1/* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35#include <linux/delay.h> 36#include "cxgb4.h" 37#include "t4_regs.h" 38#include "t4_values.h" 39#include "t4fw_api.h" 40 41/** 42 * t4_wait_op_done_val - wait until an operation is completed 43 * @adapter: the adapter performing the operation 44 * @reg: the register to check for completion 45 * @mask: a single-bit field within @reg that indicates completion 46 * @polarity: the value of the field when the operation is completed 47 * @attempts: number of check iterations 48 * @delay: delay in usecs between iterations 49 * @valp: where to store the value of the register at completion time 50 * 51 * Wait until an operation is completed by checking a bit in a register 52 * up to @attempts times. If @valp is not NULL the value of the register 53 * at the time it indicated completion is stored there. Returns 0 if the 54 * operation completes and -EAGAIN otherwise. 55 */ 56static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 57 int polarity, int attempts, int delay, u32 *valp) 58{ 59 while (1) { 60 u32 val = t4_read_reg(adapter, reg); 61 62 if (!!(val & mask) == polarity) { 63 if (valp) 64 *valp = val; 65 return 0; 66 } 67 if (--attempts == 0) 68 return -EAGAIN; 69 if (delay) 70 udelay(delay); 71 } 72} 73 74static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 75 int polarity, int attempts, int delay) 76{ 77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 78 delay, NULL); 79} 80 81/** 82 * t4_set_reg_field - set a register field to a value 83 * @adapter: the adapter to program 84 * @addr: the register address 85 * @mask: specifies the portion of the register to modify 86 * @val: the new value for the register field 87 * 88 * Sets a register field specified by the supplied mask to the 89 * given value. 90 */ 91void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 92 u32 val) 93{ 94 u32 v = t4_read_reg(adapter, addr) & ~mask; 95 96 t4_write_reg(adapter, addr, v | val); 97 (void) t4_read_reg(adapter, addr); /* flush */ 98} 99 100/** 101 * t4_read_indirect - read indirectly addressed registers 102 * @adap: the adapter 103 * @addr_reg: register holding the indirect address 104 * @data_reg: register holding the value of the indirect register 105 * @vals: where the read register values are stored 106 * @nregs: how many indirect registers to read 107 * @start_idx: index of first indirect register to read 108 * 109 * Reads registers that are accessed indirectly through an address/data 110 * register pair. 111 */ 112void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 113 unsigned int data_reg, u32 *vals, 114 unsigned int nregs, unsigned int start_idx) 115{ 116 while (nregs--) { 117 t4_write_reg(adap, addr_reg, start_idx); 118 *vals++ = t4_read_reg(adap, data_reg); 119 start_idx++; 120 } 121} 122 123/** 124 * t4_write_indirect - write indirectly addressed registers 125 * @adap: the adapter 126 * @addr_reg: register holding the indirect addresses 127 * @data_reg: register holding the value for the indirect registers 128 * @vals: values to write 129 * @nregs: how many indirect registers to write 130 * @start_idx: address of first indirect register to write 131 * 132 * Writes a sequential block of registers that are accessed indirectly 133 * through an address/data register pair. 134 */ 135void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 136 unsigned int data_reg, const u32 *vals, 137 unsigned int nregs, unsigned int start_idx) 138{ 139 while (nregs--) { 140 t4_write_reg(adap, addr_reg, start_idx++); 141 t4_write_reg(adap, data_reg, *vals++); 142 } 143} 144 145/* 146 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 147 * mechanism. This guarantees that we get the real value even if we're 148 * operating within a Virtual Machine and the Hypervisor is trapping our 149 * Configuration Space accesses. 150 */ 151void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 152{ 153 u32 req = ENABLE_F | FUNCTION_V(adap->fn) | REGISTER_V(reg); 154 155 if (is_t4(adap->params.chip)) 156 req |= LOCALCFG_F; 157 158 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 159 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 160 161 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 162 * Configuration Space read. (None of the other fields matter when 163 * ENABLE is 0 so a simple register write is easier than a 164 * read-modify-write via t4_set_reg_field().) 165 */ 166 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 167} 168 169/* 170 * t4_report_fw_error - report firmware error 171 * @adap: the adapter 172 * 173 * The adapter firmware can indicate error conditions to the host. 174 * If the firmware has indicated an error, print out the reason for 175 * the firmware error. 176 */ 177static void t4_report_fw_error(struct adapter *adap) 178{ 179 static const char *const reason[] = { 180 "Crash", /* PCIE_FW_EVAL_CRASH */ 181 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 182 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 183 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 184 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 185 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 186 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 187 "Reserved", /* reserved */ 188 }; 189 u32 pcie_fw; 190 191 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 192 if (pcie_fw & PCIE_FW_ERR_F) 193 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 194 reason[PCIE_FW_EVAL_G(pcie_fw)]); 195} 196 197/* 198 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 199 */ 200static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 201 u32 mbox_addr) 202{ 203 for ( ; nflit; nflit--, mbox_addr += 8) 204 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 205} 206 207/* 208 * Handle a FW assertion reported in a mailbox. 209 */ 210static void fw_asrt(struct adapter *adap, u32 mbox_addr) 211{ 212 struct fw_debug_cmd asrt; 213 214 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 215 dev_alert(adap->pdev_dev, 216 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 217 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line), 218 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y)); 219} 220 221static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) 222{ 223 dev_err(adap->pdev_dev, 224 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, 225 (unsigned long long)t4_read_reg64(adap, data_reg), 226 (unsigned long long)t4_read_reg64(adap, data_reg + 8), 227 (unsigned long long)t4_read_reg64(adap, data_reg + 16), 228 (unsigned long long)t4_read_reg64(adap, data_reg + 24), 229 (unsigned long long)t4_read_reg64(adap, data_reg + 32), 230 (unsigned long long)t4_read_reg64(adap, data_reg + 40), 231 (unsigned long long)t4_read_reg64(adap, data_reg + 48), 232 (unsigned long long)t4_read_reg64(adap, data_reg + 56)); 233} 234 235/** 236 * t4_wr_mbox_meat - send a command to FW through the given mailbox 237 * @adap: the adapter 238 * @mbox: index of the mailbox to use 239 * @cmd: the command to write 240 * @size: command length in bytes 241 * @rpl: where to optionally store the reply 242 * @sleep_ok: if true we may sleep while awaiting command completion 243 * 244 * Sends the given command to FW through the selected mailbox and waits 245 * for the FW to execute the command. If @rpl is not %NULL it is used to 246 * store the FW's reply to the command. The command and its optional 247 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 248 * to respond. @sleep_ok determines whether we may sleep while awaiting 249 * the response. If sleeping is allowed we use progressive backoff 250 * otherwise we spin. 251 * 252 * The return value is 0 on success or a negative errno on failure. A 253 * failure can happen either because we are not able to execute the 254 * command or FW executes it but signals an error. In the latter case 255 * the return value is the error code indicated by FW (negated). 256 */ 257int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 258 void *rpl, bool sleep_ok) 259{ 260 static const int delay[] = { 261 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 262 }; 263 264 u32 v; 265 u64 res; 266 int i, ms, delay_idx; 267 const __be64 *p = cmd; 268 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 269 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 270 271 if ((size & 15) || size > MBOX_LEN) 272 return -EINVAL; 273 274 /* 275 * If the device is off-line, as in EEH, commands will time out. 276 * Fail them early so we don't waste time waiting. 277 */ 278 if (adap->pdev->error_state != pci_channel_io_normal) 279 return -EIO; 280 281 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 282 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 283 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 284 285 if (v != MBOX_OWNER_DRV) 286 return v ? -EBUSY : -ETIMEDOUT; 287 288 for (i = 0; i < size; i += 8) 289 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 290 291 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 292 t4_read_reg(adap, ctl_reg); /* flush write */ 293 294 delay_idx = 0; 295 ms = delay[0]; 296 297 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 298 if (sleep_ok) { 299 ms = delay[delay_idx]; /* last element may repeat */ 300 if (delay_idx < ARRAY_SIZE(delay) - 1) 301 delay_idx++; 302 msleep(ms); 303 } else 304 mdelay(ms); 305 306 v = t4_read_reg(adap, ctl_reg); 307 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 308 if (!(v & MBMSGVALID_F)) { 309 t4_write_reg(adap, ctl_reg, 0); 310 continue; 311 } 312 313 res = t4_read_reg64(adap, data_reg); 314 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 315 fw_asrt(adap, data_reg); 316 res = FW_CMD_RETVAL_V(EIO); 317 } else if (rpl) { 318 get_mbox_rpl(adap, rpl, size / 8, data_reg); 319 } 320 321 if (FW_CMD_RETVAL_G((int)res)) 322 dump_mbox(adap, mbox, data_reg); 323 t4_write_reg(adap, ctl_reg, 0); 324 return -FW_CMD_RETVAL_G((int)res); 325 } 326 } 327 328 dump_mbox(adap, mbox, data_reg); 329 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 330 *(const u8 *)cmd, mbox); 331 t4_report_fw_error(adap); 332 return -ETIMEDOUT; 333} 334 335/** 336 * t4_mc_read - read from MC through backdoor accesses 337 * @adap: the adapter 338 * @addr: address of first byte requested 339 * @idx: which MC to access 340 * @data: 64 bytes of data containing the requested address 341 * @ecc: where to store the corresponding 64-bit ECC word 342 * 343 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 344 * that covers the requested address @addr. If @parity is not %NULL it 345 * is assigned the 64-bit ECC word for the read data. 346 */ 347int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 348{ 349 int i; 350 u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len; 351 u32 mc_bist_status_rdata, mc_bist_data_pattern; 352 353 if (is_t4(adap->params.chip)) { 354 mc_bist_cmd = MC_BIST_CMD_A; 355 mc_bist_cmd_addr = MC_BIST_CMD_ADDR_A; 356 mc_bist_cmd_len = MC_BIST_CMD_LEN_A; 357 mc_bist_status_rdata = MC_BIST_STATUS_RDATA_A; 358 mc_bist_data_pattern = MC_BIST_DATA_PATTERN_A; 359 } else { 360 mc_bist_cmd = MC_REG(MC_P_BIST_CMD_A, idx); 361 mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR_A, idx); 362 mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN_A, idx); 363 mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx); 364 mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx); 365 } 366 367 if (t4_read_reg(adap, mc_bist_cmd) & START_BIST_F) 368 return -EBUSY; 369 t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU); 370 t4_write_reg(adap, mc_bist_cmd_len, 64); 371 t4_write_reg(adap, mc_bist_data_pattern, 0xc); 372 t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE_V(1) | START_BIST_F | 373 BIST_CMD_GAP_V(1)); 374 i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST_F, 0, 10, 1); 375 if (i) 376 return i; 377 378#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i) 379 380 for (i = 15; i >= 0; i--) 381 *data++ = htonl(t4_read_reg(adap, MC_DATA(i))); 382 if (ecc) 383 *ecc = t4_read_reg64(adap, MC_DATA(16)); 384#undef MC_DATA 385 return 0; 386} 387 388/** 389 * t4_edc_read - read from EDC through backdoor accesses 390 * @adap: the adapter 391 * @idx: which EDC to access 392 * @addr: address of first byte requested 393 * @data: 64 bytes of data containing the requested address 394 * @ecc: where to store the corresponding 64-bit ECC word 395 * 396 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 397 * that covers the requested address @addr. If @parity is not %NULL it 398 * is assigned the 64-bit ECC word for the read data. 399 */ 400int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 401{ 402 int i; 403 u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len; 404 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata; 405 406 if (is_t4(adap->params.chip)) { 407 edc_bist_cmd = EDC_REG(EDC_BIST_CMD_A, idx); 408 edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR_A, idx); 409 edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN_A, idx); 410 edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN_A, 411 idx); 412 edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA_A, 413 idx); 414 } else { 415 edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD_A, idx); 416 edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx); 417 edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx); 418 edc_bist_cmd_data_pattern = 419 EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx); 420 edc_bist_status_rdata = 421 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx); 422 } 423 424 if (t4_read_reg(adap, edc_bist_cmd) & START_BIST_F) 425 return -EBUSY; 426 t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU); 427 t4_write_reg(adap, edc_bist_cmd_len, 64); 428 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 429 t4_write_reg(adap, edc_bist_cmd, 430 BIST_OPCODE_V(1) | BIST_CMD_GAP_V(1) | START_BIST_F); 431 i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST_F, 0, 10, 1); 432 if (i) 433 return i; 434 435#define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i)) 436 437 for (i = 15; i >= 0; i--) 438 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i))); 439 if (ecc) 440 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 441#undef EDC_DATA 442 return 0; 443} 444 445/** 446 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 447 * @adap: the adapter 448 * @win: PCI-E Memory Window to use 449 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 450 * @addr: address within indicated memory type 451 * @len: amount of memory to transfer 452 * @hbuf: host memory buffer 453 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 454 * 455 * Reads/writes an [almost] arbitrary memory region in the firmware: the 456 * firmware memory address and host buffer must be aligned on 32-bit 457 * boudaries; the length may be arbitrary. The memory is transferred as 458 * a raw byte sequence from/to the firmware's memory. If this memory 459 * contains data structures which contain multi-byte integers, it's the 460 * caller's responsibility to perform appropriate byte order conversions. 461 */ 462int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 463 u32 len, void *hbuf, int dir) 464{ 465 u32 pos, offset, resid, memoffset; 466 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 467 u32 *buf; 468 469 /* Argument sanity checks ... 470 */ 471 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 472 return -EINVAL; 473 buf = (u32 *)hbuf; 474 475 /* It's convenient to be able to handle lengths which aren't a 476 * multiple of 32-bits because we often end up transferring files to 477 * the firmware. So we'll handle that by normalizing the length here 478 * and then handling any residual transfer at the end. 479 */ 480 resid = len & 0x3; 481 len -= resid; 482 483 /* Offset into the region of memory which is being accessed 484 * MEM_EDC0 = 0 485 * MEM_EDC1 = 1 486 * MEM_MC = 2 -- T4 487 * MEM_MC0 = 2 -- For T5 488 * MEM_MC1 = 3 -- For T5 489 */ 490 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 491 if (mtype != MEM_MC1) 492 memoffset = (mtype * (edc_size * 1024 * 1024)); 493 else { 494 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 495 MA_EXT_MEMORY0_BAR_A)); 496 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 497 } 498 499 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 500 addr = addr + memoffset; 501 502 /* Each PCI-E Memory Window is programmed with a window size -- or 503 * "aperture" -- which controls the granularity of its mapping onto 504 * adapter memory. We need to grab that aperture in order to know 505 * how to use the specified window. The window is also programmed 506 * with the base address of the Memory Window in BAR0's address 507 * space. For T4 this is an absolute PCI-E Bus Address. For T5 508 * the address is relative to BAR0. 509 */ 510 mem_reg = t4_read_reg(adap, 511 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 512 win)); 513 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 514 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 515 if (is_t4(adap->params.chip)) 516 mem_base -= adap->t4_bar0; 517 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->fn); 518 519 /* Calculate our initial PCI-E Memory Window Position and Offset into 520 * that Window. 521 */ 522 pos = addr & ~(mem_aperture-1); 523 offset = addr - pos; 524 525 /* Set up initial PCI-E Memory Window to cover the start of our 526 * transfer. (Read it back to ensure that changes propagate before we 527 * attempt to use the new value.) 528 */ 529 t4_write_reg(adap, 530 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 531 pos | win_pf); 532 t4_read_reg(adap, 533 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 534 535 /* Transfer data to/from the adapter as long as there's an integral 536 * number of 32-bit transfers to complete. 537 * 538 * A note on Endianness issues: 539 * 540 * The "register" reads and writes below from/to the PCI-E Memory 541 * Window invoke the standard adapter Big-Endian to PCI-E Link 542 * Little-Endian "swizzel." As a result, if we have the following 543 * data in adapter memory: 544 * 545 * Memory: ... | b0 | b1 | b2 | b3 | ... 546 * Address: i+0 i+1 i+2 i+3 547 * 548 * Then a read of the adapter memory via the PCI-E Memory Window 549 * will yield: 550 * 551 * x = readl(i) 552 * 31 0 553 * [ b3 | b2 | b1 | b0 ] 554 * 555 * If this value is stored into local memory on a Little-Endian system 556 * it will show up correctly in local memory as: 557 * 558 * ( ..., b0, b1, b2, b3, ... ) 559 * 560 * But on a Big-Endian system, the store will show up in memory 561 * incorrectly swizzled as: 562 * 563 * ( ..., b3, b2, b1, b0, ... ) 564 * 565 * So we need to account for this in the reads and writes to the 566 * PCI-E Memory Window below by undoing the register read/write 567 * swizzels. 568 */ 569 while (len > 0) { 570 if (dir == T4_MEMORY_READ) 571 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 572 mem_base + offset)); 573 else 574 t4_write_reg(adap, mem_base + offset, 575 (__force u32)cpu_to_le32(*buf++)); 576 offset += sizeof(__be32); 577 len -= sizeof(__be32); 578 579 /* If we've reached the end of our current window aperture, 580 * move the PCI-E Memory Window on to the next. Note that 581 * doing this here after "len" may be 0 allows us to set up 582 * the PCI-E Memory Window for a possible final residual 583 * transfer below ... 584 */ 585 if (offset == mem_aperture) { 586 pos += mem_aperture; 587 offset = 0; 588 t4_write_reg(adap, 589 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 590 win), pos | win_pf); 591 t4_read_reg(adap, 592 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 593 win)); 594 } 595 } 596 597 /* If the original transfer had a length which wasn't a multiple of 598 * 32-bits, now's where we need to finish off the transfer of the 599 * residual amount. The PCI-E Memory Window has already been moved 600 * above (if necessary) to cover this final transfer. 601 */ 602 if (resid) { 603 union { 604 u32 word; 605 char byte[4]; 606 } last; 607 unsigned char *bp; 608 int i; 609 610 if (dir == T4_MEMORY_READ) { 611 last.word = le32_to_cpu( 612 (__force __le32)t4_read_reg(adap, 613 mem_base + offset)); 614 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 615 bp[i] = last.byte[i]; 616 } else { 617 last.word = *buf; 618 for (i = resid; i < 4; i++) 619 last.byte[i] = 0; 620 t4_write_reg(adap, mem_base + offset, 621 (__force u32)cpu_to_le32(last.word)); 622 } 623 } 624 625 return 0; 626} 627 628/** 629 * t4_get_regs_len - return the size of the chips register set 630 * @adapter: the adapter 631 * 632 * Returns the size of the chip's BAR0 register space. 