1/* 2 * Broadcom GENET (Gigabit Ethernet) controller driver 3 * 4 * Copyright (c) 2014 Broadcom Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11#define pr_fmt(fmt) "bcmgenet: " fmt 12 13#include <linux/kernel.h> 14#include <linux/module.h> 15#include <linux/sched.h> 16#include <linux/types.h> 17#include <linux/fcntl.h> 18#include <linux/interrupt.h> 19#include <linux/string.h> 20#include <linux/if_ether.h> 21#include <linux/init.h> 22#include <linux/errno.h> 23#include <linux/delay.h> 24#include <linux/platform_device.h> 25#include <linux/dma-mapping.h> 26#include <linux/pm.h> 27#include <linux/clk.h> 28#include <linux/of.h> 29#include <linux/of_address.h> 30#include <linux/of_irq.h> 31#include <linux/of_net.h> 32#include <linux/of_platform.h> 33#include <net/arp.h> 34 35#include <linux/mii.h> 36#include <linux/ethtool.h> 37#include <linux/netdevice.h> 38#include <linux/inetdevice.h> 39#include <linux/etherdevice.h> 40#include <linux/skbuff.h> 41#include <linux/in.h> 42#include <linux/ip.h> 43#include <linux/ipv6.h> 44#include <linux/phy.h> 45#include <linux/platform_data/bcmgenet.h> 46 47#include <asm/unaligned.h> 48 49#include "bcmgenet.h" 50 51/* Maximum number of hardware queues, downsized if needed */ 52#define GENET_MAX_MQ_CNT 4 53 54/* Default highest priority queue for multi queue support */ 55#define GENET_Q0_PRIORITY 0 56 57#define GENET_Q16_RX_BD_CNT \ 58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 59#define GENET_Q16_TX_BD_CNT \ 60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 61 62#define RX_BUF_LENGTH 2048 63#define SKB_ALIGNMENT 32 64 65/* Tx/Rx DMA register offset, skip 256 descriptors */ 66#define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 67#define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 68 69#define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 70 TOTAL_DESC * DMA_DESC_SIZE) 71 72#define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 73 TOTAL_DESC * DMA_DESC_SIZE) 74 75static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 76 void __iomem *d, u32 value) 77{ 78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS); 79} 80 81static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv, 82 void __iomem *d) 83{ 84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS); 85} 86 87static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 88 void __iomem *d, 89 dma_addr_t addr) 90{ 91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 92 93 /* Register writes to GISB bus can take couple hundred nanoseconds 94 * and are done for each packet, save these expensive writes unless 95 * the platform is explicitly configured for 64-bits/LPAE. 96 */ 97#ifdef CONFIG_PHYS_ADDR_T_64BIT 98 if (priv->hw_params->flags & GENET_HAS_40BITS) 99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 100#endif 101} 102 103/* Combined address + length/status setter */ 104static inline void dmadesc_set(struct bcmgenet_priv *priv, 105 void __iomem *d, dma_addr_t addr, u32 val) 106{ 107 dmadesc_set_length_status(priv, d, val); 108 dmadesc_set_addr(priv, d, addr); 109} 110 111static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, 112 void __iomem *d) 113{ 114 dma_addr_t addr; 115 116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO); 117 118 /* Register writes to GISB bus can take couple hundred nanoseconds 119 * and are done for each packet, save these expensive writes unless 120 * the platform is explicitly configured for 64-bits/LPAE. 121 */ 122#ifdef CONFIG_PHYS_ADDR_T_64BIT 123 if (priv->hw_params->flags & GENET_HAS_40BITS) 124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32; 125#endif 126 return addr; 127} 128 129#define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 130 131#define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 132 NETIF_MSG_LINK) 133 134static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 135{ 136 if (GENET_IS_V1(priv)) 137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 138 else 139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 140} 141 142static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 143{ 144 if (GENET_IS_V1(priv)) 145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 146 else 147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 148} 149 150/* These macros are defined to deal with register map change 151 * between GENET1.1 and GENET2. Only those currently being used 152 * by driver are defined. 153 */ 154static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 155{ 156 if (GENET_IS_V1(priv)) 157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 158 else 159 return __raw_readl(priv->base + 160 priv->hw_params->tbuf_offset + TBUF_CTRL); 161} 162 163static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 164{ 165 if (GENET_IS_V1(priv)) 166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 167 else 168 __raw_writel(val, priv->base + 169 priv->hw_params->tbuf_offset + TBUF_CTRL); 170} 171 172static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 173{ 174 if (GENET_IS_V1(priv)) 175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 176 else 177 return __raw_readl(priv->base + 178 priv->hw_params->tbuf_offset + TBUF_BP_MC); 179} 180 181static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 182{ 183 if (GENET_IS_V1(priv)) 184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 185 else 186 __raw_writel(val, priv->base + 187 priv->hw_params->tbuf_offset + TBUF_BP_MC); 188} 189 190/* RX/TX DMA register accessors */ 191enum dma_reg { 192 DMA_RING_CFG = 0, 193 DMA_CTRL, 194 DMA_STATUS, 195 DMA_SCB_BURST_SIZE, 196 DMA_ARB_CTRL, 197 DMA_PRIORITY_0, 198 DMA_PRIORITY_1, 199 DMA_PRIORITY_2, 200 DMA_INDEX2RING_0, 201 DMA_INDEX2RING_1, 202 DMA_INDEX2RING_2, 203 DMA_INDEX2RING_3, 204 DMA_INDEX2RING_4, 205 DMA_INDEX2RING_5, 206 DMA_INDEX2RING_6, 207 DMA_INDEX2RING_7, 208}; 209 210static const u8 bcmgenet_dma_regs_v3plus[] = { 211 [DMA_RING_CFG] = 0x00, 212 [DMA_CTRL] = 0x04, 213 [DMA_STATUS] = 0x08, 214 [DMA_SCB_BURST_SIZE] = 0x0C, 215 [DMA_ARB_CTRL] = 0x2C, 216 [DMA_PRIORITY_0] = 0x30, 217 [DMA_PRIORITY_1] = 0x34, 218 [DMA_PRIORITY_2] = 0x38, 219 [DMA_INDEX2RING_0] = 0x70, 220 [DMA_INDEX2RING_1] = 0x74, 221 [DMA_INDEX2RING_2] = 0x78, 222 [DMA_INDEX2RING_3] = 0x7C, 223 [DMA_INDEX2RING_4] = 0x80, 224 [DMA_INDEX2RING_5] = 0x84, 225 [DMA_INDEX2RING_6] = 0x88, 226 [DMA_INDEX2RING_7] = 0x8C, 227}; 228 229static const u8 bcmgenet_dma_regs_v2[] = { 230 [DMA_RING_CFG] = 0x00, 231 [DMA_CTRL] = 0x04, 232 [DMA_STATUS] = 0x08, 233 [DMA_SCB_BURST_SIZE] = 0x0C, 234 [DMA_ARB_CTRL] = 0x30, 235 [DMA_PRIORITY_0] = 0x34, 236 [DMA_PRIORITY_1] = 0x38, 237 [DMA_PRIORITY_2] = 0x3C, 238}; 239 240static const u8 bcmgenet_dma_regs_v1[] = { 241 [DMA_CTRL] = 0x00, 242 [DMA_STATUS] = 0x04, 243 [DMA_SCB_BURST_SIZE] = 0x0C, 244 [DMA_ARB_CTRL] = 0x30, 245 [DMA_PRIORITY_0] = 0x34, 246 [DMA_PRIORITY_1] = 0x38, 247 [DMA_PRIORITY_2] = 0x3C, 248}; 249 250/* Set at runtime once bcmgenet version is known */ 251static const u8 *bcmgenet_dma_regs; 252 253static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 254{ 255 return netdev_priv(dev_get_drvdata(dev)); 256} 257 258static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 259 enum dma_reg r) 260{ 261 return __raw_readl(priv->base + GENET_TDMA_REG_OFF + 262 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 263} 264 265static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 266 u32 val, enum dma_reg r) 267{ 268 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + 269 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 270} 271 272static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 273 enum dma_reg r) 274{ 275 return __raw_readl(priv->base + GENET_RDMA_REG_OFF + 276 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 277} 278 279static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 280 u32 val, enum dma_reg r) 281{ 282 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + 283 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 284} 285 286/* RDMA/TDMA ring registers and accessors 287 * we merge the common fields and just prefix with T/D the registers 288 * having different meaning depending on the direction 289 */ 290enum dma_ring_reg { 291 TDMA_READ_PTR = 0, 292 RDMA_WRITE_PTR = TDMA_READ_PTR, 293 TDMA_READ_PTR_HI, 294 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 295 TDMA_CONS_INDEX, 296 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 297 TDMA_PROD_INDEX, 298 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 299 DMA_RING_BUF_SIZE, 300 DMA_START_ADDR, 301 DMA_START_ADDR_HI, 302 DMA_END_ADDR, 303 DMA_END_ADDR_HI, 304 DMA_MBUF_DONE_THRESH, 305 TDMA_FLOW_PERIOD, 306 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 307 TDMA_WRITE_PTR, 308 RDMA_READ_PTR = TDMA_WRITE_PTR, 309 TDMA_WRITE_PTR_HI, 310 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 311}; 312 313/* GENET v4 supports 40-bits pointer addressing 314 * for obvious reasons the LO and HI word parts 315 * are contiguous, but this offsets the other 316 * registers. 317 */ 318static const u8 genet_dma_ring_regs_v4[] = { 319 [TDMA_READ_PTR] = 0x00, 320 [TDMA_READ_PTR_HI] = 0x04, 321 [TDMA_CONS_INDEX] = 0x08, 322 [TDMA_PROD_INDEX] = 0x0C, 323 [DMA_RING_BUF_SIZE] = 0x10, 324 [DMA_START_ADDR] = 0x14, 325 [DMA_START_ADDR_HI] = 0x18, 326 [DMA_END_ADDR] = 0x1C, 327 [DMA_END_ADDR_HI] = 0x20, 328 [DMA_MBUF_DONE_THRESH] = 0x24, 329 [TDMA_FLOW_PERIOD] = 0x28, 330 [TDMA_WRITE_PTR] = 0x2C, 331 [TDMA_WRITE_PTR_HI] = 0x30, 332}; 333 334static const u8 genet_dma_ring_regs_v123[] = { 335 [TDMA_READ_PTR] = 0x00, 336 [TDMA_CONS_INDEX] = 0x04, 337 [TDMA_PROD_INDEX] = 0x08, 338 [DMA_RING_BUF_SIZE] = 0x0C, 339 [DMA_START_ADDR] = 0x10, 340 [DMA_END_ADDR] = 0x14, 341 [DMA_MBUF_DONE_THRESH] = 0x18, 342 [TDMA_FLOW_PERIOD] = 0x1C, 343 [TDMA_WRITE_PTR] = 0x20, 344}; 345 346/* Set at runtime once GENET version is known */ 347static const u8 *genet_dma_ring_regs; 348 349static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 350 unsigned int ring, 351 enum dma_ring_reg r) 352{ 353 return __raw_readl(priv->base + GENET_TDMA_REG_OFF + 354 (DMA_RING_SIZE * ring) + 355 genet_dma_ring_regs[r]); 356} 357 358static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 359 unsigned int ring, u32 val, 360 enum dma_ring_reg r) 361{ 362 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + 363 (DMA_RING_SIZE * ring) + 364 genet_dma_ring_regs[r]); 365} 366 367static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 368 unsigned int ring, 369 enum dma_ring_reg r) 370{ 371 return __raw_readl(priv->base + GENET_RDMA_REG_OFF + 372 (DMA_RING_SIZE * ring) + 373 genet_dma_ring_regs[r]); 374} 375 376static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 377 unsigned int ring, u32 val, 378 enum dma_ring_reg r) 379{ 380 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + 381 (DMA_RING_SIZE * ring) + 382 genet_dma_ring_regs[r]); 383} 384 385static int bcmgenet_get_settings(struct net_device *dev, 386 struct ethtool_cmd *cmd) 387{ 388 struct bcmgenet_priv *priv = netdev_priv(dev); 389 390 if (!netif_running(dev)) 391 return -EINVAL; 392 393 if (!priv->phydev) 394 return -ENODEV; 395 396 return phy_ethtool_gset(priv->phydev, cmd); 397} 398 399static int bcmgenet_set_settings(struct net_device *dev, 400 struct ethtool_cmd *cmd) 401{ 402 struct bcmgenet_priv *priv = netdev_priv(dev); 403 404 if (!netif_running(dev)) 405 return -EINVAL; 406 407 if (!priv->phydev) 408 return -ENODEV; 409 410 return phy_ethtool_sset(priv->phydev, cmd); 411} 412 413static int bcmgenet_set_rx_csum(struct net_device *dev, 414 netdev_features_t wanted) 415{ 416 struct bcmgenet_priv *priv = netdev_priv(dev); 417 u32 rbuf_chk_ctrl; 418 bool rx_csum_en; 419 420 rx_csum_en = !!