1/*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#define pr_fmt(fmt)				"bcmgenet: " fmt
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/types.h>
17#include <linux/fcntl.h>
18#include <linux/interrupt.h>
19#include <linux/string.h>
20#include <linux/if_ether.h>
21#include <linux/init.h>
22#include <linux/errno.h>
23#include <linux/delay.h>
24#include <linux/platform_device.h>
25#include <linux/dma-mapping.h>
26#include <linux/pm.h>
27#include <linux/clk.h>
28#include <linux/of.h>
29#include <linux/of_address.h>
30#include <linux/of_irq.h>
31#include <linux/of_net.h>
32#include <linux/of_platform.h>
33#include <net/arp.h>
34
35#include <linux/mii.h>
36#include <linux/ethtool.h>
37#include <linux/netdevice.h>
38#include <linux/inetdevice.h>
39#include <linux/etherdevice.h>
40#include <linux/skbuff.h>
41#include <linux/in.h>
42#include <linux/ip.h>
43#include <linux/ipv6.h>
44#include <linux/phy.h>
45#include <linux/platform_data/bcmgenet.h>
46
47#include <asm/unaligned.h>
48
49#include "bcmgenet.h"
50
51/* Maximum number of hardware queues, downsized if needed */
52#define GENET_MAX_MQ_CNT	4
53
54/* Default highest priority queue for multi queue support */
55#define GENET_Q0_PRIORITY	0
56
57#define GENET_Q16_RX_BD_CNT	\
58	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59#define GENET_Q16_TX_BD_CNT	\
60	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62#define RX_BUF_LENGTH		2048
63#define SKB_ALIGNMENT		32
64
65/* Tx/Rx DMA register offset, skip 256 descriptors */
66#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68
69#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70				TOTAL_DESC * DMA_DESC_SIZE)
71
72#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73				TOTAL_DESC * DMA_DESC_SIZE)
74
75static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76					     void __iomem *d, u32 value)
77{
78	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79}
80
81static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82					    void __iomem *d)
83{
84	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85}
86
87static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88				    void __iomem *d,
89				    dma_addr_t addr)
90{
91	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93	/* Register writes to GISB bus can take couple hundred nanoseconds
94	 * and are done for each packet, save these expensive writes unless
95	 * the platform is explicitly configured for 64-bits/LPAE.
96	 */
97#ifdef CONFIG_PHYS_ADDR_T_64BIT
98	if (priv->hw_params->flags & GENET_HAS_40BITS)
99		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100#endif
101}
102
103/* Combined address + length/status setter */
104static inline void dmadesc_set(struct bcmgenet_priv *priv,
105			       void __iomem *d, dma_addr_t addr, u32 val)
106{
107	dmadesc_set_length_status(priv, d, val);
108	dmadesc_set_addr(priv, d, addr);
109}
110
111static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112					  void __iomem *d)
113{
114	dma_addr_t addr;
115
116	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118	/* Register writes to GISB bus can take couple hundred nanoseconds
119	 * and are done for each packet, save these expensive writes unless
120	 * the platform is explicitly configured for 64-bits/LPAE.
121	 */
122#ifdef CONFIG_PHYS_ADDR_T_64BIT
123	if (priv->hw_params->flags & GENET_HAS_40BITS)
124		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125#endif
126	return addr;
127}
128
129#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130
131#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132				NETIF_MSG_LINK)
133
134static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135{
136	if (GENET_IS_V1(priv))
137		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138	else
139		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140}
141
142static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143{
144	if (GENET_IS_V1(priv))
145		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146	else
147		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148}
149
150/* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155{
156	if (GENET_IS_V1(priv))
157		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158	else
159		return __raw_readl(priv->base +
160				priv->hw_params->tbuf_offset + TBUF_CTRL);
161}
162
163static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164{
165	if (GENET_IS_V1(priv))
166		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167	else
168		__raw_writel(val, priv->base +
169				priv->hw_params->tbuf_offset + TBUF_CTRL);
170}
171
172static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173{
174	if (GENET_IS_V1(priv))
175		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176	else
177		return __raw_readl(priv->base +
178				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179}
180
181static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182{
183	if (GENET_IS_V1(priv))
184		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185	else
186		__raw_writel(val, priv->base +
187				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188}
189
190/* RX/TX DMA register accessors */
191enum dma_reg {
192	DMA_RING_CFG = 0,
193	DMA_CTRL,
194	DMA_STATUS,
195	DMA_SCB_BURST_SIZE,
196	DMA_ARB_CTRL,
197	DMA_PRIORITY_0,
198	DMA_PRIORITY_1,
199	DMA_PRIORITY_2,
200	DMA_INDEX2RING_0,
201	DMA_INDEX2RING_1,
202	DMA_INDEX2RING_2,
203	DMA_INDEX2RING_3,
204	DMA_INDEX2RING_4,
205	DMA_INDEX2RING_5,
206	DMA_INDEX2RING_6,
207	DMA_INDEX2RING_7,
208};
209
210static const u8 bcmgenet_dma_regs_v3plus[] = {
211	[DMA_RING_CFG]		= 0x00,
212	[DMA_CTRL]		= 0x04,
213	[DMA_STATUS]		= 0x08,
214	[DMA_SCB_BURST_SIZE]	= 0x0C,
215	[DMA_ARB_CTRL]		= 0x2C,
216	[DMA_PRIORITY_0]	= 0x30,
217	[DMA_PRIORITY_1]	= 0x34,
218	[DMA_PRIORITY_2]	= 0x38,
219	[DMA_INDEX2RING_0]	= 0x70,
220	[DMA_INDEX2RING_1]	= 0x74,
221	[DMA_INDEX2RING_2]	= 0x78,
222	[DMA_INDEX2RING_3]	= 0x7C,
223	[DMA_INDEX2RING_4]	= 0x80,
224	[DMA_INDEX2RING_5]	= 0x84,
225	[DMA_INDEX2RING_6]	= 0x88,
226	[DMA_INDEX2RING_7]	= 0x8C,
227};
228
229static const u8 bcmgenet_dma_regs_v2[] = {
230	[DMA_RING_CFG]		= 0x00,
231	[DMA_CTRL]		= 0x04,
232	[DMA_STATUS]		= 0x08,
233	[DMA_SCB_BURST_SIZE]	= 0x0C,
234	[DMA_ARB_CTRL]		= 0x30,
235	[DMA_PRIORITY_0]	= 0x34,
236	[DMA_PRIORITY_1]	= 0x38,
237	[DMA_PRIORITY_2]	= 0x3C,
238};
239
240static const u8 bcmgenet_dma_regs_v1[] = {
241	[DMA_CTRL]		= 0x00,
242	[DMA_STATUS]		= 0x04,
243	[DMA_SCB_BURST_SIZE]	= 0x0C,
244	[DMA_ARB_CTRL]		= 0x30,
245	[DMA_PRIORITY_0]	= 0x34,
246	[DMA_PRIORITY_1]	= 0x38,
247	[DMA_PRIORITY_2]	= 0x3C,
248};
249
250/* Set at runtime once bcmgenet version is known */
251static const u8 *bcmgenet_dma_regs;
252
253static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
254{
255	return netdev_priv(dev_get_drvdata(dev));
256}
257
258static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
259				      enum dma_reg r)
260{
261	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
262			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
263}
264
265static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
266					u32 val, enum dma_reg r)
267{
268	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
269			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
270}
271
272static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
273				      enum dma_reg r)
274{
275	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
276			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
277}
278
279static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
280					u32 val, enum dma_reg r)
281{
282	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
283			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
284}
285
286/* RDMA/TDMA ring registers and accessors
287 * we merge the common fields and just prefix with T/D the registers
288 * having different meaning depending on the direction
289 */
290enum dma_ring_reg {
291	TDMA_READ_PTR = 0,
292	RDMA_WRITE_PTR = TDMA_READ_PTR,
293	TDMA_READ_PTR_HI,
294	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
295	TDMA_CONS_INDEX,
296	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
297	TDMA_PROD_INDEX,
298	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
299	DMA_RING_BUF_SIZE,
300	DMA_START_ADDR,
301	DMA_START_ADDR_HI,
302	DMA_END_ADDR,
303	DMA_END_ADDR_HI,
304	DMA_MBUF_DONE_THRESH,
305	TDMA_FLOW_PERIOD,
306	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
307	TDMA_WRITE_PTR,
308	RDMA_READ_PTR = TDMA_WRITE_PTR,
309	TDMA_WRITE_PTR_HI,
310	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
311};
312
313/* GENET v4 supports 40-bits pointer addressing
314 * for obvious reasons the LO and HI word parts
315 * are contiguous, but this offsets the other
316 * registers.