633 */ 634unsigned int t4_get_regs_len(struct adapter *adapter) 635{ 636 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 637 638 switch (chip_version) { 639 case CHELSIO_T4: 640 return T4_REGMAP_SIZE; 641 642 case CHELSIO_T5: 643 return T5_REGMAP_SIZE; 644 } 645 646 dev_err(adapter->pdev_dev, 647 "Unsupported chip version %d\n", chip_version); 648 return 0; 649} 650 651/** 652 * t4_get_regs - read chip registers into provided buffer 653 * @adap: the adapter 654 * @buf: register buffer 655 * @buf_size: size (in bytes) of register buffer 656 * 657 * If the provided register buffer isn't large enough for the chip's 658 * full register range, the register dump will be truncated to the 659 * register buffer's size. 660 */ 661void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 662{ 663 static const unsigned int t4_reg_ranges[] = { 664 0x1008, 0x1108, 665 0x1180, 0x11b4, 666 0x11fc, 0x123c, 667 0x1300, 0x173c, 668 0x1800, 0x18fc, 669 0x3000, 0x30d8, 670 0x30e0, 0x5924, 671 0x5960, 0x59d4, 672 0x5a00, 0x5af8, 673 0x6000, 0x6098, 674 0x6100, 0x6150, 675 0x6200, 0x6208, 676 0x6240, 0x6248, 677 0x6280, 0x6338, 678 0x6370, 0x638c, 679 0x6400, 0x643c, 680 0x6500, 0x6524, 681 0x6a00, 0x6a38, 682 0x6a60, 0x6a78, 683 0x6b00, 0x6b84, 684 0x6bf0, 0x6c84, 685 0x6cf0, 0x6d84, 686 0x6df0, 0x6e84, 687 0x6ef0, 0x6f84, 688 0x6ff0, 0x7084, 689 0x70f0, 0x7184, 690 0x71f0, 0x7284, 691 0x72f0, 0x7384, 692 0x73f0, 0x7450, 693 0x7500, 0x7530, 694 0x7600, 0x761c, 695 0x7680, 0x76cc, 696 0x7700, 0x7798, 697 0x77c0, 0x77fc, 698 0x7900, 0x79fc, 699 0x7b00, 0x7c38, 700 0x7d00, 0x7efc, 701 0x8dc0, 0x8e1c, 702 0x8e30, 0x8e78, 703 0x8ea0, 0x8f6c, 704 0x8fc0, 0x9074, 705 0x90fc, 0x90fc, 706 0x9400, 0x9458, 707 0x9600, 0x96bc, 708 0x9800, 0x9808, 709 0x9820, 0x983c, 710 0x9850, 0x9864, 711 0x9c00, 0x9c6c, 712 0x9c80, 0x9cec, 713 0x9d00, 0x9d6c, 714 0x9d80, 0x9dec, 715 0x9e00, 0x9e6c, 716 0x9e80, 0x9eec, 717 0x9f00, 0x9f6c, 718 0x9f80, 0x9fec, 719 0xd004, 0xd03c, 720 0xdfc0, 0xdfe0, 721 0xe000, 0xea7c, 722 0xf000, 0x11110, 723 0x11118, 0x11190, 724 0x19040, 0x1906c, 725 0x19078, 0x19080, 726 0x1908c, 0x19124, 727 0x19150, 0x191b0, 728 0x191d0, 0x191e8, 729 0x19238, 0x1924c, 730 0x193f8, 0x19474, 731 0x19490, 0x194f8, 732 0x19800, 0x19f30, 733 0x1a000, 0x1a06c, 734 0x1a0b0, 0x1a120, 735 0x1a128, 0x1a138, 736 0x1a190, 0x1a1c4, 737 0x1a1fc, 0x1a1fc, 738 0x1e040, 0x1e04c, 739 0x1e284, 0x1e28c, 740 0x1e2c0, 0x1e2c0, 741 0x1e2e0, 0x1e2e0, 742 0x1e300, 0x1e384, 743 0x1e3c0, 0x1e3c8, 744 0x1e440, 0x1e44c, 745 0x1e684, 0x1e68c, 746 0x1e6c0, 0x1e6c0, 747 0x1e6e0, 0x1e6e0, 748 0x1e700, 0x1e784, 749 0x1e7c0, 0x1e7c8, 750 0x1e840, 0x1e84c, 751 0x1ea84, 0x1ea8c, 752 0x1eac0, 0x1eac0, 753 0x1eae0, 0x1eae0, 754 0x1eb00, 0x1eb84, 755 0x1ebc0, 0x1ebc8, 756 0x1ec40, 0x1ec4c, 757 0x1ee84, 0x1ee8c, 758 0x1eec0, 0x1eec0, 759 0x1eee0, 0x1eee0, 760 0x1ef00, 0x1ef84, 761 0x1efc0, 0x1efc8, 762 0x1f040, 0x1f04c, 763 0x1f284, 0x1f28c, 764 0x1f2c0, 0x1f2c0, 765 0x1f2e0, 0x1f2e0, 766 0x1f300, 0x1f384, 767 0x1f3c0, 0x1f3c8, 768 0x1f440, 0x1f44c, 769 0x1f684, 0x1f68c, 770 0x1f6c0, 0x1f6c0, 771 0x1f6e0, 0x1f6e0, 772 0x1f700, 0x1f784, 773 0x1f7c0, 0x1f7c8, 774 0x1f840, 0x1f84c, 775 0x1fa84, 0x1fa8c, 776 0x1fac0, 0x1fac0, 777 0x1fae0, 0x1fae0, 778 0x1fb00, 0x1fb84, 779 0x1fbc0, 0x1fbc8, 780 0x1fc40, 0x1fc4c, 781 0x1fe84, 0x1fe8c, 782 0x1fec0, 0x1fec0, 783 0x1fee0, 0x1fee0, 784 0x1ff00, 0x1ff84, 785 0x1ffc0, 0x1ffc8, 786 0x20000, 0x2002c, 787 0x20100, 0x2013c, 788 0x20190, 0x201c8, 789 0x20200, 0x20318, 790 0x20400, 0x20528, 791 0x20540, 0x20614, 792 0x21000, 0x21040, 793 0x2104c, 0x21060, 794 0x210c0, 0x210ec, 795 0x21200, 0x21268, 796 0x21270, 0x21284, 797 0x212fc, 0x21388, 798 0x21400, 0x21404, 799 0x21500, 0x21518, 800 0x2152c, 0x2153c, 801 0x21550, 0x21554, 802 0x21600, 0x21600, 803 0x21608, 0x21628, 804 0x21630, 0x2163c, 805 0x21700, 0x2171c, 806 0x21780, 0x2178c, 807 0x21800, 0x21c38, 808 0x21c80, 0x21d7c, 809 0x21e00, 0x21e04, 810 0x22000, 0x2202c, 811 0x22100, 0x2213c, 812 0x22190, 0x221c8, 813 0x22200, 0x22318, 814 0x22400, 0x22528, 815 0x22540, 0x22614, 816 0x23000, 0x23040, 817 0x2304c, 0x23060, 818 0x230c0, 0x230ec, 819 0x23200, 0x23268, 820 0x23270, 0x23284, 821 0x232fc, 0x23388, 822 0x23400, 0x23404, 823 0x23500, 0x23518, 824 0x2352c, 0x2353c, 825 0x23550, 0x23554, 826 0x23600, 0x23600, 827 0x23608, 0x23628, 828 0x23630, 0x2363c, 829 0x23700, 0x2371c, 830 0x23780, 0x2378c, 831 0x23800, 0x23c38, 832 0x23c80, 0x23d7c, 833 0x23e00, 0x23e04, 834 0x24000, 0x2402c, 835 0x24100, 0x2413c, 836 0x24190, 0x241c8, 837 0x24200, 0x24318, 838 0x24400, 0x24528, 839 0x24540, 0x24614, 840 0x25000, 0x25040, 841 0x2504c, 0x25060, 842 0x250c0, 0x250ec, 843 0x25200, 0x25268, 844 0x25270, 0x25284, 845 0x252fc, 0x25388, 846 0x25400, 0x25404, 847 0x25500, 0x25518, 848 0x2552c, 0x2553c, 849 0x25550, 0x25554, 850 0x25600, 0x25600, 851 0x25608, 0x25628, 852 0x25630, 0x2563c, 853 0x25700, 0x2571c, 854 0x25780, 0x2578c, 855 0x25800, 0x25c38, 856 0x25c80, 0x25d7c, 857 0x25e00, 0x25e04, 858 0x26000, 0x2602c, 859 0x26100, 0x2613c, 860 0x26190, 0x261c8, 861 0x26200, 0x26318, 862 0x26400, 0x26528, 863 0x26540, 0x26614, 864 0x27000, 0x27040, 865 0x2704c, 0x27060, 866 0x270c0, 0x270ec, 867 0x27200, 0x27268, 868 0x27270, 0x27284, 869 0x272fc, 0x27388, 870 0x27400, 0x27404, 871 0x27500, 0x27518, 872 0x2752c, 0x2753c, 873 0x27550, 0x27554, 874 0x27600, 0x27600, 875 0x27608, 0x27628, 876 0x27630, 0x2763c, 877 0x27700, 0x2771c, 878 0x27780, 0x2778c, 879 0x27800, 0x27c38, 880 0x27c80, 0x27d7c, 881 0x27e00, 0x27e04 882 }; 883 884 static const unsigned int t5_reg_ranges[] = { 885 0x1008, 0x1148, 886 0x1180, 0x11b4, 887 0x11fc, 0x123c, 888 0x1280, 0x173c, 889 0x1800, 0x18fc, 890 0x3000, 0x3028, 891 0x3060, 0x30d8, 892 0x30e0, 0x30fc, 893 0x3140, 0x357c, 894 0x35a8, 0x35cc, 895 0x35ec, 0x35ec, 896 0x3600, 0x5624, 897 0x56cc, 0x575c, 898 0x580c, 0x5814, 899 0x5890, 0x58bc, 900 0x5940, 0x59dc, 901 0x59fc, 0x5a18, 902 0x5a60, 0x5a9c, 903 0x5b9c, 0x5bfc, 904 0x6000, 0x6040, 905 0x6058, 0x614c, 906 0x7700, 0x7798, 907 0x77c0, 0x78fc, 908 0x7b00, 0x7c54, 909 0x7d00, 0x7efc, 910 0x8dc0, 0x8de0, 911 0x8df8, 0x8e84, 912 0x8ea0, 0x8f84, 913 0x8fc0, 0x90f8, 914 0x9400, 0x9470, 915 0x9600, 0x96f4, 916 0x9800, 0x9808, 917 0x9820, 0x983c, 918 0x9850, 0x9864, 919 0x9c00, 0x9c6c, 920 0x9c80, 0x9cec, 921 0x9d00, 0x9d6c, 922 0x9d80, 0x9dec, 923 0x9e00, 0x9e6c, 924 0x9e80, 0x9eec, 925 0x9f00, 0x9f6c, 926 0x9f80, 0xa020, 927 0xd004, 0xd03c, 928 0xdfc0, 0xdfe0, 929 0xe000, 0x11088, 930 0x1109c, 0x11110, 931 0x11118, 0x1117c, 932 0x11190, 0x11204, 933 0x19040, 0x1906c, 934 0x19078, 0x19080, 935 0x1908c, 0x19124, 936 0x19150, 0x191b0, 937 0x191d0, 0x191e8, 938 0x19238, 0x19290, 939 0x193f8, 0x19474, 940 0x19490, 0x194cc, 941 0x194f0, 0x194f8, 942 0x19c00, 0x19c60, 943 0x19c94, 0x19e10, 944 0x19e50, 0x19f34, 945 0x19f40, 0x19f50, 946 0x19f90, 0x19fe4, 947 0x1a000, 0x1a06c, 948 0x1a0b0, 0x1a120, 949 0x1a128, 0x1a138, 950 0x1a190, 0x1a1c4, 951 0x1a1fc, 0x1a1fc, 952 0x1e008, 0x1e00c, 953 0x1e040, 0x1e04c, 954 0x1e284, 0x1e290, 955 0x1e2c0, 0x1e2c0, 956 0x1e2e0, 0x1e2e0, 957 0x1e300, 0x1e384, 958 0x1e3c0, 0x1e3c8, 959 0x1e408, 0x1e40c, 960 0x1e440, 0x1e44c, 961 0x1e684, 0x1e690, 962 0x1e6c0, 0x1e6c0, 963 0x1e6e0, 0x1e6e0, 964 0x1e700, 0x1e784, 965 0x1e7c0, 0x1e7c8, 966 0x1e808, 0x1e80c, 967 0x1e840, 0x1e84c, 968 0x1ea84, 0x1ea90, 969 0x1eac0, 0x1eac0, 970 0x1eae0, 0x1eae0, 971 0x1eb00, 0x1eb84, 972 0x1ebc0, 0x1ebc8, 973 0x1ec08, 0x1ec0c, 974 0x1ec40, 0x1ec4c, 975 0x1ee84, 0x1ee90, 976 0x1eec0, 0x1eec0, 977 0x1eee0, 0x1eee0, 978 0x1ef00, 0x1ef84, 979 0x1efc0, 0x1efc8, 980 0x1f008, 0x1f00c, 981 0x1f040, 0x1f04c, 982 0x1f284, 0x1f290, 983 0x1f2c0, 0x1f2c0, 984 0x1f2e0, 0x1f2e0, 985 0x1f300, 0x1f384, 986 0x1f3c0, 0x1f3c8, 987 0x1f408, 0x1f40c, 988 0x1f440, 0x1f44c, 989 0x1f684, 0x1f690, 990 0x1f6c0, 0x1f6c0, 991 0x1f6e0, 0x1f6e0, 992 0x1f700, 0x1f784, 993 0x1f7c0, 0x1f7c8, 994 0x1f808, 0x1f80c, 995 0x1f840, 0x1f84c, 996 0x1fa84, 0x1fa90, 997 0x1fac0, 0x1fac0, 998 0x1fae0, 0x1fae0, 999 0x1fb00, 0x1fb84, 1000 0x1fbc0, 0x1fbc8, 1001 0x1fc08, 0x1fc0c, 1002 0x1fc40, 0x1fc4c, 1003 0x1fe84, 0x1fe90, 1004 0x1fec0, 0x1fec0, 1005 0x1fee0, 0x1fee0, 1006 0x1ff00, 0x1ff84, 1007 0x1ffc0, 0x1ffc8, 1008 0x30000, 0x30030, 1009 0x30100, 0x30144, 1010 0x30190, 0x301d0, 1011 0x30200, 0x30318, 1012 0x30400, 0x3052c, 1013 0x30540, 0x3061c, 1014 0x30800, 0x30834, 1015 0x308c0, 0x30908, 1016 0x30910, 0x309ac, 1017 0x30a00, 0x30a04, 1018 0x30a0c, 0x30a2c, 1019 0x30a44, 0x30a50, 1020 0x30a74, 0x30c24, 1021 0x30d08, 0x30d14, 1022 0x30d1c, 0x30d20, 1023 0x30d3c, 0x30d50, 1024 0x31200, 0x3120c, 1025 0x31220, 0x31220, 1026 0x31240, 0x31240, 1027 0x31600, 0x31600, 1028 0x31608, 0x3160c, 1029 0x31a00, 0x31a1c, 1030 0x31e04, 0x31e20, 1031 0x31e38, 0x31e3c, 1032 0x31e80, 0x31e80, 1033 0x31e88, 0x31ea8, 1034 0x31eb0, 0x31eb4, 1035 0x31ec8, 0x31ed4, 1036 0x31fb8, 0x32004, 1037 0x32208, 0x3223c, 1038 0x32600, 0x32630, 1039 0x32a00, 0x32abc, 1040 0x32b00, 0x32b70, 1041 0x33000, 0x33048, 1042 0x33060, 0x3309c, 1043 0x330f0, 0x33148, 1044 0x33160, 0x3319c, 1045 0x331f0, 0x332e4, 1046 0x332f8, 0x333e4, 1047 0x333f8, 0x33448, 1048 0x33460, 0x3349c, 1049 0x334f0, 0x33548, 1050 0x33560, 0x3359c, 1051 0x335f0, 0x336e4, 1052 0x336f8, 0x337e4, 1053 0x337f8, 0x337fc, 1054 0x33814, 0x33814, 1055 0x3382c, 0x3382c, 1056 0x33880, 0x3388c, 1057 0x338e8, 0x338ec, 1058 0x33900, 0x33948, 1059 0x33960, 0x3399c, 1060 0x339f0, 0x33ae4, 1061 0x33af8, 0x33b10, 1062 0x33b28, 0x33b28, 1063 0x33b3c, 0x33b50, 1064 0x33bf0, 0x33c10, 1065 0x33c28, 0x33c28, 1066 0x33c3c, 0x33c50, 1067 0x33cf0, 0x33cfc, 1068 0x34000, 0x34030, 1069 0x34100, 0x34144, 1070 0x34190, 0x341d0, 1071 0x34200, 0x34318, 1072 0x34400, 0x3452c, 1073 0x34540, 0x3461c, 1074 0x34800, 0x34834, 1075 0x348c0, 0x34908, 1076 0x34910, 0x349ac, 1077 0x34a00, 0x34a04, 1078 0x34a0c, 0x34a2c, 1079 0x34a44, 0x34a50, 1080 0x34a74, 0x34c24, 1081 0x34d08, 0x34d14, 1082 0x34d1c, 0x34d20, 1083 0x34d3c, 0x34d50, 1084 0x35200, 0x3520c, 1085 0x35220, 0x35220, 1086 0x35240, 0x35240, 1087 0x35600, 0x35600, 1088 0x35608, 0x3560c, 1089 0x35a00, 0x35a1c, 1090 0x35e04, 0x35e20, 1091 0x35e38, 0x35e3c, 1092 0x35e80, 0x35e80, 1093 0x35e88, 0x35ea8, 1094 0x35eb0, 0x35eb4, 1095 0x35ec8, 0x35ed4, 1096 0x35fb8, 0x36004, 1097 0x36208, 0x3623c, 1098 0x36600, 0x36630, 1099 0x36a00, 0x36abc, 1100 0x36b00, 0x36b70, 1101 0x37000, 0x37048, 1102 0x37060, 0x3709c, 1103 0x370f0, 0x37148, 1104 0x37160, 0x3719c, 1105 0x371f0, 0x372e4, 1106 0x372f8, 0x373e4, 1107 0x373f8, 0x37448, 1108 0x37460, 0x3749c, 1109 0x374f0, 0x37548, 1110 0x37560, 0x3759c, 1111 0x375f0, 0x376e4, 1112 0x376f8, 0x377e4, 1113 0x377f8, 0x377fc, 1114 0x37814, 0x37814, 1115 0x3782c, 0x3782c, 1116 0x37880, 0x3788c, 1117 0x378e8, 0x378ec, 1118 0x37900, 0x37948, 1119 0x37960, 0x3799c, 1120 0x379f0, 0x37ae4, 1121 0x37af8, 0x37b10, 1122 0x37b28, 0x37b28, 1123 0x37b3c, 0x37b50, 1124 0x37bf0, 0x37c10, 1125 0x37c28, 0x37c28, 1126 0x37c3c, 0x37c50, 1127 0x37cf0, 0x37cfc, 1128 0x38000, 0x38030, 1129 0x38100, 0x38144, 1130 0x38190, 0x381d0, 1131 0x38200, 0x38318, 1132 0x38400, 0x3852c, 1133 0x38540, 0x3861c, 1134 0x38800, 0x38834, 1135 0x388c0, 0x38908, 1136 0x38910, 0x389ac, 1137 0x38a00, 0x38a04, 1138 0x38a0c, 0x38a2c, 1139 0x38a44, 0x38a50, 1140 0x38a74, 0x38c24, 1141 0x38d08, 0x38d14, 1142 0x38d1c, 0x38d20, 1143 0x38d3c, 0x38d50, 1144 0x39200, 0x3920c, 1145 0x39220, 0x39220, 1146 0x39240, 0x39240, 1147 0x39600, 0x39600, 1148 0x39608, 0x3960c, 1149 0x39a00, 0x39a1c, 1150 0x39e04, 0x39e20, 1151 0x39e38, 0x39e3c, 1152 0x39e80, 0x39e80, 1153 0x39e88, 0x39ea8, 1154 0x39eb0, 0x39eb4, 1155 0x39ec8, 0x39ed4, 1156 0x39fb8, 0x3a004, 1157 0x3a208, 0x3a23c, 1158 0x3a600, 0x3a630, 1159 0x3aa00, 0x3aabc, 1160 0x3ab00, 0x3ab70, 1161 0x3b000, 0x3b048, 1162 0x3b060, 0x3b09c, 1163 0x3b0f0, 0x3b148, 1164 0x3b160, 0x3b19c, 1165 0x3b1f0, 0x3b2e4, 1166 0x3b2f8, 0x3b3e4, 1167 0x3b3f8, 0x3b448, 1168 0x3b460, 0x3b49c, 1169 0x3b4f0, 0x3b548, 1170 0x3b560, 0x3b59c, 1171 0x3b5f0, 0x3b6e4, 1172 0x3b6f8, 0x3b7e4, 1173 0x3b7f8, 0x3b7fc, 1174 0x3b814, 0x3b814, 1175 0x3b82c, 0x3b82c, 1176 0x3b880, 0x3b88c, 1177 0x3b8e8, 0x3b8ec, 1178 0x3b900, 0x3b948, 1179 0x3b960, 0x3b99c, 1180 0x3b9f0, 0x3bae4, 1181 0x3baf8, 0x3bb10, 1182 0x3bb28, 0x3bb28, 1183 0x3bb3c, 0x3bb50, 1184 0x3bbf0, 0x3bc10, 1185 0x3bc28, 0x3bc28, 1186 0x3bc3c, 0x3bc50, 1187 0x3bcf0, 0x3bcfc, 1188 0x3c000, 0x3c030, 1189 0x3c100, 0x3c144, 1190 0x3c190, 0x3c1d0, 1191 0x3c200, 0x3c318, 1192 0x3c400, 0x3c52c, 1193 0x3c540, 0x3c61c, 1194 0x3c800, 0x3c834, 1195 0x3c8c0, 0x3c908, 1196 0x3c910, 0x3c9ac, 1197 0x3ca00, 0x3ca04, 1198 0x3ca0c, 0x3ca2c, 1199 0x3ca44, 0x3ca50, 1200 0x3ca74, 0x3cc24, 1201 0x3cd08, 0x3cd14, 1202 0x3cd1c, 0x3cd20, 1203 0x3cd3c, 0x3cd50, 1204 0x3d200, 0x3d20c, 1205 0x3d220, 0x3d220, 1206 0x3d240, 0x3d240, 1207 0x3d600, 0x3d600, 1208 0x3d608, 0x3d60c, 1209 0x3da00, 0x3da1c, 1210 0x3de04, 0x3de20, 1211 0x3de38, 0x3de3c, 1212 0x3de80, 0x3de80, 1213 0x3de88, 0x3dea8, 1214 0x3deb0, 0x3deb4, 1215 0x3dec8, 0x3ded4, 1216 0x3dfb8, 0x3e004, 1217 0x3e208, 0x3e23c, 1218 0x3e600, 0x3e630, 1219 0x3ea00, 0x3eabc, 1220 0x3eb00, 0x3eb70, 1221 0x3f000, 0x3f048, 1222 0x3f060, 0x3f09c, 1223 0x3f0f0, 0x3f148, 1224 0x3f160, 0x3f19c, 1225 0x3f1f0, 0x3f2e4, 1226 0x3f2f8, 0x3f3e4, 1227 0x3f3f8, 0x3f448, 1228 0x3f460, 0x3f49c, 1229 0x3f4f0, 0x3f548, 1230 0x3f560, 0x3f59c, 1231 0x3f5f0, 0x3f6e4, 1232 0x3f6f8, 0x3f7e4, 1233 0x3f7f8, 0x3f7fc, 1234 0x3f814, 0x3f814, 1235 0x3f82c, 0x3f82c, 1236 0x3f880, 0x3f88c, 1237 0x3f8e8, 0x3f8ec, 1238 0x3f900, 0x3f948, 1239 0x3f960, 0x3f99c, 1240 0x3f9f0, 0x3fae4, 1241 0x3faf8, 0x3fb10, 1242 0x3fb28, 0x3fb28, 1243 0x3fb3c, 0x3fb50, 1244 0x3fbf0, 0x3fc10, 1245 0x3fc28, 0x3fc28, 1246 0x3fc3c, 0x3fc50, 1247 0x3fcf0, 0x3fcfc, 1248 0x40000, 0x4000c, 1249 0x40040, 0x40068, 1250 0x40080, 0x40144, 1251 0x40180, 0x4018c, 1252 0x40200, 0x40298, 1253 0x402ac, 0x4033c, 1254 0x403f8, 0x403fc, 1255 0x41304, 0x413c4, 1256 0x41400, 0x4141c, 1257 0x41480, 0x414d0, 1258 0x44000, 0x44078, 1259 0x440c0, 0x44278, 1260 0x442c0, 0x44478, 1261 0x444c0, 0x44678, 1262 0x446c0, 0x44878, 1263 0x448c0, 0x449fc, 1264 0x45000, 0x45068, 1265 0x45080, 0x45084, 1266 0x450a0, 0x450b0, 1267 0x45200, 0x45268, 1268 0x45280, 0x45284, 1269 0x452a0, 0x452b0, 1270 0x460c0, 0x460e4, 1271 0x47000, 0x4708c, 1272 0x47200, 0x47250, 1273 0x47400, 0x47420, 1274 0x47600, 0x47618, 1275 0x47800, 0x47814, 1276 0x48000, 0x4800c, 1277 0x48040, 0x48068, 1278 0x48080, 0x48144, 1279 0x48180, 0x4818c, 1280 0x48200, 0x48298, 1281 0x482ac, 0x4833c, 1282 0x483f8, 0x483fc, 1283 0x49304, 0x493c4, 1284 0x49400, 0x4941c, 1285 0x49480, 0x494d0, 1286 0x4c000, 0x4c078, 1287 0x4c0c0, 0x4c278, 1288 0x4c2c0, 0x4c478, 1289 0x4c4c0, 0x4c678, 1290 0x4c6c0, 0x4c878, 1291 0x4c8c0, 0x4c9fc, 1292 0x4d000, 0x4d068, 1293 0x4d080, 0x4d084, 1294 0x4d0a0, 0x4d0b0, 1295 0x4d200, 0x4d268, 1296 0x4d280, 0x4d284, 1297 0x4d2a0, 0x4d2b0, 1298 0x4e0c0, 0x4e0e4, 1299 0x4f000, 0x4f08c, 1300 0x4f200, 0x4f250, 1301 0x4f400, 0x4f420, 1302 0x4f600, 0x4f618, 1303 0x4f800, 0x4f814, 1304 0x50000, 0x500cc, 1305 0x50400, 0x50400, 1306 0x50800, 0x508cc, 1307 0x50c00, 0x50c00, 1308 0x51000, 0x5101c, 1309 0x51300, 0x51308, 1310 }; 1311 1312 u32 *buf_end = (u32 *)((char *)buf + buf_size); 1313 const unsigned int *reg_ranges; 1314 int reg_ranges_size, range; 1315 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 1316 1317 /* Select the right set of register ranges to dump depending on the 1318 * adapter chip type. 1319 */ 1320 switch (chip_version) { 1321 case CHELSIO_T4: 1322 reg_ranges = t4_reg_ranges; 1323 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 1324 break; 1325 1326 case CHELSIO_T5: 1327 reg_ranges = t5_reg_ranges; 1328 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 1329 break; 1330 1331 default: 1332 dev_err(adap->pdev_dev, 1333 "Unsupported chip version %d\n", chip_version); 1334 return; 1335 } 1336 1337 /* Clear the register buffer and insert the appropriate register 1338 * values selected by the above register ranges. 1339 */ 1340 memset(buf, 0, buf_size); 1341 for (range = 0; range < reg_ranges_size; range += 2) { 1342 unsigned int reg = reg_ranges[range]; 1343 unsigned int last_reg = reg_ranges[range + 1]; 1344 u32 *bufp = (u32 *)((char *)buf + reg); 1345 1346 /* Iterate across the register range filling in the register 1347 * buffer but don't write past the end of the register buffer. 1348 */ 1349 while (reg <= last_reg && bufp < buf_end) { 1350 *bufp++ = t4_read_reg(adap, reg); 1351 reg += sizeof(u32); 1352 } 1353 } 1354} 1355 1356#define EEPROM_STAT_ADDR 0x7bfc 1357#define VPD_BASE 0x400 1358#define VPD_BASE_OLD 0 1359#define VPD_LEN 1024 1360#define CHELSIO_VPD_UNIQUE_ID 0x82 1361 1362/** 1363 * t4_seeprom_wp - enable/disable EEPROM write protection 1364 * @adapter: the adapter 1365 * @enable: whether to enable or disable write protection 1366 * 1367 * Enables or disables write protection on the serial EEPROM. 1368 */ 1369int t4_seeprom_wp(struct adapter *adapter, bool enable) 1370{ 1371 unsigned int v = enable ? 0xc : 0; 1372 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 1373 return ret < 0 ? ret : 0; 1374} 1375 1376/** 1377 * get_vpd_params - read VPD parameters from VPD EEPROM 1378 * @adapter: adapter to read 1379 * @p: where to store the parameters 1380 * 1381 * Reads card parameters stored in VPD EEPROM. 1382 */ 1383int get_vpd_params(struct adapter *adapter, struct vpd_params *p) 1384{ 1385 u32 cclk_param, cclk_val; 1386 int i, ret, addr; 1387 int ec, sn, pn; 1388 u8 *vpd, csum; 1389 unsigned int vpdr_len, kw_offset, id_len; 1390 1391 vpd = vmalloc(VPD_LEN); 1392 if (!vpd) 1393 return -ENOMEM; 1394 1395 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 1396 if (ret < 0) 1397 goto out; 1398 1399 /* The VPD shall have a unique identifier specified by the PCI SIG. 1400 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 1401 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 1402 * is expected to automatically put this entry at the 1403 * beginning of the VPD. 1404 */ 1405 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 1406 1407 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 1408 if (ret < 0) 1409 goto out; 1410 1411 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 1412 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 1413 ret = -EINVAL; 1414 goto out; 1415 } 1416 1417 id_len = pci_vpd_lrdt_size(vpd); 1418 if (id_len > ID_LEN) 1419 id_len = ID_LEN; 1420 1421 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 1422 if (i < 0) { 1423 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 1424 ret = -EINVAL; 1425 goto out; 1426 } 1427 1428 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 1429 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 1430 if (vpdr_len + kw_offset > VPD_LEN) { 1431 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 1432 ret = -EINVAL; 1433 goto out; 1434 } 1435 1436#define FIND_VPD_KW(var, name) do { \ 1437 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 1438 if (var < 0) { \ 1439 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 1440 ret = -EINVAL; \ 1441 goto out; \ 1442 } \ 1443 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 1444} while (0) 1445 1446 FIND_VPD_KW(i, "RV"); 1447 for (csum = 0; i >= 0; i--) 1448 csum += vpd[i]; 1449 1450 if (csum) { 1451 dev_err(adapter->pdev_dev, 1452 "corrupted VPD EEPROM, actual csum %u\n", csum); 1453 ret = -EINVAL; 1454 goto out; 1455 } 1456 1457 FIND_VPD_KW(ec, "EC"); 1458 FIND_VPD_KW(sn, "SN"); 1459 FIND_VPD_KW(pn, "PN"); 1460#undef FIND_VPD_KW 1461 1462 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 1463 strim(p->id); 1464 memcpy(p->ec, vpd + ec, EC_LEN); 1465 strim(p->ec); 1466 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 1467 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 1468 strim(p->sn); 1469 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 1470 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 1471 strim(p->pn); 1472 1473 /* 1474 * Ask firmware for the Core Clock since it knows how to translate the 1475 * Reference Clock ('V2') VPD field into a Core Clock value ... 1476 */ 1477 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 1478 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 1479 ret = t4_query_params(adapter, adapter->mbox, 0, 0, 1480 1, &cclk_param, &cclk_val); 1481 1482out: 1483 vfree(vpd); 1484 if (ret) 1485 return ret; 1486 p->cclk = cclk_val; 1487 1488 return 0; 1489} 1490 1491/* serial flash and firmware constants */ 1492enum { 1493 SF_ATTEMPTS = 10, /* max retries for SF operations */ 1494 1495 /* flash command opcodes */ 1496 SF_PROG_PAGE = 2, /* program page */ 1497 SF_WR_DISABLE = 4, /* disable writes */ 1498 SF_RD_STATUS = 5, /* read status register */ 1499 SF_WR_ENABLE = 6, /* enable writes */ 1500 SF_RD_DATA_FAST = 0xb, /* read flash */ 1501 SF_RD_ID = 0x9f, /* read ID */ 1502 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 1503 1504 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 1505}; 1506 1507/** 1508 * sf1_read - read data from the serial flash 1509 * @adapter: the adapter 1510 * @byte_cnt: number of bytes to read 1511 * @cont: whether another operation will be chained 1512 * @lock: whether to lock SF for PL access only 1513 * @valp: where to store the read data 1514 * 1515 * Reads up to 4 bytes of data from the serial flash. The location of 1516 * the read needs to be specified prior to calling this by issuing the 1517 * appropriate commands to the serial flash. 1518 */ 1519static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 1520 int lock, u32 *valp) 1521{ 1522 int ret; 1523 1524 if (!byte_cnt || byte_cnt > 4) 1525 return -EINVAL; 1526 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 1527 return -EBUSY; 1528 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 1529 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 1530 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 1531 if (!ret) 1532 *valp = t4_read_reg(adapter, SF_DATA_A); 1533 return ret; 1534} 1535 1536/** 1537 * sf1_write - write data to the serial flash 1538 * @adapter: the adapter 1539 * @byte_cnt: number of bytes to write 1540 * @cont: whether another operation will be chained 1541 * @lock: whether to lock SF for PL access only 1542 * @val: value to write 1543 * 1544 * Writes up to 4 bytes of data to the serial flash. The location of 1545 * the write needs to be specified prior to calling this by issuing the 1546 * appropriate commands to the serial flash. 1547 */ 1548static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 1549 int lock, u32 val) 1550{ 1551 if (!byte_cnt || byte_cnt > 4) 1552 return -EINVAL; 1553 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 1554 return -EBUSY; 1555 t4_write_reg(adapter, SF_DATA_A, val); 1556 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 1557 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 1558 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 1559} 1560 1561/** 1562 * flash_wait_op - wait for a flash operation to complete 1563 * @adapter: the adapter 1564 * @attempts: max number of polls of the status register 1565 * @delay: delay between polls in ms 1566 * 1567 * Wait for a flash operation to complete by polling the status register. 1568 */ 1569static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 1570{ 1571 int ret; 1572 u32 status; 1573 1574 while (1) { 1575 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 1576 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 1577 return ret; 1578 if (!(status & 1)) 1579 return 0; 1580 if (--attempts == 0) 1581 return -EAGAIN; 1582 if (delay) 1583 msleep(delay); 1584 } 1585} 1586 1587/** 1588 * t4_read_flash - read words from serial flash 1589 * @adapter: the adapter 1590 * @addr: the start address for the read 1591 * @nwords: how many 32-bit words to read 1592 * @data: where to store the read data 1593 * @byte_oriented: whether to store data as bytes or as words 1594 * 1595 * Read the specified number of 32-bit words from the serial flash. 1596 * If @byte_oriented is set the read data is stored as a byte array 1597 * (i.e., big-endian), otherwise as 32-bit words in the platform's 1598 * natural endianness. 1599 */ 1600int t4_read_flash(struct adapter *adapter, unsigned int addr, 1601 unsigned int nwords, u32 *data, int byte_oriented) 1602{ 1603 int ret; 1604 1605 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 1606 return -EINVAL; 1607 1608 addr = swab32(addr) | SF_RD_DATA_FAST; 1609 1610 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 1611 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 1612 return ret; 1613 1614 for ( ; nwords; nwords--, data++) { 1615 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 1616 if (nwords == 1) 1617 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 1618 if (ret) 1619 return ret; 1620 if (byte_oriented) 1621 *data = (__force __u32) (htonl(*data)); 1622 } 1623 return 0; 1624} 1625 1626/** 1627 * t4_write_flash - write up to a page of data to the serial flash 1628 * @adapter: the adapter 1629 * @addr: the start address to write 1630 * @n: length of data to write in bytes 1631 * @data: the data to write 1632 * 1633 * Writes up to a page of data (256 bytes) to the serial flash starting 1634 * at the given address. All the data must be written to the same page. 1635 */ 1636static int t4_write_flash(struct adapter *adapter, unsigned int addr, 1637 unsigned int n, const u8 *data) 1638{ 1639 int ret; 1640 u32 buf[64]; 1641 unsigned int i, c, left, val, offset = addr & 0xff; 1642 1643 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 1644 return -EINVAL; 1645 1646 val = swab32(addr) | SF_PROG_PAGE; 1647 1648 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 1649 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 1650 goto unlock; 1651 1652 for (left = n; left; left -= c) { 1653 c = min(left, 4U); 1654 for (val = 0, i = 0; i < c; ++i) 1655 val = (val << 8) + *data++; 1656 1657 ret = sf1_write(adapter, c, c != left, 1, val); 1658 if (ret) 1659 goto unlock; 1660 } 1661 ret = flash_wait_op(adapter, 8, 1); 1662 if (ret) 1663 goto unlock; 1664 1665 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 1666 1667 /* Read the page to verify the write succeeded */ 1668 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 1669 if (ret) 1670 return ret; 1671 1672 if (memcmp(data - n, (u8 *)buf + offset, n)) { 1673 dev_err(adapter->pdev_dev, 1674 "failed to correctly write the flash page at %#x\n", 1675 addr); 1676 return -EIO; 1677 } 1678 return 0; 1679 1680unlock: 1681 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 1682 return ret; 1683} 1684 1685/** 1686 * t4_get_fw_version - read the firmware version 1687 * @adapter: the adapter 1688 * @vers: where to place the version 1689 * 1690 * Reads the FW version from flash. 