(wanted & NETIF_F_RXCSUM); 421 422 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 423 424 /* enable rx checksumming */ 425 if (rx_csum_en) 426 rbuf_chk_ctrl |= RBUF_RXCHK_EN; 427 else 428 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN; 429 priv->desc_rxchk_en = rx_csum_en; 430 431 /* If UniMAC forwards CRC, we need to skip over it to get 432 * a valid CHK bit to be set in the per-packet status word 433 */ 434 if (rx_csum_en && priv->crc_fwd_en) 435 rbuf_chk_ctrl |= RBUF_SKIP_FCS; 436 else 437 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS; 438 439 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL); 440 441 return 0; 442} 443 444static int bcmgenet_set_tx_csum(struct net_device *dev, 445 netdev_features_t wanted) 446{ 447 struct bcmgenet_priv *priv = netdev_priv(dev); 448 bool desc_64b_en; 449 u32 tbuf_ctrl, rbuf_ctrl; 450 451 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv); 452 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 453 454 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 455 456 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */ 457 if (desc_64b_en) { 458 tbuf_ctrl |= RBUF_64B_EN; 459 rbuf_ctrl |= RBUF_64B_EN; 460 } else { 461 tbuf_ctrl &= ~RBUF_64B_EN; 462 rbuf_ctrl &= ~RBUF_64B_EN; 463 } 464 priv->desc_64b_en = desc_64b_en; 465 466 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl); 467 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL); 468 469 return 0; 470} 471 472static int bcmgenet_set_features(struct net_device *dev, 473 netdev_features_t features) 474{ 475 netdev_features_t changed = features ^ dev->features; 476 netdev_features_t wanted = dev->wanted_features; 477 int ret = 0; 478 479 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 480 ret = bcmgenet_set_tx_csum(dev, wanted); 481 if (changed & (NETIF_F_RXCSUM)) 482 ret = bcmgenet_set_rx_csum(dev, wanted); 483 484 return ret; 485} 486 487static u32 bcmgenet_get_msglevel(struct net_device *dev) 488{ 489 struct bcmgenet_priv *priv = netdev_priv(dev); 490 491 return priv->msg_enable; 492} 493 494static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 495{ 496 struct bcmgenet_priv *priv = netdev_priv(dev); 497 498 priv->msg_enable = level; 499} 500 501/* standard ethtool support functions. */ 502enum bcmgenet_stat_type { 503 BCMGENET_STAT_NETDEV = -1, 504 BCMGENET_STAT_MIB_RX, 505 BCMGENET_STAT_MIB_TX, 506 BCMGENET_STAT_RUNT, 507 BCMGENET_STAT_MISC, 508 BCMGENET_STAT_SOFT, 509}; 510 511struct bcmgenet_stats { 512 char stat_string[ETH_GSTRING_LEN]; 513 int stat_sizeof; 514 int stat_offset; 515 enum bcmgenet_stat_type type; 516 /* reg offset from UMAC base for misc counters */ 517 u16 reg_offset; 518}; 519 520#define STAT_NETDEV(m) { \ 521 .stat_string = __stringify(m), \ 522 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 523 .stat_offset = offsetof(struct net_device_stats, m), \ 524 .type = BCMGENET_STAT_NETDEV, \ 525} 526 527#define STAT_GENET_MIB(str, m, _type) { \ 528 .stat_string = str, \ 529 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 530 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 531 .type = _type, \ 532} 533 534#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 535#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 536#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 537#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 538 539#define STAT_GENET_MISC(str, m, offset) { \ 540 .stat_string = str, \ 541 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 542 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 543 .type = BCMGENET_STAT_MISC, \ 544 .reg_offset = offset, \ 545} 546 547 548/* There is a 0xC gap between the end of RX and beginning of TX stats and then 549 * between the end of TX stats and the beginning of the RX RUNT 550 */ 551#define BCMGENET_STAT_OFFSET 0xc 552 553/* Hardware counters must be kept in sync because the order/offset 554 * is important here (order in structure declaration = order in hardware) 555 */ 556static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 557 /* general stats */ 558 STAT_NETDEV(rx_packets), 559 STAT_NETDEV(tx_packets), 560 STAT_NETDEV(rx_bytes), 561 STAT_NETDEV(tx_bytes), 562 STAT_NETDEV(rx_errors), 563 STAT_NETDEV(tx_errors), 564 STAT_NETDEV(rx_dropped), 565 STAT_NETDEV(tx_dropped), 566 STAT_NETDEV(multicast), 567 /* UniMAC RSV counters */ 568 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 569 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 570 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 571 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 572 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 573 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 574 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 575 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 576 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 577 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 578 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 579 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 580 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 581 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 582 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 583 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 584 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 585 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 586 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 587 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 588 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 589 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 590 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 591 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 592 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 593 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 594 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 595 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 596 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 597 /* UniMAC TSV counters */ 598 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 599 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 600 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 601 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 602 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 603 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 604 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 605 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 606 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 607 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 608 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 609 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 610 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 611 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 612 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 613 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 614 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 615 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 616 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 617 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 618 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 619 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 620 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 621 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 622 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 623 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 624 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 625 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 626 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 627 /* UniMAC RUNT counters */ 628 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 629 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 630 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 631 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 632 /* Misc UniMAC counters */ 633 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 634 UMAC_RBUF_OVFL_CNT), 635 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT), 636 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 637 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 638 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 639 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 640}; 641 642#define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 643 644static void bcmgenet_get_drvinfo(struct net_device *dev, 645 struct ethtool_drvinfo *info) 646{ 647 strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); 648 strlcpy(info->version, "v2.0", sizeof(info->version)); 649 info->n_stats = BCMGENET_STATS_LEN; 650} 651 652static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 653{ 654 switch (string_set) { 655 case ETH_SS_STATS: 656 return BCMGENET_STATS_LEN; 657 default: 658 return -EOPNOTSUPP; 659 } 660} 661 662static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 663 u8 *data) 664{ 665 int i; 666 667 switch (stringset) { 668 case ETH_SS_STATS: 669 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 670 memcpy(data + i * ETH_GSTRING_LEN, 671 bcmgenet_gstrings_stats[i].stat_string, 672 ETH_GSTRING_LEN); 673 } 674 break; 675 } 676} 677 678static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 679{ 680 int i, j = 0; 681 682 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 683 const struct bcmgenet_stats *s; 684 u8 offset = 0; 685 u32 val = 0; 686 char *p; 687 688 s = &bcmgenet_gstrings_stats[i]; 689 switch (s->type) { 690 case BCMGENET_STAT_NETDEV: 691 case BCMGENET_STAT_SOFT: 692 continue; 693 case BCMGENET_STAT_MIB_RX: 694 case BCMGENET_STAT_MIB_TX: 695 case BCMGENET_STAT_RUNT: 696 if (s->type != BCMGENET_STAT_MIB_RX) 697 offset = BCMGENET_STAT_OFFSET; 698 val = bcmgenet_umac_readl(priv, 699 UMAC_MIB_START + j + offset); 700 break; 701 case BCMGENET_STAT_MISC: 702 val = bcmgenet_umac_readl(priv, s->reg_offset); 703 /* clear if overflowed */ 704 if (val == ~0) 705 bcmgenet_umac_writel(priv, 0, s->reg_offset); 706 break; 707 } 708 709 j += s->stat_sizeof; 710 p = (char *)priv + s->stat_offset; 711 *(u32 *)p = val; 712 } 713} 714 715static void bcmgenet_get_ethtool_stats(struct net_device *dev, 716 struct ethtool_stats *stats, 717 u64 *data) 718{ 719 struct bcmgenet_priv *priv = netdev_priv(dev); 720 int i; 721 722 if (netif_running(dev)) 723 bcmgenet_update_mib_counters(priv); 724 725 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 726 const struct bcmgenet_stats *s; 727 char *p; 728 729 s = &bcmgenet_gstrings_stats[i]; 730 if (s->type == BCMGENET_STAT_NETDEV) 731 p = (char *)&dev->stats; 732 else 733 p = (char *)priv; 734 p += s->stat_offset; 735 data[i] = *(u32 *)p; 736 } 737} 738 739static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 740{ 741 struct bcmgenet_priv *priv = netdev_priv(dev); 742 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 743 u32 reg; 744 745 if (enable && !priv->clk_eee_enabled) { 746 clk_prepare_enable(priv->clk_eee); 747 priv->clk_eee_enabled = true; 748 } 749 750 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 751 if (enable) 752 reg |= EEE_EN; 753 else 754 reg &= ~EEE_EN; 755 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 756 757 /* Enable EEE and switch to a 27Mhz clock automatically */ 758 reg = __raw_readl(priv->base + off); 759 if (enable) 760 reg |= TBUF_EEE_EN | TBUF_PM_EN; 761 else 762 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 763 __raw_writel(reg, priv->base + off); 764 765 /* Do the same for thing for RBUF */ 766 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 767 if (enable) 768 reg |= RBUF_EEE_EN | RBUF_PM_EN; 769 else 770 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 771 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 772 773 if (!enable && priv->clk_eee_enabled) { 774 clk_disable_unprepare(priv->clk_eee); 775 priv->clk_eee_enabled = false; 776 } 777 778 priv->eee.eee_enabled = enable; 779 priv->eee.eee_active = enable; 780} 781 782static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 783{ 784 struct bcmgenet_priv *priv = netdev_priv(dev); 785 struct ethtool_eee *p = &priv->eee; 786 787 if (GENET_IS_V1(priv)) 788 return -EOPNOTSUPP; 789 790 e->eee_enabled = p->eee_enabled; 791 e->eee_active = p->eee_active; 792 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 793 794 return phy_ethtool_get_eee(priv->phydev, e); 795} 796 797static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 798{ 799 