1/*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include <linux/slab.h>
40#include <linux/prefetch.h>
41#include <net/arp.h>
42#include "common.h"
43#include "regs.h"
44#include "sge_defs.h"
45#include "t3_cpl.h"
46#include "firmware_exports.h"
47#include "cxgb3_offload.h"
48
49#define USE_GTS 0
50
51#define SGE_RX_SM_BUF_SIZE 1536
52
53#define SGE_RX_COPY_THRES  256
54#define SGE_RX_PULL_LEN    128
55
56#define SGE_PG_RSVD SMP_CACHE_BYTES
57/*
58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59 * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
60 * directly.
61 */
62#define FL0_PG_CHUNK_SIZE  2048
63#define FL0_PG_ORDER 0
64#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68
69#define SGE_RX_DROP_THRES 16
70#define RX_RECLAIM_PERIOD (HZ/4)
71
72/*
73 * Max number of Rx buffers we replenish at a time.
74 */
75#define MAX_RX_REFILL 16U
76/*
77 * Period of the Tx buffer reclaim timer.  This timer does not need to run
78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
79 */
80#define TX_RECLAIM_PERIOD (HZ / 4)
81#define TX_RECLAIM_TIMER_CHUNK 64U
82#define TX_RECLAIM_CHUNK 16U
83
84/* WR size in bytes */
85#define WR_LEN (WR_FLITS * 8)
86
87/*
88 * Types of Tx queues in each queue set.  Order here matters, do not change.
89 */
90enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91
92/* Values for sge_txq.flags */
93enum {
94	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
95	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
96};
97
98struct tx_desc {
99	__be64 flit[TX_DESC_FLITS];
100};
101
102struct rx_desc {
103	__be32 addr_lo;
104	__be32 len_gen;
105	__be32 gen2;
106	__be32 addr_hi;
107};
108
109struct tx_sw_desc {		/* SW state per Tx descriptor */
110	struct sk_buff *skb;
111	u8 eop;       /* set if last descriptor for packet */
112	u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
113	u8 fragidx;   /* first page fragment associated with descriptor */
114	s8 sflit;     /* start flit of first SGL entry in descriptor */
115};
116
117struct rx_sw_desc {                /* SW state per Rx descriptor */
118	union {
119		struct sk_buff *skb;
120		struct fl_pg_chunk pg_chunk;
121	};
122	DEFINE_DMA_UNMAP_ADDR(dma_addr);
123};
124
125struct rsp_desc {		/* response queue descriptor */
126	struct rss_header rss_hdr;
127	__be32 flags;
128	__be32 len_cq;
129	u8 imm_data[47];
130	u8 intr_gen;
131};
132
133/*
134 * Holds unmapping information for Tx packets that need deferred unmapping.
135 * This structure lives at skb->head and must be allocated by callers.
136 */
137struct deferred_unmap_info {
138	struct pci_dev *pdev;
139	dma_addr_t addr[MAX_SKB_FRAGS + 1];
140};
141
142/*
143 * Maps a number of flits to the number of Tx descriptors that can hold them.
144 * The formula is
145 *
146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147 *
148 * HW allows up to 4 descriptors to be combined into a WR.
149 */
150static u8 flit_desc_map[] = {
151	0,
152#if SGE_NUM_GENBITS == 1
153	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157#elif SGE_NUM_GENBITS == 2
158	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162#else
163# error "SGE_NUM_GENBITS must be 1 or 2"
164#endif
165};
166
167static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
168{
169	return container_of(q, struct sge_qset, fl[qidx]);
170}
171
172static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
173{
174	return container_of(q, struct sge_qset, rspq);
175}
176
177static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
178{
179	return container_of(q, struct sge_qset, txq[qidx]);
180}
181
182/**
183 *	refill_rspq - replenish an SGE response queue
184 *	@adapter: the adapter
185 *	@q: the response queue to replenish
186 *	@credits: how many new responses to make available
187 *
188 *	Replenishes a response queue by making the supplied number of responses
189 *	available to HW.
190 */
191static inline void refill_rspq(struct adapter *adapter,
192			       const struct sge_rspq *q, unsigned int credits)
193{
194	rmb();
195	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197}
198
199/**
200 *	need_skb_unmap - does the platform need unmapping of sk_buffs?
201 *
202 *	Returns true if the platform needs sk_buff unmapping.  The compiler
203 *	optimizes away unnecessary code if this returns true.
204 */
205static inline int need_skb_unmap(void)
206{
207#ifdef CONFIG_NEED_DMA_MAP_STATE
208	return 1;
209#else
210	return 0;
211#endif
212}
213
214/**
215 *	unmap_skb - unmap a packet main body and its page fragments
216 *	@skb: the packet
217 *	@q: the Tx queue containing Tx descriptors for the packet
218 *	@cidx: index of Tx descriptor
219 *	@pdev: the PCI device
220 *
221 *	Unmap the main body of an sk_buff and its page fragments, if any.
222 *	Because of the fairly complicated structure of our SGLs and the desire
223 *	to conserve space for metadata, the information necessary to unmap an
224 *	sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225 *	descriptors (the physical addresses of the various data buffers), and
226 *	the SW descriptor state (assorted indices).  The send functions
227 *	initialize the indices for the first packet descriptor so we can unmap
228 *	the buffers held in the first Tx descriptor here, and we have enough
229 *	information at this point to set the state for the next Tx descriptor.
230 *
231 *	Note that it is possible to clean up the first descriptor of a packet
232 *	before the send routines have written the next descriptors, but this
233 *	race does not cause any problem.  We just end up writing the unmapping
234 *	info for the descriptor first.
235 */
236static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237			     unsigned int cidx, struct pci_dev *pdev)
238{
239	const struct sg_ent *sgp;
240	struct tx_sw_desc *d = &q->sdesc[cidx];
241	int nfrags, frag_idx, curflit, j = d->addr_idx;
242
243	sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244	frag_idx = d->fragidx;
245
246	if (frag_idx == 0 && skb_headlen(skb)) {
247		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248				 skb_headlen(skb), PCI_DMA_TODEVICE);
249		j = 1;
250	}
251
252	curflit = d->sflit + 1 + j;
253	nfrags = skb_shinfo(skb)->nr_frags;
254
255	while (frag_idx < nfrags && curflit < WR_FLITS) {
256		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257			       skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258			       PCI_DMA_TODEVICE);
259		j ^= 1;
260		if (j == 0) {
261			sgp++;
262			curflit++;
263		}
264		curflit++;
265		frag_idx++;
266	}
267
268	if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
269		d = cidx + 1 == q->size ? q->sdesc : d + 1;
270		d->fragidx = frag_idx;
271		d->addr_idx = j;
272		d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
273	}
274}
275
276/**
277 *	free_tx_desc - reclaims Tx descriptors and their buffers
278 *	@adapter: the adapter
279 *	@q: the Tx queue to reclaim descriptors from
280 *	@n: the number of descriptors to reclaim
281 *
282 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283 *	Tx buffers.  Called with the Tx queue lock held.
284 */
285static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286			 unsigned int n)
287{
288	struct tx_sw_desc *d;
289	struct pci_dev *pdev = adapter->pdev;
290	unsigned int cidx = q->cidx;
291
292	const int need_unmap = need_skb_unmap() &&
293			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
294
295	d = &q->sdesc[cidx];
296	while (n--) {
297		if (d->skb) {	/* an SGL is present */
298			if (need_unmap)
299				unmap_skb(d->skb, q, cidx, pdev);
300			if (d->eop) {
301				dev_consume_skb_any(d->skb);
302				d->skb = NULL;
303			}
304		}
305		++d;
306		if (++cidx == q->size) {
307			cidx = 0;
308			d = q->sdesc;
309		}
310	}
311	q->cidx = cidx;
312}
313
314/**
315 *	reclaim_completed_tx - reclaims completed Tx descriptors
316 *	@adapter: the adapter
317 *	@q: the Tx queue to reclaim completed descriptors from
318 *	@chunk: maximum number of descriptors to reclaim
319 *
320 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
321 *	and frees the associated buffers if possible.  Called with the Tx
322 *	queue's lock held.
323 */
324static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325						struct sge_txq *q,
326						unsigned int chunk)
327{
328	unsigned int reclaim = q->processed - q->cleaned;
329
330	reclaim = min(chunk, reclaim);
331	if (reclaim) {
332		free_tx_desc(adapter, q, reclaim);
333		q->cleaned += reclaim;
334		q->in_use -= reclaim;
335	}
336	return q->processed - q->cleaned;
337}
338
339/**
340 *	should_restart_tx - are there enough resources to restart a Tx queue?
341 *	@q: the Tx queue
342 *
343 *	Checks if there are enough descriptors to restart a suspended Tx queue.
344 */
345static inline int should_restart_tx(const struct sge_txq *q)
346{
347	unsigned int r = q->processed - q->cleaned;
348
349	return q->in_use - r < (q->size >> 1);
350}
351
352static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353			  struct rx_sw_desc *d)
354{
355	if (q->use_pages && d->pg_chunk.page) {
356		(*d->pg_chunk.p_cnt)--;
357		if (!*d->pg_chunk.p_cnt)
358			pci_unmap_page(pdev,
359				       d->pg_chunk.mapping,
360				       q->alloc_size, PCI_DMA_FROMDEVICE);
361
362		put_page(d->pg_chunk.page);
363		d->pg_chunk.page = NULL;
364	} else {
365		pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366				 q->buf_size, PCI_DMA_FROMDEVICE);
367		kfree_skb(d->skb);
368		d->skb = NULL;
369	}
370}
371
372/**
373 *	free_rx_bufs - free the Rx buffers on an SGE free list
374 *	@pdev: the PCI device associated with the adapter
375 *	@rxq: the SGE free list to clean up
376 *
377 *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
378 *	this queue should be stopped before calling this function.
379 */
380static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381{
382	unsigned int cidx = q->cidx;
383
384	while (q->credits--) {
385		struct rx_sw_desc *d = &q->sdesc[cidx];
386
387
388		clear_rx_desc(pdev, q, d);
389		if (++cidx == q->size)
390			cidx = 0;
391	}
392
393	if (q->pg_chunk.page) {
394		__free_pages(q->pg_chunk.page, q->order);
395		q->pg_chunk.page = NULL;
396	}
397}
398
399/**
400 *	add_one_rx_buf - add a packet buffer to a free-buffer list
401 *	@va:  buffer start VA
402 *	@len: the buffer length
403 *	@d: the HW Rx descriptor to write
404 *	@sd: the SW Rx descriptor to write
405 *	@gen: the generation bit value
406 *	@pdev: the PCI device associated with the adapter
407 *
408 *	Add a buffer of the given length to the supplied HW and SW Rx
409 *	descriptors.
410 */
411static inline int add_one_rx_buf(void *va, unsigned int len,
412				 struct rx_desc *d, struct rx_sw_desc *sd,
413				 unsigned int gen, struct pci_dev *pdev)
414{
415	dma_addr_t mapping;
416
417	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418	if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419		return -ENOMEM;
420
421	dma_unmap_addr_set(sd, dma_addr, mapping);
422
423	d->addr_lo = cpu_to_be32(mapping);
424	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425	dma_wmb();
426	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428	return 0;
429}
430
431static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432				   unsigned int gen)
433{
434	d->addr_lo = cpu_to_be32(mapping);
435	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436	dma_wmb();
437	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439	return 0;
440}
441
442static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443			  struct rx_sw_desc *sd, gfp_t gfp,
444			  unsigned int order)
445{
446	if (!q->pg_chunk.page) {
447		dma_addr_t mapping;
448
449		q->pg_chunk.page = alloc_pages(gfp, order);
450		if (unlikely(!q->pg_chunk.page))
451			return -ENOMEM;
452		q->pg_chunk.va = page_address(q->pg_chunk.page);
453		q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454				    SGE_PG_RSVD;
455		q->pg_chunk.offset = 0;
456		mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457				       0, q->alloc_size, PCI_DMA_FROMDEVICE);
458		q->pg_chunk.mapping = mapping;
459	}
460	sd->pg_chunk = q->pg_chunk;
461
462	prefetch(sd->pg_chunk.p_cnt);
463
464	q->pg_chunk.offset += q->buf_size;
465	if (q->pg_chunk.offset == (PAGE_SIZE << order))
466		q->pg_chunk.page = NULL;
467	else {
468		q->pg_chunk.va += q->buf_size;
469		get_page(q->pg_chunk.page);
470	}
471
472	if (sd->pg_chunk.offset == 0)
473		*sd->pg_chunk.p_cnt = 1;
474	else
475		*sd->pg_chunk.p_cnt += 1;
476
477	return 0;
478}
479
480static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
481{
482	if (q->pend_cred >= q->credits / 4) {
483		q->pend_cred = 0;
484		wmb();
485		t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
486	}
487}
488
489/**
490 *	refill_fl - refill an SGE free-buffer list
491 *	@adapter: the adapter
492 *	@q: the free-list to refill
493 *	@n: the number of new buffers to allocate
494 *	@gfp: the gfp flags for allocating new buffers
495 *
496 *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
497 *	allocated with the supplied gfp flags.  The caller must assure that
498 *	@n does not exceed the queue's capacity.