317 */
318static const u8 genet_dma_ring_regs_v4[] = {
319	[TDMA_READ_PTR]			= 0x00,
320	[TDMA_READ_PTR_HI]		= 0x04,
321	[TDMA_CONS_INDEX]		= 0x08,
322	[TDMA_PROD_INDEX]		= 0x0C,
323	[DMA_RING_BUF_SIZE]		= 0x10,
324	[DMA_START_ADDR]		= 0x14,
325	[DMA_START_ADDR_HI]		= 0x18,
326	[DMA_END_ADDR]			= 0x1C,
327	[DMA_END_ADDR_HI]		= 0x20,
328	[DMA_MBUF_DONE_THRESH]		= 0x24,
329	[TDMA_FLOW_PERIOD]		= 0x28,
330	[TDMA_WRITE_PTR]		= 0x2C,
331	[TDMA_WRITE_PTR_HI]		= 0x30,
332};
333
334static const u8 genet_dma_ring_regs_v123[] = {
335	[TDMA_READ_PTR]			= 0x00,
336	[TDMA_CONS_INDEX]		= 0x04,
337	[TDMA_PROD_INDEX]		= 0x08,
338	[DMA_RING_BUF_SIZE]		= 0x0C,
339	[DMA_START_ADDR]		= 0x10,
340	[DMA_END_ADDR]			= 0x14,
341	[DMA_MBUF_DONE_THRESH]		= 0x18,
342	[TDMA_FLOW_PERIOD]		= 0x1C,
343	[TDMA_WRITE_PTR]		= 0x20,
344};
345
346/* Set at runtime once GENET version is known */
347static const u8 *genet_dma_ring_regs;
348
349static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
350					   unsigned int ring,
351					   enum dma_ring_reg r)
352{
353	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
354			(DMA_RING_SIZE * ring) +
355			genet_dma_ring_regs[r]);
356}
357
358static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
359					     unsigned int ring, u32 val,
360					     enum dma_ring_reg r)
361{
362	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
363			(DMA_RING_SIZE * ring) +
364			genet_dma_ring_regs[r]);
365}
366
367static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
368					   unsigned int ring,
369					   enum dma_ring_reg r)
370{
371	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
372			(DMA_RING_SIZE * ring) +
373			genet_dma_ring_regs[r]);
374}
375
376static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
377					     unsigned int ring, u32 val,
378					     enum dma_ring_reg r)
379{
380	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
381			(DMA_RING_SIZE * ring) +
382			genet_dma_ring_regs[r]);
383}
384
385static int bcmgenet_get_settings(struct net_device *dev,
386				 struct ethtool_cmd *cmd)
387{
388	struct bcmgenet_priv *priv = netdev_priv(dev);
389
390	if (!netif_running(dev))
391		return -EINVAL;
392
393	if (!priv->phydev)
394		return -ENODEV;
395
396	return phy_ethtool_gset(priv->phydev, cmd);
397}
398
399static int bcmgenet_set_settings(struct net_device *dev,
400				 struct ethtool_cmd *cmd)
401{
402	struct bcmgenet_priv *priv = netdev_priv(dev);
403
404	if (!netif_running(dev))
405		return -EINVAL;
406
407	if (!priv->phydev)
408		return -ENODEV;
409
410	return phy_ethtool_sset(priv->phydev, cmd);
411}
412
413static int bcmgenet_set_rx_csum(struct net_device *dev,
414				netdev_features_t wanted)
415{
416	struct bcmgenet_priv *priv = netdev_priv(dev);
417	u32 rbuf_chk_ctrl;
418	bool rx_csum_en;
419
420	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
421
422	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
423
424	/* enable rx checksumming */
425	if (rx_csum_en)
426		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
427	else
428		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
429	priv->desc_rxchk_en = rx_csum_en;
430
431	/* If UniMAC forwards CRC, we need to skip over it to get
432	 * a valid CHK bit to be set in the per-packet status word
433	*/
434	if (rx_csum_en && priv->crc_fwd_en)
435		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
436	else
437		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
438
439	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
440
441	return 0;
442}
443
444static int bcmgenet_set_tx_csum(struct net_device *dev,
445				netdev_features_t wanted)
446{
447	struct bcmgenet_priv *priv = netdev_priv(dev);
448	bool desc_64b_en;
449	u32 tbuf_ctrl, rbuf_ctrl;
450
451	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
452	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
453
454	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
455
456	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
457	if (desc_64b_en) {
458		tbuf_ctrl |= RBUF_64B_EN;
459		rbuf_ctrl |= RBUF_64B_EN;
460	} else {
461		tbuf_ctrl &= ~RBUF_64B_EN;
462		rbuf_ctrl &= ~RBUF_64B_EN;
463	}
464	priv->desc_64b_en = desc_64b_en;
465
466	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
467	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
468
469	return 0;
470}
471
472static int bcmgenet_set_features(struct net_device *dev,
473				 netdev_features_t features)
474{
475	netdev_features_t changed = features ^ dev->features;
476	netdev_features_t wanted = dev->wanted_features;
477	int ret = 0;
478
479	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
480		ret = bcmgenet_set_tx_csum(dev, wanted);
481	if (changed & (NETIF_F_RXCSUM))
482		ret = bcmgenet_set_rx_csum(dev, wanted);
483
484	return ret;
485}
486
487static u32 bcmgenet_get_msglevel(struct net_device *dev)
488{
489	struct bcmgenet_priv *priv = netdev_priv(dev);
490
491	return priv->msg_enable;
492}
493
494static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
495{
496	struct bcmgenet_priv *priv = netdev_priv(dev);
497
498	priv->msg_enable = level;
499}
500
501/* standard ethtool support functions. */
502enum bcmgenet_stat_type {
503	BCMGENET_STAT_NETDEV = -1,
504	BCMGENET_STAT_MIB_RX,
505	BCMGENET_STAT_MIB_TX,
506	BCMGENET_STAT_RUNT,
507	BCMGENET_STAT_MISC,
508	BCMGENET_STAT_SOFT,
509};
510
511struct bcmgenet_stats {
512	char stat_string[ETH_GSTRING_LEN];
513	int stat_sizeof;
514	int stat_offset;
515	enum bcmgenet_stat_type type;
516	/* reg offset from UMAC base for misc counters */
517	u16 reg_offset;
518};
519
520#define STAT_NETDEV(m) { \
521	.stat_string = __stringify(m), \
522	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
523	.stat_offset = offsetof(struct net_device_stats, m), \
524	.type = BCMGENET_STAT_NETDEV, \
525}
526
527#define STAT_GENET_MIB(str, m, _type) { \
528	.stat_string = str, \
529	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
530	.stat_offset = offsetof(struct bcmgenet_priv, m), \
531	.type = _type, \
532}
533
534#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
535#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
536#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
537#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
538
539#define STAT_GENET_MISC(str, m, offset) { \
540	.stat_string = str, \
541	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
542	.stat_offset = offsetof(struct bcmgenet_priv, m), \
543	.type = BCMGENET_STAT_MISC, \
544	.reg_offset = offset, \
545}
546
547
548/* There is a 0xC gap between the end of RX and beginning of TX stats and then
549 * between the end of TX stats and the beginning of the RX RUNT
550 */
551#define BCMGENET_STAT_OFFSET	0xc
552
553/* Hardware counters must be kept in sync because the order/offset
554 * is important here (order in structure declaration = order in hardware)
555 */
556static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
557	/* general stats */
558	STAT_NETDEV(rx_packets),
559	STAT_NETDEV(tx_packets),
560	STAT_NETDEV(rx_bytes),
561	STAT_NETDEV(tx_bytes),
562	STAT_NETDEV(rx_errors),
563	STAT_NETDEV(tx_errors),
564	STAT_NETDEV(rx_dropped),
565	STAT_NETDEV(tx_dropped),
566	STAT_NETDEV(multicast),
567	/* UniMAC RSV counters */
568	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
569	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
570	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
571	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
572	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
573	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
574	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
575	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
576	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
577	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
578	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
579	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
580	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
581	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
582	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
583	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
584	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
585	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
586	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
587	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
588	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
589	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
590	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
591	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
592	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
593	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
594	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
595	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
596	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
597	/* UniMAC TSV counters */
598	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
599	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
600	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
601	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
602	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
603	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
604	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
605	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
606	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
607	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
608	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
609	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
610	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
611	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
612	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
613	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
614	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
615	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
616	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
617	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
618	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
619	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
620	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
621	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
622	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
623	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
624	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
625	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
626	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
627	/* UniMAC RUNT counters */
628	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
629	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
630	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
631	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
632	/* Misc UniMAC counters */
633	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
634			UMAC_RBUF_OVFL_CNT),
635	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
636	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
637	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
638	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
639	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
640};
641
642#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
643
644static void bcmgenet_get_drvinfo(struct net_device *dev,
645				 struct ethtool_drvinfo *info)
646{
647	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
648	strlcpy(info->version, "v2.0", sizeof(info->version));
649	info->n_stats = BCMGENET_STATS_LEN;
650}
651
652static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
653{
654	switch (string_set) {
655	case ETH_SS_STATS:
656		return BCMGENET_STATS_LEN;
657	default:
658		return -EOPNOTSUPP;
659	}
660}
661
662static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
663				 u8 *data)
664{
665	int i;
666
667	switch (stringset) {
668	case ETH_SS_STATS:
669		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
670			memcpy(data + i * ETH_GSTRING_LEN,
671			       bcmgenet_gstrings_stats[i].stat_string,
672			       ETH_GSTRING_LEN);
673		}
674		break;
675	}
676}
677
678static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
679{
680	int i, j = 0;
681
682	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
683		const struct bcmgenet_stats *s;
684		u8 offset = 0;
685		u32 val = 0;
686		char *p;
687
688		s = &bcmgenet_gstrings_stats[i];
689		switch (s->type) {
690		case BCMGENET_STAT_NETDEV:
691		case BCMGENET_STAT_SOFT:
692			continue;
693		case BCMGENET_STAT_MIB_RX:
694		case BCMGENET_STAT_MIB_TX:
695		case BCMGENET_STAT_RUNT:
696			if (s->type != BCMGENET_STAT_MIB_RX)
697				offset = BCMGENET_STAT_OFFSET;
698			val = bcmgenet_umac_readl(priv,
699						  UMAC_MIB_START + j + offset);
700			break;
701		case BCMGENET_STAT_MISC:
702			val = bcmgenet_umac_readl(priv, s->reg_offset);
703			/* clear if overflowed */
704			if (val == ~0)
705				bcmgenet_umac_writel(priv, 0, s->reg_offset);
706			break;
707		}
708
709		j += s->stat_sizeof;
710		p = (char *)priv + s->stat_offset;
711		*(u32 *)p = val;
712	}
713}
714
715static void bcmgenet_get_ethtool_stats(struct net_device *dev,
716				       struct ethtool_stats *stats,
717				       u64 *data)
718{
719	struct bcmgenet_priv *priv = netdev_priv(dev);
720	int i;
721
722	if (netif_running(dev))
723		bcmgenet_update_mib_counters(priv);
724
725	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
726		const struct bcmgenet_stats *s;
727		char *p;
728
729		s = &bcmgenet_gstrings_stats[i];
730		if (s->type == BCMGENET_STAT_NETDEV)
731			p = (char *)&dev->stats;
732		else
733			p = (char *)priv;
734		p += s->stat_offset;
735		data[i] = *(u32 *)p;
736	}
737}
738
739static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
740{
741	struct bcmgenet_priv *priv = netdev_priv(dev);
742	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
743	u32 reg;
744
745	if (enable && !priv->clk_eee_enabled) {
746		clk_prepare_enable(priv->clk_eee);
747		priv->clk_eee_enabled = true;
748	}
749
750	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
751	if (enable)
752		reg |= EEE_EN;
753	else
754		reg &= ~EEE_EN;
755	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
756
757	/* Enable EEE and switch to a 27Mhz clock automatically */
758	reg = __raw_readl(priv->base + off);
759	if (enable)
760		reg |= TBUF_EEE_EN | TBUF_PM_EN;
761	else
762		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
763	__raw_writel(reg, priv->base + off);
764
765	/* Do the same for thing for RBUF */
766	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
767	if (enable)
768		reg |= RBUF_EEE_EN | RBUF_PM_EN;
769	else
770		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
771	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
772
