1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers.  I allocate memory
6 * pages and then divide them into 2K frame buffers.  This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/in.h>
37#include <linux/ip.h>
38#include <net/ip.h>
39#include <net/tso.h>
40#include <linux/tcp.h>
41#include <linux/udp.h>
42#include <linux/icmp.h>
43#include <linux/spinlock.h>
44#include <linux/workqueue.h>
45#include <linux/bitops.h>
46#include <linux/io.h>
47#include <linux/irq.h>
48#include <linux/clk.h>
49#include <linux/platform_device.h>
50#include <linux/phy.h>
51#include <linux/fec.h>
52#include <linux/of.h>
53#include <linux/of_device.h>
54#include <linux/of_gpio.h>
55#include <linux/of_mdio.h>
56#include <linux/of_net.h>
57#include <linux/regulator/consumer.h>
58#include <linux/if_vlan.h>
59#include <linux/pinctrl/consumer.h>
60#include <linux/prefetch.h>
61
62#include <asm/cacheflush.h>
63
64#include "fec.h"
65
66static void set_multicast_list(struct net_device *ndev);
67static void fec_enet_itr_coal_init(struct net_device *ndev);
68
69#define DRIVER_NAME	"fec"
70
71#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72
73/* Pause frame feild and FIFO threshold */
74#define FEC_ENET_FCE	(1 << 5)
75#define FEC_ENET_RSEM_V	0x84
76#define FEC_ENET_RSFL_V	16
77#define FEC_ENET_RAEM_V	0x8
78#define FEC_ENET_RAFL_V	0x8
79#define FEC_ENET_OPD_V	0xFFF0
80
81static struct platform_device_id fec_devtype[] = {
82	{
83		/* keep it for coldfire */
84		.name = DRIVER_NAME,
85		.driver_data = 0,
86	}, {
87		.name = "imx25-fec",
88		.driver_data = FEC_QUIRK_USE_GASKET,
89	}, {
90		.name = "imx27-fec",
91		.driver_data = 0,
92	}, {
93		.name = "imx28-fec",
94		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95				FEC_QUIRK_SINGLE_MDIO,
96	}, {
97		.name = "imx6q-fec",
98		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101	}, {
102		.name = "mvf600-fec",
103		.driver_data = FEC_QUIRK_ENET_MAC,
104	}, {
105		.name = "imx6sx-fec",
106		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110	}, {
111		/* sentinel */
112	}
113};
114MODULE_DEVICE_TABLE(platform, fec_devtype);
115
116enum imx_fec_type {
117	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
118	IMX27_FEC,	/* runs on i.mx27/35/51 */
119	IMX28_FEC,
120	IMX6Q_FEC,
121	MVF600_FEC,
122	IMX6SX_FEC,
123};
124
125static const struct of_device_id fec_dt_ids[] = {
126	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132	{ /* sentinel */ }
133};
134MODULE_DEVICE_TABLE(of, fec_dt_ids);
135
136static unsigned char macaddr[ETH_ALEN];
137module_param_array(macaddr, byte, NULL, 0);
138MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139
140#if defined(CONFIG_M5272)
141/*
142 * Some hardware gets it MAC address out of local flash memory.
143 * if this is non-zero then assume it is the address to get MAC from.
144 */
145#if defined(CONFIG_NETtel)
146#define	FEC_FLASHMAC	0xf0006006
147#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148#define	FEC_FLASHMAC	0xf0006000
149#elif defined(CONFIG_CANCam)
150#define	FEC_FLASHMAC	0xf0020000
151#elif defined (CONFIG_M5272C3)
152#define	FEC_FLASHMAC	(0xffe04000 + 4)
153#elif defined(CONFIG_MOD5272)
154#define FEC_FLASHMAC	0xffc0406b
155#else
156#define	FEC_FLASHMAC	0
157#endif
158#endif /* CONFIG_M5272 */
159
160/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161 */
162#define PKT_MAXBUF_SIZE		1522
163#define PKT_MINBUF_SIZE		64
164#define PKT_MAXBLR_SIZE		1536
165
166/* FEC receive acceleration */
167#define FEC_RACC_IPDIS		(1 << 1)
168#define FEC_RACC_PRODIS		(1 << 2)
169#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170
171/*
172 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173 * size bits. Other FEC hardware does not, so we need to take that into
174 * account when setting it.
175 */
176#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
179#else
180#define	OPT_FRAME_SIZE	0
181#endif
182
183/* FEC MII MMFR bits definition */
184#define FEC_MMFR_ST		(1 << 30)
185#define FEC_MMFR_OP_READ	(2 << 28)
186#define FEC_MMFR_OP_WRITE	(1 << 28)
187#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
188#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
189#define FEC_MMFR_TA		(2 << 16)
190#define FEC_MMFR_DATA(v)	(v & 0xffff)
191/* FEC ECR bits definition */
192#define FEC_ECR_MAGICEN		(1 << 2)
193#define FEC_ECR_SLEEP		(1 << 3)
194
195#define FEC_MII_TIMEOUT		30000 /* us */
196
197/* Transmitter timeout */
198#define TX_TIMEOUT (2 * HZ)
199
200#define FEC_PAUSE_FLAG_AUTONEG	0x1
201#define FEC_PAUSE_FLAG_ENABLE	0x2
202#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
203#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
204#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
205
206#define COPYBREAK_DEFAULT	256
207
208#define TSO_HEADER_SIZE		128
209/* Max number of allowed TCP segments for software TSO */
210#define FEC_MAX_TSO_SEGS	100
211#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
212
213#define IS_TSO_HEADER(txq, addr) \
214	((addr >= txq->tso_hdrs_dma) && \
215	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
216
217static int mii_cnt;
218
219static inline
220struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
221				      struct fec_enet_private *fep,
222				      int queue_id)
223{
224	struct bufdesc *new_bd = bdp + 1;
225	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
226	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
227	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
228	struct bufdesc_ex *ex_base;
229	struct bufdesc *base;
230	int ring_size;
231
232	if (bdp >= txq->tx_bd_base) {
233		base = txq->tx_bd_base;
234		ring_size = txq->tx_ring_size;
235		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
236	} else {
237		base = rxq->rx_bd_base;
238		ring_size = rxq->rx_ring_size;
239		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
240	}
241
242	if (fep->bufdesc_ex)
243		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
244			ex_base : ex_new_bd);
245	else
246		return (new_bd >= (base + ring_size)) ?
247			base : new_bd;
248}
249
250static inline
251struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
252				      struct fec_enet_private *fep,
253				      int queue_id)
254{
255	struct bufdesc *new_bd = bdp - 1;
256	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
257	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
258	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
259	struct bufdesc_ex *ex_base;
260	struct bufdesc *base;
261	int ring_size;
262
263	if (bdp >= txq->tx_bd_base) {
264		base = txq->tx_bd_base;
265		ring_size = txq->tx_ring_size;
266		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
267	} else {
268		base = rxq->rx_bd_base;
269		ring_size = rxq->rx_ring_size;
270		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
271	}
272
273	if (fep->bufdesc_ex)
274		return (struct bufdesc *)((ex_new_bd < ex_base) ?
275			(ex_new_bd + ring_size) : ex_new_bd);
276	else
277		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
278}
279
280static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
281				struct fec_enet_private *fep)
282{
283	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
284}
285
286static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
287					struct fec_enet_priv_tx_q *txq)
288{
289	int entries;
290
291	entries = ((const char *)txq->dirty_tx -
292			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
293
294	return entries > 0 ? entries : entries + txq->tx_ring_size;
295}
296
297static void swap_buffer(void *bufaddr, int len)
298{
299	int i;
300	unsigned int *buf = bufaddr;
301
302	for (i = 0; i < len; i += 4, buf++)
303		swab32s(buf);
304}
305
306static void swap_buffer2(void *dst_buf, void *src_buf, int len)
307{
308	int i;
309	unsigned int *src = src_buf;
310	unsigned int *dst = dst_buf;
311
312	for (i = 0; i < len; i += 4, src++, dst++)
313		*dst = swab32p(src);
314}
315
316static void fec_dump(struct net_device *ndev)
317{
318	struct fec_enet_private *fep = netdev_priv(ndev);
319	struct bufdesc *bdp;
320	struct fec_enet_priv_tx_q *txq;
321	int index = 0;
322
323	netdev_info(ndev, "TX ring dump\n");
324	pr_info("Nr     SC     addr       len  SKB\n");
325
326	txq = fep->tx_queue[0];
327	bdp = txq->tx_bd_base;
328
329	do {
330		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
331			index,
332			bdp == txq->cur_tx ? 'S' : ' ',
333			bdp == txq->dirty_tx ? 'H' : ' ',
334			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
335			txq->tx_skbuff[index]);
336		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
337		index++;
338	} while (bdp != txq->tx_bd_base);
339}
340
341static inline bool is_ipv4_pkt(struct sk_buff *skb)
342{
343	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
344}
345
346static int
347fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
348{
349	/* Only run for packets requiring a checksum. */
350	if (skb->ip_summed != CHECKSUM_PARTIAL)
351		return 0;
352
353	if (unlikely(skb_cow_head(skb, 0)))
354		return -1;
355
356	if (is_ipv4_pkt(skb))
357		ip_hdr(skb)->check = 0;
358	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
359
360	return 0;
361}
362
363static int
364fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
365			     struct sk_buff *skb,
366			     struct net_device *ndev)
367{
368	struct fec_enet_private *fep = netdev_priv(ndev);
369	struct bufdesc *bdp = txq->cur_tx;
370	struct bufdesc_ex *ebdp;
371	int nr_frags = skb_shinfo(skb)->nr_frags;
372	unsigned short queue = skb_get_queue_mapping(skb);
373	int frag, frag_len;
374	unsigned short status;
375	unsigned int estatus = 0;
376	skb_frag_t *this_frag;
377	unsigned int index;
378	void *bufaddr;
379	dma_addr_t addr;
380	int i;
381
382	for (frag = 0; frag < nr_frags; frag++) {
383		this_frag = &skb_shinfo(skb)->frags[frag];
384		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
385		ebdp = (struct bufdesc_ex *)bdp;
386
387		status = bdp->cbd_sc;
388		status &= ~BD_ENET_TX_STATS;
389		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
390		frag_len = skb_shinfo(skb)->frags[frag].size;
391
392		/* Handle the last BD specially */
393		if (frag == nr_frags - 1) {
394			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
395			if (fep->bufdesc_ex) {
396				estatus |= BD_ENET_TX_INT;
397				if (unlikely(skb_shinfo(skb)->tx_flags &
398					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
399					estatus |= BD_ENET_TX_TS;
400			}
401		}
402
403		if (fep->bufdesc_ex) {
404			if (fep->quirks & FEC_QUIRK_HAS_AVB)
405				estatus |= FEC_TX_BD_FTYPE(queue);
406			if (skb->ip_summed == CHECKSUM_PARTIAL)
407				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
408			ebdp->cbd_bdu = 0;
409			ebdp->cbd_esc = estatus;
410		}
411
412		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
413
414		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
415		if (((unsigned long) bufaddr) & fep->tx_align ||
416			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
417			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
418			bufaddr = txq->tx_bounce[index];
419
420			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
421				swap_buffer(bufaddr, frag_len);
422		}
423
424		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
425				      DMA_TO_DEVICE);
426		if (dma_mapping_error(&fep->pdev->dev, addr)) {
427			dev_kfree_skb_any(skb);
428			if (net_ratelimit())
429				netdev_err(ndev, "Tx DMA memory map failed\n");
430			goto dma_mapping_error;
431		}
432
433		bdp->cbd_bufaddr = addr;
434		bdp->cbd_datlen = frag_len;
435		bdp->cbd_sc = status;
436	}
437
438	txq->cur_tx = bdp;
439
440	return 0;
441
442dma_mapping_error:
443	bdp = txq->cur_tx;
444	for (i = 0; i < frag; i++) {
445		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
446		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
447				bdp->cbd_datlen, DMA_TO_DEVICE);
448	}
449	return NETDEV_TX_OK;
450}
451
452static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
453				   struct sk_buff *skb, struct net_device *ndev)
454{
455	struct fec_enet_private *fep = netdev_priv(ndev);
456	int nr_frags = skb_shinfo(skb)->nr_frags;
457	struct bufdesc *bdp, *last_bdp;
458	void *bufaddr;
459	dma_addr_t addr;
460	unsigned short status;
461	unsigned short buflen;
462	unsigned short queue;
463	unsigned int estatus = 0;
464	unsigned int index;
465	int entries_free;
466	int ret;
467
468	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469	if (entries_free < MAX_SKB_FRAGS + 1) {
470		dev_kfree_skb_any(skb);
471		if (net_ratelimit())
472			netdev_err(ndev, "NOT enough BD for SG!\n");
473		return NETDEV_TX_OK;
474	}
475
476	/* Protocol checksum off-load for TCP and UDP. */
477	if (fec_enet_clear_csum(skb, ndev)) {
478		dev_kfree_skb_any(skb);
479		return NETDEV_TX_OK;
480	}
481
482	/* Fill in a Tx ring entry */
483	bdp = txq->cur_tx;
484	status = bdp->cbd_sc;
485	status &= ~BD_ENET_TX_STATS;
486
487	/* Set buffer length and buffer pointer */
488	bufaddr = skb->data;
489	buflen = skb_headlen(skb);
490
491	queue = skb_get_queue_mapping(skb);
492	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
493	if (((unsigned long) bufaddr) & fep->tx_align ||
494		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
495		memcpy(txq->tx_bounce[index], skb->data, buflen);
496		bufaddr = txq->tx_bounce[index];
497
498		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
499			swap_buffer(bufaddr, buflen);
500	}
501
502	/* Push the data cache so the CPM does not get stale memory data. */
503	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504	if (dma_mapping_error(&fep->pdev->dev, addr)) {
505		dev_kfree_skb_any(skb);
506		if (net_ratelimit())
507			netdev_err(ndev, "Tx DMA memory map failed\n");
508		return NETDEV_TX_OK;
509	}
510
511	if (nr_frags) {
512		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
513		if (ret)
514			return ret;
515	} else {
516		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517		if (fep->bufdesc_ex) {
518			estatus = BD_ENET_TX_INT;
519			if (unlikely(skb_shinfo(skb)->tx_flags &
520				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521				estatus |= BD_ENET_TX_TS;
522		}
523	}
524
525	if (fep->bufdesc_ex) {
526
527		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528
529		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530			fep->hwts_tx_en))
531			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532
533		if (fep->quirks & FEC_QUIRK_HAS_AVB)
534			estatus |= FEC_TX_BD_FTYPE(queue);
535
536		if (skb->ip_summed == CHECKSUM_PARTIAL)
537			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
538
539		ebdp->cbd_bdu = 0;
540		ebdp->cbd_esc = estatus;
541	}
542
543	last_bdp = txq->cur_tx;
544	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545	/* Save skb pointer */
546	txq->tx_skbuff[index] = skb;
547
548	bdp->cbd_datlen = buflen;
549	bdp->cbd_bufaddr = addr;
550
551	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
552	 * it's the last BD of the frame, and to put the CRC on the end.