499 */
500static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
501{
502	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
503	struct rx_desc *d = &q->desc[q->pidx];
504	unsigned int count = 0;
505
506	while (n--) {
507		dma_addr_t mapping;
508		int err;
509
510		if (q->use_pages) {
511			if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
512						    q->order))) {
513nomem:				q->alloc_failed++;
514				break;
515			}
516			mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
517			dma_unmap_addr_set(sd, dma_addr, mapping);
518
519			add_one_rx_chunk(mapping, d, q->gen);
520			pci_dma_sync_single_for_device(adap->pdev, mapping,
521						q->buf_size - SGE_PG_RSVD,
522						PCI_DMA_FROMDEVICE);
523		} else {
524			void *buf_start;
525
526			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
527			if (!skb)
528				goto nomem;
529
530			sd->skb = skb;
531			buf_start = skb->data;
532			err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
533					     q->gen, adap->pdev);
534			if (unlikely(err)) {
535				clear_rx_desc(adap->pdev, q, sd);
536				break;
537			}
538		}
539
540		d++;
541		sd++;
542		if (++q->pidx == q->size) {
543			q->pidx = 0;
544			q->gen ^= 1;
545			sd = q->sdesc;
546			d = q->desc;
547		}
548		count++;
549	}
550
551	q->credits += count;
552	q->pend_cred += count;
553	ring_fl_db(adap, q);
554
555	return count;
556}
557
558static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
559{
560	refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
561		  GFP_ATOMIC | __GFP_COMP);
562}
563
564/**
565 *	recycle_rx_buf - recycle a receive buffer
566 *	@adapter: the adapter
567 *	@q: the SGE free list
568 *	@idx: index of buffer to recycle
569 *
570 *	Recycles the specified buffer on the given free list by adding it at
571 *	the next available slot on the list.
572 */
573static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
574			   unsigned int idx)
575{
576	struct rx_desc *from = &q->desc[idx];
577	struct rx_desc *to = &q->desc[q->pidx];
578
579	q->sdesc[q->pidx] = q->sdesc[idx];
580	to->addr_lo = from->addr_lo;	/* already big endian */
581	to->addr_hi = from->addr_hi;	/* likewise */
582	dma_wmb();
583	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
584	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
585
586	if (++q->pidx == q->size) {
587		q->pidx = 0;
588		q->gen ^= 1;
589	}
590
591	q->credits++;
592	q->pend_cred++;
593	ring_fl_db(adap, q);
594}
595
596/**
597 *	alloc_ring - allocate resources for an SGE descriptor ring
598 *	@pdev: the PCI device
599 *	@nelem: the number of descriptors
600 *	@elem_size: the size of each descriptor
601 *	@sw_size: the size of the SW state associated with each ring element
602 *	@phys: the physical address of the allocated ring
603 *	@metadata: address of the array holding the SW state for the ring
604 *
605 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
606 *	free buffer lists, or response queues.  Each SGE ring requires
607 *	space for its HW descriptors plus, optionally, space for the SW state
608 *	associated with each HW entry (the metadata).  The function returns
609 *	three values: the virtual address for the HW ring (the return value
610 *	of the function), the physical address of the HW ring, and the address
611 *	of the SW ring.
612 */
613static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
614			size_t sw_size, dma_addr_t * phys, void *metadata)
615{
616	size_t len = nelem * elem_size;
617	void *s = NULL;
618	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
619
620	if (!p)
621		return NULL;
622	if (sw_size && metadata) {
623		s = kcalloc(nelem, sw_size, GFP_KERNEL);
624
625		if (!s) {
626			dma_free_coherent(&pdev->dev, len, p, *phys);
627			return NULL;
628		}
629		*(void **)metadata = s;
630	}
631	memset(p, 0, len);
632	return p;
633}
634
635/**
636 *	t3_reset_qset - reset a sge qset
637 *	@q: the queue set
638 *
639 *	Reset the qset structure.
640 *	the NAPI structure is preserved in the event of
641 *	the qset's reincarnation, for example during EEH recovery.
642 */
643static void t3_reset_qset(struct sge_qset *q)
644{
645	if (q->adap &&
646	    !(q->adap->flags & NAPI_INIT)) {
647		memset(q, 0, sizeof(*q));
648		return;
649	}
650
651	q->adap = NULL;
652	memset(&q->rspq, 0, sizeof(q->rspq));
653	memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654	memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655	q->txq_stopped = 0;
656	q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657	q->rx_reclaim_timer.function = NULL;
658	q->nomem = 0;
659	napi_free_frags(&q->napi);
660}
661
662
663/**
664 *	free_qset - free the resources of an SGE queue set
665 *	@adapter: the adapter owning the queue set
666 *	@q: the queue set
667 *
668 *	Release the HW and SW resources associated with an SGE queue set, such
669 *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
670 *	queue set must be quiesced prior to calling this.
671 */
672static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
673{
674	int i;
675	struct pci_dev *pdev = adapter->pdev;
676
677	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678		if (q->fl[i].desc) {
679			spin_lock_irq(&adapter->sge.reg_lock);
680			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681			spin_unlock_irq(&adapter->sge.reg_lock);
682			free_rx_bufs(pdev, &q->fl[i]);
683			kfree(q->fl[i].sdesc);
684			dma_free_coherent(&pdev->dev,
685					  q->fl[i].size *
686					  sizeof(struct rx_desc), q->fl[i].desc,
687					  q->fl[i].phys_addr);
688		}
689
690	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691		if (q->txq[i].desc) {
692			spin_lock_irq(&adapter->sge.reg_lock);
693			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694			spin_unlock_irq(&adapter->sge.reg_lock);
695			if (q->txq[i].sdesc) {
696				free_tx_desc(adapter, &q->txq[i],
697					     q->txq[i].in_use);
698				kfree(q->txq[i].sdesc);
699			}
700			dma_free_coherent(&pdev->dev,
701					  q->txq[i].size *
702					  sizeof(struct tx_desc),
703					  q->txq[i].desc, q->txq[i].phys_addr);
704			__skb_queue_purge(&q->txq[i].sendq);
705		}
706
707	if (q->rspq.desc) {
708		spin_lock_irq(&adapter->sge.reg_lock);
709		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710		spin_unlock_irq(&adapter->sge.reg_lock);
711		dma_free_coherent(&pdev->dev,
712				  q->rspq.size * sizeof(struct rsp_desc),
713				  q->rspq.desc, q->rspq.phys_addr);
714	}
715
716	t3_reset_qset(q);
717}
718
719/**
720 *	init_qset_cntxt - initialize an SGE queue set context info
721 *	@qs: the queue set
722 *	@id: the queue set id
723 *
724 *	Initializes the TIDs and context ids for the queues of a queue set.
725 */
726static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
727{
728	qs->rspq.cntxt_id = id;
729	qs->fl[0].cntxt_id = 2 * id;
730	qs->fl[1].cntxt_id = 2 * id + 1;
731	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
736}
737
738/**
739 *	sgl_len - calculates the size of an SGL of the given capacity
740 *	@n: the number of SGL entries
741 *
742 *	Calculates the number of flits needed for a scatter/gather list that
743 *	can hold the given number of entries.
744 */
745static inline unsigned int sgl_len(unsigned int n)
746{
747	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748	return (3 * n) / 2 + (n & 1);
749}
750
751/**
752 *	flits_to_desc - returns the num of Tx descriptors for the given flits
753 *	@n: the number of flits
754 *
755 *	Calculates the number of Tx descriptors needed for the supplied number
756 *	of flits.
757 */
758static inline unsigned int flits_to_desc(unsigned int n)
759{
760	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761	return flit_desc_map[n];
762}
763
764/**
765 *	get_packet - return the next ingress packet buffer from a free list
766 *	@adap: the adapter that received the packet
767 *	@fl: the SGE free list holding the packet
768 *	@len: the packet length including any SGE padding
769 *	@drop_thres: # of remaining buffers before we start dropping packets
770 *
771 *	Get the next packet from a free list and complete setup of the
772 *	sk_buff.  If the packet is small we make a copy and recycle the
773 *	original buffer, otherwise we use the original buffer itself.  If a
774 *	positive drop threshold is supplied packets are dropped and their
775 *	buffers recycled if (a) the number of remaining buffers is under the
776 *	threshold and the packet is too big to copy, or (b) the packet should
777 *	be copied but there is no memory for the copy.
778 */
779static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780				  unsigned int len, unsigned int drop_thres)
781{
782	struct sk_buff *skb = NULL;
783	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
784
785	prefetch(sd->skb->data);
786	fl->credits--;
787
788	if (len <= SGE_RX_COPY_THRES) {
789		skb = alloc_skb(len, GFP_ATOMIC);
790		if (likely(skb != NULL)) {
791			__skb_put(skb, len);
792			pci_dma_sync_single_for_cpu(adap->pdev,
793					    dma_unmap_addr(sd, dma_addr), len,
794					    PCI_DMA_FROMDEVICE);
795			memcpy(skb->data, sd->skb->data, len);
796			pci_dma_sync_single_for_device(adap->pdev,
797					    dma_unmap_addr(sd, dma_addr), len,
798					    PCI_DMA_FROMDEVICE);
799		} else if (!drop_thres)
800			goto use_orig_buf;
801recycle:
802		recycle_rx_buf(adap, fl, fl->cidx);
803		return skb;
804	}
805
806	if (unlikely(fl->credits < drop_thres) &&
807	    refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808		      GFP_ATOMIC | __GFP_COMP) == 0)
809		goto recycle;
810
811use_orig_buf:
812	pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
813			 fl->buf_size, PCI_DMA_FROMDEVICE);
814	skb = sd->skb;
815	skb_put(skb, len);
816	__refill_fl(adap, fl);
817	return skb;
818}
819
820/**
821 *	get_packet_pg - return the next ingress packet buffer from a free list
822 *	@adap: the adapter that received the packet
823 *	@fl: the SGE free list holding the packet
824 *	@len: the packet length including any SGE padding
825 *	@drop_thres: # of remaining buffers before we start dropping packets
826 *
827 *	Get the next packet from a free list populated with page chunks.
828 *	If the packet is small we make a copy and recycle the original buffer,
829 *	otherwise we attach the original buffer as a page fragment to a fresh
830 *	sk_buff.  If a positive drop threshold is supplied packets are dropped
831 *	and their buffers recycled if (a) the number of remaining buffers is
832 *	under the threshold and the packet is too big to copy, or (b) there's
833 *	no system memory.
834 *
835 * 	Note: this function is similar to @get_packet but deals with Rx buffers
836 * 	that are page chunks rather than sk_buffs.
837 */
838static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
839				     struct sge_rspq *q, unsigned int len,
840				     unsigned int drop_thres)
841{
842	struct sk_buff *newskb, *skb;
843	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
844
845	dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
846
847	newskb = skb = q->pg_skb;
848	if (!skb && (len <= SGE_RX_COPY_THRES)) {
849		newskb = alloc_skb(len, GFP_ATOMIC);
850		if (likely(newskb != NULL)) {
851			__skb_put(newskb, len);
852			pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
853					    PCI_DMA_FROMDEVICE);
854			memcpy(newskb->data, sd->pg_chunk.va, len);
855			pci_dma_sync_single_for_device(adap->pdev, dma_addr,
856						       len,
857						       PCI_DMA_FROMDEVICE);
858		} else if (!drop_thres)
859			return NULL;
860recycle:
861		fl->credits--;
862		recycle_rx_buf(adap, fl, fl->cidx);
863		q->rx_recycle_buf++;
864		return newskb;
865	}
866
867	if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868		goto recycle;
869
870	prefetch(sd->pg_chunk.p_cnt);
871
872	if (!skb)
873		newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
874
875	if (unlikely(!newskb)) {
876		if (!drop_thres)
877			return NULL;
878		goto recycle;
879	}
880
881	pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
882				    PCI_DMA_FROMDEVICE);
883	(*sd->pg_chunk.p_cnt)--;
884	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885		pci_unmap_page(adap->pdev,
886			       sd->pg_chunk.mapping,
887			       fl->alloc_size,
888			       PCI_DMA_FROMDEVICE);
889	if (!skb) {
890		__skb_put(newskb, SGE_RX_PULL_LEN);
891		memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
892		skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
893				   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
894				   len - SGE_RX_PULL_LEN);
895		newskb->len = len;
896		newskb->data_len = len - SGE_RX_PULL_LEN;
897		newskb->truesize += newskb->data_len;
898	} else {
899		skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
900				   sd->pg_chunk.page,
901				   sd->pg_chunk.offset, len);
902		newskb->len += len;
903		newskb->data_len += len;
904		newskb->truesize += len;
905	}
906
907	fl->credits--;
908	/*
909	 * We do not refill FLs here, we let the caller do it to overlap a
910	 * prefetch.