773	if (!enable && priv->clk_eee_enabled) {
774		clk_disable_unprepare(priv->clk_eee);
775		priv->clk_eee_enabled = false;
776	}
777
778	priv->eee.eee_enabled = enable;
779	priv->eee.eee_active = enable;
780}
781
782static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
783{
784	struct bcmgenet_priv *priv = netdev_priv(dev);
785	struct ethtool_eee *p = &priv->eee;
786
787	if (GENET_IS_V1(priv))
788		return -EOPNOTSUPP;
789
790	e->eee_enabled = p->eee_enabled;
791	e->eee_active = p->eee_active;
792	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
793
794	return phy_ethtool_get_eee(priv->phydev, e);
795}
796
797static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
798{
799	struct bcmgenet_priv *priv = netdev_priv(dev);
800	struct ethtool_eee *p = &priv->eee;
801	int ret = 0;
802
803	if (GENET_IS_V1(priv))
804		return -EOPNOTSUPP;
805
806	p->eee_enabled = e->eee_enabled;
807
808	if (!p->eee_enabled) {
809		bcmgenet_eee_enable_set(dev, false);
810	} else {
811		ret = phy_init_eee(priv->phydev, 0);
812		if (ret) {
813			netif_err(priv, hw, dev, "EEE initialization failed\n");
814			return ret;
815		}
816
817		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
818		bcmgenet_eee_enable_set(dev, true);
819	}
820
821	return phy_ethtool_set_eee(priv->phydev, e);
822}
823
824static int bcmgenet_nway_reset(struct net_device *dev)
825{
826	struct bcmgenet_priv *priv = netdev_priv(dev);
827
828	return genphy_restart_aneg(priv->phydev);
829}
830
831/* standard ethtool support functions. */
832static struct ethtool_ops bcmgenet_ethtool_ops = {
833	.get_strings		= bcmgenet_get_strings,
834	.get_sset_count		= bcmgenet_get_sset_count,
835	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
836	.get_settings		= bcmgenet_get_settings,
837	.set_settings		= bcmgenet_set_settings,
838	.get_drvinfo		= bcmgenet_get_drvinfo,
839	.get_link		= ethtool_op_get_link,
840	.get_msglevel		= bcmgenet_get_msglevel,
841	.set_msglevel		= bcmgenet_set_msglevel,
842	.get_wol		= bcmgenet_get_wol,
843	.set_wol		= bcmgenet_set_wol,
844	.get_eee		= bcmgenet_get_eee,
845	.set_eee		= bcmgenet_set_eee,
846	.nway_reset		= bcmgenet_nway_reset,
847};
848
849/* Power down the unimac, based on mode. */
850static int bcmgenet_power_down(struct bcmgenet_priv *priv,
851				enum bcmgenet_power_mode mode)
852{
853	int ret = 0;
854	u32 reg;
855
856	switch (mode) {
857	case GENET_POWER_CABLE_SENSE:
858		phy_detach(priv->phydev);
859		break;
860
861	case GENET_POWER_WOL_MAGIC:
862		ret = bcmgenet_wol_power_down_cfg(priv, mode);
863		break;
864
865	case GENET_POWER_PASSIVE:
866		/* Power down LED */
867		if (priv->hw_params->flags & GENET_HAS_EXT) {
868			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
869			reg |= (EXT_PWR_DOWN_PHY |
870				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
871			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
872
873			bcmgenet_phy_power_set(priv->dev, false);
874		}
875		break;
876	default:
877		break;
878	}
879
880	return 0;
881}
882
883static void bcmgenet_power_up(struct bcmgenet_priv *priv,
884			      enum bcmgenet_power_mode mode)
885{
886	u32 reg;
887
888	if (!(priv->hw_params->flags & GENET_HAS_EXT))
889		return;
890
891	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
892
893	switch (mode) {
894	case GENET_POWER_PASSIVE:
895		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
896				EXT_PWR_DOWN_BIAS);
897		/* fallthrough */
898	case GENET_POWER_CABLE_SENSE:
899		/* enable APD */
900		reg |= EXT_PWR_DN_EN_LD;
901		break;
902	case GENET_POWER_WOL_MAGIC:
903		bcmgenet_wol_power_up_cfg(priv, mode);
904		return;
905	default:
906		break;
907	}
908
909	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
910
911	if (mode == GENET_POWER_PASSIVE)
912		bcmgenet_mii_reset(priv->dev);
913}
914
915/* ioctl handle special commands that are not present in ethtool. */
916static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
917{
918	struct bcmgenet_priv *priv = netdev_priv(dev);
919	int val = 0;
920
921	if (!netif_running(dev))
922		return -EINVAL;
923
924	switch (cmd) {
925	case SIOCGMIIPHY:
926	case SIOCGMIIREG:
927	case SIOCSMIIREG:
928		if (!priv->phydev)
929			val = -ENODEV;
930		else
931			val = phy_mii_ioctl(priv->phydev, rq, cmd);
932		break;
933
934	default:
935		val = -EINVAL;
936		break;
937	}
938
939	return val;
940}
941
942static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
943					 struct bcmgenet_tx_ring *ring)
944{
945	struct enet_cb *tx_cb_ptr;
946
947	tx_cb_ptr = ring->cbs;
948	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
949
950	/* Advancing local write pointer */
951	if (ring->write_ptr == ring->end_ptr)
952		ring->write_ptr = ring->cb_ptr;
953	else
954		ring->write_ptr++;
955
956	return tx_cb_ptr;
957}
958
959/* Simple helper to free a control block's resources */
960static void bcmgenet_free_cb(struct enet_cb *cb)
961{
962	dev_kfree_skb_any(cb->skb);
963	cb->skb = NULL;
964	dma_unmap_addr_set(cb, dma_addr, 0);
965}
966
967static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
968{
969	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
970				 INTRL2_CPU_MASK_SET);
971}
972
973static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
974{
975	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
976				 INTRL2_CPU_MASK_CLEAR);
977}
978
979static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
980{
981	bcmgenet_intrl2_1_writel(ring->priv,
982				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
983				 INTRL2_CPU_MASK_SET);
984}
985
986static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
987{
988	bcmgenet_intrl2_1_writel(ring->priv,
989				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
990				 INTRL2_CPU_MASK_CLEAR);
991}
992
993static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
994{
995	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
996				 INTRL2_CPU_MASK_SET);
997}
998
999static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1000{
1001	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1002				 INTRL2_CPU_MASK_CLEAR);
1003}
1004
1005static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1006{
1007	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1008				 INTRL2_CPU_MASK_CLEAR);
1009}
1010
1011static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1012{
1013	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1014				 INTRL2_CPU_MASK_SET);
1015}
1016
1017/* Unlocked version of the reclaim routine */
1018static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1019					  struct bcmgenet_tx_ring *ring)
1020{
1021	struct bcmgenet_priv *priv = netdev_priv(dev);
1022	struct enet_cb *tx_cb_ptr;
1023	struct netdev_queue *txq;
1024	unsigned int pkts_compl = 0;
1025	unsigned int c_index;
1026	unsigned int txbds_ready;
1027	unsigned int txbds_processed = 0;
1028
1029	/* Compute how many buffers are transmitted since last xmit call */
1030	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1031	c_index &= DMA_C_INDEX_MASK;
1032
1033	if (likely(c_index >= ring->c_index))
1034		txbds_ready = c_index - ring->c_index;
1035	else
1036		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1037
1038	netif_dbg(priv, tx_done, dev,
1039		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1040		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1041
1042	/* Reclaim transmitted buffers */
1043	while (txbds_processed < txbds_ready) {
1044		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1045		if (tx_cb_ptr->skb) {
1046			pkts_compl++;
1047			dev->stats.tx_packets++;
1048			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1049			dma_unmap_single(&dev->dev,
1050					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1051					 tx_cb_ptr->skb->len,
1052					 DMA_TO_DEVICE);
1053			bcmgenet_free_cb(tx_cb_ptr);
1054		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1055			dev->stats.tx_bytes +=
1056				dma_unmap_len(tx_cb_ptr, dma_len);
1057			dma_unmap_page(&dev->dev,
1058				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1059				       dma_unmap_len(tx_cb_ptr, dma_len),
1060				       DMA_TO_DEVICE);
1061			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1062		}
1063
1064		txbds_processed++;
1065		if (likely(ring->clean_ptr < ring->end_ptr))
1066			ring->clean_ptr++;
1067		else
1068			ring->clean_ptr = ring->cb_ptr;
1069	}
1070
1071	ring->free_bds += txbds_processed;
1072	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1073
1074	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1075		txq = netdev_get_tx_queue(dev, ring->queue);
1076		if (netif_tx_queue_stopped(txq))
1077			netif_tx_wake_queue(txq);
1078	}
1079
1080	return pkts_compl;
1081}
1082
1083static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1084				struct bcmgenet_tx_ring *ring)
1085{
1086	unsigned int released;
1087	unsigned long flags;
1088
1089	spin_lock_irqsave(&ring->lock, flags);
1090	released = __bcmgenet_tx_reclaim(dev, ring);
1091	spin_unlock_irqrestore(&ring->lock, flags);
1092
1093	return released;
1094}
1095
1096static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1097{
1098	struct bcmgenet_tx_ring *ring =
1099		container_of(napi, struct bcmgenet_tx_ring, napi);
1100	unsigned int work_done = 0;
1101
1102	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1103
1104	if (work_done == 0) {
1105		napi_complete(napi);
1106		ring->int_enable(ring);
1107
1108		return 0;
1109	}
1110
1111	return budget;
1112}
1113
1114static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1115{
1116	struct bcmgenet_priv *priv = netdev_priv(dev);
1117	int i;
1118
1119	if (netif_is_multiqueue(dev)) {
1120		for (i = 0; i < priv->hw_params->tx_queues; i++)
1121			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1122	}
1123
1124	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1125}
1126
1127/* Transmits a single SKB (either head of a fragment or a single SKB)
1128 * caller must hold priv->lock
1129 */
1130static int bcmgenet_xmit_single(struct net_device *dev,
1131				struct sk_buff *skb,
1132				u16 dma_desc_flags,
1133				struct bcmgenet_tx_ring *ring)
1134{
1135	struct bcmgenet_priv *priv = netdev_priv(dev);
1136	struct device *kdev = &priv->pdev->dev;
1137	struct enet_cb *tx_cb_ptr;
1138	unsigned int skb_len;
1139	dma_addr_t mapping;
1140	u32 length_status;
1141	int ret;
1142
1143	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1144
1145	if (unlikely(!tx_cb_ptr))
1146		BUG();
1147
1148	tx_cb_ptr->skb = skb;
1149
1150	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1151
1152	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1153	ret = dma_mapping_error(kdev, mapping);
1154	if (ret) {
1155		priv->mib.tx_dma_failed++;
1156		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1157		dev_kfree_skb(skb);
1158		return ret;
1159	}
1160
1161	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1162	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1163	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1164			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1165			DMA_TX_APPEND_CRC;
1166
1167	if (skb->ip_summed == CHECKSUM_PARTIAL)
1168		length_status |= DMA_TX_DO_CSUM;
1169
1170	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1171
1172	return 0;
1173}
1174
1175/* Transmit a SKB fragment */
1176static int bcmgenet_xmit_frag(struct net_device *dev,
1177			      skb_frag_t *frag,
1178			      u16 dma_desc_flags,
1179			      struct bcmgenet_tx_ring *ring)
1180{
1181	struct bcmgenet_priv *priv = netdev_priv(dev);
1182	struct device *kdev = &priv->pdev->dev;
1183	struct enet_cb *tx_cb_ptr;
1184	dma_addr_t mapping;
1185	int ret;
1186
1187	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1188
1189	if (unlikely(!tx_cb_ptr))
1190		BUG();
1191	tx_cb_ptr->skb = NULL;
1192
1193	mapping = skb_frag_dma_map(kdev, frag, 0,
1194				   skb_frag_size(frag), DMA_TO_DEVICE);
1195	ret = dma_mapping_error(kdev, mapping);
1196	if (ret) {
1197		priv->mib.tx_dma_failed++;
1198		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1199			  __func__);
1200		return ret;
1201	}
1202
1203	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1204	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1205
1206	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1207		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1208		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1209
1210	return 0;
1211}
1212
1213/* Reallocate the SKB to put enough headroom in front of it and insert
1214 * the transmit checksum offsets in the descriptors
1215 */
1216static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1217					    struct sk_buff *skb)
1218{
1219	struct status_64 *status = NULL;
1220	struct sk_buff *new_skb;
1221	u16 offset;
1222	u8 ip_proto;
1223	u16 ip_ver;
1224	u32 tx_csum_info;
1225
1226	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1227		/* If 64 byte status block enabled, must make sure skb has
1228		 * enough headroom for us to insert 64B status block.
1229		 */
1230		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1231		dev_kfree_skb(skb);
1232		if (!new_skb) {
1233			dev->stats.tx_errors++;
1234			dev->stats.tx_dropped++;
1235			return NULL;
1236		}
1237		skb = new_skb;
1238	}
1239
1240	skb_push(skb, sizeof(*status));
1241	status = (struct status_64 *)skb->data;
1242
1243	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1244		ip_ver = htons(skb->protocol);
1245		switch (ip_ver) {
1246		case ETH_P_IP:
1247			ip_proto = ip_hdr(skb)->protocol;
1248			break;
1249		case ETH_P_IPV6:
1250			ip_proto = ipv6_hdr(skb)->nexthdr;
1251			break;
1252		default:
1253			return skb;
1254		}
1255
1256		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1257		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1258				(offset + skb->csum_offset);
1259
1260		/* Set the length valid bit for TCP and UDP and just set
1261		 * the special UDP flag for IPv4, else just set to 0.
1262		 */
1263		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1264			tx_csum_info |= STATUS_TX_CSUM_LV;
1265			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1266				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1267		} else {
1268			tx_csum_info = 0;
1269		}
1270
1271		status->tx_csum_info = tx_csum_info;
1272	}
1273
1274	return skb;
1275}
1276
1277static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1278{
1279	struct bcmgenet_priv *priv = netdev_priv(dev);
1280	struct bcmgenet_tx_ring *ring = NULL;
1281	struct netdev_queue *txq;
1282	unsigned long flags = 0;
1283	int nr_frags, index;
1284	u16 dma_desc_flags;
1285	int ret;
1286	int i;
1287
1288	index = skb_get_queue_mapping(skb);
1289	/* Mapping strategy:
1290	 * queue_mapping = 0, unclassified, packet xmited through ring16
1291	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1292	 * queue_mapping = 2, goes to ring 1.
1293	 * queue_mapping = 3, goes to ring 2.
1294	 * queue_mapping = 4, goes to ring 3.