struct bcmgenet_priv *priv = netdev_priv(dev); 800 struct ethtool_eee *p = &priv->eee; 801 int ret = 0; 802 803 if (GENET_IS_V1(priv)) 804 return -EOPNOTSUPP; 805 806 p->eee_enabled = e->eee_enabled; 807 808 if (!p->eee_enabled) { 809 bcmgenet_eee_enable_set(dev, false); 810 } else { 811 ret = phy_init_eee(priv->phydev, 0); 812 if (ret) { 813 netif_err(priv, hw, dev, "EEE initialization failed\n"); 814 return ret; 815 } 816 817 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 818 bcmgenet_eee_enable_set(dev, true); 819 } 820 821 return phy_ethtool_set_eee(priv->phydev, e); 822} 823 824static int bcmgenet_nway_reset(struct net_device *dev) 825{ 826 struct bcmgenet_priv *priv = netdev_priv(dev); 827 828 return genphy_restart_aneg(priv->phydev); 829} 830 831/* standard ethtool support functions. */ 832static struct ethtool_ops bcmgenet_ethtool_ops = { 833 .get_strings = bcmgenet_get_strings, 834 .get_sset_count = bcmgenet_get_sset_count, 835 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 836 .get_settings = bcmgenet_get_settings, 837 .set_settings = bcmgenet_set_settings, 838 .get_drvinfo = bcmgenet_get_drvinfo, 839 .get_link = ethtool_op_get_link, 840 .get_msglevel = bcmgenet_get_msglevel, 841 .set_msglevel = bcmgenet_set_msglevel, 842 .get_wol = bcmgenet_get_wol, 843 .set_wol = bcmgenet_set_wol, 844 .get_eee = bcmgenet_get_eee, 845 .set_eee = bcmgenet_set_eee, 846 .nway_reset = bcmgenet_nway_reset, 847}; 848 849/* Power down the unimac, based on mode. */ 850static int bcmgenet_power_down(struct bcmgenet_priv *priv, 851 enum bcmgenet_power_mode mode) 852{ 853 int ret = 0; 854 u32 reg; 855 856 switch (mode) { 857 case GENET_POWER_CABLE_SENSE: 858 phy_detach(priv->phydev); 859 break; 860 861 case GENET_POWER_WOL_MAGIC: 862 ret = bcmgenet_wol_power_down_cfg(priv, mode); 863 break; 864 865 case GENET_POWER_PASSIVE: 866 /* Power down LED */ 867 if (priv->hw_params->flags & GENET_HAS_EXT) { 868 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 869 reg |= (EXT_PWR_DOWN_PHY | 870 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 871 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 872 873 bcmgenet_phy_power_set(priv->dev, false); 874 } 875 break; 876 default: 877 break; 878 } 879 880 return 0; 881} 882 883static void bcmgenet_power_up(struct bcmgenet_priv *priv, 884 enum bcmgenet_power_mode mode) 885{ 886 u32 reg; 887 888 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 889 return; 890 891 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 892 893 switch (mode) { 894 case GENET_POWER_PASSIVE: 895 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY | 896 EXT_PWR_DOWN_BIAS); 897 /* fallthrough */ 898 case GENET_POWER_CABLE_SENSE: 899 /* enable APD */ 900 reg |= EXT_PWR_DN_EN_LD; 901 break; 902 case GENET_POWER_WOL_MAGIC: 903 bcmgenet_wol_power_up_cfg(priv, mode); 904 return; 905 default: 906 break; 907 } 908 909 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 910 911 if (mode == GENET_POWER_PASSIVE) 912 bcmgenet_mii_reset(priv->dev); 913} 914 915/* ioctl handle special commands that are not present in ethtool. */ 916static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 917{ 918 struct bcmgenet_priv *priv = netdev_priv(dev); 919 int val = 0; 920 921 if (!netif_running(dev)) 922 return -EINVAL; 923 924 switch (cmd) { 925 case SIOCGMIIPHY: 926 case SIOCGMIIREG: 927 case SIOCSMIIREG: 928 if (!priv->phydev) 929 val = -ENODEV; 930 else 931 val = phy_mii_ioctl(priv->phydev, rq, cmd); 932 break; 933 934 default: 935 val = -EINVAL; 936 break; 937 } 938 939 return val; 940} 941 942static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 943 struct bcmgenet_tx_ring *ring) 944{ 945 struct enet_cb *tx_cb_ptr; 946 947 tx_cb_ptr = ring->cbs; 948 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 949 950 /* Advancing local write pointer */ 951 if (ring->write_ptr == ring->end_ptr) 952 ring->write_ptr = ring->cb_ptr; 953 else 954 ring->write_ptr++; 955 956 return tx_cb_ptr; 957} 958 959/* Simple helper to free a control block's resources */ 960static void bcmgenet_free_cb(struct enet_cb *cb) 961{ 962 dev_kfree_skb_any(cb->skb); 963 cb->skb = NULL; 964 dma_unmap_addr_set(cb, dma_addr, 0); 965} 966 967static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 968{ 969 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 970 INTRL2_CPU_MASK_SET); 971} 972 973static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 974{ 975 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 976 INTRL2_CPU_MASK_CLEAR); 977} 978 979static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 980{ 981 bcmgenet_intrl2_1_writel(ring->priv, 982 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 983 INTRL2_CPU_MASK_SET); 984} 985 986static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 987{ 988 bcmgenet_intrl2_1_writel(ring->priv, 989 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 990 INTRL2_CPU_MASK_CLEAR); 991} 992 993static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 994{ 995 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 996 INTRL2_CPU_MASK_SET); 997} 998 999static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1000{ 1001 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1002 INTRL2_CPU_MASK_CLEAR); 1003} 1004 1005static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1006{ 1007 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1008 INTRL2_CPU_MASK_CLEAR); 1009} 1010 1011static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1012{ 1013 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1014 INTRL2_CPU_MASK_SET); 1015} 1016 1017/* Unlocked version of the reclaim routine */ 1018static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1019 struct bcmgenet_tx_ring *ring) 1020{ 1021 struct bcmgenet_priv *priv = netdev_priv(dev); 1022 struct enet_cb *tx_cb_ptr; 1023 struct netdev_queue *txq; 1024 unsigned int pkts_compl = 0; 1025 unsigned int c_index; 1026 unsigned int txbds_ready; 1027 unsigned int txbds_processed = 0; 1028 1029 /* Compute how many buffers are transmitted since last xmit call */ 1030 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 1031 c_index &= DMA_C_INDEX_MASK; 1032 1033 if (likely(c_index >= ring->c_index)) 1034 txbds_ready = c_index - ring->c_index; 1035 else 1036 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index; 1037 1038 netif_dbg(priv, tx_done, dev, 1039 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1040 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1041 1042 /* Reclaim transmitted buffers */ 1043 while (txbds_processed < txbds_ready) { 1044 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr]; 1045 if (tx_cb_ptr->skb) { 1046 pkts_compl++; 1047 dev->stats.tx_packets++; 1048 dev->stats.tx_bytes += tx_cb_ptr->skb->len; 1049 dma_unmap_single(&dev->dev, 1050 dma_unmap_addr(tx_cb_ptr, dma_addr), 1051 tx_cb_ptr->skb->len, 1052 DMA_TO_DEVICE); 1053 bcmgenet_free_cb(tx_cb_ptr); 1054 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) { 1055 dev->stats.tx_bytes += 1056 dma_unmap_len(tx_cb_ptr, dma_len); 1057 dma_unmap_page(&dev->dev, 1058 dma_unmap_addr(tx_cb_ptr, dma_addr), 1059 dma_unmap_len(tx_cb_ptr, dma_len), 1060 DMA_TO_DEVICE); 1061 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0); 1062 } 1063 1064 txbds_processed++; 1065 if (likely(ring->clean_ptr < ring->end_ptr)) 1066 ring->clean_ptr++; 1067 else 1068 ring->clean_ptr = ring->cb_ptr; 1069 } 1070 1071 ring->free_bds += txbds_processed; 1072 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK; 1073 1074 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1075 txq = netdev_get_tx_queue(dev, ring->queue); 1076 if (netif_tx_queue_stopped(txq)) 1077 netif_tx_wake_queue(txq); 1078 } 1079 1080 return pkts_compl; 1081} 1082 1083static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1084 struct bcmgenet_tx_ring *ring) 1085{ 1086 unsigned int released; 1087 unsigned long flags; 1088 1089 spin_lock_irqsave(&ring->lock, flags); 1090 released = __bcmgenet_tx_reclaim(dev, ring); 1091 spin_unlock_irqrestore(&ring->lock, flags); 1092 1093 return released; 1094} 1095 1096static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1097{ 1098 struct bcmgenet_tx_ring *ring = 1099 container_of(napi, struct bcmgenet_tx_ring, napi); 1100 unsigned int work_done = 0; 1101 1102 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring); 1103 1104 if (work_done == 0) { 1105 napi_complete(napi); 1106 ring->int_enable(ring); 1107 1108 return 0; 1109 } 1110 1111 return budget; 1112} 1113 1114static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1115{ 1116 struct bcmgenet_priv *priv = netdev_priv(dev); 1117 int i; 1118 1119 if (netif_is_multiqueue(dev)) { 1120 for (i = 0; i < priv->hw_params->tx_queues; i++) 1121 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1122 } 1123 1124 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1125} 1126 1127/* Transmits a single SKB (either head of a fragment or a single SKB) 1128 * caller must hold priv->lock 1129 */ 1130static int bcmgenet_xmit_single(struct net_device *dev, 1131 struct sk_buff *skb, 1132 u16 dma_desc_flags, 1133 struct bcmgenet_tx_ring *ring) 1134{ 1135 struct bcmgenet_priv *priv = netdev_priv(dev); 1136 struct device *kdev = &priv->pdev->dev; 1137 struct enet_cb *tx_cb_ptr; 1138 unsigned int skb_len; 1139 dma_addr_t mapping; 1140 u32 length_status; 1141 int ret; 1142 1143 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 1144 1145 if (unlikely(!tx_cb_ptr)) 1146 BUG(); 1147 1148 tx_cb_ptr->skb = skb; 1149 1150 skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb); 1151 1152 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE); 1153 ret = dma_mapping_error(kdev, mapping); 1154 if (ret) { 1155 priv->mib.tx_dma_failed++; 1156 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 1157 dev_kfree_skb(skb); 1158 return ret; 1159 } 1160 1161 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 1162 dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len); 1163 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | 1164 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) | 1165 DMA_TX_APPEND_CRC; 1166 1167 if (skb->ip_summed == CHECKSUM_PARTIAL) 1168 length_status |= DMA_TX_DO_CSUM; 1169 1170 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status); 1171 1172 return 0; 1173} 1174 1175/* Transmit a SKB fragment */ 1176static int bcmgenet_xmit_frag(struct net_device *dev, 1177 skb_frag_t *frag, 1178 u16 dma_desc_flags, 1179 struct bcmgenet_tx_ring *ring) 1180{ 1181 struct bcmgenet_priv *priv = netdev_priv(dev); 1182 struct device *kdev = &priv->pdev->dev; 1183 struct enet_cb *tx_cb_ptr; 1184 dma_addr_t mapping; 1185 int ret; 1186 1187 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 1188 1189 if (unlikely(!tx_cb_ptr)) 1190 BUG(); 1191 tx_cb_ptr->skb = NULL; 1192 1193 mapping = skb_frag_dma_map(kdev, frag, 0, 1194 skb_frag_size(frag), DMA_TO_DEVICE); 1195 ret = dma_mapping_error(kdev, mapping); 1196 if (ret) { 1197 priv->mib.tx_dma_failed++; 1198 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n", 1199 __func__); 1200 return ret; 1201 } 1202 1203 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 1204 dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size); 1205 1206 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, 1207 (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | 1208 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT)); 1209 1210 return 0; 1211} 1212 1213/* Reallocate the SKB to put enough headroom in front of it and insert 1214 * the transmit checksum offsets in the descriptors 1215 */ 1216static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev, 1217 struct sk_buff *skb) 1218{ 1219 struct status_64 *status = NULL; 1220 struct sk_buff *new_skb; 1221 u16 offset; 1222 u8 ip_proto; 1223 u16 ip_ver; 1224 u32 tx_csum_info; 1225 1226 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1227 /* If 64 byte status block enabled, must make sure skb has 1228 * enough headroom for us to insert 64B status block. 