1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 *  by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/string.h>
22#include <linux/ptrace.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/spinlock.h>
32#include <linux/mii.h>
33#include <linux/ethtool.h>
34#include <linux/bitops.h>
35#include <linux/fs.h>
36#include <linux/platform_device.h>
37#include <linux/phy.h>
38#include <linux/of.h>
39#include <linux/of_mdio.h>
40#include <linux/of_platform.h>
41#include <linux/of_gpio.h>
42#include <linux/of_net.h>
43
44#include <linux/vmalloc.h>
45#include <asm/pgtable.h>
46#include <asm/irq.h>
47#include <asm/uaccess.h>
48
49#include "fs_enet.h"
50
51/*************************************************/
52
53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54MODULE_DESCRIPTION("Freescale Ethernet Driver");
55MODULE_LICENSE("GPL");
56MODULE_VERSION(DRV_MODULE_VERSION);
57
58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59module_param(fs_enet_debug, int, 0);
60MODULE_PARM_DESC(fs_enet_debug,
61		 "Freescale bitmapped debugging message enable value");
62
63#ifdef CONFIG_NET_POLL_CONTROLLER
64static void fs_enet_netpoll(struct net_device *dev);
65#endif
66
67static void fs_set_multicast_list(struct net_device *dev)
68{
69	struct fs_enet_private *fep = netdev_priv(dev);
70
71	(*fep->ops->set_multicast_list)(dev);
72}
73
74static void skb_align(struct sk_buff *skb, int align)
75{
76	int off = ((unsigned long)skb->data) & (align - 1);
77
78	if (off)
79		skb_reserve(skb, align - off);
80}
81
82/* NAPI receive function */
83static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84{
85	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86	struct net_device *dev = fep->ndev;
87	const struct fs_platform_info *fpi = fep->fpi;
88	cbd_t __iomem *bdp;
89	struct sk_buff *skb, *skbn, *skbt;
90	int received = 0;
91	u16 pkt_len, sc;
92	int curidx;
93
94	if (budget <= 0)
95		return received;
96
97	/*
98	 * First, grab all of the stats for the incoming packet.
99	 * These get messed up if we get called due to a busy condition.
100	 */
101	bdp = fep->cur_rx;
102
103	/* clear RX status bits for napi*/
104	(*fep->ops->napi_clear_rx_event)(dev);
105
106	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107		curidx = bdp - fep->rx_bd_base;
108
109		/*
110		 * Since we have allocated space to hold a complete frame,
111		 * the last indicator should be set.
112		 */
113		if ((sc & BD_ENET_RX_LAST) == 0)
114			dev_warn(fep->dev, "rcv is not +last\n");
115
116		/*
117		 * Check for errors.
118		 */
119		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121			fep->stats.rx_errors++;
122			/* Frame too long or too short. */
123			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124				fep->stats.rx_length_errors++;
125			/* Frame alignment */
126			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127				fep->stats.rx_frame_errors++;
128			/* CRC Error */
129			if (sc & BD_ENET_RX_CR)
130				fep->stats.rx_crc_errors++;
131			/* FIFO overrun */
132			if (sc & BD_ENET_RX_OV)
133				fep->stats.rx_crc_errors++;
134
135			skb = fep->rx_skbuff[curidx];
136
137			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139				DMA_FROM_DEVICE);
140
141			skbn = skb;
142
143		} else {
144			skb = fep->rx_skbuff[curidx];
145
146			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148				DMA_FROM_DEVICE);
149
150			/*
151			 * Process the incoming frame.