1295	 */
1296	if (index == 0)
1297		index = DESC_INDEX;
1298	else
1299		index -= 1;
1300
1301	nr_frags = skb_shinfo(skb)->nr_frags;
1302	ring = &priv->tx_rings[index];
1303	txq = netdev_get_tx_queue(dev, ring->queue);
1304
1305	spin_lock_irqsave(&ring->lock, flags);
1306	if (ring->free_bds <= nr_frags + 1) {
1307		netif_tx_stop_queue(txq);
1308		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1309			   __func__, index, ring->queue);
1310		ret = NETDEV_TX_BUSY;
1311		goto out;
1312	}
1313
1314	if (skb_padto(skb, ETH_ZLEN)) {
1315		ret = NETDEV_TX_OK;
1316		goto out;
1317	}
1318
1319	/* set the SKB transmit checksum */
1320	if (priv->desc_64b_en) {
1321		skb = bcmgenet_put_tx_csum(dev, skb);
1322		if (!skb) {
1323			ret = NETDEV_TX_OK;
1324			goto out;
1325		}
1326	}
1327
1328	dma_desc_flags = DMA_SOP;
1329	if (nr_frags == 0)
1330		dma_desc_flags |= DMA_EOP;
1331
1332	/* Transmit single SKB or head of fragment list */
1333	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1334	if (ret) {
1335		ret = NETDEV_TX_OK;
1336		goto out;
1337	}
1338
1339	/* xmit fragment */
1340	for (i = 0; i < nr_frags; i++) {
1341		ret = bcmgenet_xmit_frag(dev,
1342					 &skb_shinfo(skb)->frags[i],
1343					 (i == nr_frags - 1) ? DMA_EOP : 0,
1344					 ring);
1345		if (ret) {
1346			ret = NETDEV_TX_OK;
1347			goto out;
1348		}
1349	}
1350
1351	skb_tx_timestamp(skb);
1352
1353	/* Decrement total BD count and advance our write pointer */
1354	ring->free_bds -= nr_frags + 1;
1355	ring->prod_index += nr_frags + 1;
1356	ring->prod_index &= DMA_P_INDEX_MASK;
1357
1358	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1359		netif_tx_stop_queue(txq);
1360
1361	if (!skb->xmit_more || netif_xmit_stopped(txq))
1362		/* Packets are ready, update producer index */
1363		bcmgenet_tdma_ring_writel(priv, ring->index,
1364					  ring->prod_index, TDMA_PROD_INDEX);
1365out:
1366	spin_unlock_irqrestore(&ring->lock, flags);
1367
1368	return ret;
1369}
1370
1371static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1372					  struct enet_cb *cb)
1373{
1374	struct device *kdev = &priv->pdev->dev;
1375	struct sk_buff *skb;
1376	struct sk_buff *rx_skb;
1377	dma_addr_t mapping;
1378
1379	/* Allocate a new Rx skb */
1380	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1381	if (!skb) {
1382		priv->mib.alloc_rx_buff_failed++;
1383		netif_err(priv, rx_err, priv->dev,
1384			  "%s: Rx skb allocation failed\n", __func__);
1385		return NULL;
1386	}
1387
1388	/* DMA-map the new Rx skb */
1389	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1390				 DMA_FROM_DEVICE);
1391	if (dma_mapping_error(kdev, mapping)) {
1392		priv->mib.rx_dma_failed++;
1393		dev_kfree_skb_any(skb);
1394		netif_err(priv, rx_err, priv->dev,
1395			  "%s: Rx skb DMA mapping failed\n", __func__);
1396		return NULL;
1397	}
1398
1399	/* Grab the current Rx skb from the ring and DMA-unmap it */
1400	rx_skb = cb->skb;
1401	if (likely(rx_skb))
1402		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1403				 priv->rx_buf_len, DMA_FROM_DEVICE);
1404
1405	/* Put the new Rx skb on the ring */
1406	cb->skb = skb;
1407	dma_unmap_addr_set(cb, dma_addr, mapping);
1408	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1409
1410	/* Return the current Rx skb to caller */
1411	return rx_skb;
1412}
1413
1414/* bcmgenet_desc_rx - descriptor based rx process.
1415 * this could be called from bottom half, or from NAPI polling method.
1416 */
1417static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1418				     unsigned int budget)
1419{
1420	struct bcmgenet_priv *priv = ring->priv;
1421	struct net_device *dev = priv->dev;
1422	struct enet_cb *cb;
1423	struct sk_buff *skb;
1424	u32 dma_length_status;
1425	unsigned long dma_flag;
1426	int len;
1427	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1428	unsigned int p_index;
1429	unsigned int discards;
1430	unsigned int chksum_ok = 0;
1431
1432	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1433
1434	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1435		   DMA_P_INDEX_DISCARD_CNT_MASK;
1436	if (discards > ring->old_discards) {
1437		discards = discards - ring->old_discards;
1438		dev->stats.rx_missed_errors += discards;
1439		dev->stats.rx_errors += discards;
1440		ring->old_discards += discards;
1441
1442		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1443		if (ring->old_discards >= 0xC000) {
1444			ring->old_discards = 0;
1445			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1446						  RDMA_PROD_INDEX);
1447		}
1448	}
1449
1450	p_index &= DMA_P_INDEX_MASK;
1451
1452	if (likely(p_index >= ring->c_index))
1453		rxpkttoprocess = p_index - ring->c_index;
1454	else
1455		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1456				 p_index;
1457
1458	netif_dbg(priv, rx_status, dev,
1459		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1460
1461	while ((rxpktprocessed < rxpkttoprocess) &&
1462	       (rxpktprocessed < budget)) {
1463		cb = &priv->rx_cbs[ring->read_ptr];
1464		skb = bcmgenet_rx_refill(priv, cb);
1465
1466		if (unlikely(!skb)) {
1467			dev->stats.rx_dropped++;
1468			dev->stats.rx_errors++;
1469			goto next;
1470		}
1471
1472		if (!priv->desc_64b_en) {
1473			dma_length_status =
1474				dmadesc_get_length_status(priv, cb->bd_addr);
1475		} else {
1476			struct status_64 *status;
1477
1478			status = (struct status_64 *)skb->data;
1479			dma_length_status = status->length_status;
1480		}
1481
1482		/* DMA flags and length are still valid no matter how
1483		 * we got the Receive Status Vector (64B RSB or register)
1484		 */
1485		dma_flag = dma_length_status & 0xffff;
1486		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1487
1488		netif_dbg(priv, rx_status, dev,
1489			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1490			  __func__, p_index, ring->c_index,
1491			  ring->read_ptr, dma_length_status);
1492
1493		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1494			netif_err(priv, rx_status, dev,
1495				  "dropping fragmented packet!\n");
1496			dev->stats.rx_dropped++;
1497			dev->stats.rx_errors++;
1498			dev_kfree_skb_any(skb);
1499			goto next;
1500		}
1501
1502		/* report errors */
1503		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1504						DMA_RX_OV |
1505						DMA_RX_NO |
1506						DMA_RX_LG |
1507						DMA_RX_RXER))) {
1508			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1509				  (unsigned int)dma_flag);
1510			if (dma_flag & DMA_RX_CRC_ERROR)
1511				dev->stats.rx_crc_errors++;
1512			if (dma_flag & DMA_RX_OV)
1513				dev->stats.rx_over_errors++;
1514			if (dma_flag & DMA_RX_NO)
1515				dev->stats.rx_frame_errors++;
1516			if (dma_flag & DMA_RX_LG)
1517				dev->stats.rx_length_errors++;
1518			dev->stats.rx_dropped++;
1519			dev->stats.rx_errors++;
1520			dev_kfree_skb_any(skb);
1521			goto next;
1522		} /* error packet */
1523
1524		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1525			     priv->desc_rxchk_en;
1526
1527		skb_put(skb, len);
1528		if (priv->desc_64b_en) {
1529			skb_pull(skb, 64);
1530			len -= 64;
1531		}
1532
1533		if (likely(chksum_ok))
1534			skb->ip_summed = CHECKSUM_UNNECESSARY;
1535
1536		/* remove hardware 2bytes added for IP alignment */
1537		skb_pull(skb, 2);
1538		len -= 2;
1539
1540		if (priv->crc_fwd_en) {
1541			skb_trim(skb, len - ETH_FCS_LEN);
1542			len -= ETH_FCS_LEN;
1543		}
1544
1545		/*Finish setting up the received SKB and send it to the kernel*/
1546		skb->protocol = eth_type_trans(skb, priv->dev);
1547		dev->stats.rx_packets++;
1548		dev->stats.rx_bytes += len;
1549		if (dma_flag & DMA_RX_MULT)
1550			dev->stats.multicast++;
1551
1552		/* Notify kernel */
1553		napi_gro_receive(&ring->napi, skb);
1554		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1555
1556next:
1557		rxpktprocessed++;
1558		if (likely(ring->read_ptr < ring->end_ptr))
1559			ring->read_ptr++;
1560		else
1561			ring->read_ptr = ring->cb_ptr;
1562
1563		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1564		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1565	}
1566
1567	return rxpktprocessed;
1568}
1569
1570/* Rx NAPI polling method */
1571static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1572{
1573	struct bcmgenet_rx_ring *ring = container_of(napi,
1574			struct bcmgenet_rx_ring, napi);
1575	unsigned int work_done;
1576
1577	work_done = bcmgenet_desc_rx(ring, budget);
1578
1579	if (work_done < budget) {
1580		napi_complete(napi);
1581		ring->int_enable(ring);
1582	}
1583
1584	return work_done;
1585}
1586
1587/* Assign skb to RX DMA descriptor. */
1588static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1589				     struct bcmgenet_rx_ring *ring)
1590{
1591	struct enet_cb *cb;
1592	struct sk_buff *skb;
1593	int i;
1594
1595	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1596
1597	/* loop here for each buffer needing assign */
1598	for (i = 0; i < ring->size; i++) {
1599		cb = ring->cbs + i;
1600		skb = bcmgenet_rx_refill(priv, cb);
1601		if (skb)
1602			dev_kfree_skb_any(skb);
1603		if (!cb->skb)
1604			return -ENOMEM;
1605	}
1606
1607	return 0;
1608}
1609
1610static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1611{
1612	struct enet_cb *cb;
1613	int i;
1614
1615	for (i = 0; i < priv->num_rx_bds; i++) {
1616		cb = &priv->rx_cbs[i];
1617
1618		if (dma_unmap_addr(cb, dma_addr)) {
1619			dma_unmap_single(&priv->dev->dev,
1620					 dma_unmap_addr(cb, dma_addr),
1621					 priv->rx_buf_len, DMA_FROM_DEVICE);
1622			dma_unmap_addr_set(cb, dma_addr, 0);
1623		}
1624
1625		if (cb->skb)
1626			bcmgenet_free_cb(cb);
1627	}
1628}
1629
1630static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1631{
1632	u32 reg;
1633
1634	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1635	if (enable)
1636		reg |= mask;
1637	else
1638		reg &= ~mask;
1639	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1640
1641	/* UniMAC stops on a packet boundary, wait for a full-size packet
1642	 * to be processed
1643	 */
1644	if (enable == 0)
1645		usleep_range(1000, 2000);
1646}
1647
1648static int reset_umac(struct bcmgenet_priv *priv)
1649{
1650	struct device *kdev = &priv->pdev->dev;
1651	unsigned int timeout = 0;
1652	u32 reg;
1653
1654	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1655	bcmgenet_rbuf_ctrl_set(priv, 0);
1656	udelay(10);
1657
1658	/* disable MAC while updating its registers */
1659	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1660
1661	/* issue soft reset, wait for it to complete */
1662	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1663	while (timeout++ < 1000) {
1664		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1665		if (!(reg & CMD_SW_RESET))
1666			return 0;
1667
1668		udelay(1);
1669	}
1670
1671	if (timeout == 1000) {
1672		dev_err(kdev,
1673			"timeout waiting for MAC to come out of reset\n");
1674		return -ETIMEDOUT;
1675	}
1676
1677	return 0;
1678}
1679
1680static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1681{
1682	/* Mask all interrupts.*/
1683	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1684	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1685	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1686	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1687	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1688	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1689}
1690
1691static int init_umac(struct bcmgenet_priv *priv)
1692{
1693	struct device *kdev = &priv->pdev->dev;
1694	int ret;
1695	u32 reg;
1696	u32 int0_enable = 0;
1697	u32 int1_enable = 0;
1698	int i;
1699
1700	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1701
1702	ret = reset_umac(priv);
1703	if (ret)
1704		return ret;
1705
1706	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1707	/* clear tx/rx counter */
1708	bcmgenet_umac_writel(priv,
1709			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1710			     UMAC_MIB_CTRL);
