1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
42#include "../cxgb4/t4_values.h"
43#include "../cxgb4/t4fw_api.h"
44
45/*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's).  Return an error if it doesn't
48 * become ready ...
49 */
50int t4vf_wait_dev_ready(struct adapter *adapter)
51{
52	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53	const u32 notready1 = 0xffffffff;
54	const u32 notready2 = 0xeeeeeeee;
55	u32 val;
56
57	val = t4_read_reg(adapter, whoami);
58	if (val != notready1 && val != notready2)
59		return 0;
60	msleep(500);
61	val = t4_read_reg(adapter, whoami);
62	if (val != notready1 && val != notready2)
63		return 0;
64	else
65		return -EIO;
66}
67
68/*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73			 u32 mbox_data)
74{
75	for ( ; size; size -= 8, mbox_data += 8)
76		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77}
78
79/*
80 * Dump contents of mailbox with a leading tag.
81 */
82static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83{
84	dev_err(adapter->pdev_dev,
85		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
86		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
87		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
88		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
89		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
90		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
91		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
92		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
93		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
94}
95
96/**
97 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
98 *	@adapter: the adapter
99 *	@cmd: the command to write
100 *	@size: command length in bytes
101 *	@rpl: where to optionally store the reply
102 *	@sleep_ok: if true we may sleep while awaiting command completion
103 *
104 *	Sends the given command to FW through the mailbox and waits for the
105 *	FW to execute the command.  If @rpl is not %NULL it is used to store
106 *	the FW's reply to the command.  The command and its optional reply
107 *	are of the same length.  FW can take up to 500 ms to respond.
108 *	@sleep_ok determines whether we may sleep while awaiting the response.
109 *	If sleeping is allowed we use progressive backoff otherwise we spin.
110 *
111 *	The return value is 0 on success or a negative errno on failure.  A
112 *	failure can happen either because we are not able to execute the
113 *	command or FW executes it but signals an error.  In the latter case
114 *	the return value is the error code indicated by FW (negated).
115 */
116int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
117		      void *rpl, bool sleep_ok)
118{
119	static const int delay[] = {
120		1, 1, 3, 5, 10, 10, 20, 50, 100
121	};
122
123	u32 v;
124	int i, ms, delay_idx;
125	const __be64 *p;
126	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
127	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
128
129	/*
130	 * Commands must be multiples of 16 bytes in length and may not be
131	 * larger than the size of the Mailbox Data register array.
132	 */
133	if ((size % 16) != 0 ||
134	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
135		return -EINVAL;
136
137	/*
138	 * Loop trying to get ownership of the mailbox.  Return an error
139	 * if we can't gain ownership.
140	 */
141	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
142	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
143		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
144	if (v != MBOX_OWNER_DRV)
145		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
146
147	/*
148	 * Write the command array into the Mailbox Data register array and
149	 * transfer ownership of the mailbox to the firmware.
150	 *
151	 * For the VFs, the Mailbox Data "registers" are actually backed by
152	 * T4's "MA" interface rather than PL Registers (as is the case for
153	 * the PFs).  Because these are in different coherency domains, the
154	 * write to the VF's PL-register-backed Mailbox Control can race in
155	 * front of the writes to the MA-backed VF Mailbox Data "registers".
156	 * So we need to do a read-back on at least one byte of the VF Mailbox
157	 * Data registers before doing the write to the VF Mailbox Control
158	 * register.
159	 */
160	for (i = 0, p = cmd; i < size; i += 8)
161		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
162	t4_read_reg(adapter, mbox_data);         /* flush write */
163
164	t4_write_reg(adapter, mbox_ctl,
165		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
166	t4_read_reg(adapter, mbox_ctl);          /* flush write */
167
168	/*
169	 * Spin waiting for firmware to acknowledge processing our command.
170	 */
171	delay_idx = 0;
172	ms = delay[0];
173
174	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
175		if (sleep_ok) {
176			ms = delay[delay_idx];
177			if (delay_idx < ARRAY_SIZE(delay) - 1)
178				delay_idx++;
179			msleep(ms);
180		} else
181			mdelay(ms);
182
183		/*
184		 * If we're the owner, see if this is the reply we wanted.
185		 */
186		v = t4_read_reg(adapter, mbox_ctl);
187		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
188			/*
189			 * If the Message Valid bit isn't on, revoke ownership
190			 * of the mailbox and continue waiting for our reply.
191			 */
192			if ((v & MBMSGVALID_F) == 0) {
193				t4_write_reg(adapter, mbox_ctl,
194					     MBOWNER_V(MBOX_OWNER_NONE));
195				continue;
196			}
197
198			/*
199			 * We now have our reply.  Extract the command return
200			 * value, copy the reply back to our caller's buffer
201			 * (if specified) and revoke ownership of the mailbox.
202			 * We return the (negated) firmware command return
203			 * code (this depends on FW_SUCCESS == 0).
204			 */
205
206			/* return value in low-order little-endian word */
207			v = t4_read_reg(adapter, mbox_data);
208			if (FW_CMD_RETVAL_G(v))
209				dump_mbox(adapter, "FW Error", mbox_data);
210
211			if (rpl) {
212				/* request bit in high-order BE word */
213				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
214					 & FW_CMD_REQUEST_F) == 0);
215				get_mbox_rpl(adapter, rpl, size, mbox_data);
216				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
217					 & FW_CMD_REQUEST_F) != 0);
218			}
219			t4_write_reg(adapter, mbox_ctl,
220				     MBOWNER_V(MBOX_OWNER_NONE));
221			return -FW_CMD_RETVAL_G(v);
222		}
223	}
224
225	/*
226	 * We timed out.  Return the error ...
