1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2/*
3    Copyright (c) 2001, 2002 by D-Link Corporation
4    Written by Edward Peng.<edward_peng@dlink.com.tw>
5    Created 03-May-2001, base on Linux' sundance.c.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11*/
12
13#define DRV_NAME	"DL2000/TC902x-based linux driver"
14#define DRV_VERSION	"v1.19"
15#define DRV_RELDATE	"2007/08/12"
16#include "dl2k.h"
17#include <linux/dma-mapping.h>
18
19#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
20#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
21#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
22#define dr32(reg)	ioread32(ioaddr + (reg))
23#define dr16(reg)	ioread16(ioaddr + (reg))
24#define dr8(reg)	ioread8(ioaddr + (reg))
25
26static char version[] =
27      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28#define MAX_UNITS 8
29static int mtu[MAX_UNITS];
30static int vlan[MAX_UNITS];
31static int jumbo[MAX_UNITS];
32static char *media[MAX_UNITS];
33static int tx_flow=-1;
34static int rx_flow=-1;
35static int copy_thresh;
36static int rx_coalesce=10;	/* Rx frame count each interrupt */
37static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
38static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
39
40
41MODULE_AUTHOR ("Edward Peng");
42MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43MODULE_LICENSE("GPL");
44module_param_array(mtu, int, NULL, 0);
45module_param_array(media, charp, NULL, 0);
46module_param_array(vlan, int, NULL, 0);
47module_param_array(jumbo, int, NULL, 0);
48module_param(tx_flow, int, 0);
49module_param(rx_flow, int, 0);
50module_param(copy_thresh, int, 0);
51module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
52module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
53module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54
55
56/* Enable the default interrupts */
57#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58       UpdateStats | LinkEvent)
59
60static void dl2k_enable_int(struct netdev_private *np)
61{
62	void __iomem *ioaddr = np->ioaddr;
63
64	dw16(IntEnable, DEFAULT_INTR);
65}
66
67static const int max_intrloop = 50;
68static const int multicast_filter_limit = 0x40;
69
70static int rio_open (struct net_device *dev);
71static void rio_timer (unsigned long data);
72static void rio_tx_timeout (struct net_device *dev);
73static void alloc_list (struct net_device *dev);
74static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
75static irqreturn_t rio_interrupt (int irq, void *dev_instance);
76static void rio_free_tx (struct net_device *dev, int irq);
77static void tx_error (struct net_device *dev, int tx_status);
78static int receive_packet (struct net_device *dev);
79static void rio_error (struct net_device *dev, int int_status);
80static int change_mtu (struct net_device *dev, int new_mtu);
81static void set_multicast (struct net_device *dev);
82static struct net_device_stats *get_stats (struct net_device *dev);
83static int clear_stats (struct net_device *dev);
84static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
85static int rio_close (struct net_device *dev);
86static int find_miiphy (struct net_device *dev);
87static int parse_eeprom (struct net_device *dev);
88static int read_eeprom (struct netdev_private *, int eep_addr);
89static int mii_wait_link (struct net_device *dev, int wait);
90static int mii_set_media (struct net_device *dev);
91static int mii_get_media (struct net_device *dev);
92static int mii_set_media_pcs (struct net_device *dev);
93static int mii_get_media_pcs (struct net_device *dev);
94static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
95static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
96		      u16 data);
97
98static const struct ethtool_ops ethtool_ops;
99
100static const struct net_device_ops netdev_ops = {
101	.ndo_open		= rio_open,
102	.ndo_start_xmit	= start_xmit,
103	.ndo_stop		= rio_close,
104	.ndo_get_stats		= get_stats,
105	.ndo_validate_addr	= eth_validate_addr,
106	.ndo_set_mac_address 	= eth_mac_addr,
107	.ndo_set_rx_mode	= set_multicast,
108	.ndo_do_ioctl		= rio_ioctl,
109	.ndo_tx_timeout		= rio_tx_timeout,
110	.ndo_change_mtu		= change_mtu,
111};
112
113static int
114rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
115{
116	struct net_device *dev;
117	struct netdev_private *np;
118	static int card_idx;
119	int chip_idx = ent->driver_data;
120	int err, irq;
121	void __iomem *ioaddr;
122	static int version_printed;
123	void *ring_space;
124	dma_addr_t ring_dma;
125
126	if (!version_printed++)
127		printk ("%s", version);
128
129	err = pci_enable_device (pdev);
130	if (err)
131		return err;
132
133	irq = pdev->irq;
134	err = pci_request_regions (pdev, "dl2k");
135	if (err)
136		goto err_out_disable;
137
138	pci_set_master (pdev);
139
140	err = -ENOMEM;
141
142	dev = alloc_etherdev (sizeof (*np));
143	if (!dev)
144		goto err_out_res;
145	SET_NETDEV_DEV(dev, &pdev->dev);
146
147	np = netdev_priv(dev);
148
149	/* IO registers range. */
150	ioaddr = pci_iomap(pdev, 0, 0);
151	if (!ioaddr)
152		goto err_out_dev;
153	np->eeprom_addr = ioaddr;
154
155#ifdef MEM_MAPPING
156	/* MM registers range. */
157	ioaddr = pci_iomap(pdev, 1, 0);
158	if (!ioaddr)
159		goto err_out_iounmap;
160#endif
161	np->ioaddr = ioaddr;
162	np->chip_id = chip_idx;
163	np->pdev = pdev;
164	spin_lock_init (&np->tx_lock);
165	spin_lock_init (&np->rx_lock);
166
167	/* Parse manual configuration */
168	np->an_enable = 1;
169	np->tx_coalesce = 1;
170	if (card_idx < MAX_UNITS) {
171		if (media[card_idx] != NULL) {
172			np->an_enable = 0;
173			if (strcmp (media[card_idx], "auto") == 0 ||
174			    strcmp (media[card_idx], "autosense") == 0 ||
175			    strcmp (media[card_idx], "0") == 0 ) {
176				np->an_enable = 2;
177			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
178			    strcmp (media[card_idx], "4") == 0) {
179				np->speed = 100;
180				np->full_duplex = 1;
181			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
182				   strcmp (media[card_idx], "3") == 0) {
183				np->speed = 100;
184				np->full_duplex = 0;
185			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
186				   strcmp (media[card_idx], "2") == 0) {
187				np->speed = 10;
188				np->full_duplex = 1;
189			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
190				   strcmp (media[card_idx], "1") == 0) {
191				np->speed = 10;
192				np->full_duplex = 0;
193			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
