1/*
2 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
3 *
4 * Copyright (C) 2012 Freescale Semiconductor, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/string.h>
25#include <linux/ptrace.h>
26#include <linux/errno.h>
27#include <linux/ioport.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>
30#include <linux/pci.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
35#include <linux/spinlock.h>
36#include <linux/workqueue.h>
37#include <linux/bitops.h>
38#include <linux/io.h>
39#include <linux/irq.h>
40#include <linux/clk.h>
41#include <linux/platform_device.h>
42#include <linux/phy.h>
43#include <linux/fec.h>
44#include <linux/of.h>
45#include <linux/of_device.h>
46#include <linux/of_gpio.h>
47#include <linux/of_net.h>
48
49#include "fec.h"
50
51/* FEC 1588 register bits */
52#define FEC_T_CTRL_SLAVE                0x00002000
53#define FEC_T_CTRL_CAPTURE              0x00000800
54#define FEC_T_CTRL_RESTART              0x00000200
55#define FEC_T_CTRL_PERIOD_RST           0x00000030
56#define FEC_T_CTRL_PERIOD_EN		0x00000010
57#define FEC_T_CTRL_ENABLE               0x00000001
58
59#define FEC_T_INC_MASK                  0x0000007f
60#define FEC_T_INC_OFFSET                0
61#define FEC_T_INC_CORR_MASK             0x00007f00
62#define FEC_T_INC_CORR_OFFSET           8
63
64#define FEC_T_CTRL_PINPER		0x00000080
65#define FEC_T_TF0_MASK			0x00000001
66#define FEC_T_TF0_OFFSET		0
67#define FEC_T_TF1_MASK			0x00000002
68#define FEC_T_TF1_OFFSET		1
69#define FEC_T_TF2_MASK			0x00000004
70#define FEC_T_TF2_OFFSET		2
71#define FEC_T_TF3_MASK			0x00000008
72#define FEC_T_TF3_OFFSET		3
73#define FEC_T_TDRE_MASK			0x00000001
74#define FEC_T_TDRE_OFFSET		0
75#define FEC_T_TMODE_MASK		0x0000003C
76#define FEC_T_TMODE_OFFSET		2
77#define FEC_T_TIE_MASK			0x00000040
78#define FEC_T_TIE_OFFSET		6
79#define FEC_T_TF_MASK			0x00000080
80#define FEC_T_TF_OFFSET			7
81
82#define FEC_ATIME_CTRL		0x400
83#define FEC_ATIME		0x404
84#define FEC_ATIME_EVT_OFFSET	0x408
85#define FEC_ATIME_EVT_PERIOD	0x40c
86#define FEC_ATIME_CORR		0x410
87#define FEC_ATIME_INC		0x414
88#define FEC_TS_TIMESTAMP	0x418
89
90#define FEC_TGSR		0x604
91#define FEC_TCSR(n)		(0x608 + n * 0x08)
92#define FEC_TCCR(n)		(0x60C + n * 0x08)
93#define MAX_TIMER_CHANNEL	3
94#define FEC_TMODE_TOGGLE	0x05
95#define FEC_HIGH_PULSE		0x0F
96
97#define FEC_CC_MULT	(1 << 31)
98#define FEC_COUNTER_PERIOD	(1 << 31)
99#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
100#define FEC_CHANNLE_0		0
101#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
102
103/**
104 * fec_ptp_enable_pps
105 * @fep: the fec_enet_private structure handle
106 * @enable: enable the channel pps output
107 *
108 * This function enble the PPS ouput on the timer channel.
109 */
110static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
111{
112	unsigned long flags;
113	u32 val, tempval;
114	int inc;
115	struct timespec ts;
116	u64 ns;
117	u32 remainder;
118	val = 0;
119
120	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
121		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
122		return -EINVAL;
123	}
124
125	if (fep->pps_enable == enable)
126		return 0;
127
128	fep->pps_channel = DEFAULT_PPS_CHANNEL;
129	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
130	inc = fep->ptp_inc;
131
132	spin_lock_irqsave(&fep->tmreg_lock, flags);
133
134	if (enable) {
135		/* clear capture or output compare interrupt status if have.
