1/*******************************************************************************
2 * Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2006 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 *
22 ******************************************************************************/
23
24/* ethtool support for e1000 */
25
26#include "e1000.h"
27#include <linux/jiffies.h>
28#include <linux/uaccess.h>
29
30enum {NETDEV_STATS, E1000_STATS};
31
32struct e1000_stats {
33	char stat_string[ETH_GSTRING_LEN];
34	int type;
35	int sizeof_stat;
36	int stat_offset;
37};
38
39#define E1000_STAT(m)		E1000_STATS, \
40				sizeof(((struct e1000_adapter *)0)->m), \
41				offsetof(struct e1000_adapter, m)
42#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
43				sizeof(((struct net_device *)0)->m), \
44				offsetof(struct net_device, m)
45
46static const struct e1000_stats e1000_gstrings_stats[] = {
47	{ "rx_packets", E1000_STAT(stats.gprc) },
48	{ "tx_packets", E1000_STAT(stats.gptc) },
49	{ "rx_bytes", E1000_STAT(stats.gorcl) },
50	{ "tx_bytes", E1000_STAT(stats.gotcl) },
51	{ "rx_broadcast", E1000_STAT(stats.bprc) },
52	{ "tx_broadcast", E1000_STAT(stats.bptc) },
53	{ "rx_multicast", E1000_STAT(stats.mprc) },
54	{ "tx_multicast", E1000_STAT(stats.mptc) },
55	{ "rx_errors", E1000_STAT(stats.rxerrc) },
56	{ "tx_errors", E1000_STAT(stats.txerrc) },
57	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58	{ "multicast", E1000_STAT(stats.mprc) },
59	{ "collisions", E1000_STAT(stats.colc) },
60	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
61	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
66	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
67	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70	{ "tx_window_errors", E1000_STAT(stats.latecol) },
71	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
73	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
74	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76	{ "tx_restart_queue", E1000_STAT(restart_queue) },
77	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
78	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
79	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
80	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90	{ "tx_smbus", E1000_STAT(stats.mgptc) },
91	{ "rx_smbus", E1000_STAT(stats.mgprc) },
92	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
93};
94
95#define E1000_QUEUE_STATS_LEN 0
96#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99	"Register test  (offline)", "Eeprom test    (offline)",
100	"Interrupt test (offline)", "Loopback test  (offline)",
101	"Link test   (on/offline)"
102};
103
104#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
105
106static int e1000_get_settings(struct net_device *netdev,
107			      struct ethtool_cmd *ecmd)
108{
109	struct e1000_adapter *adapter = netdev_priv(netdev);
110	struct e1000_hw *hw = &adapter->hw;
111
112	if (hw->media_type == e1000_media_type_copper) {
113		ecmd->supported = (SUPPORTED_10baseT_Half |
114				   SUPPORTED_10baseT_Full |
115				   SUPPORTED_100baseT_Half |
116				   SUPPORTED_100baseT_Full |
117				   SUPPORTED_1000baseT_Full|
118				   SUPPORTED_Autoneg |
119				   SUPPORTED_TP);
120		ecmd->advertising = ADVERTISED_TP;
121
122		if (hw->autoneg == 1) {
123			ecmd->advertising |= ADVERTISED_Autoneg;
124			/* the e1000 autoneg seems to match ethtool nicely */
125			ecmd->advertising |= hw->autoneg_advertised;
126		}
127
128		ecmd->port = PORT_TP;
129		ecmd->phy_address = hw->phy_addr;
130
131		if (hw->mac_type == e1000_82543)
132			ecmd->transceiver = XCVR_EXTERNAL;
133		else
134			ecmd->transceiver = XCVR_INTERNAL;
135
136	} else {
137		ecmd->supported   = (SUPPORTED_1000baseT_Full |
138				     SUPPORTED_FIBRE |
139				     SUPPORTED_Autoneg);
140
141		ecmd->advertising = (ADVERTISED_1000baseT_Full |
142				     ADVERTISED_FIBRE |
143				     ADVERTISED_Autoneg);
144
145		ecmd->port = PORT_FIBRE;
146
147		if (hw->mac_type >= e1000_82545)
148			ecmd->transceiver = XCVR_INTERNAL;
149		else
150			ecmd->transceiver = XCVR_EXTERNAL;
151	}
152
153	if (er32(STATUS) & E1000_STATUS_LU) {
154		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155					   &adapter->link_duplex);
156		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
157
158		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
159		 * and HALF_DUPLEX != DUPLEX_HALF
160		 */
161		if (adapter->link_duplex == FULL_DUPLEX)
162			ecmd->duplex = DUPLEX_FULL;
163		else
164			ecmd->duplex = DUPLEX_HALF;
165	} else {
166		ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
167		ecmd->duplex = DUPLEX_UNKNOWN;
168	}
169
170	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172
173	/* MDI-X => 1; MDI => 0 */
174	if ((hw->media_type == e1000_media_type_copper) &&
175	    netif_carrier_ok(netdev))
176		ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
177				     ETH_TP_MDI_X : ETH_TP_MDI);
178	else
179		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
180
181	if (hw->mdix == AUTO_ALL_MODES)
182		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
183	else
184		ecmd->eth_tp_mdix_ctrl = hw->mdix;
185	return 0;
186}
187
188static int e1000_set_settings(struct net_device *netdev,
189			      struct ethtool_cmd *ecmd)
190{
191	struct e1000_adapter *adapter = netdev_priv(netdev);
192	struct e1000_hw *hw = &adapter->hw;
193
194	/* MDI setting is only allowed when autoneg enabled because
195	 * some hardware doesn't allow MDI setting when speed or
196	 * duplex is forced.
197	 */
198	if (ecmd->eth_tp_mdix_ctrl) {
199		if (hw->media_type != e1000_media_type_copper)
200			return -EOPNOTSUPP;
201
202		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203		    (ecmd->autoneg != AUTONEG_ENABLE)) {
204			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205			return -EINVAL;
206		}
207	}
208
209	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210		msleep(1);
211
212	if (ecmd->autoneg == AUTONEG_ENABLE) {
213		hw->autoneg = 1;
214		if (hw->media_type == e1000_media_type_fiber)
215			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216				     ADVERTISED_FIBRE |
217				     ADVERTISED_Autoneg;
218		else
219			hw->autoneg_advertised = ecmd->advertising |
220						 ADVERTISED_TP |
221						 ADVERTISED_Autoneg;
222		ecmd->advertising = hw->autoneg_advertised;
223	} else {
224		u32 speed = ethtool_cmd_speed(ecmd);
225		/* calling this overrides forced MDI setting */
226		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
227			clear_bit(__E1000_RESETTING, &adapter->flags);
228			return -EINVAL;
229		}
230	}
231
232	/* MDI-X => 2; MDI => 1; Auto => 3 */
233	if (ecmd->eth_tp_mdix_ctrl) {
234		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
235			hw->mdix = AUTO_ALL_MODES;
236		else
237			hw->mdix = ecmd->eth_tp_mdix_ctrl;
238	}
239
240	/* reset the link */
241
242	if (netif_running(adapter->netdev)) {
243		e1000_down(adapter);
244		e1000_up(adapter);
245	} else {
246		e1000_reset(adapter);
247	}
248	clear_bit(__E1000_RESETTING, &adapter->flags);
249	return 0;
250}
251
252static u32 e1000_get_link(struct net_device *netdev)
253{
254	struct e1000_adapter *adapter = netdev_priv(netdev);
255
256	/* If the link is not reported up to netdev, interrupts are disabled,
257	 * and so the physical link state may have changed since we last
258	 * looked. Set get_link_status to make sure that the true link
259	 * state is interrogated, rather than pulling a cached and possibly
260	 * stale link state from the driver.
