1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
63#include <net/addrconf.h>
64#include <net/bonding.h>
65#include <net/addrconf.h>
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
70#include "t4_values.h"
71#include "t4_msg.h"
72#include "t4fw_api.h"
73#include "t4fw_version.h"
74#include "cxgb4_dcb.h"
75#include "cxgb4_debugfs.h"
76#include "clip_tbl.h"
77#include "l2t.h"
78
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
84#define DRV_VERSION "2.0.0-ko"
85const char cxgb4_driver_version[] = DRV_VERSION;
86#define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88/* Host shadow copy of ingress filter entry.  This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command.  The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95	/* Administrative fields for filter.
96	 */
97	u32 valid:1;            /* filter allocated and valid */
98	u32 locked:1;           /* filter is administratively locked */
99
100	u32 pending:1;          /* filter action is pending firmware reply */
101	u32 smtidx:8;           /* Source MAC Table index for smac */
102	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104	/* The filter itself.  Most of this is a straight copy of information
105	 * provided by the extended ioctl().  Some fields are translated to
106	 * internal forms -- for instance the Ingress Queue ID passed in from
107	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108	 */
109	struct ch_filter_specification fs;
110};
111
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119	static const struct pci_device_id cxgb4_pci_tbl[] = {
120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131		{ 0, } \
132	}
133
134#include "t4_pci_id_tbl.h"
135
136#define FW4_FNAME "cxgb4/t4fw.bin"
137#define FW5_FNAME "cxgb4/t5fw.bin"
138#define FW4_CFNAME "cxgb4/t4-config.txt"
139#define FW5_CFNAME "cxgb4/t5-config.txt"
140
141MODULE_DESCRIPTION(DRV_DESC);
142MODULE_AUTHOR("Chelsio Communications");
143MODULE_LICENSE("Dual BSD/GPL");
144MODULE_VERSION(DRV_VERSION);
145MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
146MODULE_FIRMWARE(FW4_FNAME);
147MODULE_FIRMWARE(FW5_FNAME);
148
149/*
150 * Normally we're willing to become the firmware's Master PF but will be happy
151 * if another PF has already become the Master and initialized the adapter.
152 * Setting "force_init" will cause this driver to forcibly establish itself as
153 * the Master PF and initialize the adapter.
154 */
155static uint force_init;
156
157module_param(force_init, uint, 0644);
158MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
159
160/*
161 * Normally if the firmware we connect to has Configuration File support, we
162 * use that and only fall back to the old Driver-based initialization if the
163 * Configuration File fails for some reason.  If force_old_init is set, then
164 * we'll always use the old Driver-based initialization sequence.
165 */
166static uint force_old_init;
167
168module_param(force_old_init, uint, 0644);
169MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
170		 " parameter");
171
172static int dflt_msg_enable = DFLT_MSG_ENABLE;
173
174module_param(dflt_msg_enable, int, 0644);
175MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
176
177/*
178 * The driver uses the best interrupt scheme available on a platform in the
179 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
180 * of these schemes the driver may consider as follows:
181 *
182 * msi = 2: choose from among all three options
183 * msi = 1: only consider MSI and INTx interrupts
184 * msi = 0: force INTx interrupts
185 */
186static int msi = 2;
187
188module_param(msi, int, 0644);
189MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
190
191/*
192 * Queue interrupt hold-off timer values.  Queues default to the first of these
193 * upon creation.
194 */
195static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
196
197module_param_array(intr_holdoff, uint, NULL, 0644);
198MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
199		 "0..4 in microseconds, deprecated parameter");
200
201static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
202
203module_param_array(intr_cnt, uint, NULL, 0644);
204MODULE_PARM_DESC(intr_cnt,
205		 "thresholds 1..3 for queue interrupt packet counters, "
206		 "deprecated parameter");
207
208/*
209 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
210 * offset by 2 bytes in order to have the IP headers line up on 4-byte
211 * boundaries.  This is a requirement for many architectures which will throw
212 * a machine check fault if an attempt is made to access one of the 4-byte IP
213 * header fields on a non-4-byte boundary.  And it's a major performance issue
214 * even on some architectures which allow it like some implementations of the
215 * x86 ISA.  However, some architectures don't mind this and for some very
216 * edge-case performance sensitive applications (like forwarding large volumes
217 * of small packets), setting this DMA offset to 0 will decrease the number of
218 * PCI-E Bus transfers enough to measurably affect performance.
219 */
220static int rx_dma_offset = 2;
221
222static bool vf_acls;
223
224#ifdef CONFIG_PCI_IOV
225module_param(vf_acls, bool, 0644);
226MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
227		 "deprecated parameter");
228
229/* Configure the number of PCI-E Virtual Function which are to be instantiated
230 * on SR-IOV Capable Physical Functions.
231 */
232static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
233
234module_param_array(num_vf, uint, NULL, 0644);
235MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
236#endif
237
238/* TX Queue select used to determine what algorithm to use for selecting TX
239 * queue. Select between the kernel provided function (select_queue=0) or user
240 * cxgb_select_queue function (select_queue=1)
241 *
242 * Default: select_queue=0
243 */
244static int select_queue;
245module_param(select_queue, int, 0644);
246MODULE_PARM_DESC(select_queue,
247		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
248
249static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
250
251module_param(tp_vlan_pri_map, uint, 0644);
252MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
253		 "deprecated parameter");
254
255static struct dentry *cxgb4_debugfs_root;
256
257static LIST_HEAD(adapter_list);
258static DEFINE_MUTEX(uld_mutex);
259/* Adapter list to be accessed from atomic context */
260static LIST_HEAD(adap_rcu_list);
261static DEFINE_SPINLOCK(adap_rcu_lock);
262static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
263static const char *uld_str[] = { "RDMA", "iSCSI" };
264
265static void link_report(struct net_device *dev)
266{
267	if (!netif_carrier_ok(dev))
268		netdev_info(dev, "link down\n");
269	else {
270		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
271
272		const char *s = "10Mbps";
273		const struct port_info *p = netdev_priv(dev);
274
275		switch (p->link_cfg.speed) {
276		case 10000:
277			s = "10Gbps";
278			break;
279		case 1000:
280			s = "1000Mbps";
281			break;
282		case 100:
283			s = "100Mbps";
284			break;
285		case 40000:
286			s = "40Gbps";
287			break;
288		}
289
290		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
291			    fc[p->link_cfg.fc]);
292	}
293}
294
295#ifdef CONFIG_CHELSIO_T4_DCB
296/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
297static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
298{
299	struct port_info *pi = netdev_priv(dev);
300	struct adapter *adap = pi->adapter;
301	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
302	int i;
303
304	/* We use a simple mapping of Port TX Queue Index to DCB
305	 * Priority when we're enabling DCB.
306	 */
307	for (i = 0; i < pi->nqsets; i++, txq++) {
308		u32 name, value;
309		int err;
310
311		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
312			FW_PARAMS_PARAM_X_V(
313				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
314			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
315		value = enable ? i : 0xffffffff;
316
317		/* Since we can be called while atomic (from "interrupt
318		 * level") we need to issue the Set Parameters Commannd
319		 * without sleeping (timeout < 0).
320		 */
321		err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
322					    &name, &value);
323
324		if (err)
325			dev_err(adap->pdev_dev,
326				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
327				enable ? "set" : "unset", pi->port_id, i, -err);
328		else
329			txq->dcb_prio = value;
330	}
331}
332#endif /* CONFIG_CHELSIO_T4_DCB */
333
334void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
335{
336	struct net_device *dev = adapter->port[port_id];
337
338	/* Skip changes from disabled ports. */
339	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
340		if (link_stat)
341			netif_carrier_on(dev);
342		else {
343#ifdef CONFIG_CHELSIO_T4_DCB
344			cxgb4_dcb_state_init(dev);
345			dcb_tx_queue_prio_enable(dev, false);
346#endif /* CONFIG_CHELSIO_T4_DCB */
347			netif_carrier_off(dev);
348		}
349
350		link_report(dev);
351	}
352}
353
354void t4_os_portmod_changed(const struct adapter *adap, int port_id)
355{
356	static const char *mod_str[] = {
357		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
358	};
359
360	const struct net_device *dev = adap->port[port_id];
361	const struct port_info *pi = netdev_priv(dev);
362
363	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
364		netdev_info(dev, "port module unplugged\n");
365	else if (pi->mod_type < ARRAY_SIZE(mod_str))
366		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
367}
368
369/*
370 * Configure the exact and hash address filters to handle a port's multicast
371 * and secondary unicast MAC addresses.
372 */
373static int set_addr_filters(const struct net_device *dev, bool sleep)
374{
375	u64 mhash = 0;
376	u64 uhash = 0;
377	bool free = true;
378	u16 filt_idx[7];
379	const u8 *addr[7];
380	int ret, naddr = 0;
381	const struct netdev_hw_addr *ha;
382	int uc_cnt = netdev_uc_count(dev);
383	int mc_cnt = netdev_mc_count(dev);
384	const struct port_info *pi = netdev_priv(dev);
385	unsigned int mb = pi->adapter->fn;
386
387	/* first do the secondary unicast addresses */
388	netdev_for_each_uc_addr(ha, dev) {
389		addr[naddr++] = ha->addr;
390		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
391			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
392					naddr, addr, filt_idx, &uhash, sleep);
393			if (ret < 0)
394				return ret;
395
396			free = false;
397			naddr = 0;
398		}
399	}
400
401	/* next set up the multicast addresses */
402	netdev_for_each_mc_addr(ha, dev) {
403		addr[naddr++] = ha->addr;
404		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
405			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
406					naddr, addr, filt_idx, &mhash, sleep);
407			if (ret < 0)
408				return ret;
409
410			free = false;
411			naddr = 0;
412		}
413	}
414
415	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
416				uhash | mhash, sleep);
417}
418
419int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
420module_param(dbfifo_int_thresh, int, 0644);
421MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
422
423/*
424 * usecs to sleep while draining the dbfifo
425 */
426static int dbfifo_drain_delay = 1000;
427module_param(dbfifo_drain_delay, int, 0644);
428MODULE_PARM_DESC(dbfifo_drain_delay,
429		 "usecs to sleep while draining the dbfifo");
430
431/*
432 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
433 * If @mtu is -1 it is left unchanged.
434 */
435static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
436{
437	int ret;
438	struct port_info *pi = netdev_priv(dev);
439
440	ret = set_addr_filters(dev, sleep_ok);
441	if (ret == 0)
442		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
443				    (dev->flags & IFF_PROMISC) ? 1 : 0,
444				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
445				    sleep_ok);
446	return ret;
447}
448
449/**
450 *	link_start - enable a port
451 *	@dev: the port to enable
452 *
453 *	Performs the MAC and PHY actions needed to enable a port.
454 */
455static int link_start(struct net_device *dev)
456{
457	int ret;
458	struct port_info *pi = netdev_priv(dev);
459	unsigned int mb = pi->adapter->fn;
460
461	/*
462	 * We do not set address filters and promiscuity here, the stack does
463	 * that step explicitly.
464	 */
465	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
466			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
467	if (ret == 0) {
468		ret = t4_change_mac(pi->adapter, mb, pi->viid,
469				    pi->xact_addr_filt, dev->dev_addr, true,
470				    true);
471		if (ret >= 0) {
472			pi->xact_addr_filt = ret;
473			ret = 0;
474		}
475	}
476	if (ret == 0)
477		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
478				    &pi->link_cfg);
479	if (ret == 0) {
480		local_bh_disable();
481		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
482					  true, CXGB4_DCB_ENABLED);
483		local_bh_enable();
484	}
485
486	return ret;
487}
488
489int cxgb4_dcb_enabled(const struct net_device *dev)
490{
491#ifdef CONFIG_CHELSIO_T4_DCB
492	struct port_info *pi = netdev_priv(dev);
493
494	if (!pi->dcb.enabled)
495		return 0;
496
497	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
498		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
499#else
500	return 0;
501#endif
502}
503EXPORT_SYMBOL(cxgb4_dcb_enabled);
504
505#ifdef CONFIG_CHELSIO_T4_DCB
506/* Handle a Data Center Bridging update message from the firmware. */
507static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
508{
509	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
510	struct net_device *dev = adap->port[port];
511	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
512	int new_dcb_enabled;
513
514	cxgb4_dcb_handle_fw_update(adap, pcmd);
515	new_dcb_enabled = cxgb4_dcb_enabled(dev);
516
517	/* If the DCB has become enabled or disabled on the port then we're
518	 * going to need to set up/tear down DCB Priority parameters for the
519	 * TX Queues associated with the port.
520	 */
521	if (new_dcb_enabled != old_dcb_enabled)
522		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
523}
524#endif /* CONFIG_CHELSIO_T4_DCB */
525
526/* Clear a filter and release any of its resources that we own.  This also
527 * clears the filter's "pending" status.
528 */
529static void clear_filter(struct adapter *adap, struct filter_entry *f)
530{
531	/* If the new or old filter have loopback rewriteing rules then we'll
532	 * need to free any existing Layer Two Table (L2T) entries of the old
533	 * filter rule.  The firmware will handle freeing up any Source MAC
534	 * Table (SMT) entries used for rewriting Source MAC Addresses in
535	 * loopback rules.
536	 */
537	if (f->l2t)
538		cxgb4_l2t_release(f->l2t);
539
540	/* The zeroing of the filter rule below clears the filter valid,
541	 * pending, locked flags, l2t pointer, etc. so it's all we need for
542	 * this operation.
543	 */
544	memset(f, 0, sizeof(*f));
545}
546
547/* Handle a filter write/deletion reply.
548 */
549static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
550{
551	unsigned int idx = GET_TID(rpl);
552	unsigned int nidx = idx - adap->tids.ftid_base;
553	unsigned int ret;
554	struct filter_entry *f;
555
556	if (idx >= adap->tids.ftid_base && nidx <
557	   (adap->tids.nftids + adap->tids.nsftids)) {
558		idx = nidx;
559		ret = TCB_COOKIE_G(rpl->cookie);
560		f = &adap->tids.ftid_tab[idx];
561
562		if (ret == FW_FILTER_WR_FLT_DELETED) {
563			/* Clear the filter when we get confirmation from the
564			 * hardware that the filter has been deleted.
565			 */
566			clear_filter(adap, f);
567		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
568			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
569				idx);
570			clear_filter(adap, f);
571		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
572			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
573			f->pending = 0;  /* asynchronous setup completed */
574			f->valid = 1;
575		} else {
576			/* Something went wrong.  Issue a warning about the
577			 * problem and clear everything out.
578			 */
579			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
580				idx, ret);
581			clear_filter(adap, f);
582		}
583	}
584}
585
586/* Response queue handler for the FW event queue.
587 */
588static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
589			  const struct pkt_gl *gl)
590{
591	u8 opcode = ((const struct rss_header *)rsp)->opcode;
592
593	rsp++;                                          /* skip RSS header */
594
595	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
596	 */
597	if (unlikely(opcode == CPL_FW4_MSG &&
598	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
599		rsp++;
600		opcode = ((const struct rss_header *)rsp)->opcode;
601		rsp++;
602		if (opcode != CPL_SGE_EGR_UPDATE) {
603			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
604				, opcode);
605			goto out;
606		}
607	}
608
609	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
610		const struct cpl_sge_egr_update *p = (void *)rsp;
611		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
612		struct sge_txq *txq;
613
614		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
615		txq->restarts++;
616		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
617			struct sge_eth_txq *eq;
618
619			eq = container_of(txq, struct sge_eth_txq, q);
620			netif_tx_wake_queue(eq->txq);
621		} else {
622			struct sge_ofld_txq *oq;
623
624			oq = container_of(txq, struct sge_ofld_txq, q);
625			tasklet_schedule(&oq->qresume_tsk);
626		}
627	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
628		const struct cpl_fw6_msg *p = (void *)rsp;
629
630#ifdef CONFIG_CHELSIO_T4_DCB
631		const struct fw_port_cmd *pcmd = (const void *)p->data;
632		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
633		unsigned int action =
634			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
635
636		if (cmd == FW_PORT_CMD &&
637		    action == FW_PORT_ACTION_GET_PORT_INFO) {
638			int port = FW_PORT_CMD_PORTID_G(
639					be32_to_cpu(pcmd->op_to_portid));
640			struct net_device *dev = q->adap->port[port];
641			int state_input = ((pcmd->u.info.dcbxdis_pkd &
642					    FW_PORT_CMD_DCBXDIS_F)
643					   ? CXGB4_DCB_INPUT_FW_DISABLED
644					   : CXGB4_DCB_INPUT_FW_ENABLED);
645
646			cxgb4_dcb_state_fsm(dev, state_input);
647		}
648
649		if (cmd == FW_PORT_CMD &&
650		    action == FW_PORT_ACTION_L2_DCB_CFG)
651			dcb_rpl(q->adap, pcmd);
652		else
653#endif
654			if (p->type == 0)
655				t4_handle_fw_rpl(q->adap, p->data);
656	} else if (opcode == CPL_L2T_WRITE_RPL) {
657		const struct cpl_l2t_write_rpl *p = (void *)rsp;
658
659		do_l2t_write_rpl(q->adap, p);
660	} else if (opcode == CPL_SET_TCB_RPL) {
661		const struct cpl_set_tcb_rpl *p = (void *)rsp;
662
663		filter_rpl(q->adap, p);
664	} else
665		dev_err(q->adap->pdev_dev,
666			"unexpected CPL %#x on FW event queue\n", opcode);
667out:
668	return 0;
669}
670
671/**
672 *	uldrx_handler - response queue handler for ULD queues
673 *	@q: the response queue that received the packet
674 *	@rsp: the response queue descriptor holding the offload message
675 *	@gl: the gather list of packet fragments
676 *
677 *	Deliver an ingress offload packet to a ULD.  All processing is done by
678 *	the ULD, we just maintain statistics.