911	 */
912	return newskb;
913}
914
915/**
916 *	get_imm_packet - return the next ingress packet buffer from a response
917 *	@resp: the response descriptor containing the packet data
918 *
919 *	Return a packet containing the immediate data of the given response.
920 */
921static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
922{
923	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
924
925	if (skb) {
926		__skb_put(skb, IMMED_PKT_SIZE);
927		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
928	}
929	return skb;
930}
931
932/**
933 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
934 *	@skb: the packet
935 *
936 * 	Returns the number of Tx descriptors needed for the given Ethernet
937 * 	packet.  Ethernet packets require addition of WR and CPL headers.
938 */
939static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
940{
941	unsigned int flits;
942
943	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
944		return 1;
945
946	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
947	if (skb_shinfo(skb)->gso_size)
948		flits++;
949	return flits_to_desc(flits);
950}
951
952/**
953 *	make_sgl - populate a scatter/gather list for a packet
954 *	@skb: the packet
955 *	@sgp: the SGL to populate
956 *	@start: start address of skb main body data to include in the SGL
957 *	@len: length of skb main body data to include in the SGL
958 *	@pdev: the PCI device
959 *
960 *	Generates a scatter/gather list for the buffers that make up a packet
961 *	and returns the SGL size in 8-byte words.  The caller must size the SGL
962 *	appropriately.
963 */
964static inline unsigned int make_sgl(const struct sk_buff *skb,
965				    struct sg_ent *sgp, unsigned char *start,
966				    unsigned int len, struct pci_dev *pdev)
967{
968	dma_addr_t mapping;
969	unsigned int i, j = 0, nfrags;
970
971	if (len) {
972		mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
973		sgp->len[0] = cpu_to_be32(len);
974		sgp->addr[0] = cpu_to_be64(mapping);
975		j = 1;
976	}
977
978	nfrags = skb_shinfo(skb)->nr_frags;
979	for (i = 0; i < nfrags; i++) {
980		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
981
982		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, skb_frag_size(frag),
983					   DMA_TO_DEVICE);
984		sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
985		sgp->addr[j] = cpu_to_be64(mapping);
986		j ^= 1;
987		if (j == 0)
988			++sgp;
989	}
990	if (j)
991		sgp->len[j] = 0;
992	return ((nfrags + (len != 0)) * 3) / 2 + j;
993}
994
995/**
996 *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
997 *	@adap: the adapter
998 *	@q: the Tx queue
999 *
1000 *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1001 *	where the HW is going to sleep just after we checked, however,
1002 *	then the interrupt handler will detect the outstanding TX packet
1003 *	and ring the doorbell for us.
1004 *
1005 *	When GTS is disabled we unconditionally ring the doorbell.
1006 */
1007static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1008{
1009#if USE_GTS
1010	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1011	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1012		set_bit(TXQ_LAST_PKT_DB, &q->flags);
1013		t3_write_reg(adap, A_SG_KDOORBELL,
1014			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1015	}
1016#else
1017	wmb();			/* write descriptors before telling HW */
1018	t3_write_reg(adap, A_SG_KDOORBELL,
1019		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1020#endif
1021}
1022
1023static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1024{
1025#if SGE_NUM_GENBITS == 2
1026	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1027#endif
1028}
1029
1030/**
1031 *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
1032 *	@ndesc: number of Tx descriptors spanned by the SGL
1033 *	@skb: the packet corresponding to the WR
1034 *	@d: first Tx descriptor to be written
1035 *	@pidx: index of above descriptors
1036 *	@q: the SGE Tx queue
1037 *	@sgl: the SGL
1038 *	@flits: number of flits to the start of the SGL in the first descriptor
1039 *	@sgl_flits: the SGL size in flits
1040 *	@gen: the Tx descriptor generation
1041 *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
1042 *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
1043 *
1044 *	Write a work request header and an associated SGL.  If the SGL is
1045 *	small enough to fit into one Tx descriptor it has already been written
1046 *	and we just need to write the WR header.  Otherwise we distribute the
1047 *	SGL across the number of descriptors it spans.
1048 */
1049static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1050			     struct tx_desc *d, unsigned int pidx,
1051			     const struct sge_txq *q,
1052			     const struct sg_ent *sgl,
1053			     unsigned int flits, unsigned int sgl_flits,
1054			     unsigned int gen, __be32 wr_hi,
1055			     __be32 wr_lo)
1056{
1057	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1058	struct tx_sw_desc *sd = &q->sdesc[pidx];
1059
1060	sd->skb = skb;
1061	if (need_skb_unmap()) {
1062		sd->fragidx = 0;
1063		sd->addr_idx = 0;
1064		sd->sflit = flits;
1065	}
1066
1067	if (likely(ndesc == 1)) {
1068		sd->eop = 1;
1069		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1070				   V_WR_SGLSFLT(flits)) | wr_hi;
1071		dma_wmb();
1072		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1073				   V_WR_GEN(gen)) | wr_lo;
1074		wr_gen2(d, gen);
1075	} else {
1076		unsigned int ogen = gen;
1077		const u64 *fp = (const u64 *)sgl;
1078		struct work_request_hdr *wp = wrp;
1079
1080		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1081				   V_WR_SGLSFLT(flits)) | wr_hi;
1082
1083		while (sgl_flits) {
1084			unsigned int avail = WR_FLITS - flits;
1085
1086			if (avail > sgl_flits)
1087				avail = sgl_flits;
1088			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1089			sgl_flits -= avail;
1090			ndesc--;
1091			if (!sgl_flits)
1092				break;
1093
1094			fp += avail;
1095			d++;
1096			sd->eop = 0;
1097			sd++;
1098			if (++pidx == q->size) {
1099				pidx = 0;
1100				gen ^= 1;
1101				d = q->desc;
1102				sd = q->sdesc;
1103			}
1104
1105			sd->skb = skb;
1106			wrp = (struct work_request_hdr *)d;
1107			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1108					   V_WR_SGLSFLT(1)) | wr_hi;
1109			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1110							sgl_flits + 1)) |
1111					   V_WR_GEN(gen)) | wr_lo;
1112			wr_gen2(d, gen);
1113			flits = 1;
1114		}
1115		sd->eop = 1;
1116		wrp->wr_hi |= htonl(F_WR_EOP);
1117		dma_wmb();
1118		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1119		wr_gen2((struct tx_desc *)wp, ogen);
1120		WARN_ON(ndesc != 0);
1121	}
1122}
1123
1124/**
1125 *	write_tx_pkt_wr - write a TX_PKT work request
1126 *	@adap: the adapter
1127 *	@skb: the packet to send
1128 *	@pi: the egress interface
1129 *	@pidx: index of the first Tx descriptor to write
1130 *	@gen: the generation value to use
1131 *	@q: the Tx queue
1132 *	@ndesc: number of descriptors the packet will occupy
1133 *	@compl: the value of the COMPL bit to use
1134 *
1135 *	Generate a TX_PKT work request to send the supplied packet.
1136 */
1137static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1138			    const struct port_info *pi,
1139			    unsigned int pidx, unsigned int gen,
1140			    struct sge_txq *q, unsigned int ndesc,
1141			    unsigned int compl)
1142{
1143	unsigned int flits, sgl_flits, cntrl, tso_info;
1144	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1145	struct tx_desc *d = &q->desc[pidx];
1146	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1147
1148	cpl->len = htonl(skb->len);
1149	cntrl = V_TXPKT_INTF(pi->port_id);
1150
1151	if (skb_vlan_tag_present(skb))
1152		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1153
1154	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1155	if (tso_info) {
1156		int eth_type;
1157		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1158
1159		d->flit[2] = 0;
1160		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1161		hdr->cntrl = htonl(cntrl);
1162		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1163		    CPL_ETH_II : CPL_ETH_II_VLAN;
1164		tso_info |= V_LSO_ETH_TYPE(eth_type) |
1165		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1166		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1167		hdr->lso_info = htonl(tso_info);
1168		flits = 3;
1169	} else {
1170		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1171		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
1172		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1173		cpl->cntrl = htonl(cntrl);
1174
1175		if (skb->len <= WR_LEN - sizeof(*cpl)) {
1176			q->sdesc[pidx].skb = NULL;
1177			if (!skb->data_len)
1178				skb_copy_from_linear_data(skb, &d->flit[2],
1179							  skb->len);
1180			else
1181				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1182
1183			flits = (skb->len + 7) / 8 + 2;
1184			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1185					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1186					      | F_WR_SOP | F_WR_EOP | compl);
1187			dma_wmb();
1188			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1189					      V_WR_TID(q->token));
1190			wr_gen2(d, gen);
1191			dev_consume_skb_any(skb);
1192			return;
1193		}
1194
1195		flits = 2;
1196	}
1197
1198	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1199	sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1200
1201	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1202			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1203			 htonl(V_WR_TID(q->token)));
1204}
1205
1206static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1207				    struct sge_qset *qs, struct sge_txq *q)
1208{
1209	netif_tx_stop_queue(txq);
1210	set_bit(TXQ_ETH, &qs->txq_stopped);
1211	q->stops++;
1212}
1213
1214/**
1215 *	eth_xmit - add a packet to the Ethernet Tx queue
1216 *	@skb: the packet
1217 *	@dev: the egress net device
1218 *
1219 *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1220 */
1221netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1222{
1223	int qidx;
1224	unsigned int ndesc, pidx, credits, gen, compl;
1225	const struct port_info *pi = netdev_priv(dev);
1226	struct adapter *adap = pi->adapter;
1227	struct netdev_queue *txq;
1228	struct sge_qset *qs;
1229	struct sge_txq *q;
1230
1231	/*
1232	 * The chip min packet length is 9 octets but play safe and reject
1233	 * anything shorter than an Ethernet header.
1234	 */
1235	if (unlikely(skb->len < ETH_HLEN)) {
1236		dev_kfree_skb_any(skb);
1237		return NETDEV_TX_OK;
1238	}
1239
1240	qidx = skb_get_queue_mapping(skb);
1241	qs = &pi->qs[qidx];
1242	q = &qs->txq[TXQ_ETH];
1243	txq = netdev_get_tx_queue(dev, qidx);
1244
1245	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1246
1247	credits = q->size - q->in_use;
1248	ndesc = calc_tx_descs(skb);
1249
1250	if (unlikely(credits < ndesc)) {
1251		t3_stop_tx_queue(txq, qs, q);
1252		dev_err(&adap->pdev->dev,
1253			"%s: Tx ring %u full while queue awake!\n",
1254			dev->name, q->cntxt_id & 7);
1255		return NETDEV_TX_BUSY;
1256	}
1257
1258	q->in_use += ndesc;
1259	if (unlikely(credits - ndesc < q->stop_thres)) {
1260		t3_stop_tx_queue(txq, qs, q);
1261
1262		if (should_restart_tx(q) &&
1263		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1264			q->restarts++;
1265			netif_tx_start_queue(txq);
1266		}
1267	}
1268
1269	gen = q->gen;
1270	q->unacked += ndesc;
1271	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1272	q->unacked &= 7;
1273	pidx = q->pidx;
1274	q->pidx += ndesc;
1275	if (q->pidx >= q->size) {
1276		q->pidx -= q->size;
1277		q->gen ^= 1;
1278	}
1279
1280	/* update port statistics */
1281	if (skb->ip_summed == CHECKSUM_PARTIAL)
1282		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283	if (skb_shinfo(skb)->gso_size)
1284		qs->port_stats[SGE_PSTAT_TSO]++;
1285	if (skb_vlan_tag_present(skb))
1286		qs->port_stats[SGE_PSTAT_VLANINS]++;
1287
1288	/*
1289	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1290	 * This is good for performance but means that we rely on new Tx
1291	 * packets arriving to run the destructors of completed packets,
1292	 * which open up space in their sockets' send queues.  Sometimes
1293	 * we do not get such new packets causing Tx to stall.  A single
1294	 * UDP transmitter is a good example of this situation.  We have
1295	 * a clean up timer that periodically reclaims completed packets
1296	 * but it doesn't run often enough (nor do we want it to) to prevent
1297	 * lengthy stalls.  A solution to this problem is to run the
1298	 * destructor early, after the packet is queued but before it's DMAd.