227	 */
228	dump_mbox(adapter, "FW Timeout", mbox_data);
229	return -ETIMEDOUT;
230}
231
232/**
233 *	hash_mac_addr - return the hash value of a MAC address
234 *	@addr: the 48-bit Ethernet MAC address
235 *
236 *	Hashes a MAC address according to the hash function used by hardware
237 *	inexact (hash) address matching.
238 */
239static int hash_mac_addr(const u8 *addr)
240{
241	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
242	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
243	a ^= b;
244	a ^= (a >> 12);
245	a ^= (a >> 6);
246	return a & 0x3f;
247}
248
249#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
250		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
251		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
252
253/**
254 *	init_link_config - initialize a link's SW state
255 *	@lc: structure holding the link state
256 *	@caps: link capabilities
257 *
258 *	Initializes the SW state maintained for each link, including the link's
259 *	capabilities and default speed/flow-control/autonegotiation settings.
260 */
261static void init_link_config(struct link_config *lc, unsigned int caps)
262{
263	lc->supported = caps;
264	lc->requested_speed = 0;
265	lc->speed = 0;
266	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
267	if (lc->supported & FW_PORT_CAP_ANEG) {
268		lc->advertising = lc->supported & ADVERT_MASK;
269		lc->autoneg = AUTONEG_ENABLE;
270		lc->requested_fc |= PAUSE_AUTONEG;
271	} else {
272		lc->advertising = 0;
273		lc->autoneg = AUTONEG_DISABLE;
274	}
275}
276
277/**
278 *	t4vf_port_init - initialize port hardware/software state
279 *	@adapter: the adapter
280 *	@pidx: the adapter port index
281 */
282int t4vf_port_init(struct adapter *adapter, int pidx)
283{
284	struct port_info *pi = adap2pinfo(adapter, pidx);
285	struct fw_vi_cmd vi_cmd, vi_rpl;
286	struct fw_port_cmd port_cmd, port_rpl;
287	int v;
288
289	/*
290	 * Execute a VI Read command to get our Virtual Interface information
291	 * like MAC address, etc.
292	 */
293	memset(&vi_cmd, 0, sizeof(vi_cmd));
294	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
295				       FW_CMD_REQUEST_F |
296				       FW_CMD_READ_F);
297	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
298	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
299	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
300	if (v)
301		return v;
302
303	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
304	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
305	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
306
307	/*
308	 * If we don't have read access to our port information, we're done
309	 * now.  Otherwise, execute a PORT Read command to get it ...
310	 */
311	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
312		return 0;
313
314	memset(&port_cmd, 0, sizeof(port_cmd));
315	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
316					    FW_CMD_REQUEST_F |
317					    FW_CMD_READ_F |
318					    FW_PORT_CMD_PORTID_V(pi->port_id));
319	port_cmd.action_to_len16 =
320		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
321			    FW_LEN16(port_cmd));
322	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
323	if (v)
324		return v;
325
326	v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
327	pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
328			FW_PORT_CMD_MDIOADDR_G(v) : -1;
329	pi->port_type = FW_PORT_CMD_PTYPE_G(v);
330	pi->mod_type = FW_PORT_MOD_TYPE_NA;
331
332	init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
333
334	return 0;
335}
336
337/**
338 *      t4vf_fw_reset - issue a reset to FW
339 *      @adapter: the adapter
340 *
341 *	Issues a reset command to FW.  For a Physical Function this would
342 *	result in the Firmware resetting all of its state.  For a Virtual
343 *	Function this just resets the state associated with the VF.
344 */
345int t4vf_fw_reset(struct adapter *adapter)
346{
347	struct fw_reset_cmd cmd;
348
349	memset(&cmd, 0, sizeof(cmd));
350	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
351				      FW_CMD_WRITE_F);
352	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
353	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
354}
355
356/**
357 *	t4vf_query_params - query FW or device parameters
358 *	@adapter: the adapter
359 *	@nparams: the number of parameters
360 *	@params: the parameter names
361 *	@vals: the parameter values
362 *
363 *	Reads the values of firmware or device parameters.  Up to 7 parameters
364 *	can be queried at once.
365 */
366static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
367			     const u32 *params, u32 *vals)
368{
369	int i, ret;
370	struct fw_params_cmd cmd, rpl;
371	struct fw_params_param *p;
372	size_t len16;
373
374	if (nparams > 7)
375		return -EINVAL;
376
377	memset(&cmd, 0, sizeof(cmd));
378	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
379				    FW_CMD_REQUEST_F |
380				    FW_CMD_READ_F);
381	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
382				      param[nparams].mnem), 16);
383	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
384	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
385		p->mnem = htonl(*params++);
386
387	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
388	if (ret == 0)
389		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
390			*vals++ = be32_to_cpu(p->val);
391	return ret;
392}
393
394/**
395 *	t4vf_set_params - sets FW or device parameters
396 *	@adapter: the adapter
397 *	@nparams: the number of parameters
398 *	@params: the parameter names
399 *	@vals: the parameter values
400 *
401 *	Sets the values of firmware or device parameters.  Up to 7 parameters
402 *	can be specified at once.
403 */
404int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
405		    const u32 *params, const u32 *vals)
406{
407	int i;
408	struct fw_params_cmd cmd;
409	struct fw_params_param *p;
410	size_t len16;
411
412	if (nparams > 7)
413		return -EINVAL;
414
415	memset(&cmd, 0, sizeof(cmd));
416	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
417				    FW_CMD_REQUEST_F |
418				    FW_CMD_WRITE_F);
419	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
420				      param[nparams]), 16);
421	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
422	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
423		p->mnem = cpu_to_be32(*params++);
424		p->val = cpu_to_be32(*vals++);
425	}
426
427	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
428}
429
430/**
431 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
432 *	@adapter: the adapter
433 *	@qid: the Queue ID
434 *	@qtype: the Ingress or Egress type for @qid
435 *	@pbar2_qoffset: BAR2 Queue Offset
436 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
437 *
438 *	Returns the BAR2 SGE Queue Registers information associated with the
439 *	indicated Absolute Queue ID.  These are passed back in return value
440 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
441 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
442 *
443 *	This may return an error which indicates that BAR2 SGE Queue
444 *	registers aren't available.  If an error is not returned, then the
445 *	following values are returned:
446 *
447 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
448 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
449 *
450 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
451 *	require the "Inferred Queue ID" ability may be used.  E.g. the
452 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
453 *	then these "Inferred Queue ID" register may not be used.