1691 */ 1692int t4_get_fw_version(struct adapter *adapter, u32 *vers) 1693{ 1694 return t4_read_flash(adapter, FLASH_FW_START + 1695 offsetof(struct fw_hdr, fw_ver), 1, 1696 vers, 0); 1697} 1698 1699/** 1700 * t4_get_tp_version - read the TP microcode version 1701 * @adapter: the adapter 1702 * @vers: where to place the version 1703 * 1704 * Reads the TP microcode version from flash. 1705 */ 1706int t4_get_tp_version(struct adapter *adapter, u32 *vers) 1707{ 1708 return t4_read_flash(adapter, FLASH_FW_START + 1709 offsetof(struct fw_hdr, tp_microcode_ver), 1710 1, vers, 0); 1711} 1712 1713/** 1714 * t4_get_exprom_version - return the Expansion ROM version (if any) 1715 * @adapter: the adapter 1716 * @vers: where to place the version 1717 * 1718 * Reads the Expansion ROM header from FLASH and returns the version 1719 * number (if present) through the @vers return value pointer. We return 1720 * this in the Firmware Version Format since it's convenient. Return 1721 * 0 on success, -ENOENT if no Expansion ROM is present. 1722 */ 1723int t4_get_exprom_version(struct adapter *adap, u32 *vers) 1724{ 1725 struct exprom_header { 1726 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 1727 unsigned char hdr_ver[4]; /* Expansion ROM version */ 1728 } *hdr; 1729 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 1730 sizeof(u32))]; 1731 int ret; 1732 1733 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 1734 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 1735 0); 1736 if (ret) 1737 return ret; 1738 1739 hdr = (struct exprom_header *)exprom_header_buf; 1740 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 1741 return -ENOENT; 1742 1743 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 1744 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 1745 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 1746 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 1747 return 0; 1748} 1749 1750/* Is the given firmware API compatible with the one the driver was compiled 1751 * with? 1752 */ 1753static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 1754{ 1755 1756 /* short circuit if it's the exact same firmware version */ 1757 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 1758 return 1; 1759 1760#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 1761 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 1762 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 1763 return 1; 1764#undef SAME_INTF 1765 1766 return 0; 1767} 1768 1769/* The firmware in the filesystem is usable, but should it be installed? 1770 * This routine explains itself in detail if it indicates the filesystem 1771 * firmware should be installed. 1772 */ 1773static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 1774 int k, int c) 1775{ 1776 const char *reason; 1777 1778 if (!card_fw_usable) { 1779 reason = "incompatible or unusable"; 1780 goto install; 1781 } 1782 1783 if (k > c) { 1784 reason = "older than the version supported with this driver"; 1785 goto install; 1786 } 1787 1788 return 0; 1789 1790install: 1791 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 1792 "installing firmware %u.%u.%u.%u on card.\n", 1793 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 1794 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 1795 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 1796 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 1797 1798 return 1; 1799} 1800 1801int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 1802 const u8 *fw_data, unsigned int fw_size, 1803 struct fw_hdr *card_fw, enum dev_state state, 1804 int *reset) 1805{ 1806 int ret, card_fw_usable, fs_fw_usable; 1807 const struct fw_hdr *fs_fw; 1808 const struct fw_hdr *drv_fw; 1809 1810 drv_fw = &fw_info->fw_hdr; 1811 1812 /* Read the header of the firmware on the card */ 1813 ret = -t4_read_flash(adap, FLASH_FW_START, 1814 sizeof(*card_fw) / sizeof(uint32_t), 1815 (uint32_t *)card_fw, 1); 1816 if (ret == 0) { 1817 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 1818 } else { 1819 dev_err(adap->pdev_dev, 1820 "Unable to read card's firmware header: %d\n", ret); 1821 card_fw_usable = 0; 1822 } 1823 1824 if (fw_data != NULL) { 1825 fs_fw = (const void *)fw_data; 1826 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 1827 } else { 1828 fs_fw = NULL; 1829 fs_fw_usable = 0; 1830 } 1831 1832 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 1833 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 1834 /* Common case: the firmware on the card is an exact match and 1835 * the filesystem one is an exact match too, or the filesystem 1836 * one is absent/incompatible. 1837 */ 1838 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 1839 should_install_fs_fw(adap, card_fw_usable, 1840 be32_to_cpu(fs_fw->fw_ver), 1841 be32_to_cpu(card_fw->fw_ver))) { 1842 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 1843 fw_size, 0); 1844 if (ret != 0) { 1845 dev_err(adap->pdev_dev, 1846 "failed to install firmware: %d\n", ret); 1847 goto bye; 1848 } 1849 1850 /* Installed successfully, update the cached header too. */ 1851 *card_fw = *fs_fw; 1852 card_fw_usable = 1; 1853 *reset = 0; /* already reset as part of load_fw */ 1854 } 1855 1856 if (!card_fw_usable) { 1857 uint32_t d, c, k; 1858 1859 d = be32_to_cpu(drv_fw->fw_ver); 1860 c = be32_to_cpu(card_fw->fw_ver); 1861 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 1862 1863 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 1864 "chip state %d, " 1865 "driver compiled with %d.%d.%d.%d, " 1866 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 1867 state, 1868 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 1869 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 1870 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 1871 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 1872 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 1873 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 1874 ret = EINVAL; 1875 goto bye; 1876 } 1877 1878 /* We're using whatever's on the card and it's known to be good. */ 1879 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 1880 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 1881 1882bye: 1883 return ret; 1884} 1885 1886/** 1887 * t4_flash_erase_sectors - erase a range of flash sectors 1888 * @adapter: the adapter 1889 * @start: the first sector to erase 1890 * @end: the last sector to erase 1891 * 1892 * Erases the sectors in the given inclusive range. 1893 */ 1894static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 1895{ 1896 int ret = 0; 1897 1898 if (end >= adapter->params.sf_nsec) 1899 return -EINVAL; 1900 1901 while (start <= end) { 1902 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 1903 (ret = sf1_write(adapter, 4, 0, 1, 1904 SF_ERASE_SECTOR | (start << 8))) != 0 || 1905 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 1906 dev_err(adapter->pdev_dev, 1907 "erase of flash sector %d failed, error %d\n", 1908 start, ret); 1909 break; 1910 } 1911 start++; 1912 } 1913 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 1914 return ret; 1915} 1916 1917/** 1918 * t4_flash_cfg_addr - return the address of the flash configuration file 1919 * @adapter: the adapter 1920 * 1921 * Return the address within the flash where the Firmware Configuration 1922 * File is stored. 1923 */ 1924unsigned int t4_flash_cfg_addr(struct adapter *adapter) 1925{ 1926 if (adapter->params.sf_size == 0x100000) 1927 return FLASH_FPGA_CFG_START; 1928 else 1929 return FLASH_CFG_START; 1930} 1931 1932/* Return TRUE if the specified firmware matches the adapter. I.e. T4 1933 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 1934 * and emit an error message for mismatched firmware to save our caller the 1935 * effort ... 1936 */ 1937static bool t4_fw_matches_chip(const struct adapter *adap, 1938 const struct fw_hdr *hdr) 1939{ 1940 /* The expression below will return FALSE for any unsupported adapter 1941 * which will keep us "honest" in the future ... 1942 */ 1943 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 1944 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5)) 1945 return true; 1946 1947 dev_err(adap->pdev_dev, 1948 "FW image (%d) is not suitable for this adapter (%d)\n", 1949 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 1950 return false; 1951} 1952 1953/** 1954 * t4_load_fw - download firmware 1955 * @adap: the adapter 1956 * @fw_data: the firmware image to write 1957 * @size: image size 1958 * 1959 * Write the supplied firmware image to the card's serial flash. 1960 */ 1961int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 1962{ 1963 u32 csum; 1964 int ret, addr; 1965 unsigned int i; 1966 u8 first_page[SF_PAGE_SIZE]; 1967 const __be32 *p = (const __be32 *)fw_data; 1968 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 1969 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 1970 unsigned int fw_img_start = adap->params.sf_fw_start; 1971 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 1972 1973 if (!size) { 1974 dev_err(adap->pdev_dev, "FW image has no data\n"); 1975 return -EINVAL; 1976 } 1977 if (size & 511) { 1978 dev_err(adap->pdev_dev, 1979 "FW image size not multiple of 512 bytes\n"); 1980 return -EINVAL; 1981 } 1982 if (ntohs(hdr->len512) * 512 != size) { 1983 dev_err(adap->pdev_dev, 1984 "FW image size differs from size in FW header\n"); 1985 return -EINVAL; 1986 } 1987 if (size > FW_MAX_SIZE) { 1988 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 1989 FW_MAX_SIZE); 1990 return -EFBIG; 1991 } 1992 if (!t4_fw_matches_chip(adap, hdr)) 1993 return -EINVAL; 1994 1995 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1996 csum += ntohl(p[i]); 1997 1998 if (csum != 0xffffffff) { 1999 dev_err(adap->pdev_dev, 2000 "corrupted firmware image, checksum %#x\n", csum); 2001 return -EINVAL; 2002 } 2003 2004 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 2005 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 2006 if (ret) 2007 goto out; 2008 2009 /* 2010 * We write the correct version at the end so the driver can see a bad 2011 * version if the FW write fails. Start by writing a copy of the 2012 * first page with a bad version. 2013 */ 2014 memcpy(first_page, fw_data, SF_PAGE_SIZE); 2015 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); 2016 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 2017 if (ret) 2018 goto out; 2019 2020 addr = fw_img_start; 2021 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 2022 addr += SF_PAGE_SIZE; 2023 fw_data += SF_PAGE_SIZE; 2024 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 2025 if (ret) 2026 goto out; 2027 } 2028 2029 ret = t4_write_flash(adap, 2030 fw_img_start + offsetof(struct fw_hdr, fw_ver), 2031 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 2032out: 2033 if (ret) 2034 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 2035 ret); 2036 else 2037 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 2038 return ret; 2039} 2040 2041/** 2042 * t4_fwcache - firmware cache operation 2043 * @adap: the adapter 2044 * @op : the operation (flush or flush and invalidate) 2045 */ 2046int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 2047{ 2048 struct fw_params_cmd c; 2049 2050 memset(&c, 0, sizeof(c)); 2051 c.op_to_vfn = 2052 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 2053 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 2054 FW_PARAMS_CMD_PFN_V(adap->fn) | 2055 FW_PARAMS_CMD_VFN_V(0)); 2056 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 2057 c.param[0].mnem = 2058 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2059 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 2060 c.param[0].val = (__force __be32)op; 2061 2062 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 2063} 2064 2065void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 2066{ 2067 unsigned int i, j; 2068 2069 for (i = 0; i < 8; i++) { 2070 u32 *p = la_buf + i; 2071 2072 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 2073 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 2074 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 2075 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 2076 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 2077 } 2078} 2079 2080#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 2081 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ 2082 FW_PORT_CAP_ANEG) 2083 2084/** 2085 * t4_link_start - apply link configuration to MAC/PHY 2086 * @phy: the PHY to setup 2087 * @mac: the MAC to setup 2088 * @lc: the requested link configuration 2089 * 2090 * Set up a port's MAC and PHY according to a desired link configuration. 2091 * - If the PHY can auto-negotiate first decide what to advertise, then 2092 * enable/disable auto-negotiation as desired, and reset. 2093 * - If the PHY does not auto-negotiate just reset it. 2094 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 2095 * otherwise do it later based on the outcome of auto-negotiation. 2096 */ 2097int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, 2098 struct link_config *lc) 2099{ 2100 struct fw_port_cmd c; 2101 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); 2102 2103 lc->link_ok = 0; 2104 if (lc->requested_fc & PAUSE_RX) 2105 fc |= FW_PORT_CAP_FC_RX; 2106 if (lc->requested_fc & PAUSE_TX) 2107 fc |= FW_PORT_CAP_FC_TX; 2108 2109 memset(&c, 0, sizeof(c)); 2110 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | 2111 FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); 2112 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 2113 FW_LEN16(c)); 2114 2115 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 2116 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc); 2117 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 2118 } else if (lc->autoneg == AUTONEG_DISABLE) { 2119 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi); 2120 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 2121 } else 2122 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi); 2123 2124 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2125} 2126 2127/** 2128 * t4_restart_aneg - restart autonegotiation 2129 * @adap: the adapter 2130 * @mbox: mbox to use for the FW command 2131 * @port: the port id 2132 * 2133 * Restarts autonegotiation for the selected port. 2134 */ 2135int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 2136{ 2137 struct fw_port_cmd c; 2138 2139 memset(&c, 0, sizeof(c)); 2140 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | 2141 FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); 2142 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 2143 FW_LEN16(c)); 2144 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG); 2145 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2146} 2147 2148typedef void (*int_handler_t)(struct adapter *adap); 2149 2150struct intr_info { 2151 unsigned int mask; /* bits to check in interrupt status */ 2152 const char *msg; /* message to print or NULL */ 2153 short stat_idx; /* stat counter to increment or -1 */ 2154 unsigned short fatal; /* whether the condition reported is fatal */ 2155 int_handler_t int_handler; /* platform-specific int handler */ 2156}; 2157 2158/** 2159 * t4_handle_intr_status - table driven interrupt handler 2160 * @adapter: the adapter that generated the interrupt 2161 * @reg: the interrupt status register to process 2162 * @acts: table of interrupt actions 2163 * 2164 * A table driven interrupt handler that applies a set of masks to an 2165 * interrupt status word and performs the corresponding actions if the 2166 * interrupts described by the mask have occurred. The actions include 2167 * optionally emitting a warning or alert message. The table is terminated 2168 * by an entry specifying mask 0. Returns the number of fatal interrupt 2169 * conditions. 2170 */ 2171static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 2172 const struct intr_info *acts) 2173{ 2174 int fatal = 0; 2175 unsigned int mask = 0; 2176 unsigned int status = t4_read_reg(adapter, reg); 2177 2178 for ( ; acts->mask; ++acts) { 2179 if (!(status & acts->mask)) 2180 continue; 2181 if (acts->fatal) { 2182 fatal++; 2183 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 2184 status & acts->mask); 2185 } else if (acts->msg && printk_ratelimit()) 2186 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 2187 status & acts->mask); 2188 if (acts->int_handler) 2189 acts->int_handler(adapter); 2190 mask |= acts->mask; 2191 } 2192 status &= mask; 2193 if (status) /* clear processed interrupts */ 2194 t4_write_reg(adapter, reg, status); 2195 return fatal; 2196} 2197 2198/* 2199 * Interrupt handler for the PCIE module. 2200 */ 2201static void pcie_intr_handler(struct adapter *adapter) 2202{ 2203 static const struct intr_info sysbus_intr_info[] = { 2204 { RNPP_F, "RXNP array parity error", -1, 1 }, 2205 { RPCP_F, "RXPC array parity error", -1, 1 }, 2206 { RCIP_F, "RXCIF array parity error", -1, 1 }, 2207 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 2208 { RFTP_F, "RXFT array parity error", -1, 1 }, 2209 { 0 } 2210 }; 2211 static const struct intr_info pcie_port_intr_info[] = { 2212 { TPCP_F, "TXPC array parity error", -1, 1 }, 2213 { TNPP_F, "TXNP array parity error", -1, 1 }, 2214 { TFTP_F, "TXFT array parity error", -1, 1 }, 2215 { TCAP_F, "TXCA array parity error", -1, 1 }, 2216 { TCIP_F, "TXCIF array parity error", -1, 1 }, 2217 { RCAP_F, "RXCA array parity error", -1, 1 }, 2218 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 2219 { RDPE_F, "Rx data parity error", -1, 1 }, 2220 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 2221 { 0 } 2222 }; 2223 static const struct intr_info pcie_intr_info[] = { 2224 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 2225 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 2226 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 2227 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 2228 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 2229 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 2230 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 2231 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 2232 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 2233 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 2234 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 2235 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 2236 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 2237 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 2238 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 2239 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 2240 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 2241 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 2242 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 2243 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 2244 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 2245 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 2246 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 2247 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 2248 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 2249 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 2250 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 2251 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 2252 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 2253 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 2254 -1, 0 }, 2255 { 0 } 2256 }; 2257 2258 static struct intr_info t5_pcie_intr_info[] = { 2259 { MSTGRPPERR_F, "Master Response Read Queue parity error", 2260 -1, 1 }, 2261 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 2262 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 2263 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 2264 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 2265 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 2266 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 2267 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 2268 -1, 1 }, 2269 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 2270 -1, 1 }, 2271 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 2272 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 2273 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 2274 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 2275 { DREQWRPERR_F, "PCI DMA channel write request parity error", 2276 -1, 1 }, 2277 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 2278 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 2279 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 2280 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 2281 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 2282 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 2283 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 2284 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 2285 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 2286 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 2287 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 2288 -1, 1 }, 2289 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 2290 -1, 1 }, 2291 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 2292 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 2293 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 2294 { READRSPERR_F, "Outbound read error", -1, 0 }, 2295 { 0 } 2296 }; 2297 2298 int fat; 2299 2300 if (is_t4(adapter->params.chip)) 2301 fat = t4_handle_intr_status(adapter, 2302 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 2303 sysbus_intr_info) + 2304 t4_handle_intr_status(adapter, 2305 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 2306 pcie_port_intr_info) + 2307 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 2308 pcie_intr_info); 2309 else 2310 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 2311 t5_pcie_intr_info); 2312 2313 if (fat) 2314 t4_fatal_err(adapter); 2315} 2316 2317/* 2318 * TP interrupt handler. 