1299	 * A cons is that we lie to socket memory accounting, but the amount
1300	 * of extra memory is reasonable (limited by the number of Tx
1301	 * descriptors), the packets do actually get freed quickly by new
1302	 * packets almost always, and for protocols like TCP that wait for
1303	 * acks to really free up the data the extra memory is even less.
1304	 * On the positive side we run the destructors on the sending CPU
1305	 * rather than on a potentially different completing CPU, usually a
1306	 * good thing.  We also run them without holding our Tx queue lock,
1307	 * unlike what reclaim_completed_tx() would otherwise do.
1308	 *
1309	 * Run the destructor before telling the DMA engine about the packet
1310	 * to make sure it doesn't complete and get freed prematurely.
1311	 */
1312	if (likely(!skb_shared(skb)))
1313		skb_orphan(skb);
1314
1315	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1316	check_ring_tx_db(adap, q);
1317	return NETDEV_TX_OK;
1318}
1319
1320/**
1321 *	write_imm - write a packet into a Tx descriptor as immediate data
1322 *	@d: the Tx descriptor to write
1323 *	@skb: the packet
1324 *	@len: the length of packet data to write as immediate data
1325 *	@gen: the generation bit value to write
1326 *
1327 *	Writes a packet as immediate data into a Tx descriptor.  The packet
1328 *	contains a work request at its beginning.  We must write the packet
1329 *	carefully so the SGE doesn't read it accidentally before it's written
1330 *	in its entirety.
1331 */
1332static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1333			     unsigned int len, unsigned int gen)
1334{
1335	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1336	struct work_request_hdr *to = (struct work_request_hdr *)d;
1337
1338	if (likely(!skb->data_len))
1339		memcpy(&to[1], &from[1], len - sizeof(*from));
1340	else
1341		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1342
1343	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1344					V_WR_BCNTLFLT(len & 7));
1345	dma_wmb();
1346	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1347					V_WR_LEN((len + 7) / 8));
1348	wr_gen2(d, gen);
1349	kfree_skb(skb);
1350}
1351
1352/**
1353 *	check_desc_avail - check descriptor availability on a send queue
1354 *	@adap: the adapter
1355 *	@q: the send queue
1356 *	@skb: the packet needing the descriptors
1357 *	@ndesc: the number of Tx descriptors needed
1358 *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1359 *
1360 *	Checks if the requested number of Tx descriptors is available on an
1361 *	SGE send queue.  If the queue is already suspended or not enough
1362 *	descriptors are available the packet is queued for later transmission.
1363 *	Must be called with the Tx queue locked.
1364 *
1365 *	Returns 0 if enough descriptors are available, 1 if there aren't
1366 *	enough descriptors and the packet has been queued, and 2 if the caller
1367 *	needs to retry because there weren't enough descriptors at the
1368 *	beginning of the call but some freed up in the mean time.
1369 */
1370static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1371				   struct sk_buff *skb, unsigned int ndesc,
1372				   unsigned int qid)
1373{
1374	if (unlikely(!skb_queue_empty(&q->sendq))) {
1375	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1376		return 1;
1377	}
1378	if (unlikely(q->size - q->in_use < ndesc)) {
1379		struct sge_qset *qs = txq_to_qset(q, qid);
1380
1381		set_bit(qid, &qs->txq_stopped);
1382		smp_mb__after_atomic();
1383
1384		if (should_restart_tx(q) &&
1385		    test_and_clear_bit(qid, &qs->txq_stopped))
1386			return 2;
1387
1388		q->stops++;
1389		goto addq_exit;
1390	}
1391	return 0;
1392}
1393
1394/**
1395 *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1396 *	@q: the SGE control Tx queue
1397 *
1398 *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1399 *	that send only immediate data (presently just the control queues) and
1400 *	thus do not have any sk_buffs to release.
1401 */
1402static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1403{
1404	unsigned int reclaim = q->processed - q->cleaned;
1405
1406	q->in_use -= reclaim;
1407	q->cleaned += reclaim;
1408}
1409
1410static inline int immediate(const struct sk_buff *skb)
1411{
1412	return skb->len <= WR_LEN;
1413}
1414
1415/**
1416 *	ctrl_xmit - send a packet through an SGE control Tx queue
1417 *	@adap: the adapter
1418 *	@q: the control queue
1419 *	@skb: the packet
1420 *
1421 *	Send a packet through an SGE control Tx queue.  Packets sent through
1422 *	a control queue must fit entirely as immediate data in a single Tx
1423 *	descriptor and have no page fragments.
1424 */
1425static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1426		     struct sk_buff *skb)
1427{
1428	int ret;
1429	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1430
1431	if (unlikely(!immediate(skb))) {
1432		WARN_ON(1);
1433		dev_kfree_skb(skb);
1434		return NET_XMIT_SUCCESS;
1435	}
1436
1437	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1438	wrp->wr_lo = htonl(V_WR_TID(q->token));
1439
1440	spin_lock(&q->lock);
1441      again:reclaim_completed_tx_imm(q);
1442
1443	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1444	if (unlikely(ret)) {
1445		if (ret == 1) {
1446			spin_unlock(&q->lock);
1447			return NET_XMIT_CN;
1448		}
1449		goto again;
1450	}
1451
1452	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1453
1454	q->in_use++;
1455	if (++q->pidx >= q->size) {
1456		q->pidx = 0;
1457		q->gen ^= 1;
1458	}
1459	spin_unlock(&q->lock);
1460	wmb();
1461	t3_write_reg(adap, A_SG_KDOORBELL,
1462		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1463	return NET_XMIT_SUCCESS;
1464}
1465
1466/**
1467 *	restart_ctrlq - restart a suspended control queue
1468 *	@qs: the queue set cotaining the control queue
1469 *
1470 *	Resumes transmission on a suspended Tx control queue.
1471 */
1472static void restart_ctrlq(unsigned long data)
1473{
1474	struct sk_buff *skb;
1475	struct sge_qset *qs = (struct sge_qset *)data;
1476	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1477
1478	spin_lock(&q->lock);
1479      again:reclaim_completed_tx_imm(q);
1480
1481	while (q->in_use < q->size &&
1482	       (skb = __skb_dequeue(&q->sendq)) != NULL) {
1483
1484		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1485
1486		if (++q->pidx >= q->size) {
1487			q->pidx = 0;
1488			q->gen ^= 1;
1489		}
1490		q->in_use++;
1491	}
1492
1493	if (!skb_queue_empty(&q->sendq)) {
1494		set_bit(TXQ_CTRL, &qs->txq_stopped);
1495		smp_mb__after_atomic();
1496
1497		if (should_restart_tx(q) &&
1498		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1499			goto again;
1500		q->stops++;
1501	}
1502
1503	spin_unlock(&q->lock);
1504	wmb();
1505	t3_write_reg(qs->adap, A_SG_KDOORBELL,
1506		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1507}
1508
1509/*
1510 * Send a management message through control queue 0
1511 */
1512int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1513{
1514	int ret;
1515	local_bh_disable();
1516	ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1517	local_bh_enable();
1518
1519	return ret;
1520}
1521
1522/**
1523 *	deferred_unmap_destructor - unmap a packet when it is freed
1524 *	@skb: the packet
1525 *
1526 *	This is the packet destructor used for Tx packets that need to remain
1527 *	mapped until they are freed rather than until their Tx descriptors are
1528 *	freed.
1529 */
1530static void deferred_unmap_destructor(struct sk_buff *skb)
1531{
1532	int i;
1533	const dma_addr_t *p;
1534	const struct skb_shared_info *si;
1535	const struct deferred_unmap_info *dui;
1536
1537	dui = (struct deferred_unmap_info *)skb->head;
1538	p = dui->addr;
1539
1540	if (skb_tail_pointer(skb) - skb_transport_header(skb))
1541		pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1542				 skb_transport_header(skb), PCI_DMA_TODEVICE);
1543
1544	si = skb_shinfo(skb);
1545	for (i = 0; i < si->nr_frags; i++)
1546		pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1547			       PCI_DMA_TODEVICE);
1548}
1549
1550static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1551				     const struct sg_ent *sgl, int sgl_flits)
1552{
1553	dma_addr_t *p;
1554	struct deferred_unmap_info *dui;
1555
1556	dui = (struct deferred_unmap_info *)skb->head;
1557	dui->pdev = pdev;
1558	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1559		*p++ = be64_to_cpu(sgl->addr[0]);
1560		*p++ = be64_to_cpu(sgl->addr[1]);
1561	}
1562	if (sgl_flits)
1563		*p = be64_to_cpu(sgl->addr[0]);
1564}
1565
1566/**
1567 *	write_ofld_wr - write an offload work request
1568 *	@adap: the adapter
1569 *	@skb: the packet to send
1570 *	@q: the Tx queue
1571 *	@pidx: index of the first Tx descriptor to write
1572 *	@gen: the generation value to use
1573 *	@ndesc: number of descriptors the packet will occupy
1574 *
1575 *	Write an offload work request to send the supplied packet.  The packet
1576 *	data already carry the work request with most fields populated.
1577 */
1578static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1579			  struct sge_txq *q, unsigned int pidx,
1580			  unsigned int gen, unsigned int ndesc)
1581{
1582	unsigned int sgl_flits, flits;
1583	struct work_request_hdr *from;
1584	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1585	struct tx_desc *d = &q->desc[pidx];
1586
1587	if (immediate(skb)) {
1588		q->sdesc[pidx].skb = NULL;
1589		write_imm(d, skb, skb->len, gen);
1590		return;
1591	}
1592
1593	/* Only TX_DATA builds SGLs */
1594
1595	from = (struct work_request_hdr *)skb->data;
1596	memcpy(&d->flit[1], &from[1],
1597	       skb_transport_offset(skb) - sizeof(*from));
1598
1599	flits = skb_transport_offset(skb) / 8;
1600	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1601	sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1602			     skb_tail_pointer(skb) -
1603			     skb_transport_header(skb),
1604			     adap->pdev);
1605	if (need_skb_unmap()) {
1606		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1607		skb->destructor = deferred_unmap_destructor;
1608	}
1609
1610	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1611			 gen, from->wr_hi, from->wr_lo);
1612}
1613
1614/**
1615 *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1616 *	@skb: the packet
1617 *
1618 * 	Returns the number of Tx descriptors needed for the given offload
1619 * 	packet.  These packets are already fully constructed.
1620 */
1621static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1622{
1623	unsigned int flits, cnt;
1624
1625	if (skb->len <= WR_LEN)
1626		return 1;	/* packet fits as immediate data */
1627
1628	flits = skb_transport_offset(skb) / 8;	/* headers */
1629	cnt = skb_shinfo(skb)->nr_frags;
1630	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1631		cnt++;
1632	return flits_to_desc(flits + sgl_len(cnt));
1633}
1634
1635/**
1636 *	ofld_xmit - send a packet through an offload queue
1637 *	@adap: the adapter
1638 *	@q: the Tx offload queue
1639 *	@skb: the packet
1640 *
1641 *	Send an offload packet through an SGE offload queue.
1642 */
1643static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1644		     struct sk_buff *skb)
1645{
1646	int ret;
1647	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1648
1649	spin_lock(&q->lock);
1650again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1651
1652	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1653	if (unlikely(ret)) {
1654		if (ret == 1) {
1655			skb->priority = ndesc;	/* save for restart */
1656			spin_unlock(&q->lock);
1657			return NET_XMIT_CN;
1658		}
1659		goto again;
1660	}
1661
1662	gen = q->gen;
1663	q->in_use += ndesc;
1664	pidx = q->pidx;
1665	q->pidx += ndesc;
1666	if (q->pidx >= q->size) {
1667		q->pidx -= q->size;
1668		q->gen ^= 1;
1669	}
1670	spin_unlock(&q->lock);
1671
1672	write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1673	check_ring_tx_db(adap, q);
1674	return NET_XMIT_SUCCESS;
1675}
1676
1677/**
1678 *	restart_offloadq - restart a suspended offload queue
1679 *	@qs: the queue set cotaining the offload queue
1680 *
1681 *	Resumes transmission on a suspended Tx offload queue.