152			 */
153			fep->stats.rx_packets++;
154			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
155			fep->stats.rx_bytes += pkt_len + 4;
156
157			if (pkt_len <= fpi->rx_copybreak) {
158				/* +2 to make IP header L1 cache aligned */
159				skbn = netdev_alloc_skb(dev, pkt_len + 2);
160				if (skbn != NULL) {
161					skb_reserve(skbn, 2);	/* align IP header */
162					skb_copy_from_linear_data(skb,
163						      skbn->data, pkt_len);
164					/* swap */
165					skbt = skb;
166					skb = skbn;
167					skbn = skbt;
168				}
169			} else {
170				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
171
172				if (skbn)
173					skb_align(skbn, ENET_RX_ALIGN);
174			}
175
176			if (skbn != NULL) {
177				skb_put(skb, pkt_len);	/* Make room */
178				skb->protocol = eth_type_trans(skb, dev);
179				received++;
180				netif_receive_skb(skb);
181			} else {
182				fep->stats.rx_dropped++;
183				skbn = skb;
184			}
185		}
186
187		fep->rx_skbuff[curidx] = skbn;
188		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189			     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190			     DMA_FROM_DEVICE));
191		CBDW_DATLEN(bdp, 0);
192		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194		/*
195		 * Update BD pointer to next entry.
196		 */
197		if ((sc & BD_ENET_RX_WRAP) == 0)
198			bdp++;
199		else
200			bdp = fep->rx_bd_base;
201
202		(*fep->ops->rx_bd_done)(dev);
203
204		if (received >= budget)
205			break;
206	}
207
208	fep->cur_rx = bdp;
209
210	if (received < budget) {
211		/* done */
212		napi_complete(napi);
213		(*fep->ops->napi_enable_rx)(dev);
214	}
215	return received;
216}
217
218static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
219{
220	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
221						   napi_tx);
222	struct net_device *dev = fep->ndev;
223	cbd_t __iomem *bdp;
224	struct sk_buff *skb;
225	int dirtyidx, do_wake, do_restart;
226	u16 sc;
227	int has_tx_work = 0;
228
229	spin_lock(&fep->tx_lock);
230	bdp = fep->dirty_tx;
231
232	/* clear TX status bits for napi*/
233	(*fep->ops->napi_clear_tx_event)(dev);
234
235	do_wake = do_restart = 0;
236	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
237		dirtyidx = bdp - fep->tx_bd_base;
238
239		if (fep->tx_free == fep->tx_ring)
240			break;
241
242		skb = fep->tx_skbuff[dirtyidx];
243
244		/*
245		 * Check for errors.
246		 */
247		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
248			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
249
250			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
251				fep->stats.tx_heartbeat_errors++;
252			if (sc & BD_ENET_TX_LC)	/* Late collision */
253				fep->stats.tx_window_errors++;
254			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
255				fep->stats.tx_aborted_errors++;
256			if (sc & BD_ENET_TX_UN)	/* Underrun */
257				fep->stats.tx_fifo_errors++;
258			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
259				fep->stats.tx_carrier_errors++;
260
261			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
262				fep->stats.tx_errors++;
263				do_restart = 1;
264			}
265		} else
266			fep->stats.tx_packets++;
267
268		if (sc & BD_ENET_TX_READY) {
269			dev_warn(fep->dev,
270				 "HEY! Enet xmit interrupt and TX_READY.\n");
271		}
272
273		/*
274		 * Deferred means some collisions occurred during transmit,
275		 * but we eventually sent the packet OK.
276		 */
277		if (sc & BD_ENET_TX_DEF)
278			fep->stats.collisions++;
279
280		/* unmap */
281		if (fep->mapped_as_page[dirtyidx])
282			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
283				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
284		else
285			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
286					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
287
288		/*
289		 * Free the sk buffer associated with this last transmit.
290		 */
291		if (skb) {
292			dev_kfree_skb(skb);
293			fep->tx_skbuff[dirtyidx] = NULL;
294		}
295
296		/*
297		 * Update pointer to next buffer descriptor to be transmitted.
298		 */
299		if ((sc & BD_ENET_TX_WRAP) == 0)
300			bdp++;
301		else
302			bdp = fep->tx_bd_base;
303
304		/*
305		 * Since we have freed up a buffer, the ring is no longer
306		 * full.
307		 */
308		if (++fep->tx_free >= MAX_SKB_FRAGS)
309			do_wake = 1;
310		has_tx_work = 1;
311	}
312
313	fep->dirty_tx = bdp;
314
315	if (do_restart)
316		(*fep->ops->tx_restart)(dev);
317
318	if (!has_tx_work) {
319		napi_complete(napi);
320		(*fep->ops->napi_enable_tx)(dev);
321	}
322
323	spin_unlock(&fep->tx_lock);
324
325	if (do_wake)
326		netif_wake_queue(dev);
327
328	if (has_tx_work)
329		return budget;
330	return 0;
331}
332
333/*
334 * The interrupt handler.