194				 strcmp (media[card_idx], "6") == 0) {
195				np->speed=1000;
196				np->full_duplex=1;
197			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
198				 strcmp (media[card_idx], "5") == 0) {
199				np->speed = 1000;
200				np->full_duplex = 0;
201			} else {
202				np->an_enable = 1;
203			}
204		}
205		if (jumbo[card_idx] != 0) {
206			np->jumbo = 1;
207			dev->mtu = MAX_JUMBO;
208		} else {
209			np->jumbo = 0;
210			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
211				dev->mtu = mtu[card_idx];
212		}
213		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
214		    vlan[card_idx] : 0;
215		if (rx_coalesce > 0 && rx_timeout > 0) {
216			np->rx_coalesce = rx_coalesce;
217			np->rx_timeout = rx_timeout;
218			np->coalesce = 1;
219		}
220		np->tx_flow = (tx_flow == 0) ? 0 : 1;
221		np->rx_flow = (rx_flow == 0) ? 0 : 1;
222
223		if (tx_coalesce < 1)
224			tx_coalesce = 1;
225		else if (tx_coalesce > TX_RING_SIZE-1)
226			tx_coalesce = TX_RING_SIZE - 1;
227	}
228	dev->netdev_ops = &netdev_ops;
229	dev->watchdog_timeo = TX_TIMEOUT;
230	dev->ethtool_ops = &ethtool_ops;
231#if 0
232	dev->features = NETIF_F_IP_CSUM;
233#endif
234	pci_set_drvdata (pdev, dev);
235
236	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
237	if (!ring_space)
238		goto err_out_iounmap;
239	np->tx_ring = ring_space;
240	np->tx_ring_dma = ring_dma;
241
242	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
243	if (!ring_space)
244		goto err_out_unmap_tx;
245	np->rx_ring = ring_space;
246	np->rx_ring_dma = ring_dma;
247
248	/* Parse eeprom data */
249	parse_eeprom (dev);
250
251	/* Find PHY address */
252	err = find_miiphy (dev);
253	if (err)
254		goto err_out_unmap_rx;
255
256	/* Fiber device? */
257	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
258	np->link_status = 0;
259	/* Set media and reset PHY */
260	if (np->phy_media) {
261		/* default Auto-Negotiation for fiber deivices */
262	 	if (np->an_enable == 2) {
263			np->an_enable = 1;
264		}
265		mii_set_media_pcs (dev);
266	} else {
267		/* Auto-Negotiation is mandatory for 1000BASE-T,
268		   IEEE 802.3ab Annex 28D page 14 */
269		if (np->speed == 1000)
270			np->an_enable = 1;
271		mii_set_media (dev);
272	}
273
274	err = register_netdev (dev);
275	if (err)
276		goto err_out_unmap_rx;
277
278	card_idx++;
279
280	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
281		dev->name, np->name, dev->dev_addr, irq);
282	if (tx_coalesce > 1)
283		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
284				tx_coalesce);
285	if (np->coalesce)
286		printk(KERN_INFO
287		       "rx_coalesce:\t%d packets\n"
288		       "rx_timeout: \t%d ns\n",
289				np->rx_coalesce, np->rx_timeout*640);
290	if (np->vlan)
291		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
292	return 0;
293
294err_out_unmap_rx:
295	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
296err_out_unmap_tx:
297	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
298err_out_iounmap:
299#ifdef MEM_MAPPING
300	pci_iounmap(pdev, np->ioaddr);
301#endif
302	pci_iounmap(pdev, np->eeprom_addr);
303err_out_dev:
304	free_netdev (dev);
305err_out_res:
306	pci_release_regions (pdev);
307err_out_disable:
308	pci_disable_device (pdev);
309	return err;
310}
311
312static int
313find_miiphy (struct net_device *dev)
314{
315	struct netdev_private *np = netdev_priv(dev);
316	int i, phy_found = 0;
317	np = netdev_priv(dev);
318	np->phy_addr = 1;
319
320	for (i = 31; i >= 0; i--) {
321		int mii_status = mii_read (dev, i, 1);
322		if (mii_status != 0xffff && mii_status != 0x0000) {
323			np->phy_addr = i;
324			phy_found++;
325		}
326	}
327	if (!phy_found) {
328		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
329		return -ENODEV;
330	}
331	return 0;
332}
333
334static int
335parse_eeprom (struct net_device *dev)
336{
337	struct netdev_private *np = netdev_priv(dev);
338	void __iomem *ioaddr = np->ioaddr;
339	int i, j;
340	u8 sromdata[256];
341	u8 *psib;
342	u32 crc;
343	PSROM_t psrom = (PSROM_t) sromdata;
344
345	int cid, next;
346
347	for (i = 0; i < 128; i++)
348		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
349
350	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
351		/* Check CRC */
352		crc = ~ether_crc_le (256 - 4, sromdata);
353		if (psrom->crc != cpu_to_le32(crc)) {
354			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
355					dev->name);
356			return -1;
357		}
358	}
359
360	/* Set MAC address */
361	for (i = 0; i < 6; i++)
362		dev->dev_addr[i] = psrom->mac_addr[i];
363
364	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
365		return 0;
366	}
367
368	/* Parse Software Information Block */
369	i = 0x30;
370	psib = (u8 *) sromdata;
371	do {
372		cid = psib[i++];
373		next = psib[i++];
374		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
375			printk (KERN_ERR "Cell data error\n");
376			return -1;
377		}
378		switch (cid) {
379		case 0:	/* Format version */
380			break;
381		case 1:	/* End of cell */
382			return 0;
383		case 2:	/* Duplex Polarity */
384			np->duplex_polarity = psib[i];
385			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
386			break;
387		case 3:	/* Wake Polarity */
388			np->wake_polarity = psib[i];
389			break;
390		case 9:	/* Adapter description */
391			j = (next - i > 255) ? 255 : next - i;
392			memcpy (np->name, &(psib[i]), j);
393			break;
394		case 4:
395		case 5:
396		case 6:
397		case 7:
398		case 8:	/* Reversed */
399			break;
400		default:	/* Unknown cell */
401			return -1;
402		}
403		i = next;
404	} while (1);
405
406	return 0;
407}
408
409static int
410rio_open (struct net_device *dev)
411{
412	struct netdev_private *np = netdev_priv(dev);
413	void __iomem *ioaddr = np->ioaddr;
414	const int irq = np->pdev->irq;
415	int i;
416	u16 macctrl;
417
418	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
419	if (i)
420		return i;
421
422	/* Reset all logic functions */
423	dw16(ASICCtrl + 2,
424	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
425	mdelay(10);
426
427	/* DebugCtrl bit 4, 5, 9 must set */
428	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
429
430	/* Jumbo frame */
431	if (np->jumbo != 0)
432		dw16(MaxFrameSize, MAX_JUMBO+14);
433
434	alloc_list (dev);
435
436	/* Get station address */
437	for (i = 0; i < 6; i++)
438		dw8(StationAddr0 + i, dev->dev_addr[i]);
439
440	set_multicast (dev);
441	if (np->coalesce) {
442		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
443	}
444	/* Set RIO to poll every N*320nsec. */
445	dw8(RxDMAPollPeriod, 0x20);