679 */
680static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
681			 const struct pkt_gl *gl)
682{
683	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
684
685	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
686	 */
687	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
688	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
689		rsp += 2;
690
691	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
692		rxq->stats.nomem++;
693		return -1;
694	}
695	if (gl == NULL)
696		rxq->stats.imm++;
697	else if (gl == CXGB4_MSG_AN)
698		rxq->stats.an++;
699	else
700		rxq->stats.pkts++;
701	return 0;
702}
703
704static void disable_msi(struct adapter *adapter)
705{
706	if (adapter->flags & USING_MSIX) {
707		pci_disable_msix(adapter->pdev);
708		adapter->flags &= ~USING_MSIX;
709	} else if (adapter->flags & USING_MSI) {
710		pci_disable_msi(adapter->pdev);
711		adapter->flags &= ~USING_MSI;
712	}
713}
714
715/*
716 * Interrupt handler for non-data events used with MSI-X.
717 */
718static irqreturn_t t4_nondata_intr(int irq, void *cookie)
719{
720	struct adapter *adap = cookie;
721	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
722
723	if (v & PFSW_F) {
724		adap->swintr = 1;
725		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
726	}
727	if (adap->flags & MASTER_PF)
728		t4_slow_intr_handler(adap);
729	return IRQ_HANDLED;
730}
731
732/*
733 * Name the MSI-X interrupts.
734 */
735static void name_msix_vecs(struct adapter *adap)
736{
737	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
738
739	/* non-data interrupts */
740	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
741
742	/* FW events */
743	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
744		 adap->port[0]->name);
745
746	/* Ethernet queues */
747	for_each_port(adap, j) {
748		struct net_device *d = adap->port[j];
749		const struct port_info *pi = netdev_priv(d);
750
751		for (i = 0; i < pi->nqsets; i++, msi_idx++)
752			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
753				 d->name, i);
754	}
755
756	/* offload queues */
757	for_each_ofldrxq(&adap->sge, i)
758		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
759			 adap->port[0]->name, i);
760
761	for_each_rdmarxq(&adap->sge, i)
762		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
763			 adap->port[0]->name, i);
764
765	for_each_rdmaciq(&adap->sge, i)
766		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
767			 adap->port[0]->name, i);
768}
769
770static int request_msix_queue_irqs(struct adapter *adap)
771{
772	struct sge *s = &adap->sge;
773	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
774	int msi_index = 2;
775
776	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
777			  adap->msix_info[1].desc, &s->fw_evtq);
778	if (err)
779		return err;
780
781	for_each_ethrxq(s, ethqidx) {
782		err = request_irq(adap->msix_info[msi_index].vec,
783				  t4_sge_intr_msix, 0,
784				  adap->msix_info[msi_index].desc,
785				  &s->ethrxq[ethqidx].rspq);
786		if (err)
787			goto unwind;
788		msi_index++;
789	}
790	for_each_ofldrxq(s, ofldqidx) {
791		err = request_irq(adap->msix_info[msi_index].vec,
792				  t4_sge_intr_msix, 0,
793				  adap->msix_info[msi_index].desc,
794				  &s->ofldrxq[ofldqidx].rspq);
795		if (err)
796			goto unwind;
797		msi_index++;
798	}
799	for_each_rdmarxq(s, rdmaqidx) {
800		err = request_irq(adap->msix_info[msi_index].vec,
801				  t4_sge_intr_msix, 0,
802				  adap->msix_info[msi_index].desc,
803				  &s->rdmarxq[rdmaqidx].rspq);
804		if (err)
805			goto unwind;
806		msi_index++;
807	}
808	for_each_rdmaciq(s, rdmaciqqidx) {
809		err = request_irq(adap->msix_info[msi_index].vec,
810				  t4_sge_intr_msix, 0,
811				  adap->msix_info[msi_index].desc,
812				  &s->rdmaciq[rdmaciqqidx].rspq);
813		if (err)
814			goto unwind;
815		msi_index++;
816	}
817	return 0;
818
819unwind:
820	while (--rdmaciqqidx >= 0)
821		free_irq(adap->msix_info[--msi_index].vec,
822			 &s->rdmaciq[rdmaciqqidx].rspq);
823	while (--rdmaqidx >= 0)
824		free_irq(adap->msix_info[--msi_index].vec,
825			 &s->rdmarxq[rdmaqidx].rspq);
826	while (--ofldqidx >= 0)
827		free_irq(adap->msix_info[--msi_index].vec,
828			 &s->ofldrxq[ofldqidx].rspq);
829	while (--ethqidx >= 0)
830		free_irq(adap->msix_info[--msi_index].vec,
831			 &s->ethrxq[ethqidx].rspq);
832	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
833	return err;
834}
835
836static void free_msix_queue_irqs(struct adapter *adap)
837{
838	int i, msi_index = 2;
839	struct sge *s = &adap->sge;
840
841	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
842	for_each_ethrxq(s, i)
843		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
844	for_each_ofldrxq(s, i)
845		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
846	for_each_rdmarxq(s, i)
847		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
848	for_each_rdmaciq(s, i)
849		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
850}
851
852/**
853 *	cxgb4_write_rss - write the RSS table for a given port
854 *	@pi: the port
855 *	@queues: array of queue indices for RSS
856 *
857 *	Sets up the portion of the HW RSS table for the port's VI to distribute
858 *	packets to the Rx queues in @queues.
859 */
860int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861{
862	u16 *rss;
863	int i, err;
864	const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
865
866	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
867	if (!rss)
868		return -ENOMEM;
869
870	/* map the queue indices to queue ids */
871	for (i = 0; i < pi->rss_size; i++, queues++)
872		rss[i] = q[*queues].rspq.abs_id;
873
874	err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
875				  pi->rss_size, rss, pi->rss_size);
876	kfree(rss);
877	return err;
878}
879
880/**
881 *	setup_rss - configure RSS
882 *	@adap: the adapter
883 *
884 *	Sets up RSS for each port.
885 */
886static int setup_rss(struct adapter *adap)
887{
888	int i, err;
889
890	for_each_port(adap, i) {
891		const struct port_info *pi = adap2pinfo(adap, i);
892
893		err = cxgb4_write_rss(pi, pi->rss);
894		if (err)
895			return err;
896	}
897	return 0;
898}
899
900/*
901 * Return the channel of the ingress queue with the given qid.
902 */
903static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
904{
905	qid -= p->ingr_start;
906	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
907}
908
909/*
910 * Wait until all NAPI handlers are descheduled.
911 */
912static void quiesce_rx(struct adapter *adap)
913{
914	int i;
915
916	for (i = 0; i < adap->sge.ingr_sz; i++) {
917		struct sge_rspq *q = adap->sge.ingr_map[i];
918
919		if (q && q->handler) {
920			napi_disable(&q->napi);
921			local_bh_disable();
922			while (!cxgb_poll_lock_napi(q))
923				mdelay(1);
924			local_bh_enable();
925		}
926
927	}
928}
929
930/* Disable interrupt and napi handler */
931static void disable_interrupts(struct adapter *adap)
932{
933	if (adap->flags & FULL_INIT_DONE) {
934		t4_intr_disable(adap);
935		if (adap->flags & USING_MSIX) {
936			free_msix_queue_irqs(adap);
937			free_irq(adap->msix_info[0].vec, adap);
938		} else {
939			free_irq(adap->pdev->irq, adap);
940		}
941		quiesce_rx(adap);
942	}
943}
944
945/*
946 * Enable NAPI scheduling and interrupt generation for all Rx queues.
947 */
948static void enable_rx(struct adapter *adap)
949{
950	int i;
951
952	for (i = 0; i < adap->sge.ingr_sz; i++) {
953		struct sge_rspq *q = adap->sge.ingr_map[i];
954
955		if (!q)
956			continue;
957		if (q->handler) {
958			cxgb_busy_poll_init_lock(q);
959			napi_enable(&q->napi);
960		}
961		/* 0-increment GTS to start the timer and enable interrupts */
962		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
963			     SEINTARM_V(q->intr_params) |
964			     INGRESSQID_V(q->cntxt_id));
965	}
966}
967
968static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
969			   unsigned int nq, unsigned int per_chan, int msi_idx,
970			   u16 *ids)
971{
972	int i, err;
973
974	for (i = 0; i < nq; i++, q++) {
975		if (msi_idx > 0)
976			msi_idx++;
977		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
978				       adap->port[i / per_chan],
979				       msi_idx, q->fl.size ? &q->fl : NULL,
980				       uldrx_handler);
981		if (err)
982			return err;
983		memset(&q->stats, 0, sizeof(q->stats));
984		if (ids)
985			ids[i] = q->rspq.abs_id;
986	}
987	return 0;
988}
989
990/**
991 *	setup_sge_queues - configure SGE Tx/Rx/response queues
992 *	@adap: the adapter
993 *
994 *	Determines how many sets of SGE queues to use and initializes them.
995 *	We support multiple queue sets per port if we have MSI-X, otherwise
996 *	just one queue set per port.
997 */
998static int setup_sge_queues(struct adapter *adap)
999{
1000	int err, msi_idx, i, j;
1001	struct sge *s = &adap->sge;
1002
1003	bitmap_zero(s->starving_fl, s->egr_sz);
1004	bitmap_zero(s->txq_maperr, s->egr_sz);
1005
1006	if (adap->flags & USING_MSIX)
1007		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1008	else {
1009		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1010				       NULL, NULL);
1011		if (err)
1012			return err;
1013		msi_idx = -((int)s->intrq.abs_id + 1);
1014	}
1015
1016	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1017	 * don't forget to update the following which need to be
1018	 * synchronized to and changes here.
1019	 *
1020	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1021	 *
1022	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1023	 *    to accommodate any new/deleted Ingress Queues
1024	 *    which need MSI-X Vectors.
1025	 *
1026	 * 3. Update sge_qinfo_show() to include information on the
1027	 *    new/deleted queues.
1028	 */
1029	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030			       msi_idx, NULL, fwevtq_handler);
1031	if (err) {
1032freeout:	t4_free_sge_resources(adap);
1033		return err;
1034	}
1035
1036	for_each_port(adap, i) {
1037		struct net_device *dev = adap->port[i];
1038		struct port_info *pi = netdev_priv(dev);
1039		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1040		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1041
1042		for (j = 0; j < pi->nqsets; j++, q++) {
1043			if (msi_idx > 0)
1044				msi_idx++;
1045			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1046					       msi_idx, &q->fl,
1047					       t4_ethrx_handler);
1048			if (err)
1049				goto freeout;
1050			q->rspq.idx = j;
1051			memset(&q->stats, 0, sizeof(q->stats));
1052		}
1053		for (j = 0; j < pi->nqsets; j++, t++) {
1054			err = t4_sge_alloc_eth_txq(adap, t, dev,
1055					netdev_get_tx_queue(dev, j),
1056					s->fw_evtq.cntxt_id);
1057			if (err)
1058				goto freeout;
1059		}
1060	}
1061
1062	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1063	for_each_ofldrxq(s, i) {
1064		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1065					    adap->port[i / j],
1066					    s->fw_evtq.cntxt_id);
1067		if (err)
1068			goto freeout;
1069	}
1070
1071#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1072	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1073	if (err) \
1074		goto freeout; \
1075	if (msi_idx > 0) \
1076		msi_idx += nq; \
1077} while (0)
1078
1079	ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1080	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1081	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1082	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1083
1084#undef ALLOC_OFLD_RXQS
1085
1086	for_each_port(adap, i) {
1087		/*
1088		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1089		 * have RDMA queues, and that's the right value.
1090		 */
1091		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1092					    s->fw_evtq.cntxt_id,
1093					    s->rdmarxq[i].rspq.cntxt_id);
1094		if (err)
1095			goto freeout;
1096	}
1097
1098	t4_write_reg(adap, is_t4(adap->params.chip) ?
1099				MPS_TRC_RSS_CONTROL_A :
1100				MPS_T5_TRC_RSS_CONTROL_A,
1101		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1102		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1103	return 0;
1104}
1105
1106/*
1107 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1108 * The allocated memory is cleared.
1109 */
1110void *t4_alloc_mem(size_t size)
1111{
1112	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1113
1114	if (!p)
1115		p = vzalloc(size);
1116	return p;
1117}
1118
1119/*
1120 * Free memory allocated through alloc_mem().
1121 */
1122void t4_free_mem(void *addr)
1123{
1124	if (is_vmalloc_addr(addr))
1125		vfree(addr);
1126	else
1127		kfree(addr);
1128}
1129
1130/* Send a Work Request to write the filter at a specified index.  We construct
1131 * a Firmware Filter Work Request to have the work done and put the indicated
1132 * filter into "pending" mode which will prevent any further actions against
1133 * it till we get a reply from the firmware on the completion status of the
1134 * request.
1135 */
1136static int set_filter_wr(struct adapter *adapter, int fidx)
1137{
1138	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1139	struct sk_buff *skb;
1140	struct fw_filter_wr *fwr;
1141	unsigned int ftid;
1142
1143	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1144	if (!skb)
1145		return -ENOMEM;
1146
1147	/* If the new filter requires loopback Destination MAC and/or VLAN
1148	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1149	 * the filter.
1150	 */
1151	if (f->fs.newdmac || f->fs.newvlan) {
1152		/* allocate L2T entry for new filter */
1153		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1154		if (f->l2t == NULL) {
1155			kfree_skb(skb);
1156			return -EAGAIN;
1157		}
1158		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1159					f->fs.eport, f->fs.dmac)) {
1160			cxgb4_l2t_release(f->l2t);
1161			f->l2t = NULL;
1162			kfree_skb(skb);
1163			return -ENOMEM;
1164		}
1165	}
1166
1167	ftid = adapter->tids.ftid_base + fidx;
1168
1169	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1170	memset(fwr, 0, sizeof(*fwr));
1171
1172	/* It would be nice to put most of the following in t4_hw.c but most
1173	 * of the work is translating the cxgbtool ch_filter_specification
1174	 * into the Work Request and the definition of that structure is
1175	 * currently in cxgbtool.h which isn't appropriate to pull into the
1176	 * common code.  We may eventually try to come up with a more neutral
1177	 * filter specification structure but for now it's easiest to simply
1178	 * put this fairly direct code in line ...
1179	 */
1180	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1181	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1182	fwr->tid_to_iq =
1183		htonl(FW_FILTER_WR_TID_V(ftid) |
1184		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1185		      FW_FILTER_WR_NOREPLY_V(0) |
1186		      FW_FILTER_WR_IQ_V(f->fs.iq));
1187	fwr->del_filter_to_l2tix =
1188		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1189		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1190		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1191		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1192		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1193		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1194		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1195		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1196		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1197					     f->fs.newvlan == VLAN_REWRITE) |
1198		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1199					    f->fs.newvlan == VLAN_REWRITE) |
1200		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1201		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1202		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1203		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1204	fwr->ethtype = htons(f->fs.val.ethtype);
1205	fwr->ethtypem = htons(f->fs.mask.ethtype);
1206	fwr->frag_to_ovlan_vldm =
1207		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1208		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1209		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1210		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1211		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1212		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1213	fwr->smac_sel = 0;
1214	fwr->rx_chan_rx_rpl_iq =
1215		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1216		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1217	fwr->maci_to_matchtypem =
1218		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1219		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1220		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1221		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1222		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1223		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1224		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1225		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1226	fwr->ptcl = f->fs.val.proto;
1227	fwr->ptclm = f->fs.mask.proto;
1228	fwr->ttyp = f->fs.val.tos;
1229	fwr->ttypm = f->fs.mask.tos;
1230	fwr->ivlan = htons(f->fs.val.ivlan);
1231	fwr->ivlanm = htons(f->fs.mask.ivlan);
1232	fwr->ovlan = htons(f->fs.val.ovlan);
1233	fwr->ovlanm = htons(f->fs.mask.ovlan);
1234	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1235	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1236	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1237	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1238	fwr->lp = htons(f->fs.val.lport);
1239	fwr->lpm = htons(f->fs.mask.lport);
1240	fwr->fp = htons(f->fs.val.fport);
1241	fwr->fpm = htons(f->fs.mask.fport);
1242	if (f->fs.newsmac)
1243		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1244
1245	/* Mark the filter as "pending" and ship off the Filter Work Request.
1246	 * When we get the Work Request Reply we'll clear the pending status.
1247	 */
1248	f->pending = 1;
1249	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1250	t4_ofld_send(adapter, skb);
1251	return 0;
1252}
1253
1254/* Delete the filter at a specified index.
1255 */
1256static int del_filter_wr(struct adapter *adapter, int fidx)
1257{
1258	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1259	struct sk_buff *skb;
1260	struct fw_filter_wr *fwr;
1261	unsigned int len, ftid;
1262
1263	len = sizeof(*fwr);
1264	ftid = adapter->tids.ftid_base + fidx;
1265
1266	skb = alloc_skb(len, GFP_KERNEL);
1267	if (!skb)
1268		return -ENOMEM;
1269
1270	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1271	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1272
1273	/* Mark the filter as "pending" and ship off the Filter Work Request.
1274	 * When we get the Work Request Reply we'll clear the pending status.
1275	 */
1276	f->pending = 1;
1277	t4_mgmt_tx(adapter, skb);
1278	return 0;
1279}
1280
1281static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1282			     void *accel_priv, select_queue_fallback_t fallback)
1283{
1284	int txq;
1285
1286#ifdef CONFIG_CHELSIO_T4_DCB
1287	/* If a Data Center Bridging has been successfully negotiated on this
1288	 * link then we'll use the skb's priority to map it to a TX Queue.
1289	 * The skb's priority is determined via the VLAN Tag Priority Code
1290	 * Point field.