335 * This is called from the MPC core interrupt.
336 */
337static irqreturn_t
338fs_enet_interrupt(int irq, void *dev_id)
339{
340	struct net_device *dev = dev_id;
341	struct fs_enet_private *fep;
342	const struct fs_platform_info *fpi;
343	u32 int_events;
344	u32 int_clr_events;
345	int nr, napi_ok;
346	int handled;
347
348	fep = netdev_priv(dev);
349	fpi = fep->fpi;
350
351	nr = 0;
352	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
353		nr++;
354
355		int_clr_events = int_events;
356		int_clr_events &= ~fep->ev_napi_rx;
357
358		(*fep->ops->clear_int_events)(dev, int_clr_events);
359
360		if (int_events & fep->ev_err)
361			(*fep->ops->ev_error)(dev, int_events);
362
363		if (int_events & fep->ev_rx) {
364			napi_ok = napi_schedule_prep(&fep->napi);
365
366			(*fep->ops->napi_disable_rx)(dev);
367			(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
368
369			/* NOTE: it is possible for FCCs in NAPI mode    */
370			/* to submit a spurious interrupt while in poll  */
371			if (napi_ok)
372				__napi_schedule(&fep->napi);
373		}
374
375		if (int_events & fep->ev_tx) {
376			napi_ok = napi_schedule_prep(&fep->napi_tx);
377
378			(*fep->ops->napi_disable_tx)(dev);
379			(*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
380
381			/* NOTE: it is possible for FCCs in NAPI mode    */
382			/* to submit a spurious interrupt while in poll  */
383			if (napi_ok)
384				__napi_schedule(&fep->napi_tx);
385		}
386	}
387
388	handled = nr > 0;
389	return IRQ_RETVAL(handled);
390}
391
392void fs_init_bds(struct net_device *dev)
393{
394	struct fs_enet_private *fep = netdev_priv(dev);
395	cbd_t __iomem *bdp;
396	struct sk_buff *skb;
397	int i;
398
399	fs_cleanup_bds(dev);
400
401	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
402	fep->tx_free = fep->tx_ring;
403	fep->cur_rx = fep->rx_bd_base;
404
405	/*
406	 * Initialize the receive buffer descriptors.
407	 */
408	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
409		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
410		if (skb == NULL)
411			break;
412
413		skb_align(skb, ENET_RX_ALIGN);
414		fep->rx_skbuff[i] = skb;
415		CBDW_BUFADDR(bdp,
416			dma_map_single(fep->dev, skb->data,
417				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
418				DMA_FROM_DEVICE));
419		CBDW_DATLEN(bdp, 0);	/* zero */
420		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
421			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
422	}
423	/*
424	 * if we failed, fillup remainder
425	 */
426	for (; i < fep->rx_ring; i++, bdp++) {
427		fep->rx_skbuff[i] = NULL;
428		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
429	}
430
431	/*
432	 * ...and the same for transmit.
433	 */
434	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
435		fep->tx_skbuff[i] = NULL;
436		CBDW_BUFADDR(bdp, 0);
437		CBDW_DATLEN(bdp, 0);
438		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
439	}
440}
441
442void fs_cleanup_bds(struct net_device *dev)
443{
444	struct fs_enet_private *fep = netdev_priv(dev);
445	struct sk_buff *skb;
446	cbd_t __iomem *bdp;
447	int i;
448
449	/*
450	 * Reset SKB transmit buffers.
