter->rx_ring);
1285
1286	if (hw->mac_type == e1000_ce4100)
1287		iounmap(hw->ce4100_gbe_mdio_base_virt);
1288	iounmap(hw->hw_addr);
1289	if (hw->flash_address)
1290		iounmap(hw->flash_address);
1291	pci_release_selected_regions(pdev, adapter->bars);
1292
1293	free_netdev(netdev);
1294
1295	pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305static int e1000_sw_init(struct e1000_adapter *adapter)
1306{
1307	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309	adapter->num_tx_queues = 1;
1310	adapter->num_rx_queues = 1;
1311
1312	if (e1000_alloc_queues(adapter)) {
1313		e_err(probe, "Unable to allocate memory for queues\n");
1314		return -ENOMEM;
1315	}
1316
1317	/* Explicitly disable IRQ since the NIC can be in any state. */
1318	e1000_irq_disable(adapter);
1319
1320	spin_lock_init(&adapter->stats_lock);
1321
1322	set_bit(__E1000_DOWN, &adapter->flags);
1323
1324	return 0;
1325}
1326
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335{
1336	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338	if (!adapter->tx_ring)
1339		return -ENOMEM;
1340
1341	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343	if (!adapter->rx_ring) {
1344		kfree(adapter->tx_ring);
1345		return -ENOMEM;
1346	}
1347
1348	return E1000_SUCCESS;
1349}
1350
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP).  At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363static int e1000_open(struct net_device *netdev)
1364{
1365	struct e1000_adapter *adapter = netdev_priv(netdev);
1366	struct e1000_hw *hw = &adapter->hw;
1367	int err;
1368
1369	/* disallow open during test */
1370	if (test_bit(__E1000_TESTING, &adapter->flags))
1371		return -EBUSY;
1372
1373	netif_carrier_off(netdev);
1374
1375	/* allocate transmit descriptors */
1376	err = e1000_setup_all_tx_resources(adapter);
1377	if (err)
1378		goto err_setup_tx;
1379
1380	/* allocate receive descriptors */
1381	err = e1000_setup_all_rx_resources(adapter);
1382	if (err)
1383		goto err_setup_rx;
1384
1385	e1000_power_up_phy(adapter);
1386
1387	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388	if ((hw->mng_cookie.status &
1389			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390		e1000_update_mng_vlan(adapter);
1391	}
1392
1393	/* before we allocate an interrupt, we must be ready to handle it.
1394	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395	 * as soon as we call pci_request_irq, so we have to setup our
1396	 * clean_rx handler before we do so.
1397	 */
1398	e1000_configure(adapter);
1399
1400	err = e1000_request_irq(adapter);
1401	if (err)
1402		goto err_req_irq;
1403
1404	/* From here on the code is the same as e1000_up() */
1405	clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407	napi_enable(&adapter->napi);
1408
1409	e1000_irq_enable(adapter);
1410
1411	netif_start_queue(netdev);
1412
1413	/* fire a link status change interrupt to start the watchdog */
1414	ew32(ICS, E1000_ICS_LSC);
1415
1416	return E1000_SUCCESS;
1417
1418err_req_irq:
1419	e1000_power_down_phy(adapter);
1420	e1000_free_all_rx_resources(adapter);
1421err_setup_rx:
1422	e1000_free_all_tx_resources(adapter);
1423err_setup_tx:
1424	e1000_reset(adapter);
1425
1426	return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS.  The hardware is still under the drivers control, but
1437 * needs to be disabled.  A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440static int e1000_close(struct net_device *netdev)
1441{
1442	struct e1000_adapter *adapter = netdev_priv(netdev);
1443	struct e1000_hw *hw = &adapter->hw;
1444	int count = E1000_CHECK_RESET_COUNT;
1445
1446	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447		usleep_range(10000, 20000);
1448
1449	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450	e1000_down(adapter);
1451	e1000_power_down_phy(adapter);
1452	e1000_free_irq(adapter);
1453
1454	e1000_free_all_tx_resources(adapter);
1455	e1000_free_all_rx_resources(adapter);
1456
1457	/* kill manageability vlan ID if supported, but not if a vlan with
1458	 * the same ID is registered on the host OS (let 8021q kill it)
1459	 */
1460	if ((hw->mng_cookie.status &
1461	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464				       adapter->mng_vlan_id);
1465	}
1466
1467	return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477				  unsigned long len)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	unsigned long begin = (unsigned long)start;
1481	unsigned long end = begin + len;
1482
1483	/* First rev 82545 and 82546 need to not allow any memory
1484	 * write location to cross 64k boundary due to errata 23
1485	 */
1486	if (hw->mac_type == e1000_82545 ||
1487	    hw->mac_type == e1000_ce4100 ||
1488	    hw->mac_type == e1000_82546) {
1489		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490	}
1491
1492	return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr:    tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503				    struct e1000_tx_ring *txdr)
1504{
1505	struct pci_dev *pdev = adapter->pdev;
1506	int size;
1507
1508	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509	txdr->buffer_info = vzalloc(size);
1510	if (!txdr->buffer_info)
1511		return -ENOMEM;
1512
1513	/* round up to nearest 4K */
1514
1515	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516	txdr->size = ALIGN(txdr->size, 4096);
1517
1518	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519					GFP_KERNEL);
1520	if (!txdr->desc) {
1521setup_tx_desc_die:
1522		vfree(txdr->buffer_info);
1523		return -ENOMEM;
1524	}
1525
1526	/* Fix for errata 23, can't cross 64kB boundary */
1527	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528		void *olddesc = txdr->desc;
1529		dma_addr_t olddma = txdr->dma;
1530		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531		      txdr->size, txdr->desc);
1532		/* Try again, without freeing the previous */
1533		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534						&txdr->dma, GFP_KERNEL);
1535		/* Failed allocation, critical failure */
1536		if (!txdr->desc) {
1537			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538					  olddma);
1539			goto setup_tx_desc_die;
1540		}
1541
1542		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543			/* give up */
1544			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545					  txdr->dma);
1546			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547					  olddma);
1548			e_err(probe, "Unable to allocate aligned memory "
1549			      "for the transmit descriptor ring\n");
1550			vfree(txdr->buffer_info);
1551			return -ENOMEM;
1552		} else {
1553			/* Free old allocation, new allocation was successful */
1554			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555					  olddma);
1556		}
1557	}
1558	memset(txdr->desc, 0, txdr->size);
1559
1560	txdr->next_to_use = 0;
1561	txdr->next_to_clean = 0;
1562
1563	return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * 				  (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575	int i, err = 0;
1576
1577	for (i = 0; i < adapter->num_tx_queues; i++) {
1578		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579		if (err) {
1580			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581			for (i-- ; i >= 0; i--)
1582				e1000_free_tx_resources(adapter,
1583							&adapter->tx_ring[i]);
1584			break;
1585		}
1586	}
1587
1588	return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599	u64 tdba;
1600	struct e1000_hw *hw = &adapter->hw;
1601	u32 tdlen, tctl, tipg;
1602	u32 ipgr1, ipgr2;
1603
1604	/* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606	switch (adapter->num_tx_queues) {
1607	case 1:
1608	default:
1609		tdba = adapter->tx_ring[0].dma;
1610		tdlen = adapter->tx_ring[0].count *
1611			sizeof(struct e1000_tx_desc);
1612		ew32(TDLEN, tdlen);
1613		ew32(TDBAH, (tdba >> 32));
1614		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615		ew32(TDT, 0);
1616		ew32(TDH, 0);
1617		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618					   E1000_TDH : E1000_82542_TDH);
1619		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620					   E1000_TDT : E1000_82542_TDT);
1621		break;
1622	}
1623
1624	/* Set the default values for the Tx Inter Packet Gap timer */
1625	if ((hw->media_type == e1000_media_type_fiber ||
1626	     hw->media_type == e1000_media_type_internal_serdes))
1627		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628	else
1629		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631	switch (hw->mac_type) {
1632	case e1000_82542_rev2_0:
1633	case e1000_82542_rev2_1:
1634		tipg = DEFAULT_82542_TIPG_IPGT;
1635		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637		break;
1638	default:
1639		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641		break;
1642	}
1643	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645	ew32(TIPG, tipg);
1646
1647	/* Set the Tx Interrupt Delay register */
1648
1649	ew32(TIDV, adapter->tx_int_delay);
1650	if (hw->mac_type >= e1000_82540)
1651		ew32(TADV, adapter->tx_abs_int_delay);
1652
1653	/* Program the Transmit Control Register */
1654
1655	tctl = er32(TCTL);
1656	tctl &= ~E1000_TCTL_CT;
1657	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660	e1000_config_collision_dist(hw);
1661
1662	/* Setup Transmit Descriptor Settings for eop descriptor */
1663	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665	/* only set IDE if we are delaying interrupts using the timers */
1666	if (adapter->tx_int_delay)
1667		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669	if (hw->mac_type < e1000_82543)
1670		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671	else
1672		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674	/* Cache if we're 82544 running in PCI-X because we'll
1675	 * need this to apply a workaround later in the send path.
1676	 */
1677	if (hw->mac_type == e1000_82544 &&
1678	    hw->bus_type == e1000_bus_type_pcix)
1679		adapter->pcix_82544 = true;
1680
1681	ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693				    struct e1000_rx_ring *rxdr)
1694{
1695	struct pci_dev *pdev = adapter->pdev;
1696	int size, desc_len;
1697
1698	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699	rxdr->buffer_info = vzalloc(size);
1700	if (!rxdr->buffer_info)
1701		return -ENOMEM;
1702
1703	desc_len = sizeof(struct e1000_rx_desc);
1704
1705	/* Round up to nearest 4K */
1706
1707	rxdr->size = rxdr->count * desc_len;
1708	rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711					GFP_KERNEL);
1712	if (!rxdr->desc) {
1713setup_rx_desc_die:
1714		vfree(rxdr->buffer_info);
1715		return -ENOMEM;
1716	}
1717
1718	/* Fix for errata 23, can't cross 64kB boundary */
1719	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720		void *olddesc = rxdr->desc;
1721		dma_addr_t olddma = rxdr->dma;
1722		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723		      rxdr->size, rxdr->desc);
1724		/* Try again, without freeing the previous */
1725		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726						&rxdr->dma, GFP_KERNEL);
1727		/* Failed allocation, critical failure */
1728		if (!rxdr->desc) {
1729			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730					  olddma);
1731			goto setup_rx_desc_die;
1732		}
1733
1734		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735			/* give up */
1736			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737					  rxdr->dma);
1738			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739					  olddma);
1740			e_err(probe, "Unable to allocate aligned memory for "
1741			      "the Rx descriptor ring\n");
1742			goto setup_rx_desc_die;
1743		} else {
1744			/* Free old allocation, new allocation was successful */
1745			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746					  olddma);
1747		}
1748	}
1749	memset(rxdr->desc, 0, rxdr->size);
1750
1751	rxdr->next_to_clean = 0;
1752	rxdr->next_to_use = 0;
1753	rxdr->rx_skb_top = NULL;
1754
1755	return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * 				  (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767	int i, err = 0;
1768
1769	for (i = 0; i < adapter->num_rx_queues; i++) {
1770		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771		if (err) {
1772			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773			for (i-- ; i >= 0; i--)
1774				e1000_free_rx_resources(adapter,
1775							&adapter->rx_ring[i]);
1776			break;
1777		}
1778	}
1779
1780	return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789	struct e1000_hw *hw = &adapter->hw;
1790	u32 rctl;
1791
1792	rctl = er32(RCTL);
1793
1794	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797		E1000_RCTL_RDMTS_HALF |
1798		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800	if (hw->tbi_compatibility_on == 1)
1801		rctl |= E1000_RCTL_SBP;
1802	else
1803		rctl &= ~E1000_RCTL_SBP;
1804
1805	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806		rctl &= ~E1000_RCTL_LPE;
1807	else
1808		rctl |= E1000_RCTL_LPE;
1809
1810	/* Setup buffer sizes */
1811	rctl &= ~E1000_RCTL_SZ_4096;
1812	rctl |= E1000_RCTL_BSEX;
1813	switch (adapter->rx_buffer_len) {
1814		case E1000_RXBUFFER_2048:
1815		default:
1816			rctl |= E1000_RCTL_SZ_2048;
1817			rctl &= ~E1000_RCTL_BSEX;
1818			break;
1819		case E1000_RXBUFFER_4096:
1820			rctl |= E1000_RCTL_SZ_4096;
1821			break;
1822		case E1000_RXBUFFER_8192:
1823			rctl |= E1000_RCTL_SZ_8192;
1824			break;
1825		case E1000_RXBUFFER_16384:
1826			rctl |= E1000_RCTL_SZ_16384;
1827			break;
1828	}
1829
1830	/* This is useful for sniffing bad packets. */
1831	if (adapter->netdev->features & NETIF_F_RXALL) {
1832		/* UPE and MPE will be handled by normal PROMISC logic
1833		 * in e1000e_set_rx_mode
1834		 */
1835		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840			  E1000_RCTL_DPF | /* Allow filtered pause */
1841			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843		 * and that breaks VLANs.