446	dw8(TxDMAPollPeriod, 0xff);
447	dw8(RxDMABurstThresh, 0x30);
448	dw8(RxDMAUrgentThresh, 0x30);
449	dw32(RmonStatMask, 0x0007ffff);
450	/* clear statistics */
451	clear_stats (dev);
452
453	/* VLAN supported */
454	if (np->vlan) {
455		/* priority field in RxDMAIntCtrl  */
456		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
457		/* VLANId */
458		dw16(VLANId, np->vlan);
459		/* Length/Type should be 0x8100 */
460		dw32(VLANTag, 0x8100 << 16 | np->vlan);
461		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462		   VLAN information tagged by TFC' VID, CFI fields. */
463		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
464	}
465
466	init_timer (&np->timer);
467	np->timer.expires = jiffies + 1*HZ;
468	np->timer.data = (unsigned long) dev;
469	np->timer.function = rio_timer;
470	add_timer (&np->timer);
471
472	/* Start Tx/Rx */
473	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
474
475	macctrl = 0;
476	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
477	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
478	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
479	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
480	dw16(MACCtrl, macctrl);
481
482	netif_start_queue (dev);
483
484	dl2k_enable_int(np);
485	return 0;
486}
487
488static void
489rio_timer (unsigned long data)
490{
491	struct net_device *dev = (struct net_device *)data;
492	struct netdev_private *np = netdev_priv(dev);
493	unsigned int entry;
494	int next_tick = 1*HZ;
495	unsigned long flags;
496
497	spin_lock_irqsave(&np->rx_lock, flags);
498	/* Recover rx ring exhausted error */
499	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
500		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
501		/* Re-allocate skbuffs to fill the descriptor ring */
502		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
503			struct sk_buff *skb;
504			entry = np->old_rx % RX_RING_SIZE;
505			/* Dropped packets don't need to re-allocate */
506			if (np->rx_skbuff[entry] == NULL) {
507				skb = netdev_alloc_skb_ip_align(dev,
508								np->rx_buf_sz);
509				if (skb == NULL) {
510					np->rx_ring[entry].fraginfo = 0;
511					printk (KERN_INFO
512						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
513						dev->name, entry);
514					break;
515				}
516				np->rx_skbuff[entry] = skb;
517				np->rx_ring[entry].fraginfo =
518				    cpu_to_le64 (pci_map_single
519					 (np->pdev, skb->data, np->rx_buf_sz,
520					  PCI_DMA_FROMDEVICE));
521			}
522			np->rx_ring[entry].fraginfo |=
523			    cpu_to_le64((u64)np->rx_buf_sz << 48);
524			np->rx_ring[entry].status = 0;
525		} /* end for */
526	} /* end if */
527	spin_unlock_irqrestore (&np->rx_lock, flags);
528	np->timer.expires = jiffies + next_tick;
529	add_timer(&np->timer);
530}
531
532static void
533rio_tx_timeout (struct net_device *dev)
534{
535	struct netdev_private *np = netdev_priv(dev);
536	void __iomem *ioaddr = np->ioaddr;
537
538	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
539		dev->name, dr32(TxStatus));
540	rio_free_tx(dev, 0);
541	dev->if_port = 0;
542	dev->trans_start = jiffies; /* prevent tx timeout */
543}
544
545 /* allocate and initialize Tx and Rx descriptors */
546static void
547alloc_list (struct net_device *dev)
548{
549	struct netdev_private *np = netdev_priv(dev);
550	void __iomem *ioaddr = np->ioaddr;
551	int i;
552
553	np->cur_rx = np->cur_tx = 0;
554	np->old_rx = np->old_tx = 0;
555	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
556
557	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
558	for (i = 0; i < TX_RING_SIZE; i++) {
559		np->tx_skbuff[i] = NULL;
560		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
561		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
562					      ((i+1)%TX_RING_SIZE) *
563					      sizeof (struct netdev_desc));
564	}
565
566	/* Initialize Rx descriptors */
567	for (i = 0; i < RX_RING_SIZE; i++) {
568		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
569						((i + 1) % RX_RING_SIZE) *
570						sizeof (struct netdev_desc));
571		np->rx_ring[i].status = 0;
572		np->rx_ring[i].fraginfo = 0;
573		np->rx_skbuff[i] = NULL;
574	}
575
576	/* Allocate the rx buffers */
577	for (i = 0; i < RX_RING_SIZE; i++) {
578		/* Allocated fixed size of skbuff */
579		struct sk_buff *skb;
580
581		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
582		np->rx_skbuff[i] = skb;
583		if (skb == NULL)
584			break;
585
586		/* Rubicon now supports 40 bits of addressing space. */
587		np->rx_ring[i].fraginfo =
588		    cpu_to_le64 ( pci_map_single (
589			 	  np->pdev, skb->data, np->rx_buf_sz,
590				  PCI_DMA_FROMDEVICE));
591		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
592	}
593
594	/* Set RFDListPtr */
595	dw32(RFDListPtr0, np->rx_ring_dma);
596	dw32(RFDListPtr1, 0);
597}
598
599static netdev_tx_t
600start_xmit (struct sk_buff *skb, struct net_device *dev)
601{
602	struct netdev_private *np = netdev_priv(dev);
603	void __iomem *ioaddr = np->ioaddr;
604	struct netdev_desc *txdesc;
605	unsigned entry;
606	u64 tfc_vlan_tag = 0;
607
608	if (np->link_status == 0) {	/* Link Down */
609		dev_kfree_skb(skb);
610		return NETDEV_TX_OK;
611	}
612	entry = np->cur_tx % TX_RING_SIZE;
613	np->tx_skbuff[entry] = skb;
614	txdesc = &np->tx_ring[entry];
615
616#if 0
617	if (skb->ip_summed == CHECKSUM_PARTIAL) {
618		txdesc->status |=
619		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
620				 IPChecksumEnable);
621	}
622#endif
623	if (np->vlan) {
624		tfc_vlan_tag = VLANTagInsert |
625		    ((u64)np->vlan << 32) |
626		    ((u64)skb->priority << 45);
627	}
628	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
629							skb->len,
630							PCI_DMA_TODEVICE));
631	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
632
633	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
634	 * Work around: Always use 1 descriptor in 10Mbps mode */
635	if (entry % np->tx_coalesce == 0 || np->speed == 10)
636		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
637					      WordAlignDisable |
638					      TxDMAIndicate |
639					      (1 << FragCountShift));
640	else
641		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
642					      WordAlignDisable |
643					      (1 << FragCountShift));
644
645	/* TxDMAPollNow */
646	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
647	/* Schedule ISR */
648	dw32(CountDown, 10000);
649	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
650	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