1291	 */
1292	if (cxgb4_dcb_enabled(dev)) {
1293		u16 vlan_tci;
1294		int err;
1295
1296		err = vlan_get_tag(skb, &vlan_tci);
1297		if (unlikely(err)) {
1298			if (net_ratelimit())
1299				netdev_warn(dev,
1300					    "TX Packet without VLAN Tag on DCB Link\n");
1301			txq = 0;
1302		} else {
1303			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1304#ifdef CONFIG_CHELSIO_T4_FCOE
1305			if (skb->protocol == htons(ETH_P_FCOE))
1306				txq = skb->priority & 0x7;
1307#endif /* CONFIG_CHELSIO_T4_FCOE */
1308		}
1309		return txq;
1310	}
1311#endif /* CONFIG_CHELSIO_T4_DCB */
1312
1313	if (select_queue) {
1314		txq = (skb_rx_queue_recorded(skb)
1315			? skb_get_rx_queue(skb)
1316			: smp_processor_id());
1317
1318		while (unlikely(txq >= dev->real_num_tx_queues))
1319			txq -= dev->real_num_tx_queues;
1320
1321		return txq;
1322	}
1323
1324	return fallback(dev, skb) % dev->real_num_tx_queues;
1325}
1326
1327static inline int is_offload(const struct adapter *adap)
1328{
1329	return adap->params.offload;
1330}
1331
1332static int closest_timer(const struct sge *s, int time)
1333{
1334	int i, delta, match = 0, min_delta = INT_MAX;
1335
1336	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1337		delta = time - s->timer_val[i];
1338		if (delta < 0)
1339			delta = -delta;
1340		if (delta < min_delta) {
1341			min_delta = delta;
1342			match = i;
1343		}
1344	}
1345	return match;
1346}
1347
1348static int closest_thres(const struct sge *s, int thres)
1349{
1350	int i, delta, match = 0, min_delta = INT_MAX;
1351
1352	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1353		delta = thres - s->counter_val[i];
1354		if (delta < 0)
1355			delta = -delta;
1356		if (delta < min_delta) {
1357			min_delta = delta;
1358			match = i;
1359		}
1360	}
1361	return match;
1362}
1363
1364/**
1365 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1366 *	@q: the Rx queue
1367 *	@us: the hold-off time in us, or 0 to disable timer
1368 *	@cnt: the hold-off packet count, or 0 to disable counter
1369 *
1370 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1371 *	one of the two needs to be enabled for the queue to generate interrupts.
1372 */
1373int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1374			       unsigned int us, unsigned int cnt)
1375{
1376	struct adapter *adap = q->adap;
1377
1378	if ((us | cnt) == 0)
1379		cnt = 1;
1380
1381	if (cnt) {
1382		int err;
1383		u32 v, new_idx;
1384
1385		new_idx = closest_thres(&adap->sge, cnt);
1386		if (q->desc && q->pktcnt_idx != new_idx) {
1387			/* the queue has already been created, update it */
1388			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1389			    FW_PARAMS_PARAM_X_V(
1390					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1391			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1392			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1393					    &new_idx);
1394			if (err)
1395				return err;
1396		}
1397		q->pktcnt_idx = new_idx;
1398	}
1399
1400	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1401	q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1402	return 0;
1403}
1404
1405static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1406{
1407	const struct port_info *pi = netdev_priv(dev);
1408	netdev_features_t changed = dev->features ^ features;
1409	int err;
1410
1411	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1412		return 0;
1413
1414	err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1415			    -1, -1, -1,
1416			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1417	if (unlikely(err))
1418		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1419	return err;
1420}
1421
1422static int setup_debugfs(struct adapter *adap)
1423{
1424	if (IS_ERR_OR_NULL(adap->debugfs_root))
1425		return -1;
1426
1427#ifdef CONFIG_DEBUG_FS
1428	t4_setup_debugfs(adap);
1429#endif
1430	return 0;
1431}
1432
1433/*
1434 * upper-layer driver support
1435 */
1436
1437/*
1438 * Allocate an active-open TID and set it to the supplied value.
1439 */
1440int cxgb4_alloc_atid(struct tid_info *t, void *data)
1441{
1442	int atid = -1;
1443
1444	spin_lock_bh(&t->atid_lock);
1445	if (t->afree) {
1446		union aopen_entry *p = t->afree;
1447
1448		atid = (p - t->atid_tab) + t->atid_base;
1449		t->afree = p->next;
1450		p->data = data;
1451		t->atids_in_use++;
1452	}
1453	spin_unlock_bh(&t->atid_lock);
1454	return atid;
1455}
1456EXPORT_SYMBOL(cxgb4_alloc_atid);
1457
1458/*
1459 * Release an active-open TID.
1460 */
1461void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1462{
1463	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1464
1465	spin_lock_bh(&t->atid_lock);
1466	p->next = t->afree;
1467	t->afree = p;
1468	t->atids_in_use--;
1469	spin_unlock_bh(&t->atid_lock);
1470}
1471EXPORT_SYMBOL(cxgb4_free_atid);
1472
1473/*
1474 * Allocate a server TID and set it to the supplied value.
1475 */
1476int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1477{
1478	int stid;
1479
1480	spin_lock_bh(&t->stid_lock);
1481	if (family == PF_INET) {
1482		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1483		if (stid < t->nstids)
1484			__set_bit(stid, t->stid_bmap);
1485		else
1486			stid = -1;
1487	} else {
1488		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1489		if (stid < 0)
1490			stid = -1;
1491	}
1492	if (stid >= 0) {
1493		t->stid_tab[stid].data = data;
1494		stid += t->stid_base;
1495		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1496		 * This is equivalent to 4 TIDs. With CLIP enabled it
1497		 * needs 2 TIDs.
1498		 */
1499		if (family == PF_INET)
1500			t->stids_in_use++;
1501		else
1502			t->stids_in_use += 4;
1503	}
1504	spin_unlock_bh(&t->stid_lock);
1505	return stid;
1506}
1507EXPORT_SYMBOL(cxgb4_alloc_stid);
1508
1509/* Allocate a server filter TID and set it to the supplied value.
1510 */
1511int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1512{
1513	int stid;
1514
1515	spin_lock_bh(&t->stid_lock);
1516	if (family == PF_INET) {
1517		stid = find_next_zero_bit(t->stid_bmap,
1518				t->nstids + t->nsftids, t->nstids);
1519		if (stid < (t->nstids + t->nsftids))
1520			__set_bit(stid, t->stid_bmap);
1521		else
1522			stid = -1;
1523	} else {
1524		stid = -1;
1525	}
1526	if (stid >= 0) {
1527		t->stid_tab[stid].data = data;
1528		stid -= t->nstids;
1529		stid += t->sftid_base;
1530		t->stids_in_use++;
1531	}
1532	spin_unlock_bh(&t->stid_lock);
1533	return stid;
1534}
1535EXPORT_SYMBOL(cxgb4_alloc_sftid);
1536
1537/* Release a server TID.
1538 */
1539void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1540{
1541	/* Is it a server filter TID? */
1542	if (t->nsftids && (stid >= t->sftid_base)) {
1543		stid -= t->sftid_base;
1544		stid += t->nstids;
1545	} else {
1546		stid -= t->stid_base;
1547	}
1548
1549	spin_lock_bh(&t->stid_lock);
1550	if (family == PF_INET)
1551		__clear_bit(stid, t->stid_bmap);
1552	else
1553		bitmap_release_region(t->stid_bmap, stid, 2);
1554	t->stid_tab[stid].data = NULL;
1555	if (family == PF_INET)
1556		t->stids_in_use--;
1557	else
1558		t->stids_in_use -= 4;
1559	spin_unlock_bh(&t->stid_lock);
1560}
1561EXPORT_SYMBOL(cxgb4_free_stid);
1562
1563/*
1564 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1565 */
1566static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1567			   unsigned int tid)
1568{
1569	struct cpl_tid_release *req;
1570
1571	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1572	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1573	INIT_TP_WR(req, tid);
1574	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1575}
1576
1577/*
1578 * Queue a TID release request and if necessary schedule a work queue to
1579 * process it.
1580 */
1581static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1582				    unsigned int tid)
1583{
1584	void **p = &t->tid_tab[tid];
1585	struct adapter *adap = container_of(t, struct adapter, tids);
1586
1587	spin_lock_bh(&adap->tid_release_lock);
1588	*p = adap->tid_release_head;
1589	/* Low 2 bits encode the Tx channel number */
1590	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1591	if (!adap->tid_release_task_busy) {
1592		adap->tid_release_task_busy = true;
1593		queue_work(adap->workq, &adap->tid_release_task);
1594	}
1595	spin_unlock_bh(&adap->tid_release_lock);
1596}
1597
1598/*
1599 * Process the list of pending TID release requests.
1600 */
1601static void process_tid_release_list(struct work_struct *work)
1602{
1603	struct sk_buff *skb;
1604	struct adapter *adap;
1605
1606	adap = container_of(work, struct adapter, tid_release_task);
1607
1608	spin_lock_bh(&adap->tid_release_lock);
1609	while (adap->tid_release_head) {
1610		void **p = adap->tid_release_head;
1611		unsigned int chan = (uintptr_t)p & 3;
1612		p = (void *)p - chan;
1613
1614		adap->tid_release_head = *p;
1615		*p = NULL;
1616		spin_unlock_bh(&adap->tid_release_lock);
1617
1618		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1619					 GFP_KERNEL)))
1620			schedule_timeout_uninterruptible(1);
1621
1622		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1623		t4_ofld_send(adap, skb);
1624		spin_lock_bh(&adap->tid_release_lock);
1625	}
1626	adap->tid_release_task_busy = false;
1627	spin_unlock_bh(&adap->tid_release_lock);
1628}
1629
1630/*
1631 * Release a TID and inform HW.  If we are unable to allocate the release
1632 * message we defer to a work queue.
1633 */
1634void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1635{
1636	void *old;
1637	struct sk_buff *skb;
1638	struct adapter *adap = container_of(t, struct adapter, tids);
1639
1640	old = t->tid_tab[tid];
1641	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1642	if (likely(skb)) {
1643		t->tid_tab[tid] = NULL;
1644		mk_tid_release(skb, chan, tid);
1645		t4_ofld_send(adap, skb);
1646	} else
1647		cxgb4_queue_tid_release(t, chan, tid);
1648	if (old)
1649		atomic_dec(&t->tids_in_use);
1650}
1651EXPORT_SYMBOL(cxgb4_remove_tid);
1652
1653/*
1654 * Allocate and initialize the TID tables.  Returns 0 on success.
1655 */
1656static int tid_init(struct tid_info *t)
1657{
1658	size_t size;
1659	unsigned int stid_bmap_size;
1660	unsigned int natids = t->natids;
1661	struct adapter *adap = container_of(t, struct adapter, tids);
1662
1663	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1664	size = t->ntids * sizeof(*t->tid_tab) +
1665	       natids * sizeof(*t->atid_tab) +
1666	       t->nstids * sizeof(*t->stid_tab) +
1667	       t->nsftids * sizeof(*t->stid_tab) +
1668	       stid_bmap_size * sizeof(long) +
1669	       t->nftids * sizeof(*t->ftid_tab) +
1670	       t->nsftids * sizeof(*t->ftid_tab);
1671
1672	t->tid_tab = t4_alloc_mem(size);
1673	if (!t->tid_tab)
1674		return -ENOMEM;
1675
1676	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1677	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1678	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1679	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1680	spin_lock_init(&t->stid_lock);
1681	spin_lock_init(&t->atid_lock);
1682
1683	t->stids_in_use = 0;
1684	t->afree = NULL;
1685	t->atids_in_use = 0;
1686	atomic_set(&t->tids_in_use, 0);
1687
1688	/* Setup the free list for atid_tab and clear the stid bitmap. */
1689	if (natids) {
1690		while (--natids)
1691			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1692		t->afree = t->atid_tab;
1693	}
1694	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1695	/* Reserve stid 0 for T4/T5 adapters */
1696	if (!t->stid_base &&
1697	    (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1698		__set_bit(0, t->stid_bmap);
1699
1700	return 0;
1701}
1702
1703/**
1704 *	cxgb4_create_server - create an IP server
1705 *	@dev: the device
1706 *	@stid: the server TID
1707 *	@sip: local IP address to bind server to
1708 *	@sport: the server's TCP port
1709 *	@queue: queue to direct messages from this server to
1710 *
1711 *	Create an IP server for the given port and address.
1712 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1713 */
1714int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1715			__be32 sip, __be16 sport, __be16 vlan,
1716			unsigned int queue)
1717{
1718	unsigned int chan;
1719	struct sk_buff *skb;
1720	struct adapter *adap;
1721	struct cpl_pass_open_req *req;
1722	int ret;
1723
1724	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1725	if (!skb)
1726		return -ENOMEM;
1727
1728	adap = netdev2adap(dev);
1729	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1730	INIT_TP_WR(req, 0);
1731	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1732	req->local_port = sport;
1733	req->peer_port = htons(0);
1734	req->local_ip = sip;
1735	req->peer_ip = htonl(0);
1736	chan = rxq_to_chan(&adap->sge, queue);
1737	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1738	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1739				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1740	ret = t4_mgmt_tx(adap, skb);
1741	return net_xmit_eval(ret);
1742}
1743EXPORT_SYMBOL(cxgb4_create_server);
1744
1745/*	cxgb4_create_server6 - create an IPv6 server
1746 *	@dev: the device
1747 *	@stid: the server TID
1748 *	@sip: local IPv6 address to bind server to
1749 *	@sport: the server's TCP port
1750 *	@queue: queue to direct messages from this server to
1751 *
1752 *	Create an IPv6 server for the given port and address.
1753 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1754 */
1755int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1756			 const struct in6_addr *sip, __be16 sport,
1757			 unsigned int queue)
1758{
1759	unsigned int chan;
1760	struct sk_buff *skb;
1761	struct adapter *adap;
1762	struct cpl_pass_open_req6 *req;
1763	int ret;
1764
1765	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1766	if (!skb)
1767		return -ENOMEM;
1768
1769	adap = netdev2adap(dev);
1770	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1771	INIT_TP_WR(req, 0);
1772	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1773	req->local_port = sport;
1774	req->peer_port = htons(0);
1775	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1776	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1777	req->peer_ip_hi = cpu_to_be64(0);
1778	req->peer_ip_lo = cpu_to_be64(0);
1779	chan = rxq_to_chan(&adap->sge, queue);
1780	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1781	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1782				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1783	ret = t4_mgmt_tx(adap, skb);
1784	return net_xmit_eval(ret);
1785}
1786EXPORT_SYMBOL(cxgb4_create_server6);
1787
1788int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1789			unsigned int queue, bool ipv6)
1790{
1791	struct sk_buff *skb;
1792	struct adapter *adap;
1793	struct cpl_close_listsvr_req *req;
1794	int ret;
1795
1796	adap = netdev2adap(dev);
1797
1798	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1799	if (!skb)
1800		return -ENOMEM;
1801
1802	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1803	INIT_TP_WR(req, 0);
1804	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1805	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1806				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1807	ret = t4_mgmt_tx(adap, skb);
1808	return net_xmit_eval(ret);
1809}
1810EXPORT_SYMBOL(cxgb4_remove_server);
1811
1812/**
1813 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1814 *	@mtus: the HW MTU table
1815 *	@mtu: the target MTU
1816 *	@idx: index of selected entry in the MTU table
1817 *
1818 *	Returns the index and the value in the HW MTU table that is closest to
1819 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1820 *	table, in which case that smallest available value is selected.
1821 */
1822unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1823			    unsigned int *idx)
1824{
1825	unsigned int i = 0;
1826
1827	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1828		++i;
1829	if (idx)
1830		*idx = i;
1831	return mtus[i];
1832}
1833EXPORT_SYMBOL(cxgb4_best_mtu);
1834
1835/**
1836 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1837 *     @mtus: the HW MTU table
1838 *     @header_size: Header Size
1839 *     @data_size_max: maximum Data Segment Size
1840 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1841 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1842 *
1843 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1844 *     MTU Table based solely on a Maximum MTU parameter, we break that
1845 *     parameter up into a Header Size and Maximum Data Segment Size, and
1846 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1847 *     the Hardware MTU Table which will result in a Data Segment Size with
1848 *     the requested alignment _and_ that MTU isn't "too far" from the
1849 *     closest MTU, then we'll return that rather than the closest MTU.
1850 */
1851unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1852				    unsigned short header_size,
1853				    unsigned short data_size_max,
1854				    unsigned short data_size_align,
1855				    unsigned int *mtu_idxp)
1856{
1857	unsigned short max_mtu = header_size + data_size_max;
1858	unsigned short data_size_align_mask = data_size_align - 1;
1859	int mtu_idx, aligned_mtu_idx;
1860
1861	/* Scan the MTU Table till we find an MTU which is larger than our
1862	 * Maximum MTU or we reach the end of the table.  Along the way,
1863	 * record the last MTU found, if any, which will result in a Data
1864	 * Segment Length matching the requested alignment.
1865	 */
1866	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1867		unsigned short data_size = mtus[mtu_idx] - header_size;
1868
1869		/* If this MTU minus the Header Size would result in a
1870		 * Data Segment Size of the desired alignment, remember it.
1871		 */
1872		if ((data_size & data_size_align_mask) == 0)
1873			aligned_mtu_idx = mtu_idx;
1874
1875		/* If we're not at the end of the Hardware MTU Table and the
1876		 * next element is larger than our Maximum MTU, drop out of
1877		 * the loop.
1878		 */
1879		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1880			break;
1881	}
1882
1883	/* If we fell out of the loop because we ran to the end of the table,
1884	 * then we just have to use the last [largest] entry.
1885	 */
1886	if (mtu_idx == NMTUS)
1887		mtu_idx--;
1888
1889	/* If we found an MTU which resulted in the requested Data Segment
1890	 * Length alignment and that's "not far" from the largest MTU which is
1891	 * less than or equal to the maximum MTU, then use that.
1892	 */
1893	if (aligned_mtu_idx >= 0 &&
1894	    mtu_idx - aligned_mtu_idx <= 1)
1895		mtu_idx = aligned_mtu_idx;
1896
1897	/* If the caller has passed in an MTU Index pointer, pass the
1898	 * MTU Index back.  Return the MTU value.
1899	 */
1900	if (mtu_idxp)
1901		*mtu_idxp = mtu_idx;
1902	return mtus[mtu_idx];
1903}
1904EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1905
1906/**
1907 *	cxgb4_port_chan - get the HW channel of a port
1908 *	@dev: the net device for the port
1909 *
1910 *	Return the HW Tx channel of the given port.