261	 */
262	if (!netif_carrier_ok(netdev))
263		adapter->hw.get_link_status = 1;
264
265	return e1000_has_link(adapter);
266}
267
268static void e1000_get_pauseparam(struct net_device *netdev,
269				 struct ethtool_pauseparam *pause)
270{
271	struct e1000_adapter *adapter = netdev_priv(netdev);
272	struct e1000_hw *hw = &adapter->hw;
273
274	pause->autoneg =
275		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
276
277	if (hw->fc == E1000_FC_RX_PAUSE) {
278		pause->rx_pause = 1;
279	} else if (hw->fc == E1000_FC_TX_PAUSE) {
280		pause->tx_pause = 1;
281	} else if (hw->fc == E1000_FC_FULL) {
282		pause->rx_pause = 1;
283		pause->tx_pause = 1;
284	}
285}
286
287static int e1000_set_pauseparam(struct net_device *netdev,
288				struct ethtool_pauseparam *pause)
289{
290	struct e1000_adapter *adapter = netdev_priv(netdev);
291	struct e1000_hw *hw = &adapter->hw;
292	int retval = 0;
293
294	adapter->fc_autoneg = pause->autoneg;
295
296	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
297		msleep(1);
298
299	if (pause->rx_pause && pause->tx_pause)
300		hw->fc = E1000_FC_FULL;
301	else if (pause->rx_pause && !pause->tx_pause)
302		hw->fc = E1000_FC_RX_PAUSE;
303	else if (!pause->rx_pause && pause->tx_pause)
304		hw->fc = E1000_FC_TX_PAUSE;
305	else if (!pause->rx_pause && !pause->tx_pause)
306		hw->fc = E1000_FC_NONE;
307
308	hw->original_fc = hw->fc;
309
310	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311		if (netif_running(adapter->netdev)) {
312			e1000_down(adapter);
313			e1000_up(adapter);
314		} else {
315			e1000_reset(adapter);
316		}
317	} else
318		retval = ((hw->media_type == e1000_media_type_fiber) ?
319			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
320
321	clear_bit(__E1000_RESETTING, &adapter->flags);
322	return retval;
323}
324
325static u32 e1000_get_msglevel(struct net_device *netdev)
326{
327	struct e1000_adapter *adapter = netdev_priv(netdev);
328
329	return adapter->msg_enable;
330}
331
332static void e1000_set_msglevel(struct net_device *netdev, u32 data)
333{
334	struct e1000_adapter *adapter = netdev_priv(netdev);
335
336	adapter->msg_enable = data;
337}
338
339static int e1000_get_regs_len(struct net_device *netdev)
340{
341#define E1000_REGS_LEN 32
342	return E1000_REGS_LEN * sizeof(u32);
343}
344
345static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
346			   void *p)
347{
348	struct e1000_adapter *adapter = netdev_priv(netdev);
349	struct e1000_hw *hw = &adapter->hw;
350	u32 *regs_buff = p;
351	u16 phy_data;
352
353	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
354
355	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356
357	regs_buff[0]  = er32(CTRL);
358	regs_buff[1]  = er32(STATUS);
359
360	regs_buff[2]  = er32(RCTL);
361	regs_buff[3]  = er32(RDLEN);
362	regs_buff[4]  = er32(RDH);
363	regs_buff[5]  = er32(RDT);
364	regs_buff[6]  = er32(RDTR);
365
366	regs_buff[7]  = er32(TCTL);
367	regs_buff[8]  = er32(TDLEN);
368	regs_buff[9]  = er32(TDH);
369	regs_buff[10] = er32(TDT);
370	regs_buff[11] = er32(TIDV);
371
372	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
373	if (hw->phy_type == e1000_phy_igp) {
374		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
375				    IGP01E1000_PHY_AGC_A);
376		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
377				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
378		regs_buff[13] = (u32)phy_data; /* cable length */
379		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380				    IGP01E1000_PHY_AGC_B);
381		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
382				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383		regs_buff[14] = (u32)phy_data; /* cable length */
384		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385				    IGP01E1000_PHY_AGC_C);
386		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
387				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388		regs_buff[15] = (u32)phy_data; /* cable length */
389		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390				    IGP01E1000_PHY_AGC_D);
391		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
392				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393		regs_buff[16] = (u32)phy_data; /* cable length */
394		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
395		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
396		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
397				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398		regs_buff[18] = (u32)phy_data; /* cable polarity */
399		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400				    IGP01E1000_PHY_PCS_INIT_REG);
401		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
402				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403		regs_buff[19] = (u32)phy_data; /* cable polarity */
404		regs_buff[20] = 0; /* polarity correction enabled (always) */
405		regs_buff[22] = 0; /* phy receive errors (unavailable) */
406		regs_buff[23] = regs_buff[18]; /* mdix mode */
407		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408	} else {
409		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
410		regs_buff[13] = (u32)phy_data; /* cable length */
411		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
416		regs_buff[18] = regs_buff[13]; /* cable polarity */
417		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
418		regs_buff[20] = regs_buff[17]; /* polarity correction */
419		/* phy receive errors */
420		regs_buff[22] = adapter->phy_stats.receive_errors;
421		regs_buff[23] = regs_buff[13]; /* mdix mode */
422	}
423	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
424	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
425	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
426	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
427	if (hw->mac_type >= e1000_82540 &&
428	    hw->media_type == e1000_media_type_copper) {
429		regs_buff[26] = er32(MANC);
430	}
431}
432
433static int e1000_get_eeprom_len(struct net_device *netdev)
434{
435	struct e1000_adapter *adapter = netdev_priv(netdev);
436	struct e1000_hw *hw = &adapter->hw;
437
438	return hw->eeprom.word_size * 2;
439}
440
441static int e1000_get_eeprom(struct net_device *netdev,
442			    struct ethtool_eeprom *eeprom, u8 *bytes)
443{
444	struct e1000_adapter *adapter = netdev_priv(netdev);
445	struct e1000_hw *hw = &adapter->hw;
446	u16 *eeprom_buff;
447	int first_word, last_word;
448	int ret_val = 0;
449	u16 i;
450
451	if (eeprom->len == 0)
452		return -EINVAL;
453
454	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455
456	first_word = eeprom->offset >> 1;
457	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458
459	eeprom_buff = kmalloc(sizeof(u16) *
460			(last_word - first_word + 1), GFP_KERNEL);
461	if (!eeprom_buff)
462		return -ENOMEM;
463
464	if (hw->eeprom.type == e1000_eeprom_spi)
465		ret_val = e1000_read_eeprom(hw, first_word,
466					    last_word - first_word + 1,
467					    eeprom_buff);
468	else {
469		for (i = 0; i < last_word - first_word + 1; i++) {
470			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
471						    &eeprom_buff[i]);
472			if (ret_val)
473				break;
474		}
475	}
476
477	/* Device's eeprom is always little-endian, word addressable */
478	for (i = 0; i < last_word - first_word + 1; i++)
479		le16_to_cpus(&eeprom_buff[i]);
480
481	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
482	       eeprom->len);
483	kfree(eeprom_buff);
484
485	return ret_val;
486}
487
488static int e1000_set_eeprom(struct net_device *netdev,
489			    struct ethtool_eeprom *eeprom, u8 *bytes)
490{
491	struct e1000_adapter *adapter = netdev_priv(netdev);
492	struct e1000_hw *hw = &adapter->hw;