553	 */
554	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555	bdp->cbd_sc = status;
556
557	/* If this was the last BD in the ring, start at the beginning again. */
558	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559
560	skb_tx_timestamp(skb);
561
562	txq->cur_tx = bdp;
563
564	/* Trigger transmission start */
565	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
566
567	return 0;
568}
569
570static int
571fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
572			  struct net_device *ndev,
573			  struct bufdesc *bdp, int index, char *data,
574			  int size, bool last_tcp, bool is_last)
575{
576	struct fec_enet_private *fep = netdev_priv(ndev);
577	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
578	unsigned short queue = skb_get_queue_mapping(skb);
579	unsigned short status;
580	unsigned int estatus = 0;
581	dma_addr_t addr;
582
583	status = bdp->cbd_sc;
584	status &= ~BD_ENET_TX_STATS;
585
586	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
587
588	if (((unsigned long) data) & fep->tx_align ||
589		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
590		memcpy(txq->tx_bounce[index], data, size);
591		data = txq->tx_bounce[index];
592
593		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
594			swap_buffer(data, size);
595	}
596
597	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
598	if (dma_mapping_error(&fep->pdev->dev, addr)) {
599		dev_kfree_skb_any(skb);
600		if (net_ratelimit())
601			netdev_err(ndev, "Tx DMA memory map failed\n");
602		return NETDEV_TX_BUSY;
603	}
604
605	bdp->cbd_datlen = size;
606	bdp->cbd_bufaddr = addr;
607
608	if (fep->bufdesc_ex) {
609		if (fep->quirks & FEC_QUIRK_HAS_AVB)
610			estatus |= FEC_TX_BD_FTYPE(queue);
611		if (skb->ip_summed == CHECKSUM_PARTIAL)
612			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
613		ebdp->cbd_bdu = 0;
614		ebdp->cbd_esc = estatus;
615	}
616
617	/* Handle the last BD specially */
618	if (last_tcp)
619		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
620	if (is_last) {
621		status |= BD_ENET_TX_INTR;
622		if (fep->bufdesc_ex)
623			ebdp->cbd_esc |= BD_ENET_TX_INT;
624	}
625
626	bdp->cbd_sc = status;
627
628	return 0;
629}
630
631static int
632fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
633			 struct sk_buff *skb, struct net_device *ndev,
634			 struct bufdesc *bdp, int index)
635{
636	struct fec_enet_private *fep = netdev_priv(ndev);
637	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
638	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
639	unsigned short queue = skb_get_queue_mapping(skb);
640	void *bufaddr;
641	unsigned long dmabuf;
642	unsigned short status;
643	unsigned int estatus = 0;
644
645	status = bdp->cbd_sc;
646	status &= ~BD_ENET_TX_STATS;
647	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
648
649	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
650	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
651	if (((unsigned long)bufaddr) & fep->tx_align ||
652		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
653		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
654		bufaddr = txq->tx_bounce[index];
655
656		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
657			swap_buffer(bufaddr, hdr_len);
658
659		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
660					hdr_len, DMA_TO_DEVICE);
661		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
662			dev_kfree_skb_any(skb);
663			if (net_ratelimit())
664				netdev_err(ndev, "Tx DMA memory map failed\n");
665			return NETDEV_TX_BUSY;
666		}
667	}
668
669	bdp->cbd_bufaddr = dmabuf;
670	bdp->cbd_datlen = hdr_len;
671
672	if (fep->bufdesc_ex) {
673		if (fep->quirks & FEC_QUIRK_HAS_AVB)
674			estatus |= FEC_TX_BD_FTYPE(queue);
675		if (skb->ip_summed == CHECKSUM_PARTIAL)
676			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
677		ebdp->cbd_bdu = 0;
678		ebdp->cbd_esc = estatus;
679	}
680
681	bdp->cbd_sc = status;
682
683	return 0;
684}
685
686static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
687				   struct sk_buff *skb,
688				   struct net_device *ndev)
689{
690	struct fec_enet_private *fep = netdev_priv(ndev);
691	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
692	int total_len, data_left;
693	struct bufdesc *bdp = txq->cur_tx;
694	unsigned short queue = skb_get_queue_mapping(skb);
695	struct tso_t tso;
696	unsigned int index = 0;
697	int ret;
698
699	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
700		dev_kfree_skb_any(skb);
701		if (net_ratelimit())
702			netdev_err(ndev, "NOT enough BD for TSO!\n");
703		return NETDEV_TX_OK;
704	}
705
706	/* Protocol checksum off-load for TCP and UDP. */
707	if (fec_enet_clear_csum(skb, ndev)) {
708		dev_kfree_skb_any(skb);
709		return NETDEV_TX_OK;
710	}
711
712	/* Initialize the TSO handler, and prepare the first payload */
713	tso_start(skb, &tso);
714
715	total_len = skb->len - hdr_len;
716	while (total_len > 0) {
717		char *hdr;
718
719		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
720		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
721		total_len -= data_left;
722
723		/* prepare packet headers: MAC + IP + TCP */
724		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
725		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
726		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
727		if (ret)
728			goto err_release;
729
730		while (data_left > 0) {
731			int size;
732
733			size = min_t(int, tso.size, data_left);
734			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
735			index = fec_enet_get_bd_index(txq->tx_bd_base,
736						      bdp, fep);
737			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
738							bdp, index,
739							tso.data, size,
740							size == data_left,
741							total_len == 0);
742			if (ret)
743				goto err_release;
744
745			data_left -= size;
746			tso_build_data(skb, &tso, size);
747		}
748
749		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
750	}
751
752	/* Save skb pointer */
753	txq->tx_skbuff[index] = skb;
754
755	skb_tx_timestamp(skb);
756	txq->cur_tx = bdp;
757
758	/* Trigger transmission start */
759	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
760	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
761	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
762	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
763	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
764		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
765
766	return 0;
767
768err_release:
769	/* TODO: Release all used data descriptors for TSO */
770	return ret;
771}
772
773static netdev_tx_t
774fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
775{
776	struct fec_enet_private *fep = netdev_priv(ndev);
777	int entries_free;
778	unsigned short queue;
779	struct fec_enet_priv_tx_q *txq;
780	struct netdev_queue *nq;
781	int ret;
782
783	queue = skb_get_queue_mapping(skb);
784	txq = fep->tx_queue[queue];
785	nq = netdev_get_tx_queue(ndev, queue);
786
787	if (skb_is_gso(skb))
788		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
789	else
790		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
791	if (ret)
792		return ret;
793
794	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
795	if (entries_free <= txq->tx_stop_threshold)
796		netif_tx_stop_queue(nq);
797
798	return NETDEV_TX_OK;
799}
800
801/* Init RX & TX buffer descriptors
802 */
803static void fec_enet_bd_init(struct net_device *dev)
804{
805	struct fec_enet_private *fep = netdev_priv(dev);
806	struct fec_enet_priv_tx_q *txq;
807	struct fec_enet_priv_rx_q *rxq;
808	struct bufdesc *bdp;
809	unsigned int i;
810	unsigned int q;
811
812	for (q = 0; q < fep->num_rx_queues; q++) {
813		/* Initialize the receive buffer descriptors. */
814		rxq = fep->rx_queue[q];
815		bdp = rxq->rx_bd_base;
816
817		for (i = 0; i < rxq->rx_ring_size; i++) {
818
819			/* Initialize the BD for every fragment in the page. */
820			if (bdp->cbd_bufaddr)
821				bdp->cbd_sc = BD_ENET_RX_EMPTY;
822			else
823				bdp->cbd_sc = 0;
824			bdp = fec_enet_get_nextdesc(bdp, fep, q);
825		}
826
827		/* Set the last buffer to wrap */
828		bdp = fec_enet_get_prevdesc(bdp, fep, q);
829		bdp->cbd_sc |= BD_SC_WRAP;
830
831		rxq->cur_rx = rxq->rx_bd_base;
832	}
833
834	for (q = 0; q < fep->num_tx_queues; q++) {
835		/* ...and the same for transmit */
836		txq = fep->tx_queue[q];
837		bdp = txq->tx_bd_base;
838		txq->cur_tx = bdp;
839
840		for (i = 0; i < txq->tx_ring_size; i++) {
841			/* Initialize the BD for every fragment in the page. */
842			bdp->cbd_sc = 0;
843			if (txq->tx_skbuff[i]) {
844				dev_kfree_skb_any(txq->tx_skbuff[i]);
845				txq->tx_skbuff[i] = NULL;
846			}
847			bdp->cbd_bufaddr = 0;
848			bdp = fec_enet_get_nextdesc(bdp, fep, q);
849		}
850
851		/* Set the last buffer to wrap */
852		bdp = fec_enet_get_prevdesc(bdp, fep, q);
853		bdp->cbd_sc |= BD_SC_WRAP;
854		txq->dirty_tx = bdp;
855	}
856}
857
858static void fec_enet_active_rxring(struct net_device *ndev)
859{
860	struct fec_enet_private *fep = netdev_priv(ndev);
861	int i;
862
863	for (i = 0; i < fep->num_rx_queues; i++)
864		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
865}
866
867static void fec_enet_enable_ring(struct net_device *ndev)
868{
869	struct fec_enet_private *fep = netdev_priv(ndev);
870	struct fec_enet_priv_tx_q *txq;
871	struct fec_enet_priv_rx_q *rxq;
872	int i;
873
874	for (i = 0; i < fep->num_rx_queues; i++) {
875		rxq = fep->rx_queue[i];
876		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
877		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
878
879		/* enable DMA1/2 */
880		if (i)
881			writel(RCMR_MATCHEN | RCMR_CMP(i),
882			       fep->hwp + FEC_RCMR(i));
883	}
884
885	for (i = 0; i < fep->num_tx_queues; i++) {
886		txq = fep->tx_queue[i];
887		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
888
889		/* enable DMA1/2 */
890		if (i)
891			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
892			       fep->hwp + FEC_DMA_CFG(i));
893	}
894}
895
896static void fec_enet_reset_skb(struct net_device *ndev)
897{
898	struct fec_enet_private *fep = netdev_priv(ndev);
899	struct fec_enet_priv_tx_q *txq;
900	int i, j;
901
902	for (i = 0; i < fep->num_tx_queues; i++) {
903		txq = fep->tx_queue[i];
904
905		for (j = 0; j < txq->tx_ring_size; j++) {
906			if (txq->tx_skbuff[j]) {
907				dev_kfree_skb_any(txq->tx_skbuff[j]);
908				txq->tx_skbuff[j] = NULL;
909			}
910		}
911	}
912}
913
914/*
915 * This function is called to start or restart the FEC during a link
916 * change, transmit timeout, or to reconfigure the FEC.  The network
917 * packet processing for this device must be stopped before this call.
918 */
919static void
920fec_restart(struct net_device *ndev)
921{
922	struct fec_enet_private *fep = netdev_priv(ndev);
923	u32 val;
924	u32 temp_mac[2];
925	u32 rcntl = OPT_FRAME_SIZE | 0x04;
926	u32 ecntl = 0x2; /* ETHEREN */
927
928	/* Whack a reset.  We should wait for this.
929	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
930	 * instead of reset MAC itself.