1229 */ 1230 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1231 dev_kfree_skb(skb); 1232 if (!new_skb) { 1233 dev->stats.tx_errors++; 1234 dev->stats.tx_dropped++; 1235 return NULL; 1236 } 1237 skb = new_skb; 1238 } 1239 1240 skb_push(skb, sizeof(*status)); 1241 status = (struct status_64 *)skb->data; 1242 1243 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1244 ip_ver = htons(skb->protocol); 1245 switch (ip_ver) { 1246 case ETH_P_IP: 1247 ip_proto = ip_hdr(skb)->protocol; 1248 break; 1249 case ETH_P_IPV6: 1250 ip_proto = ipv6_hdr(skb)->nexthdr; 1251 break; 1252 default: 1253 return skb; 1254 } 1255 1256 offset = skb_checksum_start_offset(skb) - sizeof(*status); 1257 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 1258 (offset + skb->csum_offset); 1259 1260 /* Set the length valid bit for TCP and UDP and just set 1261 * the special UDP flag for IPv4, else just set to 0. 1262 */ 1263 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) { 1264 tx_csum_info |= STATUS_TX_CSUM_LV; 1265 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP) 1266 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 1267 } else { 1268 tx_csum_info = 0; 1269 } 1270 1271 status->tx_csum_info = tx_csum_info; 1272 } 1273 1274 return skb; 1275} 1276 1277static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 1278{ 1279 struct bcmgenet_priv *priv = netdev_priv(dev); 1280 struct bcmgenet_tx_ring *ring = NULL; 1281 struct netdev_queue *txq; 1282 unsigned long flags = 0; 1283 int nr_frags, index; 1284 u16 dma_desc_flags; 1285 int ret; 1286 int i; 1287 1288 index = skb_get_queue_mapping(skb); 1289 /* Mapping strategy: 1290 * queue_mapping = 0, unclassified, packet xmited through ring16 1291 * queue_mapping = 1, goes to ring 0. (highest priority queue 1292 * queue_mapping = 2, goes to ring 1. 1293 * queue_mapping = 3, goes to ring 2. 1294 * queue_mapping = 4, goes to ring 3. 1295 */ 1296 if (index == 0) 1297 index = DESC_INDEX; 1298 else 1299 index -= 1; 1300 1301 nr_frags = skb_shinfo(skb)->nr_frags; 1302 ring = &priv->tx_rings[index]; 1303 txq = netdev_get_tx_queue(dev, ring->queue); 1304 1305 spin_lock_irqsave(&ring->lock, flags); 1306 if (ring->free_bds <= nr_frags + 1) { 1307 netif_tx_stop_queue(txq); 1308 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n", 1309 __func__, index, ring->queue); 1310 ret = NETDEV_TX_BUSY; 1311 goto out; 1312 } 1313 1314 if (skb_padto(skb, ETH_ZLEN)) { 1315 ret = NETDEV_TX_OK; 1316 goto out; 1317 } 1318 1319 /* set the SKB transmit checksum */ 1320 if (priv->desc_64b_en) { 1321 skb = bcmgenet_put_tx_csum(dev, skb); 1322 if (!skb) { 1323 ret = NETDEV_TX_OK; 1324 goto out; 1325 } 1326 } 1327 1328 dma_desc_flags = DMA_SOP; 1329 if (nr_frags == 0) 1330 dma_desc_flags |= DMA_EOP; 1331 1332 /* Transmit single SKB or head of fragment list */ 1333 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring); 1334 if (ret) { 1335 ret = NETDEV_TX_OK; 1336 goto out; 1337 } 1338 1339 /* xmit fragment */ 1340 for (i = 0; i < nr_frags; i++) { 1341 ret = bcmgenet_xmit_frag(dev, 1342 &skb_shinfo(skb)->frags[i], 1343 (i == nr_frags - 1) ? DMA_EOP : 0, 1344 ring); 1345 if (ret) { 1346 ret = NETDEV_TX_OK; 1347 goto out; 1348 } 1349 } 1350 1351 skb_tx_timestamp(skb); 1352 1353 /* Decrement total BD count and advance our write pointer */ 1354 ring->free_bds -= nr_frags + 1; 1355 ring->prod_index += nr_frags + 1; 1356 ring->prod_index &= DMA_P_INDEX_MASK; 1357 1358 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 1359 netif_tx_stop_queue(txq); 1360 1361 if (!skb->xmit_more || netif_xmit_stopped(txq)) 1362 /* Packets are ready, update producer index */ 1363 bcmgenet_tdma_ring_writel(priv, ring->index, 1364 ring->prod_index, TDMA_PROD_INDEX); 1365out: 1366 spin_unlock_irqrestore(&ring->lock, flags); 1367 1368 return ret; 1369} 1370 1371static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 1372 struct enet_cb *cb) 1373{ 1374 struct device *kdev = &priv->pdev->dev; 1375 struct sk_buff *skb; 1376 struct sk_buff *rx_skb; 1377 dma_addr_t mapping; 1378 1379 /* Allocate a new Rx skb */ 1380 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT); 1381 if (!skb) { 1382 priv->mib.alloc_rx_buff_failed++; 1383 netif_err(priv, rx_err, priv->dev, 1384 "%s: Rx skb allocation failed\n", __func__); 1385 return NULL; 1386 } 1387 1388 /* DMA-map the new Rx skb */ 1389 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 1390 DMA_FROM_DEVICE); 1391 if (dma_mapping_error(kdev, mapping)) { 1392 priv->mib.rx_dma_failed++; 1393 dev_kfree_skb_any(skb); 1394 netif_err(priv, rx_err, priv->dev, 1395 "%s: Rx skb DMA mapping failed\n", __func__); 1396 return NULL; 1397 } 1398 1399 /* Grab the current Rx skb from the ring and DMA-unmap it */ 1400 rx_skb = cb->skb; 1401 if (likely(rx_skb)) 1402 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr), 1403 priv->rx_buf_len, DMA_FROM_DEVICE); 1404 1405 /* Put the new Rx skb on the ring */ 1406 cb->skb = skb; 1407 dma_unmap_addr_set(cb, dma_addr, mapping); 1408 dmadesc_set_addr(priv, cb->bd_addr, mapping); 1409 1410 /* Return the current Rx skb to caller */ 1411 return rx_skb; 1412} 1413 1414/* bcmgenet_desc_rx - descriptor based rx process. 1415 * this could be called from bottom half, or from NAPI polling method. 1416 */ 1417static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 1418 unsigned int budget) 1419{ 1420 struct bcmgenet_priv *priv = ring->priv; 1421 struct net_device *dev = priv->dev; 1422 struct enet_cb *cb; 1423 struct sk_buff *skb; 1424 u32 dma_length_status; 1425 unsigned long dma_flag; 1426 int len; 1427 unsigned int rxpktprocessed = 0, rxpkttoprocess; 1428 unsigned int p_index; 1429 unsigned int discards; 1430 unsigned int chksum_ok = 0; 1431 1432 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 1433 1434 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 1435 DMA_P_INDEX_DISCARD_CNT_MASK; 1436 if (discards > ring->old_discards) { 1437 discards = discards - ring->old_discards; 1438 dev->stats.rx_missed_errors += discards; 1439 dev->stats.rx_errors += discards; 1440 ring->old_discards += discards; 1441 1442 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 1443 if (ring->old_discards >= 0xC000) { 1444 ring->old_discards = 0; 1445 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 1446 RDMA_PROD_INDEX); 1447 } 1448 } 1449 1450 p_index &= DMA_P_INDEX_MASK; 1451 1452 if (likely(p_index >= ring->c_index)) 1453 rxpkttoprocess = p_index - ring->c_index; 1454 else 1455 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index + 1456 p_index; 1457 1458 netif_dbg(priv, rx_status, dev, 1459 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 1460 1461 while ((rxpktprocessed < rxpkttoprocess) && 1462 (rxpktprocessed < budget)) { 1463 cb = &priv->rx_cbs[ring->read_ptr]; 1464 skb = bcmgenet_rx_refill(priv, cb); 1465 1466 if (unlikely(!skb)) { 1467 dev->stats.rx_dropped++; 1468 dev->stats.rx_errors++; 1469 goto next; 1470 } 1471 1472 if (!priv->desc_64b_en) { 1473 dma_length_status = 1474 dmadesc_get_length_status(priv, cb->bd_addr); 1475 } else { 1476 struct status_64 *status; 1477 1478 status = (struct status_64 *)skb->data; 1479 dma_length_status = status->length_status; 1480 } 1481 1482 /* DMA flags and length are still valid no matter how 1483 * we got the Receive Status Vector (64B RSB or register) 1484 */ 1485 dma_flag = dma_length_status & 0xffff; 1486 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 1487 1488 netif_dbg(priv, rx_status, dev, 1489 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 1490 __func__, p_index, ring->c_index, 1491 ring->read_ptr, dma_length_status); 1492 1493 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 1494 netif_err(priv, rx_status, dev, 1495 "dropping fragmented packet!\n"); 1496 dev->stats.rx_dropped++; 1497 dev->stats.rx_errors++; 1498 dev_kfree_skb_any(skb); 1499 goto next; 1500 } 1501 1502 /* report errors */ 1503 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 1504 DMA_RX_OV | 1505 DMA_RX_NO | 1506 DMA_RX_LG | 1507 DMA_RX_RXER))) { 1508 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 1509 (unsigned int)dma_flag); 1510 if (dma_flag & DMA_RX_CRC_ERROR) 1511 dev->stats.rx_crc_errors++; 1512 if (dma_flag & DMA_RX_OV) 1513 dev->stats.rx_over_errors++; 1514 if (dma_flag & DMA_RX_NO) 1515 dev->stats.rx_frame_errors++; 1516 if (dma_flag & DMA_RX_LG) 1517 dev->stats.rx_length_errors++; 1518 dev->stats.rx_dropped++; 1519 dev->stats.rx_errors++; 1520 dev_kfree_skb_any(skb); 1521 goto next; 1522 } /* error packet */ 1523 1524 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) && 1525 priv->desc_rxchk_en; 1526 1527 skb_put(skb, len); 1528 if (priv->desc_64b_en) { 1529 skb_pull(skb, 64); 1530 len -= 64; 1531 } 1532 1533 if (likely(chksum_ok)) 1534 skb->ip_summed = CHECKSUM_UNNECESSARY; 1535 1536 /* remove hardware 2bytes added for IP alignment */ 1537 skb_pull(skb, 2); 1538 len -= 2; 1539 1540 if (priv->crc_fwd_en) { 1541 skb_trim(skb, len - ETH_FCS_LEN); 1542 len -= ETH_FCS_LEN; 1543 } 1544 1545 /*Finish setting up the received SKB and send it to the kernel*/ 1546 skb->protocol = eth_type_trans(skb, priv->dev); 1547 dev->stats.rx_packets++; 1548 dev->stats.rx_bytes += len; 1549 if (dma_flag & DMA_RX_MULT) 1550 dev->stats.multicast++; 1551 1552 /* Notify kernel */ 1553 napi_gro_receive(&ring->napi, skb); 1554 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 1555 1556next: 1557 rxpktprocessed++; 1558 if (likely(ring->read_ptr < ring->end_ptr)) 1559 ring->read_ptr++; 1560 else 1561 ring->read_ptr = ring->cb_ptr; 1562 1563 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 1564 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 1565 } 1566 1567 return rxpktprocessed; 1568} 1569 1570/* Rx NAPI polling method */ 1571static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 1572{ 1573 struct bcmgenet_rx_ring *ring = container_of(napi, 1574 struct bcmgenet_rx_ring, napi); 1575 unsigned int work_done; 1576 1577 work_done = bcmgenet_desc_rx(ring, budget); 1578 1579 if (work_done < budget) { 1580 napi_complete(napi); 1581 ring->int_enable(ring); 1582 } 1583 1584 return work_done; 1585} 1586 1587/* Assign skb to RX DMA descriptor. */ 1588static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 1589 struct bcmgenet_rx_ring *ring) 1590{ 1591 struct enet_cb *cb; 1592 struct sk_buff *skb; 1593 int i; 1594 1595 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 1596 1597 /* loop here for each buffer needing assign */ 1598 for (i = 0; i < ring->size; i++) { 1599 cb = ring->cbs + i; 1600 skb = bcmgenet_rx_refill(priv, cb); 1601 if (skb) 1602 dev_kfree_skb_any(skb); 1603 if (!cb->skb) 1604 return -ENOMEM; 1605 } 1606 1607 return 0; 1608} 1609 1610static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 1611{ 1612 struct enet_cb *cb; 1613 int i; 1614 1615 for (i = 0; i < priv->num_rx_bds; i++) { 1616 cb = &priv->rx_cbs[i]; 1617 1618 if (dma_unmap_addr(cb, dma_addr)) { 1619 dma_unmap_single(&priv->dev->dev, 1620 dma_unmap_addr(cb, dma_addr), 1621 priv->rx_buf_len, DMA_FROM_DEVICE); 1622 dma_unmap_addr_set(cb, dma_addr, 0); 1623 } 1624 1625 if (cb->skb) 1626 bcmgenet_free_cb(cb); 1627 } 1628} 1629 1630static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 1631{ 1632 u32 reg; 1633 1634 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 1635 if (enable) 1636 reg |= mask; 1637 else 1638 reg &= ~mask; 1639 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 1640 1641 /* UniMAC stops on a packet boundary, wait for a full-size packet 1642 * to be processed 1643 */ 1644 if (enable == 0) 1645 usleep_range(1000, 2000); 1646} 1647 1648static int reset_umac(struct bcmgenet_priv *priv) 1649{ 1650 struct device *kdev = &priv->pdev->dev; 1651 unsigned int timeout = 0; 1652 u32 reg; 1653 1654 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 1655 bcmgenet_rbuf_ctrl_set(priv, 0); 1656 udelay(10); 1657 1658 /* disable MAC while updating its registers */ 1659 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 1660 1661 /* issue soft reset, wait for it to complete */ 1662 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 1663 while (timeout++ < 1000) { 1664 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 1665 if (!