2319 */ 2320static void tp_intr_handler(struct adapter *adapter) 2321{ 2322 static const struct intr_info tp_intr_info[] = { 2323 { 0x3fffffff, "TP parity error", -1, 1 }, 2324 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 2325 { 0 } 2326 }; 2327 2328 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 2329 t4_fatal_err(adapter); 2330} 2331 2332/* 2333 * SGE interrupt handler. 2334 */ 2335static void sge_intr_handler(struct adapter *adapter) 2336{ 2337 u64 v; 2338 2339 static const struct intr_info sge_intr_info[] = { 2340 { ERR_CPL_EXCEED_IQE_SIZE_F, 2341 "SGE received CPL exceeding IQE size", -1, 1 }, 2342 { ERR_INVALID_CIDX_INC_F, 2343 "SGE GTS CIDX increment too large", -1, 0 }, 2344 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 2345 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 2346 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 2347 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 2348 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 2349 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 2350 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 2351 0 }, 2352 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 2353 0 }, 2354 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 2355 0 }, 2356 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 2357 0 }, 2358 { ERR_ING_CTXT_PRIO_F, 2359 "SGE too many priority ingress contexts", -1, 0 }, 2360 { ERR_EGR_CTXT_PRIO_F, 2361 "SGE too many priority egress contexts", -1, 0 }, 2362 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 2363 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 2364 { 0 } 2365 }; 2366 2367 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 2368 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 2369 if (v) { 2370 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 2371 (unsigned long long)v); 2372 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 2373 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 2374 } 2375 2376 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info) || 2377 v != 0) 2378 t4_fatal_err(adapter); 2379} 2380 2381#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 2382 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 2383#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 2384 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 2385 2386/* 2387 * CIM interrupt handler. 2388 */ 2389static void cim_intr_handler(struct adapter *adapter) 2390{ 2391 static const struct intr_info cim_intr_info[] = { 2392 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 2393 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 2394 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 2395 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 2396 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 2397 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 2398 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 2399 { 0 } 2400 }; 2401 static const struct intr_info cim_upintr_info[] = { 2402 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 2403 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 2404 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 2405 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 2406 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 2407 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 2408 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 2409 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 2410 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 2411 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 2412 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 2413 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 2414 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 2415 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 2416 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 2417 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 2418 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 2419 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 2420 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 2421 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 2422 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 2423 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 2424 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 2425 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 2426 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 2427 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 2428 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 2429 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 2430 { 0 } 2431 }; 2432 2433 int fat; 2434 2435 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F) 2436 t4_report_fw_error(adapter); 2437 2438 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 2439 cim_intr_info) + 2440 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 2441 cim_upintr_info); 2442 if (fat) 2443 t4_fatal_err(adapter); 2444} 2445 2446/* 2447 * ULP RX interrupt handler. 2448 */ 2449static void ulprx_intr_handler(struct adapter *adapter) 2450{ 2451 static const struct intr_info ulprx_intr_info[] = { 2452 { 0x1800000, "ULPRX context error", -1, 1 }, 2453 { 0x7fffff, "ULPRX parity error", -1, 1 }, 2454 { 0 } 2455 }; 2456 2457 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 2458 t4_fatal_err(adapter); 2459} 2460 2461/* 2462 * ULP TX interrupt handler. 2463 */ 2464static void ulptx_intr_handler(struct adapter *adapter) 2465{ 2466 static const struct intr_info ulptx_intr_info[] = { 2467 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 2468 0 }, 2469 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 2470 0 }, 2471 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 2472 0 }, 2473 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 2474 0 }, 2475 { 0xfffffff, "ULPTX parity error", -1, 1 }, 2476 { 0 } 2477 }; 2478 2479 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 2480 t4_fatal_err(adapter); 2481} 2482 2483/* 2484 * PM TX interrupt handler. 2485 */ 2486static void pmtx_intr_handler(struct adapter *adapter) 2487{ 2488 static const struct intr_info pmtx_intr_info[] = { 2489 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 2490 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 2491 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 2492 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 2493 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 2494 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 2495 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 2496 -1, 1 }, 2497 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 2498 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 2499 { 0 } 2500 }; 2501 2502 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 2503 t4_fatal_err(adapter); 2504} 2505 2506/* 2507 * PM RX interrupt handler. 2508 */ 2509static void pmrx_intr_handler(struct adapter *adapter) 2510{ 2511 static const struct intr_info pmrx_intr_info[] = { 2512 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 2513 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 2514 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 2515 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 2516 -1, 1 }, 2517 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 2518 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 2519 { 0 } 2520 }; 2521 2522 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 2523 t4_fatal_err(adapter); 2524} 2525 2526/* 2527 * CPL switch interrupt handler. 2528 */ 2529static void cplsw_intr_handler(struct adapter *adapter) 2530{ 2531 static const struct intr_info cplsw_intr_info[] = { 2532 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 2533 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 2534 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 2535 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 2536 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 2537 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 2538 { 0 } 2539 }; 2540 2541 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 2542 t4_fatal_err(adapter); 2543} 2544 2545/* 2546 * LE interrupt handler. 2547 */ 2548static void le_intr_handler(struct adapter *adap) 2549{ 2550 static const struct intr_info le_intr_info[] = { 2551 { LIPMISS_F, "LE LIP miss", -1, 0 }, 2552 { LIP0_F, "LE 0 LIP error", -1, 0 }, 2553 { PARITYERR_F, "LE parity error", -1, 1 }, 2554 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 2555 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 2556 { 0 } 2557 }; 2558 2559 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, le_intr_info)) 2560 t4_fatal_err(adap); 2561} 2562 2563/* 2564 * MPS interrupt handler. 2565 */ 2566static void mps_intr_handler(struct adapter *adapter) 2567{ 2568 static const struct intr_info mps_rx_intr_info[] = { 2569 { 0xffffff, "MPS Rx parity error", -1, 1 }, 2570 { 0 } 2571 }; 2572 static const struct intr_info mps_tx_intr_info[] = { 2573 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 2574 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 2575 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 2576 -1, 1 }, 2577 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 2578 -1, 1 }, 2579 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 2580 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 2581 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 2582 { 0 } 2583 }; 2584 static const struct intr_info mps_trc_intr_info[] = { 2585 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 2586 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 2587 -1, 1 }, 2588 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 2589 { 0 } 2590 }; 2591 static const struct intr_info mps_stat_sram_intr_info[] = { 2592 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 2593 { 0 } 2594 }; 2595 static const struct intr_info mps_stat_tx_intr_info[] = { 2596 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 2597 { 0 } 2598 }; 2599 static const struct intr_info mps_stat_rx_intr_info[] = { 2600 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 2601 { 0 } 2602 }; 2603 static const struct intr_info mps_cls_intr_info[] = { 2604 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 2605 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 2606 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 2607 { 0 } 2608 }; 2609 2610 int fat; 2611 2612 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 2613 mps_rx_intr_info) + 2614 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 2615 mps_tx_intr_info) + 2616 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 2617 mps_trc_intr_info) + 2618 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 2619 mps_stat_sram_intr_info) + 2620 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 2621 mps_stat_tx_intr_info) + 2622 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 2623 mps_stat_rx_intr_info) + 2624 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 2625 mps_cls_intr_info); 2626 2627 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 2628 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 2629 if (fat) 2630 t4_fatal_err(adapter); 2631} 2632 2633#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 2634 ECC_UE_INT_CAUSE_F) 2635 2636/* 2637 * EDC/MC interrupt handler. 2638 */ 2639static void mem_intr_handler(struct adapter *adapter, int idx) 2640{ 2641 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 2642 2643 unsigned int addr, cnt_addr, v; 2644 2645 if (idx <= MEM_EDC1) { 2646 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 2647 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 2648 } else if (idx == MEM_MC) { 2649 if (is_t4(adapter->params.chip)) { 2650 addr = MC_INT_CAUSE_A; 2651 cnt_addr = MC_ECC_STATUS_A; 2652 } else { 2653 addr = MC_P_INT_CAUSE_A; 2654 cnt_addr = MC_P_ECC_STATUS_A; 2655 } 2656 } else { 2657 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 2658 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 2659 } 2660 2661 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 2662 if (v & PERR_INT_CAUSE_F) 2663 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 2664 name[idx]); 2665 if (v & ECC_CE_INT_CAUSE_F) { 2666 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 2667 2668 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 2669 if (printk_ratelimit()) 2670 dev_warn(adapter->pdev_dev, 2671 "%u %s correctable ECC data error%s\n", 2672 cnt, name[idx], cnt > 1 ? "s" : ""); 2673 } 2674 if (v & ECC_UE_INT_CAUSE_F) 2675 dev_alert(adapter->pdev_dev, 2676 "%s uncorrectable ECC data error\n", name[idx]); 2677 2678 t4_write_reg(adapter, addr, v); 2679 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 2680 t4_fatal_err(adapter); 2681} 2682 2683/* 2684 * MA interrupt handler. 2685 */ 2686static void ma_intr_handler(struct adapter *adap) 2687{ 2688 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 2689 2690 if (status & MEM_PERR_INT_CAUSE_F) { 2691 dev_alert(adap->pdev_dev, 2692 "MA parity error, parity status %#x\n", 2693 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 2694 if (is_t5(adap->params.chip)) 2695 dev_alert(adap->pdev_dev, 2696 "MA parity error, parity status %#x\n", 2697 t4_read_reg(adap, 2698 MA_PARITY_ERROR_STATUS2_A)); 2699 } 2700 if (status & MEM_WRAP_INT_CAUSE_F) { 2701 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 2702 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 2703 "client %u to address %#x\n", 2704 MEM_WRAP_CLIENT_NUM_G(v), 2705 MEM_WRAP_ADDRESS_G(v) << 4); 2706 } 2707 t4_write_reg(adap, MA_INT_CAUSE_A, status); 2708 t4_fatal_err(adap); 2709} 2710 2711/* 2712 * SMB interrupt handler. 2713 */ 2714static void smb_intr_handler(struct adapter *adap) 2715{ 2716 static const struct intr_info smb_intr_info[] = { 2717 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 2718 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 2719 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 2720 { 0 } 2721 }; 2722 2723 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 2724 t4_fatal_err(adap); 2725} 2726 2727/* 2728 * NC-SI interrupt handler. 2729 */ 2730static void ncsi_intr_handler(struct adapter *adap) 2731{ 2732 static const struct intr_info ncsi_intr_info[] = { 2733 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 2734 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 2735 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 2736 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 2737 { 0 } 2738 }; 2739 2740 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 2741 t4_fatal_err(adap); 2742} 2743 2744/* 2745 * XGMAC interrupt handler. 2746 */ 2747static void xgmac_intr_handler(struct adapter *adap, int port) 2748{ 2749 u32 v, int_cause_reg; 2750 2751 if (is_t4(adap->params.chip)) 2752 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 2753 else 2754 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 2755 2756 v = t4_read_reg(adap, int_cause_reg); 2757 2758 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 2759 if (!v) 2760 return; 2761 2762 if (v & TXFIFO_PRTY_ERR_F) 2763 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 2764 port); 2765 if (v & RXFIFO_PRTY_ERR_F) 2766 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 2767 port); 2768 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 2769 t4_fatal_err(adap); 2770} 2771 2772/* 2773 * PL interrupt handler. 2774 */ 2775static void pl_intr_handler(struct adapter *adap) 2776{ 2777 static const struct intr_info pl_intr_info[] = { 2778 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 2779 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 2780 { 0 } 2781 }; 2782 2783 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 2784 t4_fatal_err(adap); 2785} 2786 2787#define PF_INTR_MASK (PFSW_F) 2788#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 2789 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 2790 CPL_SWITCH_F | SGE_F | ULP_TX_F) 2791 2792/** 2793 * t4_slow_intr_handler - control path interrupt handler 2794 * @adapter: the adapter 2795 * 2796 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 2797 * The designation 'slow' is because it involves register reads, while 2798 * data interrupts typically don't involve any MMIOs. 2799 */ 2800int t4_slow_intr_handler(struct adapter *adapter) 2801{ 2802 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 2803 2804 if (!(cause & GLBL_INTR_MASK)) 2805 return 0; 2806 if (cause & CIM_F) 2807 cim_intr_handler(adapter); 2808 if (cause & MPS_F) 2809 mps_intr_handler(adapter); 2810 if (cause & NCSI_F) 2811 ncsi_intr_handler(adapter); 2812 if (cause & PL_F) 2813 pl_intr_handler(adapter); 2814 if (cause & SMB_F) 2815 smb_intr_handler(adapter); 2816 if (cause & XGMAC0_F) 2817 xgmac_intr_handler(adapter, 0); 2818 if (cause & XGMAC1_F) 2819 xgmac_intr_handler(adapter, 1); 2820 if (cause & XGMAC_KR0_F) 2821 xgmac_intr_handler(adapter, 2); 2822 if (cause & XGMAC_KR1_F) 2823 xgmac_intr_handler(adapter, 3); 2824 if (cause & PCIE_F) 2825 pcie_intr_handler(adapter); 2826 if (cause & MC_F) 2827 mem_intr_handler(adapter, MEM_MC); 2828 if (!is_t4(adapter->params.chip) && (cause & MC1_S)) 2829 mem_intr_handler(adapter, MEM_MC1); 2830 if (cause & EDC0_F) 2831 mem_intr_handler(adapter, MEM_EDC0); 2832 if (cause & EDC1_F) 2833 mem_intr_handler(adapter, MEM_EDC1); 2834 if (cause & LE_F) 2835 le_intr_handler(adapter); 2836 if (cause & TP_F) 2837 tp_intr_handler(adapter); 2838 if (cause & MA_F) 2839 ma_intr_handler(adapter); 2840 if (cause & PM_TX_F) 2841 pmtx_intr_handler(adapter); 2842 if (cause & PM_RX_F) 2843 pmrx_intr_handler(adapter); 2844 if (cause & ULP_RX_F) 2845 ulprx_intr_handler(adapter); 2846 if (cause & CPL_SWITCH_F) 2847 cplsw_intr_handler(adapter); 2848 if (cause & SGE_F) 2849 sge_intr_handler(adapter); 2850 if (cause & ULP_TX_F) 2851 ulptx_intr_handler(adapter); 2852 2853 /* Clear the interrupts just processed for which we are the master. */ 2854 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 2855 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 2856 return 1; 2857} 2858 2859/** 2860 * t4_intr_enable - enable interrupts 2861 * @adapter: the adapter whose interrupts should be enabled 2862 * 2863 * Enable PF-specific interrupts for the calling function and the top-level 2864 * interrupt concentrator for global interrupts. Interrupts are already 2865 * enabled at each module, here we just enable the roots of the interrupt 2866 * hierarchies. 2867 * 2868 * Note: this function should be called only when the driver manages 2869 * non PF-specific interrupts from the various HW modules. Only one PCI 2870 * function at a time should be doing this. 2871 */ 2872void t4_intr_enable(struct adapter *adapter) 2873{ 2874 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A)); 2875 2876 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 2877 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 2878 ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F | 2879 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 2880 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 2881 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 2882 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F | 2883 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F | 2884 EGRESS_SIZE_ERR_F); 2885 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 2886 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 2887} 2888 2889/** 2890 * t4_intr_disable - disable interrupts 2891 * @adapter: the adapter whose interrupts should be disabled 2892 * 2893 * Disable interrupts. We only disable the top-level interrupt 2894 * concentrators. The caller must be a PCI function managing global 2895 * interrupts. 2896 */ 2897void t4_intr_disable(struct adapter *adapter) 2898{ 2899 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A)); 2900 2901 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 2902 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 2903} 2904 2905/** 2906 * hash_mac_addr - return the hash value of a MAC address 2907 * @addr: the 48-bit Ethernet MAC address 2908 * 2909 * Hashes a MAC address according to the hash function used by HW inexact 2910 * (hash) address matching. 2911 */ 2912static int hash_mac_addr(const u8 *addr) 2913{ 2914 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 2915 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 2916 a ^= b; 2917 a ^= (a >> 12); 2918 a ^= (a >> 6); 2919 return a & 0x3f; 2920} 2921 2922/** 2923 * t4_config_rss_range - configure a portion of the RSS mapping table 2924 * @adapter: the adapter 2925 * @mbox: mbox to use for the FW command 2926 * @viid: virtual interface whose RSS subtable is to be written 2927 * @start: start entry in the table to write 2928 * @n: how many table entries to write 2929 * @rspq: values for the response queue lookup table 2930 * @nrspq: number of values in @rspq 2931 * 2932 * Programs the selected part of the VI's RSS mapping table with the 2933 * provided values. If @nrspq < @n the supplied values are used repeatedly 2934 * until the full table range is populated. 2935 * 2936 * The caller must ensure the values in @rspq are in the range allowed for 2937 * @viid. 2938 */ 2939int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 2940 int start, int n, const u16 *rspq, unsigned int nrspq) 2941{ 2942 int ret; 2943 const u16 *rsp = rspq; 2944 const u16 *rsp_end = rspq + nrspq; 2945 struct fw_rss_ind_tbl_cmd cmd; 2946 2947 memset(&cmd, 0, sizeof(cmd)); 2948 cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 2949 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 2950 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 2951 cmd.retval_len16 = htonl(FW_LEN16(cmd)); 2952 2953 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 2954 while (n > 0) { 2955 int nq = min(n, 32); 2956 __be32 *qp = &cmd.iq0_to_iq2; 2957 2958 cmd.niqid = htons(nq); 2959 cmd.startidx = htons(start); 2960 2961 start += nq; 2962 n -= nq; 2963 2964 while (nq > 0) { 2965 unsigned int v; 2966 2967 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 2968 if (++rsp >= rsp_end) 2969 rsp = rspq; 2970 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 2971 if (++rsp >= rsp_end) 2972 rsp = rspq; 2973 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 2974 if (++rsp >= rsp_end) 2975 rsp = rspq; 2976 2977 *qp++ = htonl(v); 2978 nq -= 3; 2979 } 2980 2981 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 2982 if (ret) 2983 return ret; 2984 } 2985 return 0; 2986} 2987 2988/** 2989 * t4_config_glbl_rss - configure the global RSS mode 2990 * @adapter: the adapter 2991 * @mbox: mbox to use for the FW command 2992 * @mode: global RSS mode 2993 * @flags: mode-specific flags 2994 * 2995 * Sets the global RSS mode. 2996 */ 2997int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 2998 unsigned int flags) 2999{ 3000 struct fw_rss_glb_config_cmd c; 3001 3002 memset(&c, 0, sizeof(c)); 3003 c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 3004 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3005 c.retval_len16 = htonl(FW_LEN16(c)); 3006 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 3007 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 3008 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 3009 c.u.basicvirtual.mode_pkd = 3010 htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 3011 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags); 3012 } else 3013 return -EINVAL; 3014 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 3015} 3016 3017/* Read an RSS table row */ 3018static int rd_rss_row(struct adapter *adap, int row, u32 *val) 3019{ 3020 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 3021 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 3022 5, 0, val); 3023} 3024 3025/** 3026 * t4_read_rss - read the contents of the RSS mapping table 3027 * @adapter: the adapter 3028 * @map: holds the contents of the RSS mapping table 3029 * 3030 * Reads the contents of the RSS hash->queue mapping table. 