651			< TX_QUEUE_LEN - 1 && np->speed != 10) {
652		/* do nothing */
653	} else if (!netif_queue_stopped(dev)) {
654		netif_stop_queue (dev);
655	}
656
657	/* The first TFDListPtr */
658	if (!dr32(TFDListPtr0)) {
659		dw32(TFDListPtr0, np->tx_ring_dma +
660		     entry * sizeof (struct netdev_desc));
661		dw32(TFDListPtr1, 0);
662	}
663
664	return NETDEV_TX_OK;
665}
666
667static irqreturn_t
668rio_interrupt (int irq, void *dev_instance)
669{
670	struct net_device *dev = dev_instance;
671	struct netdev_private *np = netdev_priv(dev);
672	void __iomem *ioaddr = np->ioaddr;
673	unsigned int_status;
674	int cnt = max_intrloop;
675	int handled = 0;
676
677	while (1) {
678		int_status = dr16(IntStatus);
679		dw16(IntStatus, int_status);
680		int_status &= DEFAULT_INTR;
681		if (int_status == 0 || --cnt < 0)
682			break;
683		handled = 1;
684		/* Processing received packets */
685		if (int_status & RxDMAComplete)
686			receive_packet (dev);
687		/* TxDMAComplete interrupt */
688		if ((int_status & (TxDMAComplete|IntRequested))) {
689			int tx_status;
690			tx_status = dr32(TxStatus);
691			if (tx_status & 0x01)
692				tx_error (dev, tx_status);
693			/* Free used tx skbuffs */
694			rio_free_tx (dev, 1);
695		}
696
697		/* Handle uncommon events */
698		if (int_status &
699		    (HostError | LinkEvent | UpdateStats))
700			rio_error (dev, int_status);
701	}
702	if (np->cur_tx != np->old_tx)
703		dw32(CountDown, 100);
704	return IRQ_RETVAL(handled);
705}
706
707static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
708{
709	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
710}
711
712static void
713rio_free_tx (struct net_device *dev, int irq)
714{
715	struct netdev_private *np = netdev_priv(dev);
716	int entry = np->old_tx % TX_RING_SIZE;
717	int tx_use = 0;
718	unsigned long flag = 0;
719
720	if (irq)
721		spin_lock(&np->tx_lock);
722	else
723		spin_lock_irqsave(&np->tx_lock, flag);
724
725	/* Free used tx skbuffs */
726	while (entry != np->cur_tx) {
727		struct sk_buff *skb;
728
729		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
730			break;
731		skb = np->tx_skbuff[entry];
732		pci_unmap_single (np->pdev,
733				  desc_to_dma(&np->tx_ring[entry]),
734				  skb->len, PCI_DMA_TODEVICE);
735		if (irq)
736			dev_kfree_skb_irq (skb);
737		else
738			dev_kfree_skb (skb);
739
740		np->tx_skbuff[entry] = NULL;
741		entry = (entry + 1) % TX_RING_SIZE;
742		tx_use++;
743	}
744	if (irq)
745		spin_unlock(&np->tx_lock);
746	else
747		spin_unlock_irqrestore(&np->tx_lock, flag);
748	np->old_tx = entry;
749
750	/* If the ring is no longer full, clear tx_full and
751	   call netif_wake_queue() */
752
753	if (netif_queue_stopped(dev) &&
754	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
755	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
756		netif_wake_queue (dev);
757	}
758}
759
760static void
761tx_error (struct net_device *dev, int tx_status)
762{
763	struct netdev_private *np = netdev_priv(dev);
764	void __iomem *ioaddr = np->ioaddr;
765	int frame_id;
766	int i;
767
768	frame_id = (tx_status & 0xffff0000);
769	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
770		dev->name, tx_status, frame_id);
771	np->stats.tx_errors++;
772	/* Ttransmit Underrun */
773	if (tx_status & 0x10) {
774		np->stats.tx_fifo_errors++;
775		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
776		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
777		dw16(ASICCtrl + 2,
778		     TxReset | DMAReset | FIFOReset | NetworkReset);
779		/* Wait for ResetBusy bit clear */
780		for (i = 50; i > 0; i--) {
781			if (!(dr16(ASICCtrl + 2) & ResetBusy))
782				break;
783			mdelay (1);
784		}
785		rio_free_tx (dev, 1);
786		/* Reset TFDListPtr */
787		dw32(TFDListPtr0, np->tx_ring_dma +
788		     np->old_tx * sizeof (struct netdev_desc));
789		dw32(TFDListPtr1, 0);
790
791		/* Let TxStartThresh stay default value */
792	}
793	/* Late Collision */
794	if (tx_status & 0x04) {
795		np->stats.tx_fifo_errors++;
796		/* TxReset and clear FIFO */
797		dw16(ASICCtrl + 2, TxReset | FIFOReset);
798		/* Wait reset done */
799		for (i = 50; i > 0; i--) {
800			if (!(dr16(ASICCtrl + 2) & ResetBusy))
801				break;
802			mdelay (1);
803		}
804		/* Let TxStartThresh stay default value */
805	}
806	/* Maximum Collisions */
807#ifdef ETHER_STATS
808	if (tx_status & 0x08)
809		np->stats.collisions16++;
810#else
811	if (tx_status & 0x08)
812		np->stats.collisions++;
813#endif
814	/* Restart the Tx */
815	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
816}
817
818static int
819receive_packet (struct net_device *dev)
820{
821	struct netdev_private *np = netdev_priv(dev);
822	int entry = np->cur_rx % RX_RING_SIZE;
823	int cnt = 30;
824
825	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
826	while (1) {
827		struct netdev_desc *desc = &np->rx_ring[entry];
828		int pkt_len;
829		u64 frame_status;
830
831		if (!(desc->status & cpu_to_le64(RFDDone)) ||
832		    !(desc->status & cpu_to_le64(FrameStart)) ||
833		    !(desc->status & cpu_to_le64(FrameEnd)))
834			break;
835
836		/* Chip omits the CRC. */
837		frame_status = le64_to_cpu(desc->status);
838		pkt_len = frame_status & 0xffff;
839		if (--cnt < 0)
840			break;
841		/* Update rx error statistics, drop packet. */
842		if (frame_status & RFS_Errors) {
843			np->stats.rx_errors++;
844			if (frame_status & (RxRuntFrame | RxLengthError))
845				np->stats.rx_length_errors++;
846			if (frame_status & RxFCSError)
847				np->stats.rx_crc_errors++;
848			if (frame_status & RxAlignmentError && np->speed != 1000)
849				np->stats.rx_frame_errors++;
850			if (frame_status & RxFIFOOverrun)
851	 			np->stats.rx_fifo_errors++;
852		} else {
853			struct sk_buff *skb;
854
855			/* Small skbuffs for short packets */
856			if (pkt_len > copy_thresh) {
857				pci_unmap_single (np->pdev,
858						  desc_to_dma(desc),
859						  np->rx_buf_sz,
860						  PCI_DMA_FROMDEVICE);
861				skb_put (skb = np->rx_skbuff[entry], pkt_len);
862				np->rx_skbuff[entry] = NULL;
863			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
864				pci_dma_sync_single_for_cpu(np->pdev,
865							    desc_to_dma(desc),
866							    np->rx_buf_sz,
867							    PCI_DMA_FROMDEVICE);
868				skb_copy_to_linear_data (skb,
869						  np->rx_skbuff[entry]->data,
870						  pkt_len);
871				skb_put (skb, pkt_len);
872				pci_dma_sync_single_for_device(np->pdev,
873							       desc_to_dma(desc),
874							       np->rx_buf_sz,
875							       PCI_DMA_FROMDEVICE);