136		 */
137		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
138
139		/* It is recommended to double check the TMODE field in the
140		 * TCSR register to be cleared before the first compare counter
141		 * is written into TCCR register. Just add a double check.
142		 */
143		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
144		do {
145			val &= ~(FEC_T_TMODE_MASK);
146			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
147			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
148		} while (val & FEC_T_TMODE_MASK);
149
150		/* Dummy read counter to update the counter */
151		timecounter_read(&fep->tc);
152		/* We want to find the first compare event in the next
153		 * second point. So we need to know what the ptp time
154		 * is now and how many nanoseconds is ahead to get next second.
155		 * The remaining nanosecond ahead before the next second would be
156		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
157		 * to current timer would be next second.
158		 */
159		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
160		tempval |= FEC_T_CTRL_CAPTURE;
161		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
162
163		tempval = readl(fep->hwp + FEC_ATIME);
164		/* Convert the ptp local counter to 1588 timestamp */
165		ns = timecounter_cyc2time(&fep->tc, tempval);
166		ts.tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
167		ts.tv_nsec = remainder;
168
169		/* The tempval is  less than 3 seconds, and  so val is less than
170		 * 4 seconds. No overflow for 32bit calculation.
171		 */
172		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
173
174		/* Need to consider the situation that the current time is
175		 * very close to the second point, which means NSEC_PER_SEC
176		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
177		 * is still running when we calculate the first compare event, it is
178		 * possible that the remaining nanoseonds run out before the compare
179		 * counter is calculated and written into TCCR register. To avoid
180		 * this possibility, we will set the compare event to be the next
181		 * of next second. The current setting is 31-bit timer and wrap
182		 * around over 2 seconds. So it is okay to set the next of next
183		 * seond for the timer.
184		 */
185		val += NSEC_PER_SEC;
186
187		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
188		 * ptp counter, which maybe cause 32-bit wrap. Since the
189		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
190		 * We can ensure the wrap will not cause issue. If the offset
191		 * is bigger than fep->cc.mask would be a error.
192		 */
193		val &= fep->cc.mask;
194		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
195
196		/* Calculate the second the compare event timestamp */
197		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
198
199		/* * Enable compare event when overflow */
200		val = readl(fep->hwp + FEC_ATIME_CTRL);
201		val |= FEC_T_CTRL_PINPER;
202		writel(val, fep->hwp + FEC_ATIME_CTRL);
203
204		/* Compare channel setting. */
205		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
206		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
207		val &= ~(1 << FEC_T_TDRE_OFFSET);
208		val &= ~(FEC_T_TMODE_MASK);
209		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
210		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
211
212		/* Write the second compare event timestamp and calculate
213		 * the third timestamp. Refer the TCCR register detail in the spec.
214		 */
215		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
216		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
217	} else {
218		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
219	}
220
221	fep->pps_enable = enable;
222	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
223
224	return 0;
225}
226
227/**
228 * fec_ptp_read - read raw cycle counter (to be used by time counter)
229 * @cc: the cyclecounter structure
230 *
231 * this function reads the cyclecounter registers and is called by the
232 * cyclecounter structure used to construct a ns counter from the
233 * arbitrary fixed point registers
234 */
235static cycle_t fec_ptp_read(const struct cyclecounter *cc)
236{
237	struct fec_enet_private *fep =
238		container_of(cc, struct fec_enet_private, cc);
239	const struct platform_device_id *id_entry =
240		platform_get_device_id(fep->pdev);
241	u32 tempval;
242
243	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
244	tempval |= FEC_T_CTRL_CAPTURE;
245	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
246
247	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
248		udelay(1);
249
250	return readl(fep->hwp + FEC_ATIME);
251}
252
253/**
254 * fec_ptp_start_cyclecounter - create the cycle counter from hw
255 * @ndev: network device
256 *
257 * this function initializes the timecounter and cyclecounter
258 * structures for use in generated a ns counter from the arbitrary
259 * fixed point cycles registers in the hardware.