1711	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1712
1713	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1714
1715	/* init rx registers, enable ip header optimization */
1716	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1717	reg |= RBUF_ALIGN_2B;
1718	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1719
1720	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1721		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1722
1723	bcmgenet_intr_disable(priv);
1724
1725	/* Enable Rx default queue 16 interrupts */
1726	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1727
1728	/* Enable Tx default queue 16 interrupts */
1729	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1730
1731	/* Monitor cable plug/unplugged event for internal PHY */
1732	if (phy_is_internal(priv->phydev)) {
1733		int0_enable |= UMAC_IRQ_LINK_EVENT;
1734	} else if (priv->ext_phy) {
1735		int0_enable |= UMAC_IRQ_LINK_EVENT;
1736	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1737		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1738			int0_enable |= UMAC_IRQ_LINK_EVENT;
1739
1740		reg = bcmgenet_bp_mc_get(priv);
1741		reg |= BIT(priv->hw_params->bp_in_en_shift);
1742
1743		/* bp_mask: back pressure mask */
1744		if (netif_is_multiqueue(priv->dev))
1745			reg |= priv->hw_params->bp_in_mask;
1746		else
1747			reg &= ~priv->hw_params->bp_in_mask;
1748		bcmgenet_bp_mc_set(priv, reg);
1749	}
1750
1751	/* Enable MDIO interrupts on GENET v3+ */
1752	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1753		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1754
1755	/* Enable Rx priority queue interrupts */
1756	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1757		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1758
1759	/* Enable Tx priority queue interrupts */
1760	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1761		int1_enable |= (1 << i);
1762
1763	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1764	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1765
1766	/* Enable rx/tx engine.*/
1767	dev_dbg(kdev, "done init umac\n");
1768
1769	return 0;
1770}
1771
1772/* Initialize a Tx ring along with corresponding hardware registers */
1773static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1774				  unsigned int index, unsigned int size,
1775				  unsigned int start_ptr, unsigned int end_ptr)
1776{
1777	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1778	u32 words_per_bd = WORDS_PER_BD(priv);
1779	u32 flow_period_val = 0;
1780
1781	spin_lock_init(&ring->lock);
1782	ring->priv = priv;
1783	ring->index = index;
1784	if (index == DESC_INDEX) {
1785		ring->queue = 0;
1786		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1787		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1788	} else {
1789		ring->queue = index + 1;
1790		ring->int_enable = bcmgenet_tx_ring_int_enable;
1791		ring->int_disable = bcmgenet_tx_ring_int_disable;
1792	}
1793	ring->cbs = priv->tx_cbs + start_ptr;
1794	ring->size = size;
1795	ring->clean_ptr = start_ptr;
1796	ring->c_index = 0;
1797	ring->free_bds = size;
1798	ring->write_ptr = start_ptr;
1799	ring->cb_ptr = start_ptr;
1800	ring->end_ptr = end_ptr - 1;
1801	ring->prod_index = 0;
1802
1803	/* Set flow period for ring != 16 */
1804	if (index != DESC_INDEX)
1805		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1806
1807	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1808	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1809	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1810	/* Disable rate control for now */
1811	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1812				  TDMA_FLOW_PERIOD);
1813	bcmgenet_tdma_ring_writel(priv, index,
1814				  ((size << DMA_RING_SIZE_SHIFT) |
1815				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1816
1817	/* Set start and end address, read and write pointers */
1818	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1819				  DMA_START_ADDR);
1820	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1821				  TDMA_READ_PTR);
1822	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1823				  TDMA_WRITE_PTR);
1824	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1825				  DMA_END_ADDR);
1826}
1827
1828/* Initialize a RDMA ring */
1829static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1830				 unsigned int index, unsigned int size,
1831				 unsigned int start_ptr, unsigned int end_ptr)
1832{
1833	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1834	u32 words_per_bd = WORDS_PER_BD(priv);
1835	int ret;
1836
1837	ring->priv = priv;
1838	ring->index = index;
1839	if (index == DESC_INDEX) {
1840		ring->int_enable = bcmgenet_rx_ring16_int_enable;
1841		ring->int_disable = bcmgenet_rx_ring16_int_disable;
1842	} else {
1843		ring->int_enable = bcmgenet_rx_ring_int_enable;
1844		ring->int_disable = bcmgenet_rx_ring_int_disable;
1845	}
1846	ring->cbs = priv->rx_cbs + start_ptr;
1847	ring->size = size;
1848	ring->c_index = 0;
1849	ring->read_ptr = start_ptr;
1850	ring->cb_ptr = start_ptr;
1851	ring->end_ptr = end_ptr - 1;
1852
1853	ret = bcmgenet_alloc_rx_buffers(priv, ring);
1854	if (ret)
1855		return ret;
1856
1857	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1858	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1859	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1860	bcmgenet_rdma_ring_writel(priv, index,
1861				  ((size << DMA_RING_SIZE_SHIFT) |
1862				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1863	bcmgenet_rdma_ring_writel(priv, index,
1864				  (DMA_FC_THRESH_LO <<
1865				   DMA_XOFF_THRESHOLD_SHIFT) |
1866				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1867
1868	/* Set start and end address, read and write pointers */
1869	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1870				  DMA_START_ADDR);
1871	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1872				  RDMA_READ_PTR);
1873	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1874				  RDMA_WRITE_PTR);
1875	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1876				  DMA_END_ADDR);
1877
1878	return ret;
1879}
1880
1881static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
1882{
1883	unsigned int i;
1884	struct bcmgenet_tx_ring *ring;
1885
1886	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1887		ring = &priv->tx_rings[i];
1888		netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1889	}
1890
1891	ring = &priv->tx_rings[DESC_INDEX];
1892	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1893}
1894
1895static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
1896{
1897	unsigned int i;
1898	struct bcmgenet_tx_ring *ring;
1899
1900	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1901		ring = &priv->tx_rings[i];
1902		napi_enable(&ring->napi);
1903	}
1904
1905	ring = &priv->tx_rings[DESC_INDEX];
1906	napi_enable(&ring->napi);
1907}
1908
1909static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
1910{
1911	unsigned int i;
1912	struct bcmgenet_tx_ring *ring;
1913
1914	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1915		ring = &priv->tx_rings[i];
1916		napi_disable(&ring->napi);
1917	}
1918
1919	ring = &priv->tx_rings[DESC_INDEX];
1920	napi_disable(&ring->napi);
1921}
1922
1923static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
1924{
1925	unsigned int i;
1926	struct bcmgenet_tx_ring *ring;
1927
1928	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1929		ring = &priv->tx_rings[i];
1930		netif_napi_del(&ring->napi);
1931	}
1932
1933	ring = &priv->tx_rings[DESC_INDEX];
1934	netif_napi_del(&ring->napi);
1935}
1936
1937/* Initialize Tx queues
1938 *
1939 * Queues 0-3 are priority-based, each one has 32 descriptors,
1940 * with queue 0 being the highest priority queue.
1941 *
1942 * Queue 16 is the default Tx queue with
1943 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
1944 *
1945 * The transmit control block pool is then partitioned as follows:
1946 * - Tx queue 0 uses tx_cbs[0..31]
1947 * - Tx queue 1 uses tx_cbs[32..63]
1948 * - Tx queue 2 uses tx_cbs[64..95]
1949 * - Tx queue 3 uses tx_cbs[96..127]
1950 * - Tx queue 16 uses tx_cbs[128..255]
1951 */
1952static void bcmgenet_init_tx_queues(struct net_device *dev)
1953{
1954	struct bcmgenet_priv *priv = netdev_priv(dev);
1955	u32 i, dma_enable;
1956	u32 dma_ctrl, ring_cfg;
1957	u32 dma_priority[3] = {0, 0, 0};
1958
1959	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1960	dma_enable = dma_ctrl & DMA_EN;
1961	dma_ctrl &= ~DMA_EN;
1962	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1963
1964	dma_ctrl = 0;
1965	ring_cfg = 0;
1966
1967	/* Enable strict priority arbiter mode */
1968	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1969
1970	/* Initialize Tx priority queues */
1971	for (i = 0; i < priv->hw_params->tx_queues; i++) {
1972		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
1973				      i * priv->hw_params->tx_bds_per_q,
1974				      (i + 1) * priv->hw_params->tx_bds_per_q);
1975		ring_cfg |= (1 << i);
1976		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1977		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1978			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1979	}
1980
1981	/* Initialize Tx default queue 16 */
1982	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
1983			      priv->hw_params->tx_queues *
1984			      priv->hw_params->tx_bds_per_q,
1985			      TOTAL_DESC);
1986	ring_cfg |= (1 << DESC_INDEX);
1987	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1988	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1989		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1990		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1991
1992	/* Set Tx queue priorities */
1993	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1994	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1995	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1996
1997	/* Initialize Tx NAPI */
1998	bcmgenet_init_tx_napi(priv);
1999
2000	/* Enable Tx queues */
2001	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2002
2003	/* Enable Tx DMA */
2004	if (dma_enable)
2005		dma_ctrl |= DMA_EN;
2006	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2007}
2008
2009static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2010{
2011	unsigned int i;
2012	struct bcmgenet_rx_ring *ring;
2013
2014	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2015		ring = &priv->rx_rings[i];
2016		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2017	}
2018
2019	ring = &priv->rx_rings[DESC_INDEX];
2020	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2021}
2022
2023static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2024{
2025	unsigned int i;
2026	struct bcmgenet_rx_ring *ring;
2027
2028	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2029		ring = &priv->rx_rings[i];
2030		napi_enable(&ring->napi);
2031	}
2032
2033	ring = &priv->rx_rings[DESC_INDEX];
2034	napi_enable(&ring->napi);
2035}
2036
2037static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2038{
2039	unsigned int i;
2040	struct bcmgenet_rx_ring *ring;
2041
2042	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2043		ring = &priv->rx_rings[i];
2044		napi_disable(&ring->napi);
2045	}
2046
2047	ring = &priv->rx_rings[DESC_INDEX];
2048	napi_disable(&ring->napi);
2049}
2050
2051static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2052{
2053	unsigned int i;
2054	struct bcmgenet_rx_ring *ring;
2055
2056	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2057		ring = &priv->rx_rings[i];
2058		netif_napi_del(&ring->napi);
2059	}
2060
2061	ring = &priv->rx_rings[DESC_INDEX];
2062	netif_napi_del(&ring->napi);
2063}
2064
2065/* Initialize Rx queues
2066 *
2067 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2068 * used to direct traffic to these queues.