451	 */
452	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
453		if ((skb = fep->tx_skbuff[i]) == NULL)
454			continue;
455
456		/* unmap */
457		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
458				skb->len, DMA_TO_DEVICE);
459
460		fep->tx_skbuff[i] = NULL;
461		dev_kfree_skb(skb);
462	}
463
464	/*
465	 * Reset SKB receive buffers
466	 */
467	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
468		if ((skb = fep->rx_skbuff[i]) == NULL)
469			continue;
470
471		/* unmap */
472		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
473			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
474			DMA_FROM_DEVICE);
475
476		fep->rx_skbuff[i] = NULL;
477
478		dev_kfree_skb(skb);
479	}
480}
481
482/**********************************************************************************/
483
484#ifdef CONFIG_FS_ENET_MPC5121_FEC
485/*
486 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
487 */
488static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
489					       struct sk_buff *skb)
490{
491	struct sk_buff *new_skb;
492
493	/* Alloc new skb */
494	new_skb = netdev_alloc_skb(dev, skb->len + 4);
495	if (!new_skb)
496		return NULL;
497
498	/* Make sure new skb is properly aligned */
499	skb_align(new_skb, 4);
500
501	/* Copy data to new skb ... */
502	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
503	skb_put(new_skb, skb->len);
504
505	/* ... and free an old one */
506	dev_kfree_skb_any(skb);
507
508	return new_skb;
509}
510#endif
511
512static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
513{
514	struct fs_enet_private *fep = netdev_priv(dev);
515	cbd_t __iomem *bdp;
516	int curidx;
517	u16 sc;
518	int nr_frags = skb_shinfo(skb)->nr_frags;
519	skb_frag_t *frag;
520	int len;
521
522#ifdef CONFIG_FS_ENET_MPC5121_FEC
523	if (((unsigned long)skb->data) & 0x3) {
524		skb = tx_skb_align_workaround(dev, skb);
525		if (!skb) {
526			/*
527			 * We have lost packet due to memory allocation error
528			 * in tx_skb_align_workaround(). Hopefully original
529			 * skb is still valid, so try transmit it later.
530			 */
531			return NETDEV_TX_BUSY;
532		}
533	}
534#endif
535	spin_lock(&fep->tx_lock);
536
537	/*
538	 * Fill in a Tx ring entry
539	 */
540	bdp = fep->cur_tx;
541
542	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
543		netif_stop_queue(dev);
544		spin_unlock(&fep->tx_lock);
545
546		/*
547		 * Ooops.  All transmit buffers are full.  Bail out.
548		 * This should not happen, since the tx queue should be stopped.
549		 */
550		dev_warn(fep->dev, "tx queue full!.\n");
551		return NETDEV_TX_BUSY;
552	}
553
554	curidx = bdp - fep->tx_bd_base;
555
556	len = skb->len;
557	fep->stats.tx_bytes += len;
558	if (nr_frags)
559		len -= skb->data_len;
560	fep->tx_free -= nr_frags + 1;
561	/*
562	 * Push the data cache so the CPM does not get stale memory data.
563	 */
564	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
565				skb->data, len, DMA_TO_DEVICE));
566	CBDW_DATLEN(bdp, len);
567
568	fep->mapped_as_page[curidx] = 0;
569	frag = skb_shinfo(skb)->frags;
570	while (nr_frags) {
571		CBDC_SC(bdp,
572			BD_ENET_TX_STATS | BD_ENET_TX_LAST | BD_ENET_TX_TC);
573		CBDS_SC(bdp, BD_ENET_TX_READY);
574
575		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
576			bdp++, curidx++;
577		else
578			bdp = fep->tx_bd_base, curidx = 0;
579
580		len = skb_frag_size(frag);