(reg & CMD_SW_RESET)) 1666 return 0; 1667 1668 udelay(1); 1669 } 1670 1671 if (timeout == 1000) { 1672 dev_err(kdev, 1673 "timeout waiting for MAC to come out of reset\n"); 1674 return -ETIMEDOUT; 1675 } 1676 1677 return 0; 1678} 1679 1680static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 1681{ 1682 /* Mask all interrupts.*/ 1683 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 1684 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 1685 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 1686 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 1687 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 1688 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 1689} 1690 1691static int init_umac(struct bcmgenet_priv *priv) 1692{ 1693 struct device *kdev = &priv->pdev->dev; 1694 int ret; 1695 u32 reg; 1696 u32 int0_enable = 0; 1697 u32 int1_enable = 0; 1698 int i; 1699 1700 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 1701 1702 ret = reset_umac(priv); 1703 if (ret) 1704 return ret; 1705 1706 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 1707 /* clear tx/rx counter */ 1708 bcmgenet_umac_writel(priv, 1709 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 1710 UMAC_MIB_CTRL); 1711 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 1712 1713 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 1714 1715 /* init rx registers, enable ip header optimization */ 1716 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 1717 reg |= RBUF_ALIGN_2B; 1718 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 1719 1720 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 1721 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 1722 1723 bcmgenet_intr_disable(priv); 1724 1725 /* Enable Rx default queue 16 interrupts */ 1726 int0_enable |= UMAC_IRQ_RXDMA_DONE; 1727 1728 /* Enable Tx default queue 16 interrupts */ 1729 int0_enable |= UMAC_IRQ_TXDMA_DONE; 1730 1731 /* Monitor cable plug/unplugged event for internal PHY */ 1732 if (phy_is_internal(priv->phydev)) { 1733 int0_enable |= UMAC_IRQ_LINK_EVENT; 1734 } else if (priv->ext_phy) { 1735 int0_enable |= UMAC_IRQ_LINK_EVENT; 1736 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 1737 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 1738 int0_enable |= UMAC_IRQ_LINK_EVENT; 1739 1740 reg = bcmgenet_bp_mc_get(priv); 1741 reg |= BIT(priv->hw_params->bp_in_en_shift); 1742 1743 /* bp_mask: back pressure mask */ 1744 if (netif_is_multiqueue(priv->dev)) 1745 reg |= priv->hw_params->bp_in_mask; 1746 else 1747 reg &= ~priv->hw_params->bp_in_mask; 1748 bcmgenet_bp_mc_set(priv, reg); 1749 } 1750 1751 /* Enable MDIO interrupts on GENET v3+ */ 1752 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 1753 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 1754 1755 /* Enable Rx priority queue interrupts */ 1756 for (i = 0; i < priv->hw_params->rx_queues; ++i) 1757 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i)); 1758 1759 /* Enable Tx priority queue interrupts */ 1760 for (i = 0; i < priv->hw_params->tx_queues; ++i) 1761 int1_enable |= (1 << i); 1762 1763 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 1764 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 1765 1766 /* Enable rx/tx engine.*/ 1767 dev_dbg(kdev, "done init umac\n"); 1768 1769 return 0; 1770} 1771 1772/* Initialize a Tx ring along with corresponding hardware registers */ 1773static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 1774 unsigned int index, unsigned int size, 1775 unsigned int start_ptr, unsigned int end_ptr) 1776{ 1777 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 1778 u32 words_per_bd = WORDS_PER_BD(priv); 1779 u32 flow_period_val = 0; 1780 1781 spin_lock_init(&ring->lock); 1782 ring->priv = priv; 1783 ring->index = index; 1784 if (index == DESC_INDEX) { 1785 ring->queue = 0; 1786 ring->int_enable = bcmgenet_tx_ring16_int_enable; 1787 ring->int_disable = bcmgenet_tx_ring16_int_disable; 1788 } else { 1789 ring->queue = index + 1; 1790 ring->int_enable = bcmgenet_tx_ring_int_enable; 1791 ring->int_disable = bcmgenet_tx_ring_int_disable; 1792 } 1793 ring->cbs = priv->tx_cbs + start_ptr; 1794 ring->size = size; 1795 ring->clean_ptr = start_ptr; 1796 ring->c_index = 0; 1797 ring->free_bds = size; 1798 ring->write_ptr = start_ptr; 1799 ring->cb_ptr = start_ptr; 1800 ring->end_ptr = end_ptr - 1; 1801 ring->prod_index = 0; 1802 1803 /* Set flow period for ring != 16 */ 1804 if (index != DESC_INDEX) 1805 flow_period_val = ENET_MAX_MTU_SIZE << 16; 1806 1807 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 1808 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 1809 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 1810 /* Disable rate control for now */ 1811 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 1812 TDMA_FLOW_PERIOD); 1813 bcmgenet_tdma_ring_writel(priv, index, 1814 ((size << DMA_RING_SIZE_SHIFT) | 1815 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 1816 1817 /* Set start and end address, read and write pointers */ 1818 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1819 DMA_START_ADDR); 1820 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1821 TDMA_READ_PTR); 1822 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1823 TDMA_WRITE_PTR); 1824 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 1825 DMA_END_ADDR); 1826} 1827 1828/* Initialize a RDMA ring */ 1829static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 1830 unsigned int index, unsigned int size, 1831 unsigned int start_ptr, unsigned int end_ptr) 1832{ 1833 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 1834 u32 words_per_bd = WORDS_PER_BD(priv); 1835 int ret; 1836 1837 ring->priv = priv; 1838 ring->index = index; 1839 if (index == DESC_INDEX) { 1840 ring->int_enable = bcmgenet_rx_ring16_int_enable; 1841 ring->int_disable = bcmgenet_rx_ring16_int_disable; 1842 } else { 1843 ring->int_enable = bcmgenet_rx_ring_int_enable; 1844 ring->int_disable = bcmgenet_rx_ring_int_disable; 1845 } 1846 ring->cbs = priv->rx_cbs + start_ptr; 1847 ring->size = size; 1848 ring->c_index = 0; 1849 ring->read_ptr = start_ptr; 1850 ring->cb_ptr = start_ptr; 1851 ring->end_ptr = end_ptr - 1; 1852 1853 ret = bcmgenet_alloc_rx_buffers(priv, ring); 1854 if (ret) 1855 return ret; 1856 1857 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 1858 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 1859 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 1860 bcmgenet_rdma_ring_writel(priv, index, 1861 ((size << DMA_RING_SIZE_SHIFT) | 1862 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 1863 bcmgenet_rdma_ring_writel(priv, index, 1864 (DMA_FC_THRESH_LO << 1865 DMA_XOFF_THRESHOLD_SHIFT) | 1866 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 1867 1868 /* Set start and end address, read and write pointers */ 1869 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 1870 DMA_START_ADDR); 1871 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 1872 RDMA_READ_PTR); 1873 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 1874 RDMA_WRITE_PTR); 1875 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 1876 DMA_END_ADDR); 1877 1878 return ret; 1879} 1880 1881static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv) 1882{ 1883 unsigned int i; 1884 struct bcmgenet_tx_ring *ring; 1885 1886 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1887 ring = &priv->tx_rings[i]; 1888 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); 1889 } 1890 1891 ring = &priv->tx_rings[DESC_INDEX]; 1892 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); 1893} 1894 1895static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 1896{ 1897 unsigned int i; 1898 struct bcmgenet_tx_ring *ring; 1899 1900 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1901 ring = &priv->tx_rings[i]; 1902 napi_enable(&ring->napi); 1903 } 1904 1905 ring = &priv->tx_rings[DESC_INDEX]; 1906 napi_enable(&ring->napi); 1907} 1908 1909static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 1910{ 1911 unsigned int i; 1912 struct bcmgenet_tx_ring *ring; 1913 1914 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1915 ring = &priv->tx_rings[i]; 1916 napi_disable(&ring->napi); 1917 } 1918 1919 ring = &priv->tx_rings[DESC_INDEX]; 1920 napi_disable(&ring->napi); 1921} 1922 1923static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 1924{ 1925 unsigned int i; 1926 struct bcmgenet_tx_ring *ring; 1927 1928 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1929 ring = &priv->tx_rings[i]; 1930 netif_napi_del(&ring->napi); 1931 } 1932 1933 ring = &priv->tx_rings[DESC_INDEX]; 1934 netif_napi_del(&ring->napi); 1935} 1936 1937/* Initialize Tx queues 1938 * 1939 * Queues 0-3 are priority-based, each one has 32 descriptors, 1940 * with queue 0 being the highest priority queue. 1941 * 1942 * Queue 16 is the default Tx queue with 1943 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 1944 * 1945 * The transmit control block pool is then partitioned as follows: 1946 * - Tx queue 0 uses tx_cbs[0..31] 1947 * - Tx queue 1 uses tx_cbs[32..63] 1948 * - Tx queue 2 uses tx_cbs[64..95] 1949 * - Tx queue 3 uses tx_cbs[96..127] 1950 * - Tx queue 16 uses tx_cbs[128..255] 1951 */ 1952static void bcmgenet_init_tx_queues(struct net_device *dev) 1953{ 1954 struct bcmgenet_priv *priv = netdev_priv(dev); 1955 u32 i, dma_enable; 1956 u32 dma_ctrl, ring_cfg; 1957 u32 dma_priority[3] = {0, 0, 0}; 1958 1959 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 1960 dma_enable = dma_ctrl & DMA_EN; 1961 dma_ctrl &= ~DMA_EN; 1962 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 1963 1964 dma_ctrl = 0; 1965 ring_cfg = 0; 1966 1967 /* Enable strict priority arbiter mode */ 1968 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 1969 1970 /* Initialize Tx priority queues */ 1971 for (i = 0; i < priv->hw_params->tx_queues; i++) { 1972 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 1973 i * priv->hw_params->tx_bds_per_q, 1974 (i + 1) * priv->hw_params->tx_bds_per_q); 1975 ring_cfg |= (1 << i); 1976 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 1977 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 1978 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 1979 } 1980 1981 /* Initialize Tx default queue 16 */ 1982 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 1983 priv->hw_params->tx_queues * 1984 priv->hw_params->tx_bds_per_q, 1985 TOTAL_DESC); 1986 ring_cfg |= (1 << DESC_INDEX); 1987 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 1988 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 1989 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 1990 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 1991 1992 /* Set Tx queue priorities */ 1993 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 1994 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 1995 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 1996 1997 /* Initialize Tx NAPI */ 1998 bcmgenet_init_tx_napi(priv); 1999 2000 /* Enable Tx queues */ 2001 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2002 2003 /* Enable Tx DMA */ 2004 if (dma_enable) 2005 dma_ctrl |= DMA_EN; 2006 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2007} 2008 2009static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv) 2010{ 2011 unsigned int i; 2012 struct bcmgenet_rx_ring *ring; 2013 2014 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2015 ring = &priv->rx_rings[i]; 2016 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); 2017 } 2018 2019 ring = &priv->rx_rings[DESC_INDEX]; 2020 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); 2021} 2022 2023static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2024{ 2025 unsigned int i; 2026 struct bcmgenet_rx_ring *ring; 2027 2028 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2029 ring = &priv->rx_rings[i]; 2030 napi_enable(&ring->napi); 2031 } 2032 2033 ring = &priv->rx_rings[DESC_INDEX]; 2034 napi_enable(&ring->napi); 2035} 2036 2037static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2038{ 2039 unsigned int i; 2040 struct bcmgenet_rx_ring *ring; 2041 2042 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2043 ring = &priv->rx_rings[i]; 2044 napi_disable(&ring->napi); 2045 } 2046 2047 ring = &priv->rx_rings[DESC_INDEX]; 2048 napi_disable(&ring->napi); 2049} 2050 2051static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2052{ 2053 unsigned int i; 2054 struct bcmgenet_rx_ring *ring; 2055 2056 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2057 ring = &priv->rx_rings[i]; 2058 netif_napi_del(&ring->napi); 2059 } 2060 2061 ring = &priv->rx_rings[DESC_INDEX]; 2062 netif_napi_del(&ring->napi); 2063} 2064 2065/* Initialize Rx queues 2066 * 2067 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2068 * used to direct traffic to these queues. 