2069 *
2070 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2071 */
2072static int bcmgenet_init_rx_queues(struct net_device *dev)
2073{
2074	struct bcmgenet_priv *priv = netdev_priv(dev);
2075	u32 i;
2076	u32 dma_enable;
2077	u32 dma_ctrl;
2078	u32 ring_cfg;
2079	int ret;
2080
2081	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2082	dma_enable = dma_ctrl & DMA_EN;
2083	dma_ctrl &= ~DMA_EN;
2084	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2085
2086	dma_ctrl = 0;
2087	ring_cfg = 0;
2088
2089	/* Initialize Rx priority queues */
2090	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2091		ret = bcmgenet_init_rx_ring(priv, i,
2092					    priv->hw_params->rx_bds_per_q,
2093					    i * priv->hw_params->rx_bds_per_q,
2094					    (i + 1) *
2095					    priv->hw_params->rx_bds_per_q);
2096		if (ret)
2097			return ret;
2098
2099		ring_cfg |= (1 << i);
2100		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2101	}
2102
2103	/* Initialize Rx default queue 16 */
2104	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2105				    priv->hw_params->rx_queues *
2106				    priv->hw_params->rx_bds_per_q,
2107				    TOTAL_DESC);
2108	if (ret)
2109		return ret;
2110
2111	ring_cfg |= (1 << DESC_INDEX);
2112	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2113
2114	/* Initialize Rx NAPI */
2115	bcmgenet_init_rx_napi(priv);
2116
2117	/* Enable rings */
2118	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2119
2120	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2121	if (dma_enable)
2122		dma_ctrl |= DMA_EN;
2123	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2124
2125	return 0;
2126}
2127
2128static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2129{
2130	int ret = 0;
2131	int timeout = 0;
2132	u32 reg;
2133
2134	/* Disable TDMA to stop add more frames in TX DMA */
2135	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2136	reg &= ~DMA_EN;
2137	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2138
2139	/* Check TDMA status register to confirm TDMA is disabled */
2140	while (timeout++ < DMA_TIMEOUT_VAL) {
2141		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2142		if (reg & DMA_DISABLED)
2143			break;
2144
2145		udelay(1);
2146	}
2147
2148	if (timeout == DMA_TIMEOUT_VAL) {
2149		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2150		ret = -ETIMEDOUT;
2151	}
2152
2153	/* Wait 10ms for packet drain in both tx and rx dma */
2154	usleep_range(10000, 20000);
2155
2156	/* Disable RDMA */
2157	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2158	reg &= ~DMA_EN;
2159	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2160
2161	timeout = 0;
2162	/* Check RDMA status register to confirm RDMA is disabled */
2163	while (timeout++ < DMA_TIMEOUT_VAL) {
2164		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2165		if (reg & DMA_DISABLED)
2166			break;
2167
2168		udelay(1);
2169	}
2170
2171	if (timeout == DMA_TIMEOUT_VAL) {
2172		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2173		ret = -ETIMEDOUT;
2174	}
2175
2176	return ret;
2177}
2178
2179static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2180{
2181	int i;
2182
2183	bcmgenet_fini_rx_napi(priv);
2184	bcmgenet_fini_tx_napi(priv);
2185
2186	/* disable DMA */
2187	bcmgenet_dma_teardown(priv);
2188
2189	for (i = 0; i < priv->num_tx_bds; i++) {
2190		if (priv->tx_cbs[i].skb != NULL) {
2191			dev_kfree_skb(priv->tx_cbs[i].skb);
2192			priv->tx_cbs[i].skb = NULL;
2193		}
2194	}
2195
2196	bcmgenet_free_rx_buffers(priv);
2197	kfree(priv->rx_cbs);
2198	kfree(priv->tx_cbs);
2199}
2200
2201/* init_edma: Initialize DMA control register */
2202static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2203{
2204	int ret;
2205	unsigned int i;
2206	struct enet_cb *cb;
2207
2208	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2209
2210	/* Initialize common Rx ring structures */
2211	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2212	priv->num_rx_bds = TOTAL_DESC;
2213	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2214			       GFP_KERNEL);
2215	if (!priv->rx_cbs)
2216		return -ENOMEM;
2217
2218	for (i = 0; i < priv->num_rx_bds; i++) {
2219		cb = priv->rx_cbs + i;
2220		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2221	}
2222
2223	/* Initialize common TX ring structures */
2224	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2225	priv->num_tx_bds = TOTAL_DESC;
2226	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2227			       GFP_KERNEL);
2228	if (!priv->tx_cbs) {
2229		kfree(priv->rx_cbs);
2230		return -ENOMEM;
2231	}
2232
2233	for (i = 0; i < priv->num_tx_bds; i++) {
2234		cb = priv->tx_cbs + i;
2235		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2236	}
2237
2238	/* Init rDma */
2239	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2240
2241	/* Initialize Rx queues */
2242	ret = bcmgenet_init_rx_queues(priv->dev);
2243	if (ret) {
2244		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2245		bcmgenet_free_rx_buffers(priv);
2246		kfree(priv->rx_cbs);
2247		kfree(priv->tx_cbs);
2248		return ret;
2249	}
2250
2251	/* Init tDma */
2252	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2253
2254	/* Initialize Tx queues */
2255	bcmgenet_init_tx_queues(priv->dev);
2256
2257	return 0;
2258}
2259
2260/* Interrupt bottom half */
2261static void bcmgenet_irq_task(struct work_struct *work)
2262{
2263	struct bcmgenet_priv *priv = container_of(
2264			work, struct bcmgenet_priv, bcmgenet_irq_work);
2265
2266	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2267
2268	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2269		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2270		netif_dbg(priv, wol, priv->dev,
2271			  "magic packet detected, waking up\n");
2272		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2273	}
2274
2275	/* Link UP/DOWN event */
2276	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2277	    (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2278		phy_mac_interrupt(priv->phydev,
2279				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2280		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2281	}
2282}
2283
2284/* bcmgenet_isr1: handle Rx and Tx priority queues */
2285static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2286{
2287	struct bcmgenet_priv *priv = dev_id;
2288	struct bcmgenet_rx_ring *rx_ring;
2289	struct bcmgenet_tx_ring *tx_ring;
2290	unsigned int index;
2291
2292	/* Save irq status for bottom-half processing. */
2293	priv->irq1_stat =
2294		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2295		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2296
2297	/* clear interrupts */
2298	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2299
2300	netif_dbg(priv, intr, priv->dev,
2301		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2302
2303	/* Check Rx priority queue interrupts */
2304	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2305		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2306			continue;
2307
2308		rx_ring = &priv->rx_rings[index];
2309
2310		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2311			rx_ring->int_disable(rx_ring);
2312			__napi_schedule(&rx_ring->napi);
2313		}
2314	}
2315
2316	/* Check Tx priority queue interrupts */
2317	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2318		if (!(priv->irq1_stat & BIT(index)))
2319			continue;
2320
2321		tx_ring = &priv->tx_rings[index];
2322
2323		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2324			tx_ring->int_disable(tx_ring);
2325			__napi_schedule(&tx_ring->napi);
2326		}
2327	}
2328
2329	return IRQ_HANDLED;
2330}
2331
2332/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2333static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2334{
2335	struct bcmgenet_priv *priv = dev_id;
2336	struct bcmgenet_rx_ring *rx_ring;
2337	struct bcmgenet_tx_ring *tx_ring;
2338
2339	/* Save irq status for bottom-half processing. */
2340	priv->irq0_stat =
2341		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2342		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2343
2344	/* clear interrupts */
2345	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2346
2347	netif_dbg(priv, intr, priv->dev,
2348		  "IRQ=0x%x\n", priv->irq0_stat);
2349
2350	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2351		rx_ring = &priv->rx_rings[DESC_INDEX];
2352
2353		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2354			rx_ring->int_disable(rx_ring);
2355			__napi_schedule(&rx_ring->napi);
2356		}
2357	}
2358
2359	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2360		tx_ring = &priv->tx_rings[DESC_INDEX];
2361
2362		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2363			tx_ring->int_disable(tx_ring);
2364			__napi_schedule(&tx_ring->napi);
2365		}
2366	}
2367
2368	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2369				UMAC_IRQ_PHY_DET_F |
2370				UMAC_IRQ_LINK_EVENT |
2371				UMAC_IRQ_HFB_SM |
2372				UMAC_IRQ_HFB_MM |
2373				UMAC_IRQ_MPD_R)) {
2374		/* all other interested interrupts handled in bottom half */
2375		schedule_work(&priv->bcmgenet_irq_work);
2376	}
2377
2378	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2379	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2380		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2381		wake_up(&priv->wq);
2382	}
2383
2384	return IRQ_HANDLED;
2385}
2386
2387static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2388{
2389	struct bcmgenet_priv *priv = dev_id;
2390
2391	pm_wakeup_event(&priv->pdev->dev, 0);
2392
2393	return IRQ_HANDLED;
2394}
2395
2396static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2397{
2398	u32 reg;
2399
2400	reg = bcmgenet_rbuf_ctrl_get(priv);
2401	reg |= BIT(1);
2402	bcmgenet_rbuf_ctrl_set(priv, reg);
2403	udelay(10);
2404
2405	reg &= ~BIT(1);
2406	bcmgenet_rbuf_ctrl_set(priv, reg);
2407	udelay(10);
2408}
2409
2410static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2411				 unsigned char *addr)
2412{
2413	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2414			(addr[2] << 8) | addr[3], UMAC_MAC0);
2415	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2416}
2417
2418/* Returns a reusable dma control register value */
2419static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2420{
2421	u32 reg;
2422	u32 dma_ctrl;
2423
2424	/* disable DMA */
2425	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2426	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2427	reg &= ~dma_ctrl;
2428	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2429
2430	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2431	reg &= ~dma_ctrl;
2432	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2433
2434	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2435	udelay(10);
2436	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2437
2438	return dma_ctrl;
2439}
2440
2441static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2442{
2443	u32 reg;
2444
2445	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2446	reg |= dma_ctrl;
2447	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2448
2449	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2450	reg |= dma_ctrl;
2451	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2452}
2453
2454static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2455					   u32 f_index)
2456{
2457	u32 offset;
2458	u32 reg;
2459
2460	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2461	reg = bcmgenet_hfb_reg_readl(priv, offset);
2462	return !!(reg & (1 << (f_index % 32)));
2463}
2464
2465static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2466{
2467	u32 offset;
2468	u32 reg;
2469
2470	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2471	reg = bcmgenet_hfb_reg_readl(priv, offset);
2472	reg |= (1 << (f_index % 32));
2473	bcmgenet_hfb_reg_writel(priv, reg, offset);
2474}
2475
2476static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2477						     u32 f_index, u32 rx_queue)
2478{
2479	u32 offset;
2480	u32 reg;
2481
2482	offset = f_index / 8;
2483	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2484	reg &= ~(0xF << (4 * (f_index % 8)));
2485	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2486	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2487}
2488
2489static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2490					   u32 f_index, u32 f_length)
2491{
2492	u32 offset;
2493	u32 reg;
2494
2495	offset = HFB_FLT_LEN_V3PLUS +
2496		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2497		 sizeof(u32);
2498	reg = bcmgenet_hfb_reg_readl(priv, offset);
2499	reg &= ~(0xFF << (8 * (f_index % 4)));
2500	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2501	bcmgenet_hfb_reg_writel(priv, reg, offset);
2502}
2503
2504static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2505{
2506	u32 f_index;
2507
2508	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2509		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2510			return f_index;
2511
2512	return -ENOMEM;
2513}
2514
2515/* bcmgenet_hfb_add_filter
2516 *
2517 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2518 * desired Rx queue.
2519 *
2520 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2521 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2522 *
2523 * bits 31:20 - unused
2524 * bit  19    - nibble 0 match enable
2525 * bit  18    - nibble 1 match enable
2526 * bit  17    - nibble 2 match enable
2527 * bit  16    - nibble 3 match enable
2528 * bits 15:12 - nibble 0 data
2529 * bits 11:8  - nibble 1 data
2530 * bits 7:4   - nibble 2 data
2531 * bits 3:0   - nibble 3 data
2532 *
2533 * Example:
2534 * In order to match:
2535 * - Ethernet frame type = 0x0800 (IP)
2536 * - IP version field = 4
2537 * - IP protocol field = 0x11 (UDP)
2538 *
2539 * The following filter is needed:
2540 * u32 hfb_filter_ipv4_udp[] = {
2541 *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2542 *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2543 *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2544 * };
2545 *
2546 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2547 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2548 *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2549 */
2550int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2551			    u32 f_length, u32 rx_queue)
2552{
2553	int f_index;
2554	u32 i;
2555
2556	f_index = bcmgenet_hfb_find_unused_filter(priv);
2557	if (f_index < 0)
2558		return -ENOMEM;
2559
2560	if (f_length > priv->hw_params->hfb_filter_size)
2561		return -EINVAL;
2562
2563	for (i = 0; i < f_length; i++)
2564		bcmgenet_hfb_writel(priv, f_data[i],
2565			(f_index * priv->hw_params->hfb_filter_size + i) *
2566			sizeof(u32));
2567
2568	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2569	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2570	bcmgenet_hfb_enable_filter(priv, f_index);
2571	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2572
2573	return 0;
2574}
2575
2576/* bcmgenet_hfb_clear
2577 *
2578 * Clear Hardware Filter Block and disable all filtering.