493	u16 *eeprom_buff;
494	void *ptr;
495	int max_len, first_word, last_word, ret_val = 0;
496	u16 i;
497
498	if (eeprom->len == 0)
499		return -EOPNOTSUPP;
500
501	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502		return -EFAULT;
503
504	max_len = hw->eeprom.word_size * 2;
505
506	first_word = eeprom->offset >> 1;
507	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
509	if (!eeprom_buff)
510		return -ENOMEM;
511
512	ptr = (void *)eeprom_buff;
513
514	if (eeprom->offset & 1) {
515		/* need read/modify/write of first changed EEPROM word
516		 * only the second byte of the word is being modified
517		 */
518		ret_val = e1000_read_eeprom(hw, first_word, 1,
519					    &eeprom_buff[0]);
520		ptr++;
521	}
522	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
523		/* need read/modify/write of last changed EEPROM word
524		 * only the first byte of the word is being modified
525		 */
526		ret_val = e1000_read_eeprom(hw, last_word, 1,
527					    &eeprom_buff[last_word - first_word]);
528	}
529
530	/* Device's eeprom is always little-endian, word addressable */
531	for (i = 0; i < last_word - first_word + 1; i++)
532		le16_to_cpus(&eeprom_buff[i]);
533
534	memcpy(ptr, bytes, eeprom->len);
535
536	for (i = 0; i < last_word - first_word + 1; i++)
537		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539	ret_val = e1000_write_eeprom(hw, first_word,
540				     last_word - first_word + 1, eeprom_buff);
541
542	/* Update the checksum over the first part of the EEPROM if needed */
543	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544		e1000_update_eeprom_checksum(hw);
545
546	kfree(eeprom_buff);
547	return ret_val;
548}
549
550static void e1000_get_drvinfo(struct net_device *netdev,
551			      struct ethtool_drvinfo *drvinfo)
552{
553	struct e1000_adapter *adapter = netdev_priv(netdev);
554
555	strlcpy(drvinfo->driver,  e1000_driver_name,
556		sizeof(drvinfo->driver));
557	strlcpy(drvinfo->version, e1000_driver_version,
558		sizeof(drvinfo->version));
559
560	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
561		sizeof(drvinfo->bus_info));
562	drvinfo->regdump_len = e1000_get_regs_len(netdev);
563	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
564}
565
566static void e1000_get_ringparam(struct net_device *netdev,
567				struct ethtool_ringparam *ring)
568{
569	struct e1000_adapter *adapter = netdev_priv(netdev);
570	struct e1000_hw *hw = &adapter->hw;
571	e1000_mac_type mac_type = hw->mac_type;
572	struct e1000_tx_ring *txdr = adapter->tx_ring;
573	struct e1000_rx_ring *rxdr = adapter->rx_ring;
574
575	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
576		E1000_MAX_82544_RXD;
577	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
578		E1000_MAX_82544_TXD;
579	ring->rx_pending = rxdr->count;
580	ring->tx_pending = txdr->count;
581}
582
583static int e1000_set_ringparam(struct net_device *netdev,
584			       struct ethtool_ringparam *ring)
585{
586	struct e1000_adapter *adapter = netdev_priv(netdev);
587	struct e1000_hw *hw = &adapter->hw;
588	e1000_mac_type mac_type = hw->mac_type;
589	struct e1000_tx_ring *txdr, *tx_old;
590	struct e1000_rx_ring *rxdr, *rx_old;
591	int i, err;
592
593	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
594		return -EINVAL;
595
596	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
597		msleep(1);
598
599	if (netif_running(adapter->netdev))
600		e1000_down(adapter);
601
602	tx_old = adapter->tx_ring;
603	rx_old = adapter->rx_ring;
604
605	err = -ENOMEM;
606	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
607		       GFP_KERNEL);
608	if (!txdr)
609		goto err_alloc_tx;
610
611	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
612		       GFP_KERNEL);
613	if (!rxdr)
614		goto err_alloc_rx;
615
616	adapter->tx_ring = txdr;
617	adapter->rx_ring = rxdr;
618
619	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
620	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
621			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
622	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
623	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
624	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
625			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
626	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
627
628	for (i = 0; i < adapter->num_tx_queues; i++)
629		txdr[i].count = txdr->count;
630	for (i = 0; i < adapter->num_rx_queues; i++)
631		rxdr[i].count = rxdr->count;
632
633	if (netif_running(adapter->netdev)) {
634		/* Try to get new resources before deleting old */
635		err = e1000_setup_all_rx_resources(adapter);
636		if (err)
637			goto err_setup_rx;
638		err = e1000_setup_all_tx_resources(adapter);
639		if (err)
640			goto err_setup_tx;
641
642		/* save the new, restore the old in order to free it,
643		 * then restore the new back again
644		 */
645
646		adapter->rx_ring = rx_old;
647		adapter->tx_ring = tx_old;
648		e1000_free_all_rx_resources(adapter);
649		e1000_free_all_tx_resources(adapter);
650		kfree(tx_old);
651		kfree(rx_old);
652		adapter->rx_ring = rxdr;
653		adapter->tx_ring = txdr;
654		err = e1000_up(adapter);
655		if (err)
656			goto err_setup;
657	}
658
659	clear_bit(__E1000_RESETTING, &adapter->flags);
660	return 0;
661err_setup_tx:
662	e1000_free_all_rx_resources(adapter);
663err_setup_rx:
664	adapter->rx_ring = rx_old;
665	adapter->tx_ring = tx_old;
666	kfree(rxdr);
667err_alloc_rx:
668	kfree(txdr);
669err_alloc_tx:
670	e1000_up(adapter);
671err_setup:
672	clear_bit(__E1000_RESETTING, &adapter->flags);
673	return err;
674}
675
676static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
677			     u32 mask, u32 write)
678{
679	struct e1000_hw *hw = &adapter->hw;
680	static const u32 test[] = {
681		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
682	};
683	u8 __iomem *address = hw->hw_addr + reg;
684	u32 read;
685	int i;
686
687	for (i = 0; i < ARRAY_SIZE(test); i++) {
688		writel(write & test[i], address);
689		read = readl(address);
690		if (read != (write & test[i] & mask)) {
691			e_err(drv, "pattern test reg %04X failed: "
692			      "got 0x%08X expected 0x%08X\n",
693			      reg, read, (write & test[i] & mask));
694			*data = reg;
695			return true;
696		}
697	}
698	return false;
699}
700
701static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
702			      u32 mask, u32 write)
703{
704	struct e1000_hw *hw = &adapter->hw;
705	u8 __iomem *address = hw->hw_addr + reg;
706	u32 read;
707
708	writel(write & mask, address);
709	read = readl(address);
710	if ((read & mask) != (write & mask)) {
711		e_err(drv, "set/check reg %04X test failed: "
712		      "got 0x%08X expected 0x%08X\n",
713		      reg, (read & mask), (write & mask));
714		*data = reg;
715		return true;
716	}
717	return false;
718}
719
720#define REG_PATTERN_TEST(reg, mask, write)			     \
721	do {							     \
722		if (reg_pattern_test(adapter, data,		     \
723			     (hw->mac_type >= e1000_82543)   \
724			     ? E1000_##reg : E1000_82542_##reg,	     \
725			     mask, write))			     \
726			return 1;				     \
727	} while (0)
728
729#define REG_SET_AND_CHECK(reg, mask, write)			     \
730	do {							     \
731		if (reg_set_and_check(adapter, data,		     \
732			      (hw->mac_type >= e1000_82543)  \
733			      ? E1000_##reg : E1000_82542_##reg,     \
734			      mask, write))			     \
735			return 1;				     \
736	} while (0)
737
738static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
739{
740	u32 value, before, after;
741	u32 i, toggle;
742	struct e1000_hw *hw = &adapter->hw;
743
744	/* The status register is Read Only, so a write should fail.