1911 */
1912unsigned int cxgb4_port_chan(const struct net_device *dev)
1913{
1914	return netdev2pinfo(dev)->tx_chan;
1915}
1916EXPORT_SYMBOL(cxgb4_port_chan);
1917
1918unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1919{
1920	struct adapter *adap = netdev2adap(dev);
1921	u32 v1, v2, lp_count, hp_count;
1922
1923	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1924	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1925	if (is_t4(adap->params.chip)) {
1926		lp_count = LP_COUNT_G(v1);
1927		hp_count = HP_COUNT_G(v1);
1928	} else {
1929		lp_count = LP_COUNT_T5_G(v1);
1930		hp_count = HP_COUNT_T5_G(v2);
1931	}
1932	return lpfifo ? lp_count : hp_count;
1933}
1934EXPORT_SYMBOL(cxgb4_dbfifo_count);
1935
1936/**
1937 *	cxgb4_port_viid - get the VI id of a port
1938 *	@dev: the net device for the port
1939 *
1940 *	Return the VI id of the given port.
1941 */
1942unsigned int cxgb4_port_viid(const struct net_device *dev)
1943{
1944	return netdev2pinfo(dev)->viid;
1945}
1946EXPORT_SYMBOL(cxgb4_port_viid);
1947
1948/**
1949 *	cxgb4_port_idx - get the index of a port
1950 *	@dev: the net device for the port
1951 *
1952 *	Return the index of the given port.
1953 */
1954unsigned int cxgb4_port_idx(const struct net_device *dev)
1955{
1956	return netdev2pinfo(dev)->port_id;
1957}
1958EXPORT_SYMBOL(cxgb4_port_idx);
1959
1960void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1961			 struct tp_tcp_stats *v6)
1962{
1963	struct adapter *adap = pci_get_drvdata(pdev);
1964
1965	spin_lock(&adap->stats_lock);
1966	t4_tp_get_tcp_stats(adap, v4, v6);
1967	spin_unlock(&adap->stats_lock);
1968}
1969EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1970
1971void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1972		      const unsigned int *pgsz_order)
1973{
1974	struct adapter *adap = netdev2adap(dev);
1975
1976	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1977	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1978		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1979		     HPZ3_V(pgsz_order[3]));
1980}
1981EXPORT_SYMBOL(cxgb4_iscsi_init);
1982
1983int cxgb4_flush_eq_cache(struct net_device *dev)
1984{
1985	struct adapter *adap = netdev2adap(dev);
1986	int ret;
1987
1988	ret = t4_fwaddrspace_write(adap, adap->mbox,
1989				   0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
1990	return ret;
1991}
1992EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1993
1994static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1995{
1996	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1997	__be64 indices;
1998	int ret;
1999
2000	spin_lock(&adap->win0_lock);
2001	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2002			   sizeof(indices), (__be32 *)&indices,
2003			   T4_MEMORY_READ);
2004	spin_unlock(&adap->win0_lock);
2005	if (!ret) {
2006		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2007		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2008	}
2009	return ret;
2010}
2011
2012int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2013			u16 size)
2014{
2015	struct adapter *adap = netdev2adap(dev);
2016	u16 hw_pidx, hw_cidx;
2017	int ret;
2018
2019	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2020	if (ret)
2021		goto out;
2022
2023	if (pidx != hw_pidx) {
2024		u16 delta;
2025		u32 val;
2026
2027		if (pidx >= hw_pidx)
2028			delta = pidx - hw_pidx;
2029		else
2030			delta = size - hw_pidx + pidx;
2031
2032		if (is_t4(adap->params.chip))
2033			val = PIDX_V(delta);
2034		else
2035			val = PIDX_T5_V(delta);
2036		wmb();
2037		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2038			     QID_V(qid) | val);
2039	}
2040out:
2041	return ret;
2042}
2043EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2044
2045void cxgb4_disable_db_coalescing(struct net_device *dev)
2046{
2047	struct adapter *adap;
2048
2049	adap = netdev2adap(dev);
2050	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2051			 NOCOALESCE_F);
2052}
2053EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2054
2055void cxgb4_enable_db_coalescing(struct net_device *dev)
2056{
2057	struct adapter *adap;
2058
2059	adap = netdev2adap(dev);
2060	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2061}
2062EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2063
2064int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2065{
2066	struct adapter *adap;
2067	u32 offset, memtype, memaddr;
2068	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2069	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2070	int ret;
2071
2072	adap = netdev2adap(dev);
2073
2074	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2075
2076	/* Figure out where the offset lands in the Memory Type/Address scheme.
2077	 * This code assumes that the memory is laid out starting at offset 0
2078	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2079	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2080	 * MC0, and some have both MC0 and MC1.
2081	 */
2082	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2083	edc0_size = EDRAM0_SIZE_G(size) << 20;
2084	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2085	edc1_size = EDRAM1_SIZE_G(size) << 20;
2086	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2087	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2088
2089	edc0_end = edc0_size;
2090	edc1_end = edc0_end + edc1_size;
2091	mc0_end = edc1_end + mc0_size;
2092
2093	if (offset < edc0_end) {
2094		memtype = MEM_EDC0;
2095		memaddr = offset;
2096	} else if (offset < edc1_end) {
2097		memtype = MEM_EDC1;
2098		memaddr = offset - edc0_end;
2099	} else {
2100		if (offset < mc0_end) {
2101			memtype = MEM_MC0;
2102			memaddr = offset - edc1_end;
2103		} else if (is_t4(adap->params.chip)) {
2104			/* T4 only has a single memory channel */
2105			goto err;
2106		} else {
2107			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2108			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2109			mc1_end = mc0_end + mc1_size;
2110			if (offset < mc1_end) {
2111				memtype = MEM_MC1;
2112				memaddr = offset - mc0_end;
2113			} else {
2114				/* offset beyond the end of any memory */
2115				goto err;
2116			}
2117		}
2118	}
2119
2120	spin_lock(&adap->win0_lock);
2121	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2122	spin_unlock(&adap->win0_lock);
2123	return ret;
2124
2125err:
2126	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2127		stag, offset);
2128	return -EINVAL;
2129}
2130EXPORT_SYMBOL(cxgb4_read_tpte);
2131
2132u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2133{
2134	u32 hi, lo;
2135	struct adapter *adap;
2136
2137	adap = netdev2adap(dev);
2138	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2139	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2140
2141	return ((u64)hi << 32) | (u64)lo;
2142}
2143EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2144
2145int cxgb4_bar2_sge_qregs(struct net_device *dev,
2146			 unsigned int qid,
2147			 enum cxgb4_bar2_qtype qtype,
2148			 u64 *pbar2_qoffset,
2149			 unsigned int *pbar2_qid)
2150{
2151	return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2152				 qid,
2153				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2154				  ? T4_BAR2_QTYPE_EGRESS
2155				  : T4_BAR2_QTYPE_INGRESS),
2156				 pbar2_qoffset,
2157				 pbar2_qid);
2158}
2159EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2160
2161static struct pci_driver cxgb4_driver;
2162
2163static void check_neigh_update(struct neighbour *neigh)
2164{
2165	const struct device *parent;
2166	const struct net_device *netdev = neigh->dev;
2167
2168	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2169		netdev = vlan_dev_real_dev(netdev);
2170	parent = netdev->dev.parent;
2171	if (parent && parent->driver == &cxgb4_driver.driver)
2172		t4_l2t_update(dev_get_drvdata(parent), neigh);
2173}
2174
2175static int netevent_cb(struct notifier_block *nb, unsigned long event,
2176		       void *data)
2177{
2178	switch (event) {
2179	case NETEVENT_NEIGH_UPDATE:
2180		check_neigh_update(data);
2181		break;
2182	case NETEVENT_REDIRECT:
2183	default:
2184		break;
2185	}
2186	return 0;
2187}
2188
2189static bool netevent_registered;
2190static struct notifier_block cxgb4_netevent_nb = {
2191	.notifier_call = netevent_cb
2192};
2193
2194static void drain_db_fifo(struct adapter *adap, int usecs)
2195{
2196	u32 v1, v2, lp_count, hp_count;
2197
2198	do {
2199		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2200		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2201		if (is_t4(adap->params.chip)) {
2202			lp_count = LP_COUNT_G(v1);
2203			hp_count = HP_COUNT_G(v1);
2204		} else {
2205			lp_count = LP_COUNT_T5_G(v1);
2206			hp_count = HP_COUNT_T5_G(v2);
2207		}
2208
2209		if (lp_count == 0 && hp_count == 0)
2210			break;
2211		set_current_state(TASK_UNINTERRUPTIBLE);
2212		schedule_timeout(usecs_to_jiffies(usecs));
2213	} while (1);
2214}
2215
2216static void disable_txq_db(struct sge_txq *q)
2217{
2218	unsigned long flags;
2219
2220	spin_lock_irqsave(&q->db_lock, flags);
2221	q->db_disabled = 1;
2222	spin_unlock_irqrestore(&q->db_lock, flags);
2223}
2224
2225static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2226{
2227	spin_lock_irq(&q->db_lock);
2228	if (q->db_pidx_inc) {
2229		/* Make sure that all writes to the TX descriptors
2230		 * are committed before we tell HW about them.
2231		 */
2232		wmb();
2233		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2234			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2235		q->db_pidx_inc = 0;
2236	}
2237	q->db_disabled = 0;
2238	spin_unlock_irq(&q->db_lock);
2239}
2240
2241static void disable_dbs(struct adapter *adap)
2242{
2243	int i;
2244
2245	for_each_ethrxq(&adap->sge, i)
2246		disable_txq_db(&adap->sge.ethtxq[i].q);
2247	for_each_ofldrxq(&adap->sge, i)
2248		disable_txq_db(&adap->sge.ofldtxq[i].q);
2249	for_each_port(adap, i)
2250		disable_txq_db(&adap->sge.ctrlq[i].q);
2251}
2252
2253static void enable_dbs(struct adapter *adap)
2254{
2255	int i;
2256
2257	for_each_ethrxq(&adap->sge, i)
2258		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2259	for_each_ofldrxq(&adap->sge, i)
2260		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2261	for_each_port(adap, i)
2262		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2263}
2264
2265static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2266{
2267	if (adap->uld_handle[CXGB4_ULD_RDMA])
2268		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2269				cmd);
2270}
2271
2272static void process_db_full(struct work_struct *work)
2273{
2274	struct adapter *adap;
2275
2276	adap = container_of(work, struct adapter, db_full_task);
2277
2278	drain_db_fifo(adap, dbfifo_drain_delay);
2279	enable_dbs(adap);
2280	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2281	t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2282			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2283			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2284}
2285
2286static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2287{
2288	u16 hw_pidx, hw_cidx;
2289	int ret;
2290
2291	spin_lock_irq(&q->db_lock);
2292	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2293	if (ret)
2294		goto out;
2295	if (q->db_pidx != hw_pidx) {
2296		u16 delta;
2297		u32 val;
2298
2299		if (q->db_pidx >= hw_pidx)
2300			delta = q->db_pidx - hw_pidx;
2301		else
2302			delta = q->size - hw_pidx + q->db_pidx;
2303
2304		if (is_t4(adap->params.chip))
2305			val = PIDX_V(delta);
2306		else
2307			val = PIDX_T5_V(delta);
2308		wmb();
2309		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2310			     QID_V(q->cntxt_id) | val);
2311	}
2312out:
2313	q->db_disabled = 0;
2314	q->db_pidx_inc = 0;
2315	spin_unlock_irq(&q->db_lock);
2316	if (ret)
2317		CH_WARN(adap, "DB drop recovery failed.\n");
2318}
2319static void recover_all_queues(struct adapter *adap)
2320{
2321	int i;
2322
2323	for_each_ethrxq(&adap->sge, i)
2324		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2325	for_each_ofldrxq(&adap->sge, i)
2326		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2327	for_each_port(adap, i)
2328		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2329}
2330
2331static void process_db_drop(struct work_struct *work)
2332{
2333	struct adapter *adap;
2334
2335	adap = container_of(work, struct adapter, db_drop_task);
2336
2337	if (is_t4(adap->params.chip)) {
2338		drain_db_fifo(adap, dbfifo_drain_delay);
2339		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2340		drain_db_fifo(adap, dbfifo_drain_delay);
2341		recover_all_queues(adap);
2342		drain_db_fifo(adap, dbfifo_drain_delay);
2343		enable_dbs(adap);
2344		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2345	} else {
2346		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2347		u16 qid = (dropped_db >> 15) & 0x1ffff;
2348		u16 pidx_inc = dropped_db & 0x1fff;
2349		u64 bar2_qoffset;
2350		unsigned int bar2_qid;
2351		int ret;
2352
2353		ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2354					&bar2_qoffset, &bar2_qid);
2355		if (ret)
2356			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2357				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2358		else
2359			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2360			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2361
2362		/* Re-enable BAR2 WC */
2363		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2364	}
2365
2366	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2367}
2368
2369void t4_db_full(struct adapter *adap)
2370{
2371	if (is_t4(adap->params.chip)) {
2372		disable_dbs(adap);
2373		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2374		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2375				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2376		queue_work(adap->workq, &adap->db_full_task);
2377	}
2378}
2379
2380void t4_db_dropped(struct adapter *adap)
2381{
2382	if (is_t4(adap->params.chip)) {
2383		disable_dbs(adap);
2384		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2385	}
2386	queue_work(adap->workq, &adap->db_drop_task);
2387}
2388
2389static void uld_attach(struct adapter *adap, unsigned int uld)
2390{
2391	void *handle;
2392	struct cxgb4_lld_info lli;
2393	unsigned short i;
2394
2395	lli.pdev = adap->pdev;
2396	lli.pf = adap->fn;
2397	lli.l2t = adap->l2t;
2398	lli.tids = &adap->tids;
2399	lli.ports = adap->port;
2400	lli.vr = &adap->vres;
2401	lli.mtus = adap->params.mtus;
2402	if (uld == CXGB4_ULD_RDMA) {
2403		lli.rxq_ids = adap->sge.rdma_rxq;
2404		lli.ciq_ids = adap->sge.rdma_ciq;
2405		lli.nrxq = adap->sge.rdmaqs;
2406		lli.nciq = adap->sge.rdmaciqs;
2407	} else if (uld == CXGB4_ULD_ISCSI) {
2408		lli.rxq_ids = adap->sge.ofld_rxq;
2409		lli.nrxq = adap->sge.ofldqsets;
2410	}
2411	lli.ntxq = adap->sge.ofldqsets;
2412	lli.nchan = adap->params.nports;
2413	lli.nports = adap->params.nports;
2414	lli.wr_cred = adap->params.ofldq_wr_cred;
2415	lli.adapter_type = adap->params.chip;
2416	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2417	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2418	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2419	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2420	lli.filt_mode = adap->params.tp.vlan_pri_map;
2421	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2422	for (i = 0; i < NCHAN; i++)
2423		lli.tx_modq[i] = i;
2424	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2425	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2426	lli.fw_vers = adap->params.fw_vers;
2427	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2428	lli.sge_ingpadboundary = adap->sge.fl_align;
2429	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2430	lli.sge_pktshift = adap->sge.pktshift;
2431	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2432	lli.max_ordird_qp = adap->params.max_ordird_qp;
2433	lli.max_ird_adapter = adap->params.max_ird_adapter;
2434	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2435
2436	handle = ulds[uld].add(&lli);
2437	if (IS_ERR(handle)) {
2438		dev_warn(adap->pdev_dev,
2439			 "could not attach to the %s driver, error %ld\n",
2440			 uld_str[uld], PTR_ERR(handle));
2441		return;
2442	}
2443
2444	adap->uld_handle[uld] = handle;
2445
2446	if (!netevent_registered) {
2447		register_netevent_notifier(&cxgb4_netevent_nb);
2448		netevent_registered = true;
2449	}
2450
2451	if (adap->flags & FULL_INIT_DONE)
2452		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2453}
2454
2455static void attach_ulds(struct adapter *adap)
2456{
2457	unsigned int i;
2458
2459	spin_lock(&adap_rcu_lock);
2460	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2461	spin_unlock(&adap_rcu_lock);
2462
2463	mutex_lock(&uld_mutex);
2464	list_add_tail(&adap->list_node, &adapter_list);
2465	for (i = 0; i < CXGB4_ULD_MAX; i++)
2466		if (ulds[i].add)
2467			uld_attach(adap, i);
2468	mutex_unlock(&uld_mutex);
2469}
2470
2471static void detach_ulds(struct adapter *adap)
2472{
2473	unsigned int i;
2474
2475	mutex_lock(&uld_mutex);
2476	list_del(&adap->list_node);
2477	for (i = 0; i < CXGB4_ULD_MAX; i++)
2478		if (adap->uld_handle[i]) {
2479			ulds[i].state_change(adap->uld_handle[i],
2480					     CXGB4_STATE_DETACH);
2481			adap->uld_handle[i] = NULL;
2482		}
2483	if (netevent_registered && list_empty(&adapter_list)) {
2484		unregister_netevent_notifier(&cxgb4_netevent_nb);
2485		netevent_registered = false;
2486	}
2487	mutex_unlock(&uld_mutex);
2488
2489	spin_lock(&adap_rcu_lock);
2490	list_del_rcu(&adap->rcu_node);
2491	spin_unlock(&adap_rcu_lock);
2492}
2493
2494static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2495{
2496	unsigned int i;
2497
2498	mutex_lock(&uld_mutex);
2499	for (i = 0; i < CXGB4_ULD_MAX; i++)
2500		if (adap->uld_handle[i])
2501			ulds[i].state_change(adap->uld_handle[i], new_state);
2502	mutex_unlock(&uld_mutex);
2503}
2504
2505/**
2506 *	cxgb4_register_uld - register an upper-layer driver
2507 *	@type: the ULD type
2508 *	@p: the ULD methods
2509 *
2510 *	Registers an upper-layer driver with this driver and notifies the ULD
2511 *	about any presently available devices that support its type.  Returns
2512 *	%-EBUSY if a ULD of the same type is already registered.