454 */
455int t4_bar2_sge_qregs(struct adapter *adapter,
456		      unsigned int qid,
457		      enum t4_bar2_qtype qtype,
458		      u64 *pbar2_qoffset,
459		      unsigned int *pbar2_qid)
460{
461	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
462	u64 bar2_page_offset, bar2_qoffset;
463	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
464
465	/* T4 doesn't support BAR2 SGE Queue registers.
466	 */
467	if (is_t4(adapter->params.chip))
468		return -EINVAL;
469
470	/* Get our SGE Page Size parameters.
471	 */
472	page_shift = adapter->params.sge.sge_vf_hps + 10;
473	page_size = 1 << page_shift;
474
475	/* Get the right Queues per Page parameters for our Queue.
476	 */
477	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
478		     ? adapter->params.sge.sge_vf_eq_qpp
479		     : adapter->params.sge.sge_vf_iq_qpp);
480	qpp_mask = (1 << qpp_shift) - 1;
481
482	/* Calculate the basics of the BAR2 SGE Queue register area:
483	 *  o The BAR2 page the Queue registers will be in.
484	 *  o The BAR2 Queue ID.
485	 *  o The BAR2 Queue ID Offset into the BAR2 page.
486	 */
487	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
488	bar2_qid = qid & qpp_mask;
489	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
490
491	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
492	 * hardware will infer the Absolute Queue ID simply from the writes to
493	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
494	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
495	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
496	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
497	 * from the BAR2 Page and BAR2 Queue ID.
498	 *
499	 * One important censequence of this is that some BAR2 SGE registers
500	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
501	 * there.  But other registers synthesize the SGE Queue ID purely
502	 * from the writes to the registers -- the Write Combined Doorbell
503	 * Buffer is a good example.  These BAR2 SGE Registers are only
504	 * available for those BAR2 SGE Register areas where the SGE Absolute
505	 * Queue ID can be inferred from simple writes.
506	 */
507	bar2_qoffset = bar2_page_offset;
508	bar2_qinferred = (bar2_qid_offset < page_size);
509	if (bar2_qinferred) {
510		bar2_qoffset += bar2_qid_offset;
511		bar2_qid = 0;
512	}
513
514	*pbar2_qoffset = bar2_qoffset;
515	*pbar2_qid = bar2_qid;
516	return 0;
517}
518
519/**
520 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
521 *	@adapter: the adapter
522 *
523 *	Retrieves various core SGE parameters in the form of hardware SGE
524 *	register values.  The caller is responsible for decoding these as
525 *	needed.  The SGE parameters are stored in @adapter->params.sge.
526 */
527int t4vf_get_sge_params(struct adapter *adapter)
528{
529	struct sge_params *sge_params = &adapter->params.sge;
530	u32 params[7], vals[7];
531	int v;
532
533	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
534		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
535	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
536		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
537	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
538		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
539	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
540		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
541	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
542		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
543	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
544		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
545	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
546		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
547	v = t4vf_query_params(adapter, 7, params, vals);
548	if (v)
549		return v;
550	sge_params->sge_control = vals[0];
551	sge_params->sge_host_page_size = vals[1];
552	sge_params->sge_fl_buffer_size[0] = vals[2];
553	sge_params->sge_fl_buffer_size[1] = vals[3];
554	sge_params->sge_timer_value_0_and_1 = vals[4];
555	sge_params->sge_timer_value_2_and_3 = vals[5];
556	sge_params->sge_timer_value_4_and_5 = vals[6];
557
558	/* T4 uses a single control field to specify both the PCIe Padding and
559	 * Packing Boundary.  T5 introduced the ability to specify these
560	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
561	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
562	 * SGE_CONTROL in order to determine how ingress packet data will be
563	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
564	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
565	 * failure grabbing it we throw an error since we can't figure out the
566	 * right value.
567	 */
568	if (!is_t4(adapter->params.chip)) {
569		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
570			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
571		v = t4vf_query_params(adapter, 1, params, vals);
572		if (v != FW_SUCCESS) {
573			dev_err(adapter->pdev_dev,
574				"Unable to get SGE Control2; "
575				"probably old firmware.\n");
576			return v;
577		}
578		sge_params->sge_control2 = vals[0];
579	}
580
581	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
582		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
583	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
584		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
585	v = t4vf_query_params(adapter, 2, params, vals);
586	if (v)
587		return v;
588	sge_params->sge_ingress_rx_threshold = vals[0];
589	sge_params->sge_congestion_control = vals[1];
590
591	/* For T5 and later we want to use the new BAR2 Doorbells.
592	 * Unfortunately, older firmware didn't allow the this register to be
593	 * read.
594	 */
595	if (!is_t4(adapter->params.chip)) {
596		u32 whoami;
597		unsigned int pf, s_hps, s_qpp;
598
599		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
600			     FW_PARAMS_PARAM_XYZ_V(
601				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
602		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
603			     FW_PARAMS_PARAM_XYZ_V(
604				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
605		v = t4vf_query_params(adapter, 2, params, vals);
606		if (v != FW_SUCCESS) {
607			dev_warn(adapter->pdev_dev,
608				 "Unable to get VF SGE Queues/Page; "
609				 "probably old firmware.\n");
610			return v;
611		}
612		sge_params->sge_egress_queues_per_page = vals[0];
613		sge_params->sge_ingress_queues_per_page = vals[1];
614
615		/* We need the Queues/Page for our VF.  This is based on the
616		 * PF from which we're instantiated and is indexed in the
617		 * register we just read. Do it once here so other code in
618		 * the driver can just use it.