745	 * Some bits that get toggled are ignored.
746	 */
747
748	/* there are several bits on newer hardware that are r/w */
749	toggle = 0xFFFFF833;
750
751	before = er32(STATUS);
752	value = (er32(STATUS) & toggle);
753	ew32(STATUS, toggle);
754	after = er32(STATUS) & toggle;
755	if (value != after) {
756		e_err(drv, "failed STATUS register test got: "
757		      "0x%08X expected: 0x%08X\n", after, value);
758		*data = 1;
759		return 1;
760	}
761	/* restore previous status */
762	ew32(STATUS, before);
763
764	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
765	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
766	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
767	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
768
769	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
770	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
771	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
772	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
773	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
774	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
775	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
776	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
777	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
778	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
779
780	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
781
782	before = 0x06DFB3FE;
783	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
784	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
785
786	if (hw->mac_type >= e1000_82543) {
787		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
788		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
790		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
792		value = E1000_RAR_ENTRIES;
793		for (i = 0; i < value; i++) {
794			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
795					 0x8003FFFF, 0xFFFFFFFF);
796		}
797	} else {
798		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
799		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
800		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
801		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
802	}
803
804	value = E1000_MC_TBL_SIZE;
805	for (i = 0; i < value; i++)
806		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
807
808	*data = 0;
809	return 0;
810}
811
812static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
813{
814	struct e1000_hw *hw = &adapter->hw;
815	u16 temp;
816	u16 checksum = 0;
817	u16 i;
818
819	*data = 0;
820	/* Read and add up the contents of the EEPROM */
821	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
822		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
823			*data = 1;
824			break;
825		}
826		checksum += temp;
827	}
828
829	/* If Checksum is not Correct return error else test passed */
830	if ((checksum != (u16)EEPROM_SUM) && !(*data))
831		*data = 2;
832
833	return *data;
834}
835
836static irqreturn_t e1000_test_intr(int irq, void *data)
837{
838	struct net_device *netdev = (struct net_device *)data;
839	struct e1000_adapter *adapter = netdev_priv(netdev);
840	struct e1000_hw *hw = &adapter->hw;
841
842	adapter->test_icr |= er32(ICR);
843
844	return IRQ_HANDLED;
845}
846
847static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
848{
849	struct net_device *netdev = adapter->netdev;
850	u32 mask, i = 0;
851	bool shared_int = true;
852	u32 irq = adapter->pdev->irq;
853	struct e1000_hw *hw = &adapter->hw;
854
855	*data = 0;
856
857	/* NOTE: we don't test MSI interrupts here, yet
858	 * Hook up test interrupt handler just for this test
859	 */
860	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
861			 netdev))
862		shared_int = false;
863	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
864			     netdev->name, netdev)) {
865		*data = 1;
866		return -1;
867	}
868	e_info(hw, "testing %s interrupt\n", (shared_int ?
869	       "shared" : "unshared"));
870
871	/* Disable all the interrupts */
872	ew32(IMC, 0xFFFFFFFF);
873	E1000_WRITE_FLUSH();
874	msleep(10);
875
876	/* Test each interrupt */
877	for (; i < 10; i++) {
878		/* Interrupt to test */
879		mask = 1 << i;
880
881		if (!shared_int) {
882			/* Disable the interrupt to be reported in
883			 * the cause register and then force the same
884			 * interrupt and see if one gets posted.  If
885			 * an interrupt was posted to the bus, the
886			 * test failed.
887			 */
888			adapter->test_icr = 0;
889			ew32(IMC, mask);
890			ew32(ICS, mask);
891			E1000_WRITE_FLUSH();
892			msleep(10);
893
894			if (adapter->test_icr & mask) {
895				*data = 3;
896				break;
897			}
898		}
899
900		/* Enable the interrupt to be reported in
901		 * the cause register and then force the same
902		 * interrupt and see if one gets posted.  If
903		 * an interrupt was not posted to the bus, the
904		 * test failed.
905		 */
906		adapter->test_icr = 0;
907		ew32(IMS, mask);
908		ew32(ICS, mask);
909		E1000_WRITE_FLUSH();
910		msleep(10);
911
912		if (!(adapter->test_icr & mask)) {
913			*data = 4;
914			break;
915		}
916
917		if (!shared_int) {
918			/* Disable the other interrupts to be reported in
919			 * the cause register and then force the other
920			 * interrupts and see if any get posted.  If
921			 * an interrupt was posted to the bus, the
922			 * test failed.