2513 */
2514int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2515{
2516	int ret = 0;
2517	struct adapter *adap;
2518
2519	if (type >= CXGB4_ULD_MAX)
2520		return -EINVAL;
2521	mutex_lock(&uld_mutex);
2522	if (ulds[type].add) {
2523		ret = -EBUSY;
2524		goto out;
2525	}
2526	ulds[type] = *p;
2527	list_for_each_entry(adap, &adapter_list, list_node)
2528		uld_attach(adap, type);
2529out:	mutex_unlock(&uld_mutex);
2530	return ret;
2531}
2532EXPORT_SYMBOL(cxgb4_register_uld);
2533
2534/**
2535 *	cxgb4_unregister_uld - unregister an upper-layer driver
2536 *	@type: the ULD type
2537 *
2538 *	Unregisters an existing upper-layer driver.
2539 */
2540int cxgb4_unregister_uld(enum cxgb4_uld type)
2541{
2542	struct adapter *adap;
2543
2544	if (type >= CXGB4_ULD_MAX)
2545		return -EINVAL;
2546	mutex_lock(&uld_mutex);
2547	list_for_each_entry(adap, &adapter_list, list_node)
2548		adap->uld_handle[type] = NULL;
2549	ulds[type].add = NULL;
2550	mutex_unlock(&uld_mutex);
2551	return 0;
2552}
2553EXPORT_SYMBOL(cxgb4_unregister_uld);
2554
2555#if IS_ENABLED(CONFIG_IPV6)
2556static int cxgb4_inet6addr_handler(struct notifier_block *this,
2557				   unsigned long event, void *data)
2558{
2559	struct inet6_ifaddr *ifa = data;
2560	struct net_device *event_dev = ifa->idev->dev;
2561	const struct device *parent = NULL;
2562#if IS_ENABLED(CONFIG_BONDING)
2563	struct adapter *adap;
2564#endif
2565	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2566		event_dev = vlan_dev_real_dev(event_dev);
2567#if IS_ENABLED(CONFIG_BONDING)
2568	if (event_dev->flags & IFF_MASTER) {
2569		list_for_each_entry(adap, &adapter_list, list_node) {
2570			switch (event) {
2571			case NETDEV_UP:
2572				cxgb4_clip_get(adap->port[0],
2573					       (const u32 *)ifa, 1);
2574				break;
2575			case NETDEV_DOWN:
2576				cxgb4_clip_release(adap->port[0],
2577						   (const u32 *)ifa, 1);
2578				break;
2579			default:
2580				break;
2581			}
2582		}
2583		return NOTIFY_OK;
2584	}
2585#endif
2586
2587	if (event_dev)
2588		parent = event_dev->dev.parent;
2589
2590	if (parent && parent->driver == &cxgb4_driver.driver) {
2591		switch (event) {
2592		case NETDEV_UP:
2593			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2594			break;
2595		case NETDEV_DOWN:
2596			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2597			break;
2598		default:
2599			break;
2600		}
2601	}
2602	return NOTIFY_OK;
2603}
2604
2605static bool inet6addr_registered;
2606static struct notifier_block cxgb4_inet6addr_notifier = {
2607	.notifier_call = cxgb4_inet6addr_handler
2608};
2609
2610static void update_clip(const struct adapter *adap)
2611{
2612	int i;
2613	struct net_device *dev;
2614	int ret;
2615
2616	rcu_read_lock();
2617
2618	for (i = 0; i < MAX_NPORTS; i++) {
2619		dev = adap->port[i];
2620		ret = 0;
2621
2622		if (dev)
2623			ret = cxgb4_update_root_dev_clip(dev);
2624
2625		if (ret < 0)
2626			break;
2627	}
2628	rcu_read_unlock();
2629}
2630#endif /* IS_ENABLED(CONFIG_IPV6) */
2631
2632/**
2633 *	cxgb_up - enable the adapter
2634 *	@adap: adapter being enabled
2635 *
2636 *	Called when the first port is enabled, this function performs the
2637 *	actions necessary to make an adapter operational, such as completing
2638 *	the initialization of HW modules, and enabling interrupts.
2639 *
2640 *	Must be called with the rtnl lock held.
2641 */
2642static int cxgb_up(struct adapter *adap)
2643{
2644	int err;
2645
2646	err = setup_sge_queues(adap);
2647	if (err)
2648		goto out;
2649	err = setup_rss(adap);
2650	if (err)
2651		goto freeq;
2652
2653	if (adap->flags & USING_MSIX) {
2654		name_msix_vecs(adap);
2655		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656				  adap->msix_info[0].desc, adap);
2657		if (err)
2658			goto irq_err;
2659
2660		err = request_msix_queue_irqs(adap);
2661		if (err) {
2662			free_irq(adap->msix_info[0].vec, adap);
2663			goto irq_err;
2664		}
2665	} else {
2666		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668				  adap->port[0]->name, adap);
2669		if (err)
2670			goto irq_err;
2671	}
2672	enable_rx(adap);
2673	t4_sge_start(adap);
2674	t4_intr_enable(adap);
2675	adap->flags |= FULL_INIT_DONE;
2676	notify_ulds(adap, CXGB4_STATE_UP);
2677#if IS_ENABLED(CONFIG_IPV6)
2678	update_clip(adap);
2679#endif
2680 out:
2681	return err;
2682 irq_err:
2683	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2684 freeq:
2685	t4_free_sge_resources(adap);
2686	goto out;
2687}
2688
2689static void cxgb_down(struct adapter *adapter)
2690{
2691	cancel_work_sync(&adapter->tid_release_task);
2692	cancel_work_sync(&adapter->db_full_task);
2693	cancel_work_sync(&adapter->db_drop_task);
2694	adapter->tid_release_task_busy = false;
2695	adapter->tid_release_head = NULL;
2696
2697	t4_sge_stop(adapter);
2698	t4_free_sge_resources(adapter);
2699	adapter->flags &= ~FULL_INIT_DONE;
2700}
2701
2702/*
2703 * net_device operations
2704 */
2705static int cxgb_open(struct net_device *dev)
2706{
2707	int err;
2708	struct port_info *pi = netdev_priv(dev);
2709	struct adapter *adapter = pi->adapter;
2710
2711	netif_carrier_off(dev);
2712
2713	if (!(adapter->flags & FULL_INIT_DONE)) {
2714		err = cxgb_up(adapter);
2715		if (err < 0)
2716			return err;
2717	}
2718
2719	err = link_start(dev);
2720	if (!err)
2721		netif_tx_start_all_queues(dev);
2722	return err;
2723}
2724
2725static int cxgb_close(struct net_device *dev)
2726{
2727	struct port_info *pi = netdev_priv(dev);
2728	struct adapter *adapter = pi->adapter;
2729
2730	netif_tx_stop_all_queues(dev);
2731	netif_carrier_off(dev);
2732	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2733}
2734
2735/* Return an error number if the indicated filter isn't writable ...
2736 */
2737static int writable_filter(struct filter_entry *f)
2738{
2739	if (f->locked)
2740		return -EPERM;
2741	if (f->pending)
2742		return -EBUSY;
2743
2744	return 0;
2745}
2746
2747/* Delete the filter at the specified index (if valid).  The checks for all
2748 * the common problems with doing this like the filter being locked, currently
2749 * pending in another operation, etc.
2750 */
2751static int delete_filter(struct adapter *adapter, unsigned int fidx)
2752{
2753	struct filter_entry *f;
2754	int ret;
2755
2756	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2757		return -EINVAL;
2758
2759	f = &adapter->tids.ftid_tab[fidx];
2760	ret = writable_filter(f);
2761	if (ret)
2762		return ret;
2763	if (f->valid)
2764		return del_filter_wr(adapter, fidx);
2765
2766	return 0;
2767}
2768
2769int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2770		__be32 sip, __be16 sport, __be16 vlan,
2771		unsigned int queue, unsigned char port, unsigned char mask)
2772{
2773	int ret;
2774	struct filter_entry *f;
2775	struct adapter *adap;
2776	int i;
2777	u8 *val;
2778
2779	adap = netdev2adap(dev);
2780
2781	/* Adjust stid to correct filter index */
2782	stid -= adap->tids.sftid_base;
2783	stid += adap->tids.nftids;
2784
2785	/* Check to make sure the filter requested is writable ...
2786	 */
2787	f = &adap->tids.ftid_tab[stid];
2788	ret = writable_filter(f);
2789	if (ret)
2790		return ret;
2791
2792	/* Clear out any old resources being used by the filter before
2793	 * we start constructing the new filter.
2794	 */
2795	if (f->valid)
2796		clear_filter(adap, f);
2797
2798	/* Clear out filter specifications */
2799	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2800	f->fs.val.lport = cpu_to_be16(sport);
2801	f->fs.mask.lport  = ~0;
2802	val = (u8 *)&sip;
2803	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2804		for (i = 0; i < 4; i++) {
2805			f->fs.val.lip[i] = val[i];
2806			f->fs.mask.lip[i] = ~0;
2807		}
2808		if (adap->params.tp.vlan_pri_map & PORT_F) {
2809			f->fs.val.iport = port;
2810			f->fs.mask.iport = mask;
2811		}
2812	}
2813
2814	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2815		f->fs.val.proto = IPPROTO_TCP;
2816		f->fs.mask.proto = ~0;
2817	}
2818
2819	f->fs.dirsteer = 1;
2820	f->fs.iq = queue;
2821	/* Mark filter as locked */
2822	f->locked = 1;
2823	f->fs.rpttid = 1;
2824
2825	ret = set_filter_wr(adap, stid);
2826	if (ret) {
2827		clear_filter(adap, f);
2828		return ret;
2829	}
2830
2831	return 0;
2832}
2833EXPORT_SYMBOL(cxgb4_create_server_filter);
2834
2835int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2836		unsigned int queue, bool ipv6)
2837{
2838	int ret;
2839	struct filter_entry *f;
2840	struct adapter *adap;
2841
2842	adap = netdev2adap(dev);
2843
2844	/* Adjust stid to correct filter index */
2845	stid -= adap->tids.sftid_base;
2846	stid += adap->tids.nftids;
2847
2848	f = &adap->tids.ftid_tab[stid];
2849	/* Unlock the filter */
2850	f->locked = 0;
2851
2852	ret = delete_filter(adap, stid);
2853	if (ret)
2854		return ret;
2855
2856	return 0;
2857}
2858EXPORT_SYMBOL(cxgb4_remove_server_filter);
2859
2860static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2861						struct rtnl_link_stats64 *ns)
2862{
2863	struct port_stats stats;
2864	struct port_info *p = netdev_priv(dev);
2865	struct adapter *adapter = p->adapter;
2866
2867	/* Block retrieving statistics during EEH error
2868	 * recovery. Otherwise, the recovery might fail
2869	 * and the PCI device will be removed permanently
2870	 */
2871	spin_lock(&adapter->stats_lock);
2872	if (!netif_device_present(dev)) {
2873		spin_unlock(&adapter->stats_lock);
2874		return ns;
2875	}
2876	t4_get_port_stats(adapter, p->tx_chan, &stats);
2877	spin_unlock(&adapter->stats_lock);
2878
2879	ns->tx_bytes   = stats.tx_octets;
2880	ns->tx_packets = stats.tx_frames;
2881	ns->rx_bytes   = stats.rx_octets;
2882	ns->rx_packets = stats.rx_frames;
2883	ns->multicast  = stats.rx_mcast_frames;
2884
2885	/* detailed rx_errors */
2886	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2887			       stats.rx_runt;
2888	ns->rx_over_errors   = 0;
2889	ns->rx_crc_errors    = stats.rx_fcs_err;
2890	ns->rx_frame_errors  = stats.rx_symbol_err;
2891	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2892			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2893			       stats.rx_trunc0 + stats.rx_trunc1 +
2894			       stats.rx_trunc2 + stats.rx_trunc3;
2895	ns->rx_missed_errors = 0;
2896
2897	/* detailed tx_errors */
2898	ns->tx_aborted_errors   = 0;
2899	ns->tx_carrier_errors   = 0;
2900	ns->tx_fifo_errors      = 0;
2901	ns->tx_heartbeat_errors = 0;
2902	ns->tx_window_errors    = 0;
2903
2904	ns->tx_errors = stats.tx_error_frames;
2905	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2906		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2907	return ns;
2908}
2909
2910static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2911{
2912	unsigned int mbox;
2913	int ret = 0, prtad, devad;
2914	struct port_info *pi = netdev_priv(dev);
2915	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2916
2917	switch (cmd) {
2918	case SIOCGMIIPHY:
2919		if (pi->mdio_addr < 0)
2920			return -EOPNOTSUPP;
2921		data->phy_id = pi->mdio_addr;
2922		break;
2923	case SIOCGMIIREG:
2924	case SIOCSMIIREG:
2925		if (mdio_phy_id_is_c45(data->phy_id)) {
2926			prtad = mdio_phy_id_prtad(data->phy_id);
2927			devad = mdio_phy_id_devad(data->phy_id);
2928		} else if (data->phy_id < 32) {
2929			prtad = data->phy_id;
2930			devad = 0;
2931			data->reg_num &= 0x1f;
2932		} else
2933			return -EINVAL;
2934
2935		mbox = pi->adapter->fn;
2936		if (cmd == SIOCGMIIREG)
2937			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2938					 data->reg_num, &data->val_out);
2939		else
2940			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2941					 data->reg_num, data->val_in);
2942		break;
2943	default:
2944		return -EOPNOTSUPP;
2945	}
2946	return ret;
2947}
2948
2949static void cxgb_set_rxmode(struct net_device *dev)
2950{
2951	/* unfortunately we can't return errors to the stack */
2952	set_rxmode(dev, -1, false);
2953}
2954
2955static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2956{
2957	int ret;
2958	struct port_info *pi = netdev_priv(dev);
2959
2960	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2961		return -EINVAL;
2962	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2963			    -1, -1, -1, true);
2964	if (!ret)
2965		dev->mtu = new_mtu;
2966	return ret;
2967}
2968
2969static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2970{
2971	int ret;
2972	struct sockaddr *addr = p;
2973	struct port_info *pi = netdev_priv(dev);
2974
2975	if (!is_valid_ether_addr(addr->sa_data))
2976		return -EADDRNOTAVAIL;
2977
2978	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2979			    pi->xact_addr_filt, addr->sa_data, true, true);
2980	if (ret < 0)
2981		return ret;
2982
2983	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2984	pi->xact_addr_filt = ret;
2985	return 0;
2986}
2987
2988#ifdef CONFIG_NET_POLL_CONTROLLER
2989static void cxgb_netpoll(struct net_device *dev)
2990{
2991	struct port_info *pi = netdev_priv(dev);
2992	struct adapter *adap = pi->adapter;
2993
2994	if (adap->flags & USING_MSIX) {
2995		int i;
2996		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2997
2998		for (i = pi->nqsets; i; i--, rx++)
2999			t4_sge_intr_msix(0, &rx->rspq);
3000	} else
3001		t4_intr_handler(adap)(0, adap);
3002}
3003#endif
3004
3005static const struct net_device_ops cxgb4_netdev_ops = {
3006	.ndo_open             = cxgb_open,
3007	.ndo_stop             = cxgb_close,
3008	.ndo_start_xmit       = t4_eth_xmit,
3009	.ndo_select_queue     =	cxgb_select_queue,
3010	.ndo_get_stats64      = cxgb_get_stats,
3011	.ndo_set_rx_mode      = cxgb_set_rxmode,
3012	.ndo_set_mac_address  = cxgb_set_mac_addr,
3013	.ndo_set_features     = cxgb_set_features,
3014	.ndo_validate_addr    = eth_validate_addr,
3015	.ndo_do_ioctl         = cxgb_ioctl,
3016	.ndo_change_mtu       = cxgb_change_mtu,
3017#ifdef CONFIG_NET_POLL_CONTROLLER
3018	.ndo_poll_controller  = cxgb_netpoll,
3019#endif
3020#ifdef CONFIG_CHELSIO_T4_FCOE
3021	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3022	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3023#endif /* CONFIG_CHELSIO_T4_FCOE */
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025	.ndo_busy_poll        = cxgb_busy_poll,
3026#endif
3027
3028};
3029
3030void t4_fatal_err(struct adapter *adap)
3031{
3032	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3033	t4_intr_disable(adap);
3034	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3035}
3036
3037/* Return the specified PCI-E Configuration Space register from our Physical
3038 * Function.  We try first via a Firmware LDST Command since we prefer to let
3039 * the firmware own all of these registers, but if that fails we go for it
3040 * directly ourselves.
3041 */
3042static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
3043{
3044	struct fw_ldst_cmd ldst_cmd;
3045	u32 val;
3046	int ret;
3047
3048	/* Construct and send the Firmware LDST Command to retrieve the
3049	 * specified PCI-E Configuration Space register.
3050	 */
3051	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
3052	ldst_cmd.op_to_addrspace =
3053		htonl(FW_CMD_OP_V(FW_LDST_CMD) |
3054		      FW_CMD_REQUEST_F |
3055		      FW_CMD_READ_F |
3056		      FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
3057	ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
3058	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
3059	ldst_cmd.u.pcie.ctrl_to_fn =
3060		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
3061	ldst_cmd.u.pcie.r = reg;
3062	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
3063			 &ldst_cmd);
3064
3065	/* If the LDST Command suucceeded, exctract the returned register
3066	 * value.  Otherwise read it directly ourself.
3067	 */
3068	if (ret == 0)
3069		val = ntohl(ldst_cmd.u.pcie.data[0]);
3070	else
3071		t4_hw_pci_read_cfg4(adap, reg, &val);
3072
3073	return val;
3074}
3075
3076static void setup_memwin(struct adapter *adap)
3077{
3078	u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
3079
3080	if (is_t4(adap->params.chip)) {
3081		u32 bar0;
3082
3083		/* Truncation intentional: we only read the bottom 32-bits of
3084		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
3085		 * mechanism to read BAR0 instead of using
3086		 * pci_resource_start() because we could be operating from
3087		 * within a Virtual Machine which is trapping our accesses to
3088		 * our Configuration Space and we need to set up the PCI-E
3089		 * Memory Window decoders with the actual addresses which will
3090		 * be coming across the PCI-E link.