876			}
877			skb->protocol = eth_type_trans (skb, dev);
878#if 0
879			/* Checksum done by hw, but csum value unavailable. */
880			if (np->pdev->pci_rev_id >= 0x0c &&
881				!(frame_status & (TCPError | UDPError | IPError))) {
882				skb->ip_summed = CHECKSUM_UNNECESSARY;
883			}
884#endif
885			netif_rx (skb);
886		}
887		entry = (entry + 1) % RX_RING_SIZE;
888	}
889	spin_lock(&np->rx_lock);
890	np->cur_rx = entry;
891	/* Re-allocate skbuffs to fill the descriptor ring */
892	entry = np->old_rx;
893	while (entry != np->cur_rx) {
894		struct sk_buff *skb;
895		/* Dropped packets don't need to re-allocate */
896		if (np->rx_skbuff[entry] == NULL) {
897			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
898			if (skb == NULL) {
899				np->rx_ring[entry].fraginfo = 0;
900				printk (KERN_INFO
901					"%s: receive_packet: "
902					"Unable to re-allocate Rx skbuff.#%d\n",
903					dev->name, entry);
904				break;
905			}
906			np->rx_skbuff[entry] = skb;
907			np->rx_ring[entry].fraginfo =
908			    cpu_to_le64 (pci_map_single
909					 (np->pdev, skb->data, np->rx_buf_sz,
910					  PCI_DMA_FROMDEVICE));
911		}
912		np->rx_ring[entry].fraginfo |=
913		    cpu_to_le64((u64)np->rx_buf_sz << 48);
914		np->rx_ring[entry].status = 0;
915		entry = (entry + 1) % RX_RING_SIZE;
916	}
917	np->old_rx = entry;
918	spin_unlock(&np->rx_lock);
919	return 0;
920}
921
922static void
923rio_error (struct net_device *dev, int int_status)
924{
925	struct netdev_private *np = netdev_priv(dev);
926	void __iomem *ioaddr = np->ioaddr;
927	u16 macctrl;
928
929	/* Link change event */
930	if (int_status & LinkEvent) {
931		if (mii_wait_link (dev, 10) == 0) {
932			printk (KERN_INFO "%s: Link up\n", dev->name);
933			if (np->phy_media)
934				mii_get_media_pcs (dev);
935			else
936				mii_get_media (dev);
937			if (np->speed == 1000)
938				np->tx_coalesce = tx_coalesce;
939			else
940				np->tx_coalesce = 1;
941			macctrl = 0;
942			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
943			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
944			macctrl |= (np->tx_flow) ?
945				TxFlowControlEnable : 0;
946			macctrl |= (np->rx_flow) ?
947				RxFlowControlEnable : 0;
948			dw16(MACCtrl, macctrl);
949			np->link_status = 1;
950			netif_carrier_on(dev);
951		} else {
952			printk (KERN_INFO "%s: Link off\n", dev->name);
953			np->link_status = 0;
954			netif_carrier_off(dev);
955		}
956	}
957
958	/* UpdateStats statistics registers */
959	if (int_status & UpdateStats) {
960		get_stats (dev);
961	}
962
963	/* PCI Error, a catastronphic error related to the bus interface
964	   occurs, set GlobalReset and HostReset to reset. */
965	if (int_status & HostError) {
966		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
967			dev->name, int_status);
968		dw16(ASICCtrl + 2, GlobalReset | HostReset);
969		mdelay (500);
970	}
971}
972
973static struct net_device_stats *
974get_stats (struct net_device *dev)
975{
976	struct netdev_private *np = netdev_priv(dev);
977	void __iomem *ioaddr = np->ioaddr;
978#ifdef MEM_MAPPING
979	int i;
980#endif
981	unsigned int stat_reg;
982
983	/* All statistics registers need to be acknowledged,
984	   else statistic overflow could cause problems */
985
986	np->stats.rx_packets += dr32(FramesRcvOk);
987	np->stats.tx_packets += dr32(FramesXmtOk);
988	np->stats.rx_bytes += dr32(OctetRcvOk);
989	np->stats.tx_bytes += dr32(OctetXmtOk);
990
991	np->stats.multicast = dr32(McstFramesRcvdOk);
992	np->stats.collisions += dr32(SingleColFrames)
993			     +  dr32(MultiColFrames);
994
995	/* detailed tx errors */
996	stat_reg = dr16(FramesAbortXSColls);
997	np->stats.tx_aborted_errors += stat_reg;
998	np->stats.tx_errors += stat_reg;
999
1000	stat_reg = dr16(CarrierSenseErrors);
1001	np->stats.tx_carrier_errors += stat_reg;
1002	np->stats.tx_errors += stat_reg;
1003
1004	/* Clear all other statistic register. */
1005	dr32(McstOctetXmtOk);
1006	dr16(BcstFramesXmtdOk);
1007	dr32(McstFramesXmtdOk);
1008	dr16(BcstFramesRcvdOk);
1009	dr16(MacControlFramesRcvd);
1010	dr16(FrameTooLongErrors);
1011	dr16(InRangeLengthErrors);
1012	dr16(FramesCheckSeqErrors);
1013	dr16(FramesLostRxErrors);
1014	dr32(McstOctetXmtOk);
1015	dr32(BcstOctetXmtOk);
1016	dr32(McstFramesXmtdOk);
1017	dr32(FramesWDeferredXmt);
1018	dr32(LateCollisions);
1019	dr16(BcstFramesXmtdOk);
1020	dr16(MacControlFramesXmtd);
1021	dr16(FramesWEXDeferal);
1022
1023#ifdef MEM_MAPPING
1024	for (i = 0x100; i <= 0x150; i += 4)
1025		dr32(i);
1026#endif
1027	dr16(TxJumboFrames);
1028	dr16(RxJumboFrames);
1029	dr16(TCPCheckSumErrors);
1030	dr16(UDPCheckSumErrors);
1031	dr16(IPCheckSumErrors);
1032	return &np->stats;
1033}
1034
1035static int
1036clear_stats (struct net_device *dev)
1037{
1038	struct netdev_private *np = netdev_priv(dev);
1039	void __iomem *ioaddr = np->ioaddr;
1040#ifdef MEM_MAPPING
1041	int i;
1042#endif
1043
1044	/* All statistics registers need to be acknowledged,
1045	   else statistic overflow could cause problems */
1046	dr32(FramesRcvOk);
1047	dr32(FramesXmtOk);
1048	dr32(OctetRcvOk);
1049	dr32(OctetXmtOk);
1050
1051	dr32(McstFramesRcvdOk);
1052	dr32(SingleColFrames);
1053	dr32(MultiColFrames);
1054	dr32(LateCollisions);
1055	/* detailed rx errors */
1056	dr16(FrameTooLongErrors);
1057	dr16(InRangeLengthErrors);
1058	dr16(FramesCheckSeqErrors);
1059	dr16(FramesLostRxErrors);
1060
1061	/* detailed tx errors */
1062	dr16(FramesAbortXSColls);
1063	dr16(CarrierSenseErrors);
1064
1065	/* Clear all other statistic register. */
1066	dr32(McstOctetXmtOk);
1067	dr16(BcstFramesXmtdOk);
1068	dr32(McstFramesXmtdOk);
1069	dr16(BcstFramesRcvdOk);
1070	dr16(MacControlFramesRcvd);
1071	dr32(McstOctetXmtOk);
1072	dr32(BcstOctetXmtOk);
1073	dr32(McstFramesXmtdOk);
1074	dr32(FramesWDeferredXmt);
1075	dr16(BcstFramesXmtdOk);
1076	dr16(MacControlFramesXmtd);
1077	dr16(FramesWEXDeferal);
1078#ifdef MEM_MAPPING
1079	for (i = 0x100; i <= 0x150; i += 4)
1080		dr32(i);
1081#endif
1082	dr16(TxJumboFrames);
1083	dr16(RxJumboFrames);
1084	dr16(TCPCheckSumErrors);
1085	dr16(UDPCheckSumErrors);
1086	dr16(IPCheckSumErrors);
1087	return 0;
1088}
1089
1090
1091static int
1092change_mtu (struct net_device *dev, int new_mtu)
1093{
1094	struct netdev_private *np = netdev_priv(dev);
1095	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1096
1097	if ((new_mtu < 68) || (new_mtu > max)) {
1098		return -EINVAL;
1099	}
1100
1101	dev->mtu = new_mtu;
1102
1103	return 0;
1104}
1105
1106static void
1107set_multicast (struct net_device *dev)