581		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
582						   DMA_TO_DEVICE));
583		CBDW_DATLEN(bdp, len);
584
585		fep->tx_skbuff[curidx] = NULL;
586		fep->mapped_as_page[curidx] = 1;
587
588		frag++;
589		nr_frags--;
590	}
591
592	/* Trigger transmission start */
593	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
594	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
595
596	/* note that while FEC does not have this bit
597	 * it marks it as available for software use
598	 * yay for hw reuse :) */
599	if (skb->len <= 60)
600		sc |= BD_ENET_TX_PAD;
601	CBDC_SC(bdp, BD_ENET_TX_STATS);
602	CBDS_SC(bdp, sc);
603
604	/* Save skb pointer. */
605	fep->tx_skbuff[curidx] = skb;
606
607	/* If this was the last BD in the ring, start at the beginning again. */
608	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
609		bdp++;
610	else
611		bdp = fep->tx_bd_base;
612	fep->cur_tx = bdp;
613
614	if (fep->tx_free < MAX_SKB_FRAGS)
615		netif_stop_queue(dev);
616
617	skb_tx_timestamp(skb);
618
619	(*fep->ops->tx_kickstart)(dev);
620
621	spin_unlock(&fep->tx_lock);
622
623	return NETDEV_TX_OK;
624}
625
626static void fs_timeout(struct net_device *dev)
627{
628	struct fs_enet_private *fep = netdev_priv(dev);
629	unsigned long flags;
630	int wake = 0;
631
632	fep->stats.tx_errors++;
633
634	spin_lock_irqsave(&fep->lock, flags);
635
636	if (dev->flags & IFF_UP) {
637		phy_stop(fep->phydev);
638		(*fep->ops->stop)(dev);
639		(*fep->ops->restart)(dev);
640		phy_start(fep->phydev);
641	}
642
643	phy_start(fep->phydev);
644	wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
645	spin_unlock_irqrestore(&fep->lock, flags);
646
647	if (wake)
648		netif_wake_queue(dev);
649}
650
651/*-----------------------------------------------------------------------------
652 *  generic link-change handler - should be sufficient for most cases
653 *-----------------------------------------------------------------------------*/
654static void generic_adjust_link(struct  net_device *dev)
655{
656	struct fs_enet_private *fep = netdev_priv(dev);
657	struct phy_device *phydev = fep->phydev;
658	int new_state = 0;
659
660	if (phydev->link) {
661		/* adjust to duplex mode */
662		if (phydev->duplex != fep->oldduplex) {
663			new_state = 1;
664			fep->oldduplex = phydev->duplex;
665		}
666
667		if (phydev->speed != fep->oldspeed) {
668			new_state = 1;
669			fep->oldspeed = phydev->speed;
670		}
671
672		if (!fep->oldlink) {
673			new_state = 1;
674			fep->oldlink = 1;
675		}
676
677		if (new_state)
678			fep->ops->restart(dev);
679	} else if (fep->oldlink) {
680		new_state = 1;
681		fep->oldlink = 0;
682		fep->oldspeed = 0;
683		fep->oldduplex = -1;
684	}
685
686	if (new_state && netif_msg_link(fep))
687		phy_print_status(phydev);
688}
689
690
691static void fs_adjust_link(struct net_device *dev)
692{
693	struct fs_enet_private *fep = netdev_priv(dev);
694	unsigned long flags;
695
696	spin_lock_irqsave(&fep->lock, flags);
697
698	if(fep->ops->adjust_link)
699		fep->ops->adjust_link(dev);
700	else
701		generic_adjust_link(dev);
702
703	spin_unlock_irqrestore(&fep->lock, flags);
704}
705
706static int fs_init_phy(struct net_device *dev)
707{
708	struct fs_enet_private *fep = netdev_priv(dev);
709	struct phy_device *phydev;
710	phy_interface_t iface;
711
712	fep->oldlink = 0;
713	fep->oldspeed = 0;
714	fep->oldduplex = -1;
715
716	iface = fep->fpi->use_rmii ?