3031 */ 3032int t4_read_rss(struct adapter *adapter, u16 *map) 3033{ 3034 u32 val; 3035 int i, ret; 3036 3037 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 3038 ret = rd_rss_row(adapter, i, &val); 3039 if (ret) 3040 return ret; 3041 *map++ = LKPTBLQUEUE0_G(val); 3042 *map++ = LKPTBLQUEUE1_G(val); 3043 } 3044 return 0; 3045} 3046 3047/** 3048 * t4_read_rss_key - read the global RSS key 3049 * @adap: the adapter 3050 * @key: 10-entry array holding the 320-bit RSS key 3051 * 3052 * Reads the global 320-bit RSS key. 3053 */ 3054void t4_read_rss_key(struct adapter *adap, u32 *key) 3055{ 3056 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 3057 TP_RSS_SECRET_KEY0_A); 3058} 3059 3060/** 3061 * t4_write_rss_key - program one of the RSS keys 3062 * @adap: the adapter 3063 * @key: 10-entry array holding the 320-bit RSS key 3064 * @idx: which RSS key to write 3065 * 3066 * Writes one of the RSS keys with the given 320-bit value. If @idx is 3067 * 0..15 the corresponding entry in the RSS key table is written, 3068 * otherwise the global RSS key is written. 3069 */ 3070void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) 3071{ 3072 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 3073 TP_RSS_SECRET_KEY0_A); 3074 if (idx >= 0 && idx < 16) 3075 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 3076 KEYWRADDR_V(idx) | KEYWREN_F); 3077} 3078 3079/** 3080 * t4_read_rss_pf_config - read PF RSS Configuration Table 3081 * @adapter: the adapter 3082 * @index: the entry in the PF RSS table to read 3083 * @valp: where to store the returned value 3084 * 3085 * Reads the PF RSS Configuration Table at the specified index and returns 3086 * the value found there. 3087 */ 3088void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 3089 u32 *valp) 3090{ 3091 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3092 valp, 1, TP_RSS_PF0_CONFIG_A + index); 3093} 3094 3095/** 3096 * t4_read_rss_vf_config - read VF RSS Configuration Table 3097 * @adapter: the adapter 3098 * @index: the entry in the VF RSS table to read 3099 * @vfl: where to store the returned VFL 3100 * @vfh: where to store the returned VFH 3101 * 3102 * Reads the VF RSS Configuration Table at the specified index and returns 3103 * the (VFL, VFH) values found there. 3104 */ 3105void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 3106 u32 *vfl, u32 *vfh) 3107{ 3108 u32 vrt, mask, data; 3109 3110 mask = VFWRADDR_V(VFWRADDR_M); 3111 data = VFWRADDR_V(index); 3112 3113 /* Request that the index'th VF Table values be read into VFL/VFH. 3114 */ 3115 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 3116 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 3117 vrt |= data | VFRDEN_F; 3118 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 3119 3120 /* Grab the VFL/VFH values ... 3121 */ 3122 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3123 vfl, 1, TP_RSS_VFL_CONFIG_A); 3124 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3125 vfh, 1, TP_RSS_VFH_CONFIG_A); 3126} 3127 3128/** 3129 * t4_read_rss_pf_map - read PF RSS Map 3130 * @adapter: the adapter 3131 * 3132 * Reads the PF RSS Map register and returns its value. 3133 */ 3134u32 t4_read_rss_pf_map(struct adapter *adapter) 3135{ 3136 u32 pfmap; 3137 3138 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3139 &pfmap, 1, TP_RSS_PF_MAP_A); 3140 return pfmap; 3141} 3142 3143/** 3144 * t4_read_rss_pf_mask - read PF RSS Mask 3145 * @adapter: the adapter 3146 * 3147 * Reads the PF RSS Mask register and returns its value. 3148 */ 3149u32 t4_read_rss_pf_mask(struct adapter *adapter) 3150{ 3151 u32 pfmask; 3152 3153 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3154 &pfmask, 1, TP_RSS_PF_MSK_A); 3155 return pfmask; 3156} 3157 3158/** 3159 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 3160 * @adap: the adapter 3161 * @v4: holds the TCP/IP counter values 3162 * @v6: holds the TCP/IPv6 counter values 3163 * 3164 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 3165 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 3166 */ 3167void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 3168 struct tp_tcp_stats *v6) 3169{ 3170 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 3171 3172#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 3173#define STAT(x) val[STAT_IDX(x)] 3174#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 3175 3176 if (v4) { 3177 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 3178 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); 3179 v4->tcpOutRsts = STAT(OUT_RST); 3180 v4->tcpInSegs = STAT64(IN_SEG); 3181 v4->tcpOutSegs = STAT64(OUT_SEG); 3182 v4->tcpRetransSegs = STAT64(RXT_SEG); 3183 } 3184 if (v6) { 3185 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 3186 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); 3187 v6->tcpOutRsts = STAT(OUT_RST); 3188 v6->tcpInSegs = STAT64(IN_SEG); 3189 v6->tcpOutSegs = STAT64(OUT_SEG); 3190 v6->tcpRetransSegs = STAT64(RXT_SEG); 3191 } 3192#undef STAT64 3193#undef STAT 3194#undef STAT_IDX 3195} 3196 3197/** 3198 * t4_read_mtu_tbl - returns the values in the HW path MTU table 3199 * @adap: the adapter 3200 * @mtus: where to store the MTU values 3201 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 3202 * 3203 * Reads the HW path MTU table. 3204 */ 3205void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 3206{ 3207 u32 v; 3208 int i; 3209 3210 for (i = 0; i < NMTUS; ++i) { 3211 t4_write_reg(adap, TP_MTU_TABLE_A, 3212 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 3213 v = t4_read_reg(adap, TP_MTU_TABLE_A); 3214 mtus[i] = MTUVALUE_G(v); 3215 if (mtu_log) 3216 mtu_log[i] = MTUWIDTH_G(v); 3217 } 3218} 3219 3220/** 3221 * t4_read_cong_tbl - reads the congestion control table 3222 * @adap: the adapter 3223 * @incr: where to store the alpha values 3224 * 3225 * Reads the additive increments programmed into the HW congestion 3226 * control table. 3227 */ 3228void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 3229{ 3230 unsigned int mtu, w; 3231 3232 for (mtu = 0; mtu < NMTUS; ++mtu) 3233 for (w = 0; w < NCCTRL_WIN; ++w) { 3234 t4_write_reg(adap, TP_CCTRL_TABLE_A, 3235 ROWINDEX_V(0xffff) | (mtu << 5) | w); 3236 incr[mtu][w] = (u16)t4_read_reg(adap, 3237 TP_CCTRL_TABLE_A) & 0x1fff; 3238 } 3239} 3240 3241/** 3242 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 3243 * @adap: the adapter 3244 * @addr: the indirect TP register address 3245 * @mask: specifies the field within the register to modify 3246 * @val: new value for the field 3247 * 3248 * Sets a field of an indirect TP register to the given value. 3249 */ 3250void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 3251 unsigned int mask, unsigned int val) 3252{ 3253 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 3254 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 3255 t4_write_reg(adap, TP_PIO_DATA_A, val); 3256} 3257 3258/** 3259 * init_cong_ctrl - initialize congestion control parameters 3260 * @a: the alpha values for congestion control 3261 * @b: the beta values for congestion control 3262 * 3263 * Initialize the congestion control parameters. 3264 */ 3265static void init_cong_ctrl(unsigned short *a, unsigned short *b) 3266{ 3267 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 3268 a[9] = 2; 3269 a[10] = 3; 3270 a[11] = 4; 3271 a[12] = 5; 3272 a[13] = 6; 3273 a[14] = 7; 3274 a[15] = 8; 3275 a[16] = 9; 3276 a[17] = 10; 3277 a[18] = 14; 3278 a[19] = 17; 3279 a[20] = 21; 3280 a[21] = 25; 3281 a[22] = 30; 3282 a[23] = 35; 3283 a[24] = 45; 3284 a[25] = 60; 3285 a[26] = 80; 3286 a[27] = 100; 3287 a[28] = 200; 3288 a[29] = 300; 3289 a[30] = 400; 3290 a[31] = 500; 3291 3292 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 3293 b[9] = b[10] = 1; 3294 b[11] = b[12] = 2; 3295 b[13] = b[14] = b[15] = b[16] = 3; 3296 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 3297 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 3298 b[28] = b[29] = 6; 3299 b[30] = b[31] = 7; 3300} 3301 3302/* The minimum additive increment value for the congestion control table */ 3303#define CC_MIN_INCR 2U 3304 3305/** 3306 * t4_load_mtus - write the MTU and congestion control HW tables 3307 * @adap: the adapter 3308 * @mtus: the values for the MTU table 3309 * @alpha: the values for the congestion control alpha parameter 3310 * @beta: the values for the congestion control beta parameter 3311 * 3312 * Write the HW MTU table with the supplied MTUs and the high-speed 3313 * congestion control table with the supplied alpha, beta, and MTUs. 3314 * We write the two tables together because the additive increments 3315 * depend on the MTUs. 3316 */ 3317void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 3318 const unsigned short *alpha, const unsigned short *beta) 3319{ 3320 static const unsigned int avg_pkts[NCCTRL_WIN] = { 3321 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 3322 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 3323 28672, 40960, 57344, 81920, 114688, 163840, 229376 3324 }; 3325 3326 unsigned int i, w; 3327 3328 for (i = 0; i < NMTUS; ++i) { 3329 unsigned int mtu = mtus[i]; 3330 unsigned int log2 = fls(mtu); 3331 3332 if (!(mtu & ((1 << log2) >> 2))) /* round */ 3333 log2--; 3334 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 3335 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 3336 3337 for (w = 0; w < NCCTRL_WIN; ++w) { 3338 unsigned int inc; 3339 3340 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 3341 CC_MIN_INCR); 3342 3343 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 3344 (w << 16) | (beta[w] << 13) | inc); 3345 } 3346 } 3347} 3348 3349/** 3350 * t4_pmtx_get_stats - returns the HW stats from PMTX 3351 * @adap: the adapter 3352 * @cnt: where to store the count statistics 3353 * @cycles: where to store the cycle statistics 3354 * 3355 * Returns performance statistics from PMTX. 3356 */ 3357void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 3358{ 3359 int i; 3360 u32 data[2]; 3361 3362 for (i = 0; i < PM_NSTATS; i++) { 3363 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 3364 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 3365 if (is_t4(adap->params.chip)) { 3366 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 3367 } else { 3368 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 3369 PM_TX_DBG_DATA_A, data, 2, 3370 PM_TX_DBG_STAT_MSB_A); 3371 cycles[i] = (((u64)data[0] << 32) | data[1]); 3372 } 3373 } 3374} 3375 3376/** 3377 * t4_pmrx_get_stats - returns the HW stats from PMRX 3378 * @adap: the adapter 3379 * @cnt: where to store the count statistics 3380 * @cycles: where to store the cycle statistics 3381 * 3382 * Returns performance statistics from PMRX. 3383 */ 3384void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 3385{ 3386 int i; 3387 u32 data[2]; 3388 3389 for (i = 0; i < PM_NSTATS; i++) { 3390 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 3391 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 3392 if (is_t4(adap->params.chip)) { 3393 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 3394 } else { 3395 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 3396 PM_RX_DBG_DATA_A, data, 2, 3397 PM_RX_DBG_STAT_MSB_A); 3398 cycles[i] = (((u64)data[0] << 32) | data[1]); 3399 } 3400 } 3401} 3402 3403/** 3404 * get_mps_bg_map - return the buffer groups associated with a port 3405 * @adap: the adapter 3406 * @idx: the port index 3407 * 3408 * Returns a bitmap indicating which MPS buffer groups are associated 3409 * with the given port. Bit i is set if buffer group i is used by the 3410 * port. 3411 */ 3412static unsigned int get_mps_bg_map(struct adapter *adap, int idx) 3413{ 3414 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 3415 3416 if (n == 0) 3417 return idx == 0 ? 0xf : 0; 3418 if (n == 1) 3419 return idx < 2 ? (3 << (2 * idx)) : 0; 3420 return 1 << idx; 3421} 3422 3423/** 3424 * t4_get_port_type_description - return Port Type string description 3425 * @port_type: firmware Port Type enumeration 3426 */ 3427const char *t4_get_port_type_description(enum fw_port_type port_type) 3428{ 3429 static const char *const port_type_description[] = { 3430 "R XFI", 3431 "R XAUI", 3432 "T SGMII", 3433 "T XFI", 3434 "T XAUI", 3435 "KX4", 3436 "CX4", 3437 "KX", 3438 "KR", 3439 "R SFP+", 3440 "KR/KX", 3441 "KR/KX/KX4", 3442 "R QSFP_10G", 3443 "R QSA", 3444 "R QSFP", 3445 "R BP40_BA", 3446 }; 3447 3448 if (port_type < ARRAY_SIZE(port_type_description)) 3449 return port_type_description[port_type]; 3450 return "UNKNOWN"; 3451} 3452 3453/** 3454 * t4_get_port_stats - collect port statistics 3455 * @adap: the adapter 3456 * @idx: the port index 3457 * @p: the stats structure to fill 3458 * 3459 * Collect statistics related to the given port from HW. 3460 */ 3461void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 3462{ 3463 u32 bgmap = get_mps_bg_map(adap, idx); 3464 3465#define GET_STAT(name) \ 3466 t4_read_reg64(adap, \ 3467 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 3468 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 3469#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 3470 3471 p->tx_octets = GET_STAT(TX_PORT_BYTES); 3472 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 3473 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 3474 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 3475 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 3476 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 3477 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 3478 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 3479 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 3480 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 3481 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 3482 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 3483 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 3484 p->tx_drop = GET_STAT(TX_PORT_DROP); 3485 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 3486 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 3487 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 3488 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 3489 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 3490 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 3491 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 3492 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 3493 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 3494 3495 p->rx_octets = GET_STAT(RX_PORT_BYTES); 3496 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 3497 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 3498 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 3499 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 3500 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 3501 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 3502 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 3503 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 3504 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 3505 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 3506 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 3507 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 3508 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 3509 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 3510 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 3511 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 3512 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 3513 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 3514 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 3515 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 3516 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 3517 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 3518 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 3519 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 3520 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 3521 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 3522 3523 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 3524 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 3525 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 3526 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 3527 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 3528 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 3529 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 3530 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 3531 3532#undef GET_STAT 3533#undef GET_STAT_COM 3534} 3535 3536/** 3537 * t4_wol_magic_enable - enable/disable magic packet WoL 3538 * @adap: the adapter 3539 * @port: the physical port index 3540 * @addr: MAC address expected in magic packets, %NULL to disable 3541 * 3542 * Enables/disables magic packet wake-on-LAN for the selected port. 3543 */ 3544void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 3545 const u8 *addr) 3546{ 3547 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 3548 3549 if (is_t4(adap->params.chip)) { 3550 mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO); 3551 mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI); 3552 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A); 3553 } else { 3554 mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO); 3555 mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI); 3556 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A); 3557 } 3558 3559 if (addr) { 3560 t4_write_reg(adap, mag_id_reg_l, 3561 (addr[2] << 24) | (addr[3] << 16) | 3562 (addr[4] << 8) | addr[5]); 3563 t4_write_reg(adap, mag_id_reg_h, 3564 (addr[0] << 8) | addr[1]); 3565 } 3566 t4_set_reg_field(adap, port_cfg_reg, MAGICEN_F, 3567 addr ? MAGICEN_F : 0); 3568} 3569 3570/** 3571 * t4_wol_pat_enable - enable/disable pattern-based WoL 3572 * @adap: the adapter 3573 * @port: the physical port index 3574 * @map: bitmap of which HW pattern filters to set 3575 * @mask0: byte mask for bytes 0-63 of a packet 3576 * @mask1: byte mask for bytes 64-127 of a packet 3577 * @crc: Ethernet CRC for selected bytes 3578 * @enable: enable/disable switch 3579 * 3580 * Sets the pattern filters indicated in @map to mask out the bytes 3581 * specified in @mask0/@mask1 in received packets and compare the CRC of 3582 * the resulting packet against @crc. If @enable is %true pattern-based 3583 * WoL is enabled, otherwise disabled. 3584 */ 3585int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 3586 u64 mask0, u64 mask1, unsigned int crc, bool enable) 3587{ 3588 int i; 3589 u32 port_cfg_reg; 3590 3591 if (is_t4(adap->params.chip)) 3592 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A); 3593 else 3594 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A); 3595 3596 if (!enable) { 3597 t4_set_reg_field(adap, port_cfg_reg, PATEN_F, 0); 3598 return 0; 3599 } 3600 if (map > 0xff) 3601 return -EINVAL; 3602 3603#define EPIO_REG(name) \ 3604 (is_t4(adap->params.chip) ? \ 3605 PORT_REG(port, XGMAC_PORT_EPIO_##name##_A) : \ 3606 T5_PORT_REG(port, MAC_PORT_EPIO_##name##_A)) 3607 3608 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 3609 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 3610 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 3611 3612 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 3613 if (!(map & 1)) 3614 continue; 3615 3616 /* write byte masks */ 3617 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 3618 t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i) | EPIOWR_F); 3619 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 3620 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F) 3621 return -ETIMEDOUT; 3622 3623 /* write CRC */ 3624 t4_write_reg(adap, EPIO_REG(DATA0), crc); 3625 t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i + 32) | EPIOWR_F); 3626 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 3627 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F) 3628 return -ETIMEDOUT; 3629 } 3630#undef EPIO_REG 3631 3632 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2_A), 0, PATEN_F); 3633 return 0; 3634} 3635 3636/* t4_mk_filtdelwr - create a delete filter WR 3637 * @ftid: the filter ID 3638 * @wr: the filter work request to populate 3639 * @qid: ingress queue to receive the delete notification 3640 * 3641 * Creates a filter work request to delete the supplied filter. If @qid is 3642 * negative the delete notification is suppressed. 3643 */ 3644void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 3645{ 3646 memset(wr, 0, sizeof(*wr)); 3647 wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); 3648 wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16)); 3649 wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) | 3650 FW_FILTER_WR_NOREPLY_V(qid < 0)); 3651 wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F); 3652 if (qid >= 0) 3653 wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 3654} 3655 3656#define INIT_CMD(var, cmd, rd_wr) do { \ 3657 (var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 3658 FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \ 3659 (var).retval_len16 = htonl(FW_LEN16(var)); \ 3660} while (0) 3661 3662int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 3663 u32 addr, u32 val) 3664{ 3665 struct fw_ldst_cmd c; 3666 3667 memset(&c, 0, sizeof(c)); 3668 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | 3669 FW_CMD_WRITE_F | 3670 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE)); 3671 c.cycles_to_len16 = htonl(FW_LEN16(c)); 3672 c.u.addrval.addr = htonl(addr); 3673 c.u.addrval.val = htonl(val); 3674 3675 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3676} 3677 3678/** 3679 * t4_mdio_rd - read a PHY register through MDIO 3680 * @adap: the adapter 3681 * @mbox: mailbox to use for the FW command 3682 * @phy_addr: the PHY address 3683 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 3684 * @reg: the register to read 3685 * @valp: where to store the value 3686 * 3687 * Issues a FW command through the given mailbox to read a PHY register. 