3091		 */
3092		bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
3093		bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
3094		adap->t4_bar0 = bar0;
3095
3096		mem_win0_base = bar0 + MEMWIN0_BASE;
3097		mem_win1_base = bar0 + MEMWIN1_BASE;
3098		mem_win2_base = bar0 + MEMWIN2_BASE;
3099		mem_win2_aperture = MEMWIN2_APERTURE;
3100	} else {
3101		/* For T5, only relative offset inside the PCIe BAR is passed */
3102		mem_win0_base = MEMWIN0_BASE;
3103		mem_win1_base = MEMWIN1_BASE;
3104		mem_win2_base = MEMWIN2_BASE_T5;
3105		mem_win2_aperture = MEMWIN2_APERTURE_T5;
3106	}
3107	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
3108		     mem_win0_base | BIR_V(0) |
3109		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
3110	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
3111		     mem_win1_base | BIR_V(0) |
3112		     WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
3113	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
3114		     mem_win2_base | BIR_V(0) |
3115		     WINDOW_V(ilog2(mem_win2_aperture) - 10));
3116	t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
3117}
3118
3119static void setup_memwin_rdma(struct adapter *adap)
3120{
3121	if (adap->vres.ocq.size) {
3122		u32 start;
3123		unsigned int sz_kb;
3124
3125		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3126		start &= PCI_BASE_ADDRESS_MEM_MASK;
3127		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3128		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3129		t4_write_reg(adap,
3130			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3131			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3132		t4_write_reg(adap,
3133			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3134			     adap->vres.ocq.start);
3135		t4_read_reg(adap,
3136			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3137	}
3138}
3139
3140static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3141{
3142	u32 v;
3143	int ret;
3144
3145	/* get device capabilities */
3146	memset(c, 0, sizeof(*c));
3147	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3148			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3149	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3150	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3151	if (ret < 0)
3152		return ret;
3153
3154	/* select capabilities we'll be using */
3155	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3156		if (!vf_acls)
3157			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3158		else
3159			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3160	} else if (vf_acls) {
3161		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3162		return ret;
3163	}
3164	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3165			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3166	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3167	if (ret < 0)
3168		return ret;
3169
3170	ret = t4_config_glbl_rss(adap, adap->fn,
3171				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3172				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3173				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3174	if (ret < 0)
3175		return ret;
3176
3177	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3178			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3179			  FW_CMD_CAP_PF);
3180	if (ret < 0)
3181		return ret;
3182
3183	t4_sge_init(adap);
3184
3185	/* tweak some settings */
3186	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3187	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3188	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3189	v = t4_read_reg(adap, TP_PIO_DATA_A);
3190	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3191
3192	/* first 4 Tx modulation queues point to consecutive Tx channels */
3193	adap->params.tp.tx_modq_map = 0xE4;
3194	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3195		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3196
3197	/* associate each Tx modulation queue with consecutive Tx channels */
3198	v = 0x84218421;
3199	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3200			  &v, 1, TP_TX_SCHED_HDR_A);
3201	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3202			  &v, 1, TP_TX_SCHED_FIFO_A);
3203	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3204			  &v, 1, TP_TX_SCHED_PCMD_A);
3205
3206#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3207	if (is_offload(adap)) {
3208		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3209			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3210			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3211			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3212			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3213		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3214			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3215			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3216			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3217			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3218	}
3219
3220	/* get basic stuff going */
3221	return t4_early_init(adap, adap->fn);
3222}
3223
3224/*
3225 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3226 */
3227#define MAX_ATIDS 8192U
3228
3229/*
3230 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3231 *
3232 * If the firmware we're dealing with has Configuration File support, then
3233 * we use that to perform all configuration
3234 */
3235
3236/*
3237 * Tweak configuration based on module parameters, etc.  Most of these have
3238 * defaults assigned to them by Firmware Configuration Files (if we're using
3239 * them) but need to be explicitly set if we're using hard-coded
3240 * initialization.  But even in the case of using Firmware Configuration
3241 * Files, we'd like to expose the ability to change these via module
3242 * parameters so these are essentially common tweaks/settings for
3243 * Configuration Files and hard-coded initialization ...
3244 */
3245static int adap_init0_tweaks(struct adapter *adapter)
3246{
3247	/*
3248	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3249	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3250	 * 64B Cache Line Size ...
3251	 */
3252	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3253
3254	/*
3255	 * Process module parameters which affect early initialization.
3256	 */
3257	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3258		dev_err(&adapter->pdev->dev,
3259			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3260			rx_dma_offset);
3261		rx_dma_offset = 2;
3262	}
3263	t4_set_reg_field(adapter, SGE_CONTROL_A,
3264			 PKTSHIFT_V(PKTSHIFT_M),
3265			 PKTSHIFT_V(rx_dma_offset));
3266
3267	/*
3268	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3269	 * adds the pseudo header itself.
3270	 */
3271	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3272			       CSUM_HAS_PSEUDO_HDR_F, 0);
3273
3274	return 0;
3275}
3276
3277/*
3278 * Attempt to initialize the adapter via a Firmware Configuration File.
3279 */
3280static int adap_init0_config(struct adapter *adapter, int reset)
3281{
3282	struct fw_caps_config_cmd caps_cmd;
3283	const struct firmware *cf;
3284	unsigned long mtype = 0, maddr = 0;
3285	u32 finiver, finicsum, cfcsum;
3286	int ret;
3287	int config_issued = 0;
3288	char *fw_config_file, fw_config_file_path[256];
3289	char *config_name = NULL;
3290
3291	/*
3292	 * Reset device if necessary.
3293	 */
3294	if (reset) {
3295		ret = t4_fw_reset(adapter, adapter->mbox,
3296				  PIORSTMODE_F | PIORST_F);
3297		if (ret < 0)
3298			goto bye;
3299	}
3300
3301	/*
3302	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3303	 * then use that.  Otherwise, use the configuration file stored
3304	 * in the adapter flash ...
3305	 */
3306	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3307	case CHELSIO_T4:
3308		fw_config_file = FW4_CFNAME;
3309		break;
3310	case CHELSIO_T5:
3311		fw_config_file = FW5_CFNAME;
3312		break;
3313	default:
3314		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3315		       adapter->pdev->device);
3316		ret = -EINVAL;
3317		goto bye;
3318	}
3319
3320	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3321	if (ret < 0) {
3322		config_name = "On FLASH";
3323		mtype = FW_MEMTYPE_CF_FLASH;
3324		maddr = t4_flash_cfg_addr(adapter);
3325	} else {
3326		u32 params[7], val[7];
3327
3328		sprintf(fw_config_file_path,
3329			"/lib/firmware/%s", fw_config_file);
3330		config_name = fw_config_file_path;
3331
3332		if (cf->size >= FLASH_CFG_MAX_SIZE)
3333			ret = -ENOMEM;
3334		else {
3335			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3336			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3337			ret = t4_query_params(adapter, adapter->mbox,
3338					      adapter->fn, 0, 1, params, val);
3339			if (ret == 0) {
3340				/*
3341				 * For t4_memory_rw() below addresses and
3342				 * sizes have to be in terms of multiples of 4
3343				 * bytes.  So, if the Configuration File isn't
3344				 * a multiple of 4 bytes in length we'll have
3345				 * to write that out separately since we can't
3346				 * guarantee that the bytes following the
3347				 * residual byte in the buffer returned by
3348				 * request_firmware() are zeroed out ...
3349				 */
3350				size_t resid = cf->size & 0x3;
3351				size_t size = cf->size & ~0x3;
3352				__be32 *data = (__be32 *)cf->data;
3353
3354				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3355				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3356
3357				spin_lock(&adapter->win0_lock);
3358				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3359						   size, data, T4_MEMORY_WRITE);
3360				if (ret == 0 && resid != 0) {
3361					union {
3362						__be32 word;
3363						char buf[4];
3364					} last;
3365					int i;
3366
3367					last.word = data[size >> 2];
3368					for (i = resid; i < 4; i++)
3369						last.buf[i] = 0;
3370					ret = t4_memory_rw(adapter, 0, mtype,
3371							   maddr + size,
3372							   4, &last.word,
3373							   T4_MEMORY_WRITE);
3374				}
3375				spin_unlock(&adapter->win0_lock);
3376			}
3377		}
3378
3379		release_firmware(cf);
3380		if (ret)
3381			goto bye;
3382	}
3383
3384	/*
3385	 * Issue a Capability Configuration command to the firmware to get it
3386	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3387	 * because we want the ability to modify various features after we've
3388	 * processed the configuration file ...
3389	 */
3390	memset(&caps_cmd, 0, sizeof(caps_cmd));
3391	caps_cmd.op_to_write =
3392		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3393		      FW_CMD_REQUEST_F |
3394		      FW_CMD_READ_F);
3395	caps_cmd.cfvalid_to_len16 =
3396		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3397		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3398		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3399		      FW_LEN16(caps_cmd));
3400	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3401			 &caps_cmd);
3402
3403	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3404	 * Configuration File in FLASH), our last gasp effort is to use the
3405	 * Firmware Configuration File which is embedded in the firmware.  A
3406	 * very few early versions of the firmware didn't have one embedded
3407	 * but we can ignore those.
3408	 */
3409	if (ret == -ENOENT) {
3410		memset(&caps_cmd, 0, sizeof(caps_cmd));
3411		caps_cmd.op_to_write =
3412			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3413					FW_CMD_REQUEST_F |
3414					FW_CMD_READ_F);
3415		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3416		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3417				sizeof(caps_cmd), &caps_cmd);
3418		config_name = "Firmware Default";
3419	}
3420
3421	config_issued = 1;
3422	if (ret < 0)
3423		goto bye;
3424
3425	finiver = ntohl(caps_cmd.finiver);
3426	finicsum = ntohl(caps_cmd.finicsum);
3427	cfcsum = ntohl(caps_cmd.cfcsum);
3428	if (finicsum != cfcsum)
3429		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3430			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3431			 finicsum, cfcsum);
3432
3433	/*
3434	 * And now tell the firmware to use the configuration we just loaded.
3435	 */
3436	caps_cmd.op_to_write =
3437		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3438		      FW_CMD_REQUEST_F |
3439		      FW_CMD_WRITE_F);
3440	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3441	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3442			 NULL);
3443	if (ret < 0)
3444		goto bye;
3445
3446	/*
3447	 * Tweak configuration based on system architecture, module
3448	 * parameters, etc.
3449	 */
3450	ret = adap_init0_tweaks(adapter);
3451	if (ret < 0)
3452		goto bye;
3453
3454	/*
3455	 * And finally tell the firmware to initialize itself using the
3456	 * parameters from the Configuration File.
3457	 */
3458	ret = t4_fw_initialize(adapter, adapter->mbox);
3459	if (ret < 0)
3460		goto bye;
3461
3462	/* Emit Firmware Configuration File information and return
3463	 * successfully.
3464	 */
3465	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3466		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3467		 config_name, finiver, cfcsum);
3468	return 0;
3469
3470	/*
3471	 * Something bad happened.  Return the error ...  (If the "error"
3472	 * is that there's no Configuration File on the adapter we don't
3473	 * want to issue a warning since this is fairly common.)
3474	 */
3475bye:
3476	if (config_issued && ret != -ENOENT)
3477		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3478			 config_name, -ret);
3479	return ret;
3480}
3481
3482static struct fw_info fw_info_array[] = {
3483	{
3484		.chip = CHELSIO_T4,
3485		.fs_name = FW4_CFNAME,
3486		.fw_mod_name = FW4_FNAME,
3487		.fw_hdr = {
3488			.chip = FW_HDR_CHIP_T4,
3489			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3490			.intfver_nic = FW_INTFVER(T4, NIC),
3491			.intfver_vnic = FW_INTFVER(T4, VNIC),
3492			.intfver_ri = FW_INTFVER(T4, RI),
3493			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3494			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3495		},
3496	}, {
3497		.chip = CHELSIO_T5,
3498		.fs_name = FW5_CFNAME,
3499		.fw_mod_name = FW5_FNAME,
3500		.fw_hdr = {
3501			.chip = FW_HDR_CHIP_T5,
3502			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3503			.intfver_nic = FW_INTFVER(T5, NIC),
3504			.intfver_vnic = FW_INTFVER(T5, VNIC),
3505			.intfver_ri = FW_INTFVER(T5, RI),
3506			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3507			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3508		},
3509	}
3510};
3511
3512static struct fw_info *find_fw_info(int chip)
3513{
3514	int i;
3515
3516	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3517		if (fw_info_array[i].chip == chip)
3518			return &fw_info_array[i];
3519	}
3520	return NULL;
3521}
3522
3523/*
3524 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3525 */
3526static int adap_init0(struct adapter *adap)
3527{
3528	int ret;
3529	u32 v, port_vec;
3530	enum dev_state state;
3531	u32 params[7], val[7];
3532	struct fw_caps_config_cmd caps_cmd;
3533	int reset = 1;
3534
3535	/* Grab Firmware Device Log parameters as early as possible so we have
3536	 * access to it for debugging, etc.
3537	 */
3538	ret = t4_init_devlog_params(adap);
3539	if (ret < 0)
3540		return ret;
3541
3542	/* Contact FW, advertising Master capability */
3543	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3544	if (ret < 0) {
3545		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3546			ret);
3547		return ret;
3548	}
3549	if (ret == adap->mbox)
3550		adap->flags |= MASTER_PF;
3551
3552	/*
3553	 * If we're the Master PF Driver and the device is uninitialized,
3554	 * then let's consider upgrading the firmware ...  (We always want
3555	 * to check the firmware version number in order to A. get it for
3556	 * later reporting and B. to warn if the currently loaded firmware
3557	 * is excessively mismatched relative to the driver.)
3558	 */
3559	t4_get_fw_version(adap, &adap->params.fw_vers);
3560	t4_get_tp_version(adap, &adap->params.tp_vers);
3561	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3562		struct fw_info *fw_info;
3563		struct fw_hdr *card_fw;
3564		const struct firmware *fw;
3565		const u8 *fw_data = NULL;
3566		unsigned int fw_size = 0;
3567
3568		/* This is the firmware whose headers the driver was compiled
3569		 * against
3570		 */
3571		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3572		if (fw_info == NULL) {
3573			dev_err(adap->pdev_dev,
3574				"unable to get firmware info for chip %d.\n",
3575				CHELSIO_CHIP_VERSION(adap->params.chip));
3576			return -EINVAL;
3577		}
3578
3579		/* allocate memory to read the header of the firmware on the
3580		 * card
3581		 */
3582		card_fw = t4_alloc_mem(sizeof(*card_fw));
3583
3584		/* Get FW from from /lib/firmware/ */
3585		ret = request_firmware(&fw, fw_info->fw_mod_name,
3586				       adap->pdev_dev);
3587		if (ret < 0) {
3588			dev_err(adap->pdev_dev,
3589				"unable to load firmware image %s, error %d\n",
3590				fw_info->fw_mod_name, ret);
3591		} else {
3592			fw_data = fw->data;
3593			fw_size = fw->size;
3594		}
3595
3596		/* upgrade FW logic */
3597		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3598				 state, &reset);
3599
3600		/* Cleaning up */
3601		release_firmware(fw);
3602		t4_free_mem(card_fw);
3603
3604		if (ret < 0)
3605			goto bye;
3606	}
3607
3608	/*
3609	 * Grab VPD parameters.  This should be done after we establish a
3610	 * connection to the firmware since some of the VPD parameters
3611	 * (notably the Core Clock frequency) are retrieved via requests to
3612	 * the firmware.  On the other hand, we need these fairly early on
3613	 * so we do this right after getting ahold of the firmware.
3614	 */
3615	ret = get_vpd_params(adap, &adap->params.vpd);
3616	if (ret < 0)
3617		goto bye;
3618
3619	/*
3620	 * Find out what ports are available to us.  Note that we need to do
3621	 * this before calling adap_init0_no_config() since it needs nports
3622	 * and portvec ...
3623	 */
3624	v =
3625	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3626	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3627	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3628	if (ret < 0)
3629		goto bye;
3630
3631	adap->params.nports = hweight32(port_vec);
3632	adap->params.portvec = port_vec;
3633
3634	/* If the firmware is initialized already, emit a simply note to that
3635	 * effect. Otherwise, it's time to try initializing the adapter.
3636	 */
3637	if (state == DEV_STATE_INIT) {
3638		dev_info(adap->pdev_dev, "Coming up as %s: "\
3639			 "Adapter already initialized\n",
3640			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3641	} else {
3642		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3643			 "Initializing adapter\n");
3644
3645		/* Find out whether we're dealing with a version of the
3646		 * firmware which has configuration file support.
3647		 */
3648		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3649			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3650		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3651				      params, val);
3652
3653		/* If the firmware doesn't support Configuration Files,
3654		 * return an error.
3655		 */
3656		if (ret < 0) {
3657			dev_err(adap->pdev_dev, "firmware doesn't support "
3658				"Firmware Configuration Files\n");
3659			goto bye;
3660		}
3661
3662		/* The firmware provides us with a memory buffer where we can
3663		 * load a Configuration File from the host if we want to
3664		 * override the Configuration File in flash.
3665		 */
3666		ret = adap_init0_config(adap, reset);
3667		if (ret == -ENOENT) {
3668			dev_err(adap->pdev_dev, "no Configuration File "
3669				"present on adapter.\n");
3670			goto bye;
3671		}
3672		if (ret < 0) {
3673			dev_err(adap->pdev_dev, "could not initialize "
3674				"adapter, error %d\n", -ret);
3675			goto bye;
3676		}
3677	}
3678
3679	/* Give the SGE code a chance to pull in anything that it needs ...
3680	 * Note that this must be called after we retrieve our VPD parameters
3681	 * in order to know how to convert core ticks to seconds, etc.
3682	 */
3683	ret = t4_sge_init(adap);
3684	if (ret < 0)
3685		goto bye;
3686
3687	if (is_bypass_device(adap->pdev->device))
3688		adap->params.bypass = 1;
3689
3690	/*
3691	 * Grab some of our basic fundamental operating parameters.