717		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718
719	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
720				iface);
721	if (!phydev) {
722		dev_err(&dev->dev, "Could not attach to PHY\n");
723		return -ENODEV;
724	}
725
726	fep->phydev = phydev;
727
728	return 0;
729}
730
731static int fs_enet_open(struct net_device *dev)
732{
733	struct fs_enet_private *fep = netdev_priv(dev);
734	int r;
735	int err;
736
737	/* to initialize the fep->cur_rx,... */
738	/* not doing this, will cause a crash in fs_enet_rx_napi */
739	fs_init_bds(fep->ndev);
740
741	napi_enable(&fep->napi);
742	napi_enable(&fep->napi_tx);
743
744	/* Install our interrupt handler. */
745	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
746			"fs_enet-mac", dev);
747	if (r != 0) {
748		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
749		napi_disable(&fep->napi);
750		napi_disable(&fep->napi_tx);
751		return -EINVAL;
752	}
753
754	err = fs_init_phy(dev);
755	if (err) {
756		free_irq(fep->interrupt, dev);
757		napi_disable(&fep->napi);
758		napi_disable(&fep->napi_tx);
759		return err;
760	}
761	phy_start(fep->phydev);
762
763	netif_start_queue(dev);
764
765	return 0;
766}
767
768static int fs_enet_close(struct net_device *dev)
769{
770	struct fs_enet_private *fep = netdev_priv(dev);
771	unsigned long flags;
772
773	netif_stop_queue(dev);
774	netif_carrier_off(dev);
775	napi_disable(&fep->napi);
776	napi_disable(&fep->napi_tx);
777	phy_stop(fep->phydev);
778
779	spin_lock_irqsave(&fep->lock, flags);
780	spin_lock(&fep->tx_lock);
781	(*fep->ops->stop)(dev);
782	spin_unlock(&fep->tx_lock);
783	spin_unlock_irqrestore(&fep->lock, flags);
784
785	/* release any irqs */
786	phy_disconnect(fep->phydev);
787	fep->phydev = NULL;
788	free_irq(fep->interrupt, dev);
789
790	return 0;
791}
792
793static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
794{
795	struct fs_enet_private *fep = netdev_priv(dev);
796	return &fep->stats;
797}
798
799/*************************************************************************/
800
801static void fs_get_drvinfo(struct net_device *dev,
802			    struct ethtool_drvinfo *info)
803{
804	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
805	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
806}
807
808static int fs_get_regs_len(struct net_device *dev)
809{
810	struct fs_enet_private *fep = netdev_priv(dev);
811
812	return (*fep->ops->get_regs_len)(dev);
813}
814
815static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
816			 void *p)
817{
818	struct fs_enet_private *fep = netdev_priv(dev);
819	unsigned long flags;
820	int r, len;
821
822	len = regs->len;
823
824	spin_lock_irqsave(&fep->lock, flags);
825	r = (*fep->ops->get_regs)(dev, p, &len);
826	spin_unlock_irqrestore(&fep->lock, flags);
827
828	if (r == 0)
829		regs->version = 0;
830}
831
832static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
833{
834	struct fs_enet_private *fep = netdev_priv(dev);
835
836	if (!fep->phydev)
837		return -ENODEV;
838
839	return phy_ethtool_gset(fep->phydev, cmd);
840}
841
842static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
843{
844	struct fs_enet_private *fep = netdev_priv(dev);
845
846	if (!fep->phydev)
847		return -ENODEV;
848
849	return phy_ethtool_sset(fep->phydev, cmd);
850}
851
852static int fs_nway_reset(struct net_device *dev)
853{
854	return 0;
855}
856
857static u32 fs_get_msglevel(struct net_device *dev)
858{
859	struct fs_enet_private *fep = netdev_priv(dev);
860	return fep->msg_enable;
861}
862
863static void fs_set_msglevel(struct net_device *dev, u32 value)
864{
865	struct fs_enet_private *fep = netdev_priv(dev);
866	fep->msg_enable = value;
867}
868
869static const struct ethtool_ops fs_ethtool_ops = {