1108{
1109	struct netdev_private *np = netdev_priv(dev);
1110	void __iomem *ioaddr = np->ioaddr;
1111	u32 hash_table[2];
1112	u16 rx_mode = 0;
1113
1114	hash_table[0] = hash_table[1] = 0;
1115	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1116	hash_table[1] |= 0x02000000;
1117	if (dev->flags & IFF_PROMISC) {
1118		/* Receive all frames promiscuously. */
1119		rx_mode = ReceiveAllFrames;
1120	} else if ((dev->flags & IFF_ALLMULTI) ||
1121			(netdev_mc_count(dev) > multicast_filter_limit)) {
1122		/* Receive broadcast and multicast frames */
1123		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1124	} else if (!netdev_mc_empty(dev)) {
1125		struct netdev_hw_addr *ha;
1126		/* Receive broadcast frames and multicast frames filtering
1127		   by Hashtable */
1128		rx_mode =
1129		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1130		netdev_for_each_mc_addr(ha, dev) {
1131			int bit, index = 0;
1132			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1133			/* The inverted high significant 6 bits of CRC are
1134			   used as an index to hashtable */
1135			for (bit = 0; bit < 6; bit++)
1136				if (crc & (1 << (31 - bit)))
1137					index |= (1 << bit);
1138			hash_table[index / 32] |= (1 << (index % 32));
1139		}
1140	} else {
1141		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1142	}
1143	if (np->vlan) {
1144		/* ReceiveVLANMatch field in ReceiveMode */
1145		rx_mode |= ReceiveVLANMatch;
1146	}
1147
1148	dw32(HashTable0, hash_table[0]);
1149	dw32(HashTable1, hash_table[1]);
1150	dw16(ReceiveMode, rx_mode);
1151}
1152
1153static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1154{
1155	struct netdev_private *np = netdev_priv(dev);
1156
1157	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1158	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1159	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1160}
1161
1162static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1163{
1164	struct netdev_private *np = netdev_priv(dev);
1165	if (np->phy_media) {
1166		/* fiber device */
1167		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1168		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1169		cmd->port = PORT_FIBRE;
1170		cmd->transceiver = XCVR_INTERNAL;
1171	} else {
1172		/* copper device */
1173		cmd->supported = SUPPORTED_10baseT_Half |
1174			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1175			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1176			SUPPORTED_Autoneg | SUPPORTED_MII;
1177		cmd->advertising = ADVERTISED_10baseT_Half |
1178			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1179			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1180			ADVERTISED_Autoneg | ADVERTISED_MII;
1181		cmd->port = PORT_MII;
1182		cmd->transceiver = XCVR_INTERNAL;
1183	}
1184	if ( np->link_status ) {
1185		ethtool_cmd_speed_set(cmd, np->speed);
1186		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1187	} else {
1188		ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1189		cmd->duplex = DUPLEX_UNKNOWN;
1190	}
1191	if ( np->an_enable)
1192		cmd->autoneg = AUTONEG_ENABLE;
1193	else
1194		cmd->autoneg = AUTONEG_DISABLE;
1195
1196	cmd->phy_address = np->phy_addr;
1197	return 0;
1198}
1199
1200static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1201{
1202	struct netdev_private *np = netdev_priv(dev);
1203	netif_carrier_off(dev);
1204	if (cmd->autoneg == AUTONEG_ENABLE) {
1205		if (np->an_enable)
1206			return 0;
1207		else {
1208			np->an_enable = 1;
1209			mii_set_media(dev);
1210			return 0;
1211		}
1212	} else {
1213		np->an_enable = 0;
1214		if (np->speed == 1000) {
1215			ethtool_cmd_speed_set(cmd, SPEED_100);
1216			cmd->duplex = DUPLEX_FULL;
1217			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1218		}
1219		switch (ethtool_cmd_speed(cmd)) {
1220		case SPEED_10:
1221			np->speed = 10;
1222			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1223			break;
1224		case SPEED_100:
1225			np->speed = 100;
1226			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1227			break;
1228		case SPEED_1000: /* not supported */
1229		default:
1230			return -EINVAL;
1231		}
1232		mii_set_media(dev);
1233	}
1234	return 0;
1235}
1236
1237static u32 rio_get_link(struct net_device *dev)
1238{
1239	struct netdev_private *np = netdev_priv(dev);
1240	return np->link_status;
1241}
1242
1243static const struct ethtool_ops ethtool_ops = {
1244	.get_drvinfo = rio_get_drvinfo,
1245	.get_settings = rio_get_settings,
1246	.set_settings = rio_set_settings,
1247	.get_link = rio_get_link,
1248};
1249
1250static int
1251rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1252{
1253	int phy_addr;
1254	struct netdev_private *np = netdev_priv(dev);
1255	struct mii_ioctl_data *miidata = if_mii(rq);
1256
1257	phy_addr = np->phy_addr;
1258	switch (cmd) {
1259	case SIOCGMIIPHY:
1260		miidata->phy_id = phy_addr;
1261		break;
1262	case SIOCGMIIREG:
1263		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1264		break;
1265	case SIOCSMIIREG:
1266		if (!capable(CAP_NET_ADMIN))
1267			return -EPERM;
1268		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1269		break;
1270	default:
1271		return -EOPNOTSUPP;
1272	}
1273	return 0;
1274}
1275
1276#define EEP_READ 0x0200
1277#define EEP_BUSY 0x8000
1278/* Read the EEPROM word */
1279/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1280static int read_eeprom(struct netdev_private *np, int eep_addr)
1281{
1282	void __iomem *ioaddr = np->eeprom_addr;
1283	int i = 1000;
1284
1285	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1286	while (i-- > 0) {
1287		if (!(dr16(EepromCtrl) & EEP_BUSY))
1288			return dr16(EepromData);
1289	}
1290	return 0;
1291}
1292
1293enum phy_ctrl_bits {
1294	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1295	MII_DUPLEX = 0x08,
1296};
1297
1298#define mii_delay() dr8(PhyCtrl)
1299static void
1300mii_sendbit (struct net_device *dev, u32 data)
1301{
1302	struct netdev_private *np = netdev_priv(dev);
1303	void __iomem *ioaddr = np->ioaddr;
1304
1305	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1306	dw8(PhyCtrl, data);
1307	mii_delay ();
1308	dw8(PhyCtrl, data | MII_CLK);
1309	mii_delay ();
1310}
1311
1312static int
1313mii_getbit (struct net_device *dev)
1314{
1315	struct netdev_private *np = netdev_priv(dev);
1316	void __iomem *ioaddr = np->ioaddr;
1317	u8 data;
1318
1319	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1320	dw8(PhyCtrl, data);
1321	mii_delay ();
1322	dw8(PhyCtrl, data | MII_CLK);