3692	 */
3693#define FW_PARAM_DEV(param) \
3694	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3695	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3696
3697#define FW_PARAM_PFVF(param) \
3698	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3699	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3700	FW_PARAMS_PARAM_Y_V(0) | \
3701	FW_PARAMS_PARAM_Z_V(0)
3702
3703	params[0] = FW_PARAM_PFVF(EQ_START);
3704	params[1] = FW_PARAM_PFVF(L2T_START);
3705	params[2] = FW_PARAM_PFVF(L2T_END);
3706	params[3] = FW_PARAM_PFVF(FILTER_START);
3707	params[4] = FW_PARAM_PFVF(FILTER_END);
3708	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3709	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3710	if (ret < 0)
3711		goto bye;
3712	adap->sge.egr_start = val[0];
3713	adap->l2t_start = val[1];
3714	adap->l2t_end = val[2];
3715	adap->tids.ftid_base = val[3];
3716	adap->tids.nftids = val[4] - val[3] + 1;
3717	adap->sge.ingr_start = val[5];
3718
3719	/* qids (ingress/egress) returned from firmware can be anywhere
3720	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3721	 * Hence driver needs to allocate memory for this range to
3722	 * store the queue info. Get the highest IQFLINT/EQ index returned
3723	 * in FW_EQ_*_CMD.alloc command.
3724	 */
3725	params[0] = FW_PARAM_PFVF(EQ_END);
3726	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3727	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3728	if (ret < 0)
3729		goto bye;
3730	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3731	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3732
3733	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3734				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3735	if (!adap->sge.egr_map) {
3736		ret = -ENOMEM;
3737		goto bye;
3738	}
3739
3740	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3741				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3742	if (!adap->sge.ingr_map) {
3743		ret = -ENOMEM;
3744		goto bye;
3745	}
3746
3747	/* Allocate the memory for the vaious egress queue bitmaps
3748	 * ie starving_fl and txq_maperr.
3749	 */
3750	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3751					sizeof(long), GFP_KERNEL);
3752	if (!adap->sge.starving_fl) {
3753		ret = -ENOMEM;
3754		goto bye;
3755	}
3756
3757	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3758				       sizeof(long), GFP_KERNEL);
3759	if (!adap->sge.txq_maperr) {
3760		ret = -ENOMEM;
3761		goto bye;
3762	}
3763
3764	params[0] = FW_PARAM_PFVF(CLIP_START);
3765	params[1] = FW_PARAM_PFVF(CLIP_END);
3766	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3767	if (ret < 0)
3768		goto bye;
3769	adap->clipt_start = val[0];
3770	adap->clipt_end = val[1];
3771
3772	/* query params related to active filter region */
3773	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3774	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3775	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3776	/* If Active filter size is set we enable establishing
3777	 * offload connection through firmware work request
3778	 */
3779	if ((val[0] != val[1]) && (ret >= 0)) {
3780		adap->flags |= FW_OFLD_CONN;
3781		adap->tids.aftid_base = val[0];
3782		adap->tids.aftid_end = val[1];
3783	}
3784
3785	/* If we're running on newer firmware, let it know that we're
3786	 * prepared to deal with encapsulated CPL messages.  Older
3787	 * firmware won't understand this and we'll just get
3788	 * unencapsulated messages ...
3789	 */
3790	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3791	val[0] = 1;
3792	(void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3793
3794	/*
3795	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3796	 * capability.  Earlier versions of the firmware didn't have the
3797	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3798	 * permission to use ULPTX MEMWRITE DSGL.
3799	 */
3800	if (is_t4(adap->params.chip)) {
3801		adap->params.ulptx_memwrite_dsgl = false;
3802	} else {
3803		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3804		ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3805				      1, params, val);
3806		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3807	}
3808
3809	/*
3810	 * Get device capabilities so we can determine what resources we need
3811	 * to manage.
3812	 */
3813	memset(&caps_cmd, 0, sizeof(caps_cmd));
3814	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3815				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3816	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3817	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3818			 &caps_cmd);
3819	if (ret < 0)
3820		goto bye;
3821
3822	if (caps_cmd.ofldcaps) {
3823		/* query offload-related parameters */
3824		params[0] = FW_PARAM_DEV(NTID);
3825		params[1] = FW_PARAM_PFVF(SERVER_START);
3826		params[2] = FW_PARAM_PFVF(SERVER_END);
3827		params[3] = FW_PARAM_PFVF(TDDP_START);
3828		params[4] = FW_PARAM_PFVF(TDDP_END);
3829		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3830		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3831				      params, val);
3832		if (ret < 0)
3833			goto bye;
3834		adap->tids.ntids = val[0];
3835		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3836		adap->tids.stid_base = val[1];
3837		adap->tids.nstids = val[2] - val[1] + 1;
3838		/*
3839		 * Setup server filter region. Divide the available filter
3840		 * region into two parts. Regular filters get 1/3rd and server
3841		 * filters get 2/3rd part. This is only enabled if workarond
3842		 * path is enabled.
3843		 * 1. For regular filters.
3844		 * 2. Server filter: This are special filters which are used
3845		 * to redirect SYN packets to offload queue.
3846		 */
3847		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3848			adap->tids.sftid_base = adap->tids.ftid_base +
3849					DIV_ROUND_UP(adap->tids.nftids, 3);
3850			adap->tids.nsftids = adap->tids.nftids -
3851					 DIV_ROUND_UP(adap->tids.nftids, 3);
3852			adap->tids.nftids = adap->tids.sftid_base -
3853						adap->tids.ftid_base;
3854		}
3855		adap->vres.ddp.start = val[3];
3856		adap->vres.ddp.size = val[4] - val[3] + 1;
3857		adap->params.ofldq_wr_cred = val[5];
3858
3859		adap->params.offload = 1;
3860	}
3861	if (caps_cmd.rdmacaps) {
3862		params[0] = FW_PARAM_PFVF(STAG_START);
3863		params[1] = FW_PARAM_PFVF(STAG_END);
3864		params[2] = FW_PARAM_PFVF(RQ_START);
3865		params[3] = FW_PARAM_PFVF(RQ_END);
3866		params[4] = FW_PARAM_PFVF(PBL_START);
3867		params[5] = FW_PARAM_PFVF(PBL_END);
3868		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3869				      params, val);
3870		if (ret < 0)
3871			goto bye;
3872		adap->vres.stag.start = val[0];
3873		adap->vres.stag.size = val[1] - val[0] + 1;
3874		adap->vres.rq.start = val[2];
3875		adap->vres.rq.size = val[3] - val[2] + 1;
3876		adap->vres.pbl.start = val[4];
3877		adap->vres.pbl.size = val[5] - val[4] + 1;
3878
3879		params[0] = FW_PARAM_PFVF(SQRQ_START);
3880		params[1] = FW_PARAM_PFVF(SQRQ_END);
3881		params[2] = FW_PARAM_PFVF(CQ_START);
3882		params[3] = FW_PARAM_PFVF(CQ_END);
3883		params[4] = FW_PARAM_PFVF(OCQ_START);
3884		params[5] = FW_PARAM_PFVF(OCQ_END);
3885		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3886				      val);
3887		if (ret < 0)
3888			goto bye;
3889		adap->vres.qp.start = val[0];
3890		adap->vres.qp.size = val[1] - val[0] + 1;
3891		adap->vres.cq.start = val[2];
3892		adap->vres.cq.size = val[3] - val[2] + 1;
3893		adap->vres.ocq.start = val[4];
3894		adap->vres.ocq.size = val[5] - val[4] + 1;
3895
3896		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3897		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3898		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3899				      val);
3900		if (ret < 0) {
3901			adap->params.max_ordird_qp = 8;
3902			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3903			ret = 0;
3904		} else {
3905			adap->params.max_ordird_qp = val[0];
3906			adap->params.max_ird_adapter = val[1];
3907		}
3908		dev_info(adap->pdev_dev,
3909			 "max_ordird_qp %d max_ird_adapter %d\n",
3910			 adap->params.max_ordird_qp,
3911			 adap->params.max_ird_adapter);
3912	}
3913	if (caps_cmd.iscsicaps) {
3914		params[0] = FW_PARAM_PFVF(ISCSI_START);
3915		params[1] = FW_PARAM_PFVF(ISCSI_END);
3916		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3917				      params, val);
3918		if (ret < 0)
3919			goto bye;
3920		adap->vres.iscsi.start = val[0];
3921		adap->vres.iscsi.size = val[1] - val[0] + 1;
3922	}
3923#undef FW_PARAM_PFVF
3924#undef FW_PARAM_DEV
3925
3926	/* The MTU/MSS Table is initialized by now, so load their values.  If
3927	 * we're initializing the adapter, then we'll make any modifications
3928	 * we want to the MTU/MSS Table and also initialize the congestion
3929	 * parameters.
3930	 */
3931	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3932	if (state != DEV_STATE_INIT) {
3933		int i;
3934
3935		/* The default MTU Table contains values 1492 and 1500.
3936		 * However, for TCP, it's better to have two values which are
3937		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3938		 * This allows us to have a TCP Data Payload which is a
3939		 * multiple of 8 regardless of what combination of TCP Options
3940		 * are in use (always a multiple of 4 bytes) which is
3941		 * important for performance reasons.  For instance, if no
3942		 * options are in use, then we have a 20-byte IP header and a
3943		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3944		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3945		 * which is not a multiple of 8.  So using an MSS of 1488 in
3946		 * this case results in a TCP Data Payload of 1448 bytes which
3947		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3948		 * Stamps have been negotiated, then an MTU of 1500 bytes
3949		 * results in a TCP Data Payload of 1448 bytes which, as
3950		 * above, is a multiple of 8 bytes ...
3951		 */
3952		for (i = 0; i < NMTUS; i++)
3953			if (adap->params.mtus[i] == 1492) {
3954				adap->params.mtus[i] = 1488;
3955				break;
3956			}
3957
3958		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3959			     adap->params.b_wnd);
3960	}
3961	t4_init_sge_params(adap);
3962	t4_init_tp_params(adap);
3963	adap->flags |= FW_OK;
3964	return 0;
3965
3966	/*
3967	 * Something bad happened.  If a command timed out or failed with EIO
3968	 * FW does not operate within its spec or something catastrophic
3969	 * happened to HW/FW, stop issuing commands.
3970	 */
3971bye:
3972	kfree(adap->sge.egr_map);
3973	kfree(adap->sge.ingr_map);
3974	kfree(adap->sge.starving_fl);
3975	kfree(adap->sge.txq_maperr);
3976	if (ret != -ETIMEDOUT && ret != -EIO)
3977		t4_fw_bye(adap, adap->mbox);
3978	return ret;
3979}
3980
3981/* EEH callbacks */
3982
3983static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3984					 pci_channel_state_t state)
3985{
3986	int i;
3987	struct adapter *adap = pci_get_drvdata(pdev);
3988
3989	if (!adap)
3990		goto out;
3991
3992	rtnl_lock();
3993	adap->flags &= ~FW_OK;
3994	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3995	spin_lock(&adap->stats_lock);
3996	for_each_port(adap, i) {
3997		struct net_device *dev = adap->port[i];
3998
3999		netif_device_detach(dev);
4000		netif_carrier_off(dev);
4001	}
4002	spin_unlock(&adap->stats_lock);
4003	disable_interrupts(adap);
4004	if (adap->flags & FULL_INIT_DONE)
4005		cxgb_down(adap);
4006	rtnl_unlock();
4007	if ((adap->flags & DEV_ENABLED)) {
4008		pci_disable_device(pdev);
4009		adap->flags &= ~DEV_ENABLED;
4010	}
4011out:	return state == pci_channel_io_perm_failure ?
4012		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4013}
4014
4015static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4016{
4017	int i, ret;
4018	struct fw_caps_config_cmd c;
4019	struct adapter *adap = pci_get_drvdata(pdev);
4020
4021	if (!adap) {
4022		pci_restore_state(pdev);
4023		pci_save_state(pdev);
4024		return PCI_ERS_RESULT_RECOVERED;
4025	}
4026
4027	if (!(adap->flags & DEV_ENABLED)) {
4028		if (pci_enable_device(pdev)) {
4029			dev_err(&pdev->dev, "Cannot reenable PCI "
4030					    "device after reset\n");
4031			return PCI_ERS_RESULT_DISCONNECT;
4032		}
4033		adap->flags |= DEV_ENABLED;
4034	}
4035
4036	pci_set_master(pdev);
4037	pci_restore_state(pdev);
4038	pci_save_state(pdev);
4039	pci_cleanup_aer_uncorrect_error_status(pdev);
4040
4041	if (t4_wait_dev_ready(adap->regs) < 0)
4042		return PCI_ERS_RESULT_DISCONNECT;
4043	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
4044		return PCI_ERS_RESULT_DISCONNECT;
4045	adap->flags |= FW_OK;
4046	if (adap_init1(adap, &c))
4047		return PCI_ERS_RESULT_DISCONNECT;
4048
4049	for_each_port(adap, i) {
4050		struct port_info *p = adap2pinfo(adap, i);
4051
4052		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4053				  NULL, NULL);
4054		if (ret < 0)
4055			return PCI_ERS_RESULT_DISCONNECT;
4056		p->viid = ret;
4057		p->xact_addr_filt = -1;
4058	}
4059
4060	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4061		     adap->params.b_wnd);
4062	setup_memwin(adap);
4063	if (cxgb_up(adap))
4064		return PCI_ERS_RESULT_DISCONNECT;
4065	return PCI_ERS_RESULT_RECOVERED;
4066}
4067
4068static void eeh_resume(struct pci_dev *pdev)
4069{
4070	int i;
4071	struct adapter *adap = pci_get_drvdata(pdev);
4072
4073	if (!adap)
4074		return;
4075
4076	rtnl_lock();
4077	for_each_port(adap, i) {
4078		struct net_device *dev = adap->port[i];
4079
4080		if (netif_running(dev)) {
4081			link_start(dev);
4082			cxgb_set_rxmode(dev);
4083		}
4084		netif_device_attach(dev);
4085	}
4086	rtnl_unlock();
4087}
4088
4089static const struct pci_error_handlers cxgb4_eeh = {
4090	.error_detected = eeh_err_detected,
4091	.slot_reset     = eeh_slot_reset,
4092	.resume         = eeh_resume,
4093};
4094
4095static inline bool is_x_10g_port(const struct link_config *lc)
4096{
4097	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4098	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4099}
4100
4101static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4102			     unsigned int us, unsigned int cnt,
4103			     unsigned int size, unsigned int iqe_size)
4104{
4105	q->adap = adap;
4106	cxgb4_set_rspq_intr_params(q, us, cnt);
4107	q->iqe_len = iqe_size;
4108	q->size = size;
4109}
4110
4111/*
4112 * Perform default configuration of DMA queues depending on the number and type
4113 * of ports we found and the number of available CPUs.  Most settings can be
4114 * modified by the admin prior to actual use.
4115 */
4116static void cfg_queues(struct adapter *adap)
4117{
4118	struct sge *s = &adap->sge;
4119	int i, n10g = 0, qidx = 0;
4120#ifndef CONFIG_CHELSIO_T4_DCB
4121	int q10g = 0;
4122#endif
4123	int ciq_size;
4124
4125	for_each_port(adap, i)
4126		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4127#ifdef CONFIG_CHELSIO_T4_DCB
4128	/* For Data Center Bridging support we need to be able to support up
4129	 * to 8 Traffic Priorities; each of which will be assigned to its
4130	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4131	 */
4132	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4133		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4134			MAX_ETH_QSETS, adap->params.nports * 8);
4135		BUG_ON(1);
4136	}
4137
4138	for_each_port(adap, i) {
4139		struct port_info *pi = adap2pinfo(adap, i);
4140
4141		pi->first_qset = qidx;
4142		pi->nqsets = 8;
4143		qidx += pi->nqsets;
4144	}
4145#else /* !CONFIG_CHELSIO_T4_DCB */
4146	/*
4147	 * We default to 1 queue per non-10G port and up to # of cores queues
4148	 * per 10G port.
4149	 */
4150	if (n10g)
4151		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4152	if (q10g > netif_get_num_default_rss_queues())
4153		q10g = netif_get_num_default_rss_queues();
4154
4155	for_each_port(adap, i) {
4156		struct port_info *pi = adap2pinfo(adap, i);
4157
4158		pi->first_qset = qidx;
4159		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4160		qidx += pi->nqsets;
4161	}
4162#endif /* !CONFIG_CHELSIO_T4_DCB */
4163
4164	s->ethqsets = qidx;
4165	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4166
4167	if (is_offload(adap)) {
4168		/*
4169		 * For offload we use 1 queue/channel if all ports are up to 1G,
4170		 * otherwise we divide all available queues amongst the channels
4171		 * capped by the number of available cores.
4172		 */
4173		if (n10g) {
4174			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4175				  num_online_cpus());
4176			s->ofldqsets = roundup(i, adap->params.nports);
4177		} else
4178			s->ofldqsets = adap->params.nports;
4179		/* For RDMA one Rx queue per channel suffices */
4180		s->rdmaqs = adap->params.nports;
4181		/* Try and allow at least 1 CIQ per cpu rounding down
4182		 * to the number of ports, with a minimum of 1 per port.
4183		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4184		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4185		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4186		 */
4187		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4188		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4189				adap->params.nports;
4190		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4191	}
4192
4193	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4194		struct sge_eth_rxq *r = &s->ethrxq[i];
4195
4196		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4197		r->fl.size = 72;
4198	}
4199
4200	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4201		s->ethtxq[i].q.size = 1024;
4202
4203	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4204		s->ctrlq[i].q.size = 512;
4205
4206	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4207		s->ofldtxq[i].q.size = 1024;
4208
4209	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4210		struct sge_ofld_rxq *r = &s->ofldrxq[i];
4211
4212		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4213		r->rspq.uld = CXGB4_ULD_ISCSI;
4214		r->fl.size = 72;
4215	}
4216
4217	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4218		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4219
4220		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4221		r->rspq.uld = CXGB4_ULD_RDMA;
4222		r->fl.size = 72;
4223	}
4224
4225	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4226	if (ciq_size > SGE_MAX_IQ_SIZE) {
4227		CH_WARN(adap, "CIQ size too small for available IQs\n");
4228		ciq_size = SGE_MAX_IQ_SIZE;
4229	}
4230
4231	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4232		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4233
4234		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4235		r->rspq.uld = CXGB4_ULD_RDMA;
4236	}
4237
4238	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4239	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4240}
4241
4242/*
4243 * Reduce the number of Ethernet queues across all ports to at most n.