931	 */
932	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
933		writel(0, fep->hwp + FEC_ECNTRL);
934	} else {
935		writel(1, fep->hwp + FEC_ECNTRL);
936		udelay(10);
937	}
938
939	/*
940	 * enet-mac reset will reset mac address registers too,
941	 * so need to reconfigure it.
942	 */
943	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
944		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
945		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
946		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
947	}
948
949	/* Clear any outstanding interrupt. */
950	writel(0xffffffff, fep->hwp + FEC_IEVENT);
951
952	fec_enet_bd_init(ndev);
953
954	fec_enet_enable_ring(ndev);
955
956	/* Reset tx SKB buffers. */
957	fec_enet_reset_skb(ndev);
958
959	/* Enable MII mode */
960	if (fep->full_duplex == DUPLEX_FULL) {
961		/* FD enable */
962		writel(0x04, fep->hwp + FEC_X_CNTRL);
963	} else {
964		/* No Rcv on Xmit */
965		rcntl |= 0x02;
966		writel(0x0, fep->hwp + FEC_X_CNTRL);
967	}
968
969	/* Set MII speed */
970	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
971
972#if !defined(CONFIG_M5272)
973	/* set RX checksum */
974	val = readl(fep->hwp + FEC_RACC);
975	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
976		val |= FEC_RACC_OPTIONS;
977	else
978		val &= ~FEC_RACC_OPTIONS;
979	writel(val, fep->hwp + FEC_RACC);
980#endif
981
982	/*
983	 * The phy interface and speed need to get configured
984	 * differently on enet-mac.
985	 */
986	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
987		/* Enable flow control and length check */
988		rcntl |= 0x40000000 | 0x00000020;
989
990		/* RGMII, RMII or MII */
991		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
992		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
993		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
994		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
995			rcntl |= (1 << 6);
996		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
997			rcntl |= (1 << 8);
998		else
999			rcntl &= ~(1 << 8);
1000
1001		/* 1G, 100M or 10M */
1002		if (fep->phy_dev) {
1003			if (fep->phy_dev->speed == SPEED_1000)
1004				ecntl |= (1 << 5);
1005			else if (fep->phy_dev->speed == SPEED_100)
1006				rcntl &= ~(1 << 9);
1007			else
1008				rcntl |= (1 << 9);
1009		}
1010	} else {
1011#ifdef FEC_MIIGSK_ENR
1012		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1013			u32 cfgr;
1014			/* disable the gasket and wait */
1015			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1016			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1017				udelay(1);
1018
1019			/*
1020			 * configure the gasket:
1021			 *   RMII, 50 MHz, no loopback, no echo
1022			 *   MII, 25 MHz, no loopback, no echo
1023			 */
1024			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1025				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1026			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1027				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1028			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1029
1030			/* re-enable the gasket */
1031			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1032		}
1033#endif
1034	}
1035
1036#if !defined(CONFIG_M5272)
1037	/* enable pause frame*/
1038	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1039	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1040	     fep->phy_dev && fep->phy_dev->pause)) {
1041		rcntl |= FEC_ENET_FCE;
1042
1043		/* set FIFO threshold parameter to reduce overrun */
1044		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1045		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1046		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1047		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1048
1049		/* OPD */
1050		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1051	} else {
1052		rcntl &= ~FEC_ENET_FCE;
1053	}
1054#endif /* !defined(CONFIG_M5272) */
1055
1056	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1057
1058	/* Setup multicast filter. */
1059	set_multicast_list(ndev);
1060#ifndef CONFIG_M5272
1061	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1062	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1063#endif
1064
1065	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1066		/* enable ENET endian swap */
1067		ecntl |= (1 << 8);
1068		/* enable ENET store and forward mode */
1069		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1070	}
1071
1072	if (fep->bufdesc_ex)
1073		ecntl |= (1 << 4);
1074
1075#ifndef CONFIG_M5272
1076	/* Enable the MIB statistic event counters */
1077	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1078#endif
1079
1080	/* And last, enable the transmit and receive processing */
1081	writel(ecntl, fep->hwp + FEC_ECNTRL);
1082	fec_enet_active_rxring(ndev);
1083
1084	if (fep->bufdesc_ex)
1085		fec_ptp_start_cyclecounter(ndev);
1086
1087	/* Enable interrupts we wish to service */
1088	if (fep->link)
1089		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1090	else
1091		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1092
1093	/* Init the interrupt coalescing */
1094	fec_enet_itr_coal_init(ndev);
1095
1096}
1097
1098static void
1099fec_stop(struct net_device *ndev)
1100{
1101	struct fec_enet_private *fep = netdev_priv(ndev);
1102	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1103	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1104	u32 val;
1105
1106	/* We cannot expect a graceful transmit stop without link !!! */
1107	if (fep->link) {
1108		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1109		udelay(10);
1110		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1111			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1112	}
1113
1114	/* Whack a reset.  We should wait for this.
1115	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1116	 * instead of reset MAC itself.
1117	 */
1118	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1119		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1120			writel(0, fep->hwp + FEC_ECNTRL);
1121		} else {
1122			writel(1, fep->hwp + FEC_ECNTRL);
1123			udelay(10);
1124		}
1125		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1126	} else {
1127		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1128		val = readl(fep->hwp + FEC_ECNTRL);
1129		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1130		writel(val, fep->hwp + FEC_ECNTRL);
1131
1132		if (pdata && pdata->sleep_mode_enable)
1133			pdata->sleep_mode_enable(true);
1134	}
1135	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1136
1137	/* We have to keep ENET enabled to have MII interrupt stay working */
1138	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1139		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1140		writel(2, fep->hwp + FEC_ECNTRL);
1141		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1142	}
1143}
1144
1145
1146static void
1147fec_timeout(struct net_device *ndev)
1148{
1149	struct fec_enet_private *fep = netdev_priv(ndev);
1150
1151	fec_dump(ndev);
1152
1153	ndev->stats.tx_errors++;
1154
1155	schedule_work(&fep->tx_timeout_work);
1156}
1157
1158static void fec_enet_timeout_work(struct work_struct *work)
1159{
1160	struct fec_enet_private *fep =
1161		container_of(work, struct fec_enet_private, tx_timeout_work);
1162	struct net_device *ndev = fep->netdev;
1163
1164	rtnl_lock();
1165	if (netif_device_present(ndev) || netif_running(ndev)) {
1166		napi_disable(&fep->napi);
1167		netif_tx_lock_bh(ndev);
1168		fec_restart(ndev);
1169		netif_wake_queue(ndev);
1170		netif_tx_unlock_bh(ndev);
1171		napi_enable(&fep->napi);
1172	}
1173	rtnl_unlock();
1174}
1175
1176static void
1177fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1178	struct skb_shared_hwtstamps *hwtstamps)
1179{
1180	unsigned long flags;
1181	u64 ns;
1182
1183	spin_lock_irqsave(&fep->tmreg_lock, flags);
1184	ns = timecounter_cyc2time(&fep->tc, ts);
1185	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1186
1187	memset(hwtstamps, 0, sizeof(*hwtstamps));
1188	hwtstamps->hwtstamp = ns_to_ktime(ns);
1189}
1190
1191static void
1192fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1193{
1194	struct	fec_enet_private *fep;
1195	struct bufdesc *bdp;
1196	unsigned short status;
1197	struct	sk_buff	*skb;
1198	struct fec_enet_priv_tx_q *txq;
1199	struct netdev_queue *nq;
1200	int	index = 0;
1201	int	entries_free;
1202
1203	fep = netdev_priv(ndev);
1204
1205	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1206
1207	txq = fep->tx_queue[queue_id];
1208	/* get next bdp of dirty_tx */
1209	nq = netdev_get_tx_queue(ndev, queue_id);
1210	bdp = txq->dirty_tx;
1211
1212	/* get next bdp of dirty_tx */
1213	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1214
1215	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1216
1217		/* current queue is empty */
1218		if (bdp == txq->cur_tx)
1219			break;
1220
1221		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1222
1223		skb = txq->tx_skbuff[index];
1224		txq->tx_skbuff[index] = NULL;
1225		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1226			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1227					bdp->cbd_datlen, DMA_TO_DEVICE);
1228		bdp->cbd_bufaddr = 0;
1229		if (!skb) {
1230			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1231			continue;
1232		}
1233
1234		/* Check for errors. */
1235		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1236				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1237				   BD_ENET_TX_CSL)) {
1238			ndev->stats.tx_errors++;
1239			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1240				ndev->stats.tx_heartbeat_errors++;
1241			if (status & BD_ENET_TX_LC)  /* Late collision */
1242				ndev->stats.tx_window_errors++;
1243			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1244				ndev->stats.tx_aborted_errors++;
1245			if (status & BD_ENET_TX_UN)  /* Underrun */
1246				ndev->stats.tx_fifo_errors++;
1247			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1248				ndev->stats.tx_carrier_errors++;
1249		} else {
1250			ndev->stats.tx_packets++;
1251			ndev->stats.tx_bytes += skb->len;
1252		}
1253
1254		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1255			fep->bufdesc_ex) {
1256			struct skb_shared_hwtstamps shhwtstamps;
1257			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1258
1259			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1260			skb_tstamp_tx(skb, &shhwtstamps);
1261		}
1262
1263		/* Deferred means some collisions occurred during transmit,
1264		 * but we eventually sent the packet OK.
1265		 */
1266		if (status & BD_ENET_TX_DEF)
1267			ndev->stats.collisions++;
1268
1269		/* Free the sk buffer associated with this last transmit */
1270		dev_kfree_skb_any(skb);
1271
1272		txq->dirty_tx = bdp;
1273
1274		/* Update pointer to next buffer descriptor to be transmitted */
1275		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1276
1277		/* Since we have freed up a buffer, the ring is no longer full
1278		 */
1279		if (netif_queue_stopped(ndev)) {
1280			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1281			if (entries_free >= txq->tx_wake_threshold)
1282				netif_tx_wake_queue(nq);
1283		}
1284	}
1285
1286	/* ERR006538: Keep the transmitter going */
1287	if (bdp != txq->cur_tx &&
1288	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1289		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1290}
1291
1292static void
1293fec_enet_tx(struct net_device *ndev)
1294{
1295	struct fec_enet_private *fep = netdev_priv(ndev);
1296	u16 queue_id;
1297	/* First process class A queue, then Class B and Best Effort queue */
1298	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1299		clear_bit(queue_id, &fep->work_tx);
1300		fec_enet_tx_queue(ndev, queue_id);
1301	}
1302	return;
1303}
1304
1305static int
1306fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1307{
1308	struct  fec_enet_private *fep = netdev_priv(ndev);
1309	int off;
1310
1311	off = ((unsigned long)skb->data) & fep->rx_align;
1312	if (off)
1313		skb_reserve(skb, fep->rx_align + 1 - off);
1314
1315	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1316					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1317					  DMA_FROM_DEVICE);
1318	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1319		if (net_ratelimit())
1320			netdev_err(ndev, "Rx DMA memory map failed\n");
1321		return -ENOMEM;
1322	}
1323
1324	return 0;
1325}
1326
1327static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1328			       struct bufdesc *bdp, u32 length, bool swap)
1329{
1330	struct  fec_enet_private *fep = netdev_priv(ndev);
1331	struct sk_buff *new_skb;
1332
1333	if (length > fep->rx_copybreak)
1334		return false;
1335
1336	new_skb = netdev_alloc_skb(ndev, length);
1337	if (!new_skb)
1338		return false;
1339
1340	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1341				FEC_ENET_RX_FRSIZE - fep->rx_align,
1342				DMA_FROM_DEVICE);
1343	if (!swap)
1344		memcpy(new_skb->data, (*skb)->data, length);
1345	else
1346		swap_buffer2(new_skb->data, (*skb)->data, length);
1347	*skb = new_skb;
1348
1349	return true;
1350}
1351
1352/* During a receive, the cur_rx points to the current incoming buffer.
1353 * When we update through the ring, if the next incoming buffer has
1354 * not been given to the system, we just set the empty indicator,
1355 * effectively tossing the packet.
1356 */
1357static int
1358fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1359{
1360	struct fec_enet_private *fep = netdev_priv(ndev);
1361	struct fec_enet_priv_rx_q *rxq;
1362	struct bufdesc *bdp;
1363	unsigned short status;
1364	struct  sk_buff *skb_new = NULL;
1365	struct  sk_buff *skb;
1366	ushort	pkt_len;
1367	__u8 *data;
1368	int	pkt_received = 0;
1369	struct	bufdesc_ex *ebdp = NULL;
1370	bool	vlan_packet_rcvd = false;
1371	u16	vlan_tag;
1372	int	index = 0;
1373	bool	is_copybreak;
1374	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1375
1376#ifdef CONFIG_M532x
1377	flush_cache_all();
1378#endif
1379	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1380	rxq = fep->rx_queue[queue_id];
1381
1382	/* First, grab all of the stats for the incoming packet.
1383	 * These get messed up if we get called due to a busy condition.
1384	 */
1385	bdp = rxq->cur_rx;
1386
1387	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1388
1389		if (pkt_received >= budget)
1390			break;
1391		pkt_received++;
1392
1393		/* Since we have allocated space to hold a complete frame,
1394		 * the last indicator should be set.