923			 */
924			adapter->test_icr = 0;
925			ew32(IMC, ~mask & 0x00007FFF);
926			ew32(ICS, ~mask & 0x00007FFF);
927			E1000_WRITE_FLUSH();
928			msleep(10);
929
930			if (adapter->test_icr) {
931				*data = 5;
932				break;
933			}
934		}
935	}
936
937	/* Disable all the interrupts */
938	ew32(IMC, 0xFFFFFFFF);
939	E1000_WRITE_FLUSH();
940	msleep(10);
941
942	/* Unhook test interrupt handler */
943	free_irq(irq, netdev);
944
945	return *data;
946}
947
948static void e1000_free_desc_rings(struct e1000_adapter *adapter)
949{
950	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
951	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
952	struct pci_dev *pdev = adapter->pdev;
953	int i;
954
955	if (txdr->desc && txdr->buffer_info) {
956		for (i = 0; i < txdr->count; i++) {
957			if (txdr->buffer_info[i].dma)
958				dma_unmap_single(&pdev->dev,
959						 txdr->buffer_info[i].dma,
960						 txdr->buffer_info[i].length,
961						 DMA_TO_DEVICE);
962			if (txdr->buffer_info[i].skb)
963				dev_kfree_skb(txdr->buffer_info[i].skb);
964		}
965	}
966
967	if (rxdr->desc && rxdr->buffer_info) {
968		for (i = 0; i < rxdr->count; i++) {
969			if (rxdr->buffer_info[i].dma)
970				dma_unmap_single(&pdev->dev,
971						 rxdr->buffer_info[i].dma,
972						 E1000_RXBUFFER_2048,
973						 DMA_FROM_DEVICE);
974			kfree(rxdr->buffer_info[i].rxbuf.data);
975		}
976	}
977
978	if (txdr->desc) {
979		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
980				  txdr->dma);
981		txdr->desc = NULL;
982	}
983	if (rxdr->desc) {
984		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
985				  rxdr->dma);
986		rxdr->desc = NULL;
987	}
988
989	kfree(txdr->buffer_info);
990	txdr->buffer_info = NULL;
991	kfree(rxdr->buffer_info);
992	rxdr->buffer_info = NULL;
993}
994
995static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
996{
997	struct e1000_hw *hw = &adapter->hw;
998	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
999	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1000	struct pci_dev *pdev = adapter->pdev;
1001	u32 rctl;
1002	int i, ret_val;
1003
1004	/* Setup Tx descriptor ring and Tx buffers */
1005
1006	if (!txdr->count)
1007		txdr->count = E1000_DEFAULT_TXD;
1008
1009	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1010				    GFP_KERNEL);
1011	if (!txdr->buffer_info) {
1012		ret_val = 1;
1013		goto err_nomem;
1014	}
1015
1016	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1017	txdr->size = ALIGN(txdr->size, 4096);
1018	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1019					 GFP_KERNEL);
1020	if (!txdr->desc) {
1021		ret_val = 2;
1022		goto err_nomem;
1023	}
1024	txdr->next_to_use = txdr->next_to_clean = 0;
1025
1026	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1027	ew32(TDBAH, ((u64)txdr->dma >> 32));
1028	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1029	ew32(TDH, 0);
1030	ew32(TDT, 0);
1031	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1032	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1033	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1034
1035	for (i = 0; i < txdr->count; i++) {
1036		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1037		struct sk_buff *skb;
1038		unsigned int size = 1024;
1039
1040		skb = alloc_skb(size, GFP_KERNEL);
1041		if (!skb) {
1042			ret_val = 3;
1043			goto err_nomem;
1044		}
1045		skb_put(skb, size);
1046		txdr->buffer_info[i].skb = skb;
1047		txdr->buffer_info[i].length = skb->len;
1048		txdr->buffer_info[i].dma =
1049			dma_map_single(&pdev->dev, skb->data, skb->len,
1050				       DMA_TO_DEVICE);
1051		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1052			ret_val = 4;
1053			goto err_nomem;
1054		}
1055		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1056		tx_desc->lower.data = cpu_to_le32(skb->len);
1057		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1058						   E1000_TXD_CMD_IFCS |
1059						   E1000_TXD_CMD_RPS);
1060		tx_desc->upper.data = 0;
1061	}
1062
1063	/* Setup Rx descriptor ring and Rx buffers */
1064
1065	if (!rxdr->count)
1066		rxdr->count = E1000_DEFAULT_RXD;
1067
1068	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1069				    GFP_KERNEL);
1070	if (!rxdr->buffer_info) {
1071		ret_val = 5;
1072		goto err_nomem;
1073	}
1074
1075	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1076	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1077					 GFP_KERNEL);
1078	if (!rxdr->desc) {
1079		ret_val = 6;
1080		goto err_nomem;
1081	}
1082	rxdr->next_to_use = rxdr->next_to_clean = 0;
1083
1084	rctl = er32(RCTL);
1085	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1086	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1087	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1088	ew32(RDLEN, rxdr->size);
1089	ew32(RDH, 0);
1090	ew32(RDT, 0);
1091	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1092		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1093		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1094	ew32(RCTL, rctl);
1095
1096	for (i = 0; i < rxdr->count; i++) {
1097		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1098		u8 *buf;
1099
1100		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1101			      GFP_KERNEL);
1102		if (!buf) {
1103			ret_val = 7;
1104			goto err_nomem;
1105		}
1106		rxdr->buffer_info[i].rxbuf.data = buf;
1107
1108		rxdr->buffer_info[i].dma =
1109			dma_map_single(&pdev->dev,
1110				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1111				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1112		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1113			ret_val = 8;
1114			goto err_nomem;
1115		}
1116		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1117	}
1118
1119	return 0;
1120
1121err_nomem:
1122	e1000_free_desc_rings(adapter);
1123	return ret_val;
1124}
1125
1126static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1127{
1128	struct e1000_hw *hw = &adapter->hw;
1129
1130	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1131	e1000_write_phy_reg(hw, 29, 0x001F);
1132	e1000_write_phy_reg(hw, 30, 0x8FFC);
1133	e1000_write_phy_reg(hw, 29, 0x001A);
1134	e1000_write_phy_reg(hw, 30, 0x8FF0);
1135}
1136
1137static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1138{
1139	struct e1000_hw *hw = &adapter->hw;
1140	u16 phy_reg;
1141
1142	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1143	 * Extended PHY Specific Control Register to 25MHz clock.  This
1144	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1145	 */
1146	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1147	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1148	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149
1150	/* In addition, because of the s/w reset above, we need to enable
1151	 * CRS on TX.  This must be set for both full and half duplex
1152	 * operation.
1153	 */
1154	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1157}
1158
1159static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1160{
1161	struct e1000_hw *hw = &adapter->hw;
1162	u32 ctrl_reg;
1163	u16 phy_reg;
1164
1165	/* Setup the Device Control Register for PHY loopback test. */
1166
1167	ctrl_reg = er32(CTRL);
1168	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1169		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1170		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1171		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1172		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1173
1174	ew32(CTRL, ctrl_reg);
1175
1176	/* Read the PHY Specific Control Register (0x10) */
1177	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178
1179	/* Clear Auto-Crossover bits in PHY Specific Control Register
1180	 * (bits 6:5).
1181	 */
1182	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1183	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1184
1185	/* Perform software reset on the PHY */
1186	e1000_phy_reset(hw);
1187
1188	/* Have to setup TX_CLK and TX_CRS after software reset */
1189	e1000_phy_reset_clk_and_crs(adapter);
1190
1191	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1192
1193	/* Wait for reset to complete. */
1194	udelay(500);
1195
1196	/* Have to setup TX_CLK and TX_CRS after software reset */
1197	e1000_phy_reset_clk_and_crs(adapter);
1198
1199	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1200	e1000_phy_disable_receiver(adapter);
1201
1202	/* Set the loopback bit in the PHY control register. */
1203	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1204	phy_reg |= MII_CR_LOOPBACK;
1205	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1206
1207	/* Setup TX_CLK and TX_CRS one more time. */
1208	e1000_phy_reset_clk_and_crs(adapter);
1209
1210	/* Check Phy Configuration */
1211	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1212	if (phy_reg != 0x4100)
1213		return 9;
1214
1215	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1216	if (phy_reg != 0x0070)
1217		return 10;
1218
1219	e1000_read_phy_reg(hw, 29, &phy_reg);
1220	if (phy_reg != 0x001A)
1221		return 11;
1222
1223	return 0;
1224}
1225
1226static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1227{
1228	struct e1000_hw *hw = &adapter->hw;
1229	u32 ctrl_reg = 0;
1230	u32 stat_reg = 0;
1231
1232	hw->autoneg = false;
1233
1234	if (hw->phy_type == e1000_phy_m88) {
1235		/* Auto-MDI/MDIX Off */
1236		e1000_write_phy_reg(hw,
1237				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1238		/* reset to update Auto-MDI/MDIX */
1239		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1240		/* autoneg off */
1241		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1242	}
1243
1244	ctrl_reg = er32(CTRL);
1245
1246	/* force 1000, set loopback */
1247	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1248
1249	/* Now set up the MAC to the same speed/duplex as the PHY. */
1250	ctrl_reg = er32(CTRL);
1251	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1255			E1000_CTRL_FD); /* Force Duplex to FULL */
1256
1257	if (hw->media_type == e1000_media_type_copper &&
1258	    hw->phy_type == e1000_phy_m88)
1259		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1260	else {
1261		/* Set the ILOS bit on the fiber Nic is half
1262		 * duplex link is detected.