260 */
261void fec_ptp_start_cyclecounter(struct net_device *ndev)
262{
263	struct fec_enet_private *fep = netdev_priv(ndev);
264	unsigned long flags;
265	int inc;
266
267	inc = 1000000000 / fep->cycle_speed;
268
269	/* grab the ptp lock */
270	spin_lock_irqsave(&fep->tmreg_lock, flags);
271
272	/* 1ns counter */
273	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
274
275	/* use 31-bit timer counter */
276	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
277
278	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
279		fep->hwp + FEC_ATIME_CTRL);
280
281	memset(&fep->cc, 0, sizeof(fep->cc));
282	fep->cc.read = fec_ptp_read;
283	fep->cc.mask = CLOCKSOURCE_MASK(31);
284	fep->cc.shift = 31;
285	fep->cc.mult = FEC_CC_MULT;
286
287	/* reset the ns time counter */
288	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
289
290	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
291}
292
293/**
294 * fec_ptp_adjfreq - adjust ptp cycle frequency
295 * @ptp: the ptp clock structure
296 * @ppb: parts per billion adjustment from base
297 *
298 * Adjust the frequency of the ptp cycle counter by the
299 * indicated ppb from the base frequency.
300 *
301 * Because ENET hardware frequency adjust is complex,
302 * using software method to do that.
303 */
304static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
305{
306	unsigned long flags;
307	int neg_adj = 0;
308	u32 i, tmp;
309	u32 corr_inc, corr_period;
310	u32 corr_ns;
311	u64 lhs, rhs;
312
313	struct fec_enet_private *fep =
314	    container_of(ptp, struct fec_enet_private, ptp_caps);
315
316	if (ppb == 0)
317		return 0;
318
319	if (ppb < 0) {
320		ppb = -ppb;
321		neg_adj = 1;
322	}
323
324	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
325	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
326	 * meet adjustment requirement.
327	 */
328	lhs = NSEC_PER_SEC;
329	rhs = (u64)ppb * (u64)fep->ptp_inc;
330	for (i = 1; i <= fep->ptp_inc; i++) {
331		if (lhs >= rhs) {
332			corr_inc = i;
333			corr_period = div_u64(lhs, rhs);
334			break;
335		}
336		lhs += NSEC_PER_SEC;
337	}
338	/* Not found? Set it to high value - double speed
339	 * correct in every clock step.
340	 */
341	if (i > fep->ptp_inc) {
342		corr_inc = fep->ptp_inc;
343		corr_period = 1;
344	}
345
346	if (neg_adj)
347		corr_ns = fep->ptp_inc - corr_inc;
348	else
349		corr_ns = fep->ptp_inc + corr_inc;
350
351	spin_lock_irqsave(&fep->tmreg_lock, flags);
352
353	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
354	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
355	writel(tmp, fep->hwp + FEC_ATIME_INC);
356	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
357	/* dummy read to update the timer. */
358	timecounter_read(&fep->tc);
359
360	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
361
362	return 0;
363}
364
365/**
366 * fec_ptp_adjtime
367 * @ptp: the ptp clock structure
368 * @delta: offset to adjust the cycle counter by
369 *
370 * adjust the timer by resetting the timecounter structure.
371 */
372static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
373{
374	struct fec_enet_private *fep =
375	    container_of(ptp, struct fec_enet_private, ptp_caps);
376	unsigned long flags;
377
378	spin_lock_irqsave(&fep->tmreg_lock, flags);
379	timecounter_adjtime(&fep->tc, delta);
380	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
381
382	return 0;
383}
384
385/**
386 * fec_ptp_gettime
387 * @ptp: the ptp clock structure
388 * @ts: timespec structure to hold the current time value
389 *
390 * read the timecounter and return the correct value on ns,
391 * after converting it into a struct timespec.