1395		 */
1396		if ((status & BD_ENET_RX_LAST) == 0)
1397			netdev_err(ndev, "rcv is not +last\n");
1398
1399		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1400
1401		/* Check for errors. */
1402		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1403			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1404			ndev->stats.rx_errors++;
1405			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1406				/* Frame too long or too short. */
1407				ndev->stats.rx_length_errors++;
1408			}
1409			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1410				ndev->stats.rx_frame_errors++;
1411			if (status & BD_ENET_RX_CR)	/* CRC Error */
1412				ndev->stats.rx_crc_errors++;
1413			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1414				ndev->stats.rx_fifo_errors++;
1415		}
1416
1417		/* Report late collisions as a frame error.
1418		 * On this error, the BD is closed, but we don't know what we
1419		 * have in the buffer.  So, just drop this frame on the floor.
1420		 */
1421		if (status & BD_ENET_RX_CL) {
1422			ndev->stats.rx_errors++;
1423			ndev->stats.rx_frame_errors++;
1424			goto rx_processing_done;
1425		}
1426
1427		/* Process the incoming frame. */
1428		ndev->stats.rx_packets++;
1429		pkt_len = bdp->cbd_datlen;
1430		ndev->stats.rx_bytes += pkt_len;
1431
1432		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1433		skb = rxq->rx_skbuff[index];
1434
1435		/* The packet length includes FCS, but we don't want to
1436		 * include that when passing upstream as it messes up
1437		 * bridging applications.
1438		 */
1439		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1440						  need_swap);
1441		if (!is_copybreak) {
1442			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1443			if (unlikely(!skb_new)) {
1444				ndev->stats.rx_dropped++;
1445				goto rx_processing_done;
1446			}
1447			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1448					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1449					 DMA_FROM_DEVICE);
1450		}
1451
1452		prefetch(skb->data - NET_IP_ALIGN);
1453		skb_put(skb, pkt_len - 4);
1454		data = skb->data;
1455		if (!is_copybreak && need_swap)
1456			swap_buffer(data, pkt_len);
1457
1458		/* Extract the enhanced buffer descriptor */
1459		ebdp = NULL;
1460		if (fep->bufdesc_ex)
1461			ebdp = (struct bufdesc_ex *)bdp;
1462
1463		/* If this is a VLAN packet remove the VLAN Tag */
1464		vlan_packet_rcvd = false;
1465		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1466			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1467			/* Push and remove the vlan tag */
1468			struct vlan_hdr *vlan_header =
1469					(struct vlan_hdr *) (data + ETH_HLEN);
1470			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1471
1472			vlan_packet_rcvd = true;
1473
1474			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1475			skb_pull(skb, VLAN_HLEN);
1476		}
1477
1478		skb->protocol = eth_type_trans(skb, ndev);
1479
1480		/* Get receive timestamp from the skb */
1481		if (fep->hwts_rx_en && fep->bufdesc_ex)
1482			fec_enet_hwtstamp(fep, ebdp->ts,
1483					  skb_hwtstamps(skb));
1484
1485		if (fep->bufdesc_ex &&
1486		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1487			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1488				/* don't check it */
1489				skb->ip_summed = CHECKSUM_UNNECESSARY;
1490			} else {
1491				skb_checksum_none_assert(skb);
1492			}
1493		}
1494
1495		/* Handle received VLAN packets */
1496		if (vlan_packet_rcvd)
1497			__vlan_hwaccel_put_tag(skb,
1498					       htons(ETH_P_8021Q),
1499					       vlan_tag);
1500
1501		napi_gro_receive(&fep->napi, skb);
1502
1503		if (is_copybreak) {
1504			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1505						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1506						   DMA_FROM_DEVICE);
1507		} else {
1508			rxq->rx_skbuff[index] = skb_new;
1509			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1510		}
1511
1512rx_processing_done:
1513		/* Clear the status flags for this buffer */
1514		status &= ~BD_ENET_RX_STATS;
1515
1516		/* Mark the buffer empty */
1517		status |= BD_ENET_RX_EMPTY;
1518		bdp->cbd_sc = status;
1519
1520		if (fep->bufdesc_ex) {
1521			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1522
1523			ebdp->cbd_esc = BD_ENET_RX_INT;
1524			ebdp->cbd_prot = 0;
1525			ebdp->cbd_bdu = 0;
1526		}
1527
1528		/* Update BD pointer to next entry */
1529		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1530
1531		/* Doing this here will keep the FEC running while we process
1532		 * incoming frames.  On a heavily loaded network, we should be
1533		 * able to keep up at the expense of system resources.
1534		 */
1535		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1536	}
1537	rxq->cur_rx = bdp;
1538	return pkt_received;
1539}
1540
1541static int
1542fec_enet_rx(struct net_device *ndev, int budget)
1543{
1544	int     pkt_received = 0;
1545	u16	queue_id;
1546	struct fec_enet_private *fep = netdev_priv(ndev);
1547
1548	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1549		clear_bit(queue_id, &fep->work_rx);
1550		pkt_received += fec_enet_rx_queue(ndev,
1551					budget - pkt_received, queue_id);
1552	}
1553	return pkt_received;
1554}
1555
1556static bool
1557fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1558{
1559	if (int_events == 0)
1560		return false;
1561
1562	if (int_events & FEC_ENET_RXF)
1563		fep->work_rx |= (1 << 2);
1564	if (int_events & FEC_ENET_RXF_1)
1565		fep->work_rx |= (1 << 0);
1566	if (int_events & FEC_ENET_RXF_2)
1567		fep->work_rx |= (1 << 1);
1568
1569	if (int_events & FEC_ENET_TXF)
1570		fep->work_tx |= (1 << 2);
1571	if (int_events & FEC_ENET_TXF_1)
1572		fep->work_tx |= (1 << 0);
1573	if (int_events & FEC_ENET_TXF_2)
1574		fep->work_tx |= (1 << 1);
1575
1576	return true;
1577}
1578
1579static irqreturn_t
1580fec_enet_interrupt(int irq, void *dev_id)
1581{
1582	struct net_device *ndev = dev_id;
1583	struct fec_enet_private *fep = netdev_priv(ndev);
1584	uint int_events;
1585	irqreturn_t ret = IRQ_NONE;
1586
1587	int_events = readl(fep->hwp + FEC_IEVENT);
1588	writel(int_events, fep->hwp + FEC_IEVENT);
1589	fec_enet_collect_events(fep, int_events);
1590
1591	if ((fep->work_tx || fep->work_rx) && fep->link) {
1592		ret = IRQ_HANDLED;
1593
1594		if (napi_schedule_prep(&fep->napi)) {
1595			/* Disable the NAPI interrupts */
1596			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1597			__napi_schedule(&fep->napi);
1598		}
1599	}
1600
1601	if (int_events & FEC_ENET_MII) {
1602		ret = IRQ_HANDLED;
1603		complete(&fep->mdio_done);
1604	}
1605
1606	if (fep->ptp_clock)
1607		fec_ptp_check_pps_event(fep);
1608
1609	return ret;
1610}
1611
1612static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1613{
1614	struct net_device *ndev = napi->dev;
1615	struct fec_enet_private *fep = netdev_priv(ndev);
1616	int pkts;
1617
1618	pkts = fec_enet_rx(ndev, budget);
1619
1620	fec_enet_tx(ndev);
1621
1622	if (pkts < budget) {
1623		napi_complete(napi);
1624		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1625	}
1626	return pkts;
1627}
1628
1629/* ------------------------------------------------------------------------- */
1630static void fec_get_mac(struct net_device *ndev)
1631{
1632	struct fec_enet_private *fep = netdev_priv(ndev);
1633	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1634	unsigned char *iap, tmpaddr[ETH_ALEN];
1635
1636	/*
1637	 * try to get mac address in following order:
1638	 *
1639	 * 1) module parameter via kernel command line in form
1640	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1641	 */
1642	iap = macaddr;
1643
1644	/*
1645	 * 2) from device tree data
1646	 */
1647	if (!is_valid_ether_addr(iap)) {
1648		struct device_node *np = fep->pdev->dev.of_node;
1649		if (np) {
1650			const char *mac = of_get_mac_address(np);
1651			if (mac)
1652				iap = (unsigned char *) mac;
1653		}
1654	}
1655
1656	/*
1657	 * 3) from flash or fuse (via platform data)
1658	 */
1659	if (!is_valid_ether_addr(iap)) {
1660#ifdef CONFIG_M5272
1661		if (FEC_FLASHMAC)
1662			iap = (unsigned char *)FEC_FLASHMAC;
1663#else
1664		if (pdata)
1665			iap = (unsigned char *)&pdata->mac;
1666#endif
1667	}
1668
1669	/*
1670	 * 4) FEC mac registers set by bootloader
1671	 */
1672	if (!is_valid_ether_addr(iap)) {
1673		*((__be32 *) &tmpaddr[0]) =
1674			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1675		*((__be16 *) &tmpaddr[4]) =
1676			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1677		iap = &tmpaddr[0];
1678	}
1679
1680	/*
1681	 * 5) random mac address
1682	 */
1683	if (!is_valid_ether_addr(iap)) {
1684		/* Report it and use a random ethernet address instead */
1685		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1686		eth_hw_addr_random(ndev);
1687		netdev_info(ndev, "Using random MAC address: %pM\n",
1688			    ndev->dev_addr);
1689		return;
1690	}
1691
1692	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1693
1694	/* Adjust MAC if using macaddr */
1695	if (iap == macaddr)
1696		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1697}
1698
1699/* ------------------------------------------------------------------------- */
1700
1701/*
1702 * Phy section
1703 */
1704static void fec_enet_adjust_link(struct net_device *ndev)
1705{
1706	struct fec_enet_private *fep = netdev_priv(ndev);
1707	struct phy_device *phy_dev = fep->phy_dev;
1708	int status_change = 0;
1709
1710	/* Prevent a state halted on mii error */
1711	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1712		phy_dev->state = PHY_RESUMING;
1713		return;
1714	}
1715
1716	/*
1717	 * If the netdev is down, or is going down, we're not interested
1718	 * in link state events, so just mark our idea of the link as down
1719	 * and ignore the event.