870	.get_drvinfo = fs_get_drvinfo,
871	.get_regs_len = fs_get_regs_len,
872	.get_settings = fs_get_settings,
873	.set_settings = fs_set_settings,
874	.nway_reset = fs_nway_reset,
875	.get_link = ethtool_op_get_link,
876	.get_msglevel = fs_get_msglevel,
877	.set_msglevel = fs_set_msglevel,
878	.get_regs = fs_get_regs,
879	.get_ts_info = ethtool_op_get_ts_info,
880};
881
882static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
883{
884	struct fs_enet_private *fep = netdev_priv(dev);
885
886	if (!netif_running(dev))
887		return -EINVAL;
888
889	return phy_mii_ioctl(fep->phydev, rq, cmd);
890}
891
892extern int fs_mii_connect(struct net_device *dev);
893extern void fs_mii_disconnect(struct net_device *dev);
894
895/**************************************************************************************/
896
897#ifdef CONFIG_FS_ENET_HAS_FEC
898#define IS_FEC(match) ((match)->data == &fs_fec_ops)
899#else
900#define IS_FEC(match) 0
901#endif
902
903static const struct net_device_ops fs_enet_netdev_ops = {
904	.ndo_open		= fs_enet_open,
905	.ndo_stop		= fs_enet_close,
906	.ndo_get_stats		= fs_enet_get_stats,
907	.ndo_start_xmit		= fs_enet_start_xmit,
908	.ndo_tx_timeout		= fs_timeout,
909	.ndo_set_rx_mode	= fs_set_multicast_list,
910	.ndo_do_ioctl		= fs_ioctl,
911	.ndo_validate_addr	= eth_validate_addr,
912	.ndo_set_mac_address	= eth_mac_addr,
913	.ndo_change_mtu		= eth_change_mtu,
914#ifdef CONFIG_NET_POLL_CONTROLLER
915	.ndo_poll_controller	= fs_enet_netpoll,
916#endif
917};
918
919static const struct of_device_id fs_enet_match[];
920static int fs_enet_probe(struct platform_device *ofdev)
921{
922	const struct of_device_id *match;
923	struct net_device *ndev;
924	struct fs_enet_private *fep;
925	struct fs_platform_info *fpi;
926	const u32 *data;
927	struct clk *clk;
928	int err;
929	const u8 *mac_addr;
930	const char *phy_connection_type;
931	int privsize, len, ret = -ENODEV;
932
933	match = of_match_device(fs_enet_match, &ofdev->dev);
934	if (!match)
935		return -EINVAL;
936
937	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
938	if (!fpi)
939		return -ENOMEM;
940
941	if (!IS_FEC(match)) {
942		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
943		if (!data || len != 4)
944			goto out_free_fpi;
945
946		fpi->cp_command = *data;
947	}
948
949	fpi->rx_ring = 32;
950	fpi->tx_ring = 64;
951	fpi->rx_copybreak = 240;
952	fpi->napi_weight = 17;
953	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
954	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
955		err = of_phy_register_fixed_link(ofdev->dev.of_node);
956		if (err)
957			goto out_free_fpi;
958
959		/* In the case of a fixed PHY, the DT node associated
960		 * to the PHY is the Ethernet MAC DT node.
961		 */
962		fpi->phy_node = of_node_get(ofdev->dev.of_node);
963	}
964
965	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
966		phy_connection_type = of_get_property(ofdev->dev.of_node,
967						"phy-connection-type", NULL);
968		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
969			fpi->use_rmii = 1;
970	}
971
972	/* make clock lookup non-fatal (the driver is shared among platforms),
973	 * but require enable to succeed when a clock was specified/found,
974	 * keep a reference to the clock upon successful acquisition
975	 */
976	clk = devm_clk_get(&ofdev->dev, "per");
977	if (!IS_ERR(clk)) {
978		err = clk_prepare_enable(clk);
979		if (err) {
980			ret = err;
981			goto out_free_fpi;
982		}
983		fpi->clk_per = clk;
984	}
985
986	privsize = sizeof(*fep) +
987	           sizeof(struct sk_buff **) *
988		     (fpi->rx_ring + fpi->tx_ring) +
989		   sizeof(char) * fpi->tx_ring;
990
991	ndev = alloc_etherdev(privsize);
992	if (!ndev) {
993		ret = -ENOMEM;