619		 */
620		whoami = t4_read_reg(adapter,
621				     T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
622		pf = SOURCEPF_G(whoami);
623
624		s_hps = (HOSTPAGESIZEPF0_S +
625			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
626		sge_params->sge_vf_hps =
627			((sge_params->sge_host_page_size >> s_hps)
628			 & HOSTPAGESIZEPF0_M);
629
630		s_qpp = (QUEUESPERPAGEPF0_S +
631			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
632		sge_params->sge_vf_eq_qpp =
633			((sge_params->sge_egress_queues_per_page >> s_qpp)
634			 & QUEUESPERPAGEPF0_M);
635		sge_params->sge_vf_iq_qpp =
636			((sge_params->sge_ingress_queues_per_page >> s_qpp)
637			 & QUEUESPERPAGEPF0_M);
638	}
639
640	return 0;
641}
642
643/**
644 *	t4vf_get_vpd_params - retrieve device VPD paremeters
645 *	@adapter: the adapter
646 *
647 *	Retrives various device Vital Product Data parameters.  The parameters
648 *	are stored in @adapter->params.vpd.
649 */
650int t4vf_get_vpd_params(struct adapter *adapter)
651{
652	struct vpd_params *vpd_params = &adapter->params.vpd;
653	u32 params[7], vals[7];
654	int v;
655
656	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
657		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
658	v = t4vf_query_params(adapter, 1, params, vals);
659	if (v)
660		return v;
661	vpd_params->cclk = vals[0];
662
663	return 0;
664}
665
666/**
667 *	t4vf_get_dev_params - retrieve device paremeters
668 *	@adapter: the adapter
669 *
670 *	Retrives various device parameters.  The parameters are stored in
671 *	@adapter->params.dev.
672 */
673int t4vf_get_dev_params(struct adapter *adapter)
674{
675	struct dev_params *dev_params = &adapter->params.dev;
676	u32 params[7], vals[7];
677	int v;
678
679	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
680		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
681	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
682		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
683	v = t4vf_query_params(adapter, 2, params, vals);
684	if (v)
685		return v;
686	dev_params->fwrev = vals[0];
687	dev_params->tprev = vals[1];
688
689	return 0;
690}
691
692/**
693 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
694 *	@adapter: the adapter
695 *
696 *	Retrieves global RSS mode and parameters with which we have to live
697 *	and stores them in the @adapter's RSS parameters.
698 */
699int t4vf_get_rss_glb_config(struct adapter *adapter)
700{
701	struct rss_params *rss = &adapter->params.rss;
702	struct fw_rss_glb_config_cmd cmd, rpl;
703	int v;
704
705	/*
706	 * Execute an RSS Global Configuration read command to retrieve
707	 * our RSS configuration.
708	 */
709	memset(&cmd, 0, sizeof(cmd));
710	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
711				      FW_CMD_REQUEST_F |
712				      FW_CMD_READ_F);
713	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
714	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
715	if (v)
716		return v;
717
718	/*
719	 * Transate the big-endian RSS Global Configuration into our
720	 * cpu-endian format based on the RSS mode.  We also do first level
721	 * filtering at this point to weed out modes which don't support
722	 * VF Drivers ...
723	 */
724	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
725			be32_to_cpu(rpl.u.manual.mode_pkd));
726	switch (rss->mode) {
727	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
728		u32 word = be32_to_cpu(
729				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
730
731		rss->u.basicvirtual.synmapen =
732			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
733		rss->u.basicvirtual.syn4tupenipv6 =
734			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
735		rss->u.basicvirtual.syn2tupenipv6 =
736			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
737		rss->u.basicvirtual.syn4tupenipv4 =
738			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
739		rss->u.basicvirtual.syn2tupenipv4 =
740			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
741
742		rss->u.basicvirtual.ofdmapen =
743			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
744
745		rss->u.basicvirtual.tnlmapen =
746			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
747		rss->u.basicvirtual.tnlalllookup =
748			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
749
750		rss->u.basicvirtual.hashtoeplitz =
751			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
752
753		/* we need at least Tunnel Map Enable to be set */
754		if (!rss->u.basicvirtual.tnlmapen)
755			return -EINVAL;
756		break;
757	}
758
759	default:
760		/* all unknown/unsupported RSS modes result in an error */
761		return -EINVAL;
762	}
763
764	return 0;
765}
766
767/**
768 *	t4vf_get_vfres - retrieve VF resource limits
769 *	@adapter: the adapter
770 *
771 *	Retrieves configured resource limits and capabilities for a virtual
772 *	function.  The results are stored in @adapter->vfres.
773 */
774int t4vf_get_vfres(struct adapter *adapter)
775{
776	struct vf_resources *vfres = &adapter->params.vfres;
777	struct fw_pfvf_cmd cmd, rpl;
778	int v;
779	u32 word;
780
781	/*
782	 * Execute PFVF Read command to get VF resource limits; bail out early
783	 * with error on command failure.
784	 */
785	memset(&cmd, 0, sizeof(cmd));
786	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
787				    FW_CMD_REQUEST_F |
788				    FW_CMD_READ_F);
789	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
790	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
791	if (v)
792		return v;
793
794	/*
795	 * Extract VF resource limits and return success.