3688 */ 3689int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 3690 unsigned int mmd, unsigned int reg, u16 *valp) 3691{ 3692 int ret; 3693 struct fw_ldst_cmd c; 3694 3695 memset(&c, 0, sizeof(c)); 3696 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | 3697 FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO)); 3698 c.cycles_to_len16 = htonl(FW_LEN16(c)); 3699 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) | 3700 FW_LDST_CMD_MMD_V(mmd)); 3701 c.u.mdio.raddr = htons(reg); 3702 3703 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3704 if (ret == 0) 3705 *valp = ntohs(c.u.mdio.rval); 3706 return ret; 3707} 3708 3709/** 3710 * t4_mdio_wr - write a PHY register through MDIO 3711 * @adap: the adapter 3712 * @mbox: mailbox to use for the FW command 3713 * @phy_addr: the PHY address 3714 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 3715 * @reg: the register to write 3716 * @valp: value to write 3717 * 3718 * Issues a FW command through the given mailbox to write a PHY register. 3719 */ 3720int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 3721 unsigned int mmd, unsigned int reg, u16 val) 3722{ 3723 struct fw_ldst_cmd c; 3724 3725 memset(&c, 0, sizeof(c)); 3726 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | 3727 FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO)); 3728 c.cycles_to_len16 = htonl(FW_LEN16(c)); 3729 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) | 3730 FW_LDST_CMD_MMD_V(mmd)); 3731 c.u.mdio.raddr = htons(reg); 3732 c.u.mdio.rval = htons(val); 3733 3734 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3735} 3736 3737/** 3738 * t4_sge_decode_idma_state - decode the idma state 3739 * @adap: the adapter 3740 * @state: the state idma is stuck in 3741 */ 3742void t4_sge_decode_idma_state(struct adapter *adapter, int state) 3743{ 3744 static const char * const t4_decode[] = { 3745 "IDMA_IDLE", 3746 "IDMA_PUSH_MORE_CPL_FIFO", 3747 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 3748 "Not used", 3749 "IDMA_PHYSADDR_SEND_PCIEHDR", 3750 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 3751 "IDMA_PHYSADDR_SEND_PAYLOAD", 3752 "IDMA_SEND_FIFO_TO_IMSG", 3753 "IDMA_FL_REQ_DATA_FL_PREP", 3754 "IDMA_FL_REQ_DATA_FL", 3755 "IDMA_FL_DROP", 3756 "IDMA_FL_H_REQ_HEADER_FL", 3757 "IDMA_FL_H_SEND_PCIEHDR", 3758 "IDMA_FL_H_PUSH_CPL_FIFO", 3759 "IDMA_FL_H_SEND_CPL", 3760 "IDMA_FL_H_SEND_IP_HDR_FIRST", 3761 "IDMA_FL_H_SEND_IP_HDR", 3762 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 3763 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 3764 "IDMA_FL_H_SEND_IP_HDR_PADDING", 3765 "IDMA_FL_D_SEND_PCIEHDR", 3766 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 3767 "IDMA_FL_D_REQ_NEXT_DATA_FL", 3768 "IDMA_FL_SEND_PCIEHDR", 3769 "IDMA_FL_PUSH_CPL_FIFO", 3770 "IDMA_FL_SEND_CPL", 3771 "IDMA_FL_SEND_PAYLOAD_FIRST", 3772 "IDMA_FL_SEND_PAYLOAD", 3773 "IDMA_FL_REQ_NEXT_DATA_FL", 3774 "IDMA_FL_SEND_NEXT_PCIEHDR", 3775 "IDMA_FL_SEND_PADDING", 3776 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 3777 "IDMA_FL_SEND_FIFO_TO_IMSG", 3778 "IDMA_FL_REQ_DATAFL_DONE", 3779 "IDMA_FL_REQ_HEADERFL_DONE", 3780 }; 3781 static const char * const t5_decode[] = { 3782 "IDMA_IDLE", 3783 "IDMA_ALMOST_IDLE", 3784 "IDMA_PUSH_MORE_CPL_FIFO", 3785 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 3786 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 3787 "IDMA_PHYSADDR_SEND_PCIEHDR", 3788 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 3789 "IDMA_PHYSADDR_SEND_PAYLOAD", 3790 "IDMA_SEND_FIFO_TO_IMSG", 3791 "IDMA_FL_REQ_DATA_FL", 3792 "IDMA_FL_DROP", 3793 "IDMA_FL_DROP_SEND_INC", 3794 "IDMA_FL_H_REQ_HEADER_FL", 3795 "IDMA_FL_H_SEND_PCIEHDR", 3796 "IDMA_FL_H_PUSH_CPL_FIFO", 3797 "IDMA_FL_H_SEND_CPL", 3798 "IDMA_FL_H_SEND_IP_HDR_FIRST", 3799 "IDMA_FL_H_SEND_IP_HDR", 3800 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 3801 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 3802 "IDMA_FL_H_SEND_IP_HDR_PADDING", 3803 "IDMA_FL_D_SEND_PCIEHDR", 3804 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 3805 "IDMA_FL_D_REQ_NEXT_DATA_FL", 3806 "IDMA_FL_SEND_PCIEHDR", 3807 "IDMA_FL_PUSH_CPL_FIFO", 3808 "IDMA_FL_SEND_CPL", 3809 "IDMA_FL_SEND_PAYLOAD_FIRST", 3810 "IDMA_FL_SEND_PAYLOAD", 3811 "IDMA_FL_REQ_NEXT_DATA_FL", 3812 "IDMA_FL_SEND_NEXT_PCIEHDR", 3813 "IDMA_FL_SEND_PADDING", 3814 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 3815 }; 3816 static const u32 sge_regs[] = { 3817 SGE_DEBUG_DATA_LOW_INDEX_2_A, 3818 SGE_DEBUG_DATA_LOW_INDEX_3_A, 3819 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 3820 }; 3821 const char **sge_idma_decode; 3822 int sge_idma_decode_nstates; 3823 int i; 3824 3825 if (is_t4(adapter->params.chip)) { 3826 sge_idma_decode = (const char **)t4_decode; 3827 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 3828 } else { 3829 sge_idma_decode = (const char **)t5_decode; 3830 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 3831 } 3832 3833 if (state < sge_idma_decode_nstates) 3834 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 3835 else 3836 CH_WARN(adapter, "idma state %d unknown\n", state); 3837 3838 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 3839 CH_WARN(adapter, "SGE register %#x value %#x\n", 3840 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 3841} 3842 3843/** 3844 * t4_fw_hello - establish communication with FW 3845 * @adap: the adapter 3846 * @mbox: mailbox to use for the FW command 3847 * @evt_mbox: mailbox to receive async FW events 3848 * @master: specifies the caller's willingness to be the device master 3849 * @state: returns the current device state (if non-NULL) 3850 * 3851 * Issues a command to establish communication with FW. Returns either 3852 * an error (negative integer) or the mailbox of the Master PF. 3853 */ 3854int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 3855 enum dev_master master, enum dev_state *state) 3856{ 3857 int ret; 3858 struct fw_hello_cmd c; 3859 u32 v; 3860 unsigned int master_mbox; 3861 int retries = FW_CMD_HELLO_RETRIES; 3862 3863retry: 3864 memset(&c, 0, sizeof(c)); 3865 INIT_CMD(c, HELLO, WRITE); 3866 c.err_to_clearinit = htonl( 3867 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 3868 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 3869 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox : 3870 FW_HELLO_CMD_MBMASTER_M) | 3871 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 3872 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 3873 FW_HELLO_CMD_CLEARINIT_F); 3874 3875 /* 3876 * Issue the HELLO command to the firmware. If it's not successful 3877 * but indicates that we got a "busy" or "timeout" condition, retry 3878 * the HELLO until we exhaust our retry limit. If we do exceed our 3879 * retry limit, check to see if the firmware left us any error 3880 * information and report that if so. 3881 */ 3882 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3883 if (ret < 0) { 3884 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 3885 goto retry; 3886 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 3887 t4_report_fw_error(adap); 3888 return ret; 3889 } 3890 3891 v = ntohl(c.err_to_clearinit); 3892 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 3893 if (state) { 3894 if (v & FW_HELLO_CMD_ERR_F) 3895 *state = DEV_STATE_ERR; 3896 else if (v & FW_HELLO_CMD_INIT_F) 3897 *state = DEV_STATE_INIT; 3898 else 3899 *state = DEV_STATE_UNINIT; 3900 } 3901 3902 /* 3903 * If we're not the Master PF then we need to wait around for the 3904 * Master PF Driver to finish setting up the adapter. 3905 * 3906 * Note that we also do this wait if we're a non-Master-capable PF and 3907 * there is no current Master PF; a Master PF may show up momentarily 3908 * and we wouldn't want to fail pointlessly. (This can happen when an 3909 * OS loads lots of different drivers rapidly at the same time). In 3910 * this case, the Master PF returned by the firmware will be 3911 * PCIE_FW_MASTER_M so the test below will work ... 3912 */ 3913 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 3914 master_mbox != mbox) { 3915 int waiting = FW_CMD_HELLO_TIMEOUT; 3916 3917 /* 3918 * Wait for the firmware to either indicate an error or 3919 * initialized state. If we see either of these we bail out 3920 * and report the issue to the caller. If we exhaust the 3921 * "hello timeout" and we haven't exhausted our retries, try 3922 * again. Otherwise bail with a timeout error. 3923 */ 3924 for (;;) { 3925 u32 pcie_fw; 3926 3927 msleep(50); 3928 waiting -= 50; 3929 3930 /* 3931 * If neither Error nor Initialialized are indicated 3932 * by the firmware keep waiting till we exaust our 3933 * timeout ... and then retry if we haven't exhausted 3934 * our retries ... 3935 */ 3936 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 3937 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 3938 if (waiting <= 0) { 3939 if (retries-- > 0) 3940 goto retry; 3941 3942 return -ETIMEDOUT; 3943 } 3944 continue; 3945 } 3946 3947 /* 3948 * We either have an Error or Initialized condition 3949 * report errors preferentially. 3950 */ 3951 if (state) { 3952 if (pcie_fw & PCIE_FW_ERR_F) 3953 *state = DEV_STATE_ERR; 3954 else if (pcie_fw & PCIE_FW_INIT_F) 3955 *state = DEV_STATE_INIT; 3956 } 3957 3958 /* 3959 * If we arrived before a Master PF was selected and 3960 * there's not a valid Master PF, grab its identity 3961 * for our caller. 3962 */ 3963 if (master_mbox == PCIE_FW_MASTER_M && 3964 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 3965 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 3966 break; 3967 } 3968 } 3969 3970 return master_mbox; 3971} 3972 3973/** 3974 * t4_fw_bye - end communication with FW 3975 * @adap: the adapter 3976 * @mbox: mailbox to use for the FW command 3977 * 3978 * Issues a command to terminate communication with FW. 3979 */ 3980int t4_fw_bye(struct adapter *adap, unsigned int mbox) 3981{ 3982 struct fw_bye_cmd c; 3983 3984 memset(&c, 0, sizeof(c)); 3985 INIT_CMD(c, BYE, WRITE); 3986 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3987} 3988 3989/** 3990 * t4_init_cmd - ask FW to initialize the device 3991 * @adap: the adapter 3992 * @mbox: mailbox to use for the FW command 3993 * 3994 * Issues a command to FW to partially initialize the device. This 3995 * performs initialization that generally doesn't depend on user input. 3996 */ 3997int t4_early_init(struct adapter *adap, unsigned int mbox) 3998{ 3999 struct fw_initialize_cmd c; 4000 4001 memset(&c, 0, sizeof(c)); 4002 INIT_CMD(c, INITIALIZE, WRITE); 4003 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4004} 4005 4006/** 4007 * t4_fw_reset - issue a reset to FW 4008 * @adap: the adapter 4009 * @mbox: mailbox to use for the FW command 4010 * @reset: specifies the type of reset to perform 4011 * 4012 * Issues a reset command of the specified type to FW. 4013 */ 4014int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 4015{ 4016 struct fw_reset_cmd c; 4017 4018 memset(&c, 0, sizeof(c)); 4019 INIT_CMD(c, RESET, WRITE); 4020 c.val = htonl(reset); 4021 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4022} 4023 4024/** 4025 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 4026 * @adap: the adapter 4027 * @mbox: mailbox to use for the FW RESET command (if desired) 4028 * @force: force uP into RESET even if FW RESET command fails 4029 * 4030 * Issues a RESET command to firmware (if desired) with a HALT indication 4031 * and then puts the microprocessor into RESET state. The RESET command 4032 * will only be issued if a legitimate mailbox is provided (mbox <= 4033 * PCIE_FW_MASTER_M). 4034 * 4035 * This is generally used in order for the host to safely manipulate the 4036 * adapter without fear of conflicting with whatever the firmware might 4037 * be doing. The only way out of this state is to RESTART the firmware 4038 * ... 4039 */ 4040static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 4041{ 4042 int ret = 0; 4043 4044 /* 4045 * If a legitimate mailbox is provided, issue a RESET command 4046 * with a HALT indication. 4047 */ 4048 if (mbox <= PCIE_FW_MASTER_M) { 4049 struct fw_reset_cmd c; 4050 4051 memset(&c, 0, sizeof(c)); 4052 INIT_CMD(c, RESET, WRITE); 4053 c.val = htonl(PIORST_F | PIORSTMODE_F); 4054 c.halt_pkd = htonl(FW_RESET_CMD_HALT_F); 4055 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4056 } 4057 4058 /* 4059 * Normally we won't complete the operation if the firmware RESET 4060 * command fails but if our caller insists we'll go ahead and put the 4061 * uP into RESET. This can be useful if the firmware is hung or even 4062 * missing ... We'll have to take the risk of putting the uP into 4063 * RESET without the cooperation of firmware in that case. 4064 * 4065 * We also force the firmware's HALT flag to be on in case we bypassed 4066 * the firmware RESET command above or we're dealing with old firmware 4067 * which doesn't have the HALT capability. This will serve as a flag 4068 * for the incoming firmware to know that it's coming out of a HALT 4069 * rather than a RESET ... if it's new enough to understand that ... 4070 */ 4071 if (ret == 0 || force) { 4072 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 4073 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 4074 PCIE_FW_HALT_F); 4075 } 4076 4077 /* 4078 * And we always return the result of the firmware RESET command 4079 * even when we force the uP into RESET ... 4080 */ 4081 return ret; 4082} 4083 4084/** 4085 * t4_fw_restart - restart the firmware by taking the uP out of RESET 4086 * @adap: the adapter 4087 * @reset: if we want to do a RESET to restart things 4088 * 4089 * Restart firmware previously halted by t4_fw_halt(). On successful 4090 * return the previous PF Master remains as the new PF Master and there 4091 * is no need to issue a new HELLO command, etc. 4092 * 4093 * We do this in two ways: 4094 * 4095 * 1. If we're dealing with newer firmware we'll simply want to take 4096 * the chip's microprocessor out of RESET. This will cause the 4097 * firmware to start up from its start vector. And then we'll loop 4098 * until the firmware indicates it's started again (PCIE_FW.HALT 4099 * reset to 0) or we timeout. 4100 * 4101 * 2. If we're dealing with older firmware then we'll need to RESET 4102 * the chip since older firmware won't recognize the PCIE_FW.HALT 4103 * flag and automatically RESET itself on startup. 4104 */ 4105static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 4106{ 4107 if (reset) { 4108 /* 4109 * Since we're directing the RESET instead of the firmware 4110 * doing it automatically, we need to clear the PCIE_FW.HALT 4111 * bit. 4112 */ 4113 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 4114 4115 /* 4116 * If we've been given a valid mailbox, first try to get the 4117 * firmware to do the RESET. If that works, great and we can 4118 * return success. Otherwise, if we haven't been given a 4119 * valid mailbox or the RESET command failed, fall back to 4120 * hitting the chip with a hammer. 4121 */ 4122 if (mbox <= PCIE_FW_MASTER_M) { 4123 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 4124 msleep(100); 4125 if (t4_fw_reset(adap, mbox, 4126 PIORST_F | PIORSTMODE_F) == 0) 4127 return 0; 4128 } 4129 4130 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 4131 msleep(2000); 4132 } else { 4133 int ms; 4134 4135 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 4136 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 4137 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 4138 return 0; 4139 msleep(100); 4140 ms += 100; 4141 } 4142 return -ETIMEDOUT; 4143 } 4144 return 0; 4145} 4146 4147/** 4148 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 4149 * @adap: the adapter 4150 * @mbox: mailbox to use for the FW RESET command (if desired) 4151 * @fw_data: the firmware image to write 4152 * @size: image size 4153 * @force: force upgrade even if firmware doesn't cooperate 4154 * 4155 * Perform all of the steps necessary for upgrading an adapter's 4156 * firmware image. Normally this requires the cooperation of the 4157 * existing firmware in order to halt all existing activities 4158 * but if an invalid mailbox token is passed in we skip that step 4159 * (though we'll still put the adapter microprocessor into RESET in 4160 * that case). 4161 * 4162 * On successful return the new firmware will have been loaded and 4163 * the adapter will have been fully RESET losing all previous setup 4164 * state. On unsuccessful return the adapter may be completely hosed ... 4165 * positive errno indicates that the adapter is ~probably~ intact, a 4166 * negative errno indicates that things are looking bad ... 4167 */ 4168int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 4169 const u8 *fw_data, unsigned int size, int force) 4170{ 4171 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 4172 int reset, ret; 4173 4174 if (!t4_fw_matches_chip(adap, fw_hdr)) 4175 return -EINVAL; 4176 4177 ret = t4_fw_halt(adap, mbox, force); 4178 if (ret < 0 && !force) 4179 return ret; 4180 4181 ret = t4_load_fw(adap, fw_data, size); 4182 if (ret < 0) 4183 return ret; 4184 4185 /* 4186 * Older versions of the firmware don't understand the new 4187 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 4188 * restart. So for newly loaded older firmware we'll have to do the 4189 * RESET for it so it starts up on a clean slate. We can tell if 4190 * the newly loaded firmware will handle this right by checking 4191 * its header flags to see if it advertises the capability. 4192 */ 4193 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 4194 return t4_fw_restart(adap, mbox, reset); 4195} 4196 4197/** 4198 * t4_fixup_host_params - fix up host-dependent parameters 4199 * @adap: the adapter 4200 * @page_size: the host's Base Page Size 4201 * @cache_line_size: the host's Cache Line Size 4202 * 4203 * Various registers in T4 contain values which are dependent on the 4204 * host's Base Page and Cache Line Sizes. This function will fix all of 4205 * those registers with the appropriate values as passed in ... 4206 */ 4207int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 4208 unsigned int cache_line_size) 4209{ 4210 unsigned int page_shift = fls(page_size) - 1; 4211 unsigned int sge_hps = page_shift - 10; 4212 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 4213 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 4214 unsigned int fl_align_log = fls(fl_align) - 1; 4215 4216 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 4217 HOSTPAGESIZEPF0_V(sge_hps) | 4218 HOSTPAGESIZEPF1_V(sge_hps) | 4219 HOSTPAGESIZEPF2_V(sge_hps) | 4220 HOSTPAGESIZEPF3_V(sge_hps) | 4221 HOSTPAGESIZEPF4_V(sge_hps) | 4222 HOSTPAGESIZEPF5_V(sge_hps) | 4223 HOSTPAGESIZEPF6_V(sge_hps) | 4224 HOSTPAGESIZEPF7_V(sge_hps)); 4225 4226 if (is_t4(adap->params.chip)) { 4227 t4_set_reg_field(adap, SGE_CONTROL_A, 4228 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 4229 EGRSTATUSPAGESIZE_F, 4230 INGPADBOUNDARY_V(fl_align_log - 4231 INGPADBOUNDARY_SHIFT_X) | 4232 EGRSTATUSPAGESIZE_V(stat_len != 64)); 4233 } else { 4234 /* T5 introduced the separation of the Free List Padding and 4235 * Packing Boundaries. Thus, we can select a smaller Padding 4236 * Boundary to avoid uselessly chewing up PCIe Link and Memory 4237 * Bandwidth, and use a Packing Boundary which is large enough 4238 * to avoid false sharing between CPUs, etc. 4239 * 4240 * For the PCI Link, the smaller the Padding Boundary the 4241 * better. For the Memory Controller, a smaller Padding 4242 * Boundary is better until we cross under the Memory Line 4243 * Size (the minimum unit of transfer to/from Memory). If we 4244 * have a Padding Boundary which is smaller than the Memory 4245 * Line Size, that'll involve a Read-Modify-Write cycle on the 4246 * Memory Controller which is never good. For T5 the smallest 4247 * Padding Boundary which we can select is 32 bytes which is 4248 * larger than any known Memory Controller Line Size so we'll 4249 * use that. 4250 * 4251 * T5 has a different interpretation of the "0" value for the 4252 * Packing Boundary. This corresponds to 16 bytes instead of 4253 * the expected 32 bytes. We never have a Packing Boundary 4254 * less than 32 bytes so we can't use that special value but 4255 * on the other hand, if we wanted 32 bytes, the best we can 4256 * really do is 64 bytes. 4257 */ 4258 if (fl_align <= 32) { 4259 fl_align = 64; 4260 fl_align_log = 6; 4261 } 4262 t4_set_reg_field(adap, SGE_CONTROL_A, 4263 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 4264 EGRSTATUSPAGESIZE_F, 4265 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) | 4266 EGRSTATUSPAGESIZE_V(stat_len != 64)); 4267 t4_set_reg_field(adap, SGE_CONTROL2_A, 4268 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 4269 INGPACKBOUNDARY_V(fl_align_log - 4270 INGPACKBOUNDARY_SHIFT_X)); 4271 } 4272 /* 4273 * Adjust various SGE Free List Host Buffer Sizes. 4274 * 4275 * This is something of a crock since we're using fixed indices into 4276 * the array which are also known by the sge.c code and the T4 4277 * Firmware Configuration File. We need to come up with a much better 4278 * approach to managing this array. For now, the first four entries 4279 * are: 4280 * 4281 * 0: Host Page Size 4282 * 1: 64KB 4283 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 4284 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 4285 * 4286 * For the single-MTU buffers in unpacked mode we need to include 4287 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 4288 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 4289 * Padding boundary. All of these are accommodated in the Factory 4290 * Default Firmware Configuration File but we need to adjust it for 4291 * this host's cache line size. 4292 */ 4293 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 4294 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 4295 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 4296 & ~(fl_align-1)); 4297 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 4298 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 4299 & ~(fl_align-1)); 4300 4301 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 4302 4303 return 0; 4304} 4305 4306/** 4307 * t4_fw_initialize - ask FW to initialize the device 4308 * @adap: the adapter 4309 * @mbox: mailbox to use for the FW command 4310 * 4311 * Issues a command to FW to partially initialize the device. This 4312 * performs initialization that generally doesn't depend on user input. 