2069 * 2070 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2071 */ 2072static int bcmgenet_init_rx_queues(struct net_device *dev) 2073{ 2074 struct bcmgenet_priv *priv = netdev_priv(dev); 2075 u32 i; 2076 u32 dma_enable; 2077 u32 dma_ctrl; 2078 u32 ring_cfg; 2079 int ret; 2080 2081 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2082 dma_enable = dma_ctrl & DMA_EN; 2083 dma_ctrl &= ~DMA_EN; 2084 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2085 2086 dma_ctrl = 0; 2087 ring_cfg = 0; 2088 2089 /* Initialize Rx priority queues */ 2090 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2091 ret = bcmgenet_init_rx_ring(priv, i, 2092 priv->hw_params->rx_bds_per_q, 2093 i * priv->hw_params->rx_bds_per_q, 2094 (i + 1) * 2095 priv->hw_params->rx_bds_per_q); 2096 if (ret) 2097 return ret; 2098 2099 ring_cfg |= (1 << i); 2100 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2101 } 2102 2103 /* Initialize Rx default queue 16 */ 2104 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2105 priv->hw_params->rx_queues * 2106 priv->hw_params->rx_bds_per_q, 2107 TOTAL_DESC); 2108 if (ret) 2109 return ret; 2110 2111 ring_cfg |= (1 << DESC_INDEX); 2112 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2113 2114 /* Initialize Rx NAPI */ 2115 bcmgenet_init_rx_napi(priv); 2116 2117 /* Enable rings */ 2118 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2119 2120 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2121 if (dma_enable) 2122 dma_ctrl |= DMA_EN; 2123 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2124 2125 return 0; 2126} 2127 2128static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2129{ 2130 int ret = 0; 2131 int timeout = 0; 2132 u32 reg; 2133 2134 /* Disable TDMA to stop add more frames in TX DMA */ 2135 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2136 reg &= ~DMA_EN; 2137 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2138 2139 /* Check TDMA status register to confirm TDMA is disabled */ 2140 while (timeout++ < DMA_TIMEOUT_VAL) { 2141 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2142 if (reg & DMA_DISABLED) 2143 break; 2144 2145 udelay(1); 2146 } 2147 2148 if (timeout == DMA_TIMEOUT_VAL) { 2149 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2150 ret = -ETIMEDOUT; 2151 } 2152 2153 /* Wait 10ms for packet drain in both tx and rx dma */ 2154 usleep_range(10000, 20000); 2155 2156 /* Disable RDMA */ 2157 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2158 reg &= ~DMA_EN; 2159 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2160 2161 timeout = 0; 2162 /* Check RDMA status register to confirm RDMA is disabled */ 2163 while (timeout++ < DMA_TIMEOUT_VAL) { 2164 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 2165 if (reg & DMA_DISABLED) 2166 break; 2167 2168 udelay(1); 2169 } 2170 2171 if (timeout == DMA_TIMEOUT_VAL) { 2172 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 2173 ret = -ETIMEDOUT; 2174 } 2175 2176 return ret; 2177} 2178 2179static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 2180{ 2181 int i; 2182 2183 bcmgenet_fini_rx_napi(priv); 2184 bcmgenet_fini_tx_napi(priv); 2185 2186 /* disable DMA */ 2187 bcmgenet_dma_teardown(priv); 2188 2189 for (i = 0; i < priv->num_tx_bds; i++) { 2190 if (priv->tx_cbs[i].skb != NULL) { 2191 dev_kfree_skb(priv->tx_cbs[i].skb); 2192 priv->tx_cbs[i].skb = NULL; 2193 } 2194 } 2195 2196 bcmgenet_free_rx_buffers(priv); 2197 kfree(priv->rx_cbs); 2198 kfree(priv->tx_cbs); 2199} 2200 2201/* init_edma: Initialize DMA control register */ 2202static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 2203{ 2204 int ret; 2205 unsigned int i; 2206 struct enet_cb *cb; 2207 2208 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2209 2210 /* Initialize common Rx ring structures */ 2211 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 2212 priv->num_rx_bds = TOTAL_DESC; 2213 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 2214 GFP_KERNEL); 2215 if (!priv->rx_cbs) 2216 return -ENOMEM; 2217 2218 for (i = 0; i < priv->num_rx_bds; i++) { 2219 cb = priv->rx_cbs + i; 2220 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 2221 } 2222 2223 /* Initialize common TX ring structures */ 2224 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 2225 priv->num_tx_bds = TOTAL_DESC; 2226 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 2227 GFP_KERNEL); 2228 if (!priv->tx_cbs) { 2229 kfree(priv->rx_cbs); 2230 return -ENOMEM; 2231 } 2232 2233 for (i = 0; i < priv->num_tx_bds; i++) { 2234 cb = priv->tx_cbs + i; 2235 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 2236 } 2237 2238 /* Init rDma */ 2239 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2240 2241 /* Initialize Rx queues */ 2242 ret = bcmgenet_init_rx_queues(priv->dev); 2243 if (ret) { 2244 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 2245 bcmgenet_free_rx_buffers(priv); 2246 kfree(priv->rx_cbs); 2247 kfree(priv->tx_cbs); 2248 return ret; 2249 } 2250 2251 /* Init tDma */ 2252 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2253 2254 /* Initialize Tx queues */ 2255 bcmgenet_init_tx_queues(priv->dev); 2256 2257 return 0; 2258} 2259 2260/* Interrupt bottom half */ 2261static void bcmgenet_irq_task(struct work_struct *work) 2262{ 2263 struct bcmgenet_priv *priv = container_of( 2264 work, struct bcmgenet_priv, bcmgenet_irq_work); 2265 2266 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 2267 2268 if (priv->irq0_stat & UMAC_IRQ_MPD_R) { 2269 priv->irq0_stat &= ~UMAC_IRQ_MPD_R; 2270 netif_dbg(priv, wol, priv->dev, 2271 "magic packet detected, waking up\n"); 2272 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 2273 } 2274 2275 /* Link UP/DOWN event */ 2276 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 2277 (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) { 2278 phy_mac_interrupt(priv->phydev, 2279 !!(priv->irq0_stat & UMAC_IRQ_LINK_UP)); 2280 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT; 2281 } 2282} 2283 2284/* bcmgenet_isr1: handle Rx and Tx priority queues */ 2285static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 2286{ 2287 struct bcmgenet_priv *priv = dev_id; 2288 struct bcmgenet_rx_ring *rx_ring; 2289 struct bcmgenet_tx_ring *tx_ring; 2290 unsigned int index; 2291 2292 /* Save irq status for bottom-half processing. */ 2293 priv->irq1_stat = 2294 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 2295 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 2296 2297 /* clear interrupts */ 2298 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR); 2299 2300 netif_dbg(priv, intr, priv->dev, 2301 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat); 2302 2303 /* Check Rx priority queue interrupts */ 2304 for (index = 0; index < priv->hw_params->rx_queues; index++) { 2305 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 2306 continue; 2307 2308 rx_ring = &priv->rx_rings[index]; 2309 2310 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2311 rx_ring->int_disable(rx_ring); 2312 __napi_schedule(&rx_ring->napi); 2313 } 2314 } 2315 2316 /* Check Tx priority queue interrupts */ 2317 for (index = 0; index < priv->hw_params->tx_queues; index++) { 2318 if (!(priv->irq1_stat & BIT(index))) 2319 continue; 2320 2321 tx_ring = &priv->tx_rings[index]; 2322 2323 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2324 tx_ring->int_disable(tx_ring); 2325 __napi_schedule(&tx_ring->napi); 2326 } 2327 } 2328 2329 return IRQ_HANDLED; 2330} 2331 2332/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 2333static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 2334{ 2335 struct bcmgenet_priv *priv = dev_id; 2336 struct bcmgenet_rx_ring *rx_ring; 2337 struct bcmgenet_tx_ring *tx_ring; 2338 2339 /* Save irq status for bottom-half processing. */ 2340 priv->irq0_stat = 2341 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 2342 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 2343 2344 /* clear interrupts */ 2345 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); 2346 2347 netif_dbg(priv, intr, priv->dev, 2348 "IRQ=0x%x\n", priv->irq0_stat); 2349 2350 if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) { 2351 rx_ring = &priv->rx_rings[DESC_INDEX]; 2352 2353 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2354 rx_ring->int_disable(rx_ring); 2355 __napi_schedule(&rx_ring->napi); 2356 } 2357 } 2358 2359 if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) { 2360 tx_ring = &priv->tx_rings[DESC_INDEX]; 2361 2362 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2363 tx_ring->int_disable(tx_ring); 2364 __napi_schedule(&tx_ring->napi); 2365 } 2366 } 2367 2368 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R | 2369 UMAC_IRQ_PHY_DET_F | 2370 UMAC_IRQ_LINK_EVENT | 2371 UMAC_IRQ_HFB_SM | 2372 UMAC_IRQ_HFB_MM | 2373 UMAC_IRQ_MPD_R)) { 2374 /* all other interested interrupts handled in bottom half */ 2375 schedule_work(&priv->bcmgenet_irq_work); 2376 } 2377 2378 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 2379 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 2380 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2381 wake_up(&priv->wq); 2382 } 2383 2384 return IRQ_HANDLED; 2385} 2386 2387static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 2388{ 2389 struct bcmgenet_priv *priv = dev_id; 2390 2391 pm_wakeup_event(&priv->pdev->dev, 0); 2392 2393 return IRQ_HANDLED; 2394} 2395 2396static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 2397{ 2398 u32 reg; 2399 2400 reg = bcmgenet_rbuf_ctrl_get(priv); 2401 reg |= BIT(1); 2402 bcmgenet_rbuf_ctrl_set(priv, reg); 2403 udelay(10); 2404 2405 reg &= ~BIT(1); 2406 bcmgenet_rbuf_ctrl_set(priv, reg); 2407 udelay(10); 2408} 2409 2410static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 2411 unsigned char *addr) 2412{ 2413 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) | 2414 (addr[2] << 8) | addr[3], UMAC_MAC0); 2415 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1); 2416} 2417 2418/* Returns a reusable dma control register value */ 2419static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 2420{ 2421 u32 reg; 2422 u32 dma_ctrl; 2423 2424 /* disable DMA */ 2425 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 2426 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2427 reg &= ~dma_ctrl; 2428 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2429 2430 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2431 reg &= ~dma_ctrl; 2432 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2433 2434 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 2435 udelay(10); 2436 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 2437 2438 return dma_ctrl; 2439} 2440 2441static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 2442{ 2443 u32 reg; 2444 2445 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2446 reg |= dma_ctrl; 2447 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2448 2449 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2450 reg |= dma_ctrl; 2451 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2452} 2453 2454static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv, 2455 u32 f_index) 2456{ 2457 u32 offset; 2458 u32 reg; 2459 2460 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 2461 reg = bcmgenet_hfb_reg_readl(priv, offset); 2462 return !!