1263		 */
1264		stat_reg = er32(STATUS);
1265		if ((stat_reg & E1000_STATUS_FD) == 0)
1266			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267	}
1268
1269	ew32(CTRL, ctrl_reg);
1270
1271	/* Disable the receiver on the PHY so when a cable is plugged in, the
1272	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273	 */
1274	if (hw->phy_type == e1000_phy_m88)
1275		e1000_phy_disable_receiver(adapter);
1276
1277	udelay(500);
1278
1279	return 0;
1280}
1281
1282static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283{
1284	struct e1000_hw *hw = &adapter->hw;
1285	u16 phy_reg = 0;
1286	u16 count = 0;
1287
1288	switch (hw->mac_type) {
1289	case e1000_82543:
1290		if (hw->media_type == e1000_media_type_copper) {
1291			/* Attempt to setup Loopback mode on Non-integrated PHY.
1292			 * Some PHY registers get corrupted at random, so
1293			 * attempt this 10 times.
1294			 */
1295			while (e1000_nonintegrated_phy_loopback(adapter) &&
1296			       count++ < 10);
1297			if (count < 11)
1298				return 0;
1299		}
1300		break;
1301
1302	case e1000_82544:
1303	case e1000_82540:
1304	case e1000_82545:
1305	case e1000_82545_rev_3:
1306	case e1000_82546:
1307	case e1000_82546_rev_3:
1308	case e1000_82541:
1309	case e1000_82541_rev_2:
1310	case e1000_82547:
1311	case e1000_82547_rev_2:
1312		return e1000_integrated_phy_loopback(adapter);
1313	default:
1314		/* Default PHY loopback work is to read the MII
1315		 * control register and assert bit 14 (loopback mode).
1316		 */
1317		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1318		phy_reg |= MII_CR_LOOPBACK;
1319		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1320		return 0;
1321	}
1322
1323	return 8;
1324}
1325
1326static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1327{
1328	struct e1000_hw *hw = &adapter->hw;
1329	u32 rctl;
1330
1331	if (hw->media_type == e1000_media_type_fiber ||
1332	    hw->media_type == e1000_media_type_internal_serdes) {
1333		switch (hw->mac_type) {
1334		case e1000_82545:
1335		case e1000_82546:
1336		case e1000_82545_rev_3:
1337		case e1000_82546_rev_3:
1338			return e1000_set_phy_loopback(adapter);
1339		default:
1340			rctl = er32(RCTL);
1341			rctl |= E1000_RCTL_LBM_TCVR;
1342			ew32(RCTL, rctl);
1343			return 0;
1344		}
1345	} else if (hw->media_type == e1000_media_type_copper) {
1346		return e1000_set_phy_loopback(adapter);
1347	}
1348
1349	return 7;
1350}
1351
1352static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1353{
1354	struct e1000_hw *hw = &adapter->hw;
1355	u32 rctl;
1356	u16 phy_reg;
1357
1358	rctl = er32(RCTL);
1359	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1360	ew32(RCTL, rctl);
1361
1362	switch (hw->mac_type) {
1363	case e1000_82545:
1364	case e1000_82546:
1365	case e1000_82545_rev_3:
1366	case e1000_82546_rev_3:
1367	default:
1368		hw->autoneg = true;
1369		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1370		if (phy_reg & MII_CR_LOOPBACK) {
1371			phy_reg &= ~MII_CR_LOOPBACK;
1372			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1373			e1000_phy_reset(hw);
1374		}
1375		break;
1376	}
1377}
1378
1379static void e1000_create_lbtest_frame(struct sk_buff *skb,
1380				      unsigned int frame_size)
1381{
1382	memset(skb->data, 0xFF, frame_size);
1383	frame_size &= ~1;
1384	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1385	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1386	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1387}
1388
1389static int e1000_check_lbtest_frame(const unsigned char *data,
1390				    unsigned int frame_size)
1391{
1392	frame_size &= ~1;
1393	if (*(data + 3) == 0xFF) {
1394		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1395		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1396			return 0;
1397		}
1398	}
1399	return 13;
1400}
1401
1402static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1403{
1404	struct e1000_hw *hw = &adapter->hw;
1405	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1406	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1407	struct pci_dev *pdev = adapter->pdev;
1408	int i, j, k, l, lc, good_cnt, ret_val = 0;
1409	unsigned long time;
1410
1411	ew32(RDT, rxdr->count - 1);
1412
1413	/* Calculate the loop count based on the largest descriptor ring
1414	 * The idea is to wrap the largest ring a number of times using 64
1415	 * send/receive pairs during each loop
1416	 */
1417
1418	if (rxdr->count <= txdr->count)
1419		lc = ((txdr->count / 64) * 2) + 1;
1420	else
1421		lc = ((rxdr->count / 64) * 2) + 1;
1422
1423	k = l = 0;
1424	for (j = 0; j <= lc; j++) { /* loop count loop */
1425		for (i = 0; i < 64; i++) { /* send the packets */
1426			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1427						  1024);
1428			dma_sync_single_for_device(&pdev->dev,
1429						   txdr->buffer_info[k].dma,
1430						   txdr->buffer_info[k].length,
1431						   DMA_TO_DEVICE);
1432			if (unlikely(++k == txdr->count))
1433				k = 0;
1434		}
1435		ew32(TDT, k);
1436		E1000_WRITE_FLUSH();
1437		msleep(200);
1438		time = jiffies; /* set the start time for the receive */
1439		good_cnt = 0;
1440		do { /* receive the sent packets */
1441			dma_sync_single_for_cpu(&pdev->dev,
1442						rxdr->buffer_info[l].dma,
1443						E1000_RXBUFFER_2048,
1444						DMA_FROM_DEVICE);
1445
1446			ret_val = e1000_check_lbtest_frame(
1447					rxdr->buffer_info[l].rxbuf.data +
1448					NET_SKB_PAD + NET_IP_ALIGN,
1449					1024);
1450			if (!ret_val)
1451				good_cnt++;
1452			if (unlikely(++l == rxdr->count))
1453				l = 0;
1454			/* time + 20 msecs (200 msecs on 2.4) is more than
1455			 * enough time to complete the receives, if it's
1456			 * exceeded, break and error off
1457			 */
1458		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1459
1460		if (good_cnt != 64) {
1461			ret_val = 13; /* ret_val is the same as mis-compare */
1462			break;
1463		}
1464		if (time_after_eq(jiffies, time + 2)) {
1465			ret_val = 14; /* error code for time out error */
1466			break;
1467		}
1468	} /* end loop count loop */
1469	return ret_val;
1470}
1471
1472static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1473{
1474	*data = e1000_setup_desc_rings(adapter);
1475	if (*data)
1476		goto out;
1477	*data = e1000_setup_loopback_test(adapter);
1478	if (*data)
1479		goto err_loopback;