796	 */
797	word = be32_to_cpu(rpl.niqflint_niq);
798	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
799	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
800
801	word = be32_to_cpu(rpl.type_to_neq);
802	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
803	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
804
805	word = be32_to_cpu(rpl.tc_to_nexactf);
806	vfres->tc = FW_PFVF_CMD_TC_G(word);
807	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
808	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
809
810	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
811	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
812	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
813	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
814
815	return 0;
816}
817
818/**
819 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
820 *	@adapter: the adapter
821 *	@viid: Virtual Interface ID
822 *	@config: pointer to host-native VI RSS Configuration buffer
823 *
824 *	Reads the Virtual Interface's RSS configuration information and
825 *	translates it into CPU-native format.
826 */
827int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
828			    union rss_vi_config *config)
829{
830	struct fw_rss_vi_config_cmd cmd, rpl;
831	int v;
832
833	memset(&cmd, 0, sizeof(cmd));
834	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
835				     FW_CMD_REQUEST_F |
836				     FW_CMD_READ_F |
837				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
838	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
839	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
840	if (v)
841		return v;
842
843	switch (adapter->params.rss.mode) {
844	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
845		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
846
847		config->basicvirtual.ip6fourtupen =
848			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
849		config->basicvirtual.ip6twotupen =
850			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
851		config->basicvirtual.ip4fourtupen =
852			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
853		config->basicvirtual.ip4twotupen =
854			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
855		config->basicvirtual.udpen =
856			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
857		config->basicvirtual.defaultq =
858			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
859		break;
860	}
861
862	default:
863		return -EINVAL;
864	}
865
866	return 0;
867}
868
869/**
870 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
871 *	@adapter: the adapter
872 *	@viid: Virtual Interface ID
873 *	@config: pointer to host-native VI RSS Configuration buffer
874 *
875 *	Write the Virtual Interface's RSS configuration information
876 *	(translating it into firmware-native format before writing).
877 */
878int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
879			     union rss_vi_config *config)
880{
881	struct fw_rss_vi_config_cmd cmd, rpl;
882
883	memset(&cmd, 0, sizeof(cmd));
884	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
885				     FW_CMD_REQUEST_F |
886				     FW_CMD_WRITE_F |
887				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
888	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
889	switch (adapter->params.rss.mode) {
890	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
891		u32 word = 0;
892
893		if (config->basicvirtual.ip6fourtupen)
894			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
895		if (config->basicvirtual.ip6twotupen)
896			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
897		if (config->basicvirtual.ip4fourtupen)
898			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
899		if (config->basicvirtual.ip4twotupen)
900			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
901		if (config->basicvirtual.udpen)
902			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
903		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
904				config->basicvirtual.defaultq);
905		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
906		break;
907	}
908
909	default:
910		return -EINVAL;
911	}
912
913	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
914}
915
916/**
917 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
918 *	@adapter: the adapter
919 *	@viid: Virtual Interface of RSS Table Slice
920 *	@start: starting entry in the table to write
921 *	@n: how many table entries to write
922 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
923 *	@nrspq: number of values in @rspq
924 *
925 *	Programs the selected part of the VI's RSS mapping table with the
926 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
927 *	until the full table range is populated.
928 *
929 *	The caller must ensure the values in @rspq are in the range 0..1023.
930 */
931int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
932			  int start, int n, const u16 *rspq, int nrspq)
933{
934	const u16 *rsp = rspq;
935	const u16 *rsp_end = rspq+nrspq;
936	struct fw_rss_ind_tbl_cmd cmd;
937
938	/*
939	 * Initialize firmware command template to write the RSS table.
940	 */
941	memset(&cmd, 0, sizeof(cmd));
942	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
943				     FW_CMD_REQUEST_F |
944				     FW_CMD_WRITE_F |
945				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
946	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
947
948	/*
949	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
950	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
951	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
952	 * reserved.
953	 */
954	while (n > 0) {
955		__be32 *qp = &cmd.iq0_to_iq2;
956		int nq = min(n, 32);
957		int ret;
958
959		/*
960		 * Set up the firmware RSS command header to send the next
961		 * "nq" Ingress Queue IDs to the firmware.
962		 */
963		cmd.niqid = cpu_to_be16(nq);
964		cmd.startidx = cpu_to_be16(start);
965
966		/*
967		 * "nq" more done for the start of the next loop.
968		 */
969		start += nq;
970		n -= nq;
971
972		/*
973		 * While there are still Ingress Queue IDs to stuff into the
974		 * current firmware RSS command, retrieve them from the
975		 * Ingress Queue ID array and insert them into the command.
976		 */
977		while (nq > 0) {
978			/*
979			 * Grab up to the next 3 Ingress Queue IDs (wrapping
980			 * around the Ingress Queue ID array if necessary) and
981			 * insert them into the firmware RSS command at the
982			 * current 3-tuple position within the commad.
983			 */
984			u16 qbuf[3];
985			u16 *qbp = qbuf;
986			int nqbuf = min(3, nq);
987
988			nq -= nqbuf;
989			qbuf[0] = qbuf[1] = qbuf[2] = 0;
990			while (nqbuf) {
991				nqbuf--;
992				*qbp++ = *rsp++;
993				if (rsp >= rsp_end)
994					rsp = rspq;
995			}
996			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
997					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
998					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
999		}
1000
1001		/*
1002		 * Send this portion of the RRS table update to the firmware;
1003		 * bail out on any errors.
1004		 */
1005		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1006		if (ret)
1007			return ret;
1008	}
1009	return 0;
1010}
1011
1012/**
1013 *	t4vf_alloc_vi - allocate a virtual interface on a port
1014 *	@adapter: the adapter
1015 *	@port_id: physical port associated with the VI
1016 *
1017 *	Allocate a new Virtual Interface and bind it to the indicated
1018 *	physical port.  Return the new Virtual Interface Identifier on
1019 *	success, or a [negative] error number on failure.