1323	mii_delay ();
1324	return (dr8(PhyCtrl) >> 1) & 1;
1325}
1326
1327static void
1328mii_send_bits (struct net_device *dev, u32 data, int len)
1329{
1330	int i;
1331
1332	for (i = len - 1; i >= 0; i--) {
1333		mii_sendbit (dev, data & (1 << i));
1334	}
1335}
1336
1337static int
1338mii_read (struct net_device *dev, int phy_addr, int reg_num)
1339{
1340	u32 cmd;
1341	int i;
1342	u32 retval = 0;
1343
1344	/* Preamble */
1345	mii_send_bits (dev, 0xffffffff, 32);
1346	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1347	/* ST,OP = 0110'b for read operation */
1348	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1349	mii_send_bits (dev, cmd, 14);
1350	/* Turnaround */
1351	if (mii_getbit (dev))
1352		goto err_out;
1353	/* Read data */
1354	for (i = 0; i < 16; i++) {
1355		retval |= mii_getbit (dev);
1356		retval <<= 1;
1357	}
1358	/* End cycle */
1359	mii_getbit (dev);
1360	return (retval >> 1) & 0xffff;
1361
1362      err_out:
1363	return 0;
1364}
1365static int
1366mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1367{
1368	u32 cmd;
1369
1370	/* Preamble */
1371	mii_send_bits (dev, 0xffffffff, 32);
1372	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1373	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1374	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1375	mii_send_bits (dev, cmd, 32);
1376	/* End cycle */
1377	mii_getbit (dev);
1378	return 0;
1379}
1380static int
1381mii_wait_link (struct net_device *dev, int wait)
1382{
1383	__u16 bmsr;
1384	int phy_addr;
1385	struct netdev_private *np;
1386
1387	np = netdev_priv(dev);
1388	phy_addr = np->phy_addr;
1389
1390	do {
1391		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1392		if (bmsr & BMSR_LSTATUS)
1393			return 0;
1394		mdelay (1);
1395	} while (--wait > 0);
1396	return -1;
1397}
1398static int
1399mii_get_media (struct net_device *dev)
1400{
1401	__u16 negotiate;
1402	__u16 bmsr;
1403	__u16 mscr;
1404	__u16 mssr;
1405	int phy_addr;
1406	struct netdev_private *np;
1407
1408	np = netdev_priv(dev);
1409	phy_addr = np->phy_addr;
1410
1411	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1412	if (np->an_enable) {
1413		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1414			/* Auto-Negotiation not completed */
1415			return -1;
1416		}
1417		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1418			mii_read (dev, phy_addr, MII_LPA);
1419		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1420		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1421		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1422			np->speed = 1000;
1423			np->full_duplex = 1;
1424			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1425		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1426			np->speed = 1000;
1427			np->full_duplex = 0;
1428			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1429		} else if (negotiate & ADVERTISE_100FULL) {
1430			np->speed = 100;
1431			np->full_duplex = 1;
1432			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1433		} else if (negotiate & ADVERTISE_100HALF) {
1434			np->speed = 100;
1435			np->full_duplex = 0;
1436			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1437		} else if (negotiate & ADVERTISE_10FULL) {
1438			np->speed = 10;
1439			np->full_duplex = 1;
1440			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1441		} else if (negotiate & ADVERTISE_10HALF) {
1442			np->speed = 10;
1443			np->full_duplex = 0;
1444			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1445		}
1446		if (negotiate & ADVERTISE_PAUSE_CAP) {
1447			np->tx_flow &= 1;
1448			np->rx_flow &= 1;
1449		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1450			np->tx_flow = 0;
1451			np->rx_flow &= 1;
1452		}
1453		/* else tx_flow, rx_flow = user select  */
1454	} else {
1455		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1456		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1457		case BMCR_SPEED1000:
1458			printk (KERN_INFO "Operating at 1000 Mbps, ");
1459			break;
1460		case BMCR_SPEED100:
1461			printk (KERN_INFO "Operating at 100 Mbps, ");
1462			break;
1463		case 0:
1464			printk (KERN_INFO "Operating at 10 Mbps, ");
1465		}
1466		if (bmcr & BMCR_FULLDPLX) {
1467			printk (KERN_CONT "Full duplex\n");
1468		} else {
1469			printk (KERN_CONT "Half duplex\n");
1470		}
1471	}
1472	if (np->tx_flow)
1473		printk(KERN_INFO "Enable Tx Flow Control\n");
1474	else
1475		printk(KERN_INFO "Disable Tx Flow Control\n");
1476	if (np->rx_flow)
1477		printk(KERN_INFO "Enable Rx Flow Control\n");
1478	else
1479		printk(KERN_INFO "Disable Rx Flow Control\n");
1480
1481	return 0;
1482}
1483
1484static int
1485mii_set_media (struct net_device *dev)
1486{
1487	__u16 pscr;
1488	__u16 bmcr;
1489	__u16 bmsr;
1490	__u16 anar;
1491	int phy_addr;
1492	struct netdev_private *np;
1493	np = netdev_priv(dev);
1494	phy_addr = np->phy_addr;
1495
1496	/* Does user set speed? */
1497	if (np->an_enable) {
1498		/* Advertise capabilities */
1499		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1500		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1501			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1502			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1503			  ADVERTISE_100BASE4);
1504		if (bmsr & BMSR_100FULL)
1505			anar |= ADVERTISE_100FULL;
1506		if (bmsr & BMSR_100HALF)
1507			anar |= ADVERTISE_100HALF;
1508		if (bmsr & BMSR_100BASE4)
1509			anar |= ADVERTISE_100BASE4;
1510		if (bmsr & BMSR_10FULL)
1511			anar |= ADVERTISE_10FULL;
1512		if (bmsr & BMSR_10HALF)
1513			anar |= ADVERTISE_10HALF;
1514		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1515		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1516
1517		/* Enable Auto crossover */
1518		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1519		pscr |= 3 << 5;	/* 11'b */
1520		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1521
1522		/* Soft reset PHY */
1523		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1524		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1525		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1526		mdelay(1);
1527	} else {
1528		/* Force speed setting */
1529		/* 1) Disable Auto crossover */
1530		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1531		pscr &= ~(3 << 5);
1532		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1533
1534		/* 2) PHY Reset */
1535		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1536		bmcr |= BMCR_RESET;
1537		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1538