994		goto out_put;
995	}
996
997	SET_NETDEV_DEV(ndev, &ofdev->dev);
998	platform_set_drvdata(ofdev, ndev);
999
1000	fep = netdev_priv(ndev);
1001	fep->dev = &ofdev->dev;
1002	fep->ndev = ndev;
1003	fep->fpi = fpi;
1004	fep->ops = match->data;
1005
1006	ret = fep->ops->setup_data(ndev);
1007	if (ret)
1008		goto out_free_dev;
1009
1010	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1011	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1012	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1013				       fpi->tx_ring);
1014
1015	spin_lock_init(&fep->lock);
1016	spin_lock_init(&fep->tx_lock);
1017
1018	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1019	if (mac_addr)
1020		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1021
1022	ret = fep->ops->allocate_bd(ndev);
1023	if (ret)
1024		goto out_cleanup_data;
1025
1026	fep->rx_bd_base = fep->ring_base;
1027	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1028
1029	fep->tx_ring = fpi->tx_ring;
1030	fep->rx_ring = fpi->rx_ring;
1031
1032	ndev->netdev_ops = &fs_enet_netdev_ops;
1033	ndev->watchdog_timeo = 2 * HZ;
1034	netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1035	netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1036
1037	ndev->ethtool_ops = &fs_ethtool_ops;
1038
1039	init_timer(&fep->phy_timer_list);
1040
1041	netif_carrier_off(ndev);
1042
1043	ndev->features |= NETIF_F_SG;
1044
1045	ret = register_netdev(ndev);
1046	if (ret)
1047		goto out_free_bd;
1048
1049	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1050
1051	return 0;
1052
1053out_free_bd:
1054	fep->ops->free_bd(ndev);
1055out_cleanup_data:
1056	fep->ops->cleanup_data(ndev);
1057out_free_dev:
1058	free_netdev(ndev);
1059out_put:
1060	of_node_put(fpi->phy_node);
1061	if (fpi->clk_per)
1062		clk_disable_unprepare(fpi->clk_per);
1063out_free_fpi:
1064	kfree(fpi);
1065	return ret;
1066}
1067
1068static int fs_enet_remove(struct platform_device *ofdev)
1069{
1070	struct net_device *ndev = platform_get_drvdata(ofdev);
1071	struct fs_enet_private *fep = netdev_priv(ndev);
1072
1073	unregister_netdev(ndev);
1074
1075	fep->ops->free_bd(ndev);
1076	fep->ops->cleanup_data(ndev);
1077	dev_set_drvdata(fep->dev, NULL);
1078	of_node_put(fep->fpi->phy_node);
1079	if (fep->fpi->clk_per)
1080		clk_disable_unprepare(fep->fpi->clk_per);
1081	free_netdev(ndev);
1082	return 0;
1083}
1084
1085static const struct of_device_id fs_enet_match[] = {
1086#ifdef CONFIG_FS_ENET_HAS_SCC
1087	{
1088		.compatible = "fsl,cpm1-scc-enet",
1089		.data = (void *)&fs_scc_ops,
1090	},
1091	{
1092		.compatible = "fsl,cpm2-scc-enet",
1093		.data = (void *)&fs_scc_ops,
1094	},
1095#endif
1096#ifdef CONFIG_FS_ENET_HAS_FCC
1097	{
1098		.compatible = "fsl,cpm2-fcc-enet",
1099		.data = (void *)&fs_fcc_ops,
1100	},
1101#endif
1102#ifdef CONFIG_FS_ENET_HAS_FEC
1103#ifdef CONFIG_FS_ENET_MPC5121_FEC
1104	{
1105		.compatible = "fsl,mpc5121-fec",
1106		.data = (void *)&fs_fec_ops,
1107	},
1108	{
1109		.compatible = "fsl,mpc5125-fec",
1110		.data = (void *)&fs_fec_ops,
1111	},
1112#else
1113	{
1114		.compatible = "fsl,pq1-fec-enet",
1115		.data = (void *)&fs_fec_ops,
1116	},
1117#endif
1118#endif
1119	{}
1120};
1121MODULE_DEVICE_TABLE(of, fs_enet_match);
1122
1123static struct platform_driver fs_enet_driver = {
1124	.driver = {
1125		.name = "fs_enet",
1126		.of_match_table = fs_enet_match,
1127	},
1128	.probe = fs_enet_probe,
1129	.remove = fs_enet_remove,
1130};
1131
1132#ifdef CONFIG_NET_POLL_CONTROLLER
1133static void fs_enet_netpoll(struct net_device *dev)
1134{
1135       disable_irq(dev->irq);
1136       fs_enet_interrupt(dev->irq, dev);
1137       enable_irq(dev->irq);
1138}
1139#endif
1140
1141module_platform_driver(fs_enet_driver);
1142