1720	 */
1721	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1722		fep->link = 0;
1723	} else if (phy_dev->link) {
1724		if (!fep->link) {
1725			fep->link = phy_dev->link;
1726			status_change = 1;
1727		}
1728
1729		if (fep->full_duplex != phy_dev->duplex) {
1730			fep->full_duplex = phy_dev->duplex;
1731			status_change = 1;
1732		}
1733
1734		if (phy_dev->speed != fep->speed) {
1735			fep->speed = phy_dev->speed;
1736			status_change = 1;
1737		}
1738
1739		/* if any of the above changed restart the FEC */
1740		if (status_change) {
1741			napi_disable(&fep->napi);
1742			netif_tx_lock_bh(ndev);
1743			fec_restart(ndev);
1744			netif_wake_queue(ndev);
1745			netif_tx_unlock_bh(ndev);
1746			napi_enable(&fep->napi);
1747		}
1748	} else {
1749		if (fep->link) {
1750			napi_disable(&fep->napi);
1751			netif_tx_lock_bh(ndev);
1752			fec_stop(ndev);
1753			netif_tx_unlock_bh(ndev);
1754			napi_enable(&fep->napi);
1755			fep->link = phy_dev->link;
1756			status_change = 1;
1757		}
1758	}
1759
1760	if (status_change)
1761		phy_print_status(phy_dev);
1762}
1763
1764static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1765{
1766	struct fec_enet_private *fep = bus->priv;
1767	unsigned long time_left;
1768
1769	fep->mii_timeout = 0;
1770	init_completion(&fep->mdio_done);
1771
1772	/* start a read op */
1773	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1774		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1775		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1776
1777	/* wait for end of transfer */
1778	time_left = wait_for_completion_timeout(&fep->mdio_done,
1779			usecs_to_jiffies(FEC_MII_TIMEOUT));
1780	if (time_left == 0) {
1781		fep->mii_timeout = 1;
1782		netdev_err(fep->netdev, "MDIO read timeout\n");
1783		return -ETIMEDOUT;
1784	}
1785
1786	/* return value */
1787	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1788}
1789
1790static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1791			   u16 value)
1792{
1793	struct fec_enet_private *fep = bus->priv;
1794	unsigned long time_left;
1795
1796	fep->mii_timeout = 0;
1797	init_completion(&fep->mdio_done);
1798
1799	/* start a write op */
1800	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1801		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1802		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1803		fep->hwp + FEC_MII_DATA);
1804
1805	/* wait for end of transfer */
1806	time_left = wait_for_completion_timeout(&fep->mdio_done,
1807			usecs_to_jiffies(FEC_MII_TIMEOUT));
1808	if (time_left == 0) {
1809		fep->mii_timeout = 1;
1810		netdev_err(fep->netdev, "MDIO write timeout\n");
1811		return -ETIMEDOUT;
1812	}
1813
1814	return 0;
1815}
1816
1817static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1818{
1819	struct fec_enet_private *fep = netdev_priv(ndev);
1820	int ret;
1821
1822	if (enable) {
1823		ret = clk_prepare_enable(fep->clk_ahb);
1824		if (ret)
1825			return ret;
1826		ret = clk_prepare_enable(fep->clk_ipg);
1827		if (ret)
1828			goto failed_clk_ipg;
1829		if (fep->clk_enet_out) {
1830			ret = clk_prepare_enable(fep->clk_enet_out);
1831			if (ret)
1832				goto failed_clk_enet_out;
1833		}
1834		if (fep->clk_ptp) {
1835			mutex_lock(&fep->ptp_clk_mutex);
1836			ret = clk_prepare_enable(fep->clk_ptp);
1837			if (ret) {
1838				mutex_unlock(&fep->ptp_clk_mutex);
1839				goto failed_clk_ptp;
1840			} else {
1841				fep->ptp_clk_on = true;
1842			}
1843			mutex_unlock(&fep->ptp_clk_mutex);
1844		}
1845		if (fep->clk_ref) {
1846			ret = clk_prepare_enable(fep->clk_ref);
1847			if (ret)
1848				goto failed_clk_ref;
1849		}
1850	} else {
1851		clk_disable_unprepare(fep->clk_ahb);
1852		clk_disable_unprepare(fep->clk_ipg);
1853		if (fep->clk_enet_out)
1854			clk_disable_unprepare(fep->clk_enet_out);
1855		if (fep->clk_ptp) {
1856			mutex_lock(&fep->ptp_clk_mutex);
1857			clk_disable_unprepare(fep->clk_ptp);
1858			fep->ptp_clk_on = false;
1859			mutex_unlock(&fep->ptp_clk_mutex);
1860		}
1861		if (fep->clk_ref)
1862			clk_disable_unprepare(fep->clk_ref);
1863	}
1864
1865	return 0;
1866
1867failed_clk_ref:
1868	if (fep->clk_ref)
1869		clk_disable_unprepare(fep->clk_ref);
1870failed_clk_ptp:
1871	if (fep->clk_enet_out)
1872		clk_disable_unprepare(fep->clk_enet_out);
1873failed_clk_enet_out:
1874		clk_disable_unprepare(fep->clk_ipg);
1875failed_clk_ipg:
1876		clk_disable_unprepare(fep->clk_ahb);
1877
1878	return ret;
1879}
1880
1881static int fec_enet_mii_probe(struct net_device *ndev)
1882{
1883	struct fec_enet_private *fep = netdev_priv(ndev);
1884	struct phy_device *phy_dev = NULL;
1885	char mdio_bus_id[MII_BUS_ID_SIZE];
1886	char phy_name[MII_BUS_ID_SIZE + 3];
1887	int phy_id;
1888	int dev_id = fep->dev_id;
1889
1890	fep->phy_dev = NULL;
1891
1892	if (fep->phy_node) {
1893		phy_dev = of_phy_connect(ndev, fep->phy_node,
1894					 &fec_enet_adjust_link, 0,
1895					 fep->phy_interface);
1896		if (!phy_dev)
1897			return -ENODEV;
1898	} else {
1899		/* check for attached phy */
1900		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1901			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1902				continue;
1903			if (fep->mii_bus->phy_map[phy_id] == NULL)
1904				continue;
1905			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1906				continue;
1907			if (dev_id--)
1908				continue;
1909			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1910			break;
1911		}
1912
1913		if (phy_id >= PHY_MAX_ADDR) {
1914			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1915			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1916			phy_id = 0;
1917		}
1918
1919		snprintf(phy_name, sizeof(phy_name),
1920			 PHY_ID_FMT, mdio_bus_id, phy_id);
1921		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1922				      fep->phy_interface);
1923	}
1924
1925	if (IS_ERR(phy_dev)) {
1926		netdev_err(ndev, "could not attach to PHY\n");
1927		return PTR_ERR(phy_dev);
1928	}
1929
1930	/* mask with MAC supported features */
1931	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1932		phy_dev->supported &= PHY_GBIT_FEATURES;
1933		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1934#if !defined(CONFIG_M5272)
1935		phy_dev->supported |= SUPPORTED_Pause;
1936#endif
1937	}
1938	else
1939		phy_dev->supported &= PHY_BASIC_FEATURES;
1940
1941	phy_dev->advertising = phy_dev->supported;
1942
1943	fep->phy_dev = phy_dev;
1944	fep->link = 0;
1945	fep->full_duplex = 0;
1946
1947	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1948		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1949		    fep->phy_dev->irq);
1950
1951	return 0;
1952}
1953
1954static int fec_enet_mii_init(struct platform_device *pdev)
1955{
1956	static struct mii_bus *fec0_mii_bus;
1957	struct net_device *ndev = platform_get_drvdata(pdev);
1958	struct fec_enet_private *fep = netdev_priv(ndev);
1959	struct device_node *node;
1960	int err = -ENXIO, i;
1961	u32 mii_speed, holdtime;
1962
1963	/*
1964	 * The i.MX28 dual fec interfaces are not equal.
1965	 * Here are the differences:
1966	 *
1967	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1968	 *  - fec0 acts as the 1588 time master while fec1 is slave
1969	 *  - external phys can only be configured by fec0
1970	 *
1971	 * That is to say fec1 can not work independently. It only works
1972	 * when fec0 is working. The reason behind this design is that the
1973	 * second interface is added primarily for Switch mode.
1974	 *
1975	 * Because of the last point above, both phys are attached on fec0
1976	 * mdio interface in board design, and need to be configured by
1977	 * fec0 mii_bus.
1978	 */
1979	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1980		/* fec1 uses fec0 mii_bus */
1981		if (mii_cnt && fec0_mii_bus) {
1982			fep->mii_bus = fec0_mii_bus;
1983			mii_cnt++;
1984			return 0;
1985		}
1986		return -ENOENT;
1987	}
1988
1989	fep->mii_timeout = 0;
1990
1991	/*
1992	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1993	 *
1994	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1995	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1996	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1997	 * document.
1998	 */
1999	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2000	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2001		mii_speed--;
2002	if (mii_speed > 63) {
2003		dev_err(&pdev->dev,
2004			"fec clock (%lu) to fast to get right mii speed\n",
2005			clk_get_rate(fep->clk_ipg));
2006		err = -EINVAL;
2007		goto err_out;
2008	}
2009
2010	/*
2011	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2012	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2013	 * versions are RAZ there, so just ignore the difference and write the
2014	 * register always.
2015	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2016	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2017	 * output.
2018	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2019	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2020	 * holdtime cannot result in a value greater than 3.
2021	 */
2022	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2023
2024	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2025
2026	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2027
2028	fep->mii_bus = mdiobus_alloc();
2029	if (fep->mii_bus == NULL) {
2030		err = -ENOMEM;
2031		goto err_out;
2032	}
2033
2034	fep->mii_bus->name = "fec_enet_mii_bus";
2035	fep->mii_bus->read = fec_enet_mdio_read;
2036	fep->mii_bus->write = fec_enet_mdio_write;
2037	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2038		pdev->name, fep->dev_id + 1);
2039	fep->mii_bus->priv = fep;
2040	fep->mii_bus->parent = &pdev->dev;
2041
2042	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2043	if (!fep->mii_bus->irq) {
2044		err = -ENOMEM;
2045		goto err_out_free_mdiobus;
2046	}
2047
2048	for (i = 0; i < PHY_MAX_ADDR; i++)
2049		fep->mii_bus->irq[i] = PHY_POLL;
2050
2051	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2052	if (node) {
2053		err = of_mdiobus_register(fep->mii_bus, node);
2054		of_node_put(node);
2055	} else {
2056		err = mdiobus_register(fep->mii_bus);
2057	}
2058
2059	if (err)
2060		goto err_out_free_mdio_irq;
2061
2062	mii_cnt++;
2063
2064	/* save fec0 mii_bus */
2065	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2066		fec0_mii_bus = fep->mii_bus;
2067
2068	return 0;
2069
2070err_out_free_mdio_irq:
2071	kfree(fep->mii_bus->irq);
2072err_out_free_mdiobus:
2073	mdiobus_free(fep->mii_bus);
2074err_out:
2075	return err;
2076}
2077
2078static void fec_enet_mii_remove(struct fec_enet_private *fep)
2079{
2080	if (--mii_cnt == 0) {
2081		mdiobus_unregister(fep->mii_bus);
2082		kfree(fep->mii_bus->irq);
2083		mdiobus_free(fep->mii_bus);
2084	}
2085}
2086
2087static int fec_enet_get_settings(struct net_device *ndev,
2088				  struct ethtool_cmd *cmd)
2089{
2090	struct fec_enet_private *fep = netdev_priv(ndev);
2091	struct phy_device *phydev = fep->phy_dev;
2092
2093	if (!phydev)
2094		return -ENODEV;
2095
2096	return phy_ethtool_gset(phydev, cmd);
2097}
2098
2099static int fec_enet_set_settings(struct net_device *ndev,
2100				 struct ethtool_cmd *cmd)
2101{
2102	struct fec_enet_private *fep = netdev_priv(ndev);
2103	struct phy_device *phydev = fep->phy_dev;
2104
2105	if (!phydev)
2106		return -ENODEV;
2107
2108	return phy_ethtool_sset(phydev, cmd);
2109}
2110
2111static void fec_enet_get_drvinfo(struct net_device *ndev,
2112				 struct ethtool_drvinfo *info)
2113{
2114	struct fec_enet_private *fep = netdev_priv(ndev);
2115
2116	strlcpy(info->driver, fep->pdev->dev.driver->name,
2117		sizeof(info->driver));
2118	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2119	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2120}
2121
2122static int fec_enet_get_ts_info(struct net_device *ndev,
2123				struct ethtool_ts_info *info)
2124{
2125	struct fec_enet_private *fep = netdev_priv(ndev);
2126
2127	if (fep->bufdesc_ex) {
2128
2129		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2130					SOF_TIMESTAMPING_RX_SOFTWARE |
2131					SOF_TIMESTAMPING_SOFTWARE |
2132					SOF_TIMESTAMPING_TX_HARDWARE |
2133					SOF_TIMESTAMPING_RX_HARDWARE |
2134					SOF_TIMESTAMPING_RAW_HARDWARE;
2135		if (fep->ptp_clock)
2136			info->phc_index = ptp_clock_index(fep->ptp_clock);
2137		else
2138			info->phc_index = -1;
2139
2140		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2141				 (1 << HWTSTAMP_TX_ON);
2142
2143		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2144				   (1 << HWTSTAMP_FILTER_ALL);
2145		return 0;
2146	} else {
2147		return ethtool_op_get_ts_info(ndev, info);
2148	}
2149}
2150
2151#if !defined(CONFIG_M5272)
2152
2153static void fec_enet_get_pauseparam(struct net_device *ndev,
2154				    struct ethtool_pauseparam *pause)
2155{
2156	struct fec_enet_private *fep = netdev_priv(ndev);
2157
2158	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2159	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2160	pause->rx_pause = pause->tx_pause;
2161}
2162
2163static int fec_enet_set_pauseparam(struct net_device *ndev,
2164				   struct ethtool_pauseparam *pause)
2165{
2166	struct fec_enet_private *fep = netdev_priv(ndev);
2167
2168	if (!fep->phy_dev)
2169		return -ENODEV;
2170
2171	if (pause->tx_pause != pause->rx_pause) {
2172		netdev_info(ndev,
2173			"hardware only support enable/disable both tx and rx");
2174		return -EINVAL;
2175	}
2176
2177	fep->pause_flag = 0;
2178
2179	/* tx pause must be same as rx pause */
2180	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2181	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2182
2183	if (pause->rx_pause || pause->autoneg) {
2184		fep->phy_dev->supported |= ADVERTISED_Pause;
2185		fep->phy_dev->advertising |= ADVERTISED_Pause;
2186	} else {
2187		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2188		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2189	}
2190
2191	if (pause->autoneg) {
2192		if (netif_running(ndev))
2193			fec_stop(ndev);
2194		phy_start_aneg(fep->phy_dev);
2195	}
2196	if (netif_running(ndev)) {
2197		napi_disable(&fep->napi);
2198		netif_tx_lock_bh(ndev);
2199		fec_restart(ndev);
2200		netif_wake_queue(ndev);
2201		netif_tx_unlock_bh(ndev);
2202		napi_enable(&fep->napi);
2203	}
2204
2205	return 0;
2206}
2207
2208static const struct fec_stat {
2209	char name[ETH_GSTRING_LEN];
2210	u16 offset;
2211} fec_stats[] = {
2212	/* RMON TX */
2213	{ "tx_dropped", RMON_T_DROP },
2214	{ "tx_packets", RMON_T_PACKETS },
2215	{ "tx_broadcast", RMON_T_BC_PKT },
2216	{ "tx_multicast", RMON_T_MC_PKT },
2217	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2218	{ "tx_undersize", RMON_T_UNDERSIZE },
2219	{ "tx_oversize", RMON_T_OVERSIZE },
2220	{ "tx_fragment", RMON_T_FRAG },
2221	{ "tx_jabber", RMON_T_JAB },
2222	{ "tx_collision", RMON_T_COL },
2223	{ "tx_64byte", RMON_T_P64 },
2224	{ "tx_65to127byte", RMON_T_P65TO127 },
2225	{ "tx_128to255byte", RMON_T_P128TO255 },
2226	{ "tx_256to511byte", RMON_T_P256TO511 },
2227	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2228	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2229	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2230	{ "tx_octets", RMON_T_OCTETS },
2231
2232	/* IEEE TX */
2233	{ "IEEE_tx_drop", IEEE_T_DROP },
2234	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2235	{ "IEEE_tx_1col", IEEE_T_1COL },
2236	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2237	{ "IEEE_tx_def", IEEE_T_DEF },
2238	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2239	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2240	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2241	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2242	{ "IEEE_tx_sqe", IEEE_T_SQE },
2243	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2244	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2245
2246	/* RMON RX */
2247	{ "rx_packets", RMON_R_PACKETS },
2248	{ "rx_broadcast", RMON_R_BC_PKT },
2249	{ "rx_multicast", RMON_R_MC_PKT },
2250	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2251	{ "rx_undersize", RMON_R_UNDERSIZE },
2252	{ "rx_oversize", RMON_R_OVERSIZE },
2253	{ "rx_fragment", RMON_R_FRAG },
2254	{ "rx_jabber", RMON_R_JAB },
2255	{ "rx_64byte", RMON_R_P64 },
2256	{ "rx_65to127byte", RMON_R_P65TO127 },
2257	{ "rx_128to255byte", RMON_R_P128TO255 },
2258	{ "rx_256to511byte", RMON_R_P256TO511 },
2259	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2260	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2261	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2262	{ "rx_octets", RMON_R_OCTETS },
2263
2264	/* IEEE RX */
2265	{ "IEEE_rx_drop", IEEE_R_DROP },
2266	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2267	{ "IEEE_rx_crc", IEEE_R_CRC },
2268	{ "IEEE_rx_align", IEEE_R_ALIGN },
2269	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2270	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2271	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2272};
2273
2274static void fec_enet_get_ethtool_stats(struct net_device *dev,
2275	struct ethtool_stats *stats, u64 *data)
2276{
2277	struct fec_enet_private *fep = netdev_priv(dev);
2278	int i;
2279
2280	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2281		data[i] = readl(fep->hwp + fec_stats[i].offset);
2282}
2283
2284static void fec_enet_get_strings(struct net_device *netdev,
2285	u32 stringset, u8 *data)
2286{
2287	int i;
2288	switch (stringset) {
2289	case ETH_SS_STATS:
2290		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2291			memcpy(data + i * ETH_GSTRING_LEN,
2292				fec_stats[i].name, ETH_GSTRING_LEN);
2293		break;
2294	}
2295}
2296
2297static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2298{
2299	switch (sset) {
2300	case ETH_SS_STATS:
2301		return ARRAY_SIZE(fec_stats);
2302	default:
2303		return -EOPNOTSUPP;
2304	}
2305}
2306#endif /* !defined(CONFIG_M5272) */
2307
2308static int fec_enet_nway_reset(struct net_device *dev)
2309{
2310	struct fec_enet_private *fep = netdev_priv(dev);
2311	struct phy_device *phydev = fep->phy_dev;
2312
2313	if (!phydev)
2314		return -ENODEV;
2315
2316	return genphy_restart_aneg(phydev);
2317}
2318
2319/* ITR clock source is enet system clock (clk_ahb).