1539		/* 3) Power Down */
1540		bmcr = 0x1940;	/* must be 0x1940 */
1541		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1542		mdelay (100);	/* wait a certain time */
1543
1544		/* 4) Advertise nothing */
1545		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1546
1547		/* 5) Set media and Power Up */
1548		bmcr = BMCR_PDOWN;
1549		if (np->speed == 100) {
1550			bmcr |= BMCR_SPEED100;
1551			printk (KERN_INFO "Manual 100 Mbps, ");
1552		} else if (np->speed == 10) {
1553			printk (KERN_INFO "Manual 10 Mbps, ");
1554		}
1555		if (np->full_duplex) {
1556			bmcr |= BMCR_FULLDPLX;
1557			printk (KERN_CONT "Full duplex\n");
1558		} else {
1559			printk (KERN_CONT "Half duplex\n");
1560		}
1561#if 0
1562		/* Set 1000BaseT Master/Slave setting */
1563		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1564		mscr |= MII_MSCR_CFG_ENABLE;
1565		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1566#endif
1567		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1568		mdelay(10);
1569	}
1570	return 0;
1571}
1572
1573static int
1574mii_get_media_pcs (struct net_device *dev)
1575{
1576	__u16 negotiate;
1577	__u16 bmsr;
1578	int phy_addr;
1579	struct netdev_private *np;
1580
1581	np = netdev_priv(dev);
1582	phy_addr = np->phy_addr;
1583
1584	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1585	if (np->an_enable) {
1586		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1587			/* Auto-Negotiation not completed */
1588			return -1;
1589		}
1590		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1591			mii_read (dev, phy_addr, PCS_ANLPAR);
1592		np->speed = 1000;
1593		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1594			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1595			np->full_duplex = 1;
1596		} else {
1597			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1598			np->full_duplex = 0;
1599		}
1600		if (negotiate & PCS_ANAR_PAUSE) {
1601			np->tx_flow &= 1;
1602			np->rx_flow &= 1;
1603		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1604			np->tx_flow = 0;
1605			np->rx_flow &= 1;
1606		}
1607		/* else tx_flow, rx_flow = user select  */
1608	} else {
1609		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1610		printk (KERN_INFO "Operating at 1000 Mbps, ");
1611		if (bmcr & BMCR_FULLDPLX) {
1612			printk (KERN_CONT "Full duplex\n");
1613		} else {
1614			printk (KERN_CONT "Half duplex\n");
1615		}
1616	}
1617	if (np->tx_flow)
1618		printk(KERN_INFO "Enable Tx Flow Control\n");
1619	else
1620		printk(KERN_INFO "Disable Tx Flow Control\n");
1621	if (np->rx_flow)
1622		printk(KERN_INFO "Enable Rx Flow Control\n");
1623	else
1624		printk(KERN_INFO "Disable Rx Flow Control\n");
1625
1626	return 0;
1627}
1628
1629static int
1630mii_set_media_pcs (struct net_device *dev)
1631{
1632	__u16 bmcr;
1633	__u16 esr;
1634	__u16 anar;
1635	int phy_addr;
1636	struct netdev_private *np;
1637	np = netdev_priv(dev);
1638	phy_addr = np->phy_addr;
1639
1640	/* Auto-Negotiation? */
1641	if (np->an_enable) {
1642		/* Advertise capabilities */
1643		esr = mii_read (dev, phy_addr, PCS_ESR);
1644		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1645			~PCS_ANAR_HALF_DUPLEX &
1646			~PCS_ANAR_FULL_DUPLEX;
1647		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1648			anar |= PCS_ANAR_HALF_DUPLEX;
1649		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1650			anar |= PCS_ANAR_FULL_DUPLEX;
1651		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1652		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1653
1654		/* Soft reset PHY */
1655		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1656		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1657		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1658		mdelay(1);
1659	} else {
1660		/* Force speed setting */
1661		/* PHY Reset */
1662		bmcr = BMCR_RESET;
1663		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1664		mdelay(10);
1665		if (np->full_duplex) {
1666			bmcr = BMCR_FULLDPLX;
1667			printk (KERN_INFO "Manual full duplex\n");
1668		} else {
1669			bmcr = 0;
1670			printk (KERN_INFO "Manual half duplex\n");
1671		}
1672		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1673		mdelay(10);
1674
1675		/*  Advertise nothing */
1676		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1677	}
1678	return 0;
1679}
1680
1681
1682static int
1683rio_close (struct net_device *dev)
1684{
1685	struct netdev_private *np = netdev_priv(dev);
1686	void __iomem *ioaddr = np->ioaddr;
1687
1688	struct pci_dev *pdev = np->pdev;
1689	struct sk_buff *skb;
1690	int i;
1691
1692	netif_stop_queue (dev);
1693
1694	/* Disable interrupts */
1695	dw16(IntEnable, 0);
1696
1697	/* Stop Tx and Rx logics */
1698	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1699
1700	free_irq(pdev->irq, dev);
1701	del_timer_sync (&np->timer);
1702
1703	/* Free all the skbuffs in the queue. */
1704	for (i = 0; i < RX_RING_SIZE; i++) {
1705		skb = np->rx_skbuff[i];
1706		if (skb) {
1707			pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1708					 skb->len, PCI_DMA_FROMDEVICE);
1709			dev_kfree_skb (skb);
1710			np->rx_skbuff[i] = NULL;
1711		}
1712		np->rx_ring[i].status = 0;
1713		np->rx_ring[i].fraginfo = 0;
1714	}
1715	for (i = 0; i < TX_RING_SIZE; i++) {
1716		skb = np->tx_skbuff[i];
1717		if (skb) {
1718			pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1719					 skb->len, PCI_DMA_TODEVICE);
1720			dev_kfree_skb (skb);
1721			np->tx_skbuff[i] = NULL;
1722		}
1723	}
1724
1725	return 0;
1726}
1727
1728static void
1729rio_remove1 (struct pci_dev *pdev)
1730{
1731	struct net_device *dev = pci_get_drvdata (pdev);
1732
1733	if (dev) {
1734		struct netdev_private *np = netdev_priv(dev);
1735
1736		unregister_netdev (dev);
1737		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1738				     np->rx_ring_dma);
1739		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1740				     np->tx_ring_dma);
1741#ifdef MEM_MAPPING
1742		pci_iounmap(pdev, np->ioaddr);
1743#endif
1744		pci_iounmap(pdev, np->eeprom_addr);
1745		free_netdev (dev);
1746		pci_release_regions (pdev);
1747		pci_disable_device (pdev);
1748	}
1749}
1750
1751static struct pci_driver rio_driver = {
1752	.name		= "dl2k",
1753	.id_table	= rio_pci_tbl,
1754	.probe		= rio_probe1,
1755	.remove		= rio_remove1,
1756};
1757
1758module_pci_driver(rio_driver);
1759/*
1760
1761Compile command:
1762
1763gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1764
1765Read Documentation/networking/dl2k.txt for details.
1766
1767*/
1768
1769