392 */
393static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
394{
395	struct fec_enet_private *adapter =
396	    container_of(ptp, struct fec_enet_private, ptp_caps);
397	u64 ns;
398	unsigned long flags;
399
400	spin_lock_irqsave(&adapter->tmreg_lock, flags);
401	ns = timecounter_read(&adapter->tc);
402	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
403
404	*ts = ns_to_timespec64(ns);
405
406	return 0;
407}
408
409/**
410 * fec_ptp_settime
411 * @ptp: the ptp clock structure
412 * @ts: the timespec containing the new time for the cycle counter
413 *
414 * reset the timecounter to use a new base value instead of the kernel
415 * wall timer value.
416 */
417static int fec_ptp_settime(struct ptp_clock_info *ptp,
418			   const struct timespec64 *ts)
419{
420	struct fec_enet_private *fep =
421	    container_of(ptp, struct fec_enet_private, ptp_caps);
422
423	u64 ns;
424	unsigned long flags;
425	u32 counter;
426
427	mutex_lock(&fep->ptp_clk_mutex);
428	/* Check the ptp clock */
429	if (!fep->ptp_clk_on) {
430		mutex_unlock(&fep->ptp_clk_mutex);
431		return -EINVAL;
432	}
433
434	ns = timespec64_to_ns(ts);
435	/* Get the timer value based on timestamp.
436	 * Update the counter with the masked value.
437	 */
438	counter = ns & fep->cc.mask;
439
440	spin_lock_irqsave(&fep->tmreg_lock, flags);
441	writel(counter, fep->hwp + FEC_ATIME);
442	timecounter_init(&fep->tc, &fep->cc, ns);
443	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
444	mutex_unlock(&fep->ptp_clk_mutex);
445	return 0;
446}
447
448/**
449 * fec_ptp_enable
450 * @ptp: the ptp clock structure
451 * @rq: the requested feature to change
452 * @on: whether to enable or disable the feature
453 *
454 */
455static int fec_ptp_enable(struct ptp_clock_info *ptp,
456			  struct ptp_clock_request *rq, int on)
457{
458	struct fec_enet_private *fep =
459	    container_of(ptp, struct fec_enet_private, ptp_caps);
460	int ret = 0;
461
462	if (rq->type == PTP_CLK_REQ_PPS) {
463		ret = fec_ptp_enable_pps(fep, on);
464
465		return ret;
466	}
467	return -EOPNOTSUPP;
468}
469
470/**
471 * fec_ptp_hwtstamp_ioctl - control hardware time stamping
472 * @ndev: pointer to net_device
473 * @ifreq: ioctl data
474 * @cmd: particular ioctl requested
475 */
476int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
477{
478	struct fec_enet_private *fep = netdev_priv(ndev);
479
480	struct hwtstamp_config config;
481
482	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
483		return -EFAULT;
484
485	/* reserved for future extensions */
486	if (config.flags)
487		return -EINVAL;
488
489	switch (config.tx_type) {
490	case HWTSTAMP_TX_OFF:
491		fep->hwts_tx_en = 0;
492		break;
493	case HWTSTAMP_TX_ON:
494		fep->hwts_tx_en = 1;
495		break;
496	default:
497		return -ERANGE;
498	}
499
500	switch (config.rx_filter) {
501	case HWTSTAMP_FILTER_NONE:
502		if (fep->hwts_rx_en)
503			fep->hwts_rx_en = 0;
504		config.rx_filter = HWTSTAMP_FILTER_NONE;
505		break;
506
507	default:
508		/*
509		 * register RXMTRL must be set in order to do V1 packets,
510		 * therefore it is not possible to time stamp both V1 Sync and
511		 * Delay_Req messages and hardware does not support
512		 * timestamping all packets => return error
513		 */
514		fep->hwts_rx_en = 1;
515		config.rx_filter = HWTSTAMP_FILTER_ALL;
516		break;
517	}
518
519	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
520	    -EFAULT : 0;
521}
522
523int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
524{
525	struct fec_enet_private *fep = netdev_priv(ndev);
526	struct hwtstamp_config config;
527
528	config.flags = 0;
529	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
530	config.rx_filter = (fep->hwts_rx_en ?