2320 * TCTT unit is cycle_ns * 64 cycle
2321 * So, the ICTT value = X us / (cycle_ns * 64)
2322 */
2323static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2324{
2325	struct fec_enet_private *fep = netdev_priv(ndev);
2326
2327	return us * (fep->itr_clk_rate / 64000) / 1000;
2328}
2329
2330/* Set threshold for interrupt coalescing */
2331static void fec_enet_itr_coal_set(struct net_device *ndev)
2332{
2333	struct fec_enet_private *fep = netdev_priv(ndev);
2334	int rx_itr, tx_itr;
2335
2336	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2337		return;
2338
2339	/* Must be greater than zero to avoid unpredictable behavior */
2340	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2341	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2342		return;
2343
2344	/* Select enet system clock as Interrupt Coalescing
2345	 * timer Clock Source
2346	 */
2347	rx_itr = FEC_ITR_CLK_SEL;
2348	tx_itr = FEC_ITR_CLK_SEL;
2349
2350	/* set ICFT and ICTT */
2351	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2352	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2353	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2354	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2355
2356	rx_itr |= FEC_ITR_EN;
2357	tx_itr |= FEC_ITR_EN;
2358
2359	writel(tx_itr, fep->hwp + FEC_TXIC0);
2360	writel(rx_itr, fep->hwp + FEC_RXIC0);
2361	writel(tx_itr, fep->hwp + FEC_TXIC1);
2362	writel(rx_itr, fep->hwp + FEC_RXIC1);
2363	writel(tx_itr, fep->hwp + FEC_TXIC2);
2364	writel(rx_itr, fep->hwp + FEC_RXIC2);
2365}
2366
2367static int
2368fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2369{
2370	struct fec_enet_private *fep = netdev_priv(ndev);
2371
2372	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2373		return -EOPNOTSUPP;
2374
2375	ec->rx_coalesce_usecs = fep->rx_time_itr;
2376	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2377
2378	ec->tx_coalesce_usecs = fep->tx_time_itr;
2379	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2380
2381	return 0;
2382}
2383
2384static int
2385fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2386{
2387	struct fec_enet_private *fep = netdev_priv(ndev);
2388	unsigned int cycle;
2389
2390	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2391		return -EOPNOTSUPP;
2392
2393	if (ec->rx_max_coalesced_frames > 255) {
2394		pr_err("Rx coalesced frames exceed hardware limiation");
2395		return -EINVAL;
2396	}
2397
2398	if (ec->tx_max_coalesced_frames > 255) {
2399		pr_err("Tx coalesced frame exceed hardware limiation");
2400		return -EINVAL;
2401	}
2402
2403	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2404	if (cycle > 0xFFFF) {
2405		pr_err("Rx coalesed usec exceeed hardware limiation");
2406		return -EINVAL;
2407	}
2408
2409	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2410	if (cycle > 0xFFFF) {
2411		pr_err("Rx coalesed usec exceeed hardware limiation");
2412		return -EINVAL;
2413	}
2414
2415	fep->rx_time_itr = ec->rx_coalesce_usecs;
2416	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2417
2418	fep->tx_time_itr = ec->tx_coalesce_usecs;
2419	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2420
2421	fec_enet_itr_coal_set(ndev);
2422
2423	return 0;
2424}
2425
2426static void fec_enet_itr_coal_init(struct net_device *ndev)
2427{
2428	struct ethtool_coalesce ec;
2429
2430	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2431	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2432
2433	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2434	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2435
2436	fec_enet_set_coalesce(ndev, &ec);
2437}
2438
2439static int fec_enet_get_tunable(struct net_device *netdev,
2440				const struct ethtool_tunable *tuna,
2441				void *data)
2442{
2443	struct fec_enet_private *fep = netdev_priv(netdev);
2444	int ret = 0;
2445
2446	switch (tuna->id) {
2447	case ETHTOOL_RX_COPYBREAK:
2448		*(u32 *)data = fep->rx_copybreak;
2449		break;
2450	default:
2451		ret = -EINVAL;
2452		break;
2453	}
2454
2455	return ret;
2456}
2457
2458static int fec_enet_set_tunable(struct net_device *netdev,
2459				const struct ethtool_tunable *tuna,
2460				const void *data)
2461{
2462	struct fec_enet_private *fep = netdev_priv(netdev);
2463	int ret = 0;
2464
2465	switch (tuna->id) {
2466	case ETHTOOL_RX_COPYBREAK:
2467		fep->rx_copybreak = *(u32 *)data;
2468		break;
2469	default:
2470		ret = -EINVAL;
2471		break;
2472	}
2473
2474	return ret;
2475}
2476
2477static void
2478fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2479{
2480	struct fec_enet_private *fep = netdev_priv(ndev);
2481
2482	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2483		wol->supported = WAKE_MAGIC;
2484		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2485	} else {
2486		wol->supported = wol->wolopts = 0;
2487	}
2488}
2489
2490static int
2491fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2492{
2493	struct fec_enet_private *fep = netdev_priv(ndev);
2494
2495	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2496		return -EINVAL;
2497
2498	if (wol->wolopts & ~WAKE_MAGIC)
2499		return -EINVAL;
2500
2501	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2502	if (device_may_wakeup(&ndev->dev)) {
2503		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2504		if (fep->irq[0] > 0)
2505			enable_irq_wake(fep->irq[0]);
2506	} else {
2507		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2508		if (fep->irq[0] > 0)
2509			disable_irq_wake(fep->irq[0]);
2510	}
2511
2512	return 0;
2513}
2514
2515static const struct ethtool_ops fec_enet_ethtool_ops = {
2516	.get_settings		= fec_enet_get_settings,
2517	.set_settings		= fec_enet_set_settings,
2518	.get_drvinfo		= fec_enet_get_drvinfo,
2519	.nway_reset		= fec_enet_nway_reset,
2520	.get_link		= ethtool_op_get_link,
2521	.get_coalesce		= fec_enet_get_coalesce,
2522	.set_coalesce		= fec_enet_set_coalesce,
2523#ifndef CONFIG_M5272
2524	.get_pauseparam		= fec_enet_get_pauseparam,
2525	.set_pauseparam		= fec_enet_set_pauseparam,
2526	.get_strings		= fec_enet_get_strings,
2527	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2528	.get_sset_count		= fec_enet_get_sset_count,
2529#endif
2530	.get_ts_info		= fec_enet_get_ts_info,
2531	.get_tunable		= fec_enet_get_tunable,
2532	.set_tunable		= fec_enet_set_tunable,
2533	.get_wol		= fec_enet_get_wol,
2534	.set_wol		= fec_enet_set_wol,
2535};
2536
2537static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2538{
2539	struct fec_enet_private *fep = netdev_priv(ndev);
2540	struct phy_device *phydev = fep->phy_dev;
2541
2542	if (!netif_running(ndev))
2543		return -EINVAL;
2544
2545	if (!phydev)
2546		return -ENODEV;
2547
2548	if (fep->bufdesc_ex) {
2549		if (cmd == SIOCSHWTSTAMP)
2550			return fec_ptp_set(ndev, rq);
2551		if (cmd == SIOCGHWTSTAMP)
2552			return fec_ptp_get(ndev, rq);
2553	}
2554
2555	return phy_mii_ioctl(phydev, rq, cmd);
2556}
2557
2558static void fec_enet_free_buffers(struct net_device *ndev)
2559{
2560	struct fec_enet_private *fep = netdev_priv(ndev);
2561	unsigned int i;
2562	struct sk_buff *skb;
2563	struct bufdesc	*bdp;
2564	struct fec_enet_priv_tx_q *txq;
2565	struct fec_enet_priv_rx_q *rxq;
2566	unsigned int q;
2567
2568	for (q = 0; q < fep->num_rx_queues; q++) {
2569		rxq = fep->rx_queue[q];
2570		bdp = rxq->rx_bd_base;
2571		for (i = 0; i < rxq->rx_ring_size; i++) {
2572			skb = rxq->rx_skbuff[i];
2573			rxq->rx_skbuff[i] = NULL;
2574			if (skb) {
2575				dma_unmap_single(&fep->pdev->dev,
2576						 bdp->cbd_bufaddr,
2577						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2578						 DMA_FROM_DEVICE);
2579				dev_kfree_skb(skb);
2580			}
2581			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2582		}
2583	}
2584
2585	for (q = 0; q < fep->num_tx_queues; q++) {
2586		txq = fep->tx_queue[q];
2587		bdp = txq->tx_bd_base;
2588		for (i = 0; i < txq->tx_ring_size; i++) {
2589			kfree(txq->tx_bounce[i]);
2590			txq->tx_bounce[i] = NULL;
2591			skb = txq->tx_skbuff[i];
2592			txq->tx_skbuff[i] = NULL;
2593			dev_kfree_skb(skb);
2594		}
2595	}
2596}
2597
2598static void fec_enet_free_queue(struct net_device *ndev)
2599{
2600	struct fec_enet_private *fep = netdev_priv(ndev);
2601	int i;
2602	struct fec_enet_priv_tx_q *txq;
2603
2604	for (i = 0; i < fep->num_tx_queues; i++)
2605		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2606			txq = fep->tx_queue[i];
2607			dma_free_coherent(NULL,
2608					  txq->tx_ring_size * TSO_HEADER_SIZE,
2609					  txq->tso_hdrs,
2610					  txq->tso_hdrs_dma);
2611		}
2612
2613	for (i = 0; i < fep->num_rx_queues; i++)
2614		kfree(fep->rx_queue[i]);
2615	for (i = 0; i < fep->num_tx_queues; i++)
2616		kfree(fep->tx_queue[i]);
2617}
2618
2619static int fec_enet_alloc_queue(struct net_device *ndev)
2620{
2621	struct fec_enet_private *fep = netdev_priv(ndev);
2622	int i;
2623	int ret = 0;
2624	struct fec_enet_priv_tx_q *txq;
2625
2626	for (i = 0; i < fep->num_tx_queues; i++) {
2627		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2628		if (!txq) {
2629			ret = -ENOMEM;
2630			goto alloc_failed;
2631		}
2632
2633		fep->tx_queue[i] = txq;
2634		txq->tx_ring_size = TX_RING_SIZE;
2635		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2636
2637		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2638		txq->tx_wake_threshold =
2639				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2640
2641		txq->tso_hdrs = dma_alloc_coherent(NULL,
2642					txq->tx_ring_size * TSO_HEADER_SIZE,
2643					&txq->tso_hdrs_dma,
2644					GFP_KERNEL);
2645		if (!txq->tso_hdrs) {
2646			ret = -ENOMEM;
2647			goto alloc_failed;
2648		}
2649	}
2650
2651	for (i = 0; i < fep->num_rx_queues; i++) {
2652		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2653					   GFP_KERNEL);
2654		if (!fep->rx_queue[i]) {
2655			ret = -ENOMEM;
2656			goto alloc_failed;
2657		}
2658
2659		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2660		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2661	}