1682 */
1683static void restart_offloadq(unsigned long data)
1684{
1685	struct sk_buff *skb;
1686	struct sge_qset *qs = (struct sge_qset *)data;
1687	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1688	const struct port_info *pi = netdev_priv(qs->netdev);
1689	struct adapter *adap = pi->adapter;
1690
1691	spin_lock(&q->lock);
1692again:	reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1693
1694	while ((skb = skb_peek(&q->sendq)) != NULL) {
1695		unsigned int gen, pidx;
1696		unsigned int ndesc = skb->priority;
1697
1698		if (unlikely(q->size - q->in_use < ndesc)) {
1699			set_bit(TXQ_OFLD, &qs->txq_stopped);
1700			smp_mb__after_atomic();
1701
1702			if (should_restart_tx(q) &&
1703			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1704				goto again;
1705			q->stops++;
1706			break;
1707		}
1708
1709		gen = q->gen;
1710		q->in_use += ndesc;
1711		pidx = q->pidx;
1712		q->pidx += ndesc;
1713		if (q->pidx >= q->size) {
1714			q->pidx -= q->size;
1715			q->gen ^= 1;
1716		}
1717		__skb_unlink(skb, &q->sendq);
1718		spin_unlock(&q->lock);
1719
1720		write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1721		spin_lock(&q->lock);
1722	}
1723	spin_unlock(&q->lock);
1724
1725#if USE_GTS
1726	set_bit(TXQ_RUNNING, &q->flags);
1727	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1728#endif
1729	wmb();
1730	t3_write_reg(adap, A_SG_KDOORBELL,
1731		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1732}
1733
1734/**
1735 *	queue_set - return the queue set a packet should use
1736 *	@skb: the packet
1737 *
1738 *	Maps a packet to the SGE queue set it should use.  The desired queue
1739 *	set is carried in bits 1-3 in the packet's priority.
1740 */
1741static inline int queue_set(const struct sk_buff *skb)
1742{
1743	return skb->priority >> 1;
1744}
1745
1746/**
1747 *	is_ctrl_pkt - return whether an offload packet is a control packet
1748 *	@skb: the packet
1749 *
1750 *	Determines whether an offload packet should use an OFLD or a CTRL
1751 *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1752 */
1753static inline int is_ctrl_pkt(const struct sk_buff *skb)
1754{
1755	return skb->priority & 1;
1756}
1757
1758/**
1759 *	t3_offload_tx - send an offload packet
1760 *	@tdev: the offload device to send to
1761 *	@skb: the packet
1762 *
1763 *	Sends an offload packet.  We use the packet priority to select the
1764 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1765 *	should be sent as regular or control, bits 1-3 select the queue set.
1766 */
1767int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1768{
1769	struct adapter *adap = tdev2adap(tdev);
1770	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1771
1772	if (unlikely(is_ctrl_pkt(skb)))
1773		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1774
1775	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1776}
1777
1778/**
1779 *	offload_enqueue - add an offload packet to an SGE offload receive queue
1780 *	@q: the SGE response queue
1781 *	@skb: the packet
1782 *
1783 *	Add a new offload packet to an SGE response queue's offload packet
1784 *	queue.  If the packet is the first on the queue it schedules the RX
1785 *	softirq to process the queue.
1786 */
1787static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1788{
1789	int was_empty = skb_queue_empty(&q->rx_queue);
1790
1791	__skb_queue_tail(&q->rx_queue, skb);
1792
1793	if (was_empty) {
1794		struct sge_qset *qs = rspq_to_qset(q);
1795
1796		napi_schedule(&qs->napi);
1797	}
1798}
1799
1800/**
1801 *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1802 *	@tdev: the offload device that will be receiving the packets
1803 *	@q: the SGE response queue that assembled the bundle
1804 *	@skbs: the partial bundle
1805 *	@n: the number of packets in the bundle
1806 *
1807 *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1808 */
1809static inline void deliver_partial_bundle(struct t3cdev *tdev,
1810					  struct sge_rspq *q,
1811					  struct sk_buff *skbs[], int n)
1812{
1813	if (n) {
1814		q->offload_bundles++;
1815		tdev->recv(tdev, skbs, n);
1816	}
1817}
1818
1819/**
1820 *	ofld_poll - NAPI handler for offload packets in interrupt mode
1821 *	@dev: the network device doing the polling
1822 *	@budget: polling budget
1823 *
1824 *	The NAPI handler for offload packets when a response queue is serviced
1825 *	by the hard interrupt handler, i.e., when it's operating in non-polling
1826 *	mode.  Creates small packet batches and sends them through the offload
1827 *	receive handler.  Batches need to be of modest size as we do prefetches
1828 *	on the packets in each.
1829 */
1830static int ofld_poll(struct napi_struct *napi, int budget)
1831{
1832	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1833	struct sge_rspq *q = &qs->rspq;
1834	struct adapter *adapter = qs->adap;
1835	int work_done = 0;
1836
1837	while (work_done < budget) {
1838		struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1839		struct sk_buff_head queue;
1840		int ngathered;
1841
1842		spin_lock_irq(&q->lock);
1843		__skb_queue_head_init(&queue);
1844		skb_queue_splice_init(&q->rx_queue, &queue);
1845		if (skb_queue_empty(&queue)) {
1846			napi_complete(napi);
1847			spin_unlock_irq(&q->lock);
1848			return work_done;
1849		}
1850		spin_unlock_irq(&q->lock);
1851
1852		ngathered = 0;
1853		skb_queue_walk_safe(&queue, skb, tmp) {
1854			if (work_done >= budget)
1855				break;
1856			work_done++;
1857
1858			__skb_unlink(skb, &queue);
1859			prefetch(skb->data);
1860			skbs[ngathered] = skb;
1861			if (++ngathered == RX_BUNDLE_SIZE) {
1862				q->offload_bundles++;
1863				adapter->tdev.recv(&adapter->tdev, skbs,
1864						   ngathered);
1865				ngathered = 0;
1866			}
1867		}
1868		if (!skb_queue_empty(&queue)) {
1869			/* splice remaining packets back onto Rx queue */
1870			spin_lock_irq(&q->lock);
1871			skb_queue_splice(&queue, &q->rx_queue);
1872			spin_unlock_irq(&q->lock);
1873		}
1874		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1875	}
1876
1877	return work_done;
1878}
1879
1880/**
1881 *	rx_offload - process a received offload packet
1882 *	@tdev: the offload device receiving the packet
1883 *	@rq: the response queue that received the packet
1884 *	@skb: the packet
1885 *	@rx_gather: a gather list of packets if we are building a bundle
1886 *	@gather_idx: index of the next available slot in the bundle
1887 *
1888 *	Process an ingress offload pakcet and add it to the offload ingress
1889 *	queue. 	Returns the index of the next available slot in the bundle.
1890 */
1891static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1892			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1893			     unsigned int gather_idx)
1894{
1895	skb_reset_mac_header(skb);
1896	skb_reset_network_header(skb);
1897	skb_reset_transport_header(skb);
1898
1899	if (rq->polling) {
1900		rx_gather[gather_idx++] = skb;
1901		if (gather_idx == RX_BUNDLE_SIZE) {
1902			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1903			gather_idx = 0;
1904			rq->offload_bundles++;
1905		}
1906	} else
1907		offload_enqueue(rq, skb);
1908
1909	return gather_idx;
1910}
1911
1912/**
1913 *	restart_tx - check whether to restart suspended Tx queues
1914 *	@qs: the queue set to resume
1915 *
1916 *	Restarts suspended Tx queues of an SGE queue set if they have enough
1917 *	free resources to resume operation.
1918 */
1919static void restart_tx(struct sge_qset *qs)
1920{
1921	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1922	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1923	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1924		qs->txq[TXQ_ETH].restarts++;
1925		if (netif_running(qs->netdev))
1926			netif_tx_wake_queue(qs->tx_q);
1927	}
1928
1929	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1930	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1931	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1932		qs->txq[TXQ_OFLD].restarts++;
1933		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1934	}
1935	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1936	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1937	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1938		qs->txq[TXQ_CTRL].restarts++;
1939		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1940	}
1941}
1942
1943/**
1944 *	cxgb3_arp_process - process an ARP request probing a private IP address
1945 *	@adapter: the adapter
1946 *	@skb: the skbuff containing the ARP request
1947 *
1948 *	Check if the ARP request is probing the private IP address
1949 *	dedicated to iSCSI, generate an ARP reply if so.
1950 */
1951static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1952{
1953	struct net_device *dev = skb->dev;
1954	struct arphdr *arp;
1955	unsigned char *arp_ptr;
1956	unsigned char *sha;
1957	__be32 sip, tip;
1958
1959	if (!dev)
1960		return;
1961
1962	skb_reset_network_header(skb);
1963	arp = arp_hdr(skb);
1964
1965	if (arp->ar_op != htons(ARPOP_REQUEST))
1966		return;
1967
1968	arp_ptr = (unsigned char *)(arp + 1);
1969	sha = arp_ptr;
1970	arp_ptr += dev->addr_len;
1971	memcpy(&sip, arp_ptr, sizeof(sip));
1972	arp_ptr += sizeof(sip);
1973	arp_ptr += dev->addr_len;
1974	memcpy(&tip, arp_ptr, sizeof(tip));
1975
1976	if (tip != pi->iscsi_ipv4addr)
1977		return;
1978
1979	arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1980		 pi->iscsic.mac_addr, sha);
1981
1982}
1983
1984static inline int is_arp(struct sk_buff *skb)
1985{
1986	return skb->protocol == htons(ETH_P_ARP);
1987}
1988
1989static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1990					struct sk_buff *skb)
1991{
1992	if (is_arp(skb)) {
1993		cxgb3_arp_process(pi, skb);
1994		return;
1995	}
1996
1997	if (pi->iscsic.recv)
1998		pi->iscsic.recv(pi, skb);
1999
2000}
2001
2002/**
2003 *	rx_eth - process an ingress ethernet packet
2004 *	@adap: the adapter
2005 *	@rq: the response queue that received the packet
2006 *	@skb: the packet
2007 *	@pad: amount of padding at the start of the buffer
2008 *
2009 *	Process an ingress ethernet pakcet and deliver it to the stack.
2010 *	The padding is 2 if the packet was delivered in an Rx buffer and 0
2011 *	if it was immediate data in a response.
2012 */
2013static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2014		   struct sk_buff *skb, int pad, int lro)
2015{
2016	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2017	struct sge_qset *qs = rspq_to_qset(rq);
2018	struct port_info *pi;
2019
2020	skb_pull(skb, sizeof(*p) + pad);
2021	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2022	pi = netdev_priv(skb->dev);
2023	if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2024	    p->csum == htons(0xffff) && !p->fragment) {
2025		qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2026		skb->ip_summed = CHECKSUM_UNNECESSARY;
2027	} else
2028		skb_checksum_none_assert(skb);
2029	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2030
2031	if (p->vlan_valid) {
2032		qs->port_stats[SGE_PSTAT_VLANEX]++;
2033		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2034	}
2035	if (rq->polling) {
2036		if (lro)
2037			napi_gro_receive(&qs->napi, skb);
2038		else {
2039			if (unlikely(pi->iscsic.flags))
2040				cxgb3_process_iscsi_prov_pack(pi, skb);
2041			netif_receive_skb(skb);
2042		}
2043	} else
2044		netif_rx(skb);
2045}
2046
2047static inline int is_eth_tcp(u32 rss)
2048{
2049	return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2050}
2051
2052/**
2053 *	lro_add_page - add a page chunk to an LRO session
2054 *	@adap: the adapter
2055 *	@qs: the associated queue set
2056 *	@fl: the free list containing the page chunk to add
2057 *	@len: packet length
2058 *	@complete: Indicates the last fragment of a frame
2059 *
2060 *	Add a received packet contained in a page chunk to an existing LRO
2061 *	session.