4313 */ 4314int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 4315{ 4316 struct fw_initialize_cmd c; 4317 4318 memset(&c, 0, sizeof(c)); 4319 INIT_CMD(c, INITIALIZE, WRITE); 4320 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4321} 4322 4323/** 4324 * t4_query_params - query FW or device parameters 4325 * @adap: the adapter 4326 * @mbox: mailbox to use for the FW command 4327 * @pf: the PF 4328 * @vf: the VF 4329 * @nparams: the number of parameters 4330 * @params: the parameter names 4331 * @val: the parameter values 4332 * 4333 * Reads the value of FW or device parameters. Up to 7 parameters can be 4334 * queried at once. 4335 */ 4336int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 4337 unsigned int vf, unsigned int nparams, const u32 *params, 4338 u32 *val) 4339{ 4340 int i, ret; 4341 struct fw_params_cmd c; 4342 __be32 *p = &c.param[0].mnem; 4343 4344 if (nparams > 7) 4345 return -EINVAL; 4346 4347 memset(&c, 0, sizeof(c)); 4348 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | 4349 FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) | 4350 FW_PARAMS_CMD_VFN_V(vf)); 4351 c.retval_len16 = htonl(FW_LEN16(c)); 4352 for (i = 0; i < nparams; i++, p += 2) 4353 *p = htonl(*params++); 4354 4355 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 4356 if (ret == 0) 4357 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 4358 *val++ = ntohl(*p); 4359 return ret; 4360} 4361 4362/** 4363 * t4_set_params_nosleep - sets FW or device parameters 4364 * @adap: the adapter 4365 * @mbox: mailbox to use for the FW command 4366 * @pf: the PF 4367 * @vf: the VF 4368 * @nparams: the number of parameters 4369 * @params: the parameter names 4370 * @val: the parameter values 4371 * 4372 * Does not ever sleep 4373 * Sets the value of FW or device parameters. Up to 7 parameters can be 4374 * specified at once. 4375 */ 4376int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox, 4377 unsigned int pf, unsigned int vf, 4378 unsigned int nparams, const u32 *params, 4379 const u32 *val) 4380{ 4381 struct fw_params_cmd c; 4382 __be32 *p = &c.param[0].mnem; 4383 4384 if (nparams > 7) 4385 return -EINVAL; 4386 4387 memset(&c, 0, sizeof(c)); 4388 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 4389 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4390 FW_PARAMS_CMD_PFN_V(pf) | 4391 FW_PARAMS_CMD_VFN_V(vf)); 4392 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4393 4394 while (nparams--) { 4395 *p++ = cpu_to_be32(*params++); 4396 *p++ = cpu_to_be32(*val++); 4397 } 4398 4399 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 4400} 4401 4402/** 4403 * t4_set_params - sets FW or device parameters 4404 * @adap: the adapter 4405 * @mbox: mailbox to use for the FW command 4406 * @pf: the PF 4407 * @vf: the VF 4408 * @nparams: the number of parameters 4409 * @params: the parameter names 4410 * @val: the parameter values 4411 * 4412 * Sets the value of FW or device parameters. Up to 7 parameters can be 4413 * specified at once. 4414 */ 4415int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 4416 unsigned int vf, unsigned int nparams, const u32 *params, 4417 const u32 *val) 4418{ 4419 struct fw_params_cmd c; 4420 __be32 *p = &c.param[0].mnem; 4421 4422 if (nparams > 7) 4423 return -EINVAL; 4424 4425 memset(&c, 0, sizeof(c)); 4426 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | 4427 FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) | 4428 FW_PARAMS_CMD_VFN_V(vf)); 4429 c.retval_len16 = htonl(FW_LEN16(c)); 4430 while (nparams--) { 4431 *p++ = htonl(*params++); 4432 *p++ = htonl(*val++); 4433 } 4434 4435 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4436} 4437 4438/** 4439 * t4_cfg_pfvf - configure PF/VF resource limits 4440 * @adap: the adapter 4441 * @mbox: mailbox to use for the FW command 4442 * @pf: the PF being configured 4443 * @vf: the VF being configured 4444 * @txq: the max number of egress queues 4445 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 4446 * @rxqi: the max number of interrupt-capable ingress queues 4447 * @rxq: the max number of interruptless ingress queues 4448 * @tc: the PCI traffic class 4449 * @vi: the max number of virtual interfaces 4450 * @cmask: the channel access rights mask for the PF/VF 4451 * @pmask: the port access rights mask for the PF/VF 4452 * @nexact: the maximum number of exact MPS filters 4453 * @rcaps: read capabilities 4454 * @wxcaps: write/execute capabilities 4455 * 4456 * Configures resource limits and capabilities for a physical or virtual 4457 * function. 4458 */ 4459int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 4460 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 4461 unsigned int rxqi, unsigned int rxq, unsigned int tc, 4462 unsigned int vi, unsigned int cmask, unsigned int pmask, 4463 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 4464{ 4465 struct fw_pfvf_cmd c; 4466 4467 memset(&c, 0, sizeof(c)); 4468 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 4469 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 4470 FW_PFVF_CMD_VFN_V(vf)); 4471 c.retval_len16 = htonl(FW_LEN16(c)); 4472 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 4473 FW_PFVF_CMD_NIQ_V(rxq)); 4474 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) | 4475 FW_PFVF_CMD_PMASK_V(pmask) | 4476 FW_PFVF_CMD_NEQ_V(txq)); 4477 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) | 4478 FW_PFVF_CMD_NEXACTF_V(nexact)); 4479 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) | 4480 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 4481 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 4482 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4483} 4484 4485/** 4486 * t4_alloc_vi - allocate a virtual interface 4487 * @adap: the adapter 4488 * @mbox: mailbox to use for the FW command 4489 * @port: physical port associated with the VI 4490 * @pf: the PF owning the VI 4491 * @vf: the VF owning the VI 4492 * @nmac: number of MAC addresses needed (1 to 5) 4493 * @mac: the MAC addresses of the VI 4494 * @rss_size: size of RSS table slice associated with this VI 4495 * 4496 * Allocates a virtual interface for the given physical port. If @mac is 4497 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 4498 * @mac should be large enough to hold @nmac Ethernet addresses, they are 4499 * stored consecutively so the space needed is @nmac * 6 bytes. 4500 * Returns a negative error number or the non-negative VI id. 4501 */ 4502int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 4503 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 4504 unsigned int *rss_size) 4505{ 4506 int ret; 4507 struct fw_vi_cmd c; 4508 4509 memset(&c, 0, sizeof(c)); 4510 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 4511 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4512 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 4513 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 4514 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 4515 c.nmac = nmac - 1; 4516 4517 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 4518 if (ret) 4519 return ret; 4520 4521 if (mac) { 4522 memcpy(mac, c.mac, sizeof(c.mac)); 4523 switch (nmac) { 4524 case 5: 4525 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 4526 case 4: 4527 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 4528 case 3: 4529 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 4530 case 2: 4531 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 4532 } 4533 } 4534 if (rss_size) 4535 *rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd)); 4536 return FW_VI_CMD_VIID_G(ntohs(c.type_viid)); 4537} 4538 4539/** 4540 * t4_set_rxmode - set Rx properties of a virtual interface 4541 * @adap: the adapter 4542 * @mbox: mailbox to use for the FW command 4543 * @viid: the VI id 4544 * @mtu: the new MTU or -1 4545 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 4546 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 4547 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 4548 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 4549 * @sleep_ok: if true we may sleep while awaiting command completion 4550 * 4551 * Sets Rx properties of a virtual interface. 4552 */ 4553int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 4554 int mtu, int promisc, int all_multi, int bcast, int vlanex, 4555 bool sleep_ok) 4556{ 4557 struct fw_vi_rxmode_cmd c; 4558 4559 /* convert to FW values */ 4560 if (mtu < 0) 4561 mtu = FW_RXMODE_MTU_NO_CHG; 4562 if (promisc < 0) 4563 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 4564 if (all_multi < 0) 4565 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 4566 if (bcast < 0) 4567 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 4568 if (vlanex < 0) 4569 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 4570 4571 memset(&c, 0, sizeof(c)); 4572 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F | 4573 FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid)); 4574 c.retval_len16 = htonl(FW_LEN16(c)); 4575 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) | 4576 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 4577 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 4578 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 4579 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 4580 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 4581} 4582 4583/** 4584 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 4585 * @adap: the adapter 4586 * @mbox: mailbox to use for the FW command 4587 * @viid: the VI id 4588 * @free: if true any existing filters for this VI id are first removed 4589 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 4590 * @addr: the MAC address(es) 4591 * @idx: where to store the index of each allocated filter 4592 * @hash: pointer to hash address filter bitmap 4593 * @sleep_ok: call is allowed to sleep 4594 * 4595 * Allocates an exact-match filter for each of the supplied addresses and 4596 * sets it to the corresponding address. If @idx is not %NULL it should 4597 * have at least @naddr entries, each of which will be set to the index of 4598 * the filter allocated for the corresponding MAC address. If a filter 4599 * could not be allocated for an address its index is set to 0xffff. 4600 * If @hash is not %NULL addresses that fail to allocate an exact filter 4601 * are hashed and update the hash filter bitmap pointed at by @hash. 4602 * 4603 * Returns a negative error number or the number of filters allocated. 4604 */ 4605int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 4606 unsigned int viid, bool free, unsigned int naddr, 4607 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 4608{ 4609 int i, ret; 4610 struct fw_vi_mac_cmd c; 4611 struct fw_vi_mac_exact *p; 4612 unsigned int max_naddr = is_t4(adap->params.chip) ? 4613 NUM_MPS_CLS_SRAM_L_INSTANCES : 4614 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 4615 4616 if (naddr > 7) 4617 return -EINVAL; 4618 4619 memset(&c, 0, sizeof(c)); 4620 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | 4621 FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) | 4622 FW_VI_MAC_CMD_VIID_V(viid)); 4623 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) | 4624 FW_CMD_LEN16_V((naddr + 2) / 2)); 4625 4626 for (i = 0, p = c.u.exact; i < naddr; i++, p++) { 4627 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F | 4628 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 4629 memcpy(p->macaddr, addr[i], sizeof(p->macaddr)); 4630 } 4631 4632 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 4633 if (ret) 4634 return ret; 4635 4636 for (i = 0, p = c.u.exact; i < naddr; i++, p++) { 4637 u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx)); 4638 4639 if (idx) 4640 idx[i] = index >= max_naddr ? 0xffff : index; 4641 if (index < max_naddr) 4642 ret++; 4643 else if (hash) 4644 *hash |= (1ULL << hash_mac_addr(addr[i])); 4645 } 4646 return ret; 4647} 4648 4649/** 4650 * t4_change_mac - modifies the exact-match filter for a MAC address 4651 * @adap: the adapter 4652 * @mbox: mailbox to use for the FW command 4653 * @viid: the VI id 4654 * @idx: index of existing filter for old value of MAC address, or -1 4655 * @addr: the new MAC address value 4656 * @persist: whether a new MAC allocation should be persistent 4657 * @add_smt: if true also add the address to the HW SMT 4658 * 4659 * Modifies an exact-match filter and sets it to the new MAC address. 4660 * Note that in general it is not possible to modify the value of a given 4661 * filter so the generic way to modify an address filter is to free the one 4662 * being used by the old address value and allocate a new filter for the 4663 * new address value. @idx can be -1 if the address is a new addition. 4664 * 4665 * Returns a negative error number or the index of the filter with the new 4666 * MAC value. 4667 */ 4668int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 4669 int idx, const u8 *addr, bool persist, bool add_smt) 4670{ 4671 int ret, mode; 4672 struct fw_vi_mac_cmd c; 4673 struct fw_vi_mac_exact *p = c.u.exact; 4674 unsigned int max_mac_addr = is_t4(adap->params.chip) ? 4675 NUM_MPS_CLS_SRAM_L_INSTANCES : 4676 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 4677 4678 if (idx < 0) /* new allocation */ 4679 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 4680 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 4681 4682 memset(&c, 0, sizeof(c)); 4683 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | 4684 FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid)); 4685 c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1)); 4686 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F | 4687 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 4688 FW_VI_MAC_CMD_IDX_V(idx)); 4689 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 4690 4691 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 4692 if (ret == 0) { 4693 ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx)); 4694 if (ret >= max_mac_addr) 4695 ret = -ENOMEM; 4696 } 4697 return ret; 4698} 4699 4700/** 4701 * t4_set_addr_hash - program the MAC inexact-match hash filter 4702 * @adap: the adapter 4703 * @mbox: mailbox to use for the FW command 4704 * @viid: the VI id 4705 * @ucast: whether the hash filter should also match unicast addresses 4706 * @vec: the value to be written to the hash filter 4707 * @sleep_ok: call is allowed to sleep 4708 * 4709 * Sets the 64-bit inexact-match hash filter for a virtual interface. 4710 */ 4711int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 4712 bool ucast, u64 vec, bool sleep_ok) 4713{ 4714 struct fw_vi_mac_cmd c; 4715 4716 memset(&c, 0, sizeof(c)); 4717 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | 4718 FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid)); 4719 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F | 4720 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 4721 FW_CMD_LEN16_V(1)); 4722 c.u.hash.hashvec = cpu_to_be64(vec); 4723 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 4724} 4725 4726/** 4727 * t4_enable_vi_params - enable/disable a virtual interface 4728 * @adap: the adapter 4729 * @mbox: mailbox to use for the FW command 4730 * @viid: the VI id 4731 * @rx_en: 1=enable Rx, 0=disable Rx 4732 * @tx_en: 1=enable Tx, 0=disable Tx 4733 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 4734 * 4735 * Enables/disables a virtual interface. Note that setting DCB Enable 4736 * only makes sense when enabling a Virtual Interface ... 4737 */ 4738int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 4739 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 4740{ 4741 struct fw_vi_enable_cmd c; 4742 4743 memset(&c, 0, sizeof(c)); 4744 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | 4745 FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); 4746 4747 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 4748 FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) | 4749 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en)); 4750 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 4751} 4752 4753/** 4754 * t4_enable_vi - enable/disable a virtual interface 4755 * @adap: the adapter 4756 * @mbox: mailbox to use for the FW command 4757 * @viid: the VI id 4758 * @rx_en: 1=enable Rx, 0=disable Rx 4759 * @tx_en: 1=enable Tx, 0=disable Tx 4760 * 4761 * Enables/disables a virtual interface. 4762 */ 4763int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 4764 bool rx_en, bool tx_en) 4765{ 4766 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 4767} 4768 4769/** 4770 * t4_identify_port - identify a VI's port by blinking its LED 4771 * @adap: the adapter 4772 * @mbox: mailbox to use for the FW command 4773 * @viid: the VI id 4774 * @nblinks: how many times to blink LED at 2.5 Hz 4775 * 4776 * Identifies a VI's port by blinking its LED. 4777 */ 4778int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 4779 unsigned int nblinks) 4780{ 4781 struct fw_vi_enable_cmd c; 4782 4783 memset(&c, 0, sizeof(c)); 4784 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | 4785 FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); 4786 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 4787 c.blinkdur = htons(nblinks); 4788 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4789} 4790 4791/** 4792 * t4_iq_free - free an ingress queue and its FLs 4793 * @adap: the adapter 4794 * @mbox: mailbox to use for the FW command 4795 * @pf: the PF owning the queues 4796 * @vf: the VF owning the queues 4797 * @iqtype: the ingress queue type 4798 * @iqid: ingress queue id 4799 * @fl0id: FL0 queue id or 0xffff if no attached FL0 4800 * @fl1id: FL1 queue id or 0xffff if no attached FL1 4801 * 4802 * Frees an ingress queue and its associated FLs, if any. 4803 */ 4804int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 4805 unsigned int vf, unsigned int iqtype, unsigned int iqid, 4806 unsigned int fl0id, unsigned int fl1id) 4807{ 4808 struct fw_iq_cmd c; 4809 4810 memset(&c, 0, sizeof(c)); 4811 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4812 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 4813 FW_IQ_CMD_VFN_V(vf)); 4814 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 4815 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype)); 4816 c.iqid = htons(iqid); 4817 c.fl0id = htons(fl0id); 4818 c.fl1id = htons(fl1id); 4819 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4820} 4821 4822/** 4823 * t4_eth_eq_free - free an Ethernet egress queue 4824 * @adap: the adapter 4825 * @mbox: mailbox to use for the FW command 4826 * @pf: the PF owning the queue 4827 * @vf: the VF owning the queue 4828 * @eqid: egress queue id 4829 * 4830 * Frees an Ethernet egress queue. 4831 */ 4832int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 4833 unsigned int vf, unsigned int eqid) 4834{ 4835 struct fw_eq_eth_cmd c; 4836 4837 memset(&c, 0, sizeof(c)); 4838 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4839 FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) | 4840 FW_EQ_ETH_CMD_VFN_V(vf)); 4841 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 4842 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid)); 4843 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4844} 4845 4846/** 4847 * t4_ctrl_eq_free - free a control egress queue 4848 * @adap: the adapter 4849 * @mbox: mailbox to use for the FW command 4850 * @pf: the PF owning the queue 4851 * @vf: the VF owning the queue 4852 * @eqid: egress queue id 4853 * 4854 * Frees a control egress queue. 4855 */ 4856int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 4857 unsigned int vf, unsigned int eqid) 4858{ 4859 struct fw_eq_ctrl_cmd c; 4860 4861 memset(&c, 0, sizeof(c)); 4862 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4863 FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) | 4864 FW_EQ_CTRL_CMD_VFN_V(vf)); 4865 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 4866 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid)); 4867 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4868} 4869 4870/** 4871 * t4_ofld_eq_free - free an offload egress queue 4872 * @adap: the adapter 4873 * @mbox: mailbox to use for the FW command 4874 * @pf: the PF owning the queue 4875 * @vf: the VF owning the queue 4876 * @eqid: egress queue id 4877 * 4878 * Frees a control egress queue. 4879 */ 4880int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 4881 unsigned int vf, unsigned int eqid) 4882{ 4883 struct fw_eq_ofld_cmd c; 4884 4885 memset(&c, 0, sizeof(c)); 4886 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | 4887 FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) | 4888 FW_EQ_OFLD_CMD_VFN_V(vf)); 4889 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 4890 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid)); 4891 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4892} 4893 4894/** 4895 * t4_handle_fw_rpl - process a FW reply message 4896 * @adap: the adapter 4897 * @rpl: start of the FW message 4898 * 4899 * Processes a FW message, such as link state change messages. 4900 */ 4901int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 4902{ 4903 u8 opcode = *(const u8 *)rpl; 4904 4905 if (opcode == FW_PORT_CMD) { /* link/module state change message */ 4906 int speed = 0, fc = 0; 4907 const struct fw_port_cmd *p = (void *)rpl; 4908 int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid)); 4909 int port = adap->chan_map[chan]; 4910 struct port_info *pi = adap2pinfo(adap, port); 4911 struct link_config *lc = &pi->link_cfg; 4912 u32 stat = ntohl(p->u.info.lstatus_to_modtype); 4913 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 4914 u32 mod = FW_PORT_CMD_MODTYPE_G(stat); 4915 4916 if (stat & FW_PORT_CMD_RXPAUSE_F) 4917 fc |= PAUSE_RX; 4918 if (stat & FW_PORT_CMD_TXPAUSE_F) 4919 fc |= PAUSE_TX; 4920 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 4921 speed = 100; 4922 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 4923 speed = 1000; 4924 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 4925 speed = 10000; 4926 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 4927 speed = 40000; 4928 4929 if (link_ok != lc->link_ok || speed != lc->speed || 4930 fc != lc->fc) { /* something changed */ 4931 lc->link_ok = link_ok; 4932 lc->speed = speed; 4933 lc->fc = fc; 4934 lc->supported = be16_to_cpu(p->u.info.pcap); 4935 t4_os_link_changed(adap, port, link_ok); 4936 } 4937 if (mod != pi->mod_type) { 4938 pi->mod_type = mod; 4939 t4_os_portmod_changed(adap, port); 4940 } 4941 } 4942 return 0; 4943} 4944 4945static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 4946{ 4947 u16 val; 4948 4949 if (pci_is_pcie(adapter->pdev)) { 4950 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 4951 p->speed = val & PCI_EXP_LNKSTA_CLS; 4952 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 4953 } 4954} 4955 4956/** 4957 * init_link_config - initialize a link's SW state 4958 * @lc: structure holding the link state 4959 * @caps: link capabilities 4960 * 4961 * Initializes the SW state maintained for each link, including the link's 4962 * capabilities and default speed/flow-control/autonegotiation settings. 4963 */ 4964static void init_link_config(struct link_config *lc, unsigned int caps) 4965{ 4966 lc->supported = caps; 4967 lc->requested_speed = 0; 4968 lc->speed = 0; 4969 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 4970 if (lc->supported & FW_PORT_CAP_ANEG) { 4971 lc->advertising = lc->supported & ADVERT_MASK; 4972 lc->autoneg = AUTONEG_ENABLE; 4973 lc->requested_fc |= PAUSE_AUTONEG; 4974 } else { 4975 lc->advertising = 0; 4976 lc->autoneg = AUTONEG_DISABLE; 4977 } 4978} 4979 4980#define CIM_PF_NOACCESS 0xeeeeeeee 4981 4982int t4_wait_dev_ready(void __iomem *regs) 4983{ 4984 u32 whoami; 4985 4986 whoami = readl(regs + PL_WHOAMI_A); 4987 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 4988 return 0; 4989 4990 msleep(500); 4991 whoami = readl(regs + PL_WHOAMI_A); 4992 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 4993} 4994 4995struct flash_desc { 4996 u32 vendor_and_model_id; 4997 u32 size_mb; 4998}; 4999 5000static int get_flash_params(struct adapter *adap) 5001{ 5002 /* Table for non-Numonix supported flash parts. Numonix parts are left 5003 * to the preexisting code. All flash parts have 64KB sectors. 