2662	return ret;
2663
2664alloc_failed:
2665	fec_enet_free_queue(ndev);
2666	return ret;
2667}
2668
2669static int
2670fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2671{
2672	struct fec_enet_private *fep = netdev_priv(ndev);
2673	unsigned int i;
2674	struct sk_buff *skb;
2675	struct bufdesc	*bdp;
2676	struct fec_enet_priv_rx_q *rxq;
2677
2678	rxq = fep->rx_queue[queue];
2679	bdp = rxq->rx_bd_base;
2680	for (i = 0; i < rxq->rx_ring_size; i++) {
2681		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2682		if (!skb)
2683			goto err_alloc;
2684
2685		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2686			dev_kfree_skb(skb);
2687			goto err_alloc;
2688		}
2689
2690		rxq->rx_skbuff[i] = skb;
2691		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2692
2693		if (fep->bufdesc_ex) {
2694			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2695			ebdp->cbd_esc = BD_ENET_RX_INT;
2696		}
2697
2698		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2699	}
2700
2701	/* Set the last buffer to wrap. */
2702	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2703	bdp->cbd_sc |= BD_SC_WRAP;
2704	return 0;
2705
2706 err_alloc:
2707	fec_enet_free_buffers(ndev);
2708	return -ENOMEM;
2709}
2710
2711static int
2712fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2713{
2714	struct fec_enet_private *fep = netdev_priv(ndev);
2715	unsigned int i;
2716	struct bufdesc  *bdp;
2717	struct fec_enet_priv_tx_q *txq;
2718
2719	txq = fep->tx_queue[queue];
2720	bdp = txq->tx_bd_base;
2721	for (i = 0; i < txq->tx_ring_size; i++) {
2722		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2723		if (!txq->tx_bounce[i])
2724			goto err_alloc;
2725
2726		bdp->cbd_sc = 0;
2727		bdp->cbd_bufaddr = 0;
2728
2729		if (fep->bufdesc_ex) {
2730			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2731			ebdp->cbd_esc = BD_ENET_TX_INT;
2732		}
2733
2734		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2735	}
2736
2737	/* Set the last buffer to wrap. */
2738	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2739	bdp->cbd_sc |= BD_SC_WRAP;
2740
2741	return 0;
2742
2743 err_alloc:
2744	fec_enet_free_buffers(ndev);
2745	return -ENOMEM;
2746}
2747
2748static int fec_enet_alloc_buffers(struct net_device *ndev)
2749{
2750	struct fec_enet_private *fep = netdev_priv(ndev);
2751	unsigned int i;
2752
2753	for (i = 0; i < fep->num_rx_queues; i++)
2754		if (fec_enet_alloc_rxq_buffers(ndev, i))
2755			return -ENOMEM;
2756
2757	for (i = 0; i < fep->num_tx_queues; i++)
2758		if (fec_enet_alloc_txq_buffers(ndev, i))
2759			return -ENOMEM;
2760	return 0;
2761}
2762
2763static int
2764fec_enet_open(struct net_device *ndev)
2765{
2766	struct fec_enet_private *fep = netdev_priv(ndev);
2767	int ret;
2768
2769	pinctrl_pm_select_default_state(&fep->pdev->dev);
2770	ret = fec_enet_clk_enable(ndev, true);
2771	if (ret)
2772		return ret;
2773
2774	/* I should reset the ring buffers here, but I don't yet know
2775	 * a simple way to do that.
2776	 */
2777
2778	ret = fec_enet_alloc_buffers(ndev);
2779	if (ret)
2780		goto err_enet_alloc;
2781
2782	/* Probe and connect to PHY when open the interface */
2783	ret = fec_enet_mii_probe(ndev);
2784	if (ret)
2785		goto err_enet_mii_probe;
2786
2787	fec_restart(ndev);
2788	napi_enable(&fep->napi);
2789	phy_start(fep->phy_dev);
2790	netif_tx_start_all_queues(ndev);
2791
2792	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2793				 FEC_WOL_FLAG_ENABLE);
2794
2795	return 0;
2796
2797err_enet_mii_probe:
2798	fec_enet_free_buffers(ndev);
2799err_enet_alloc:
2800	fec_enet_clk_enable(ndev, false);
2801	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2802	return ret;
2803}
2804
2805static int
2806fec_enet_close(struct net_device *ndev)
2807{
2808	struct fec_enet_private *fep = netdev_priv(ndev);
2809
2810	phy_stop(fep->phy_dev);
2811
2812	if (netif_device_present(ndev)) {
2813		napi_disable(&fep->napi);
2814		netif_tx_disable(ndev);
2815		fec_stop(ndev);
2816	}
2817
2818	phy_disconnect(fep->phy_dev);
2819	fep->phy_dev = NULL;
2820
2821	fec_enet_clk_enable(ndev, false);
2822	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2823	fec_enet_free_buffers(ndev);
2824
2825	return 0;
2826}
2827
2828/* Set or clear the multicast filter for this adaptor.
2829 * Skeleton taken from sunlance driver.
2830 * The CPM Ethernet implementation allows Multicast as well as individual
2831 * MAC address filtering.  Some of the drivers check to make sure it is
2832 * a group multicast address, and discard those that are not.  I guess I
2833 * will do the same for now, but just remove the test if you want
2834 * individual filtering as well (do the upper net layers want or support
2835 * this kind of feature?).
2836 */
2837
2838#define HASH_BITS	6		/* #bits in hash */
2839#define CRC32_POLY	0xEDB88320
2840
2841static void set_multicast_list(struct net_device *ndev)
2842{
2843	struct fec_enet_private *fep = netdev_priv(ndev);
2844	struct netdev_hw_addr *ha;
2845	unsigned int i, bit, data, crc, tmp;
2846	unsigned char hash;
2847
2848	if (ndev->flags & IFF_PROMISC) {
2849		tmp = readl(fep->hwp + FEC_R_CNTRL);
2850		tmp |= 0x8;
2851		writel(tmp, fep->hwp + FEC_R_CNTRL);
2852		return;
2853	}
2854
2855	tmp = readl(fep->hwp + FEC_R_CNTRL);
2856	tmp &= ~0x8;
2857	writel(tmp, fep->hwp + FEC_R_CNTRL);
2858
2859	if (ndev->flags & IFF_ALLMULTI) {
2860		/* Catch all multicast addresses, so set the
2861		 * filter to all 1's
2862		 */
2863		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2864		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2865
2866		return;
2867	}
2868
2869	/* Clear filter and add the addresses in hash register
2870	 */
2871	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2872	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2873
2874	netdev_for_each_mc_addr(ha, ndev) {
2875		/* calculate crc32 value of mac address */
2876		crc = 0xffffffff;
2877
2878		for (i = 0; i < ndev->addr_len; i++) {
2879			data = ha->addr[i];
2880			for (bit = 0; bit < 8; bit++, data >>= 1) {
2881				crc = (crc >> 1) ^
2882				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2883			}
2884		}
2885
2886		/* only upper 6 bits (HASH_BITS) are used
2887		 * which point to specific bit in he hash registers
2888		 */
2889		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2890
2891		if (hash > 31) {
2892			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2893			tmp |= 1 << (hash - 32);
2894			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2895		} else {
2896			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2897			tmp |= 1 << hash;
2898			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2899		}
2900	}
2901}
2902
2903/* Set a MAC change in hardware. */
2904static int
2905fec_set_mac_address(struct net_device *ndev, void *p)
2906{
2907	struct fec_enet_private *fep = netdev_priv(ndev);
2908	struct sockaddr *addr = p;
2909
2910	if (addr) {
2911		if (!is_valid_ether_addr(addr->sa_data))
2912			return -EADDRNOTAVAIL;
2913		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2914	}
2915
2916	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2917		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2918		fep->hwp + FEC_ADDR_LOW);
2919	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2920		fep->hwp + FEC_ADDR_HIGH);
2921	return 0;
2922}
2923
2924#ifdef CONFIG_NET_POLL_CONTROLLER
2925/**
2926 * fec_poll_controller - FEC Poll controller function
2927 * @dev: The FEC network adapter
2928 *
2929 * Polled functionality used by netconsole and others in non interrupt mode
2930 *
2931 */
2932static void fec_poll_controller(struct net_device *dev)
2933{
2934	int i;
2935	struct fec_enet_private *fep = netdev_priv(dev);
2936
2937	for (i = 0; i < FEC_IRQ_NUM; i++) {
2938		if (fep->irq[i] > 0) {
2939			disable_irq(fep->irq[i]);
2940			fec_enet_interrupt(fep->irq[i], dev);
2941			enable_irq(fep->irq[i]);
2942		}
2943	}
2944}
2945#endif
2946
2947#define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2948static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2949	netdev_features_t features)
2950{
2951	struct fec_enet_private *fep = netdev_priv(netdev);
2952	netdev_features_t changed = features ^ netdev->features;
2953
2954	netdev->features = features;
2955
2956	/* Receive checksum has been changed */
2957	if (changed & NETIF_F_RXCSUM) {
2958		if (features & NETIF_F_RXCSUM)
2959			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2960		else
2961			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2962	}
2963}
2964
2965static int fec_set_features(struct net_device *netdev,
2966	netdev_features_t features)
2967{
2968	struct fec_enet_private *fep = netdev_priv(netdev);
2969	netdev_features_t changed = features ^ netdev->features;
2970
2971	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2972		napi_disable(&fep->napi);
2973		netif_tx_lock_bh(netdev);
2974		fec_stop(netdev);
2975		fec_enet_set_netdev_features(netdev, features);
2976		fec_restart(netdev);
2977		netif_tx_wake_all_queues(netdev);
2978		netif_tx_unlock_bh(netdev);
2979		napi_enable(&fep->napi);
2980	} else {
2981		fec_enet_set_netdev_features(netdev, features);
2982	}
2983
2984	return 0;
2985}
2986
2987static const struct net_device_ops fec_netdev_ops = {
2988	.ndo_open		= fec_enet_open,
2989	.ndo_stop		= fec_enet_close,
2990	.ndo_start_xmit		= fec_enet_start_xmit,
2991	.ndo_set_rx_mode	= set_multicast_list,
2992	.ndo_change_mtu		= eth_change_mtu,
2993	.ndo_validate_addr	= eth_validate_addr,
2994	.ndo_tx_timeout		= fec_timeout,
2995	.ndo_set_mac_address	= fec_set_mac_address,
2996	.ndo_do_ioctl		= fec_enet_ioctl,
2997#ifdef CONFIG_NET_POLL_CONTROLLER
2998	.ndo_poll_controller	= fec_poll_controller,
2999#endif
3000	.ndo_set_features	= fec_set_features,
3001};
3002
3003 /*
3004  * XXX:  We need to clean up on failure exits here.