1844		 */
1845	}
1846
1847	ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858	u64 rdba;
1859	struct e1000_hw *hw = &adapter->hw;
1860	u32 rdlen, rctl, rxcsum;
1861
1862	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863		rdlen = adapter->rx_ring[0].count *
1864		        sizeof(struct e1000_rx_desc);
1865		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867	} else {
1868		rdlen = adapter->rx_ring[0].count *
1869		        sizeof(struct e1000_rx_desc);
1870		adapter->clean_rx = e1000_clean_rx_irq;
1871		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872	}
1873
1874	/* disable receives while setting up the descriptors */
1875	rctl = er32(RCTL);
1876	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878	/* set the Receive Delay Timer Register */
1879	ew32(RDTR, adapter->rx_int_delay);
1880
1881	if (hw->mac_type >= e1000_82540) {
1882		ew32(RADV, adapter->rx_abs_int_delay);
1883		if (adapter->itr_setting != 0)
1884			ew32(ITR, 1000000000 / (adapter->itr * 256));
1885	}
1886
1887	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1888	 * the Base and Length of the Rx Descriptor Ring
1889	 */
1890	switch (adapter->num_rx_queues) {
1891	case 1:
1892	default:
1893		rdba = adapter->rx_ring[0].dma;
1894		ew32(RDLEN, rdlen);
1895		ew32(RDBAH, (rdba >> 32));
1896		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897		ew32(RDT, 0);
1898		ew32(RDH, 0);
1899		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900					   E1000_RDH : E1000_82542_RDH);
1901		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902					   E1000_RDT : E1000_82542_RDT);
1903		break;
1904	}
1905
1906	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907	if (hw->mac_type >= e1000_82543) {
1908		rxcsum = er32(RXCSUM);
1909		if (adapter->rx_csum)
1910			rxcsum |= E1000_RXCSUM_TUOFL;
1911		else
1912			/* don't need to clear IPPCSE as it defaults to 0 */
1913			rxcsum &= ~E1000_RXCSUM_TUOFL;
1914		ew32(RXCSUM, rxcsum);
1915	}
1916
1917	/* Enable Receives */
1918	ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929				    struct e1000_tx_ring *tx_ring)
1930{
1931	struct pci_dev *pdev = adapter->pdev;
1932
1933	e1000_clean_tx_ring(adapter, tx_ring);
1934
1935	vfree(tx_ring->buffer_info);
1936	tx_ring->buffer_info = NULL;
1937
1938	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939			  tx_ring->dma);
1940
1941	tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952	int i;
1953
1954	for (i = 0; i < adapter->num_tx_queues; i++)
1955		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960				 struct e1000_tx_buffer *buffer_info)
1961{
1962	if (buffer_info->dma) {
1963		if (buffer_info->mapped_as_page)
1964			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965				       buffer_info->length, DMA_TO_DEVICE);
1966		else
1967			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968					 buffer_info->length,
1969					 DMA_TO_DEVICE);
1970		buffer_info->dma = 0;
1971	}
1972	if (buffer_info->skb) {
1973		dev_kfree_skb_any(buffer_info->skb);
1974		buffer_info->skb = NULL;
1975	}
1976	buffer_info->time_stamp = 0;
1977	/* buffer_info must be completely set up in the transmit path */
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986				struct e1000_tx_ring *tx_ring)
1987{
1988	struct e1000_hw *hw = &adapter->hw;
1989	struct e1000_tx_buffer *buffer_info;
1990	unsigned long size;
1991	unsigned int i;
1992
1993	/* Free all the Tx ring sk_buffs */
1994
1995	for (i = 0; i < tx_ring->count; i++) {
1996		buffer_info = &tx_ring->buffer_info[i];
1997		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998	}
1999
2000	netdev_reset_queue(adapter->netdev);
2001	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002	memset(tx_ring->buffer_info, 0, size);
2003
2004	/* Zero out the descriptor ring */
2005
2006	memset(tx_ring->desc, 0, tx_ring->size);
2007
2008	tx_ring->next_to_use = 0;
2009	tx_ring->next_to_clean = 0;
2010	tx_ring->last_tx_tso = false;
2011
2012	writel(0, hw->hw_addr + tx_ring->tdh);
2013	writel(0, hw->hw_addr + tx_ring->tdt);
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021{
2022	int i;
2023
2024	for (i = 0; i < adapter->num_tx_queues; i++)
2025		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036				    struct e1000_rx_ring *rx_ring)
2037{
2038	struct pci_dev *pdev = adapter->pdev;
2039
2040	e1000_clean_rx_ring(adapter, rx_ring);
2041
2042	vfree(rx_ring->buffer_info);
2043	rx_ring->buffer_info = NULL;
2044
2045	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046			  rx_ring->dma);
2047
2048	rx_ring->desc = NULL;
2049}
2050
2051/**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058{
2059	int i;
2060
2061	for (i = 0; i < adapter->num_rx_queues; i++)
2062		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074	unsigned int len = e1000_frag_len(a);
2075	u8 *data = netdev_alloc_frag(len);
2076
2077	if (likely(data))
2078		data += E1000_HEADROOM;
2079	return data;
2080}
2081
2082static void e1000_free_frag(const void *data)
2083{
2084	put_page(virt_to_head_page(data));
2085}
2086
2087/**
2088 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2089 * @adapter: board private structure
2090 * @rx_ring: ring to free buffers from
2091 **/
2092static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093				struct e1000_rx_ring *rx_ring)
2094{
2095	struct e1000_hw *hw = &adapter->hw;
2096	struct e1000_rx_buffer *buffer_info;
2097	struct pci_dev *pdev = adapter->pdev;
2098	unsigned long size;
2099	unsigned int i;
2100
2101	/* Free all the Rx netfrags */
2102	for (i = 0; i < rx_ring->count; i++) {
2103		buffer_info = &rx_ring->buffer_info[i];
2104		if (adapter->clean_rx == e1000_clean_rx_irq) {
2105			if (buffer_info->dma)
2106				dma_unmap_single(&pdev->dev, buffer_info->dma,
2107						 adapter->rx_buffer_len,
2108						 DMA_FROM_DEVICE);
2109			if (buffer_info->rxbuf.data) {
2110				e1000_free_frag(buffer_info->rxbuf.data);
2111				buffer_info->rxbuf.data = NULL;
2112			}
2113		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2114			if (buffer_info->dma)
2115				dma_unmap_page(&pdev->dev, buffer_info->dma,
2116					       adapter->rx_buffer_len,
2117					       DMA_FROM_DEVICE);
2118			if (buffer_info->rxbuf.page) {
2119				put_page(buffer_info->rxbuf.page);
2120				buffer_info->rxbuf.page = NULL;
2121			}
2122		}
2123
2124		buffer_info->dma = 0;
2125	}
2126
2127	/* there also may be some cached data from a chained receive */
2128	napi_free_frags(&adapter->napi);
2129	rx_ring->rx_skb_top = NULL;
2130
2131	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2132	memset(rx_ring->buffer_info, 0, size);
2133
2134	/* Zero out the descriptor ring */
2135	memset(rx_ring->desc, 0, rx_ring->size);
2136
2137	rx_ring->next_to_clean = 0;
2138	rx_ring->next_to_use = 0;
2139
2140	writel(0, hw->hw_addr + rx_ring->rdh);
2141	writel(0, hw->hw_addr + rx_ring->rdt);
2142}
2143
2144/**
2145 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2146 * @adapter: board private structure
2147 **/
2148static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2149{
2150	int i;
2151
2152	for (i = 0; i < adapter->num_rx_queues; i++)
2153		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2154}
2155
2156/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2157 * and memory write and invalidate disabled for certain operations
2158 */
2159static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2160{
2161	struct e1000_hw *hw = &adapter->hw;
2162	struct net_device *netdev = adapter->netdev;
2163	u32 rctl;
2164
2165	e1000_pci_clear_mwi(hw);
2166
2167	rctl = er32(RCTL);
2168	rctl |= E1000_RCTL_RST;
2169	ew32(RCTL, rctl);
2170	E1000_WRITE_FLUSH();
2171	mdelay(5);
2172
2173	if (netif_running(netdev))
2174		e1000_clean_all_rx_rings(adapter);
2175}
2176
2177static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2178{
2179	struct e1000_hw *hw = &adapter->hw;
2180	struct net_device *netdev = adapter->netdev;
2181	u32 rctl;
2182
2183	rctl = er32(RCTL);
2184	rctl &= ~E1000_RCTL_RST;
2185	ew32(RCTL, rctl);
2186	E1000_WRITE_FLUSH();
2187	mdelay(5);
2188
2189	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2190		e1000_pci_set_mwi(hw);
2191
2192	if (netif_running(netdev)) {
2193		/* No need to loop, because 82542 supports only 1 queue */
2194		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2195		e1000_configure_rx(adapter);
2196		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2197	}
2198}
2199
2200/**
2201 * e1000_set_mac - Change the Ethernet Address of the NIC
2202 * @netdev: network interface device structure
2203 * @p: pointer to an address structure
2204 *
2205 * Returns 0 on success, negative on failure
2206 **/
2207static int e1000_set_mac(struct net_device *netdev, void *p)
2208{
2209	struct e1000_adapter *adapter = netdev_priv(netdev);
2210	struct e1000_hw *hw = &adapter->hw;
2211	struct sockaddr *addr = p;
2212
2213	if (!is_valid_ether_addr(addr->sa_data))
2214		return -EADDRNOTAVAIL;
2215
2216	/* 82542 2.0 needs to be in reset to write receive address registers */
2217
2218	if (hw->mac_type == e1000_82542_rev2_0)
2219		e1000_enter_82542_rst(adapter);
2220
2221	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2222	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2223
2224	e1000_rar_set(hw, hw->mac_addr, 0);
2225
2226	if (hw->mac_type == e1000_82542_rev2_0)
2227		e1000_leave_82542_rst(adapter);
2228
2229	return 0;
2230}
2231
2232/**
2233 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2234 * @netdev: network interface device structure
2235 *
2236 * The set_rx_mode entry point is called whenever the unicast or multicast
2237 * address lists or the network interface flags are updated. This routine is
2238 * responsible for configuring the hardware for proper unicast, multicast,
2239 * promiscuous mode, and all-multi behavior.
2240 **/
2241static void e1000_set_rx_mode(struct net_device *netdev)
2242{
2243	struct e1000_adapter *adapter = netdev_priv(netdev);
2244	struct e1000_hw *hw = &adapter->hw;
2245	struct netdev_hw_addr *ha;
2246	bool use_uc = false;
2247	u32 rctl;
2248	u32 hash_value;
2249	int i, rar_entries = E1000_RAR_ENTRIES;
2250	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2251	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2252
2253	if (!mcarray)
2254		return;
2255
2256	/* Check for Promiscuous and All Multicast modes */
2257
2258	rctl = er32(RCTL);
2259
2260	if (netdev->flags & IFF_PROMISC) {
2261		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2262		rctl &= ~E1000_RCTL_VFE;
2263	} else {
2264		if (netdev->flags & IFF_ALLMULTI)
2265			rctl |= E1000_RCTL_MPE;
2266		else
2267			rctl &= ~E1000_RCTL_MPE;
2268		/* Enable VLAN filter if there is a VLAN */
2269		if (e1000_vlan_used(adapter))
2270			rctl |= E1000_RCTL_VFE;
2271	}
2272
2273	if (netdev_uc_count(netdev) > rar_entries - 1) {
2274		rctl |= E1000_RCTL_UPE;
2275	} else if (!(netdev->flags & IFF_PROMISC)) {
2276		rctl &= ~E1000_RCTL_UPE;
2277		use_uc = true;
2278	}
2279
2280	ew32(RCTL, rctl);
2281
2282	/* 82542 2.0 needs to be in reset to write receive address registers */
2283
2284	if (hw->mac_type == e1000_82542_rev2_0)
2285		e1000_enter_82542_rst(adapter);
2286
2287	/* load the first 14 addresses into the exact filters 1-14. Unicast
2288	 * addresses take precedence to avoid disabling unicast filtering
2289	 * when possible.
2290	 *
2291	 * RAR 0 is used for the station MAC address
2292	 * if there are not 14 addresses, go ahead and clear the filters
2293	 */
2294	i = 1;
2295	if (use_uc)
2296		netdev_for_each_uc_addr(ha, netdev) {
2297			if (i == rar_entries)
2298				break;
2299			e1000_rar_set(hw, ha->addr, i++);
2300		}
2301
2302	netdev_for_each_mc_addr(ha, netdev) {
2303		if (i == rar_entries) {
2304			/* load any remaining addresses into the hash table */
2305			u32 hash_reg, hash_bit, mta;
2306			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2307			hash_reg = (hash_value >> 5) & 0x7F;
2308			hash_bit = hash_value & 0x1F;
2309			mta = (1 << hash_bit);
2310			mcarray[hash_reg] |= mta;
2311		} else {
2312			e1000_rar_set(hw, ha->addr, i++);
2313		}
2314	}
2315
2316	for (; i < rar_entries; i++) {
2317		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2318		E1000_WRITE_FLUSH();
2319		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2320		E1000_WRITE_FLUSH();
2321	}
2322
2323	/* write the hash table completely, write from bottom to avoid
2324	 * both stupid write combining chipsets, and flushing each write
2325	 */
2326	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2327		/* If we are on an 82544 has an errata where writing odd
2328		 * offsets overwrites the previous even offset, but writing
2329		 * backwards over the range solves the issue by always
2330		 * writing the odd offset first
2331		 */
2332		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2333	}
2334	E1000_WRITE_FLUSH();
2335
2336	if (hw->mac_type == e1000_82542_rev2_0)
2337		e1000_leave_82542_rst(adapter);
2338
2339	kfree(mcarray);
2340}
2341
2342/**
2343 * e1000_update_phy_info_task - get phy info
2344 * @work: work struct contained inside adapter struct
2345 *
2346 * Need to wait a few seconds after link up to get diagnostic information from
2347 * the phy
2348 */
2349static void e1000_update_phy_info_task(struct work_struct *work)
2350{
2351	struct e1000_adapter *adapter = container_of(work,
2352						     struct e1000_adapter,
2353						     phy_info_task.work);
2354
2355	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2356}
2357
2358/**
2359 * e1000_82547_tx_fifo_stall_task - task to complete work
2360 * @work: work struct contained inside adapter struct
2361 **/
2362static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2363{
2364	struct e1000_adapter *adapter = container_of(work,
2365						     struct e1000_adapter,
2366						     fifo_stall_task.work);
2367	struct e1000_hw *hw = &adapter->hw;
2368	struct net_device *netdev = adapter->netdev;
2369	u32 tctl;
2370
2371	if (atomic_read(&adapter->tx_fifo_stall)) {
2372		if ((er32(TDT) == er32(TDH)) &&
2373		   (er32(TDFT) == er32(TDFH)) &&
2374		   (er32(TDFTS) == er32(TDFHS))) {
2375			tctl = er32(TCTL);
2376			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2377			ew32(TDFT, adapter->tx_head_addr);
2378			ew32(TDFH, adapter->tx_head_addr);
2379			ew32(TDFTS, adapter->tx_head_addr);
2380			ew32(TDFHS, adapter->tx_head_addr);
2381			ew32(TCTL, tctl);
2382			E1000_WRITE_FLUSH();
2383
2384			adapter->tx_fifo_head = 0;
2385			atomic_set(&adapter->tx_fifo_stall, 0);
2386			netif_wake_queue(netdev);
2387		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2388			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2389		}
2390	}
2391}
2392
2393bool e1000_has_link(struct e1000_adapter *adapter)
2394{
2395	struct e1000_hw *hw = &adapter->hw;
2396	bool link_active = false;
2397
2398	/* get_link_status is set on LSC (link status) interrupt or rx
2399	 * sequence error interrupt (except on intel ce4100).
2400	 * get_link_status will stay false until the
2401	 * e1000_check_for_link establishes link for copper adapters
2402	 * ONLY
2403	 */
2404	switch (hw->media_type) {
2405	case e1000_media_type_copper:
2406		if (hw->mac_type == e1000_ce4100)
2407			hw->get_link_status = 1;
2408		if (hw->get_link_status) {
2409			e1000_check_for_link(hw);
2410			link_active = !hw->get_link_status;
2411		} else {
2412			link_active = true;
2413		}
2414		break;
2415	case e1000_media_type_fiber:
2416		e1000_check_for_link(hw);
2417		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2418		break;
2419	case e1000_media_type_internal_serdes:
2420		e1000_check_for_link(hw);
2421		link_active = hw->serdes_has_link;
2422		break;
2423	default:
2424		break;
2425	}
2426
2427	return link_active;
2428}
2429
2430/**
2431 * e1000_watchdog - work function
2432 * @work: work struct contained inside adapter struct
2433 **/
2434static void e1000_watchdog(struct work_struct *work)
2435{
2436	struct e1000_adapter *adapter = container_of(work,
2437						     struct e1000_adapter,
2438						     watchdog_task.work);
2439	struct e1000_hw *hw = &adapter->hw;
2440	struct net_device *netdev = adapter->netdev;
2441	struct e1000_tx_ring *txdr = adapter->tx_ring;
2442	u32 link, tctl;
2443
2444	link = e1000_has_link(adapter);
2445	if ((netif_carrier_ok(netdev)) && link)
2446		goto link_up;
2447
2448	if (link) {
2449		if (!netif_carrier_ok(netdev)) {
2450			u32 ctrl;
2451			bool txb2b = true;
2452			/* update snapshot of PHY registers on LSC */
2453			e1000_get_speed_and_duplex(hw,
2454						   &adapter->link_speed,
2455						   &adapter->link_duplex);
2456
2457			ctrl = er32(CTRL);
2458			pr_info("%s NIC Link is Up %d Mbps %s, "
2459				"Flow Control: %s\n",
2460				netdev->name,
2461				adapter->link_speed,
2462				adapter->link_duplex == FULL_DUPLEX ?