1020 */
1021int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1022{
1023	struct fw_vi_cmd cmd, rpl;
1024	int v;
1025
1026	/*
1027	 * Execute a VI command to allocate Virtual Interface and return its
1028	 * VIID.
1029	 */
1030	memset(&cmd, 0, sizeof(cmd));
1031	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1032				    FW_CMD_REQUEST_F |
1033				    FW_CMD_WRITE_F |
1034				    FW_CMD_EXEC_F);
1035	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1036					 FW_VI_CMD_ALLOC_F);
1037	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1038	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1039	if (v)
1040		return v;
1041
1042	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1043}
1044
1045/**
1046 *	t4vf_free_vi -- free a virtual interface
1047 *	@adapter: the adapter
1048 *	@viid: the virtual interface identifier
1049 *
1050 *	Free a previously allocated Virtual Interface.  Return an error on
1051 *	failure.
1052 */
1053int t4vf_free_vi(struct adapter *adapter, int viid)
1054{
1055	struct fw_vi_cmd cmd;
1056
1057	/*
1058	 * Execute a VI command to free the Virtual Interface.
1059	 */
1060	memset(&cmd, 0, sizeof(cmd));
1061	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1062				    FW_CMD_REQUEST_F |
1063				    FW_CMD_EXEC_F);
1064	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1065					 FW_VI_CMD_FREE_F);
1066	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1067	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1068}
1069
1070/**
1071 *	t4vf_enable_vi - enable/disable a virtual interface
1072 *	@adapter: the adapter
1073 *	@viid: the Virtual Interface ID
1074 *	@rx_en: 1=enable Rx, 0=disable Rx
1075 *	@tx_en: 1=enable Tx, 0=disable Tx
1076 *
1077 *	Enables/disables a virtual interface.
1078 */
1079int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1080		   bool rx_en, bool tx_en)
1081{
1082	struct fw_vi_enable_cmd cmd;
1083
1084	memset(&cmd, 0, sizeof(cmd));
1085	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1086				     FW_CMD_REQUEST_F |
1087				     FW_CMD_EXEC_F |
1088				     FW_VI_ENABLE_CMD_VIID_V(viid));
1089	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1090				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1091				       FW_LEN16(cmd));
1092	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1093}
1094
1095/**
1096 *	t4vf_identify_port - identify a VI's port by blinking its LED
1097 *	@adapter: the adapter
1098 *	@viid: the Virtual Interface ID
1099 *	@nblinks: how many times to blink LED at 2.5 Hz
1100 *
1101 *	Identifies a VI's port by blinking its LED.
1102 */
1103int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1104		       unsigned int nblinks)
1105{
1106	struct fw_vi_enable_cmd cmd;
1107
1108	memset(&cmd, 0, sizeof(cmd));
1109	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1110				     FW_CMD_REQUEST_F |
1111				     FW_CMD_EXEC_F |
1112				     FW_VI_ENABLE_CMD_VIID_V(viid));
1113	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1114				       FW_LEN16(cmd));
1115	cmd.blinkdur = cpu_to_be16(nblinks);
1116	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1117}
1118
1119/**
1120 *	t4vf_set_rxmode - set Rx properties of a virtual interface
1121 *	@adapter: the adapter
1122 *	@viid: the VI id
1123 *	@mtu: the new MTU or -1 for no change
1124 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1125 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1126 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1127 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1128 *		-1 no change
1129 *
1130 *	Sets Rx properties of a virtual interface.
1131 */
1132int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1133		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1134		    bool sleep_ok)
1135{
1136	struct fw_vi_rxmode_cmd cmd;
1137
1138	/* convert to FW values */
1139	if (mtu < 0)
1140		mtu = FW_VI_RXMODE_CMD_MTU_M;
1141	if (promisc < 0)
1142		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1143	if (all_multi < 0)
1144		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1145	if (bcast < 0)
1146		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1147	if (vlanex < 0)
1148		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1149
1150	memset(&cmd, 0, sizeof(cmd));
1151	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1152				     FW_CMD_REQUEST_F |
1153				     FW_CMD_WRITE_F |
1154				     FW_VI_RXMODE_CMD_VIID_V(viid));
1155	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1156	cmd.mtu_to_vlanexen =
1157		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1158			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1159			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1160			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1161			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1162	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1163}
1164
1165/**
1166 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1167 *	@adapter: the adapter
1168 *	@viid: the Virtual Interface Identifier
1169 *	@free: if true any existing filters for this VI id are first removed
1170 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1171 *	@addr: the MAC address(es)
1172 *	@idx: where to store the index of each allocated filter
1173 *	@hash: pointer to hash address filter bitmap
1174 *	@sleep_ok: call is allowed to sleep
1175 *
1176 *	Allocates an exact-match filter for each of the supplied addresses and
1177 *	sets it to the corresponding address.  If @idx is not %NULL it should
1178 *	have at least @naddr entries, each of which will be set to the index of
1179 *	the filter allocated for the corresponding MAC address.  If a filter
1180 *	could not be allocated for an address its index is set to 0xffff.
1181 *	If @hash is not %NULL addresses that fail to allocate an exact filter
1182 *	are hashed and update the hash filter bitmap pointed at by @hash.
1183 *
1184 *	Returns a negative error number or the number of filters allocated.