3005  *
3006  */
3007static int fec_enet_init(struct net_device *ndev)
3008{
3009	struct fec_enet_private *fep = netdev_priv(ndev);
3010	struct fec_enet_priv_tx_q *txq;
3011	struct fec_enet_priv_rx_q *rxq;
3012	struct bufdesc *cbd_base;
3013	dma_addr_t bd_dma;
3014	int bd_size;
3015	unsigned int i;
3016
3017#if defined(CONFIG_ARM)
3018	fep->rx_align = 0xf;
3019	fep->tx_align = 0xf;
3020#else
3021	fep->rx_align = 0x3;
3022	fep->tx_align = 0x3;
3023#endif
3024
3025	fec_enet_alloc_queue(ndev);
3026
3027	if (fep->bufdesc_ex)
3028		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3029	else
3030		fep->bufdesc_size = sizeof(struct bufdesc);
3031	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3032			fep->bufdesc_size;
3033
3034	/* Allocate memory for buffer descriptors. */
3035	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3036				      GFP_KERNEL);
3037	if (!cbd_base) {
3038		return -ENOMEM;
3039	}
3040
3041	memset(cbd_base, 0, bd_size);
3042
3043	/* Get the Ethernet address */
3044	fec_get_mac(ndev);
3045	/* make sure MAC we just acquired is programmed into the hw */
3046	fec_set_mac_address(ndev, NULL);
3047
3048	/* Set receive and transmit descriptor base. */
3049	for (i = 0; i < fep->num_rx_queues; i++) {
3050		rxq = fep->rx_queue[i];
3051		rxq->index = i;
3052		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3053		rxq->bd_dma = bd_dma;
3054		if (fep->bufdesc_ex) {
3055			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3056			cbd_base = (struct bufdesc *)
3057				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3058		} else {
3059			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3060			cbd_base += rxq->rx_ring_size;
3061		}
3062	}
3063
3064	for (i = 0; i < fep->num_tx_queues; i++) {
3065		txq = fep->tx_queue[i];
3066		txq->index = i;
3067		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3068		txq->bd_dma = bd_dma;
3069		if (fep->bufdesc_ex) {
3070			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3071			cbd_base = (struct bufdesc *)
3072			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3073		} else {
3074			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3075			cbd_base += txq->tx_ring_size;
3076		}
3077	}
3078
3079
3080	/* The FEC Ethernet specific entries in the device structure */
3081	ndev->watchdog_timeo = TX_TIMEOUT;
3082	ndev->netdev_ops = &fec_netdev_ops;
3083	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3084
3085	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3086	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3087
3088	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3089		/* enable hw VLAN support */
3090		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3091
3092	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3093		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3094
3095		/* enable hw accelerator */
3096		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3097				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3098		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3099	}
3100
3101	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3102		fep->tx_align = 0;
3103		fep->rx_align = 0x3f;
3104	}
3105
3106	ndev->hw_features = ndev->features;
3107
3108	fec_restart(ndev);
3109
3110	return 0;
3111}
3112
3113#ifdef CONFIG_OF
3114static void fec_reset_phy(struct platform_device *pdev)
3115{
3116	int err, phy_reset;
3117	int msec = 1;
3118	struct device_node *np = pdev->dev.of_node;
3119
3120	if (!np)
3121		return;
3122
3123	of_property_read_u32(np, "phy-reset-duration", &msec);
3124	/* A sane reset duration should not be longer than 1s */
3125	if (msec > 1000)
3126		msec = 1;
3127
3128	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3129	if (!gpio_is_valid(phy_reset))
3130		return;
3131
3132	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3133				    GPIOF_OUT_INIT_LOW, "phy-reset");
3134	if (err) {
3135		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3136		return;
3137	}
3138	msleep(msec);
3139	gpio_set_value(phy_reset, 1);
3140}
3141#else /* CONFIG_OF */
3142static void fec_reset_phy(struct platform_device *pdev)
3143{
3144	/*
3145	 * In case of platform probe, the reset has been done
3146	 * by machine code.
3147	 */
3148}
3149#endif /* CONFIG_OF */
3150
3151static void
3152fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3153{
3154	struct device_node *np = pdev->dev.of_node;
3155	int err;
3156
3157	*num_tx = *num_rx = 1;
3158
3159	if (!np || !of_device_is_available(np))
3160		return;
3161
3162	/* parse the num of tx and rx queues */
3163	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3164	if (err)
3165		*num_tx = 1;
3166
3167	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3168	if (err)
3169		*num_rx = 1;
3170
3171	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3172		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3173			 *num_tx);
3174		*num_tx = 1;
3175		return;
3176	}
3177
3178	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3179		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3180			 *num_rx);
3181		*num_rx = 1;
3182		return;
3183	}
3184
3185}
3186
3187static int
3188fec_probe(struct platform_device *pdev)
3189{
3190	struct fec_enet_private *fep;
3191	struct fec_platform_data *pdata;
3192	struct net_device *ndev;
3193	int i, irq, ret = 0;
3194	struct resource *r;
3195	const struct of_device_id *of_id;
3196	static int dev_id;
3197	struct device_node *np = pdev->dev.of_node, *phy_node;
3198	int num_tx_qs;
3199	int num_rx_qs;
3200
3201	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3202
3203	/* Init network device */
3204	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3205				  num_tx_qs, num_rx_qs);
3206	if (!ndev)
3207		return -ENOMEM;
3208
3209	SET_NETDEV_DEV(ndev, &pdev->dev);
3210
3211	/* setup board info structure */
3212	fep = netdev_priv(ndev);
3213
3214	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3215	if (of_id)
3216		pdev->id_entry = of_id->data;
3217	fep->quirks = pdev->id_entry->driver_data;
3218
3219	fep->netdev = ndev;
3220	fep->num_rx_queues = num_rx_qs;
3221	fep->num_tx_queues = num_tx_qs;
3222
3223#if !defined(CONFIG_M5272)
3224	/* default enable pause frame auto negotiation */
3225	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3226		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3227#endif
3228
3229	/* Select default pin state */
3230	pinctrl_pm_select_default_state(&pdev->dev);
3231
3232	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3233	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3234	if (IS_ERR(fep->hwp)) {
3235		ret = PTR_ERR(fep->hwp);
3236		goto failed_ioremap;
3237	}
3238
3239	fep->pdev = pdev;
3240	fep->dev_id = dev_id++;
3241
3242	platform_set_drvdata(pdev, ndev);
3243
3244	if (of_get_property(np, "fsl,magic-packet", NULL))
3245		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3246
3247	phy_node = of_parse_phandle(np, "phy-handle", 0);
3248	if (!phy_node && of_phy_is_fixed_link(np)) {
3249		ret = of_phy_register_fixed_link(np);
3250		if (ret < 0) {
3251			dev_err(&pdev->dev,
3252				"broken fixed-link specification\n");
3253			goto failed_phy;
3254		}
3255		phy_node = of_node_get(np);
3256	}
3257	fep->phy_node = phy_node;
3258
3259	ret = of_get_phy_mode(pdev->dev.of_node);
3260	if (ret < 0) {
3261		pdata = dev_get_platdata(&pdev->dev);
3262		if (pdata)
3263			fep->phy_interface = pdata->phy;
3264		else
3265			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3266	} else {
3267		fep->phy_interface = ret;
3268	}
3269
3270	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3271	if (IS_ERR(fep->clk_ipg)) {
3272		ret = PTR_ERR(fep->clk_ipg);
3273		goto failed_clk;
3274	}
3275
3276	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3277	if (IS_ERR(fep->clk_ahb)) {
3278		ret = PTR_ERR(fep->clk_ahb);
3279		goto failed_clk;
3280	}
3281
3282	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3283
3284	/* enet_out is optional, depends on board */
3285	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3286	if (IS_ERR(fep->clk_enet_out))
3287		fep->clk_enet_out = NULL;
3288
3289	fep->ptp_clk_on = false;
3290	mutex_init(&fep->ptp_clk_mutex);
3291
3292	/* clk_ref is optional, depends on board */
3293	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3294	if (IS_ERR(fep->clk_ref))
3295		fep->clk_ref = NULL;
3296
3297	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3298	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3299	if (IS_ERR(fep->clk_ptp)) {
3300		fep->clk_ptp = NULL;
3301		fep->bufdesc_ex = false;
3302	}
3303
3304	ret = fec_enet_clk_enable(ndev, true);
3305	if (ret)
3306		goto failed_clk;
3307
3308	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3309	if (!IS_ERR(fep->reg_phy)) {
3310		ret = regulator_enable(fep->reg_phy);
3311		if (ret) {
3312			dev_err(&pdev->dev,
3313				"Failed to enable phy regulator: %d\n", ret);
3314			goto failed_regulator;
3315		}
3316	} else {
3317		fep->reg_phy = NULL;
3318	}
3319
3320	fec_reset_phy(pdev);
3321
3322	if (fep->bufdesc_ex)
3323		fec_ptp_init(pdev);
3324
3325	ret = fec_enet_init(ndev);
3326	if (ret)
3327		goto failed_init;
3328
3329	for (i = 0; i < FEC_IRQ_NUM; i++) {
3330		irq = platform_get_irq(pdev, i);
3331		if (irq < 0) {
3332			if (i)
3333				break;
3334			ret = irq;
3335			goto failed_irq;
3336		}
3337		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3338				       0, pdev->name, ndev);
3339		if (ret)
3340			goto failed_irq;
3341
3342		fep->irq[i] = irq;
3343	}
3344
3345	init_completion(&fep->mdio_done);
3346	ret = fec_enet_mii_init(pdev);
3347	if (ret)
3348		goto failed_mii_init;
3349
3350	/* Carrier starts down, phylib will bring it up */
3351	netif_carrier_off(ndev);
3352	fec_enet_clk_enable(ndev, false);
3353	pinctrl_pm_select_sleep_state(&pdev->dev);
3354
3355	ret = register_netdev(ndev);
3356	if (ret)
3357		goto failed_register;
3358
3359	device_init_wakeup(&ndev->dev, fep->wol_flag &
3360			   FEC_WOL_HAS_MAGIC_PACKET);
3361
3362	if (fep->bufdesc_ex && fep->ptp_clock)
3363		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3364
3365	fep->rx_copybreak = COPYBREAK_DEFAULT;
3366	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3367	return 0;
3368
3369failed_register:
3370	fec_enet_mii_remove(fep);
3371failed_mii_init:
3372failed_irq:
3373failed_init:
3374	if (fep->reg_phy)
3375		regulator_disable(fep->reg_phy);
3376failed_regulator:
3377	fec_enet_clk_enable(ndev, false);
3378failed_clk:
3379failed_phy:
3380	of_node_put(phy_node);
3381failed_ioremap:
3382	free_netdev(ndev);
3383
3384	return ret;
3385}
3386
3387static int
3388fec_drv_remove(struct platform_device *pdev)
3389{
3390	struct net_device *ndev = platform_get_drvdata(pdev);
3391	struct fec_enet_private *fep = netdev_priv(ndev);
3392
3393	cancel_delayed_work_sync(&fep->time_keep);
3394	cancel_work_sync(&fep->tx_timeout_work);
3395	unregister_netdev(ndev);
3396	fec_enet_mii_remove(fep);
3397	if (fep->reg_phy)
3398		regulator_disable(fep->reg_phy);
3399	if (fep->ptp_clock)
3400		ptp_clock_unregister(fep->ptp_clock);
3401	of_node_put(fep->phy_node);
3402	free_netdev(ndev);
3403
3404	return 0;
3405}
3406
3407static int __maybe_unused fec_suspend(struct device *dev)
3408{
3409	struct net_device *ndev = dev_get_drvdata(dev);
3410	struct fec_enet_private *fep = netdev_priv(ndev);
3411
3412	rtnl_lock();
3413	if (netif_running(ndev)) {
3414		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3415			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3416		phy_stop(fep->phy_dev);
3417		napi_disable(&fep->napi);
3418		netif_tx_lock_bh(ndev);
3419		netif_device_detach(ndev);
3420		netif_tx_unlock_bh(ndev);
3421		fec_stop(ndev);
3422		fec_enet_clk_enable(ndev, false);
3423		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3424			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3425	}
3426	rtnl_unlock();
3427
3428	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3429		regulator_disable(fep->reg_phy);
3430
3431	/* SOC supply clock to phy, when clock is disabled, phy link down
3432	 * SOC control phy regulator, when regulator is disabled, phy link down
3433	 */
3434	if (fep->clk_enet_out || fep->reg_phy)
3435		fep->link = 0;
3436
3437	return 0;
3438}
3439
3440static int __maybe_unused fec_resume(struct device *dev)
3441{
3442	struct net_device *ndev = dev_get_drvdata(dev);
3443	struct fec_enet_private *fep = netdev_priv(ndev);
3444	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3445	int ret;
3446	int val;
3447
3448	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3449		ret = regulator_enable(fep->reg_phy);
3450		if (ret)
3451			return ret;
3452	}
3453
3454	rtnl_lock();
3455	if (netif_running(ndev)) {
3456		ret = fec_enet_clk_enable(ndev, true);
3457		if (ret) {
3458			rtnl_unlock();
3459			goto failed_clk;
3460		}
3461		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3462			if (pdata && pdata->sleep_mode_enable)
3463				pdata->sleep_mode_enable(false);
3464			val = readl(fep->hwp + FEC_ECNTRL);
3465			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3466			writel(val, fep->hwp + FEC_ECNTRL);
3467			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3468		} else {
3469			pinctrl_pm_select_default_state(&fep->pdev->dev);
3470		}
3471		fec_restart(ndev);
3472		netif_tx_lock_bh(ndev);
3473		netif_device_attach(ndev);
3474		netif_tx_unlock_bh(ndev);
3475		napi_enable(&fep->napi);
3476		phy_start(fep->phy_dev);
3477	}
3478	rtnl_unlock();
3479
3480	return 0;
3481
3482failed_clk:
3483	if (fep->reg_phy)
3484		regulator_disable(fep->reg_phy);
3485	return ret;
3486}
3487
3488static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3489
3490static struct platform_driver fec_driver = {
3491	.driver	= {
3492		.name	= DRIVER_NAME,
3493		.pm	= &fec_pm_ops,
3494		.of_match_table = fec_dt_ids,
3495	},
3496	.id_table = fec_devtype,
3497	.probe	= fec_probe,
3498	.remove	= fec_drv_remove,
3499};
3500
3501module_platform_driver(fec_driver);
3502
3503MODULE_ALIAS("platform:"DRIVER_NAME);
3504MODULE_LICENSE("GPL");
3505