2062 */
2063static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2064			 struct sge_fl *fl, int len, int complete)
2065{
2066	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2067	struct port_info *pi = netdev_priv(qs->netdev);
2068	struct sk_buff *skb = NULL;
2069	struct cpl_rx_pkt *cpl;
2070	struct skb_frag_struct *rx_frag;
2071	int nr_frags;
2072	int offset = 0;
2073
2074	if (!qs->nomem) {
2075		skb = napi_get_frags(&qs->napi);
2076		qs->nomem = !skb;
2077	}
2078
2079	fl->credits--;
2080
2081	pci_dma_sync_single_for_cpu(adap->pdev,
2082				    dma_unmap_addr(sd, dma_addr),
2083				    fl->buf_size - SGE_PG_RSVD,
2084				    PCI_DMA_FROMDEVICE);
2085
2086	(*sd->pg_chunk.p_cnt)--;
2087	if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2088		pci_unmap_page(adap->pdev,
2089			       sd->pg_chunk.mapping,
2090			       fl->alloc_size,
2091			       PCI_DMA_FROMDEVICE);
2092
2093	if (!skb) {
2094		put_page(sd->pg_chunk.page);
2095		if (complete)
2096			qs->nomem = 0;
2097		return;
2098	}
2099
2100	rx_frag = skb_shinfo(skb)->frags;
2101	nr_frags = skb_shinfo(skb)->nr_frags;
2102
2103	if (!nr_frags) {
2104		offset = 2 + sizeof(struct cpl_rx_pkt);
2105		cpl = qs->lro_va = sd->pg_chunk.va + 2;
2106
2107		if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2108		     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2109			skb->ip_summed = CHECKSUM_UNNECESSARY;
2110			qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2111		} else
2112			skb->ip_summed = CHECKSUM_NONE;
2113	} else
2114		cpl = qs->lro_va;
2115
2116	len -= offset;
2117
2118	rx_frag += nr_frags;
2119	__skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2120	rx_frag->page_offset = sd->pg_chunk.offset + offset;
2121	skb_frag_size_set(rx_frag, len);
2122
2123	skb->len += len;
2124	skb->data_len += len;
2125	skb->truesize += len;
2126	skb_shinfo(skb)->nr_frags++;
2127
2128	if (!complete)
2129		return;
2130
2131	skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2132
2133	if (cpl->vlan_valid) {
2134		qs->port_stats[SGE_PSTAT_VLANEX]++;
2135		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2136	}
2137	napi_gro_frags(&qs->napi);
2138}
2139
2140/**
2141 *	handle_rsp_cntrl_info - handles control information in a response
2142 *	@qs: the queue set corresponding to the response
2143 *	@flags: the response control flags
2144 *
2145 *	Handles the control information of an SGE response, such as GTS
2146 *	indications and completion credits for the queue set's Tx queues.
2147 *	HW coalesces credits, we don't do any extra SW coalescing.
2148 */
2149static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2150{
2151	unsigned int credits;
2152
2153#if USE_GTS
2154	if (flags & F_RSPD_TXQ0_GTS)
2155		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2156#endif
2157
2158	credits = G_RSPD_TXQ0_CR(flags);
2159	if (credits)
2160		qs->txq[TXQ_ETH].processed += credits;
2161
2162	credits = G_RSPD_TXQ2_CR(flags);
2163	if (credits)
2164		qs->txq[TXQ_CTRL].processed += credits;
2165
2166# if USE_GTS
2167	if (flags & F_RSPD_TXQ1_GTS)
2168		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2169# endif
2170	credits = G_RSPD_TXQ1_CR(flags);
2171	if (credits)
2172		qs->txq[TXQ_OFLD].processed += credits;
2173}
2174
2175/**
2176 *	check_ring_db - check if we need to ring any doorbells
2177 *	@adapter: the adapter
2178 *	@qs: the queue set whose Tx queues are to be examined
2179 *	@sleeping: indicates which Tx queue sent GTS
2180 *
2181 *	Checks if some of a queue set's Tx queues need to ring their doorbells
2182 *	to resume transmission after idling while they still have unprocessed
2183 *	descriptors.
2184 */
2185static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2186			  unsigned int sleeping)
2187{
2188	if (sleeping & F_RSPD_TXQ0_GTS) {
2189		struct sge_txq *txq = &qs->txq[TXQ_ETH];
2190
2191		if (txq->cleaned + txq->in_use != txq->processed &&
2192		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2193			set_bit(TXQ_RUNNING, &txq->flags);
2194			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2195				     V_EGRCNTX(txq->cntxt_id));
2196		}
2197	}
2198
2199	if (sleeping & F_RSPD_TXQ1_GTS) {
2200		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2201
2202		if (txq->cleaned + txq->in_use != txq->processed &&
2203		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2204			set_bit(TXQ_RUNNING, &txq->flags);
2205			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2206				     V_EGRCNTX(txq->cntxt_id));
2207		}
2208	}
2209}
2210
2211/**
2212 *	is_new_response - check if a response is newly written
2213 *	@r: the response descriptor
2214 *	@q: the response queue
2215 *
2216 *	Returns true if a response descriptor contains a yet unprocessed
2217 *	response.
2218 */
2219static inline int is_new_response(const struct rsp_desc *r,
2220				  const struct sge_rspq *q)
2221{
2222	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2223}
2224
2225static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2226{
2227	q->pg_skb = NULL;
2228	q->rx_recycle_buf = 0;
2229}
2230
2231#define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2232#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2233			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2234			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2235			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2236
2237/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2238#define NOMEM_INTR_DELAY 2500
2239
2240/**
2241 *	process_responses - process responses from an SGE response queue
2242 *	@adap: the adapter
2243 *	@qs: the queue set to which the response queue belongs
2244 *	@budget: how many responses can be processed in this round
2245 *
2246 *	Process responses from an SGE response queue up to the supplied budget.
2247 *	Responses include received packets as well as credits and other events
2248 *	for the queues that belong to the response queue's queue set.
2249 *	A negative budget is effectively unlimited.
2250 *
2251 *	Additionally choose the interrupt holdoff time for the next interrupt
2252 *	on this queue.  If the system is under memory shortage use a fairly
2253 *	long delay to help recovery.
2254 */
2255static int process_responses(struct adapter *adap, struct sge_qset *qs,
2256			     int budget)
2257{
2258	struct sge_rspq *q = &qs->rspq;
2259	struct rsp_desc *r = &q->desc[q->cidx];
2260	int budget_left = budget;
2261	unsigned int sleeping = 0;
2262	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2263	int ngathered = 0;
2264
2265	q->next_holdoff = q->holdoff_tmr;
2266
2267	while (likely(budget_left && is_new_response(r, q))) {
2268		int packet_complete, eth, ethpad = 2;
2269		int lro = !!(qs->netdev->features & NETIF_F_GRO);
2270		struct sk_buff *skb = NULL;
2271		u32 len, flags;
2272		__be32 rss_hi, rss_lo;
2273
2274		dma_rmb();
2275		eth = r->rss_hdr.opcode == CPL_RX_PKT;
2276		rss_hi = *(const __be32 *)r;
2277		rss_lo = r->rss_hdr.rss_hash_val;
2278		flags = ntohl(r->flags);
2279
2280		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2281			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2282			if (!skb)
2283				goto no_mem;
2284
2285			memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2286			skb->data[0] = CPL_ASYNC_NOTIF;
2287			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2288			q->async_notif++;
2289		} else if (flags & F_RSPD_IMM_DATA_VALID) {
2290			skb = get_imm_packet(r);
2291			if (unlikely(!skb)) {
2292no_mem:
2293				q->next_holdoff = NOMEM_INTR_DELAY;
2294				q->nomem++;
2295				/* consume one credit since we tried */
2296				budget_left--;
2297				break;
2298			}
2299			q->imm_data++;
2300			ethpad = 0;
2301		} else if ((len = ntohl(r->len_cq)) != 0) {
2302			struct sge_fl *fl;
2303
2304			lro &= eth && is_eth_tcp(rss_hi);
2305
2306			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2307			if (fl->use_pages) {
2308				void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2309
2310				prefetch(addr);
2311#if L1_CACHE_BYTES < 128
2312				prefetch(addr + L1_CACHE_BYTES);
2313#endif
2314				__refill_fl(adap, fl);
2315				if (lro > 0) {
2316					lro_add_page(adap, qs, fl,
2317						     G_RSPD_LEN(len),
2318						     flags & F_RSPD_EOP);
2319					 goto next_fl;
2320				}
2321
2322				skb = get_packet_pg(adap, fl, q,
2323						    G_RSPD_LEN(len),
2324						    eth ?
2325						    SGE_RX_DROP_THRES : 0);
2326				q->pg_skb = skb;
2327			} else
2328				skb = get_packet(adap, fl, G_RSPD_LEN(len),
2329						 eth ? SGE_RX_DROP_THRES : 0);
2330			if (unlikely(!skb)) {
2331				if (!eth)
2332					goto no_mem;
2333				q->rx_drops++;
2334			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2335				__skb_pull(skb, 2);
2336next_fl:
2337			if (++fl->cidx == fl->size)
2338				fl->cidx = 0;
2339		} else
2340			q->pure_rsps++;
2341
2342		if (flags & RSPD_CTRL_MASK) {
2343			sleeping |= flags & RSPD_GTS_MASK;
2344			handle_rsp_cntrl_info(qs, flags);
2345		}
2346
2347		r++;
2348		if (unlikely(++q->cidx == q->size)) {
2349			q->cidx = 0;
2350			q->gen ^= 1;
2351			r = q->desc;
2352		}
2353		prefetch(r);
2354
2355		if (++q->credits >= (q->size / 4)) {
2356			refill_rspq(adap, q, q->credits);
2357			q->credits = 0;
2358		}
2359
2360		packet_complete = flags &
2361				  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2362				   F_RSPD_ASYNC_NOTIF);
2363
2364		if (skb != NULL && packet_complete) {
2365			if (eth)
2366				rx_eth(adap, q, skb, ethpad, lro);
2367			else {
2368				q->offload_pkts++;
2369				/* Preserve the RSS info in csum & priority */
2370				skb->csum = rss_hi;
2371				skb->priority = rss_lo;
2372				ngathered = rx_offload(&adap->tdev, q, skb,
2373						       offload_skbs,
2374						       ngathered);
2375			}
2376
2377			if (flags & F_RSPD_EOP)
2378				clear_rspq_bufstate(q);
2379		}
2380		--budget_left;
2381	}
2382
2383	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2384
2385	if (sleeping)
2386		check_ring_db(adap, qs, sleeping);
2387
2388	smp_mb();		/* commit Tx queue .processed updates */
2389	if (unlikely(qs->txq_stopped != 0))
2390		restart_tx(qs);
2391
2392	budget -= budget_left;
2393	return budget;
2394}
2395
2396static inline int is_pure_response(const struct rsp_desc *r)
2397{
2398	__be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2399
2400	return (n | r->len_cq) == 0;
2401}
2402
2403/**
2404 *	napi_rx_handler - the NAPI handler for Rx processing
2405 *	@napi: the napi instance
2406 *	@budget: how many packets we can process in this round
2407 *
2408 *	Handler for new data events when using NAPI.
2409 */
2410static int napi_rx_handler(struct napi_struct *napi, int budget)
2411{
2412	struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2413	struct adapter *adap = qs->adap;
2414	int work_done = process_responses(adap, qs, budget);
2415
2416	if (likely(work_done < budget)) {
2417		napi_complete(napi);
2418
2419		/*
2420		 * Because we don't atomically flush the following
2421		 * write it is possible that in very rare cases it can
2422		 * reach the device in a way that races with a new
2423		 * response being written plus an error interrupt
2424		 * causing the NAPI interrupt handler below to return
2425		 * unhandled status to the OS.  To protect against
2426		 * this would require flushing the write and doing
2427		 * both the write and the flush with interrupts off.
2428		 * Way too expensive and unjustifiable given the
2429		 * rarity of the race.
2430		 *
2431		 * The race cannot happen at all with MSI-X.
2432		 */
2433		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2434			     V_NEWTIMER(qs->rspq.next_holdoff) |
2435			     V_NEWINDEX(qs->rspq.cidx));
2436	}
2437	return work_done;
2438}
2439
2440/*
2441 * Returns true if the device is already scheduled for polling.
2442 */
2443static inline int napi_is_scheduled(struct napi_struct *napi)
2444{
2445	return test_bit(NAPI_STATE_SCHED, &napi->state);
2446}
2447
2448/**
2449 *	process_pure_responses - process pure responses from a response queue
2450 *	@adap: the adapter
2451 *	@qs: the queue set owning the response queue
2452 *	@r: the first pure response to process
2453 *
2454 *	A simpler version of process_responses() that handles only pure (i.e.,
2455 *	non data-carrying) responses.  Such respones are too light-weight to
2456 *	justify calling a softirq under NAPI, so we handle them specially in
2457 *	the interrupt handler.  The function is called with a pointer to a
2458 *	response, which the caller must ensure is a valid pure response.