2463				"Full Duplex" : "Half Duplex",
2464				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2465				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2466				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2467				E1000_CTRL_TFCE) ? "TX" : "None")));
2468
2469			/* adjust timeout factor according to speed/duplex */
2470			adapter->tx_timeout_factor = 1;
2471			switch (adapter->link_speed) {
2472			case SPEED_10:
2473				txb2b = false;
2474				adapter->tx_timeout_factor = 16;
2475				break;
2476			case SPEED_100:
2477				txb2b = false;
2478				/* maybe add some timeout factor ? */
2479				break;
2480			}
2481
2482			/* enable transmits in the hardware */
2483			tctl = er32(TCTL);
2484			tctl |= E1000_TCTL_EN;
2485			ew32(TCTL, tctl);
2486
2487			netif_carrier_on(netdev);
2488			if (!test_bit(__E1000_DOWN, &adapter->flags))
2489				schedule_delayed_work(&adapter->phy_info_task,
2490						      2 * HZ);
2491			adapter->smartspeed = 0;
2492		}
2493	} else {
2494		if (netif_carrier_ok(netdev)) {
2495			adapter->link_speed = 0;
2496			adapter->link_duplex = 0;
2497			pr_info("%s NIC Link is Down\n",
2498				netdev->name);
2499			netif_carrier_off(netdev);
2500
2501			if (!test_bit(__E1000_DOWN, &adapter->flags))
2502				schedule_delayed_work(&adapter->phy_info_task,
2503						      2 * HZ);
2504		}
2505
2506		e1000_smartspeed(adapter);
2507	}
2508
2509link_up:
2510	e1000_update_stats(adapter);
2511
2512	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2513	adapter->tpt_old = adapter->stats.tpt;
2514	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2515	adapter->colc_old = adapter->stats.colc;
2516
2517	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2518	adapter->gorcl_old = adapter->stats.gorcl;
2519	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2520	adapter->gotcl_old = adapter->stats.gotcl;
2521
2522	e1000_update_adaptive(hw);
2523
2524	if (!netif_carrier_ok(netdev)) {
2525		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2526			/* We've lost link, so the controller stops DMA,
2527			 * but we've got queued Tx work that's never going
2528			 * to get done, so reset controller to flush Tx.
2529			 * (Do the reset outside of interrupt context).
2530			 */
2531			adapter->tx_timeout_count++;
2532			schedule_work(&adapter->reset_task);
2533			/* exit immediately since reset is imminent */
2534			return;
2535		}
2536	}
2537
2538	/* Simple mode for Interrupt Throttle Rate (ITR) */
2539	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2540		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2541		 * Total asymmetrical Tx or Rx gets ITR=8000;
2542		 * everyone else is between 2000-8000.
2543		 */
2544		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2545		u32 dif = (adapter->gotcl > adapter->gorcl ?
2546			    adapter->gotcl - adapter->gorcl :
2547			    adapter->gorcl - adapter->gotcl) / 10000;
2548		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2549
2550		ew32(ITR, 1000000000 / (itr * 256));
2551	}
2552
2553	/* Cause software interrupt to ensure rx ring is cleaned */
2554	ew32(ICS, E1000_ICS_RXDMT0);
2555
2556	/* Force detection of hung controller every watchdog period */
2557	adapter->detect_tx_hung = true;
2558
2559	/* Reschedule the task */
2560	if (!test_bit(__E1000_DOWN, &adapter->flags))
2561		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2562}
2563
2564enum latency_range {
2565	lowest_latency = 0,
2566	low_latency = 1,
2567	bulk_latency = 2,
2568	latency_invalid = 255
2569};
2570
2571/**
2572 * e1000_update_itr - update the dynamic ITR value based on statistics
2573 * @adapter: pointer to adapter
2574 * @itr_setting: current adapter->itr
2575 * @packets: the number of packets during this measurement interval
2576 * @bytes: the number of bytes during this measurement interval
2577 *
2578 *      Stores a new ITR value based on packets and byte
2579 *      counts during the last interrupt.  The advantage of per interrupt
2580 *      computation is faster updates and more accurate ITR for the current
2581 *      traffic pattern.  Constants in this function were computed
2582 *      based on theoretical maximum wire speed and thresholds were set based
2583 *      on testing data as well as attempting to minimize response time
2584 *      while increasing bulk throughput.
2585 *      this functionality is controlled by the InterruptThrottleRate module
2586 *      parameter (see e1000_param.c)
2587 **/
2588static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2589				     u16 itr_setting, int packets, int bytes)
2590{
2591	unsigned int retval = itr_setting;
2592	struct e1000_hw *hw = &adapter->hw;
2593
2594	if (unlikely(hw->mac_type < e1000_82540))
2595		goto update_itr_done;
2596
2597	if (packets == 0)
2598		goto update_itr_done;
2599
2600	switch (itr_setting) {
2601	case lowest_latency:
2602		/* jumbo frames get bulk treatment*/
2603		if (bytes/packets > 8000)
2604			retval = bulk_latency;
2605		else if ((packets < 5) && (bytes > 512))
2606			retval = low_latency;
2607		break;
2608	case low_latency:  /* 50 usec aka 20000 ints/s */
2609		if (bytes > 10000) {
2610			/* jumbo frames need bulk latency setting */
2611			if (bytes/packets > 8000)
2612				retval = bulk_latency;
2613			else if ((packets < 10) || ((bytes/packets) > 1200))
2614				retval = bulk_latency;
2615			else if ((packets > 35))
2616				retval = lowest_latency;
2617		} else if (bytes/packets > 2000)
2618			retval = bulk_latency;
2619		else if (packets <= 2 && bytes < 512)
2620			retval = lowest_latency;
2621		break;
2622	case bulk_latency: /* 250 usec aka 4000 ints/s */
2623		if (bytes > 25000) {
2624			if (packets > 35)
2625				retval = low_latency;
2626		} else if (bytes < 6000) {
2627			retval = low_latency;
2628		}
2629		break;
2630	}
2631
2632update_itr_done:
2633	return retval;
2634}
2635
2636static void e1000_set_itr(struct e1000_adapter *adapter)
2637{
2638	struct e1000_hw *hw = &adapter->hw;
2639	u16 current_itr;
2640	u32 new_itr = adapter->itr;
2641
2642	if (unlikely(hw->mac_type < e1000_82540))
2643		return;
2644
2645	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2646	if (unlikely(adapter->link_speed != SPEED_1000)) {
2647		current_itr = 0;
2648		new_itr = 4000;
2649		goto set_itr_now;
2650	}
2651
2652	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2653					   adapter->total_tx_packets,
2654					   adapter->total_tx_bytes);
2655	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2656	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2657		adapter->tx_itr = low_latency;
2658
2659	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2660					   adapter->total_rx_packets,
2661					   adapter->total_rx_bytes);
2662	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2663	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2664		adapter->rx_itr = low_latency;
2665
2666	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2667
2668	switch (current_itr) {
2669	/* counts and packets in update_itr are dependent on these numbers */
2670	case lowest_latency:
2671		new_itr = 70000;
2672		break;
2673	case low_latency:
2674		new_itr = 20000; /* aka hwitr = ~200 */
2675		break;
2676	case bulk_latency:
2677		new_itr = 4000;
2678		break;
2679	default:
2680		break;
2681	}
2682
2683set_itr_now:
2684	if (new_itr != adapter->itr) {
2685		/* this attempts to bias the interrupt rate towards Bulk
2686		 * by adding intermediate steps when interrupt rate is
2687		 * increasing
2688		 */
2689		new_itr = new_itr > adapter->itr ?
2690			  min(adapter->itr + (new_itr >> 2), new_itr) :
2691			  new_itr;
2692		adapter->itr = new_itr;
2693		ew32(ITR, 1000000000 / (new_itr * 256));
2694	}
2695}
2696
2697#define E1000_TX_FLAGS_CSUM		0x00000001
2698#define E1000_TX_FLAGS_VLAN		0x00000002
2699#define E1000_TX_FLAGS_TSO		0x00000004
2700#define E1000_TX_FLAGS_IPV4		0x00000008
2701#define E1000_TX_FLAGS_NO_FCS		0x00000010
2702#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2703#define E1000_TX_FLAGS_VLAN_SHIFT	16
2704
2705static int e1000_tso(struct e1000_adapter *adapter,
2706		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2707		     __be16 protocol)
2708{
2709	struct e1000_context_desc *context_desc;
2710	struct e1000_tx_buffer *buffer_info;
2711	unsigned int i;
2712	u32 cmd_length = 0;
2713	u16 ipcse = 0, tucse, mss;
2714	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2715
2716	if (skb_is_gso(skb)) {
2717		int err;
2718
2719		err = skb_cow_head(skb, 0);
2720		if (err < 0)
2721			return err;
2722
2723		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2724		mss = skb_shinfo(skb)->gso_size;
2725		if (protocol == htons(ETH_P_IP)) {
2726			struct iphdr *iph = ip_hdr(skb);
2727			iph->tot_len = 0;
2728			iph->check = 0;
2729			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2730								 iph->daddr, 0,
2731								 IPPROTO_TCP,
2732								 0);
2733			cmd_length = E1000_TXD_CMD_IP;
2734			ipcse = skb_transport_offset(skb) - 1;
2735		} else if (skb_is_gso_v6(skb)) {
2736			ipv6_hdr(skb)->payload_len = 0;
2737			tcp_hdr(skb)->check =
2738				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2739						 &ipv6_hdr(skb)->daddr,
2740						 0, IPPROTO_TCP, 0);
2741			ipcse = 0;
2742		}
2743		ipcss = skb_network_offset(skb);
2744		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2745		tucss = skb_transport_offset(skb);
2746		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2747		tucse = 0;
2748
2749		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2750			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2751
2752		i = tx_ring->next_to_use;
2753		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2754		buffer_info = &tx_ring->buffer_info[i];
2755
2756		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2757		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2758		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2759		context_desc->upper_setup.tcp_fields.tucss = tucss;
2760		context_desc->upper_setup.tcp_fields.tucso = tucso;
2761		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2762		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2763		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2764		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2765
2766		buffer_info->time_stamp = jiffies;
2767		buffer_info->next_to_watch = i;
2768
2769		if (++i == tx_ring->count) i = 0;
2770		tx_ring->next_to_use = i;
2771
2772		return true;
2773	}
2774	return false;
2775}
2776
2777static bool e1000_tx_csum(struct e1000_adapter *adapter,
2778			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2779			  __be16 protocol)
2780{
2781	struct e1000_context_desc *context_desc;
2782	struct e1000_tx_buffer *buffer_info;
2783	unsigned int i;
2784	u8 css;
2785	u32 cmd_len = E1000_TXD_CMD_DEXT;
2786
2787	if (skb->ip_summed != CHECKSUM_PARTIAL)
2788		return false;
2789
2790	switch (protocol) {
2791	case cpu_to_be16(ETH_P_IP):
2792		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2793			cmd_len |= E1000_TXD_CMD_TCP;
2794		break;
2795	case cpu_to_be16(ETH_P_IPV6):
2796		/* XXX not handling all IPV6 headers */
2797		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2798			cmd_len |= E1000_TXD_CMD_TCP;
2799		break;
2800	default:
2801		if (unlikely(net_ratelimit()))
2802			e_warn(drv, "checksum_partial proto=%x!\n",
2803			       skb->protocol);
2804		break;
2805	}
2806
2807	css = skb_checksum_start_offset(skb);
2808
2809	i = tx_ring->next_to_use;
2810	buffer_info = &tx_ring->buffer_info[i];
2811	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2812
2813	context_desc->lower_setup.ip_config = 0;
2814	context_desc->upper_setup.tcp_fields.tucss = css;
2815	context_desc->upper_setup.tcp_fields.tucso =
2816		css + skb->csum_offset;
2817	context_desc->upper_setup.tcp_fields.tucse = 0;
2818	context_desc->tcp_seg_setup.data = 0;
2819	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2820
2821	buffer_info->time_stamp = jiffies;
2822	buffer_info->next_to_watch = i;
2823
2824	if (unlikely(++i == tx_ring->count)) i = 0;
2825	tx_ring->next_to_use = i;
2826
2827	return true;
2828}
2829
2830#define E1000_MAX_TXD_PWR	12
2831#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2832
2833static int e1000_tx_map(struct e1000_adapter *adapter,
2834			struct e1000_tx_ring *tx_ring,
2835			struct sk_buff *skb, unsigned int first,
2836			unsigned int max_per_txd, unsigned int nr_frags,
2837			unsigned int mss)
2838{
2839	struct e1000_hw *hw = &adapter->hw;
2840	struct pci_dev *pdev = adapter->pdev;
2841	struct e1000_tx_buffer *buffer_info;
2842	unsigned int len = skb_headlen(skb);
2843	unsigned int offset = 0, size, count = 0, i;
2844	unsigned int f, bytecount, segs;
2845
2846	i = tx_ring->next_to_use;
2847
2848	while (len) {
2849		buffer_info = &tx_ring->buffer_info[i];
2850		size = min(len, max_per_txd);
2851		/* Workaround for Controller erratum --
2852		 * descriptor for non-tso packet in a linear SKB that follows a
2853		 * tso gets written back prematurely before the data is fully
2854		 * DMA'd to the controller
2855		 */
2856		if (!skb->data_len && tx_ring->last_tx_tso &&
2857		    !skb_is_gso(skb)) {
2858			tx_ring->last_tx_tso = false;
2859			size -= 4;
2860		}
2861
2862		/* Workaround for premature desc write-backs
2863		 * in TSO mode.  Append 4-byte sentinel desc
2864		 */
2865		if (unlikely(mss && !nr_frags && size == len && size > 8))
2866			size -= 4;
2867		/* work-around for errata 10 and it applies
2868		 * to all controllers in PCI-X mode
2869		 * The fix is to make sure that the first descriptor of a
2870		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2871		 */
2872		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2873		                (size > 2015) && count == 0))
2874		        size = 2015;
2875
2876		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2877		 * terminating buffers within evenly-aligned dwords.
2878		 */
2879		if (unlikely(adapter->pcix_82544 &&
2880		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2881		   size > 4))
2882			size -= 4;
2883
2884		buffer_info->length = size;
2885		/* set time_stamp *before* dma to help avoid a possible race */
2886		buffer_info->time_stamp = jiffies;
2887		buffer_info->mapped_as_page = false;
2888		buffer_info->dma = dma_map_single(&pdev->dev,
2889						  skb->data + offset,
2890						  size, DMA_TO_DEVICE);
2891		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2892			goto dma_error;
2893		buffer_info->next_to_watch = i;
2894
2895		len -= size;
2896		offset += size;
2897		count++;
2898		if (len) {
2899			i++;
2900			if (unlikely(i == tx_ring->count))
2901				i = 0;
2902		}
2903	}
2904
2905	for (f = 0; f < nr_frags; f++) {
2906		const struct skb_frag_struct *frag;
2907
2908		frag = &skb_shinfo(skb)->frags[f];
2909		len = skb_frag_size(frag);
2910		offset = 0;
2911
2912		while (len) {
2913			unsigned long bufend;
2914			i++;
2915			if (unlikely(i == tx_ring->count))
2916				i = 0;
2917
2918			buffer_info = &tx_ring->buffer_info[i];
2919			size = min(len, max_per_txd);
2920			/* Workaround for premature desc write-backs
2921			 * in TSO mode.  Append 4-byte sentinel desc
2922			 */
2923			if (unlikely(mss && f == (nr_frags-1) &&
2924			    size == len && size > 8))
2925				size -= 4;
2926			/* Workaround for potential 82544 hang in PCI-X.