531			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
532
533	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
534		-EFAULT : 0;
535}
536
537/**
538 * fec_time_keep - call timecounter_read every second to avoid timer overrun
539 *                 because ENET just support 32bit counter, will timeout in 4s
540 */
541static void fec_time_keep(struct work_struct *work)
542{
543	struct delayed_work *dwork = to_delayed_work(work);
544	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
545	u64 ns;
546	unsigned long flags;
547
548	mutex_lock(&fep->ptp_clk_mutex);
549	if (fep->ptp_clk_on) {
550		spin_lock_irqsave(&fep->tmreg_lock, flags);
551		ns = timecounter_read(&fep->tc);
552		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
553	}
554	mutex_unlock(&fep->ptp_clk_mutex);
555
556	schedule_delayed_work(&fep->time_keep, HZ);
557}
558
559/**
560 * fec_ptp_init
561 * @ndev: The FEC network adapter
562 *
563 * This function performs the required steps for enabling ptp
564 * support. If ptp support has already been loaded it simply calls the
565 * cyclecounter init routine and exits.
566 */
567
568void fec_ptp_init(struct platform_device *pdev)
569{
570	struct net_device *ndev = platform_get_drvdata(pdev);
571	struct fec_enet_private *fep = netdev_priv(ndev);
572
573	fep->ptp_caps.owner = THIS_MODULE;
574	snprintf(fep->ptp_caps.name, 16, "fec ptp");
575
576	fep->ptp_caps.max_adj = 250000000;
577	fep->ptp_caps.n_alarm = 0;
578	fep->ptp_caps.n_ext_ts = 0;
579	fep->ptp_caps.n_per_out = 0;
580	fep->ptp_caps.n_pins = 0;
581	fep->ptp_caps.pps = 1;
582	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
583	fep->ptp_caps.adjtime = fec_ptp_adjtime;
584	fep->ptp_caps.gettime64 = fec_ptp_gettime;
585	fep->ptp_caps.settime64 = fec_ptp_settime;
586	fep->ptp_caps.enable = fec_ptp_enable;
587
588	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
589	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
590
591	spin_lock_init(&fep->tmreg_lock);
592
593	fec_ptp_start_cyclecounter(ndev);
594
595	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
596
597	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
598	if (IS_ERR(fep->ptp_clock)) {
599		fep->ptp_clock = NULL;
600		pr_err("ptp_clock_register failed\n");
601	}
602
603	schedule_delayed_work(&fep->time_keep, HZ);
604}
605
606/**
607 * fec_ptp_check_pps_event
608 * @fep: the fec_enet_private structure handle
609 *
610 * This function check the pps event and reload the timer compare counter.
611 */
612uint fec_ptp_check_pps_event(struct fec_enet_private *fep)
613{
614	u32 val;
615	u8 channel = fep->pps_channel;
616	struct ptp_clock_event event;
617
618	val = readl(fep->hwp + FEC_TCSR(channel));
619	if (val & FEC_T_TF_MASK) {
620		/* Write the next next compare(not the next according the spec)
621		 * value to the register
622		 */
623		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
624		do {
625			writel(val, fep->hwp + FEC_TCSR(channel));
626		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
627
628		/* Update the counter; */
629		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
630
631		event.type = PTP_CLOCK_PPS;
632		ptp_clock_event(fep->ptp_clock, &event);
633		return 1;
634	}
635
636	return 0;
637}
638