2459 *
2460 *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2461 */
2462static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2463				  struct rsp_desc *r)
2464{
2465	struct sge_rspq *q = &qs->rspq;
2466	unsigned int sleeping = 0;
2467
2468	do {
2469		u32 flags = ntohl(r->flags);
2470
2471		r++;
2472		if (unlikely(++q->cidx == q->size)) {
2473			q->cidx = 0;
2474			q->gen ^= 1;
2475			r = q->desc;
2476		}
2477		prefetch(r);
2478
2479		if (flags & RSPD_CTRL_MASK) {
2480			sleeping |= flags & RSPD_GTS_MASK;
2481			handle_rsp_cntrl_info(qs, flags);
2482		}
2483
2484		q->pure_rsps++;
2485		if (++q->credits >= (q->size / 4)) {
2486			refill_rspq(adap, q, q->credits);
2487			q->credits = 0;
2488		}
2489		if (!is_new_response(r, q))
2490			break;
2491		dma_rmb();
2492	} while (is_pure_response(r));
2493
2494	if (sleeping)
2495		check_ring_db(adap, qs, sleeping);
2496
2497	smp_mb();		/* commit Tx queue .processed updates */
2498	if (unlikely(qs->txq_stopped != 0))
2499		restart_tx(qs);
2500
2501	return is_new_response(r, q);
2502}
2503
2504/**
2505 *	handle_responses - decide what to do with new responses in NAPI mode
2506 *	@adap: the adapter
2507 *	@q: the response queue
2508 *
2509 *	This is used by the NAPI interrupt handlers to decide what to do with
2510 *	new SGE responses.  If there are no new responses it returns -1.  If
2511 *	there are new responses and they are pure (i.e., non-data carrying)
2512 *	it handles them straight in hard interrupt context as they are very
2513 *	cheap and don't deliver any packets.  Finally, if there are any data
2514 *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2515 *	schedules NAPI, 0 if all new responses were pure.
2516 *
2517 *	The caller must ascertain NAPI is not already running.
2518 */
2519static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2520{
2521	struct sge_qset *qs = rspq_to_qset(q);
2522	struct rsp_desc *r = &q->desc[q->cidx];
2523
2524	if (!is_new_response(r, q))
2525		return -1;
2526	dma_rmb();
2527	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2528		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2529			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2530		return 0;
2531	}
2532	napi_schedule(&qs->napi);
2533	return 1;
2534}
2535
2536/*
2537 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2538 * (i.e., response queue serviced in hard interrupt).
2539 */
2540static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2541{
2542	struct sge_qset *qs = cookie;
2543	struct adapter *adap = qs->adap;
2544	struct sge_rspq *q = &qs->rspq;
2545
2546	spin_lock(&q->lock);
2547	if (process_responses(adap, qs, -1) == 0)
2548		q->unhandled_irqs++;
2549	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2550		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2551	spin_unlock(&q->lock);
2552	return IRQ_HANDLED;
2553}
2554
2555/*
2556 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2557 * (i.e., response queue serviced by NAPI polling).
2558 */
2559static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2560{
2561	struct sge_qset *qs = cookie;
2562	struct sge_rspq *q = &qs->rspq;
2563
2564	spin_lock(&q->lock);
2565
2566	if (handle_responses(qs->adap, q) < 0)
2567		q->unhandled_irqs++;
2568	spin_unlock(&q->lock);
2569	return IRQ_HANDLED;
2570}
2571
2572/*
2573 * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2574 * SGE response queues as well as error and other async events as they all use
2575 * the same MSI vector.  We use one SGE response queue per port in this mode
2576 * and protect all response queues with queue 0's lock.
2577 */
2578static irqreturn_t t3_intr_msi(int irq, void *cookie)
2579{
2580	int new_packets = 0;
2581	struct adapter *adap = cookie;
2582	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2583
2584	spin_lock(&q->lock);
2585
2586	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2587		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2588			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2589		new_packets = 1;
2590	}
2591
2592	if (adap->params.nports == 2 &&
2593	    process_responses(adap, &adap->sge.qs[1], -1)) {
2594		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2595
2596		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2597			     V_NEWTIMER(q1->next_holdoff) |
2598			     V_NEWINDEX(q1->cidx));
2599		new_packets = 1;
2600	}
2601
2602	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2603		q->unhandled_irqs++;
2604
2605	spin_unlock(&q->lock);
2606	return IRQ_HANDLED;
2607}
2608
2609static int rspq_check_napi(struct sge_qset *qs)
2610{
2611	struct sge_rspq *q = &qs->rspq;
2612
2613	if (!napi_is_scheduled(&qs->napi) &&
2614	    is_new_response(&q->desc[q->cidx], q)) {
2615		napi_schedule(&qs->napi);
2616		return 1;
2617	}
2618	return 0;
2619}
2620
2621/*
2622 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2623 * by NAPI polling).  Handles data events from SGE response queues as well as
2624 * error and other async events as they all use the same MSI vector.  We use
2625 * one SGE response queue per port in this mode and protect all response
2626 * queues with queue 0's lock.
2627 */
2628static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2629{
2630	int new_packets;
2631	struct adapter *adap = cookie;
2632	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2633
2634	spin_lock(&q->lock);
2635
2636	new_packets = rspq_check_napi(&adap->sge.qs[0]);
2637	if (adap->params.nports == 2)
2638		new_packets += rspq_check_napi(&adap->sge.qs[1]);
2639	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2640		q->unhandled_irqs++;
2641
2642	spin_unlock(&q->lock);
2643	return IRQ_HANDLED;
2644}
2645
2646/*
2647 * A helper function that processes responses and issues GTS.
2648 */
2649static inline int process_responses_gts(struct adapter *adap,
2650					struct sge_rspq *rq)
2651{
2652	int work;
2653
2654	work = process_responses(adap, rspq_to_qset(rq), -1);
2655	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2656		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2657	return work;
2658}
2659
2660/*
2661 * The legacy INTx interrupt handler.  This needs to handle data events from
2662 * SGE response queues as well as error and other async events as they all use
2663 * the same interrupt pin.  We use one SGE response queue per port in this mode
2664 * and protect all response queues with queue 0's lock.
2665 */
2666static irqreturn_t t3_intr(int irq, void *cookie)
2667{
2668	int work_done, w0, w1;
2669	struct adapter *adap = cookie;
2670	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2671	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2672
2673	spin_lock(&q0->lock);
2674
2675	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2676	w1 = adap->params.nports == 2 &&
2677	    is_new_response(&q1->desc[q1->cidx], q1);
2678
2679	if (likely(w0 | w1)) {
2680		t3_write_reg(adap, A_PL_CLI, 0);
2681		t3_read_reg(adap, A_PL_CLI);	/* flush */
2682
2683		if (likely(w0))
2684			process_responses_gts(adap, q0);
2685
2686		if (w1)
2687			process_responses_gts(adap, q1);
2688
2689		work_done = w0 | w1;
2690	} else
2691		work_done = t3_slow_intr_handler(adap);
2692
2693	spin_unlock(&q0->lock);
2694	return IRQ_RETVAL(work_done != 0);
2695}
2696
2697/*
2698 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2699 * Handles data events from SGE response queues as well as error and other
2700 * async events as they all use the same interrupt pin.  We use one SGE
2701 * response queue per port in this mode and protect all response queues with
2702 * queue 0's lock.
2703 */
2704static irqreturn_t t3b_intr(int irq, void *cookie)
2705{
2706	u32 map;
2707	struct adapter *adap = cookie;
2708	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2709
2710	t3_write_reg(adap, A_PL_CLI, 0);
2711	map = t3_read_reg(adap, A_SG_DATA_INTR);
2712
2713	if (unlikely(!map))	/* shared interrupt, most likely */
2714		return IRQ_NONE;
2715
2716	spin_lock(&q0->lock);
2717
2718	if (unlikely(map & F_ERRINTR))
2719		t3_slow_intr_handler(adap);
2720
2721	if (likely(map & 1))
2722		process_responses_gts(adap, q0);
2723
2724	if (map & 2)
2725		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2726
2727	spin_unlock(&q0->lock);
2728	return IRQ_HANDLED;
2729}
2730
2731/*
2732 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2733 * Handles data events from SGE response queues as well as error and other
2734 * async events as they all use the same interrupt pin.  We use one SGE
2735 * response queue per port in this mode and protect all response queues with
2736 * queue 0's lock.
2737 */
2738static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2739{
2740	u32 map;
2741	struct adapter *adap = cookie;
2742	struct sge_qset *qs0 = &adap->sge.qs[0];
2743	struct sge_rspq *q0 = &qs0->rspq;
2744
2745	t3_write_reg(adap, A_PL_CLI, 0);
2746	map = t3_read_reg(adap, A_SG_DATA_INTR);
2747
2748	if (unlikely(!map))	/* shared interrupt, most likely */
2749		return IRQ_NONE;
2750
2751	spin_lock(&q0->lock);
2752
2753	if (unlikely(map & F_ERRINTR))
2754		t3_slow_intr_handler(adap);
2755
2756	if (likely(map & 1))
2757		napi_schedule(&qs0->napi);
2758
2759	if (map & 2)
2760		napi_schedule(&adap->sge.qs[1].napi);
2761
2762	spin_unlock(&q0->lock);
2763	return IRQ_HANDLED;
2764}
2765
2766/**
2767 *	t3_intr_handler - select the top-level interrupt handler
2768 *	@adap: the adapter
2769 *	@polling: whether using NAPI to service response queues
2770 *
2771 *	Selects the top-level interrupt handler based on the type of interrupts
2772 *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2773 *	response queues.
2774 */
2775irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2776{
2777	if (adap->flags & USING_MSIX)
2778		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2779	if (adap->flags & USING_MSI)
2780		return polling ? t3_intr_msi_napi : t3_intr_msi;
2781	if (adap->params.rev > 0)
2782		return polling ? t3b_intr_napi : t3b_intr;
2783	return t3_intr;
2784}
2785
2786#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2787		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2788		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2789		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2790		    F_HIRCQPARITYERROR)
2791#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2792#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2793		      F_RSPQDISABLED)
2794
2795/**
2796 *	t3_sge_err_intr_handler - SGE async event interrupt handler
2797 *	@adapter: the adapter
2798 *
2799 *	Interrupt handler for SGE asynchronous (non-data) events.
2800 */
2801void t3_sge_err_intr_handler(struct adapter *adapter)
2802{
2803	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2804				 ~F_FLEMPTY;
2805
2806	if (status & SGE_PARERR)
2807		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2808			 status & SGE_PARERR);
2809	if (status & SGE_FRAMINGERR)
2810		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2811			 status & SGE_FRAMINGERR);
2812
2813	if (status & F_RSPQCREDITOVERFOW)
2814		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2815
2816	if (status & F_RSPQDISABLED) {
2817		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2818
2819		CH_ALERT(adapter,
2820			 "packet delivered to disabled response queue "
2821			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2822	}
2823
2824	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2825		queue_work(cxgb3_wq, &adapter->db_drop_task);
2826
2827	if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2828		queue_work(cxgb3_wq, &adapter->db_full_task);
2829
2830	if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2831		queue_work(cxgb3_wq, &adapter->db_empty_task);
2832
2833	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2834	if (status &  SGE_FATALERR)
2835		t3_fatal_err(adapter);
2836}
2837
2838/**
2839 *	sge_timer_tx - perform periodic maintenance of an SGE qset
2840 *	@data: the SGE queue set to maintain
2841 *
2842 *	Runs periodically from a timer to perform maintenance of an SGE queue
2843 *	set.  It performs two tasks:
2844 *
2845 *	Cleans up any completed Tx descriptors that may still be pending.
2846 *	Normal descriptor cleanup happens when new packets are added to a Tx
2847 *	queue so this timer is relatively infrequent and does any cleanup only
2848 *	if the Tx queue has not seen any new packets in a while.  We make a
2849 *	best effort attempt to reclaim descriptors, in that we don't wait
2850 *	around if we cannot get a queue's lock (which most likely is because
2851 *	someone else is queueing new packets and so will also handle the clean
2852 *	up).  Since control queues use immediate data exclusively we don't
2853 *	bother cleaning them up here.
2854 *
2855 */
2856static void sge_timer_tx(unsigned long data)
2857{
2858	struct sge_qset *qs = (struct sge_qset *)data;
2859	struct port_info *pi = netdev_priv(qs->netdev);
2860	struct adapter *adap = pi->adapter;
2861	unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2862	unsigned long next_period;
2863
2864	if (__netif_tx_trylock(qs->tx_q)) {
2865                tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2866                                                     TX_RECLAIM_TIMER_CHUNK);
2867		__netif_tx_unlock(qs->tx_q);
2868	}
2869
2870	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2871		tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2872						     TX_RECLAIM_TIMER_CHUNK);
2873		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2874	}
2875
2876	next_period = TX_RECLAIM_PERIOD >>
2877                      (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2878                      TX_RECLAIM_TIMER_CHUNK);
2879	mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2880}
2881
2882/**
2883 *	sge_timer_rx - perform periodic maintenance of an SGE qset
2884 *	@data: the SGE queue set to maintain
2885 *
2886 *	a) Replenishes Rx queues that have run out due to memory shortage.
2887 *	Normally new Rx buffers are added when existing ones are consumed but
2888 *	when out of memory a queue can become empty.  We try to add only a few
2889 *	buffers here, the queue will be replenished fully as these new buffers
2890 *	are used up if memory shortage has subsided.