(reg & (1 << (f_index % 32))); 2463} 2464 2465static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 2466{ 2467 u32 offset; 2468 u32 reg; 2469 2470 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 2471 reg = bcmgenet_hfb_reg_readl(priv, offset); 2472 reg |= (1 << (f_index % 32)); 2473 bcmgenet_hfb_reg_writel(priv, reg, offset); 2474} 2475 2476static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 2477 u32 f_index, u32 rx_queue) 2478{ 2479 u32 offset; 2480 u32 reg; 2481 2482 offset = f_index / 8; 2483 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 2484 reg &= ~(0xF << (4 * (f_index % 8))); 2485 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 2486 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 2487} 2488 2489static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 2490 u32 f_index, u32 f_length) 2491{ 2492 u32 offset; 2493 u32 reg; 2494 2495 offset = HFB_FLT_LEN_V3PLUS + 2496 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 2497 sizeof(u32); 2498 reg = bcmgenet_hfb_reg_readl(priv, offset); 2499 reg &= ~(0xFF << (8 * (f_index % 4))); 2500 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 2501 bcmgenet_hfb_reg_writel(priv, reg, offset); 2502} 2503 2504static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv) 2505{ 2506 u32 f_index; 2507 2508 for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++) 2509 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index)) 2510 return f_index; 2511 2512 return -ENOMEM; 2513} 2514 2515/* bcmgenet_hfb_add_filter 2516 * 2517 * Add new filter to Hardware Filter Block to match and direct Rx traffic to 2518 * desired Rx queue. 2519 * 2520 * f_data is an array of unsigned 32-bit integers where each 32-bit integer 2521 * provides filter data for 2 bytes (4 nibbles) of Rx frame: 2522 * 2523 * bits 31:20 - unused 2524 * bit 19 - nibble 0 match enable 2525 * bit 18 - nibble 1 match enable 2526 * bit 17 - nibble 2 match enable 2527 * bit 16 - nibble 3 match enable 2528 * bits 15:12 - nibble 0 data 2529 * bits 11:8 - nibble 1 data 2530 * bits 7:4 - nibble 2 data 2531 * bits 3:0 - nibble 3 data 2532 * 2533 * Example: 2534 * In order to match: 2535 * - Ethernet frame type = 0x0800 (IP) 2536 * - IP version field = 4 2537 * - IP protocol field = 0x11 (UDP) 2538 * 2539 * The following filter is needed: 2540 * u32 hfb_filter_ipv4_udp[] = { 2541 * Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 2542 * Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000, 2543 * Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011, 2544 * }; 2545 * 2546 * To add the filter to HFB and direct the traffic to Rx queue 0, call: 2547 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp, 2548 * ARRAY_SIZE(hfb_filter_ipv4_udp), 0); 2549 */ 2550int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data, 2551 u32 f_length, u32 rx_queue) 2552{ 2553 int f_index; 2554 u32 i; 2555 2556 f_index = bcmgenet_hfb_find_unused_filter(priv); 2557 if (f_index < 0) 2558 return -ENOMEM; 2559 2560 if (f_length > priv->hw_params->hfb_filter_size) 2561 return -EINVAL; 2562 2563 for (i = 0; i < f_length; i++) 2564 bcmgenet_hfb_writel(priv, f_data[i], 2565 (f_index * priv->hw_params->hfb_filter_size + i) * 2566 sizeof(u32)); 2567 2568 bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length); 2569 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue); 2570 bcmgenet_hfb_enable_filter(priv, f_index); 2571 bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL); 2572 2573 return 0; 2574} 2575 2576/* bcmgenet_hfb_clear 2577 * 2578 * Clear Hardware Filter Block and disable all filtering. 2579 */ 2580static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 2581{ 2582 u32 i; 2583 2584 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 2585 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 2586 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 2587 2588 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 2589 bcmgenet_rdma_writel(priv, 0x0, i); 2590 2591 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 2592 bcmgenet_hfb_reg_writel(priv, 0x0, 2593 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 2594 2595 for (i = 0; i < priv->hw_params->hfb_filter_cnt * 2596 priv->hw_params->hfb_filter_size; i++) 2597 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32)); 2598} 2599 2600static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 2601{ 2602 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 2603 return; 2604 2605 bcmgenet_hfb_clear(priv); 2606} 2607 2608static void bcmgenet_netif_start(struct net_device *dev) 2609{ 2610 struct bcmgenet_priv *priv = netdev_priv(dev); 2611 2612 /* Start the network engine */ 2613 bcmgenet_enable_rx_napi(priv); 2614 bcmgenet_enable_tx_napi(priv); 2615 2616 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 2617 2618 netif_tx_start_all_queues(dev); 2619 2620 phy_start(priv->phydev); 2621} 2622 2623static int bcmgenet_open(struct net_device *dev) 2624{ 2625 struct bcmgenet_priv *priv = netdev_priv(dev); 2626 unsigned long dma_ctrl; 2627 u32 reg; 2628 int ret; 2629 2630 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 2631 2632 /* Turn on the clock */ 2633 if (!IS_ERR(priv->clk)) 2634 clk_prepare_enable(priv->clk); 2635 2636 /* If this is an internal GPHY, power it back on now, before UniMAC is 2637 * brought out of reset as absolutely no UniMAC activity is allowed 2638 */ 2639 if (phy_is_internal(priv->phydev)) 2640 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 2641 2642 /* take MAC out of reset */ 2643 bcmgenet_umac_reset(priv); 2644 2645 ret = init_umac(priv); 2646 if (ret) 2647 goto err_clk_disable; 2648 2649 /* disable ethernet MAC while updating its registers */ 2650 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); 2651 2652 /* Make sure we reflect the value of CRC_CMD_FWD */ 2653 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2654 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 2655 2656 bcmgenet_set_hw_addr(priv, dev->dev_addr); 2657 2658 if (phy_is_internal(priv->phydev)) { 2659 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 2660 reg |= EXT_ENERGY_DET_MASK; 2661 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 2662 } 2663 2664 /* Disable RX/TX DMA and flush TX queues */ 2665 dma_ctrl = bcmgenet_dma_disable(priv); 2666 2667 /* Reinitialize TDMA and RDMA and SW housekeeping */ 2668 ret = bcmgenet_init_dma(priv); 2669 if (ret) { 2670 netdev_err(dev, "failed to initialize DMA\n"); 2671 goto err_clk_disable; 2672 } 2673 2674 /* Always enable ring 16 - descriptor ring */ 2675 bcmgenet_enable_dma(priv, dma_ctrl); 2676 2677 /* HFB init */ 2678 bcmgenet_hfb_init(priv); 2679 2680 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 2681 dev->name, priv); 2682 if (ret < 0) { 2683 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 2684 goto err_fini_dma; 2685 } 2686 2687 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 2688 dev->name, priv); 2689 if (ret < 0) { 2690 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 2691 goto err_irq0; 2692 } 2693 2694 /* Re-configure the port multiplexer towards the PHY device */ 2695 bcmgenet_mii_config(priv->dev, false); 2696 2697 phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup, 2698 priv->phy_interface); 2699 2700 bcmgenet_netif_start(dev); 2701 2702 return 0; 2703 2704err_irq0: 2705 free_irq(priv->irq0, dev); 2706err_fini_dma: 2707 bcmgenet_fini_dma(priv); 2708err_clk_disable: 2709 if (!IS_ERR(priv->clk)) 2710 clk_disable_unprepare(priv->clk); 2711 return ret; 2712} 2713 2714static void bcmgenet_netif_stop(struct net_device *dev) 2715{ 2716 struct bcmgenet_priv *priv = netdev_priv(dev); 2717 2718 netif_tx_stop_all_queues(dev); 2719 phy_stop(priv->phydev); 2720 bcmgenet_intr_disable(priv); 2721 bcmgenet_disable_rx_napi(priv); 2722 bcmgenet_disable_tx_napi(priv); 2723 2724 /* Wait for pending work items to complete. Since interrupts are 2725 * disabled no new work will be scheduled. 2726 */ 2727 cancel_work_sync(&priv->bcmgenet_irq_work); 2728 2729 priv->old_link = -1; 2730 priv->old_speed = -1; 2731 priv->old_duplex = -1; 2732 priv->old_pause = -1; 2733} 2734 2735static int bcmgenet_close(struct net_device *dev) 2736{ 2737 struct bcmgenet_priv *priv = netdev_priv(dev); 2738 int ret; 2739 2740 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 2741 2742 bcmgenet_netif_stop(dev); 2743 2744 /* Really kill the PHY state machine and disconnect from it */ 2745 phy_disconnect(priv->phydev); 2746 2747 /* Disable MAC receive */ 2748 umac_enable_set(priv, CMD_RX_EN, false); 2749 2750 ret = bcmgenet_dma_teardown(priv); 2751 if (ret) 2752 return ret; 2753 2754 /* Disable MAC transmit. TX DMA disabled have to done before this */ 2755 umac_enable_set(priv, CMD_TX_EN, false); 2756 2757 /* tx reclaim */ 2758 bcmgenet_tx_reclaim_all(dev); 2759 bcmgenet_fini_dma(priv); 2760 2761 free_irq(priv->irq0, priv); 2762 free_irq(priv->irq1, priv); 2763 2764 if (phy_is_internal(priv->phydev)) 2765 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 2766 2767 if (!IS_ERR(priv->clk)) 2768 clk_disable_unprepare(priv->clk); 2769 2770 return ret; 2771} 2772 2773static void bcmgenet_timeout(struct net_device *dev) 2774{ 2775 struct bcmgenet_priv *priv = netdev_priv(dev); 2776 2777 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 2778 2779 dev->trans_start = jiffies; 2780 2781 dev->stats.tx_errors++; 2782 2783 netif_tx_wake_all_queues(dev); 2784} 2785 2786#define MAX_MC_COUNT 16 2787 2788static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 2789 unsigned char *addr, 2790 int *i, 2791 int *mc) 2792{ 2793 u32 reg; 2794 2795 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 2796 UMAC_MDF_ADDR + (*i * 4)); 2797 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 2798 addr[4] << 8 | addr[5], 2799 UMAC_MDF_ADDR + ((*i + 1) * 4)); 2800 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL); 2801 reg |= (1 << (MAX_MC_COUNT - *mc)); 2802 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 2803 *i += 2; 2804 (*mc)++; 2805} 2806 2807static void bcmgenet_set_rx_mode(struct net_device *dev) 2808{ 2809 struct bcmgenet_priv *priv = netdev_priv(dev); 2810 struct netdev_hw_addr *ha; 2811 int i, mc; 2812 u32 reg; 2813 2814 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 2815 2816 /* Promiscuous mode */ 2817 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2818 if (dev->flags & IFF_PROMISC) { 2819 reg |= CMD_PROMISC; 2820 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2821 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 2822 return; 2823 } else { 2824 reg &= ~CMD_PROMISC; 2825 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2826 } 2827 2828 /* UniMac doesn't support ALLMULTI */ 2829 if (dev->flags & IFF_ALLMULTI) { 2830 netdev_warn(dev, "ALLMULTI is not supported\n"); 2831 return; 2832 } 2833 2834 /* update MDF filter */ 2835 i = 0; 2836 mc = 0; 2837 /* Broadcast */ 2838 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc); 2839 /* my own address.