4244 * n provides at least one queue per port.
4245 */
4246static void reduce_ethqs(struct adapter *adap, int n)
4247{
4248	int i;
4249	struct port_info *pi;
4250
4251	while (n < adap->sge.ethqsets)
4252		for_each_port(adap, i) {
4253			pi = adap2pinfo(adap, i);
4254			if (pi->nqsets > 1) {
4255				pi->nqsets--;
4256				adap->sge.ethqsets--;
4257				if (adap->sge.ethqsets <= n)
4258					break;
4259			}
4260		}
4261
4262	n = 0;
4263	for_each_port(adap, i) {
4264		pi = adap2pinfo(adap, i);
4265		pi->first_qset = n;
4266		n += pi->nqsets;
4267	}
4268}
4269
4270/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4271#define EXTRA_VECS 2
4272
4273static int enable_msix(struct adapter *adap)
4274{
4275	int ofld_need = 0;
4276	int i, want, need, allocated;
4277	struct sge *s = &adap->sge;
4278	unsigned int nchan = adap->params.nports;
4279	struct msix_entry *entries;
4280
4281	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4282			  GFP_KERNEL);
4283	if (!entries)
4284		return -ENOMEM;
4285
4286	for (i = 0; i < MAX_INGQ + 1; ++i)
4287		entries[i].entry = i;
4288
4289	want = s->max_ethqsets + EXTRA_VECS;
4290	if (is_offload(adap)) {
4291		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4292		/* need nchan for each possible ULD */
4293		ofld_need = 3 * nchan;
4294	}
4295#ifdef CONFIG_CHELSIO_T4_DCB
4296	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4297	 * each port.
4298	 */
4299	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4300#else
4301	need = adap->params.nports + EXTRA_VECS + ofld_need;
4302#endif
4303	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4304	if (allocated < 0) {
4305		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4306			 " not using MSI-X\n");
4307		kfree(entries);
4308		return allocated;
4309	}
4310
4311	/* Distribute available vectors to the various queue groups.
4312	 * Every group gets its minimum requirement and NIC gets top
4313	 * priority for leftovers.
4314	 */
4315	i = allocated - EXTRA_VECS - ofld_need;
4316	if (i < s->max_ethqsets) {
4317		s->max_ethqsets = i;
4318		if (i < s->ethqsets)
4319			reduce_ethqs(adap, i);
4320	}
4321	if (is_offload(adap)) {
4322		if (allocated < want) {
4323			s->rdmaqs = nchan;
4324			s->rdmaciqs = nchan;
4325		}
4326
4327		/* leftovers go to OFLD */
4328		i = allocated - EXTRA_VECS - s->max_ethqsets -
4329		    s->rdmaqs - s->rdmaciqs;
4330		s->ofldqsets = (i / nchan) * nchan;  /* round down */
4331	}
4332	for (i = 0; i < allocated; ++i)
4333		adap->msix_info[i].vec = entries[i].vector;
4334
4335	kfree(entries);
4336	return 0;
4337}
4338
4339#undef EXTRA_VECS
4340
4341static int init_rss(struct adapter *adap)
4342{
4343	unsigned int i, j;
4344
4345	for_each_port(adap, i) {
4346		struct port_info *pi = adap2pinfo(adap, i);
4347
4348		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4349		if (!pi->rss)
4350			return -ENOMEM;
4351		for (j = 0; j < pi->rss_size; j++)
4352			pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
4353	}
4354	return 0;
4355}
4356
4357static void print_port_info(const struct net_device *dev)
4358{
4359	char buf[80];
4360	char *bufp = buf;
4361	const char *spd = "";
4362	const struct port_info *pi = netdev_priv(dev);
4363	const struct adapter *adap = pi->adapter;
4364
4365	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4366		spd = " 2.5 GT/s";
4367	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4368		spd = " 5 GT/s";
4369	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4370		spd = " 8 GT/s";
4371
4372	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4373		bufp += sprintf(bufp, "100/");
4374	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4375		bufp += sprintf(bufp, "1000/");
4376	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4377		bufp += sprintf(bufp, "10G/");
4378	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4379		bufp += sprintf(bufp, "40G/");
4380	if (bufp != buf)
4381		--bufp;
4382	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4383
4384	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4385		    adap->params.vpd.id,
4386		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4387		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4388		    (adap->flags & USING_MSIX) ? " MSI-X" :
4389		    (adap->flags & USING_MSI) ? " MSI" : "");
4390	netdev_info(dev, "S/N: %s, P/N: %s\n",
4391		    adap->params.vpd.sn, adap->params.vpd.pn);
4392}
4393
4394static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4395{
4396	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4397}
4398
4399/*
4400 * Free the following resources:
4401 * - memory used for tables
4402 * - MSI/MSI-X
4403 * - net devices
4404 * - resources FW is holding for us
4405 */
4406static void free_some_resources(struct adapter *adapter)
4407{
4408	unsigned int i;
4409
4410	t4_free_mem(adapter->l2t);
4411	t4_free_mem(adapter->tids.tid_tab);
4412	kfree(adapter->sge.egr_map);
4413	kfree(adapter->sge.ingr_map);
4414	kfree(adapter->sge.starving_fl);
4415	kfree(adapter->sge.txq_maperr);
4416	disable_msi(adapter);
4417
4418	for_each_port(adapter, i)
4419		if (adapter->port[i]) {
4420			kfree(adap2pinfo(adapter, i)->rss);
4421			free_netdev(adapter->port[i]);
4422		}
4423	if (adapter->flags & FW_OK)
4424		t4_fw_bye(adapter, adapter->fn);
4425}
4426
4427#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4428#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4429		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4430#define SEGMENT_SIZE 128
4431
4432static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4433{
4434	int func, i, err, s_qpp, qpp, num_seg;
4435	struct port_info *pi;
4436	bool highdma = false;
4437	struct adapter *adapter = NULL;
4438	void __iomem *regs;
4439
4440	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4441
4442	err = pci_request_regions(pdev, KBUILD_MODNAME);
4443	if (err) {
4444		/* Just info, some other driver may have claimed the device. */
4445		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4446		return err;
4447	}
4448
4449	err = pci_enable_device(pdev);
4450	if (err) {
4451		dev_err(&pdev->dev, "cannot enable PCI device\n");
4452		goto out_release_regions;
4453	}
4454
4455	regs = pci_ioremap_bar(pdev, 0);
4456	if (!regs) {
4457		dev_err(&pdev->dev, "cannot map device registers\n");
4458		err = -ENOMEM;
4459		goto out_disable_device;
4460	}
4461
4462	err = t4_wait_dev_ready(regs);
4463	if (err < 0)
4464		goto out_unmap_bar0;
4465
4466	/* We control everything through one PF */
4467	func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4468	if (func != ent->driver_data) {
4469		iounmap(regs);
4470		pci_disable_device(pdev);
4471		pci_save_state(pdev);        /* to restore SR-IOV later */
4472		goto sriov;
4473	}
4474
4475	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4476		highdma = true;
4477		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4478		if (err) {
4479			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4480				"coherent allocations\n");
4481			goto out_unmap_bar0;
4482		}
4483	} else {
4484		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4485		if (err) {
4486			dev_err(&pdev->dev, "no usable DMA configuration\n");
4487			goto out_unmap_bar0;
4488		}
4489	}
4490
4491	pci_enable_pcie_error_reporting(pdev);
4492	enable_pcie_relaxed_ordering(pdev);
4493	pci_set_master(pdev);
4494	pci_save_state(pdev);
4495
4496	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4497	if (!adapter) {
4498		err = -ENOMEM;
4499		goto out_unmap_bar0;
4500	}
4501
4502	adapter->workq = create_singlethread_workqueue("cxgb4");
4503	if (!adapter->workq) {
4504		err = -ENOMEM;
4505		goto out_free_adapter;
4506	}
4507
4508	/* PCI device has been enabled */
4509	adapter->flags |= DEV_ENABLED;
4510
4511	adapter->regs = regs;
4512	adapter->pdev = pdev;
4513	adapter->pdev_dev = &pdev->dev;
4514	adapter->mbox = func;
4515	adapter->fn = func;
4516	adapter->msg_enable = dflt_msg_enable;
4517	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4518
4519	spin_lock_init(&adapter->stats_lock);
4520	spin_lock_init(&adapter->tid_release_lock);
4521	spin_lock_init(&adapter->win0_lock);
4522
4523	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4524	INIT_WORK(&adapter->db_full_task, process_db_full);
4525	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4526
4527	err = t4_prep_adapter(adapter);
4528	if (err)
4529		goto out_free_adapter;
4530
4531
4532	if (!is_t4(adapter->params.chip)) {
4533		s_qpp = (QUEUESPERPAGEPF0_S +
4534			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4535			adapter->fn);
4536		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4537		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4538		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4539
4540		/* Each segment size is 128B. Write coalescing is enabled only
4541		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4542		 * queue is less no of segments that can be accommodated in
4543		 * a page size.
4544		 */
4545		if (qpp > num_seg) {
4546			dev_err(&pdev->dev,
4547				"Incorrect number of egress queues per page\n");
4548			err = -EINVAL;
4549			goto out_free_adapter;
4550		}
4551		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4552		pci_resource_len(pdev, 2));
4553		if (!adapter->bar2) {
4554			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4555			err = -ENOMEM;
4556			goto out_free_adapter;
4557		}
4558	}
4559
4560	setup_memwin(adapter);
4561	err = adap_init0(adapter);
4562	setup_memwin_rdma(adapter);
4563	if (err)
4564		goto out_unmap_bar;
4565
4566	for_each_port(adapter, i) {
4567		struct net_device *netdev;
4568
4569		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4570					   MAX_ETH_QSETS);
4571		if (!netdev) {
4572			err = -ENOMEM;
4573			goto out_free_dev;
4574		}
4575
4576		SET_NETDEV_DEV(netdev, &pdev->dev);
4577
4578		adapter->port[i] = netdev;
4579		pi = netdev_priv(netdev);
4580		pi->adapter = adapter;
4581		pi->xact_addr_filt = -1;
4582		pi->port_id = i;
4583		netdev->irq = pdev->irq;
4584
4585		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4586			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4587			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4588			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4589		if (highdma)
4590			netdev->hw_features |= NETIF_F_HIGHDMA;
4591		netdev->features |= netdev->hw_features;
4592		netdev->vlan_features = netdev->features & VLAN_FEAT;
4593
4594		netdev->priv_flags |= IFF_UNICAST_FLT;
4595
4596		netdev->netdev_ops = &cxgb4_netdev_ops;
4597#ifdef CONFIG_CHELSIO_T4_DCB
4598		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4599		cxgb4_dcb_state_init(netdev);
4600#endif
4601		cxgb4_set_ethtool_ops(netdev);
4602	}
4603
4604	pci_set_drvdata(pdev, adapter);
4605
4606	if (adapter->flags & FW_OK) {
4607		err = t4_port_init(adapter, func, func, 0);
4608		if (err)
4609			goto out_free_dev;
4610	}
4611
4612	/*
4613	 * Configure queues and allocate tables now, they can be needed as
4614	 * soon as the first register_netdev completes.
4615	 */
4616	cfg_queues(adapter);
4617
4618	adapter->l2t = t4_init_l2t();
4619	if (!adapter->l2t) {
4620		/* We tolerate a lack of L2T, giving up some functionality */
4621		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4622		adapter->params.offload = 0;
4623	}
4624
4625#if IS_ENABLED(CONFIG_IPV6)
4626	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4627					  adapter->clipt_end);
4628	if (!adapter->clipt) {
4629		/* We tolerate a lack of clip_table, giving up
4630		 * some functionality
4631		 */
4632		dev_warn(&pdev->dev,
4633			 "could not allocate Clip table, continuing\n");
4634		adapter->params.offload = 0;
4635	}
4636#endif
4637	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4638		dev_warn(&pdev->dev, "could not allocate TID table, "
4639			 "continuing\n");
4640		adapter->params.offload = 0;
4641	}
4642
4643	/* See what interrupts we'll be using */
4644	if (msi > 1 && enable_msix(adapter) == 0)
4645		adapter->flags |= USING_MSIX;
4646	else if (msi > 0 && pci_enable_msi(pdev) == 0)
4647		adapter->flags |= USING_MSI;
4648
4649	err = init_rss(adapter);
4650	if (err)
4651		goto out_free_dev;
4652
4653	/*
4654	 * The card is now ready to go.  If any errors occur during device
4655	 * registration we do not fail the whole card but rather proceed only
4656	 * with the ports we manage to register successfully.  However we must
4657	 * register at least one net device.
4658	 */
4659	for_each_port(adapter, i) {
4660		pi = adap2pinfo(adapter, i);
4661		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4662		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4663
4664		err = register_netdev(adapter->port[i]);
4665		if (err)
4666			break;
4667		adapter->chan_map[pi->tx_chan] = i;
4668		print_port_info(adapter->port[i]);
4669	}
4670	if (i == 0) {
4671		dev_err(&pdev->dev, "could not register any net devices\n");
4672		goto out_free_dev;
4673	}
4674	if (err) {
4675		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4676		err = 0;
4677	}
4678
4679	if (cxgb4_debugfs_root) {
4680		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4681							   cxgb4_debugfs_root);
4682		setup_debugfs(adapter);
4683	}
4684
4685	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4686	pdev->needs_freset = 1;
4687
4688	if (is_offload(adapter))
4689		attach_ulds(adapter);
4690
4691sriov:
4692#ifdef CONFIG_PCI_IOV
4693	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4694		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4695			dev_info(&pdev->dev,
4696				 "instantiated %u virtual functions\n",
4697				 num_vf[func]);
4698#endif
4699	return 0;
4700
4701 out_free_dev:
4702	free_some_resources(adapter);
4703 out_unmap_bar:
4704	if (!is_t4(adapter->params.chip))
4705		iounmap(adapter->bar2);
4706 out_free_adapter:
4707	if (adapter->workq)
4708		destroy_workqueue(adapter->workq);
4709
4710	kfree(adapter);
4711 out_unmap_bar0:
4712	iounmap(regs);
4713 out_disable_device:
4714	pci_disable_pcie_error_reporting(pdev);
4715	pci_disable_device(pdev);
4716 out_release_regions:
4717	pci_release_regions(pdev);
4718	return err;
4719}
4720
4721static void remove_one(struct pci_dev *pdev)
4722{
4723	struct adapter *adapter = pci_get_drvdata(pdev);
4724
4725#ifdef CONFIG_PCI_IOV
4726	pci_disable_sriov(pdev);
4727
4728#endif
4729
4730	if (adapter) {
4731		int i;
4732
4733		/* Tear down per-adapter Work Queue first since it can contain
4734		 * references to our adapter data structure.
4735		 */
4736		destroy_workqueue(adapter->workq);
4737
4738		if (is_offload(adapter))
4739			detach_ulds(adapter);
4740
4741		disable_interrupts(adapter);
4742
4743		for_each_port(adapter, i)
4744			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4745				unregister_netdev(adapter->port[i]);
4746
4747		debugfs_remove_recursive(adapter->debugfs_root);
4748
4749		/* If we allocated filters, free up state associated with any
4750		 * valid filters ...
4751		 */
4752		if (adapter->tids.ftid_tab) {
4753			struct filter_entry *f = &adapter->tids.ftid_tab[0];
4754			for (i = 0; i < (adapter->tids.nftids +
4755					adapter->tids.nsftids); i++, f++)
4756				if (f->valid)
4757					clear_filter(adapter, f);
4758		}
4759
4760		if (adapter->flags & FULL_INIT_DONE)
4761			cxgb_down(adapter);
4762
4763		free_some_resources(adapter);
4764#if IS_ENABLED(CONFIG_IPV6)
4765		t4_cleanup_clip_tbl(adapter);
4766#endif
4767		iounmap(adapter->regs);
4768		if (!is_t4(adapter->params.chip))
4769			iounmap(adapter->bar2);
4770		pci_disable_pcie_error_reporting(pdev);
4771		if ((adapter->flags & DEV_ENABLED)) {
4772			pci_disable_device(pdev);
4773			adapter->flags &= ~DEV_ENABLED;
4774		}
4775		pci_release_regions(pdev);
4776		synchronize_rcu();
4777		kfree(adapter);
4778	} else
4779		pci_release_regions(pdev);
4780}
4781
4782static struct pci_driver cxgb4_driver = {
4783	.name     = KBUILD_MODNAME,
4784	.id_table = cxgb4_pci_tbl,
4785	.probe    = init_one,
4786	.remove   = remove_one,
4787	.shutdown = remove_one,
4788	.err_handler = &cxgb4_eeh,
4789};
4790
4791static int __init cxgb4_init_module(void)
4792{
4793	int ret;
4794
4795	/* Debugfs support is optional, just warn if this fails */
4796	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4797	if (!cxgb4_debugfs_root)
4798		pr_warn("could not create debugfs entry, continuing\n");
4799
4800	ret = pci_register_driver(&cxgb4_driver);
4801	if (ret < 0)
4802		debugfs_remove(cxgb4_debugfs_root);
4803
4804#if IS_ENABLED(CONFIG_IPV6)
4805	if (!inet6addr_registered) {
4806		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4807		inet6addr_registered = true;
4808	}
4809#endif
4810
4811	return ret;
4812}
4813
4814static void __exit cxgb4_cleanup_module(void)
4815{
4816#if IS_ENABLED(CONFIG_IPV6)
4817	if (inet6addr_registered) {
4818		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4819		inet6addr_registered = false;
4820	}
4821#endif
4822	pci_unregister_driver(&cxgb4_driver);
4823	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4824}
4825
4826module_init(cxgb4_init_module);
4827module_exit(cxgb4_cleanup_module);
4828