2927			 * Avoid terminating buffers within evenly-aligned
2928			 * dwords.
2929			 */
2930			bufend = (unsigned long)
2931				page_to_phys(skb_frag_page(frag));
2932			bufend += offset + size - 1;
2933			if (unlikely(adapter->pcix_82544 &&
2934				     !(bufend & 4) &&
2935				     size > 4))
2936				size -= 4;
2937
2938			buffer_info->length = size;
2939			buffer_info->time_stamp = jiffies;
2940			buffer_info->mapped_as_page = true;
2941			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2942						offset, size, DMA_TO_DEVICE);
2943			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2944				goto dma_error;
2945			buffer_info->next_to_watch = i;
2946
2947			len -= size;
2948			offset += size;
2949			count++;
2950		}
2951	}
2952
2953	segs = skb_shinfo(skb)->gso_segs ?: 1;
2954	/* multiply data chunks by size of headers */
2955	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2956
2957	tx_ring->buffer_info[i].skb = skb;
2958	tx_ring->buffer_info[i].segs = segs;
2959	tx_ring->buffer_info[i].bytecount = bytecount;
2960	tx_ring->buffer_info[first].next_to_watch = i;
2961
2962	return count;
2963
2964dma_error:
2965	dev_err(&pdev->dev, "TX DMA map failed\n");
2966	buffer_info->dma = 0;
2967	if (count)
2968		count--;
2969
2970	while (count--) {
2971		if (i==0)
2972			i += tx_ring->count;
2973		i--;
2974		buffer_info = &tx_ring->buffer_info[i];
2975		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2976	}
2977
2978	return 0;
2979}
2980
2981static void e1000_tx_queue(struct e1000_adapter *adapter,
2982			   struct e1000_tx_ring *tx_ring, int tx_flags,
2983			   int count)
2984{
2985	struct e1000_tx_desc *tx_desc = NULL;
2986	struct e1000_tx_buffer *buffer_info;
2987	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2988	unsigned int i;
2989
2990	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2991		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2992			     E1000_TXD_CMD_TSE;
2993		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994
2995		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2996			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2997	}
2998
2999	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3000		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3001		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3002	}
3003
3004	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3005		txd_lower |= E1000_TXD_CMD_VLE;
3006		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3007	}
3008
3009	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3010		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3011
3012	i = tx_ring->next_to_use;
3013
3014	while (count--) {
3015		buffer_info = &tx_ring->buffer_info[i];
3016		tx_desc = E1000_TX_DESC(*tx_ring, i);
3017		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3018		tx_desc->lower.data =
3019			cpu_to_le32(txd_lower | buffer_info->length);
3020		tx_desc->upper.data = cpu_to_le32(txd_upper);
3021		if (unlikely(++i == tx_ring->count)) i = 0;
3022	}
3023
3024	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030	/* Force memory writes to complete before letting h/w
3031	 * know there are new descriptors to fetch.  (Only
3032	 * applicable for weak-ordered memory model archs,
3033	 * such as IA-64).
3034	 */
3035	wmb();
3036
3037	tx_ring->next_to_use = i;
3038}
3039
3040/* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3044 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048#define E1000_FIFO_HDR			0x10
3049#define E1000_82547_PAD_LEN		0x3E0
3050
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052				       struct sk_buff *skb)
3053{
3054	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059	if (adapter->link_duplex != HALF_DUPLEX)
3060		goto no_fifo_stall_required;
3061
3062	if (atomic_read(&adapter->tx_fifo_stall))
3063		return 1;
3064
3065	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066		atomic_set(&adapter->tx_fifo_stall, 1);
3067		return 1;
3068	}
3069
3070no_fifo_stall_required:
3071	adapter->tx_fifo_head += skb_fifo_len;
3072	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074	return 0;
3075}
3076
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079	struct e1000_adapter *adapter = netdev_priv(netdev);
3080	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082	netif_stop_queue(netdev);
3083	/* Herbert's original patch had:
3084	 *  smp_mb__after_netif_stop_queue();
3085	 * but since that doesn't exist yet, just open code it.
3086	 */
3087	smp_mb();
3088
3089	/* We need to check again in a case another CPU has just
3090	 * made room available.
3091	 */
3092	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093		return -EBUSY;
3094
3095	/* A reprieve! */
3096	netif_start_queue(netdev);
3097	++adapter->restart_queue;
3098	return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
3102			       struct e1000_tx_ring *tx_ring, int size)
3103{
3104	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105		return 0;
3106	return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
3109#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111				    struct net_device *netdev)
3112{
3113	struct e1000_adapter *adapter = netdev_priv(netdev);
3114	struct e1000_hw *hw = &adapter->hw;
3115	struct e1000_tx_ring *tx_ring;
3116	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118	unsigned int tx_flags = 0;
3119	unsigned int len = skb_headlen(skb);
3120	unsigned int nr_frags;
3121	unsigned int mss;
3122	int count = 0;
3123	int tso;
3124	unsigned int f;
3125	__be16 protocol = vlan_get_protocol(skb);
3126
3127	/* This goes back to the question of how to logically map a Tx queue
3128	 * to a flow.  Right now, performance is impacted slightly negatively
3129	 * if using multiple Tx queues.  If the stack breaks away from a
3130	 * single qdisc implementation, we can look at this again.
3131	 */
3132	tx_ring = adapter->tx_ring;
3133
3134	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135	 * packets may get corrupted during padding by HW.
3136	 * To WA this issue, pad all small packets manually.
3137	 */
3138	if (eth_skb_pad(skb))
3139		return NETDEV_TX_OK;
3140
3141	mss = skb_shinfo(skb)->gso_size;
3142	/* The controller does a simple calculation to
3143	 * make sure there is enough room in the FIFO before
3144	 * initiating the DMA for each buffer.  The calc is:
3145	 * 4 = ceil(buffer len/mss).  To make sure we don't
3146	 * overrun the FIFO, adjust the max buffer len if mss
3147	 * drops.
3148	 */
3149	if (mss) {
3150		u8 hdr_len;
3151		max_per_txd = min(mss << 2, max_per_txd);
3152		max_txd_pwr = fls(max_per_txd) - 1;
3153
3154		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155		if (skb->data_len && hdr_len == len) {
3156			switch (hw->mac_type) {
3157				unsigned int pull_size;
3158			case e1000_82544:
3159				/* Make sure we have room to chop off 4 bytes,
3160				 * and that the end alignment will work out to
3161				 * this hardware's requirements
3162				 * NOTE: this is a TSO only workaround
3163				 * if end byte alignment not correct move us
3164				 * into the next dword
3165				 */
3166				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167				    & 4)
3168					break;
3169				/* fall through */
3170				pull_size = min((unsigned int)4, skb->data_len);
3171				if (!__pskb_pull_tail(skb, pull_size)) {
3172					e_err(drv, "__pskb_pull_tail "
3173					      "failed.\n");
3174					dev_kfree_skb_any(skb);
3175					return NETDEV_TX_OK;
3176				}
3177				len = skb_headlen(skb);
3178				break;
3179			default:
3180				/* do nothing */
3181				break;
3182			}
3183		}
3184	}
3185
3186	/* reserve a descriptor for the offload context */
3187	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188		count++;
3189	count++;
3190
3191	/* Controller Erratum workaround */
3192	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193		count++;
3194
3195	count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197	if (adapter->pcix_82544)
3198		count++;
3199
3200	/* work-around for errata 10 and it applies to all controllers
3201	 * in PCI-X mode, so add one more descriptor to the count
3202	 */
3203	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204			(len > 2015)))
3205		count++;
3206
3207	nr_frags = skb_shinfo(skb)->nr_frags;
3208	for (f = 0; f < nr_frags; f++)
3209		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210				       max_txd_pwr);
3211	if (adapter->pcix_82544)
3212		count += nr_frags;
3213
3214	/* need: count + 2 desc gap to keep tail from touching
3215	 * head, otherwise try next time
3216	 */
3217	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218		return NETDEV_TX_BUSY;
3219
3220	if (unlikely((hw->mac_type == e1000_82547) &&
3221		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3222		netif_stop_queue(netdev);
3223		if (!test_bit(__E1000_DOWN, &adapter->flags))
3224			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225		return NETDEV_TX_BUSY;
3226	}
3227
3228	if (skb_vlan_tag_present(skb)) {
3229		tx_flags |= E1000_TX_FLAGS_VLAN;
3230		tx_flags |= (skb_vlan_tag_get(skb) <<
3231			     E1000_TX_FLAGS_VLAN_SHIFT);
3232	}
3233
3234	first = tx_ring->next_to_use;
3235
3236	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237	if (tso < 0) {
3238		dev_kfree_skb_any(skb);
3239		return NETDEV_TX_OK;
3240	}
3241
3242	if (likely(tso)) {
3243		if (likely(hw->mac_type != e1000_82544))
3244			tx_ring->last_tx_tso = true;
3245		tx_flags |= E1000_TX_FLAGS_TSO;
3246	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247		tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249	if (protocol == htons(ETH_P_IP))
3250		tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252	if (unlikely(skb->no_fcs))
3253		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256			     nr_frags, mss);
3257
3258	if (count) {
3259		netdev_sent_queue(netdev, skb->len);
3260		skb_tx_timestamp(skb);
3261
3262		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263		/* Make sure there is space in the ring for the next send. */
3264		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3265
3266		if (!skb->xmit_more ||
3267		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3268			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3269			/* we need this if more than one processor can write to
3270			 * our tail at a time, it synchronizes IO on IA64/Altix
3271			 * systems
3272			 */
3273			mmiowb();
3274		}
3275	} else {
3276		dev_kfree_skb_any(skb);
3277		tx_ring->buffer_info[first].time_stamp = 0;
3278		tx_ring->next_to_use = first;
3279	}
3280
3281	return NETDEV_TX_OK;
3282}
3283
3284#define NUM_REGS 38 /* 1 based count */
3285static void e1000_regdump(struct e1000_adapter *adapter)
3286{
3287	struct e1000_hw *hw = &adapter->hw;
3288	u32 regs[NUM_REGS];
3289	u32 *regs_buff = regs;
3290	int i = 0;
3291
3292	static const char * const reg_name[] = {
3293		"CTRL",  "STATUS",
3294		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296		"TIDV", "TXDCTL", "TADV", "TARC0",
3297		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298		"TXDCTL1", "TARC1",
3299		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302	};
3303
3304	regs_buff[0]  = er32(CTRL);
3305	regs_buff[1]  = er32(STATUS);
3306
3307	regs_buff[2]  = er32(RCTL);
3308	regs_buff[3]  = er32(RDLEN);
3309	regs_buff[4]  = er32(RDH);
3310	regs_buff[5]  = er32(RDT);
3311	regs_buff[6]  = er32(RDTR);
3312
3313	regs_buff[7]  = er32(TCTL);
3314	regs_buff[8]  = er32(TDBAL);
3315	regs_buff[9]  = er32(TDBAH);
3316	regs_buff[10] = er32(TDLEN);
3317	regs_buff[11] = er32(TDH);
3318	regs_buff[12] = er32(TDT);
3319	regs_buff[13] = er32(TIDV);
3320	regs_buff[14] = er32(TXDCTL);
3321	regs_buff[15] = er32(TADV);
3322	regs_buff[16] = er32(TARC0);
3323
3324	regs_buff[17] = er32(TDBAL1);
3325	regs_buff[18] = er32(TDBAH1);
3326	regs_buff[19] = er32(TDLEN1);
3327	regs_buff[20] = er32(TDH1);
3328	regs_buff[21] = er32(TDT1);
3329	regs_buff[22] = er32(TXDCTL1);
3330	regs_buff[23] = er32(TARC1);
3331	regs_buff[24] = er32(CTRL_EXT);
3332	regs_buff[25] = er32(ERT);
3333	regs_buff[26] = er32(RDBAL0);
3334	regs_buff[27] = er32(RDBAH0);
3335	regs_buff[28] = er32(TDFH);
3336	regs_buff[29] = er32(TDFT);
3337	regs_buff[30] = er32(TDFHS);
3338	regs_buff[31] = er32(TDFTS);
3339	regs_buff[32] = er32(TDFPC);
3340	regs_buff[33] = er32(RDFH);
3341	regs_buff[34] = er32(RDFT);
3342	regs_buff[35] = er32(RDFHS);
3343	regs_buff[36] = er32(RDFTS);
3344	regs_buff[37] = er32(RDFPC);
3345
3346	pr_info("Register dump\n");
3347	for (i = 0; i < NUM_REGS; i++)
3348		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3349}
3350
3351/*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354static void e1000_dump(struct e1000_adapter *adapter)
3355{
3356	/* this code doesn't handle multiple rings */
3357	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359	int i;
3360
3361	if (!netif_msg_hw(adapter))
3362		return;
3363
3364	/* Print Registers */
3365	e1000_regdump(adapter);
3366
3367	/* transmit dump */
3368	pr_info("TX Desc ring0 dump\n");
3369
3370	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371	 *
3372	 * Legacy Transmit Descriptor
3373	 *   +--------------------------------------------------------------+
3374	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3375	 *   +--------------------------------------------------------------+
3376	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3377	 *   +--------------------------------------------------------------+
3378	 *   63       48 47        36 35    32 31     24 23    16 15        0
3379	 *
3380	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381	 *   63      48 47    40 39       32 31             16 15    8 7      0
3382	 *   +----------------------------------------------------------------+
3383	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3384	 *   +----------------------------------------------------------------+
3385	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3386	 *   +----------------------------------------------------------------+
3387	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3388	 *
3389	 * Extended Data Descriptor (DTYP=0x1)
3390	 *   +----------------------------------------------------------------+
3391	 * 0 |                     Buffer Address [63:0]                      |
3392	 *   +----------------------------------------------------------------+
3393	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3394	 *   +----------------------------------------------------------------+
3395	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3396	 */
3397	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399
3400	if (!netif_msg_tx_done(adapter))
3401		goto rx_ring_summary;
3402
3403	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406		struct my_u { __le64 a; __le64 b; };
3407		struct my_u *u = (struct my_u *)tx_desc;
3408		const char *type;
3409
3410		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411			type = "NTC/U";
3412		else if (i == tx_ring->next_to_use)
3413			type = "NTU";
3414		else if (i == tx_ring->next_to_clean)
3415			type = "NTC";
3416		else
3417			type = "";
3418
3419		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3420			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421			le64_to_cpu(u->a), le64_to_cpu(u->b),
3422			(u64)buffer_info->dma, buffer_info->length,
3423			buffer_info->next_to_watch,
3424			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3425	}
3426
3427rx_ring_summary:
3428	/* receive dump */
3429	pr_info("\nRX Desc ring dump\n");
3430
3431	/* Legacy Receive Descriptor Format
3432	 *
3433	 * +-----------------------------------------------------+
3434	 * |                Buffer Address [63:0]                |
3435	 * +-----------------------------------------------------+
3436	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437	 * +-----------------------------------------------------+
3438	 * 63       48 47    40 39      32 31         16 15      0
3439	 */
3440	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3441
3442	if (!netif_msg_rx_status(adapter))
3443		goto exit;
3444
3445	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448		struct my_u { __le64 a; __le64 b; };
3449		struct my_u *u = (struct my_u *)rx_desc;
3450		const char *type;
3451
3452		if (i == rx_ring->next_to_use)
3453			type = "NTU";
3454		else if (i == rx_ring->next_to_clean)
3455			type = "NTC";
3456		else
3457			type = "";
3458
3459		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3460			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462	} /* for */
3463
3464	/* dump the descriptor caches */
3465	/* rx */
3466	pr_info("Rx descriptor cache in 64bit format\n");
3467	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469			i,
3470			readl(adapter->hw.hw_addr + i+4),
3471			readl(adapter->hw.hw_addr + i),
3472			readl(adapter->hw.hw_addr + i+12),
3473			readl(adapter->hw.hw_addr + i+8));
3474	}
3475	/* tx */
3476	pr_info("Tx descriptor cache in 64bit format\n");
3477	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479			i,
3480			readl(adapter->hw.hw_addr + i+4),
3481			readl(adapter->hw.hw_addr + i),
3482			readl(adapter->hw.hw_addr + i+12),
3483			readl(adapter->hw.hw_addr + i+8));
3484	}
3485exit:
3486	return;
3487}
3488
3489/**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 **/
3493static void e1000_tx_timeout(struct net_device *netdev)
3494{
3495	struct e1000_adapter *adapter = netdev_priv(netdev);
3496
3497	/* Do the reset outside of interrupt context */
3498	adapter->tx_timeout_count++;
3499	schedule_work(&adapter->reset_task);
3500}
3501
3502static void e1000_reset_task(struct work_struct *work)
3503{
3504	struct e1000_adapter *adapter =
3505		container_of(work, struct e1000_adapter, reset_task);
3506
3507	e_err(drv, "Reset adapter\n");
3508	e1000_reinit_locked(adapter);
3509}
3510
3511/**
3512 * e1000_get_stats - Get System Network Statistics
3513 * @netdev: network interface device structure
3514 *
3515 * Returns the address of the device statistics structure.