5004 */ 5005 static struct flash_desc supported_flash[] = { 5006 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 5007 }; 5008 5009 int ret; 5010 u32 info; 5011 5012 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 5013 if (!ret) 5014 ret = sf1_read(adap, 3, 0, 1, &info); 5015 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 5016 if (ret) 5017 return ret; 5018 5019 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) 5020 if (supported_flash[ret].vendor_and_model_id == info) { 5021 adap->params.sf_size = supported_flash[ret].size_mb; 5022 adap->params.sf_nsec = 5023 adap->params.sf_size / SF_SEC_SIZE; 5024 return 0; 5025 } 5026 5027 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 5028 return -EINVAL; 5029 info >>= 16; /* log2 of size */ 5030 if (info >= 0x14 && info < 0x18) 5031 adap->params.sf_nsec = 1 << (info - 16); 5032 else if (info == 0x18) 5033 adap->params.sf_nsec = 64; 5034 else 5035 return -EINVAL; 5036 adap->params.sf_size = 1 << info; 5037 adap->params.sf_fw_start = 5038 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; 5039 5040 if (adap->params.sf_size < FLASH_MIN_SIZE) 5041 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", 5042 adap->params.sf_size, FLASH_MIN_SIZE); 5043 return 0; 5044} 5045 5046/** 5047 * t4_prep_adapter - prepare SW and HW for operation 5048 * @adapter: the adapter 5049 * @reset: if true perform a HW reset 5050 * 5051 * Initialize adapter SW state for the various HW modules, set initial 5052 * values for some adapter tunables, take PHYs out of reset, and 5053 * initialize the MDIO interface. 5054 */ 5055int t4_prep_adapter(struct adapter *adapter) 5056{ 5057 int ret, ver; 5058 uint16_t device_id; 5059 u32 pl_rev; 5060 5061 get_pci_mode(adapter, &adapter->params.pci); 5062 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 5063 5064 ret = get_flash_params(adapter); 5065 if (ret < 0) { 5066 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 5067 return ret; 5068 } 5069 5070 /* Retrieve adapter's device ID 5071 */ 5072 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 5073 ver = device_id >> 12; 5074 adapter->params.chip = 0; 5075 switch (ver) { 5076 case CHELSIO_T4: 5077 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5078 break; 5079 case CHELSIO_T5: 5080 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5081 break; 5082 default: 5083 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 5084 device_id); 5085 return -EINVAL; 5086 } 5087 5088 adapter->params.cim_la_size = CIMLA_SIZE; 5089 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 5090 5091 /* 5092 * Default port for debugging in case we can't reach FW. 5093 */ 5094 adapter->params.nports = 1; 5095 adapter->params.portvec = 1; 5096 adapter->params.vpd.cclk = 50000; 5097 return 0; 5098} 5099 5100/** 5101 * cxgb4_t4_bar2_sge_qregs - return BAR2 SGE Queue register information 5102 * @adapter: the adapter 5103 * @qid: the Queue ID 5104 * @qtype: the Ingress or Egress type for @qid 5105 * @pbar2_qoffset: BAR2 Queue Offset 5106 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 5107 * 5108 * Returns the BAR2 SGE Queue Registers information associated with the 5109 * indicated Absolute Queue ID. These are passed back in return value 5110 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 5111 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 5112 * 5113 * This may return an error which indicates that BAR2 SGE Queue 5114 * registers aren't available. If an error is not returned, then the 5115 * following values are returned: 5116 * 5117 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 5118 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 5119 * 5120 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 5121 * require the "Inferred Queue ID" ability may be used. E.g. the 5122 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 5123 * then these "Inferred Queue ID" register may not be used. 5124 */ 5125int cxgb4_t4_bar2_sge_qregs(struct adapter *adapter, 5126 unsigned int qid, 5127 enum t4_bar2_qtype qtype, 5128 u64 *pbar2_qoffset, 5129 unsigned int *pbar2_qid) 5130{ 5131 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 5132 u64 bar2_page_offset, bar2_qoffset; 5133 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 5134 5135 /* T4 doesn't support BAR2 SGE Queue registers. 5136 */ 5137 if (is_t4(adapter->params.chip)) 5138 return -EINVAL; 5139 5140 /* Get our SGE Page Size parameters. 5141 */ 5142 page_shift = adapter->params.sge.hps + 10; 5143 page_size = 1 << page_shift; 5144 5145 /* Get the right Queues per Page parameters for our Queue. 5146 */ 5147 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 5148 ? adapter->params.sge.eq_qpp 5149 : adapter->params.sge.iq_qpp); 5150 qpp_mask = (1 << qpp_shift) - 1; 5151 5152 /* Calculate the basics of the BAR2 SGE Queue register area: 5153 * o The BAR2 page the Queue registers will be in. 5154 * o The BAR2 Queue ID. 5155 * o The BAR2 Queue ID Offset into the BAR2 page. 5156 */ 5157 bar2_page_offset = ((qid >> qpp_shift) << page_shift); 5158 bar2_qid = qid & qpp_mask; 5159 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 5160 5161 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 5162 * hardware will infer the Absolute Queue ID simply from the writes to 5163 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 5164 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 5165 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 5166 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 5167 * from the BAR2 Page and BAR2 Queue ID. 5168 * 5169 * One important censequence of this is that some BAR2 SGE registers 5170 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 5171 * there. But other registers synthesize the SGE Queue ID purely 5172 * from the writes to the registers -- the Write Combined Doorbell 5173 * Buffer is a good example. These BAR2 SGE Registers are only 5174 * available for those BAR2 SGE Register areas where the SGE Absolute 5175 * Queue ID can be inferred from simple writes. 5176 */ 5177 bar2_qoffset = bar2_page_offset; 5178 bar2_qinferred = (bar2_qid_offset < page_size); 5179 if (bar2_qinferred) { 5180 bar2_qoffset += bar2_qid_offset; 5181 bar2_qid = 0; 5182 } 5183 5184 *pbar2_qoffset = bar2_qoffset; 5185 *pbar2_qid = bar2_qid; 5186 return 0; 5187} 5188 5189/** 5190 * t4_init_devlog_params - initialize adapter->params.devlog 5191 * @adap: the adapter 5192 * 5193 * Initialize various fields of the adapter's Firmware Device Log 5194 * Parameters structure. 5195 */ 5196int t4_init_devlog_params(struct adapter *adap) 5197{ 5198 struct devlog_params *dparams = &adap->params.devlog; 5199 u32 pf_dparams; 5200 unsigned int devlog_meminfo; 5201 struct fw_devlog_cmd devlog_cmd; 5202 int ret; 5203 5204 /* If we're dealing with newer firmware, the Device Log Paramerters 5205 * are stored in a designated register which allows us to access the 5206 * Device Log even if we can't talk to the firmware. 5207 */ 5208 pf_dparams = 5209 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 5210 if (pf_dparams) { 5211 unsigned int nentries, nentries128; 5212 5213 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 5214 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 5215 5216 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 5217 nentries = (nentries128 + 1) * 128; 5218 dparams->size = nentries * sizeof(struct fw_devlog_e); 5219 5220 return 0; 5221 } 5222 5223 /* Otherwise, ask the firmware for it's Device Log Parameters. 5224 */ 5225 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 5226 devlog_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_DEVLOG_CMD) | 5227 FW_CMD_REQUEST_F | FW_CMD_READ_F); 5228 devlog_cmd.retval_len16 = htonl(FW_LEN16(devlog_cmd)); 5229 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 5230 &devlog_cmd); 5231 if (ret) 5232 return ret; 5233 5234 devlog_meminfo = ntohl(devlog_cmd.memtype_devlog_memaddr16_devlog); 5235 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 5236 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 5237 dparams->size = ntohl(devlog_cmd.memsize_devlog); 5238 5239 return 0; 5240} 5241 5242/** 5243 * t4_init_sge_params - initialize adap->params.sge 5244 * @adapter: the adapter 5245 * 5246 * Initialize various fields of the adapter's SGE Parameters structure. 5247 */ 5248int t4_init_sge_params(struct adapter *adapter) 5249{ 5250 struct sge_params *sge_params = &adapter->params.sge; 5251 u32 hps, qpp; 5252 unsigned int s_hps, s_qpp; 5253 5254 /* Extract the SGE Page Size for our PF. 5255 */ 5256 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 5257 s_hps = (HOSTPAGESIZEPF0_S + 5258 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn); 5259 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 5260 5261 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 5262 */ 5263 s_qpp = (QUEUESPERPAGEPF0_S + 5264 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn); 5265 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 5266 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 5267 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 5268 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 5269 5270 return 0; 5271} 5272 5273/** 5274 * t4_init_tp_params - initialize adap->params.tp 5275 * @adap: the adapter 5276 * 5277 * Initialize various fields of the adapter's TP Parameters structure. 5278 */ 5279int t4_init_tp_params(struct adapter *adap) 5280{ 5281 int chan; 5282 u32 v; 5283 5284 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 5285 adap->params.tp.tre = TIMERRESOLUTION_G(v); 5286 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 5287 5288 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 5289 for (chan = 0; chan < NCHAN; chan++) 5290 adap->params.tp.tx_modq[chan] = chan; 5291 5292 /* Cache the adapter's Compressed Filter Mode and global Incress 5293 * Configuration. 5294 */ 5295 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 5296 &adap->params.tp.vlan_pri_map, 1, 5297 TP_VLAN_PRI_MAP_A); 5298 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 5299 &adap->params.tp.ingress_config, 1, 5300 TP_INGRESS_CONFIG_A); 5301 5302 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 5303 * shift positions of several elements of the Compressed Filter Tuple 5304 * for this adapter which we need frequently ... 5305 */ 5306 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 5307 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 5308 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 5309 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 5310 PROTOCOL_F); 5311 5312 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 5313 * represents the presence of an Outer VLAN instead of a VNIC ID. 5314 */ 5315 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 5316 adap->params.tp.vnic_shift = -1; 5317 5318 return 0; 5319} 5320 5321/** 5322 * t4_filter_field_shift - calculate filter field shift 5323 * @adap: the adapter 5324 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 5325 * 5326 * Return the shift position of a filter field within the Compressed 5327 * Filter Tuple. The filter field is specified via its selection bit 5328 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 5329 */ 5330int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 5331{ 5332 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 5333 unsigned int sel; 5334 int field_shift; 5335 5336 if ((filter_mode & filter_sel) == 0) 5337 return -1; 5338 5339 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 5340 switch (filter_mode & sel) { 5341 case FCOE_F: 5342 field_shift += FT_FCOE_W; 5343 break; 5344 case PORT_F: 5345 field_shift += FT_PORT_W; 5346 break; 5347 case VNIC_ID_F: 5348 field_shift += FT_VNIC_ID_W; 5349 break; 5350 case VLAN_F: 5351 field_shift += FT_VLAN_W; 5352 break; 5353 case TOS_F: 5354 field_shift += FT_TOS_W; 5355 break; 5356 case PROTOCOL_F: 5357 field_shift += FT_PROTOCOL_W; 5358 break; 5359 case ETHERTYPE_F: 5360 field_shift += FT_ETHERTYPE_W; 5361 break; 5362 case MACMATCH_F: 5363 field_shift += FT_MACMATCH_W; 5364 break; 5365 case MPSHITTYPE_F: 5366 field_shift += FT_MPSHITTYPE_W; 5367 break; 5368 case FRAGMENTATION_F: 5369 field_shift += FT_FRAGMENTATION_W; 5370 break; 5371 } 5372 } 5373 return field_shift; 5374} 5375 5376int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 5377{ 5378 u8 addr[6]; 5379 int ret, i, j = 0; 5380 struct fw_port_cmd c; 5381 struct fw_rss_vi_config_cmd rvc; 5382 5383 memset(&c, 0, sizeof(c)); 5384 memset(&rvc, 0, sizeof(rvc)); 5385 5386 for_each_port(adap, i) { 5387 unsigned int rss_size; 5388 struct port_info *p = adap2pinfo(adap, i); 5389 5390 while ((adap->params.portvec & (1 << j)) == 0) 5391 j++; 5392 5393 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | 5394 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5395 FW_PORT_CMD_PORTID_V(j)); 5396 c.action_to_len16 = htonl( 5397 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 5398 FW_LEN16(c)); 5399 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5400 if (ret) 5401 return ret; 5402 5403 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); 5404 if (ret < 0) 5405 return ret; 5406 5407 p->viid = ret; 5408 p->tx_chan = j; 5409 p->lport = j; 5410 p->rss_size = rss_size; 5411 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 5412 adap->port[i]->dev_port = j; 5413 5414 ret = ntohl(c.u.info.lstatus_to_modtype); 5415 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? 5416 FW_PORT_CMD_MDIOADDR_G(ret) : -1; 5417 p->port_type = FW_PORT_CMD_PTYPE_G(ret); 5418 p->mod_type = FW_PORT_MOD_TYPE_NA; 5419 5420 rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5421 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5422 FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); 5423 rvc.retval_len16 = htonl(FW_LEN16(rvc)); 5424 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 5425 if (ret) 5426 return ret; 5427 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen); 5428 5429 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap)); 5430 j++; 5431 } 5432 return 0; 5433} 5434 5435/** 5436 * t4_read_cimq_cfg - read CIM queue configuration 5437 * @adap: the adapter 5438 * @base: holds the queue base addresses in bytes 5439 * @size: holds the queue sizes in bytes 5440 * @thres: holds the queue full thresholds in bytes 5441 * 5442 * Returns the current configuration of the CIM queues, starting with 5443 * the IBQs, then the OBQs. 5444 */ 5445void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 5446{ 5447 unsigned int i, v; 5448 int cim_num_obq = is_t4(adap->params.chip) ? 5449 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 5450 5451 for (i = 0; i < CIM_NUM_IBQ; i++) { 5452 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 5453 QUENUMSELECT_V(i)); 5454 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 5455 /* value is in 256-byte units */ 5456 *base++ = CIMQBASE_G(v) * 256; 5457 *size++ = CIMQSIZE_G(v) * 256; 5458 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 5459 } 5460 for (i = 0; i < cim_num_obq; i++) { 5461 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 5462 QUENUMSELECT_V(i)); 5463 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 5464 /* value is in 256-byte units */ 5465 *base++ = CIMQBASE_G(v) * 256; 5466 *size++ = CIMQSIZE_G(v) * 256; 5467 } 5468} 5469 5470/** 5471 * t4_read_cim_ibq - read the contents of a CIM inbound queue 5472 * @adap: the adapter 5473 * @qid: the queue index 5474 * @data: where to store the queue contents 5475 * @n: capacity of @data in 32-bit words 5476 * 5477 * Reads the contents of the selected CIM queue starting at address 0 up 5478 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 5479 * error and the number of 32-bit words actually read on success. 5480 */ 5481int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 5482{ 5483 int i, err, attempts; 5484 unsigned int addr; 5485 const unsigned int nwords = CIM_IBQ_SIZE * 4; 5486 5487 if (qid > 5 || (n & 3)) 5488 return -EINVAL; 5489 5490 addr = qid * nwords; 5491 if (n > nwords) 5492 n = nwords; 5493 5494 /* It might take 3-10ms before the IBQ debug read access is allowed. 5495 * Wait for 1 Sec with a delay of 1 usec. 5496 */ 5497 attempts = 1000000; 5498 5499 for (i = 0; i < n; i++, addr++) { 5500 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 5501 IBQDBGEN_F); 5502 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 5503 attempts, 1); 5504 if (err) 5505 return err; 5506 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 5507 } 5508 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 5509 return i; 5510} 5511 5512/** 5513 * t4_read_cim_obq - read the contents of a CIM outbound queue 5514 * @adap: the adapter 5515 * @qid: the queue index 5516 * @data: where to store the queue contents 5517 * @n: capacity of @data in 32-bit words 5518 * 5519 * Reads the contents of the selected CIM queue starting at address 0 up 5520 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 5521 * error and the number of 32-bit words actually read on success. 5522 */ 5523int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 5524{ 5525 int i, err; 5526 unsigned int addr, v, nwords; 5527 int cim_num_obq = is_t4(adap->params.chip) ? 5528 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 5529 5530 if ((qid > (cim_num_obq - 1)) || (n & 3)) 5531 return -EINVAL; 5532 5533 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 5534 QUENUMSELECT_V(qid)); 5535 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 5536 5537 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 5538 nwords = CIMQSIZE_G(v) * 64; /* same */ 5539 if (n > nwords) 5540 n = nwords; 5541 5542 for (i = 0; i < n; i++, addr++) { 5543 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 5544 OBQDBGEN_F); 5545 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 5546 2, 1); 5547 if (err) 5548 return err; 5549 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 5550 } 5551 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 5552 return i; 5553} 5554 5555/** 5556 * t4_cim_read - read a block from CIM internal address space 5557 * @adap: the adapter 5558 * @addr: the start address within the CIM address space 5559 * @n: number of words to read 5560 * @valp: where to store the result 5561 * 5562 * Reads a block of 4-byte words from the CIM intenal address space. 5563 */ 5564int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 5565 unsigned int *valp) 5566{ 5567 int ret = 0; 5568 5569 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 5570 return -EBUSY; 5571 5572 for ( ; !ret && n--; addr += 4) { 5573 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 5574 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 5575 0, 5, 2); 5576 if (!ret) 5577 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 5578 } 5579 return ret; 5580} 5581 5582/** 5583 * t4_cim_write - write a block into CIM internal address space 5584 * @adap: the adapter 5585 * @addr: the start address within the CIM address space 5586 * @n: number of words to write 5587 * @valp: set of values to write 5588 * 5589 * Writes a block of 4-byte words into the CIM intenal address space. 5590 */ 5591int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 5592 const unsigned int *valp) 5593{ 5594 int ret = 0; 5595 5596 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 5597 return -EBUSY; 5598 5599 for ( ; !ret && n--; addr += 4) { 5600 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 5601 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 5602 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 5603 0, 5, 2); 5604 } 5605 return ret; 5606} 5607 5608static int t4_cim_write1(struct adapter *adap, unsigned int addr, 5609 unsigned int val) 5610{ 5611 return t4_cim_write(adap, addr, 1, &val); 5612} 5613 5614/** 5615 * t4_cim_read_la - read CIM LA capture buffer 5616 * @adap: the adapter 5617 * @la_buf: where to store the LA data 5618 * @wrptr: the HW write pointer within the capture buffer 5619 * 5620 * Reads the contents of the CIM LA buffer with the most recent entry at 5621 * the end of the returned data and with the entry at @wrptr first. 5622 * We try to leave the LA in the running state we find it in. 5623 */ 5624int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 5625{ 5626 int i, ret; 5627 unsigned int cfg, val, idx; 5628 5629 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 5630 if (ret) 5631 return ret; 5632 5633 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 5634 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 5635 if (ret) 5636 return ret; 5637 } 5638 5639 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 5640 if (ret) 5641 goto restart; 5642 5643 idx = UPDBGLAWRPTR_G(val); 5644 if (wrptr) 5645 *wrptr = idx; 5646 5647 for (i = 0; i < adap->params.cim_la_size; i++) { 5648 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 5649 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 5650 if (ret) 5651 break; 5652 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 5653 if (ret) 5654 break; 5655 if (val & UPDBGLARDEN_F) { 5656 ret = -ETIMEDOUT; 5657 break; 5658 } 5659 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 5660 if (ret) 5661 break; 5662 idx = (idx + 1) & UPDBGLARDPTR_M; 5663 } 5664restart: 5665 if (cfg & UPDBGLAEN_F) { 5666 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 5667 cfg & ~UPDBGLARDEN_F); 5668 if (!ret) 5669 ret = r; 5670 } 5671 return ret; 5672} 5673 5674/** 5675 * t4_tp_read_la - read TP LA capture buffer 5676 * @adap: the adapter 5677 * @la_buf: where to store the LA data 5678 * @wrptr: the HW write pointer within the capture buffer 5679 * 5680 * Reads the contents of the TP LA buffer with the most recent entry at 5681 * the end of the returned data and with the entry at @wrptr first. 5682 * We leave the LA in the running state we find it in. 5683 */ 5684void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 5685{ 5686 bool last_incomplete; 5687 unsigned int i, cfg, val, idx; 5688 5689 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 5690 if (cfg & DBGLAENABLE_F) /* freeze LA */ 5691 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 5692 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 5693 5694 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 5695 idx = DBGLAWPTR_G(val); 5696 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 5697 if (last_incomplete) 5698 idx = (idx + 1) & DBGLARPTR_M; 5699 if (wrptr) 5700 *wrptr = idx; 5701 5702 val &= 0xffff; 5703 val &= ~DBGLARPTR_V(DBGLARPTR_M); 5704 val |= adap->params.tp.la_mask; 5705 5706 for (i = 0; i < TPLA_SIZE; i++) { 5707 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 5708 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 5709 idx = (idx + 1) & DBGLARPTR_M; 5710 } 5711 5712 /* Wipe out last entry if it isn't valid */ 5713 if (last_incomplete) 5714 la_buf[TPLA_SIZE - 1] = ~0ULL; 5715 5716 if (cfg & DBGLAENABLE_F) /* restore running state */ 5717 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 5718 cfg | adap->params.tp.la_mask); 5719} 5720