1480	*data = e1000_run_loopback_test(adapter);
1481	e1000_loopback_cleanup(adapter);
1482
1483err_loopback:
1484	e1000_free_desc_rings(adapter);
1485out:
1486	return *data;
1487}
1488
1489static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1490{
1491	struct e1000_hw *hw = &adapter->hw;
1492	*data = 0;
1493	if (hw->media_type == e1000_media_type_internal_serdes) {
1494		int i = 0;
1495
1496		hw->serdes_has_link = false;
1497
1498		/* On some blade server designs, link establishment
1499		 * could take as long as 2-3 minutes
1500		 */
1501		do {
1502			e1000_check_for_link(hw);
1503			if (hw->serdes_has_link)
1504				return *data;
1505			msleep(20);
1506		} while (i++ < 3750);
1507
1508		*data = 1;
1509	} else {
1510		e1000_check_for_link(hw);
1511		if (hw->autoneg)  /* if auto_neg is set wait for it */
1512			msleep(4000);
1513
1514		if (!(er32(STATUS) & E1000_STATUS_LU))
1515			*data = 1;
1516	}
1517	return *data;
1518}
1519
1520static int e1000_get_sset_count(struct net_device *netdev, int sset)
1521{
1522	switch (sset) {
1523	case ETH_SS_TEST:
1524		return E1000_TEST_LEN;
1525	case ETH_SS_STATS:
1526		return E1000_STATS_LEN;
1527	default:
1528		return -EOPNOTSUPP;
1529	}
1530}
1531
1532static void e1000_diag_test(struct net_device *netdev,
1533			    struct ethtool_test *eth_test, u64 *data)
1534{
1535	struct e1000_adapter *adapter = netdev_priv(netdev);
1536	struct e1000_hw *hw = &adapter->hw;
1537	bool if_running = netif_running(netdev);
1538
1539	set_bit(__E1000_TESTING, &adapter->flags);
1540	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1541		/* Offline tests */
1542
1543		/* save speed, duplex, autoneg settings */
1544		u16 autoneg_advertised = hw->autoneg_advertised;
1545		u8 forced_speed_duplex = hw->forced_speed_duplex;
1546		u8 autoneg = hw->autoneg;
1547
1548		e_info(hw, "offline testing starting\n");
1549
1550		/* Link test performed before hardware reset so autoneg doesn't
1551		 * interfere with test result
1552		 */
1553		if (e1000_link_test(adapter, &data[4]))
1554			eth_test->flags |= ETH_TEST_FL_FAILED;
1555
1556		if (if_running)
1557			/* indicate we're in test mode */
1558			dev_close(netdev);
1559		else
1560			e1000_reset(adapter);
1561
1562		if (e1000_reg_test(adapter, &data[0]))
1563			eth_test->flags |= ETH_TEST_FL_FAILED;
1564
1565		e1000_reset(adapter);
1566		if (e1000_eeprom_test(adapter, &data[1]))
1567			eth_test->flags |= ETH_TEST_FL_FAILED;
1568
1569		e1000_reset(adapter);
1570		if (e1000_intr_test(adapter, &data[2]))
1571			eth_test->flags |= ETH_TEST_FL_FAILED;
1572
1573		e1000_reset(adapter);
1574		/* make sure the phy is powered up */
1575		e1000_power_up_phy(adapter);
1576		if (e1000_loopback_test(adapter, &data[3]))
1577			eth_test->flags |= ETH_TEST_FL_FAILED;
1578
1579		/* restore speed, duplex, autoneg settings */
1580		hw->autoneg_advertised = autoneg_advertised;
1581		hw->forced_speed_duplex = forced_speed_duplex;
1582		hw->autoneg = autoneg;
1583
1584		e1000_reset(adapter);
1585		clear_bit(__E1000_TESTING, &adapter->flags);
1586		if (if_running)
1587			dev_open(netdev);
1588	} else {
1589		e_info(hw, "online testing starting\n");
1590		/* Online tests */
1591		if (e1000_link_test(adapter, &data[4]))
1592			eth_test->flags |= ETH_TEST_FL_FAILED;
1593
1594		/* Online tests aren't run; pass by default */
1595		data[0] = 0;
1596		data[1] = 0;
1597		data[2] = 0;
1598		data[3] = 0;
1599
1600		clear_bit(__E1000_TESTING, &adapter->flags);
1601	}
1602	msleep_interruptible(4 * 1000);
1603}
1604
1605static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1606			       struct ethtool_wolinfo *wol)
1607{
1608	struct e1000_hw *hw = &adapter->hw;
1609	int retval = 1; /* fail by default */
1610
1611	switch (hw->device_id) {
1612	case E1000_DEV_ID_82542:
1613	case E1000_DEV_ID_82543GC_FIBER:
1614	case E1000_DEV_ID_82543GC_COPPER:
1615	case E1000_DEV_ID_82544EI_FIBER:
1616	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1617	case E1000_DEV_ID_82545EM_FIBER:
1618	case E1000_DEV_ID_82545EM_COPPER:
1619	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1620	case E1000_DEV_ID_82546GB_PCIE:
1621		/* these don't support WoL at all */
1622		wol->supported = 0;
1623		break;
1624	case E1000_DEV_ID_82546EB_FIBER:
1625	case E1000_DEV_ID_82546GB_FIBER:
1626		/* Wake events not supported on port B */
1627		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1628			wol->supported = 0;
1629			break;
1630		}
1631		/* return success for non excluded adapter ports */
1632		retval = 0;
1633		break;
1634	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1635		/* quad port adapters only support WoL on port A */
1636		if (!adapter->quad_port_a) {
1637			wol->supported = 0;
1638			break;
1639		}
1640		/* return success for non excluded adapter ports */
1641		retval = 0;
1642		break;
1643	default:
1644		/* dual port cards only support WoL on port A from now on
1645		 * unless it was enabled in the eeprom for port B
1646		 * so exclude FUNC_1 ports from having WoL enabled
1647		 */
1648		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1649		    !adapter->eeprom_wol) {
1650			wol->supported = 0;
1651			break;
1652		}
1653
1654		retval = 0;
1655	}
1656
1657	return retval;
1658}
1659
1660static void e1000_get_wol(struct net_device *netdev,
1661			  struct ethtool_wolinfo *wol)
1662{
1663	struct e1000_adapter *adapter = netdev_priv(netdev);
1664	struct e1000_hw *hw = &adapter->hw;
1665
1666	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1667	wol->wolopts = 0;
1668
1669	/* this function will set ->supported = 0 and return 1 if wol is not
1670	 * supported by this hardware
1671	 */
1672	if (e1000_wol_exclusion(adapter, wol) ||
1673	    !device_can_wakeup(&adapter->pdev->dev))
1674		return;
1675
1676	/* apply any specific unsupported masks here */
1677	switch (hw->device_id) {
1678	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1679		/* KSP3 does not support UCAST wake-ups */
1680		wol->supported &= ~WAKE_UCAST;
1681
1682		if (adapter->wol & E1000_WUFC_EX)
1683			e_err(drv, "Interface does not support directed "
1684			      "(unicast) frame wake-up packets\n");
1685		break;
1686	default:
1687		break;
1688	}
1689
1690	if (adapter->wol & E1000_WUFC_EX)
1691		wol->wolopts |= WAKE_UCAST;
1692	if (adapter->wol & E1000_WUFC_MC)