2579 */
2580static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2581{
2582	u32 i;
2583
2584	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2585	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2586	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2587
2588	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2589		bcmgenet_rdma_writel(priv, 0x0, i);
2590
2591	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2592		bcmgenet_hfb_reg_writel(priv, 0x0,
2593					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2594
2595	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2596			priv->hw_params->hfb_filter_size; i++)
2597		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2598}
2599
2600static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2601{
2602	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2603		return;
2604
2605	bcmgenet_hfb_clear(priv);
2606}
2607
2608static void bcmgenet_netif_start(struct net_device *dev)
2609{
2610	struct bcmgenet_priv *priv = netdev_priv(dev);
2611
2612	/* Start the network engine */
2613	bcmgenet_enable_rx_napi(priv);
2614	bcmgenet_enable_tx_napi(priv);
2615
2616	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2617
2618	netif_tx_start_all_queues(dev);
2619
2620	phy_start(priv->phydev);
2621}
2622
2623static int bcmgenet_open(struct net_device *dev)
2624{
2625	struct bcmgenet_priv *priv = netdev_priv(dev);
2626	unsigned long dma_ctrl;
2627	u32 reg;
2628	int ret;
2629
2630	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2631
2632	/* Turn on the clock */
2633	if (!IS_ERR(priv->clk))
2634		clk_prepare_enable(priv->clk);
2635
2636	/* If this is an internal GPHY, power it back on now, before UniMAC is
2637	 * brought out of reset as absolutely no UniMAC activity is allowed
2638	 */
2639	if (phy_is_internal(priv->phydev))
2640		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2641
2642	/* take MAC out of reset */
2643	bcmgenet_umac_reset(priv);
2644
2645	ret = init_umac(priv);
2646	if (ret)
2647		goto err_clk_disable;
2648
2649	/* disable ethernet MAC while updating its registers */
2650	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2651
2652	/* Make sure we reflect the value of CRC_CMD_FWD */
2653	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2654	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2655
2656	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2657
2658	if (phy_is_internal(priv->phydev)) {
2659		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2660		reg |= EXT_ENERGY_DET_MASK;
2661		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2662	}
2663
2664	/* Disable RX/TX DMA and flush TX queues */
2665	dma_ctrl = bcmgenet_dma_disable(priv);
2666
2667	/* Reinitialize TDMA and RDMA and SW housekeeping */
2668	ret = bcmgenet_init_dma(priv);
2669	if (ret) {
2670		netdev_err(dev, "failed to initialize DMA\n");
2671		goto err_clk_disable;
2672	}
2673
2674	/* Always enable ring 16 - descriptor ring */
2675	bcmgenet_enable_dma(priv, dma_ctrl);
2676
2677	/* HFB init */
2678	bcmgenet_hfb_init(priv);
2679
2680	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2681			  dev->name, priv);
2682	if (ret < 0) {
2683		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2684		goto err_fini_dma;
2685	}
2686
2687	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2688			  dev->name, priv);
2689	if (ret < 0) {
2690		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2691		goto err_irq0;
2692	}
2693
2694	/* Re-configure the port multiplexer towards the PHY device */
2695	bcmgenet_mii_config(priv->dev, false);
2696
2697	phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2698			   priv->phy_interface);
2699
2700	bcmgenet_netif_start(dev);
2701
2702	return 0;
2703
2704err_irq0:
2705	free_irq(priv->irq0, dev);
2706err_fini_dma:
2707	bcmgenet_fini_dma(priv);
2708err_clk_disable:
2709	if (!IS_ERR(priv->clk))
2710		clk_disable_unprepare(priv->clk);
2711	return ret;
2712}
2713
2714static void bcmgenet_netif_stop(struct net_device *dev)
2715{
2716	struct bcmgenet_priv *priv = netdev_priv(dev);
2717
2718	netif_tx_stop_all_queues(dev);
2719	phy_stop(priv->phydev);
2720	bcmgenet_intr_disable(priv);
2721	bcmgenet_disable_rx_napi(priv);
2722	bcmgenet_disable_tx_napi(priv);
2723
2724	/* Wait for pending work items to complete. Since interrupts are
2725	 * disabled no new work will be scheduled.
2726	 */
2727	cancel_work_sync(&priv->bcmgenet_irq_work);
2728
2729	priv->old_link = -1;
2730	priv->old_speed = -1;
2731	priv->old_duplex = -1;
2732	priv->old_pause = -1;
2733}
2734
2735static int bcmgenet_close(struct net_device *dev)
2736{
2737	struct bcmgenet_priv *priv = netdev_priv(dev);
2738	int ret;
2739
2740	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2741
2742	bcmgenet_netif_stop(dev);
2743
2744	/* Really kill the PHY state machine and disconnect from it */
2745	phy_disconnect(priv->phydev);
2746
2747	/* Disable MAC receive */
2748	umac_enable_set(priv, CMD_RX_EN, false);
2749
2750	ret = bcmgenet_dma_teardown(priv);
2751	if (ret)
2752		return ret;
2753
2754	/* Disable MAC transmit. TX DMA disabled have to done before this */
2755	umac_enable_set(priv, CMD_TX_EN, false);
2756
2757	/* tx reclaim */
2758	bcmgenet_tx_reclaim_all(dev);
2759	bcmgenet_fini_dma(priv);
2760
2761	free_irq(priv->irq0, priv);
2762	free_irq(priv->irq1, priv);
2763
2764	if (phy_is_internal(priv->phydev))
2765		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2766
2767	if (!IS_ERR(priv->clk))
2768		clk_disable_unprepare(priv->clk);
2769
2770	return ret;
2771}
2772
2773static void bcmgenet_timeout(struct net_device *dev)
2774{
2775	struct bcmgenet_priv *priv = netdev_priv(dev);
2776
2777	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2778
2779	dev->trans_start = jiffies;
2780
2781	dev->stats.tx_errors++;
2782
2783	netif_tx_wake_all_queues(dev);
2784}
2785
2786#define MAX_MC_COUNT	16
2787
2788static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2789					 unsigned char *addr,
2790					 int *i,
2791					 int *mc)
2792{
2793	u32 reg;
2794
2795	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2796			     UMAC_MDF_ADDR + (*i * 4));
2797	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2798			     addr[4] << 8 | addr[5],
2799			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2800	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2801	reg |= (1 << (MAX_MC_COUNT - *mc));
2802	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2803	*i += 2;
2804	(*mc)++;
2805}
2806
2807static void bcmgenet_set_rx_mode(struct net_device *dev)
2808{
2809	struct bcmgenet_priv *priv = netdev_priv(dev);
2810	struct netdev_hw_addr *ha;
2811	int i, mc;
2812	u32 reg;
2813
2814	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2815
2816	/* Promiscuous mode */
2817	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2818	if (dev->flags & IFF_PROMISC) {
2819		reg |= CMD_PROMISC;
2820		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2821		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2822		return;
2823	} else {
2824		reg &= ~CMD_PROMISC;
2825		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2826	}
2827
2828	/* UniMac doesn't support ALLMULTI */
2829	if (dev->flags & IFF_ALLMULTI) {
2830		netdev_warn(dev, "ALLMULTI is not supported\n");
2831		return;
2832	}
2833
2834	/* update MDF filter */
2835	i = 0;
2836	mc = 0;
2837	/* Broadcast */
2838	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2839	/* my own address.*/
2840	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2841	/* Unicast list*/
2842	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2843		return;
2844
2845	if (!netdev_uc_empty(dev))
2846		netdev_for_each_uc_addr(ha, dev)
2847			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2848	/* Multicast */
2849	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2850		return;
2851
2852	netdev_for_each_mc_addr(ha, dev)
2853		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2854}
2855
2856/* Set the hardware MAC address. */
2857static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2858{
2859	struct sockaddr *addr = p;
2860
2861	/* Setting the MAC address at the hardware level is not possible
2862	 * without disabling the UniMAC RX/TX enable bits.
2863	 */
2864	if (netif_running(dev))
2865		return -EBUSY;
2866
2867	ether_addr_copy(dev->dev_addr, addr->sa_data);
2868
2869	return 0;
2870}
2871
2872static const struct net_device_ops bcmgenet_netdev_ops = {
2873	.ndo_open		= bcmgenet_open,
2874	.ndo_stop		= bcmgenet_close,
2875	.ndo_start_xmit		= bcmgenet_xmit,
2876	.ndo_tx_timeout		= bcmgenet_timeout,
2877	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
2878	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
2879	.ndo_do_ioctl		= bcmgenet_ioctl,
2880	.ndo_set_features	= bcmgenet_set_features,
2881};
2882
2883/* Array of GENET hardware parameters/characteristics */
2884static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2885	[GENET_V1] = {
2886		.tx_queues = 0,
2887		.tx_bds_per_q = 0,
2888		.rx_queues = 0,
2889		.rx_bds_per_q = 0,
2890		.bp_in_en_shift = 16,
2891		.bp_in_mask = 0xffff,
2892		.hfb_filter_cnt = 16,
2893		.qtag_mask = 0x1F,
2894		.hfb_offset = 0x1000,
2895		.rdma_offset = 0x2000,
2896		.tdma_offset = 0x3000,
2897		.words_per_bd = 2,
2898	},
2899	[GENET_V2] = {
2900		.tx_queues = 4,
2901		.tx_bds_per_q = 32,
2902		.rx_queues = 0,
2903		.rx_bds_per_q = 0,
2904		.bp_in_en_shift = 16,
2905		.bp_in_mask = 0xffff,
2906		.hfb_filter_cnt = 16,
2907		.qtag_mask = 0x1F,
2908		.tbuf_offset = 0x0600,
2909		.hfb_offset = 0x1000,
2910		.hfb_reg_offset = 0x2000,
2911		.rdma_offset = 0x3000,
2912		.tdma_offset = 0x4000,
2913		.words_per_bd = 2,
2914		.flags = GENET_HAS_EXT,
2915	},
2916	[GENET_V3] = {
2917		.tx_queues = 4,
2918		.tx_bds_per_q = 32,
2919		.rx_queues = 0,
2920		.rx_bds_per_q = 0,
2921		.bp_in_en_shift = 17,
2922		.bp_in_mask = 0x1ffff,
2923		.hfb_filter_cnt = 48,
2924		.hfb_filter_size = 128,
2925		.qtag_mask = 0x3F,
2926		.tbuf_offset = 0x0600,
2927		.hfb_offset = 0x8000,
2928		.hfb_reg_offset = 0xfc00,
2929		.rdma_offset = 0x10000,
2930		.tdma_offset = 0x11000,
2931		.words_per_bd = 2,
2932		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
2933			 GENET_HAS_MOCA_LINK_DET,
2934	},
2935	[GENET_V4] = {
2936		.tx_queues = 4,
2937		.tx_bds_per_q = 32,
2938		.rx_queues = 0,
2939		.rx_bds_per_q = 0,
2940		.bp_in_en_shift = 17,
2941		.bp_in_mask = 0x1ffff,
2942		.hfb_filter_cnt = 48,
2943		.hfb_filter_size = 128,
2944		.qtag_mask = 0x3F,
2945		.tbuf_offset = 0x0600,
2946		.hfb_offset = 0x8000,
2947		.hfb_reg_offset = 0xfc00,
2948		.rdma_offset = 0x2000,
2949		.tdma_offset = 0x4000,
2950		.words_per_bd = 3,
2951		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
2952			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
2953	},
2954};
2955
2956/* Infer hardware parameters from the detected GENET version */
2957static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2958{
2959	struct bcmgenet_hw_params *params;
2960	u32 reg;
2961	u8 major;
2962	u16 gphy_rev;
2963
2964	if (GENET_IS_V4(priv)) {
2965		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2966		genet_dma_ring_regs = genet_dma_ring_regs_v4;
2967		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2968		priv->version = GENET_V4;
2969	} else if (GENET_IS_V3(priv)) {
2970		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2971		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2972		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2973		priv->version = GENET_V3;
2974	} else if (GENET_IS_V2(priv)) {
2975		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2976		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2977		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2978		priv->version = GENET_V2;
2979	} else if (GENET_IS_V1(priv)) {
2980		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2981		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2982		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2983		priv->version = GENET_V1;
2984	}
2985
2986	/* enum genet_version starts at 1 */
2987	priv->hw_params = &bcmgenet_hw_params[priv->version];
2988	params = priv->hw_params;
2989
2990	/* Read GENET HW version */
2991	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2992	major = (reg >> 24 & 0x0f);
2993	if (major == 5)
2994		major = 4;
2995	else if (major == 0)
2996		major = 1;
2997	if (major != priv->version) {
2998		dev_err(&priv->pdev->dev,
2999			"GENET version mismatch, got: %d, configured for: %d\n",
3000			major, priv->version);
3001	}
3002
3003	/* Print the GENET core version */
3004	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3005		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3006
3007	/* Store the integrated PHY revision for the MDIO probing function
3008	 * to pass this information to the PHY driver. The PHY driver expects
3009	 * to find the PHY major revision in bits 15:8 while the GENET register
3010	 * stores that information in bits 7:0, account for that.