3516 * The statistics are actually updated from the watchdog.
3517 **/
3518static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3519{
3520	/* only return the current stats */
3521	return &netdev->stats;
3522}
3523
3524/**
3525 * e1000_change_mtu - Change the Maximum Transfer Unit
3526 * @netdev: network interface device structure
3527 * @new_mtu: new value for maximum frame size
3528 *
3529 * Returns 0 on success, negative on failure
3530 **/
3531static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3532{
3533	struct e1000_adapter *adapter = netdev_priv(netdev);
3534	struct e1000_hw *hw = &adapter->hw;
3535	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3536
3537	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3538	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3539		e_err(probe, "Invalid MTU setting\n");
3540		return -EINVAL;
3541	}
3542
3543	/* Adapter-specific max frame size limits. */
3544	switch (hw->mac_type) {
3545	case e1000_undefined ... e1000_82542_rev2_1:
3546		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3547			e_err(probe, "Jumbo Frames not supported.\n");
3548			return -EINVAL;
3549		}
3550		break;
3551	default:
3552		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3553		break;
3554	}
3555
3556	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3557		msleep(1);
3558	/* e1000_down has a dependency on max_frame_size */
3559	hw->max_frame_size = max_frame;
3560	if (netif_running(netdev)) {
3561		/* prevent buffers from being reallocated */
3562		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3563		e1000_down(adapter);
3564	}
3565
3566	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3567	 * means we reserve 2 more, this pushes us to allocate from the next
3568	 * larger slab size.
3569	 * i.e. RXBUFFER_2048 --> size-4096 slab
3570	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3571	 * fragmented skbs
3572	 */
3573
3574	if (max_frame <= E1000_RXBUFFER_2048)
3575		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3576	else
3577#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3578		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3579#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3580		adapter->rx_buffer_len = PAGE_SIZE;
3581#endif
3582
3583	/* adjust allocation if LPE protects us, and we aren't using SBP */
3584	if (!hw->tbi_compatibility_on &&
3585	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3586	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3587		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3588
3589	pr_info("%s changing MTU from %d to %d\n",
3590		netdev->name, netdev->mtu, new_mtu);
3591	netdev->mtu = new_mtu;
3592
3593	if (netif_running(netdev))
3594		e1000_up(adapter);
3595	else
3596		e1000_reset(adapter);
3597
3598	clear_bit(__E1000_RESETTING, &adapter->flags);
3599
3600	return 0;
3601}
3602
3603/**
3604 * e1000_update_stats - Update the board statistics counters
3605 * @adapter: board private structure
3606 **/
3607void e1000_update_stats(struct e1000_adapter *adapter)
3608{
3609	struct net_device *netdev = adapter->netdev;
3610	struct e1000_hw *hw = &adapter->hw;
3611	struct pci_dev *pdev = adapter->pdev;
3612	unsigned long flags;
3613	u16 phy_tmp;
3614
3615#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3616
3617	/* Prevent stats update while adapter is being reset, or if the pci
3618	 * connection is down.
3619	 */
3620	if (adapter->link_speed == 0)
3621		return;
3622	if (pci_channel_offline(pdev))
3623		return;
3624
3625	spin_lock_irqsave(&adapter->stats_lock, flags);
3626
3627	/* these counters are modified from e1000_tbi_adjust_stats,
3628	 * called from the interrupt context, so they must only
3629	 * be written while holding adapter->stats_lock
3630	 */
3631
3632	adapter->stats.crcerrs += er32(CRCERRS);
3633	adapter->stats.gprc += er32(GPRC);
3634	adapter->stats.gorcl += er32(GORCL);
3635	adapter->stats.gorch += er32(GORCH);
3636	adapter->stats.bprc += er32(BPRC);
3637	adapter->stats.mprc += er32(MPRC);
3638	adapter->stats.roc += er32(ROC);
3639
3640	adapter->stats.prc64 += er32(PRC64);
3641	adapter->stats.prc127 += er32(PRC127);
3642	adapter->stats.prc255 += er32(PRC255);
3643	adapter->stats.prc511 += er32(PRC511);
3644	adapter->stats.prc1023 += er32(PRC1023);
3645	adapter->stats.prc1522 += er32(PRC1522);
3646
3647	adapter->stats.symerrs += er32(SYMERRS);
3648	adapter->stats.mpc += er32(MPC);
3649	adapter->stats.scc += er32(SCC);
3650	adapter->stats.ecol += er32(ECOL);
3651	adapter->stats.mcc += er32(MCC);
3652	adapter->stats.latecol += er32(LATECOL);
3653	adapter->stats.dc += er32(DC);
3654	adapter->stats.sec += er32(SEC);
3655	adapter->stats.rlec += er32(RLEC);
3656	adapter->stats.xonrxc += er32(XONRXC);
3657	adapter->stats.xontxc += er32(XONTXC);
3658	adapter->stats.xoffrxc += er32(XOFFRXC);
3659	adapter->stats.xofftxc += er32(XOFFTXC);
3660	adapter->stats.fcruc += er32(FCRUC);
3661	adapter->stats.gptc += er32(GPTC);
3662	adapter->stats.gotcl += er32(GOTCL);
3663	adapter->stats.gotch += er32(GOTCH);
3664	adapter->stats.rnbc += er32(RNBC);
3665	adapter->stats.ruc += er32(RUC);
3666	adapter->stats.rfc += er32(RFC);
3667	adapter->stats.rjc += er32(RJC);
3668	adapter->stats.torl += er32(TORL);
3669	adapter->stats.torh += er32(TORH);
3670	adapter->stats.totl += er32(TOTL);
3671	adapter->stats.toth += er32(TOTH);
3672	adapter->stats.tpr += er32(TPR);
3673
3674	adapter->stats.ptc64 += er32(PTC64);
3675	adapter->stats.ptc127 += er32(PTC127);
3676	adapter->stats.ptc255 += er32(PTC255);
3677	adapter->stats.ptc511 += er32(PTC511);
3678	adapter->stats.ptc1023 += er32(PTC1023);
3679	adapter->stats.ptc1522 += er32(PTC1522);
3680
3681	adapter->stats.mptc += er32(MPTC);
3682	adapter->stats.bptc += er32(BPTC);
3683
3684	/* used for adaptive IFS */
3685
3686	hw->tx_packet_delta = er32(TPT);
3687	adapter->stats.tpt += hw->tx_packet_delta;
3688	hw->collision_delta = er32(COLC);
3689	adapter->stats.colc += hw->collision_delta;
3690
3691	if (hw->mac_type >= e1000_82543) {
3692		adapter->stats.algnerrc += er32(ALGNERRC);
3693		adapter->stats.rxerrc += er32(RXERRC);
3694		adapter->stats.tncrs += er32(TNCRS);
3695		adapter->stats.cexterr += er32(CEXTERR);
3696		adapter->stats.tsctc += er32(TSCTC);
3697		adapter->stats.tsctfc += er32(TSCTFC);
3698	}
3699
3700	/* Fill out the OS statistics structure */
3701	netdev->stats.multicast = adapter->stats.mprc;
3702	netdev->stats.collisions = adapter->stats.colc;
3703
3704	/* Rx Errors */
3705
3706	/* RLEC on some newer hardware can be incorrect so build
3707	 * our own version based on RUC and ROC
3708	 */
3709	netdev->stats.rx_errors = adapter->stats.rxerrc +
3710		adapter->stats.crcerrs + adapter->stats.algnerrc +
3711		adapter->stats.ruc + adapter->stats.roc +
3712		adapter->stats.cexterr;
3713	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3714	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3715	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3716	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3717	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3718
3719	/* Tx Errors */
3720	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3721	netdev->stats.tx_errors = adapter->stats.txerrc;
3722	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3723	netdev->stats.tx_window_errors = adapter->stats.latecol;
3724	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3725	if (hw->bad_tx_carr_stats_fd &&
3726	    adapter->link_duplex == FULL_DUPLEX) {
3727		netdev->stats.tx_carrier_errors = 0;
3728		adapter->stats.tncrs = 0;
3729	}
3730
3731	/* Tx Dropped needs to be maintained elsewhere */
3732
3733	/* Phy Stats */
3734	if (hw->media_type == e1000_media_type_copper) {
3735		if ((adapter->link_speed == SPEED_1000) &&
3736		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3737			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3738			adapter->phy_stats.idle_errors += phy_tmp;
3739		}
3740
3741		if ((hw->mac_type <= e1000_82546) &&
3742		   (hw->phy_type == e1000_phy_m88) &&
3743		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3744			adapter->phy_stats.receive_errors += phy_tmp;
3745	}
3746
3747	/* Management Stats */
3748	if (hw->has_smbus) {
3749		adapter->stats.mgptc += er32(MGTPTC);
3750		adapter->stats.mgprc += er32(MGTPRC);
3751		adapter->stats.mgpdc += er32(MGTPDC);
3752	}
3753
3754	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3755}
3756
3757/**
3758 * e1000_intr - Interrupt Handler
3759 * @irq: interrupt number
3760 * @data: pointer to a network interface device structure
3761 **/
3762static irqreturn_t e1000_intr(int irq, void *data)
3763{
3764	struct net_device *netdev = data;
3765	struct e1000_adapter *adapter = netdev_priv(netdev);
3766	struct e1000_hw *hw = &adapter->hw;
3767	u32 icr = er32(ICR);
3768
3769	if (unlikely((!icr)))
3770		return IRQ_NONE;  /* Not our interrupt */
3771
3772	/* we might have caused the interrupt, but the above
3773	 * read cleared it, and just in case the driver is
3774	 * down there is nothing to do so return handled
3775	 */
3776	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3777		return IRQ_HANDLED;
3778
3779	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3780		hw->get_link_status = 1;
3781		/* guard against interrupt when we're going down */
3782		if (!test_bit(__E1000_DOWN, &adapter->flags))
3783			schedule_delayed_work(&adapter->watchdog_task, 1);
3784	}
3785
3786	/* disable interrupts, without the synchronize_irq bit */
3787	ew32(IMC, ~0);
3788	E1000_WRITE_FLUSH();
3789
3790	if (likely(napi_schedule_prep(&adapter->napi))) {
3791		adapter->total_tx_bytes = 0;
3792		adapter->total_tx_packets = 0;
3793		adapter->total_rx_bytes = 0;
3794		adapter->total_rx_packets = 0;
3795		__napi_schedule(&adapter->napi);
3796	} else {
3797		/* this really should not happen! if it does it is basically a
3798		 * bug, but not a hard error, so enable ints and continue
3799		 */
3800		if (!test_bit(__E1000_DOWN, &adapter->flags))
3801			e1000_irq_enable(adapter);
3802	}
3803
3804	return IRQ_HANDLED;
3805}
3806
3807/**
3808 * e1000_clean - NAPI Rx polling callback
3809 * @adapter: board private structure
3810 **/
3811static int e1000_clean(struct napi_struct *napi, int budget)
3812{
3813	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3814						     napi);
3815	int tx_clean_complete = 0, work_done = 0;
3816
3817	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3818
3819	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3820
3821	if (!tx_clean_complete)
3822		work_done = budget;
3823
3824	/* If budget not fully consumed, exit the polling mode */
3825	if (work_done < budget) {
3826		if (likely(adapter->itr_setting & 3))
3827			e1000_set_itr(adapter);
3828		napi_complete(napi);
3829		if (!test_bit(__E1000_DOWN, &adapter->flags))
3830			e1000_irq_enable(adapter);
3831	}
3832
3833	return work_done;
3834}
3835
3836/**
3837 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3838 * @adapter: board private structure
3839 **/
3840static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3841			       struct e1000_tx_ring *tx_ring)
3842{
3843	struct e1000_hw *hw = &adapter->hw;
3844	struct net_device *netdev = adapter->netdev;
3845	struct e1000_tx_desc *tx_desc, *eop_desc;
3846	struct e1000_tx_buffer *buffer_info;
3847	unsigned int i, eop;
3848	unsigned int count = 0;
3849	unsigned int total_tx_bytes=0, total_tx_packets=0;
3850	unsigned int bytes_compl = 0, pkts_compl = 0;
3851
3852	i = tx_ring->next_to_clean;
3853	eop = tx_ring->buffer_info[i].next_to_watch;
3854	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3855
3856	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3857	       (count < tx_ring->count)) {
3858		bool cleaned = false;
3859		dma_rmb();	/* read buffer_info after eop_desc */
3860		for ( ; !cleaned; count++) {
3861			tx_desc = E1000_TX_DESC(*tx_ring, i);
3862			buffer_info = &tx_ring->buffer_info[i];
3863			cleaned = (i == eop);
3864
3865			if (cleaned) {
3866				total_tx_packets += buffer_info->segs;
3867				total_tx_bytes += buffer_info->bytecount;
3868				if (buffer_info->skb) {
3869					bytes_compl += buffer_info->skb->len;
3870					pkts_compl++;
3871				}
3872
3873			}
3874			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3875			tx_desc->upper.data = 0;
3876
3877			if (unlikely(++i == tx_ring->count)) i = 0;
3878		}
3879
3880		eop = tx_ring->buffer_info[i].next_to_watch;
3881		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3882	}
3883
3884	tx_ring->next_to_clean = i;
3885
3886	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3887
3888#define TX_WAKE_THRESHOLD 32
3889	if (unlikely(count && netif_carrier_ok(netdev) &&
3890		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3891		/* Make sure that anybody stopping the queue after this
3892		 * sees the new next_to_clean.