1693		wol->wolopts |= WAKE_MCAST;
1694	if (adapter->wol & E1000_WUFC_BC)
1695		wol->wolopts |= WAKE_BCAST;
1696	if (adapter->wol & E1000_WUFC_MAG)
1697		wol->wolopts |= WAKE_MAGIC;
1698}
1699
1700static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1701{
1702	struct e1000_adapter *adapter = netdev_priv(netdev);
1703	struct e1000_hw *hw = &adapter->hw;
1704
1705	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1706		return -EOPNOTSUPP;
1707
1708	if (e1000_wol_exclusion(adapter, wol) ||
1709	    !device_can_wakeup(&adapter->pdev->dev))
1710		return wol->wolopts ? -EOPNOTSUPP : 0;
1711
1712	switch (hw->device_id) {
1713	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1714		if (wol->wolopts & WAKE_UCAST) {
1715			e_err(drv, "Interface does not support directed "
1716			      "(unicast) frame wake-up packets\n");
1717			return -EOPNOTSUPP;
1718		}
1719		break;
1720	default:
1721		break;
1722	}
1723
1724	/* these settings will always override what we currently have */
1725	adapter->wol = 0;
1726
1727	if (wol->wolopts & WAKE_UCAST)
1728		adapter->wol |= E1000_WUFC_EX;
1729	if (wol->wolopts & WAKE_MCAST)
1730		adapter->wol |= E1000_WUFC_MC;
1731	if (wol->wolopts & WAKE_BCAST)
1732		adapter->wol |= E1000_WUFC_BC;
1733	if (wol->wolopts & WAKE_MAGIC)
1734		adapter->wol |= E1000_WUFC_MAG;
1735
1736	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1737
1738	return 0;
1739}
1740
1741static int e1000_set_phys_id(struct net_device *netdev,
1742			     enum ethtool_phys_id_state state)
1743{
1744	struct e1000_adapter *adapter = netdev_priv(netdev);
1745	struct e1000_hw *hw = &adapter->hw;
1746
1747	switch (state) {
1748	case ETHTOOL_ID_ACTIVE:
1749		e1000_setup_led(hw);
1750		return 2;
1751
1752	case ETHTOOL_ID_ON:
1753		e1000_led_on(hw);
1754		break;
1755
1756	case ETHTOOL_ID_OFF:
1757		e1000_led_off(hw);
1758		break;
1759
1760	case ETHTOOL_ID_INACTIVE:
1761		e1000_cleanup_led(hw);
1762	}
1763
1764	return 0;
1765}
1766
1767static int e1000_get_coalesce(struct net_device *netdev,
1768			      struct ethtool_coalesce *ec)
1769{
1770	struct e1000_adapter *adapter = netdev_priv(netdev);
1771
1772	if (adapter->hw.mac_type < e1000_82545)
1773		return -EOPNOTSUPP;
1774
1775	if (adapter->itr_setting <= 4)
1776		ec->rx_coalesce_usecs = adapter->itr_setting;
1777	else
1778		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1779
1780	return 0;
1781}
1782
1783static int e1000_set_coalesce(struct net_device *netdev,
1784			      struct ethtool_coalesce *ec)
1785{
1786	struct e1000_adapter *adapter = netdev_priv(netdev);
1787	struct e1000_hw *hw = &adapter->hw;
1788
1789	if (hw->mac_type < e1000_82545)
1790		return -EOPNOTSUPP;
1791
1792	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1793	    ((ec->rx_coalesce_usecs > 4) &&
1794	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1795	    (ec->rx_coalesce_usecs == 2))
1796		return -EINVAL;
1797
1798	if (ec->rx_coalesce_usecs == 4) {
1799		adapter->itr = adapter->itr_setting = 4;
1800	} else if (ec->rx_coalesce_usecs <= 3) {
1801		adapter->itr = 20000;
1802		adapter->itr_setting = ec->rx_coalesce_usecs;
1803	} else {
1804		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1805		adapter->itr_setting = adapter->itr & ~3;
1806	}
1807
1808	if (adapter->itr_setting != 0)
1809		ew32(ITR, 1000000000 / (adapter->itr * 256));
1810	else
1811		ew32(ITR, 0);
1812
1813	return 0;
1814}
1815
1816static int e1000_nway_reset(struct net_device *netdev)
1817{
1818	struct e1000_adapter *adapter = netdev_priv(netdev);
1819
1820	if (netif_running(netdev))
1821		e1000_reinit_locked(adapter);
1822	return 0;
1823}
1824
1825static void e1000_get_ethtool_stats(struct net_device *netdev,
1826				    struct ethtool_stats *stats, u64 *data)
1827{
1828	struct e1000_adapter *adapter = netdev_priv(netdev);
1829	int i;
1830	char *p = NULL;
1831	const struct e1000_stats *stat = e1000_gstrings_stats;
1832
1833	e1000_update_stats(adapter);
1834	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1835		switch (stat->type) {
1836		case NETDEV_STATS:
1837			p = (char *)netdev + stat->stat_offset;
1838			break;
1839		case E1000_STATS:
1840			p = (char *)adapter + stat->stat_offset;
1841			break;
1842		default:
1843			WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1844				  stat->type, i);
1845			break;
1846		}
1847
1848		if (stat->sizeof_stat == sizeof(u64))
1849			data[i] = *(u64 *)p;
1850		else
1851			data[i] = *(u32 *)p;
1852
1853		stat++;
1854	}
1855/* BUG_ON(i != E1000_STATS_LEN); */
1856}
1857
1858static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1859			      u8 *data)
1860{
1861	u8 *p = data;
1862	int i;
1863
1864	switch (stringset) {
1865	case ETH_SS_TEST:
1866		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1867		break;
1868	case ETH_SS_STATS:
1869		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1870			memcpy(p, e1000_gstrings_stats[i].stat_string,
1871			       ETH_GSTRING_LEN);
1872			p += ETH_GSTRING_LEN;
1873		}
1874		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1875		break;
1876	}
1877}
1878
1879static const struct ethtool_ops e1000_ethtool_ops = {
1880	.get_settings		= e1000_get_settings,
1881	.set_settings		= e1000_set_settings,
1882	.get_drvinfo		= e1000_get_drvinfo,
1883	.get_regs_len		= e1000_get_regs_len,
1884	.get_regs		= e1000_get_regs,
1885	.get_wol		= e1000_get_wol,
1886	.set_wol		= e1000_set_wol,
1887	.get_msglevel		= e1000_get_msglevel,
1888	.set_msglevel		= e1000_set_msglevel,
1889	.nway_reset		= e1000_nway_reset,
1890	.get_link		= e1000_get_link,
1891	.get_eeprom_len		= e1000_get_eeprom_len,
1892	.get_eeprom		= e1000_get_eeprom,
1893	.set_eeprom		= e1000_set_eeprom,
1894	.get_ringparam		= e1000_get_ringparam,
1895	.set_ringparam		= e1000_set_ringparam,
1896	.get_pauseparam		= e1000_get_pauseparam,
1897	.set_pauseparam		= e1000_set_pauseparam,
1898	.self_test		= e1000_diag_test,
1899	.get_strings		= e1000_get_strings,
1900	.set_phys_id		= e1000_set_phys_id,
1901	.get_ethtool_stats	= e1000_get_ethtool_stats,
1902	.get_sset_count		= e1000_get_sset_count,
1903	.get_coalesce		= e1000_get_coalesce,
1904	.set_coalesce		= e1000_set_coalesce,
1905	.get_ts_info		= ethtool_op_get_ts_info,
1906};
1907
1908void e1000_set_ethtool_ops(struct net_device *netdev)
1909{
1910	netdev->ethtool_ops = &e1000_ethtool_ops;
1911}
1912