3011	 *
3012	 * On newer chips, starting with PHY revision G0, a new scheme is
3013	 * deployed similar to the Starfighter 2 switch with GPHY major
3014	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3015	 * is reserved as well as special value 0x01ff, we have a small
3016	 * heuristic to check for the new GPHY revision and re-arrange things
3017	 * so the GPHY driver is happy.
3018	 */
3019	gphy_rev = reg & 0xffff;
3020
3021	/* This is the good old scheme, just GPHY major, no minor nor patch */
3022	if ((gphy_rev & 0xf0) != 0)
3023		priv->gphy_rev = gphy_rev << 8;
3024
3025	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3026	else if ((gphy_rev & 0xff00) != 0)
3027		priv->gphy_rev = gphy_rev;
3028
3029	/* This is reserved so should require special treatment */
3030	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3031		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3032		return;
3033	}
3034
3035#ifdef CONFIG_PHYS_ADDR_T_64BIT
3036	if (!(params->flags & GENET_HAS_40BITS))
3037		pr_warn("GENET does not support 40-bits PA\n");
3038#endif
3039
3040	pr_debug("Configuration for version: %d\n"
3041		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3042		"BP << en: %2d, BP msk: 0x%05x\n"
3043		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3044		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3045		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3046		"Words/BD: %d\n",
3047		priv->version,
3048		params->tx_queues, params->tx_bds_per_q,
3049		params->rx_queues, params->rx_bds_per_q,
3050		params->bp_in_en_shift, params->bp_in_mask,
3051		params->hfb_filter_cnt, params->qtag_mask,
3052		params->tbuf_offset, params->hfb_offset,
3053		params->hfb_reg_offset,
3054		params->rdma_offset, params->tdma_offset,
3055		params->words_per_bd);
3056}
3057
3058static const struct of_device_id bcmgenet_match[] = {
3059	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3060	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3061	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3062	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3063	{ },
3064};
3065
3066static int bcmgenet_probe(struct platform_device *pdev)
3067{
3068	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3069	struct device_node *dn = pdev->dev.of_node;
3070	const struct of_device_id *of_id = NULL;
3071	struct bcmgenet_priv *priv;
3072	struct net_device *dev;
3073	const void *macaddr;
3074	struct resource *r;
3075	int err = -EIO;
3076
3077	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3078	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3079				 GENET_MAX_MQ_CNT + 1);
3080	if (!dev) {
3081		dev_err(&pdev->dev, "can't allocate net device\n");
3082		return -ENOMEM;
3083	}
3084
3085	if (dn) {
3086		of_id = of_match_node(bcmgenet_match, dn);
3087		if (!of_id)
3088			return -EINVAL;
3089	}
3090
3091	priv = netdev_priv(dev);
3092	priv->irq0 = platform_get_irq(pdev, 0);
3093	priv->irq1 = platform_get_irq(pdev, 1);
3094	priv->wol_irq = platform_get_irq(pdev, 2);
3095	if (!priv->irq0 || !priv->irq1) {
3096		dev_err(&pdev->dev, "can't find IRQs\n");
3097		err = -EINVAL;
3098		goto err;
3099	}
3100
3101	if (dn) {
3102		macaddr = of_get_mac_address(dn);
3103		if (!macaddr) {
3104			dev_err(&pdev->dev, "can't find MAC address\n");
3105			err = -EINVAL;
3106			goto err;
3107		}
3108	} else {
3109		macaddr = pd->mac_address;
3110	}
3111
3112	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3113	priv->base = devm_ioremap_resource(&pdev->dev, r);
3114	if (IS_ERR(priv->base)) {
3115		err = PTR_ERR(priv->base);
3116		goto err;
3117	}
3118
3119	SET_NETDEV_DEV(dev, &pdev->dev);
3120	dev_set_drvdata(&pdev->dev, dev);
3121	ether_addr_copy(dev->dev_addr, macaddr);
3122	dev->watchdog_timeo = 2 * HZ;
3123	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3124	dev->netdev_ops = &bcmgenet_netdev_ops;
3125
3126	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3127
3128	/* Set hardware features */
3129	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3130		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3131
3132	/* Request the WOL interrupt and advertise suspend if available */
3133	priv->wol_irq_disabled = true;
3134	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3135			       dev->name, priv);
3136	if (!err)
3137		device_set_wakeup_capable(&pdev->dev, 1);
3138
3139	/* Set the needed headroom to account for any possible
3140	 * features enabling/disabling at runtime
3141	 */
3142	dev->needed_headroom += 64;
3143
3144	netdev_boot_setup_check(dev);
3145
3146	priv->dev = dev;
3147	priv->pdev = pdev;
3148	if (of_id)
3149		priv->version = (enum bcmgenet_version)of_id->data;
3150	else
3151		priv->version = pd->genet_version;
3152
3153	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3154	if (IS_ERR(priv->clk))
3155		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3156
3157	if (!IS_ERR(priv->clk))
3158		clk_prepare_enable(priv->clk);
3159
3160	bcmgenet_set_hw_params(priv);
3161
3162	/* Mii wait queue */
3163	init_waitqueue_head(&priv->wq);
3164	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3165	priv->rx_buf_len = RX_BUF_LENGTH;
3166	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3167
3168	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3169	if (IS_ERR(priv->clk_wol))
3170		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3171
3172	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3173	if (IS_ERR(priv->clk_eee)) {
3174		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3175		priv->clk_eee = NULL;
3176	}
3177
3178	err = reset_umac(priv);
3179	if (err)
3180		goto err_clk_disable;
3181
3182	err = bcmgenet_mii_init(dev);
3183	if (err)
3184		goto err_clk_disable;
3185
3186	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3187	 * just the ring 16 descriptor based TX
3188	 */
3189	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3190	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3191
3192	/* libphy will determine the link state */
3193	netif_carrier_off(dev);
3194
3195	/* Turn off the main clock, WOL clock is handled separately */
3196	if (!IS_ERR(priv->clk))
3197		clk_disable_unprepare(priv->clk);
3198
3199	err = register_netdev(dev);
3200	if (err)
3201		goto err;
3202
3203	return err;
3204
3205err_clk_disable:
3206	if (!IS_ERR(priv->clk))
3207		clk_disable_unprepare(priv->clk);
3208err:
3209	free_netdev(dev);
3210	return err;
3211}
3212
3213static int bcmgenet_remove(struct platform_device *pdev)
3214{
3215	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3216
3217	dev_set_drvdata(&pdev->dev, NULL);
3218	unregister_netdev(priv->dev);
3219	bcmgenet_mii_exit(priv->dev);
3220	free_netdev(priv->dev);
3221
3222	return 0;
3223}
3224
3225#ifdef CONFIG_PM_SLEEP
3226static int bcmgenet_suspend(struct device *d)
3227{
3228	struct net_device *dev = dev_get_drvdata(d);
3229	struct bcmgenet_priv *priv = netdev_priv(dev);
3230	int ret;
3231
3232	if (!netif_running(dev))
3233		return 0;
3234
3235	bcmgenet_netif_stop(dev);
3236
3237	phy_suspend(priv->phydev);
3238
3239	netif_device_detach(dev);
3240
3241	/* Disable MAC receive */
3242	umac_enable_set(priv, CMD_RX_EN, false);
3243
3244	ret = bcmgenet_dma_teardown(priv);
3245	if (ret)
3246		return ret;
3247
3248	/* Disable MAC transmit. TX DMA disabled have to done before this */
3249	umac_enable_set(priv, CMD_TX_EN, false);
3250
3251	/* tx reclaim */
3252	bcmgenet_tx_reclaim_all(dev);
3253	bcmgenet_fini_dma(priv);
3254
3255	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3256	if (device_may_wakeup(d) && priv->wolopts) {
3257		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3258		clk_prepare_enable(priv->clk_wol);
3259	} else if (phy_is_internal(priv->phydev)) {
3260		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3261	}
3262
3263	/* Turn off the clocks */
3264	clk_disable_unprepare(priv->clk);
3265
3266	return ret;
3267}
3268
3269static int bcmgenet_resume(struct device *d)
3270{
3271	struct net_device *dev = dev_get_drvdata(d);
3272	struct bcmgenet_priv *priv = netdev_priv(dev);
3273	unsigned long dma_ctrl;
3274	int ret;
3275	u32 reg;
3276
3277	if (!netif_running(dev))
3278		return 0;
3279
3280	/* Turn on the clock */
3281	ret = clk_prepare_enable(priv->clk);
3282	if (ret)
3283		return ret;
3284
3285	/* If this is an internal GPHY, power it back on now, before UniMAC is
3286	 * brought out of reset as absolutely no UniMAC activity is allowed
3287	 */
3288	if (phy_is_internal(priv->phydev))
3289		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3290
3291	bcmgenet_umac_reset(priv);
3292
3293	ret = init_umac(priv);
3294	if (ret)
3295		goto out_clk_disable;
3296
3297	/* From WOL-enabled suspend, switch to regular clock */
3298	if (priv->wolopts)
3299		clk_disable_unprepare(priv->clk_wol);
3300
3301	phy_init_hw(priv->phydev);
3302	/* Speed settings must be restored */
3303	bcmgenet_mii_config(priv->dev, false);
3304
3305	/* disable ethernet MAC while updating its registers */
3306	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3307
3308	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3309
3310	if (phy_is_internal(priv->phydev)) {
3311		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3312		reg |= EXT_ENERGY_DET_MASK;
3313		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3314	}
3315
3316	if (priv->wolopts)
3317		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3318
3319	/* Disable RX/TX DMA and flush TX queues */
3320	dma_ctrl = bcmgenet_dma_disable(priv);
3321
3322	/* Reinitialize TDMA and RDMA and SW housekeeping */
3323	ret = bcmgenet_init_dma(priv);
3324	if (ret) {
3325		netdev_err(dev, "failed to initialize DMA\n");
3326		goto out_clk_disable;
3327	}
3328
3329	/* Always enable ring 16 - descriptor ring */
3330	bcmgenet_enable_dma(priv, dma_ctrl);
3331
3332	netif_device_attach(dev);
3333
3334	phy_resume(priv->phydev);
3335
3336	if (priv->eee.eee_enabled)
3337		bcmgenet_eee_enable_set(dev, true);
3338
3339	bcmgenet_netif_start(dev);
3340
3341	return 0;
3342
3343out_clk_disable:
3344	clk_disable_unprepare(priv->clk);
3345	return ret;
3346}
3347#endif /* CONFIG_PM_SLEEP */
3348
3349static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3350
3351static struct platform_driver bcmgenet_driver = {
3352	.probe	= bcmgenet_probe,
3353	.remove	= bcmgenet_remove,
3354	.driver	= {
3355		.name	= "bcmgenet",
3356		.of_match_table = bcmgenet_match,
3357		.pm	= &bcmgenet_pm_ops,
3358	},
3359};
3360module_platform_driver(bcmgenet_driver);
3361
3362MODULE_AUTHOR("Broadcom Corporation");
3363MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3364MODULE_ALIAS("platform:bcmgenet");
3365MODULE_LICENSE("GPL");
3366