1185 */
1186int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1187			unsigned int naddr, const u8 **addr, u16 *idx,
1188			u64 *hash, bool sleep_ok)
1189{
1190	int offset, ret = 0;
1191	unsigned nfilters = 0;
1192	unsigned int rem = naddr;
1193	struct fw_vi_mac_cmd cmd, rpl;
1194	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1195				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1196				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1197
1198	if (naddr > max_naddr)
1199		return -EINVAL;
1200
1201	for (offset = 0; offset < naddr; /**/) {
1202		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1203					 ? rem
1204					 : ARRAY_SIZE(cmd.u.exact));
1205		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1206						     u.exact[fw_naddr]), 16);
1207		struct fw_vi_mac_exact *p;
1208		int i;
1209
1210		memset(&cmd, 0, sizeof(cmd));
1211		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1212					     FW_CMD_REQUEST_F |
1213					     FW_CMD_WRITE_F |
1214					     (free ? FW_CMD_EXEC_F : 0) |
1215					     FW_VI_MAC_CMD_VIID_V(viid));
1216		cmd.freemacs_to_len16 =
1217			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1218				    FW_CMD_LEN16_V(len16));
1219
1220		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1221			p->valid_to_idx = cpu_to_be16(
1222				FW_VI_MAC_CMD_VALID_F |
1223				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1224			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1225		}
1226
1227
1228		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1229					sleep_ok);
1230		if (ret && ret != -ENOMEM)
1231			break;
1232
1233		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1234			u16 index = FW_VI_MAC_CMD_IDX_G(
1235				be16_to_cpu(p->valid_to_idx));
1236
1237			if (idx)
1238				idx[offset+i] =
1239					(index >= max_naddr
1240					 ? 0xffff
1241					 : index);
1242			if (index < max_naddr)
1243				nfilters++;
1244			else if (hash)
1245				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1246		}
1247
1248		free = false;
1249		offset += fw_naddr;
1250		rem -= fw_naddr;
1251	}
1252
1253	/*
1254	 * If there were no errors or we merely ran out of room in our MAC
1255	 * address arena, return the number of filters actually written.
1256	 */
1257	if (ret == 0 || ret == -ENOMEM)
1258		ret = nfilters;
1259	return ret;
1260}
1261
1262/**
1263 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1264 *	@adapter: the adapter
1265 *	@viid: the Virtual Interface ID
1266 *	@idx: index of existing filter for old value of MAC address, or -1
1267 *	@addr: the new MAC address value
1268 *	@persist: if idx < 0, the new MAC allocation should be persistent
1269 *
1270 *	Modifies an exact-match filter and sets it to the new MAC address.
1271 *	Note that in general it is not possible to modify the value of a given
1272 *	filter so the generic way to modify an address filter is to free the
1273 *	one being used by the old address value and allocate a new filter for
1274 *	the new address value.  @idx can be -1 if the address is a new
1275 *	addition.
1276 *
1277 *	Returns a negative error number or the index of the filter with the new
1278 *	MAC value.
1279 */
1280int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1281		    int idx, const u8 *addr, bool persist)
1282{
1283	int ret;
1284	struct fw_vi_mac_cmd cmd, rpl;
1285	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1286	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1287					     u.exact[1]), 16);
1288	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1289				 NUM_MPS_CLS_SRAM_L_INSTANCES :
1290				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1291
1292	/*
1293	 * If this is a new allocation, determine whether it should be
1294	 * persistent (across a "freemacs" operation) or not.
1295	 */
1296	if (idx < 0)
1297		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1298
1299	memset(&cmd, 0, sizeof(cmd));
1300	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1301				     FW_CMD_REQUEST_F |
1302				     FW_CMD_WRITE_F |
1303				     FW_VI_MAC_CMD_VIID_V(viid));
1304	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1305	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1306				      FW_VI_MAC_CMD_IDX_V(idx));
1307	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1308
1309	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1310	if (ret == 0) {
1311		p = &rpl.u.exact[0];
1312		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1313		if (ret >= max_naddr)
1314			ret = -ENOMEM;
1315	}
1316	return ret;
1317}
1318
1319/**
1320 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1321 *	@adapter: the adapter
1322 *	@viid: the Virtual Interface Identifier
1323 *	@ucast: whether the hash filter should also match unicast addresses
1324 *	@vec: the value to be written to the hash filter
1325 *	@sleep_ok: call is allowed to sleep
1326 *
1327 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1328 */
1329int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1330		       bool ucast, u64 vec, bool sleep_ok)
1331{
1332	struct fw_vi_mac_cmd cmd;
1333	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1334					     u.exact[0]), 16);
1335
1336	memset(&cmd, 0, sizeof(cmd));
1337	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1338				     FW_CMD_REQUEST_F |
1339				     FW_CMD_WRITE_F |
1340				     FW_VI_ENABLE_CMD_VIID_V(viid));
1341	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1342					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1343					    FW_CMD_LEN16_V(len16));
1344	cmd.u.hash.hashvec = cpu_to_be64(vec);
1345	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1346}
1347
1348/**
1349 *	t4vf_get_port_stats - collect "port" statistics
1350 *	@adapter: the adapter
1351 *	@pidx: the port index
1352 *	@s: the stats structure to fill
1353 *
1354 *	Collect statistics for the "port"'s Virtual Interface.
1355 */
1356int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1357			struct t4vf_port_stats *s)
1358{
1359	struct port_info *pi = adap2pinfo(adapter, pidx);
1360	struct fw_vi_stats_vf fwstats;
1361	unsigned int rem = VI_VF_NUM_STATS;
1362	__be64 *fwsp = (__be64 *)&fwstats;
1363
1364	/*
1365	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1366	 * commands.  We could use a Work Request and get all of them at once
1367	 * but that's an asynchronous interface which is awkward to use.
1368	 */
1369	while (rem) {
1370		unsigned int ix = VI_VF_NUM_STATS - rem;
1371		unsigned int nstats = min(6U, rem);
1372		struct fw_vi_stats_cmd cmd, rpl;
1373		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1374			      sizeof(struct fw_vi_stats_ctl));
1375		size_t len16 = DIV_ROUND_UP(len, 16);
1376		int ret;
1377
1378		memset(&cmd, 0, sizeof(cmd));
1379		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1380					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1381					     FW_CMD_REQUEST_F |
1382					     FW_CMD_READ_F);
1383		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1384		cmd.u.ctl.nstats_ix =
1385			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1386				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1387		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1388		if (ret)
1389			return ret;
1390
1391		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1392
1393		rem -= nstats;
1394		fwsp += nstats;
1395	}
1396
1397	/*
1398	 * Translate firmware statistics into host native statistics.