3893		 */
3894		smp_mb();
3895
3896		if (netif_queue_stopped(netdev) &&
3897		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3898			netif_wake_queue(netdev);
3899			++adapter->restart_queue;
3900		}
3901	}
3902
3903	if (adapter->detect_tx_hung) {
3904		/* Detect a transmit hang in hardware, this serializes the
3905		 * check with the clearing of time_stamp and movement of i
3906		 */
3907		adapter->detect_tx_hung = false;
3908		if (tx_ring->buffer_info[eop].time_stamp &&
3909		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3910			       (adapter->tx_timeout_factor * HZ)) &&
3911		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3912
3913			/* detected Tx unit hang */
3914			e_err(drv, "Detected Tx Unit Hang\n"
3915			      "  Tx Queue             <%lu>\n"
3916			      "  TDH                  <%x>\n"
3917			      "  TDT                  <%x>\n"
3918			      "  next_to_use          <%x>\n"
3919			      "  next_to_clean        <%x>\n"
3920			      "buffer_info[next_to_clean]\n"
3921			      "  time_stamp           <%lx>\n"
3922			      "  next_to_watch        <%x>\n"
3923			      "  jiffies              <%lx>\n"
3924			      "  next_to_watch.status <%x>\n",
3925				(unsigned long)(tx_ring - adapter->tx_ring),
3926				readl(hw->hw_addr + tx_ring->tdh),
3927				readl(hw->hw_addr + tx_ring->tdt),
3928				tx_ring->next_to_use,
3929				tx_ring->next_to_clean,
3930				tx_ring->buffer_info[eop].time_stamp,
3931				eop,
3932				jiffies,
3933				eop_desc->upper.fields.status);
3934			e1000_dump(adapter);
3935			netif_stop_queue(netdev);
3936		}
3937	}
3938	adapter->total_tx_bytes += total_tx_bytes;
3939	adapter->total_tx_packets += total_tx_packets;
3940	netdev->stats.tx_bytes += total_tx_bytes;
3941	netdev->stats.tx_packets += total_tx_packets;
3942	return count < tx_ring->count;
3943}
3944
3945/**
3946 * e1000_rx_checksum - Receive Checksum Offload for 82543
3947 * @adapter:     board private structure
3948 * @status_err:  receive descriptor status and error fields
3949 * @csum:        receive descriptor csum field
3950 * @sk_buff:     socket buffer with received data
3951 **/
3952static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3953			      u32 csum, struct sk_buff *skb)
3954{
3955	struct e1000_hw *hw = &adapter->hw;
3956	u16 status = (u16)status_err;
3957	u8 errors = (u8)(status_err >> 24);
3958
3959	skb_checksum_none_assert(skb);
3960
3961	/* 82543 or newer only */
3962	if (unlikely(hw->mac_type < e1000_82543)) return;
3963	/* Ignore Checksum bit is set */
3964	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3965	/* TCP/UDP checksum error bit is set */
3966	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3967		/* let the stack verify checksum errors */
3968		adapter->hw_csum_err++;
3969		return;
3970	}
3971	/* TCP/UDP Checksum has not been calculated */
3972	if (!(status & E1000_RXD_STAT_TCPCS))
3973		return;
3974
3975	/* It must be a TCP or UDP packet with a valid checksum */
3976	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3977		/* TCP checksum is good */
3978		skb->ip_summed = CHECKSUM_UNNECESSARY;
3979	}
3980	adapter->hw_csum_good++;
3981}
3982
3983/**
3984 * e1000_consume_page - helper function for jumbo Rx path
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987			       u16 length)
3988{
3989	bi->rxbuf.page = NULL;
3990	skb->len += length;
3991	skb->data_len += length;
3992	skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003			      __le16 vlan, struct sk_buff *skb)
4004{
4005	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007	if (status & E1000_RXD_STAT_VP) {
4008		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011	}
4012	napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @frame_len: The length of the frame in question
4019 * @mac_addr: The Ethernet destination address of the frame in question
4020 *
4021 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4022 */
4023static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4024				   struct e1000_hw_stats *stats,
4025				   u32 frame_len, const u8 *mac_addr)
4026{
4027	u64 carry_bit;
4028
4029	/* First adjust the frame length. */
4030	frame_len--;
4031	/* We need to adjust the statistics counters, since the hardware
4032	 * counters overcount this packet as a CRC error and undercount
4033	 * the packet as a good packet
4034	 */
4035	/* This packet should not be counted as a CRC error. */
4036	stats->crcerrs--;
4037	/* This packet does count as a Good Packet Received. */
4038	stats->gprc++;
4039
4040	/* Adjust the Good Octets received counters */
4041	carry_bit = 0x80000000 & stats->gorcl;
4042	stats->gorcl += frame_len;
4043	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4044	 * Received Count) was one before the addition,
4045	 * AND it is zero after, then we lost the carry out,
4046	 * need to add one to Gorch (Good Octets Received Count High).
4047	 * This could be simplified if all environments supported
4048	 * 64-bit integers.
4049	 */
4050	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4051		stats->gorch++;
4052	/* Is this a broadcast or multicast?  Check broadcast first,
4053	 * since the test for a multicast frame will test positive on
4054	 * a broadcast frame.
4055	 */
4056	if (is_broadcast_ether_addr(mac_addr))
4057		stats->bprc++;
4058	else if (is_multicast_ether_addr(mac_addr))
4059		stats->mprc++;
4060
4061	if (frame_len == hw->max_frame_size) {
4062		/* In this case, the hardware has overcounted the number of
4063		 * oversize frames.
4064		 */
4065		if (stats->roc > 0)
4066			stats->roc--;
4067	}
4068
4069	/* Adjust the bin counters when the extra byte put the frame in the
4070	 * wrong bin. Remember that the frame_len was adjusted above.
4071	 */
4072	if (frame_len == 64) {
4073		stats->prc64++;
4074		stats->prc127--;
4075	} else if (frame_len == 127) {
4076		stats->prc127++;
4077		stats->prc255--;
4078	} else if (frame_len == 255) {
4079		stats->prc255++;
4080		stats->prc511--;
4081	} else if (frame_len == 511) {
4082		stats->prc511++;
4083		stats->prc1023--;
4084	} else if (frame_len == 1023) {
4085		stats->prc1023++;
4086		stats->prc1522--;
4087	} else if (frame_len == 1522) {
4088		stats->prc1522++;
4089	}
4090}
4091
4092static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4093				    u8 status, u8 errors,
4094				    u32 length, const u8 *data)
4095{
4096	struct e1000_hw *hw = &adapter->hw;
4097	u8 last_byte = *(data + length - 1);
4098
4099	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4100		unsigned long irq_flags;
4101
4102		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4103		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4104		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4105
4106		return true;
4107	}
4108
4109	return false;
4110}
4111
4112static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4113					  unsigned int bufsz)
4114{
4115	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4116
4117	if (unlikely(!skb))
4118		adapter->alloc_rx_buff_failed++;
4119	return skb;
4120}
4121
4122/**
4123 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4124 * @adapter: board private structure
4125 * @rx_ring: ring to clean
4126 * @work_done: amount of napi work completed this call
4127 * @work_to_do: max amount of work allowed for this call to do
4128 *
4129 * the return value indicates whether actual cleaning was done, there
4130 * is no guarantee that everything was cleaned
4131 */
4132static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4133				     struct e1000_rx_ring *rx_ring,
4134				     int *work_done, int work_to_do)
4135{
4136	struct net_device *netdev = adapter->netdev;
4137	struct pci_dev *pdev = adapter->pdev;
4138	struct e1000_rx_desc *rx_desc, *next_rxd;
4139	struct e1000_rx_buffer *buffer_info, *next_buffer;
4140	u32 length;
4141	unsigned int i;
4142	int cleaned_count = 0;
4143	bool cleaned = false;
4144	unsigned int total_rx_bytes=0, total_rx_packets=0;
4145
4146	i = rx_ring->next_to_clean;
4147	rx_desc = E1000_RX_DESC(*rx_ring, i);
4148	buffer_info = &rx_ring->buffer_info[i];
4149
4150	while (rx_desc->status & E1000_RXD_STAT_DD) {
4151		struct sk_buff *skb;
4152		u8 status;
4153
4154		if (*work_done >= work_to_do)
4155			break;
4156		(*work_done)++;
4157		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4158
4159		status = rx_desc->status;
4160
4161		if (++i == rx_ring->count) i = 0;
4162		next_rxd = E1000_RX_DESC(*rx_ring, i);
4163		prefetch(next_rxd);
4164
4165		next_buffer = &rx_ring->buffer_info[i];
4166
4167		cleaned = true;
4168		cleaned_count++;
4169		dma_unmap_page(&pdev->dev, buffer_info->dma,
4170			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4171		buffer_info->dma = 0;
4172
4173		length = le16_to_cpu(rx_desc->length);
4174
4175		/* errors is only valid for DD + EOP descriptors */
4176		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4177		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4178			u8 *mapped = page_address(buffer_info->rxbuf.page);
4179
4180			if (e1000_tbi_should_accept(adapter, status,
4181						    rx_desc->errors,
4182						    length, mapped)) {
4183				length--;
4184			} else if (netdev->features & NETIF_F_RXALL) {
4185				goto process_skb;
4186			} else {
4187				/* an error means any chain goes out the window
4188				 * too
4189				 */
4190				if (rx_ring->rx_skb_top)
4191					dev_kfree_skb(rx_ring->rx_skb_top);
4192				rx_ring->rx_skb_top = NULL;
4193				goto next_desc;
4194			}
4195		}
4196
4197#define rxtop rx_ring->rx_skb_top
4198process_skb:
4199		if (!(status & E1000_RXD_STAT_EOP)) {
4200			/* this descriptor is only the beginning (or middle) */
4201			if (!rxtop) {
4202				/* this is the beginning of a chain */
4203				rxtop = napi_get_frags(&adapter->napi);
4204				if (!rxtop)
4205					break;
4206
4207				skb_fill_page_desc(rxtop, 0,
4208						   buffer_info->rxbuf.page,
4209						   0, length);
4210			} else {
4211				/* this is the middle of a chain */
4212				skb_fill_page_desc(rxtop,
4213				    skb_shinfo(rxtop)->nr_frags,
4214				    buffer_info->rxbuf.page, 0, length);
4215			}
4216			e1000_consume_page(buffer_info, rxtop, length);
4217			goto next_desc;
4218		} else {
4219			if (rxtop) {
4220				/* end of the chain */
4221				skb_fill_page_desc(rxtop,
4222				    skb_shinfo(rxtop)->nr_frags,
4223				    buffer_info->rxbuf.page, 0, length);
4224				skb = rxtop;
4225				rxtop = NULL;
4226				e1000_consume_page(buffer_info, skb, length);
4227			} else {
4228				struct page *p;
4229				/* no chain, got EOP, this buf is the packet
4230				 * copybreak to save the put_page/alloc_page
4231				 */
4232				p = buffer_info->rxbuf.page;
4233				if (length <= copybreak) {
4234					u8 *vaddr;
4235
4236					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237						length -= 4;
4238					skb = e1000_alloc_rx_skb(adapter,
4239								 length);
4240					if (!skb)
4241						break;
4242
4243					vaddr = kmap_atomic(p);
4244					memcpy(skb_tail_pointer(skb), vaddr,
4245					       length);
4246					kunmap_atomic(vaddr);
4247					/* re-use the page, so don't erase
4248					 * buffer_info->rxbuf.page
4249					 */
4250					skb_put(skb, length);
4251					e1000_rx_checksum(adapter,
4252							  status | rx_desc->errors << 24,
4253							  le16_to_cpu(rx_desc->csum), skb);
4254
4255					total_rx_bytes += skb->len;
4256					total_rx_packets++;
4257
4258					e1000_receive_skb(adapter, status,
4259							  rx_desc->special, skb);
4260					goto next_desc;
4261				} else {
4262					skb = napi_get_frags(&adapter->napi);
4263					if (!skb) {
4264						adapter->alloc_rx_buff_failed++;
4265						break;
4266					}
4267					skb_fill_page_desc(skb, 0, p, 0,
4268							   length);
4269					e1000_consume_page(buffer_info, skb,
4270							   length);
4271				}
4272			}
4273		}
4274
4275		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4276		e1000_rx_checksum(adapter,
4277				  (u32)(status) |
4278				  ((u32)(rx_desc->errors) << 24),
4279				  le16_to_cpu(rx_desc->csum), skb);
4280
4281		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4282		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4283			pskb_trim(skb, skb->len - 4);
4284		total_rx_packets++;
4285
4286		if (status & E1000_RXD_STAT_VP) {
4287			__le16 vlan = rx_desc->special;
4288			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4289
4290			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4291		}
4292
4293		napi_gro_frags(&adapter->napi);
4294
4295next_desc:
4296		rx_desc->status = 0;
4297
4298		/* return some buffers to hardware, one at a time is too slow */
4299		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4300			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4301			cleaned_count = 0;
4302		}
4303
4304		/* use prefetched values */
4305		rx_desc = next_rxd;
4306		buffer_info = next_buffer;
4307	}
4308	rx_ring->next_to_clean = i;
4309
4310	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4311	if (cleaned_count)
4312		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4313
4314	adapter->total_rx_packets += total_rx_packets;
4315	adapter->total_rx_bytes += total_rx_bytes;
4316	netdev->stats.rx_bytes += total_rx_bytes;
4317	netdev->stats.rx_packets += total_rx_packets;
4318	return cleaned;
4319}
4320
4321/* this should improve performance for small packets with large amounts
4322 * of reassembly being done in the stack
4323 */
4324static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4325				       struct e1000_rx_buffer *buffer_info,
4326				       u32 length, const void *data)
4327{
4328	struct sk_buff *skb;
4329
4330	if (length > copybreak)
4331		return NULL;
4332
4333	skb = e1000_alloc_rx_skb(adapter, length);
4334	if (!skb)
4335		return NULL;
4336
4337	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4338				length, DMA_FROM_DEVICE);
4339
4340	memcpy(skb_put(skb, length), data, length);
4341
4342	return skb;
4343}
4344
4345/**
4346 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4347 * @adapter: board private structure