2891 *
2892 *	b) Return coalesced response queue credits in case a response queue is
2893 *	starved.
2894 *
2895 */
2896static void sge_timer_rx(unsigned long data)
2897{
2898	spinlock_t *lock;
2899	struct sge_qset *qs = (struct sge_qset *)data;
2900	struct port_info *pi = netdev_priv(qs->netdev);
2901	struct adapter *adap = pi->adapter;
2902	u32 status;
2903
2904	lock = adap->params.rev > 0 ?
2905	       &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2906
2907	if (!spin_trylock_irq(lock))
2908		goto out;
2909
2910	if (napi_is_scheduled(&qs->napi))
2911		goto unlock;
2912
2913	if (adap->params.rev < 4) {
2914		status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2915
2916		if (status & (1 << qs->rspq.cntxt_id)) {
2917			qs->rspq.starved++;
2918			if (qs->rspq.credits) {
2919				qs->rspq.credits--;
2920				refill_rspq(adap, &qs->rspq, 1);
2921				qs->rspq.restarted++;
2922				t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2923					     1 << qs->rspq.cntxt_id);
2924			}
2925		}
2926	}
2927
2928	if (qs->fl[0].credits < qs->fl[0].size)
2929		__refill_fl(adap, &qs->fl[0]);
2930	if (qs->fl[1].credits < qs->fl[1].size)
2931		__refill_fl(adap, &qs->fl[1]);
2932
2933unlock:
2934	spin_unlock_irq(lock);
2935out:
2936	mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2937}
2938
2939/**
2940 *	t3_update_qset_coalesce - update coalescing settings for a queue set
2941 *	@qs: the SGE queue set
2942 *	@p: new queue set parameters
2943 *
2944 *	Update the coalescing settings for an SGE queue set.  Nothing is done
2945 *	if the queue set is not initialized yet.
2946 */
2947void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2948{
2949	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2950	qs->rspq.polling = p->polling;
2951	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2952}
2953
2954/**
2955 *	t3_sge_alloc_qset - initialize an SGE queue set
2956 *	@adapter: the adapter
2957 *	@id: the queue set id
2958 *	@nports: how many Ethernet ports will be using this queue set
2959 *	@irq_vec_idx: the IRQ vector index for response queue interrupts
2960 *	@p: configuration parameters for this queue set
2961 *	@ntxq: number of Tx queues for the queue set
2962 *	@netdev: net device associated with this queue set
2963 *	@netdevq: net device TX queue associated with this queue set
2964 *
2965 *	Allocate resources and initialize an SGE queue set.  A queue set
2966 *	comprises a response queue, two Rx free-buffer queues, and up to 3
2967 *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
2968 *	queue, offload queue, and control queue.
2969 */
2970int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2971		      int irq_vec_idx, const struct qset_params *p,
2972		      int ntxq, struct net_device *dev,
2973		      struct netdev_queue *netdevq)
2974{
2975	int i, avail, ret = -ENOMEM;
2976	struct sge_qset *q = &adapter->sge.qs[id];
2977
2978	init_qset_cntxt(q, id);
2979	setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2980	setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2981
2982	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2983				   sizeof(struct rx_desc),
2984				   sizeof(struct rx_sw_desc),
2985				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
2986	if (!q->fl[0].desc)
2987		goto err;
2988
2989	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2990				   sizeof(struct rx_desc),
2991				   sizeof(struct rx_sw_desc),
2992				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
2993	if (!q->fl[1].desc)
2994		goto err;
2995
2996	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2997				  sizeof(struct rsp_desc), 0,
2998				  &q->rspq.phys_addr, NULL);
2999	if (!q->rspq.desc)
3000		goto err;
3001
3002	for (i = 0; i < ntxq; ++i) {
3003		/*
3004		 * The control queue always uses immediate data so does not
3005		 * need to keep track of any sk_buffs.
3006		 */
3007		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3008
3009		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3010					    sizeof(struct tx_desc), sz,
3011					    &q->txq[i].phys_addr,
3012					    &q->txq[i].sdesc);
3013		if (!q->txq[i].desc)
3014			goto err;
3015
3016		q->txq[i].gen = 1;
3017		q->txq[i].size = p->txq_size[i];
3018		spin_lock_init(&q->txq[i].lock);
3019		skb_queue_head_init(&q->txq[i].sendq);
3020	}
3021
3022	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3023		     (unsigned long)q);
3024	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3025		     (unsigned long)q);
3026
3027	q->fl[0].gen = q->fl[1].gen = 1;
3028	q->fl[0].size = p->fl_size;
3029	q->fl[1].size = p->jumbo_size;
3030
3031	q->rspq.gen = 1;
3032	q->rspq.size = p->rspq_size;
3033	spin_lock_init(&q->rspq.lock);
3034	skb_queue_head_init(&q->rspq.rx_queue);
3035
3036	q->txq[TXQ_ETH].stop_thres = nports *
3037	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3038
3039#if FL0_PG_CHUNK_SIZE > 0
3040	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3041#else
3042	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3043#endif
3044#if FL1_PG_CHUNK_SIZE > 0
3045	q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3046#else
3047	q->fl[1].buf_size = is_offload(adapter) ?
3048		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3049		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3050#endif
3051
3052	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3053	q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3054	q->fl[0].order = FL0_PG_ORDER;
3055	q->fl[1].order = FL1_PG_ORDER;
3056	q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3057	q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3058
3059	spin_lock_irq(&adapter->sge.reg_lock);
3060
3061	/* FL threshold comparison uses < */
3062	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3063				   q->rspq.phys_addr, q->rspq.size,
3064				   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3065	if (ret)
3066		goto err_unlock;
3067
3068	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3069		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3070					  q->fl[i].phys_addr, q->fl[i].size,
3071					  q->fl[i].buf_size - SGE_PG_RSVD,
3072					  p->cong_thres, 1, 0);
3073		if (ret)
3074			goto err_unlock;
3075	}
3076
3077	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3078				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3079				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3080				 1, 0);
3081	if (ret)
3082		goto err_unlock;
3083
3084	if (ntxq > 1) {
3085		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3086					 USE_GTS, SGE_CNTXT_OFLD, id,
3087					 q->txq[TXQ_OFLD].phys_addr,
3088					 q->txq[TXQ_OFLD].size, 0, 1, 0);
3089		if (ret)
3090			goto err_unlock;
3091	}
3092
3093	if (ntxq > 2) {
3094		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3095					 SGE_CNTXT_CTRL, id,
3096					 q->txq[TXQ_CTRL].phys_addr,
3097					 q->txq[TXQ_CTRL].size,
3098					 q->txq[TXQ_CTRL].token, 1, 0);
3099		if (ret)
3100			goto err_unlock;
3101	}
3102
3103	spin_unlock_irq(&adapter->sge.reg_lock);
3104
3105	q->adap = adapter;
3106	q->netdev = dev;
3107	q->tx_q = netdevq;
3108	t3_update_qset_coalesce(q, p);
3109
3110	avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3111			  GFP_KERNEL | __GFP_COMP);
3112	if (!avail) {
3113		CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3114		goto err;
3115	}
3116	if (avail < q->fl[0].size)
3117		CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3118			avail);
3119
3120	avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3121			  GFP_KERNEL | __GFP_COMP);
3122	if (avail < q->fl[1].size)
3123		CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3124			avail);
3125	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3126
3127	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3128		     V_NEWTIMER(q->rspq.holdoff_tmr));
3129
3130	return 0;
3131
3132err_unlock:
3133	spin_unlock_irq(&adapter->sge.reg_lock);
3134err:
3135	t3_free_qset(adapter, q);
3136	return ret;
3137}
3138
3139/**
3140 *      t3_start_sge_timers - start SGE timer call backs
3141 *      @adap: the adapter
3142 *
3143 *      Starts each SGE queue set's timer call back
3144 */
3145void t3_start_sge_timers(struct adapter *adap)
3146{
3147	int i;
3148
3149	for (i = 0; i < SGE_QSETS; ++i) {
3150		struct sge_qset *q = &adap->sge.qs[i];
3151
3152	if (q->tx_reclaim_timer.function)
3153		mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3154
3155	if (q->rx_reclaim_timer.function)
3156		mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3157	}
3158}
3159
3160/**
3161 *	t3_stop_sge_timers - stop SGE timer call backs
3162 *	@adap: the adapter
3163 *
3164 *	Stops each SGE queue set's timer call back
3165 */
3166void t3_stop_sge_timers(struct adapter *adap)
3167{
3168	int i;
3169
3170	for (i = 0; i < SGE_QSETS; ++i) {
3171		struct sge_qset *q = &adap->sge.qs[i];
3172
3173		if (q->tx_reclaim_timer.function)
3174			del_timer_sync(&q->tx_reclaim_timer);
3175		if (q->rx_reclaim_timer.function)
3176			del_timer_sync(&q->rx_reclaim_timer);
3177	}
3178}
3179
3180/**
3181 *	t3_free_sge_resources - free SGE resources
3182 *	@adap: the adapter
3183 *
3184 *	Frees resources used by the SGE queue sets.
3185 */
3186void t3_free_sge_resources(struct adapter *adap)
3187{
3188	int i;
3189
3190	for (i = 0; i < SGE_QSETS; ++i)
3191		t3_free_qset(adap, &adap->sge.qs[i]);
3192}
3193
3194/**
3195 *	t3_sge_start - enable SGE
3196 *	@adap: the adapter
3197 *
3198 *	Enables the SGE for DMAs.  This is the last step in starting packet
3199 *	transfers.
3200 */
3201void t3_sge_start(struct adapter *adap)
3202{
3203	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3204}
3205
3206/**
3207 *	t3_sge_stop - disable SGE operation
3208 *	@adap: the adapter
3209 *
3210 *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
3211 *	from error interrupts) or from normal process context.  In the latter
3212 *	case it also disables any pending queue restart tasklets.  Note that
3213 *	if it is called in interrupt context it cannot disable the restart
3214 *	tasklets as it cannot wait, however the tasklets will have no effect
3215 *	since the doorbells are disabled and the driver will call this again
3216 *	later from process context, at which time the tasklets will be stopped
3217 *	if they are still running.
3218 */
3219void t3_sge_stop(struct adapter *adap)
3220{
3221	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3222	if (!in_interrupt()) {
3223		int i;
3224
3225		for (i = 0; i < SGE_QSETS; ++i) {
3226			struct sge_qset *qs = &adap->sge.qs[i];
3227
3228			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3229			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3230		}
3231	}
3232}
3233
3234/**
3235 *	t3_sge_init - initialize SGE
3236 *	@adap: the adapter
3237 *	@p: the SGE parameters
3238 *
3239 *	Performs SGE initialization needed every time after a chip reset.
3240 *	We do not initialize any of the queue sets here, instead the driver
3241 *	top-level must request those individually.  We also do not enable DMA
3242 *	here, that should be done after the queues have been set up.
3243 */
3244void t3_sge_init(struct adapter *adap, struct sge_params *p)
3245{
3246	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3247
3248	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3249	    F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3250	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3251	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3252#if SGE_NUM_GENBITS == 1
3253	ctrl |= F_EGRGENCTRL;
3254#endif
3255	if (adap->params.rev > 0) {
3256		if (!(adap->flags & (USING_MSIX | USING_MSI)))
3257			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3258	}
3259	t3_write_reg(adap, A_SG_CONTROL, ctrl);
3260	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3261		     V_LORCQDRBTHRSH(512));
3262	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3263	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3264		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3265	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3266		     adap->params.rev < T3_REV_C ? 1000 : 500);
3267	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3268	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3269	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3270	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3271	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3272}
3273
3274/**
3275 *	t3_sge_prep - one-time SGE initialization
3276 *	@adap: the associated adapter
3277 *	@p: SGE parameters
3278 *
3279 *	Performs one-time initialization of SGE SW state.  Includes determining
3280 *	defaults for the assorted SGE parameters, which admins can change until
3281 *	they are used to initialize the SGE.
3282 */
3283void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3284{
3285	int i;
3286
3287	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3288	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3289
3290	for (i = 0; i < SGE_QSETS; ++i) {
3291		struct qset_params *q = p->qset + i;
3292
3293		q->polling = adap->params.rev > 0;
3294		q->coalesce_usecs = 5;
3295		q->rspq_size = 1024;
3296		q->fl_size = 1024;
3297 		q->jumbo_size = 512;
3298		q->txq_size[TXQ_ETH] = 1024;
3299		q->txq_size[TXQ_OFLD] = 1024;
3300		q->txq_size[TXQ_CTRL] = 256;
3301		q->cong_thres = 0;
3302	}
3303
3304	spin_lock_init(&adap->sge.reg_lock);
3305}
3306