1399	 */
1400	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1401	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1402	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1403	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1404	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1405	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1406	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1407	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1408	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1409
1410	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1411	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1412	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1413	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1414	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1415	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1416
1417	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1418
1419	return 0;
1420}
1421
1422/**
1423 *	t4vf_iq_free - free an ingress queue and its free lists
1424 *	@adapter: the adapter
1425 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1426 *	@iqid: ingress queue ID
1427 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1428 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1429 *
1430 *	Frees an ingress queue and its associated free lists, if any.
1431 */
1432int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1433		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1434{
1435	struct fw_iq_cmd cmd;
1436
1437	memset(&cmd, 0, sizeof(cmd));
1438	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1439				    FW_CMD_REQUEST_F |
1440				    FW_CMD_EXEC_F);
1441	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1442					 FW_LEN16(cmd));
1443	cmd.type_to_iqandstindex =
1444		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1445
1446	cmd.iqid = cpu_to_be16(iqid);
1447	cmd.fl0id = cpu_to_be16(fl0id);
1448	cmd.fl1id = cpu_to_be16(fl1id);
1449	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1450}
1451
1452/**
1453 *	t4vf_eth_eq_free - free an Ethernet egress queue
1454 *	@adapter: the adapter
1455 *	@eqid: egress queue ID
1456 *
1457 *	Frees an Ethernet egress queue.
1458 */
1459int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1460{
1461	struct fw_eq_eth_cmd cmd;
1462
1463	memset(&cmd, 0, sizeof(cmd));
1464	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1465				    FW_CMD_REQUEST_F |
1466				    FW_CMD_EXEC_F);
1467	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1468					 FW_LEN16(cmd));
1469	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1470	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1471}
1472
1473/**
1474 *	t4vf_handle_fw_rpl - process a firmware reply message
1475 *	@adapter: the adapter
1476 *	@rpl: start of the firmware message
1477 *
1478 *	Processes a firmware message, such as link state change messages.
1479 */
1480int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1481{
1482	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1483	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1484
1485	switch (opcode) {
1486	case FW_PORT_CMD: {
1487		/*
1488		 * Link/module state change message.
1489		 */
1490		const struct fw_port_cmd *port_cmd =
1491			(const struct fw_port_cmd *)rpl;
1492		u32 stat, mod;
1493		int action, port_id, link_ok, speed, fc, pidx;
1494
1495		/*
1496		 * Extract various fields from port status change message.
1497		 */
1498		action = FW_PORT_CMD_ACTION_G(
1499			be32_to_cpu(port_cmd->action_to_len16));
1500		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1501			dev_err(adapter->pdev_dev,
1502				"Unknown firmware PORT reply action %x\n",
1503				action);
1504			break;
1505		}
1506
1507		port_id = FW_PORT_CMD_PORTID_G(
1508			be32_to_cpu(port_cmd->op_to_portid));
1509
1510		stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1511		link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1512		speed = 0;
1513		fc = 0;
1514		if (stat & FW_PORT_CMD_RXPAUSE_F)
1515			fc |= PAUSE_RX;
1516		if (stat & FW_PORT_CMD_TXPAUSE_F)
1517			fc |= PAUSE_TX;
1518		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1519			speed = 100;
1520		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1521			speed = 1000;
1522		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1523			speed = 10000;
1524		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1525			speed = 40000;
1526
1527		/*
1528		 * Scan all of our "ports" (Virtual Interfaces) looking for
1529		 * those bound to the physical port which has changed.  If
1530		 * our recorded state doesn't match the current state,
1531		 * signal that change to the OS code.
1532		 */
1533		for_each_port(adapter, pidx) {
1534			struct port_info *pi = adap2pinfo(adapter, pidx);
1535			struct link_config *lc;
1536
1537			if (pi->port_id != port_id)
1538				continue;
1539
1540			lc = &pi->link_cfg;
1541
1542			mod = FW_PORT_CMD_MODTYPE_G(stat);
1543			if (mod != pi->mod_type) {
1544				pi->mod_type = mod;
1545				t4vf_os_portmod_changed(adapter, pidx);
1546			}
1547
1548			if (link_ok != lc->link_ok || speed != lc->speed ||
1549			    fc != lc->fc) {
1550				/* something changed */
1551				lc->link_ok = link_ok;
1552				lc->speed = speed;
1553				lc->fc = fc;
1554				lc->supported =
1555					be16_to_cpu(port_cmd->u.info.pcap);
1556				t4vf_os_link_changed(adapter, pidx, link_ok);
1557			}
1558		}
1559		break;
1560	}
1561
1562	default:
1563		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1564			opcode);
1565	}
1566	return 0;
1567}
1568
1569/**
1570 */
1571int t4vf_prep_adapter(struct adapter *adapter)
1572{
1573	int err;
1574	unsigned int chipid;
1575
1576	/* Wait for the device to become ready before proceeding ...
1577	 */
1578	err = t4vf_wait_dev_ready(adapter);
1579	if (err)
1580		return err;
1581
1582	/* Default port and clock for debugging in case we can't reach
1583	 * firmware.
1584	 */
1585	adapter->params.nports = 1;
1586	adapter->params.vfres.pmask = 1;
1587	adapter->params.vpd.cclk = 50000;
1588
1589	adapter->params.chip = 0;
1590	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1591	case CHELSIO_T4:
1592		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1593		break;
1594
1595	case CHELSIO_T5:
1596		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1597		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1598		break;
1599	}
1600
1601	return 0;
1602}
1603