4348 * @rx_ring: ring to clean
4349 * @work_done: amount of napi work completed this call
4350 * @work_to_do: max amount of work allowed for this call to do
4351 */
4352static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4353			       struct e1000_rx_ring *rx_ring,
4354			       int *work_done, int work_to_do)
4355{
4356	struct net_device *netdev = adapter->netdev;
4357	struct pci_dev *pdev = adapter->pdev;
4358	struct e1000_rx_desc *rx_desc, *next_rxd;
4359	struct e1000_rx_buffer *buffer_info, *next_buffer;
4360	u32 length;
4361	unsigned int i;
4362	int cleaned_count = 0;
4363	bool cleaned = false;
4364	unsigned int total_rx_bytes=0, total_rx_packets=0;
4365
4366	i = rx_ring->next_to_clean;
4367	rx_desc = E1000_RX_DESC(*rx_ring, i);
4368	buffer_info = &rx_ring->buffer_info[i];
4369
4370	while (rx_desc->status & E1000_RXD_STAT_DD) {
4371		struct sk_buff *skb;
4372		u8 *data;
4373		u8 status;
4374
4375		if (*work_done >= work_to_do)
4376			break;
4377		(*work_done)++;
4378		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4379
4380		status = rx_desc->status;
4381		length = le16_to_cpu(rx_desc->length);
4382
4383		data = buffer_info->rxbuf.data;
4384		prefetch(data);
4385		skb = e1000_copybreak(adapter, buffer_info, length, data);
4386		if (!skb) {
4387			unsigned int frag_len = e1000_frag_len(adapter);
4388
4389			skb = build_skb(data - E1000_HEADROOM, frag_len);
4390			if (!skb) {
4391				adapter->alloc_rx_buff_failed++;
4392				break;
4393			}
4394
4395			skb_reserve(skb, E1000_HEADROOM);
4396			dma_unmap_single(&pdev->dev, buffer_info->dma,
4397					 adapter->rx_buffer_len,
4398					 DMA_FROM_DEVICE);
4399			buffer_info->dma = 0;
4400			buffer_info->rxbuf.data = NULL;
4401		}
4402
4403		if (++i == rx_ring->count) i = 0;
4404		next_rxd = E1000_RX_DESC(*rx_ring, i);
4405		prefetch(next_rxd);
4406
4407		next_buffer = &rx_ring->buffer_info[i];
4408
4409		cleaned = true;
4410		cleaned_count++;
4411
4412		/* !EOP means multiple descriptors were used to store a single
4413		 * packet, if thats the case we need to toss it.  In fact, we
4414		 * to toss every packet with the EOP bit clear and the next
4415		 * frame that _does_ have the EOP bit set, as it is by
4416		 * definition only a frame fragment
4417		 */
4418		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4419			adapter->discarding = true;
4420
4421		if (adapter->discarding) {
4422			/* All receives must fit into a single buffer */
4423			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4424			dev_kfree_skb(skb);
4425			if (status & E1000_RXD_STAT_EOP)
4426				adapter->discarding = false;
4427			goto next_desc;
4428		}
4429
4430		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4431			if (e1000_tbi_should_accept(adapter, status,
4432						    rx_desc->errors,
4433						    length, data)) {
4434				length--;
4435			} else if (netdev->features & NETIF_F_RXALL) {
4436				goto process_skb;
4437			} else {
4438				dev_kfree_skb(skb);
4439				goto next_desc;
4440			}
4441		}
4442
4443process_skb:
4444		total_rx_bytes += (length - 4); /* don't count FCS */
4445		total_rx_packets++;
4446
4447		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4448			/* adjust length to remove Ethernet CRC, this must be
4449			 * done after the TBI_ACCEPT workaround above
4450			 */
4451			length -= 4;
4452
4453		if (buffer_info->rxbuf.data == NULL)
4454			skb_put(skb, length);
4455		else /* copybreak skb */
4456			skb_trim(skb, length);
4457
4458		/* Receive Checksum Offload */
4459		e1000_rx_checksum(adapter,
4460				  (u32)(status) |
4461				  ((u32)(rx_desc->errors) << 24),
4462				  le16_to_cpu(rx_desc->csum), skb);
4463
4464		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4465
4466next_desc:
4467		rx_desc->status = 0;
4468
4469		/* return some buffers to hardware, one at a time is too slow */
4470		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4471			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4472			cleaned_count = 0;
4473		}
4474
4475		/* use prefetched values */
4476		rx_desc = next_rxd;
4477		buffer_info = next_buffer;
4478	}
4479	rx_ring->next_to_clean = i;
4480
4481	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4482	if (cleaned_count)
4483		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4484
4485	adapter->total_rx_packets += total_rx_packets;
4486	adapter->total_rx_bytes += total_rx_bytes;
4487	netdev->stats.rx_bytes += total_rx_bytes;
4488	netdev->stats.rx_packets += total_rx_packets;
4489	return cleaned;
4490}
4491
4492/**
4493 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4494 * @adapter: address of board private structure
4495 * @rx_ring: pointer to receive ring structure
4496 * @cleaned_count: number of buffers to allocate this pass
4497 **/
4498static void
4499e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4500			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4501{
4502	struct pci_dev *pdev = adapter->pdev;
4503	struct e1000_rx_desc *rx_desc;
4504	struct e1000_rx_buffer *buffer_info;
4505	unsigned int i;
4506
4507	i = rx_ring->next_to_use;
4508	buffer_info = &rx_ring->buffer_info[i];
4509
4510	while (cleaned_count--) {
4511		/* allocate a new page if necessary */
4512		if (!buffer_info->rxbuf.page) {
4513			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4514			if (unlikely(!buffer_info->rxbuf.page)) {
4515				adapter->alloc_rx_buff_failed++;
4516				break;
4517			}
4518		}
4519
4520		if (!buffer_info->dma) {
4521			buffer_info->dma = dma_map_page(&pdev->dev,
4522							buffer_info->rxbuf.page, 0,
4523							adapter->rx_buffer_len,
4524							DMA_FROM_DEVICE);
4525			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4526				put_page(buffer_info->rxbuf.page);
4527				buffer_info->rxbuf.page = NULL;
4528				buffer_info->dma = 0;
4529				adapter->alloc_rx_buff_failed++;
4530				break;
4531			}
4532		}
4533
4534		rx_desc = E1000_RX_DESC(*rx_ring, i);
4535		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4536
4537		if (unlikely(++i == rx_ring->count))
4538			i = 0;
4539		buffer_info = &rx_ring->buffer_info[i];
4540	}
4541
4542	if (likely(rx_ring->next_to_use != i)) {
4543		rx_ring->next_to_use = i;
4544		if (unlikely(i-- == 0))
4545			i = (rx_ring->count - 1);
4546
4547		/* Force memory writes to complete before letting h/w
4548		 * know there are new descriptors to fetch.  (Only
4549		 * applicable for weak-ordered memory model archs,
4550		 * such as IA-64).
4551		 */
4552		wmb();
4553		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4554	}
4555}
4556
4557/**
4558 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4559 * @adapter: address of board private structure
4560 **/
4561static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4562				   struct e1000_rx_ring *rx_ring,
4563				   int cleaned_count)
4564{
4565	struct e1000_hw *hw = &adapter->hw;
4566	struct pci_dev *pdev = adapter->pdev;
4567	struct e1000_rx_desc *rx_desc;
4568	struct e1000_rx_buffer *buffer_info;
4569	unsigned int i;
4570	unsigned int bufsz = adapter->rx_buffer_len;
4571
4572	i = rx_ring->next_to_use;
4573	buffer_info = &rx_ring->buffer_info[i];
4574
4575	while (cleaned_count--) {
4576		void *data;
4577
4578		if (buffer_info->rxbuf.data)
4579			goto skip;
4580
4581		data = e1000_alloc_frag(adapter);
4582		if (!data) {
4583			/* Better luck next round */
4584			adapter->alloc_rx_buff_failed++;
4585			break;
4586		}
4587
4588		/* Fix for errata 23, can't cross 64kB boundary */
4589		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4590			void *olddata = data;
4591			e_err(rx_err, "skb align check failed: %u bytes at "
4592			      "%p\n", bufsz, data);
4593			/* Try again, without freeing the previous */
4594			data = e1000_alloc_frag(adapter);
4595			/* Failed allocation, critical failure */
4596			if (!data) {
4597				e1000_free_frag(olddata);
4598				adapter->alloc_rx_buff_failed++;
4599				break;
4600			}
4601
4602			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4603				/* give up */
4604				e1000_free_frag(data);
4605				e1000_free_frag(olddata);
4606				adapter->alloc_rx_buff_failed++;
4607				break;
4608			}
4609
4610			/* Use new allocation */
4611			e1000_free_frag(olddata);
4612		}
4613		buffer_info->dma = dma_map_single(&pdev->dev,
4614						  data,
4615						  adapter->rx_buffer_len,
4616						  DMA_FROM_DEVICE);
4617		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4618			e1000_free_frag(data);
4619			buffer_info->dma = 0;
4620			adapter->alloc_rx_buff_failed++;
4621			break;
4622		}
4623
4624		/* XXX if it was allocated cleanly it will never map to a
4625		 * boundary crossing
4626		 */
4627
4628		/* Fix for errata 23, can't cross 64kB boundary */
4629		if (!e1000_check_64k_bound(adapter,
4630					(void *)(unsigned long)buffer_info->dma,
4631					adapter->rx_buffer_len)) {
4632			e_err(rx_err, "dma align check failed: %u bytes at "
4633			      "%p\n", adapter->rx_buffer_len,
4634			      (void *)(unsigned long)buffer_info->dma);
4635
4636			dma_unmap_single(&pdev->dev, buffer_info->dma,
4637					 adapter->rx_buffer_len,
4638					 DMA_FROM_DEVICE);
4639
4640			e1000_free_frag(data);
4641			buffer_info->rxbuf.data = NULL;
4642			buffer_info->dma = 0;
4643
4644			adapter->alloc_rx_buff_failed++;
4645			break;
4646		}
4647		buffer_info->rxbuf.data = data;
4648 skip:
4649		rx_desc = E1000_RX_DESC(*rx_ring, i);
4650		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4651
4652		if (unlikely(++i == rx_ring->count))
4653			i = 0;
4654		buffer_info = &rx_ring->buffer_info[i];
4655	}
4656
4657	if (likely(rx_ring->next_to_use != i)) {
4658		rx_ring->next_to_use = i;
4659		if (unlikely(i-- == 0))
4660			i = (rx_ring->count - 1);
4661
4662		/* Force memory writes to complete before letting h/w
4663		 * know there are new descriptors to fetch.  (Only
4664		 * applicable for weak-ordered memory model archs,
4665		 * such as IA-64).
4666		 */
4667		wmb();
4668		writel(i, hw->hw_addr + rx_ring->rdt);
4669	}
4670}
4671
4672/**
4673 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4674 * @adapter:
4675 **/
4676static void e1000_smartspeed(struct e1000_adapter *adapter)
4677{
4678	struct e1000_hw *hw = &adapter->hw;
4679	u16 phy_status;
4680	u16 phy_ctrl;
4681
4682	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4683	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4684		return;
4685
4686	if (adapter->smartspeed == 0) {
4687		/* If Master/Slave config fault is asserted twice,
4688		 * we assume back-to-back
4689		 */
4690		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4692		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4694		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4695		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4696			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4697			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4698					    phy_ctrl);
4699			adapter->smartspeed++;
4700			if (!e1000_phy_setup_autoneg(hw) &&
4701			   !e1000_read_phy_reg(hw, PHY_CTRL,
4702					       &phy_ctrl)) {
4703				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4704					     MII_CR_RESTART_AUTO_NEG);
4705				e1000_write_phy_reg(hw, PHY_CTRL,
4706						    phy_ctrl);
4707			}
4708		}
4709		return;
4710	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4711		/* If still no link, perhaps using 2/3 pair cable */
4712		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4713		phy_ctrl |= CR_1000T_MS_ENABLE;
4714		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4715		if (!e1000_phy_setup_autoneg(hw) &&
4716		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4717			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4718				     MII_CR_RESTART_AUTO_NEG);
4719			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4720		}
4721	}
4722	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4723	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4724		adapter->smartspeed = 0;
4725}
4726
4727/**
4728 * e1000_ioctl -
4729 * @netdev:
4730 * @ifreq:
4731 * @cmd:
4732 **/
4733static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4734{
4735	switch (cmd) {
4736	case SIOCGMIIPHY:
4737	case SIOCGMIIREG:
4738	case SIOCSMIIREG:
4739		return e1000_mii_ioctl(netdev, ifr, cmd);
4740	default:
4741		return -EOPNOTSUPP;
4742	}
4743}
4744
4745/**
4746 * e1000_mii_ioctl -
4747 * @netdev:
4748 * @ifreq:
4749 * @cmd:
4750 **/
4751static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4752			   int cmd)
4753{
4754	struct e1000_adapter *adapter = netdev_priv(netdev);
4755	struct e1000_hw *hw = &adapter->hw;
4756	struct mii_ioctl_data *data = if_mii(ifr);
4757	int retval;
4758	u16 mii_reg;
4759	unsigned long flags;
4760
4761	if (hw->media_type != e1000_media_type_copper)
4762		return -EOPNOTSUPP;
4763
4764	switch (cmd) {
4765	case SIOCGMIIPHY:
4766		data->phy_id = hw->phy_addr;
4767		break;
4768	case SIOCGMIIREG:
4769		spin_lock_irqsave(&adapter->stats_lock, flags);
4770		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4771				   &data->val_out)) {
4772			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4773			return -EIO;
4774		}
4775		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776		break;
4777	case SIOCSMIIREG:
4778		if (data->reg_num & ~(0x1F))
4779			return -EFAULT;
4780		mii_reg = data->val_in;
4781		spin_lock_irqsave(&adapter->stats_lock, flags);
4782		if (e1000_write_phy_reg(hw, data->reg_num,
4783					mii_reg)) {
4784			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4785			return -EIO;
4786		}
4787		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4788		if (hw->media_type == e1000_media_type_copper) {
4789			switch (data->reg_num) {
4790			case PHY_CTRL:
4791				if (mii_reg & MII_CR_POWER_DOWN)
4792					break;
4793				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4794					hw->autoneg = 1;
4795					hw->autoneg_advertised = 0x2F;
4796				} else {
4797					u32 speed;
4798					if (mii_reg & 0x40)
4799						speed = SPEED_1000;
4800					else if (mii_reg & 0x2000)
4801						speed = SPEED_100;
4802					else
4803						speed = SPEED_10;
4804					retval = e1000_set_spd_dplx(
4805						adapter, speed,
4806						((mii_reg & 0x100)
4807						 ? DUPLEX_FULL :
4808						 DUPLEX_HALF));
4809					if (retval)
4810						return retval;
4811				}
4812				if (netif_running(adapter->netdev))
4813					e1000_reinit_locked(adapter);
4814				else
4815					e1000_reset(adapter);
4816				break;
4817			case M88E1000_PHY_SPEC_CTRL:
4818			case M88E1000_EXT_PHY_SPEC_CTRL:
4819				if (e1000_phy_reset(hw))
4820					return -EIO;
4821				break;
4822			}
4823		} else {
4824			switch (data->reg_num) {
4825			case PHY_CTRL:
4826				if (mii_reg & MII_CR_POWER_DOWN)
4827					break;
4828				if (netif_running(adapter->netdev))
4829					e1000_reinit_locked(adapter);
4830				else
4831					e1000_reset(adapter);
4832				break;
4833			}
4834		}
4835		break;
4836	default:
4837		return -EOPNOTSUPP;
4838	}
4839	return E1000_SUCCESS;
4840}
4841
4842void e1000_pci_set_mwi(struct e1000_hw *hw)
4843{
4844	struct e1000_adapter *adapter = hw->back;
4845	int ret_val = pci_set_mwi(adapter->pdev);
4846
4847	if (ret_val)
4848		e_err(probe, "Error in setting MWI\n");
4849}
4850
4851void e1000_pci_clear_mwi(struct e1000_hw *hw)
4852{
4853	struct e1000_adapter *adapter = hw->back;
4854
4855	pci_clear_mwi(adapter->pdev);
4856}
4857
4858int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4859{
4860	struct e1000_adapter *adapter = hw->back;
4861	return pcix_get_mmrbc(adapter->pdev);
4862}
4863
4864void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4865{
4866	struct e1000_adapter *adapter = hw->back;
4867	pcix_set_mmrbc(adapter->pdev, mmrbc);
4868}
4869
4870void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4871{
4872	outl(value, port);
4873}
4874
4875static bool e1000_vlan_used(struct e1000_adapter *adapter)
4876{
4877	u16 vid;
4878
4879	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4880		return true;
4881	return false;
4882}
4883
4884static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4885			      netdev_features_t features)
4886{
4887	struct e1000_hw *hw = &adapter->hw;
4888	u32 ctrl;
4889
4890	ctrl = er32(CTRL);
4891	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4892		/* enable VLAN tag insert/strip */
4893		ctrl |= E1000_CTRL_VME;
4894	} else {
4895		/* disable VLAN tag insert/strip */
4896		ctrl &= ~E1000_CTRL_VME;
4897	}
4898	ew32(CTRL, ctrl);
4899}
4900static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4901				     bool filter_on)
4902{
4903	struct e1000_hw *hw = &adapter->hw;
4904	u32 rctl;
4905
4906	if (!test_bit(__E1000_DOWN, &adapter->flags))
4907		e1000_irq_disable(adapter);
4908
4909	__e1000_vlan_mode(adapter, adapter->netdev->features);
4910	if (filter_on) {
4911		/* enable VLAN receive filtering */
4912		rctl = er32(RCTL);
4913		rctl &= ~E1000_RCTL_CFIEN;
4914		if (!(adapter->netdev->flags & IFF_PROMISC))
4915			rctl |= E1000_RCTL_VFE;
4916		ew32(RCTL, rctl);
4917		e1000_update_mng_vlan(adapter);
4918	} else {
4919		/* disable VLAN receive filtering */
4920		rctl = er32(RCTL);
4921		rctl &= ~E1000_RCTL_VFE;
4922		ew32(RCTL, rctl);
4923	}
4924
4925	if (!test_bit(__E1000_DOWN, &adapter->flags))
4926		e1000_irq_enable(adapter);
4927}
4928
4929static void e1000_vlan_mode(struct net_device *netdev,
4930			    netdev_features_t features)
4931{
4932	struct e1000_adapter *adapter = netdev_priv(netdev);
4933
4934	if (!test_bit(__E1000_DOWN, &adapter->flags))
4935		e1000_irq_disable(adapter);
4936
4937	__e1000_vlan_mode(adapter, features);
4938
4939	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940		e1000_irq_enable(adapter);
4941}
4942
4943static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4944				 __be16 proto, u16 vid)
4945{
4946	struct e1000_adapter *adapter = netdev_priv(netdev);
4947	struct e1000_hw *hw = &adapter->hw;
4948	u32 vfta, index;
4949
4950	if ((hw->mng_cookie.status &
4951	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4952	    (vid == adapter->mng_vlan_id))
4953		return 0;
4954
4955	if (!e1000_vlan_used(adapter))
4956		e1000_vlan_filter_on_off(adapter, true);
4957
4958	/* add VID to filter table */
4959	index = (vid >> 5) & 0x7F;
4960	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4961	vfta |= (1 << (vid & 0x1F));
4962	e1000_write_vfta(hw, index, vfta);
4963
4964	set_bit(vid, adapter->active_vlans);
4965
4966	return 0;
4967}
4968
4969static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4970				  __be16 proto, u16 vid)
4971{
4972	struct e1000_adapter *adapter = netdev_priv(netdev);
4973	struct e1000_hw *hw = &adapter->hw;
4974	u32 vfta, index;
4975
4976	if (!test_bit(__E1000_DOWN, &adapter->flags))
4977		e1000_irq_disable(adapter);
4978	if (!test_bit(__E1000_DOWN, &adapter->flags))
4979		e1000_irq_enable(adapter);
4980
4981	/* remove VID from filter table */
4982	index = (vid >> 5) & 0x7F;
4983	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4984	vfta &= ~(1 << (vid & 0x1F));
4985	e1000_write_vfta(hw, index, vfta);
4986
4987	clear_bit(vid, adapter->active_vlans);
4988
4989	if (!e1000_vlan_used(adapter))
4990		e1000_vlan_filter_on_off(adapter, false);
4991
4992	return 0;
4993}
4994
4995static void e1000_restore_vlan(struct e1000_adapter *adapter)
4996{
4997	u16 vid;
4998
4999	if (!e1000_vlan_used(adapter))
5000		return;
5001
5002	e1000_vlan_filter_on_off(adapter, true);
5003	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5004		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5005}
5006
5007int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5008{
5009	struct e1000_hw *hw = &adapter->hw;
5010
5011	hw->autoneg = 0;
5012
5013	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5014	 * for the switch() below to work
5015	 */
5016	if ((spd & 1) || (dplx & ~1))
5017		goto err_inval;
5018
5019	/* Fiber NICs only allow 1000 gbps Full duplex */
5020	if ((hw->media_type == e1000_media_type_fiber) &&
5021	    spd != SPEED_1000 &&
5022	    dplx != DUPLEX_FULL)
5023		goto err_inval;
5024
5025	switch (spd + dplx) {
5026	case SPEED_10 + DUPLEX_HALF:
5027		hw->forced_speed_duplex = e1000_10_half;
5028		break;
5029	case SPEED_10 + DUPLEX_FULL:
5030		hw->forced_speed_duplex = e1000_10_full;
5031		break;
5032	case SPEED_100 + DUPLEX_HALF:
5033		hw->forced_speed_duplex = e1000_100_half;
5034		break;
5035	case SPEED_100 + DUPLEX_FULL:
5036		hw->forced_speed_duplex = e1000_100_full;
5037		break;
5038	case SPEED_1000 + DUPLEX_FULL:
5039		hw->autoneg = 1;
5040		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5041		break;
5042	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5043	default:
5044		goto err_inval;
5045	}
5046
5047	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5048	hw->mdix = AUTO_ALL_MODES;
5049
5050	return 0;
5051
5052err_inval:
5053	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5054	return -EINVAL;
5055}
5056
5057static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5058{
5059	struct net_device *netdev = pci_get_drvdata(pdev);
5060	struct e1000_adapter *adapter = netdev_priv(netdev);
5061	struct e1000_hw *hw = &adapter->hw;
5062	u32 ctrl, ctrl_ext, rctl, status;
5063	u32 wufc = adapter->wol;
5064#ifdef CONFIG_PM
5065	int retval = 0;
5066#endif
5067
5068	netif_device_detach(netdev);
5069
5070	if (netif_running(netdev)) {
5071		int count = E1000_CHECK_RESET_COUNT;
5072
5073		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5074			usleep_range(10000, 20000);
5075
5076		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5077		e1000_down(adapter);
5078	}
5079
5080#ifdef CONFIG_PM
5081	retval = pci_save_state(pdev);
5082	if (retval)
5083		return retval;
5084#endif
5085
5086	status = er32(STATUS);
5087	if (status & E1000_STATUS_LU)
5088		wufc &= ~E1000_WUFC_LNKC;
5089
5090	if (wufc) {
5091		e1000_setup_rctl(adapter);
5092		e1000_set_rx_mode(netdev);
5093
5094		rctl = er32(RCTL);
5095
5096		/* turn on all-multi mode if wake on multicast is enabled */
5097		if (wufc & E1000_WUFC_MC)
5098			rctl |= E1000_RCTL_MPE;
5099
5100		/* enable receives in the hardware */
5101		ew32(RCTL, rctl | E1000_RCTL_EN);
5102
5103		if (hw->mac_type >= e1000_82540) {
5104			ctrl = er32(CTRL);
5105			/* advertise wake from D3Cold */
5106			#define E1000_CTRL_ADVD3WUC 0x00100000
5107			/* phy power management enable */
5108			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5109			ctrl |= E1000_CTRL_ADVD3WUC |
5110				E1000_CTRL_EN_PHY_PWR_MGMT;
5111			ew32(CTRL, ctrl);
5112		}
5113
5114		if (hw->media_type == e1000_media_type_fiber ||
5115		    hw->media_type == e1000_media_type_internal_serdes) {
5116			/* keep the laser running in D3 */
5117			ctrl_ext = er32(CTRL_EXT);
5118			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5119			ew32(CTRL_EXT, ctrl_ext);
5120		}
5121
5122		ew32(WUC, E1000_WUC_PME_EN);
5123		ew32(WUFC, wufc);
5124	} else {
5125		ew32(WUC, 0);
5126		ew32(WUFC, 0);
5127	}
5128
5129	e1000_release_manageability(adapter);
5130
5131	*enable_wake = !!wufc;
5132
5133	/* make sure adapter isn't asleep if manageability is enabled */
5134	if (adapter->en_mng_pt)
5135		*enable_wake = true;
5136
5137	if (netif_running(netdev))
5138		e1000_free_irq(adapter);
5139
5140	pci_disable_device(pdev);
5141
5142	return 0;
5143}
5144
5145#ifdef CONFIG_PM
5146static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5147{
5148	int retval;
5149	bool wake;
5150
5151	retval = __e1000_shutdown(pdev, &wake);
5152	if (retval)
5153		return retval;
5154
5155	if (wake) {
5156		pci_prepare_to_sleep(pdev);
5157	} else {
5158		pci_wake_from_d3(pdev, false);
5159		pci_set_power_state(pdev, PCI_D3hot);
5160	}
5161
5162	return 0;
5163}
5164
5165static int e1000_resume(struct pci_dev *pdev)
5166{
5167	struct net_device *netdev = pci_get_drvdata(pdev);
5168	struct e1000_adapter *adapter = netdev_priv(netdev);
5169	struct e1000_hw *hw = &adapter->hw;
5170	u32 err;
5171
5172	pci_set_power_state(pdev, PCI_D0);
5173	pci_restore_state(pdev);
5174	pci_save_state(pdev);
5175
5176	if (adapter->need_ioport)
5177		err = pci_enable_device(pdev);
5178	else
5179		err = pci_enable_device_mem(pdev);
5180	if (err) {
5181		pr_err("Cannot enable PCI device from suspend\n");
5182		return err;
5183	}
5184	pci_set_master(pdev);
5185
5186	pci_enable_wake(pdev, PCI_D3hot, 0);
5187	pci_enable_wake(pdev, PCI_D3cold, 0);
5188
5189	if (netif_running(netdev)) {
5190		err = e1000_request_irq(adapter);
5191		if (err)
5192			return err;
5193	}
5194
5195	e1000_power_up_phy(adapter);
5196	e1000_reset(adapter);
5197	ew32(WUS, ~0);
5198
5199	e1000_init_manageability(adapter);
5200
5201	if (netif_running(netdev))
5202		e1000_up(adapter);
5203
5204	netif_device_attach(netdev);
5205
5206	return 0;
5207}
5208#endif
5209
5210static void e1000_shutdown(struct pci_dev *pdev)
5211{
5212	bool wake;
5213
5214	__e1000_shutdown(pdev, &wake);
5215
5216	if (system_state == SYSTEM_POWER_OFF) {
5217		pci_wake_from_d3(pdev, wake);
5218		pci_set_power_state(pdev, PCI_D3hot);
5219	}
5220}
5221
5222#ifdef CONFIG_NET_POLL_CONTROLLER
5223/* Polling 'interrupt' - used by things like netconsole to send skbs
5224 * without having to re-enable interrupts. It's not called while
5225 * the interrupt routine is executing.
5226 */
5227static void e1000_netpoll(struct net_device *netdev)
5228{
5229	struct e1000_adapter *adapter = netdev_priv(netdev);
5230
5231	disable_irq(adapter->pdev->irq);
5232	e1000_intr(adapter->pdev->irq, netdev);
5233	enable_irq(adapter->pdev->irq);
5234}
5235#endif
5236
5237/**
5238 * e1000_io_error_detected - called when PCI error is detected
5239 * @pdev: Pointer to PCI device
5240 * @state: The current pci connection state
5241 *
5242 * This function is called after a PCI bus error affecting
5243 * this device has been detected.
5244 */
5245static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5246						pci_channel_state_t state)
5247{
5248	struct net_device *netdev = pci_get_drvdata(pdev);
5249	struct e1000_adapter *adapter = netdev_priv(netdev);
5250
5251	netif_device_detach(netdev);
5252
5253	if (state == pci_channel_io_perm_failure)
5254		return PCI_ERS_RESULT_DISCONNECT;
5255
5256	if (netif_running(netdev))
5257		e1000_down(adapter);
5258	pci_disable_device(pdev);
5259
5260	/* Request a slot slot reset. */
5261	return PCI_ERS_RESULT_NEED_RESET;
5262}
5263
5264/**
5265 * e1000_io_slot_reset - called after the pci bus has been reset.
5266 * @pdev: Pointer to PCI device
5267 *
5268 * Restart the card from scratch, as if from a cold-boot. Implementation
5269 * resembles the first-half of the e1000_resume routine.
5270 */
5271static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5272{
5273	struct net_device *netdev = pci_get_drvdata(pdev);
5274	struct e1000_adapter *adapter = netdev_priv(netdev);
5275	struct e1000_hw *hw = &adapter->hw;
5276	int err;
5277
5278	if (adapter->need_ioport)
5279		err = pci_enable_device(pdev);
5280	else
5281		err = pci_enable_device_mem(pdev);
5282	if (err) {
5283		pr_err("Cannot re-enable PCI device after reset.\n");
5284		return PCI_ERS_RESULT_DISCONNECT;
5285	}
5286	pci_set_master(pdev);
5287
5288	pci_enable_wake(pdev, PCI_D3hot, 0);
5289	pci_enable_wake(pdev, PCI_D3cold, 0);
5290
5291	e1000_reset(adapter);
5292	ew32(WUS, ~0);
5293
5294	return PCI_ERS_RESULT_RECOVERED;
5295}
5296
5297/**
5298 * e1000_io_resume - called when traffic can start flowing again.
5299 * @pdev: Pointer to PCI device
5300 *
5301 * This callback is called when the error recovery driver tells us that
5302 * its OK to resume normal operation. Implementation resembles the
5303 * second-half of the e1000_resume routine.
5304 */
5305static void e1000_io_resume(struct pci_dev *pdev)
5306{
5307	struct net_device *netdev = pci_get_drvdata(pdev);
5308	struct e1000_adapter *adapter = netdev_priv(netdev);
5309
5310	e1000_init_manageability(adapter);
5311
5312	if (netif_running(netdev)) {
5313		if (e1000_up(adapter)) {
5314			pr_info("can't bring device back up after reset\n");
5315			return;
5316		}
5317	}
5318
5319	netif_device_attach(netdev);
5320}
5321
5322/* e1000_main.c */
5323