*/ 2840 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc); 2841 /* Unicast list*/ 2842 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc)) 2843 return; 2844 2845 if (!netdev_uc_empty(dev)) 2846 netdev_for_each_uc_addr(ha, dev) 2847 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 2848 /* Multicast */ 2849 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc)) 2850 return; 2851 2852 netdev_for_each_mc_addr(ha, dev) 2853 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 2854} 2855 2856/* Set the hardware MAC address. */ 2857static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 2858{ 2859 struct sockaddr *addr = p; 2860 2861 /* Setting the MAC address at the hardware level is not possible 2862 * without disabling the UniMAC RX/TX enable bits. 2863 */ 2864 if (netif_running(dev)) 2865 return -EBUSY; 2866 2867 ether_addr_copy(dev->dev_addr, addr->sa_data); 2868 2869 return 0; 2870} 2871 2872static const struct net_device_ops bcmgenet_netdev_ops = { 2873 .ndo_open = bcmgenet_open, 2874 .ndo_stop = bcmgenet_close, 2875 .ndo_start_xmit = bcmgenet_xmit, 2876 .ndo_tx_timeout = bcmgenet_timeout, 2877 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 2878 .ndo_set_mac_address = bcmgenet_set_mac_addr, 2879 .ndo_do_ioctl = bcmgenet_ioctl, 2880 .ndo_set_features = bcmgenet_set_features, 2881}; 2882 2883/* Array of GENET hardware parameters/characteristics */ 2884static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 2885 [GENET_V1] = { 2886 .tx_queues = 0, 2887 .tx_bds_per_q = 0, 2888 .rx_queues = 0, 2889 .rx_bds_per_q = 0, 2890 .bp_in_en_shift = 16, 2891 .bp_in_mask = 0xffff, 2892 .hfb_filter_cnt = 16, 2893 .qtag_mask = 0x1F, 2894 .hfb_offset = 0x1000, 2895 .rdma_offset = 0x2000, 2896 .tdma_offset = 0x3000, 2897 .words_per_bd = 2, 2898 }, 2899 [GENET_V2] = { 2900 .tx_queues = 4, 2901 .tx_bds_per_q = 32, 2902 .rx_queues = 0, 2903 .rx_bds_per_q = 0, 2904 .bp_in_en_shift = 16, 2905 .bp_in_mask = 0xffff, 2906 .hfb_filter_cnt = 16, 2907 .qtag_mask = 0x1F, 2908 .tbuf_offset = 0x0600, 2909 .hfb_offset = 0x1000, 2910 .hfb_reg_offset = 0x2000, 2911 .rdma_offset = 0x3000, 2912 .tdma_offset = 0x4000, 2913 .words_per_bd = 2, 2914 .flags = GENET_HAS_EXT, 2915 }, 2916 [GENET_V3] = { 2917 .tx_queues = 4, 2918 .tx_bds_per_q = 32, 2919 .rx_queues = 0, 2920 .rx_bds_per_q = 0, 2921 .bp_in_en_shift = 17, 2922 .bp_in_mask = 0x1ffff, 2923 .hfb_filter_cnt = 48, 2924 .hfb_filter_size = 128, 2925 .qtag_mask = 0x3F, 2926 .tbuf_offset = 0x0600, 2927 .hfb_offset = 0x8000, 2928 .hfb_reg_offset = 0xfc00, 2929 .rdma_offset = 0x10000, 2930 .tdma_offset = 0x11000, 2931 .words_per_bd = 2, 2932 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 2933 GENET_HAS_MOCA_LINK_DET, 2934 }, 2935 [GENET_V4] = { 2936 .tx_queues = 4, 2937 .tx_bds_per_q = 32, 2938 .rx_queues = 0, 2939 .rx_bds_per_q = 0, 2940 .bp_in_en_shift = 17, 2941 .bp_in_mask = 0x1ffff, 2942 .hfb_filter_cnt = 48, 2943 .hfb_filter_size = 128, 2944 .qtag_mask = 0x3F, 2945 .tbuf_offset = 0x0600, 2946 .hfb_offset = 0x8000, 2947 .hfb_reg_offset = 0xfc00, 2948 .rdma_offset = 0x2000, 2949 .tdma_offset = 0x4000, 2950 .words_per_bd = 3, 2951 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 2952 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 2953 }, 2954}; 2955 2956/* Infer hardware parameters from the detected GENET version */ 2957static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 2958{ 2959 struct bcmgenet_hw_params *params; 2960 u32 reg; 2961 u8 major; 2962 u16 gphy_rev; 2963 2964 if (GENET_IS_V4(priv)) { 2965 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 2966 genet_dma_ring_regs = genet_dma_ring_regs_v4; 2967 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 2968 priv->version = GENET_V4; 2969 } else if (GENET_IS_V3(priv)) { 2970 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 2971 genet_dma_ring_regs = genet_dma_ring_regs_v123; 2972 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 2973 priv->version = GENET_V3; 2974 } else if (GENET_IS_V2(priv)) { 2975 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 2976 genet_dma_ring_regs = genet_dma_ring_regs_v123; 2977 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 2978 priv->version = GENET_V2; 2979 } else if (GENET_IS_V1(priv)) { 2980 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 2981 genet_dma_ring_regs = genet_dma_ring_regs_v123; 2982 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 2983 priv->version = GENET_V1; 2984 } 2985 2986 /* enum genet_version starts at 1 */ 2987 priv->hw_params = &bcmgenet_hw_params[priv->version]; 2988 params = priv->hw_params; 2989 2990 /* Read GENET HW version */ 2991 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 2992 major = (reg >> 24 & 0x0f); 2993 if (major == 5) 2994 major = 4; 2995 else if (major == 0) 2996 major = 1; 2997 if (major != priv->version) { 2998 dev_err(&priv->pdev->dev, 2999 "GENET version mismatch, got: %d, configured for: %d\n", 3000 major, priv->version); 3001 } 3002 3003 /* Print the GENET core version */ 3004 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3005 major, (reg >> 16) & 0x0f, reg & 0xffff); 3006 3007 /* Store the integrated PHY revision for the MDIO probing function 3008 * to pass this information to the PHY driver. The PHY driver expects 3009 * to find the PHY major revision in bits 15:8 while the GENET register 3010 * stores that information in bits 7:0, account for that. 3011 * 3012 * On newer chips, starting with PHY revision G0, a new scheme is 3013 * deployed similar to the Starfighter 2 switch with GPHY major 3014 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3015 * is reserved as well as special value 0x01ff, we have a small 3016 * heuristic to check for the new GPHY revision and re-arrange things 3017 * so the GPHY driver is happy. 3018 */ 3019 gphy_rev = reg & 0xffff; 3020 3021 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3022 if ((gphy_rev & 0xf0) != 0) 3023 priv->gphy_rev = gphy_rev << 8; 3024 3025 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3026 else if ((gphy_rev & 0xff00) != 0) 3027 priv->gphy_rev = gphy_rev; 3028 3029 /* This is reserved so should require special treatment */ 3030 else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3031 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3032 return; 3033 } 3034 3035#ifdef CONFIG_PHYS_ADDR_T_64BIT 3036 if (!(params->flags & GENET_HAS_40BITS)) 3037 pr_warn("GENET does not support 40-bits PA\n"); 3038#endif 3039 3040 pr_debug("Configuration for version: %d\n" 3041 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3042 "BP << en: %2d, BP msk: 0x%05x\n" 3043 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3044 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3045 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3046 "Words/BD: %d\n", 3047 priv->version, 3048 params->tx_queues, params->tx_bds_per_q, 3049 params->rx_queues, params->rx_bds_per_q, 3050 params->bp_in_en_shift, params->bp_in_mask, 3051 params->hfb_filter_cnt, params->qtag_mask, 3052 params->tbuf_offset, params->hfb_offset, 3053 params->hfb_reg_offset, 3054 params->rdma_offset, params->tdma_offset, 3055 params->words_per_bd); 3056} 3057 3058static const struct of_device_id bcmgenet_match[] = { 3059 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 }, 3060 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 }, 3061 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 }, 3062 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 }, 3063 { }, 3064}; 3065 3066static int bcmgenet_probe(struct platform_device *pdev) 3067{ 3068 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3069 struct device_node *dn = pdev->dev.of_node; 3070 const struct of_device_id *of_id = NULL; 3071 struct bcmgenet_priv *priv; 3072 struct net_device *dev; 3073 const void *macaddr; 3074 struct resource *r; 3075 int err = -EIO; 3076 3077 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3078 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3079 GENET_MAX_MQ_CNT + 1); 3080 if (!dev) { 3081 dev_err(&pdev->dev, "can't allocate net device\n"); 3082 return -ENOMEM; 3083 } 3084 3085 if (dn) { 3086 of_id = of_match_node(bcmgenet_match, dn); 3087 if (!of_id) 3088 return -EINVAL; 3089 } 3090 3091 priv = netdev_priv(dev); 3092 priv->irq0 = platform_get_irq(pdev, 0); 3093 priv->irq1 = platform_get_irq(pdev, 1); 3094 priv->wol_irq = platform_get_irq(pdev, 2); 3095 if (!priv->irq0 || !priv->irq1) { 3096 dev_err(&pdev->dev, "can't find IRQs\n"); 3097 err = -EINVAL; 3098 goto err; 3099 } 3100 3101 if (dn) { 3102 macaddr = of_get_mac_address(dn); 3103 if (!macaddr) { 3104 dev_err(&pdev->dev, "can't find MAC address\n"); 3105 err = -EINVAL; 3106 goto err; 3107 } 3108 } else { 3109 macaddr = pd->mac_address; 3110 } 3111 3112 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3113 priv->base = devm_ioremap_resource(&pdev->dev, r); 3114 if (IS_ERR(priv->base)) { 3115 err = PTR_ERR(priv->base); 3116 goto err; 3117 } 3118 3119 SET_NETDEV_DEV(dev, &pdev->dev); 3120 dev_set_drvdata(&pdev->dev, dev); 3121 ether_addr_copy(dev->dev_addr, macaddr); 3122 dev->watchdog_timeo = 2 * HZ; 3123 dev->ethtool_ops = &bcmgenet_ethtool_ops; 3124 dev->netdev_ops = &bcmgenet_netdev_ops; 3125 3126 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 3127 3128 /* Set hardware features */ 3129 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | 3130 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 3131 3132 /* Request the WOL interrupt and advertise suspend if available */ 3133 priv->wol_irq_disabled = true; 3134 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0, 3135 dev->name, priv); 3136 if (!err) 3137 device_set_wakeup_capable(&pdev->dev, 1); 3138 3139 /* Set the needed headroom to account for any possible 3140 * features enabling/disabling at runtime 3141 */ 3142 dev->needed_headroom += 64; 3143 3144 netdev_boot_setup_check(dev); 3145 3146 priv->dev = dev; 3147 priv->pdev = pdev; 3148 if (of_id) 3149 priv->version = (enum bcmgenet_version)of_id->data; 3150 else 3151 priv->version = pd->genet_version; 3152 3153 priv->clk = devm_clk_get(&priv->pdev->dev, "enet"); 3154 if (IS_ERR(priv->clk)) 3155 dev_warn(&priv->pdev->dev, "failed to get enet clock\n"); 3156 3157 if (!IS_ERR(priv->clk)) 3158 clk_prepare_enable(priv->clk); 3159 3160 bcmgenet_set_hw_params(priv); 3161 3162 /* Mii wait queue */ 3163 init_waitqueue_head(&priv->wq); 3164 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 3165 priv->rx_buf_len = RX_BUF_LENGTH; 3166 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 3167 3168 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol"); 3169 if (IS_ERR(priv->clk_wol)) 3170 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n"); 3171 3172 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee"); 3173 if (IS_ERR(priv->clk_eee)) { 3174 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n"); 3175 priv->clk_eee = NULL; 3176 } 3177 3178 err = reset_umac(priv); 3179 if (err) 3180 goto err_clk_disable; 3181 3182 err = bcmgenet_mii_init(dev); 3183 if (err) 3184 goto err_clk_disable; 3185 3186 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 3187 * just the ring 16 descriptor based TX 3188 */ 3189 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 3190 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 3191 3192 /* libphy will determine the link state */ 3193 netif_carrier_off(dev); 3194 3195 /* Turn off the main clock, WOL clock is handled separately */ 3196 if (!IS_ERR(priv->clk)) 3197 clk_disable_unprepare(priv->clk); 3198 3199 err = register_netdev(dev); 3200 if (err) 3201 goto err; 3202 3203 return err; 3204 3205err_clk_disable: 3206 if (!IS_ERR(priv->clk)) 3207 clk_disable_unprepare(priv->clk); 3208err: 3209 free_netdev(dev); 3210 return err; 3211} 3212 3213static int bcmgenet_remove(struct platform_device *pdev) 3214{ 3215 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 3216 3217 dev_set_drvdata(&pdev->dev, NULL); 3218 unregister_netdev(priv->dev); 3219 bcmgenet_mii_exit(priv->dev); 3220 free_netdev(priv->dev); 3221 3222 return 0; 3223} 3224 3225#ifdef CONFIG_PM_SLEEP 3226static int bcmgenet_suspend(struct device *d) 3227{ 3228 struct net_device *dev = dev_get_drvdata(d); 3229 struct bcmgenet_priv *priv = netdev_priv(dev); 3230 int ret; 3231 3232 if (!netif_running(dev)) 3233 return 0; 3234 3235 bcmgenet_netif_stop(dev); 3236 3237 phy_suspend(priv->phydev); 3238 3239 netif_device_detach(dev); 3240 3241 /* Disable MAC receive */ 3242 umac_enable_set(priv, CMD_RX_EN, false); 3243 3244 ret = bcmgenet_dma_teardown(priv); 3245 if (ret) 3246 return ret; 3247 3248 /* Disable MAC transmit. TX DMA disabled have to done before this */ 3249 umac_enable_set(priv, CMD_TX_EN, false); 3250 3251 /* tx reclaim */ 3252 bcmgenet_tx_reclaim_all(dev); 3253 bcmgenet_fini_dma(priv); 3254 3255 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 3256 if (device_may_wakeup(d) && priv->wolopts) { 3257 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 3258 clk_prepare_enable(priv->clk_wol); 3259 } else if (phy_is_internal(priv->phydev)) { 3260 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3261 } 3262 3263 /* Turn off the clocks */ 3264 clk_disable_unprepare(priv->clk); 3265 3266 return ret; 3267} 3268 3269static int bcmgenet_resume(struct device *d) 3270{ 3271 struct net_device *dev = dev_get_drvdata(d); 3272 struct bcmgenet_priv *priv = netdev_priv(dev); 3273 unsigned long dma_ctrl; 3274 int ret; 3275 u32 reg; 3276 3277 if (!netif_running(dev)) 3278 return 0; 3279 3280 /* Turn on the clock */ 3281 ret = clk_prepare_enable(priv->clk); 3282 if (ret) 3283 return ret; 3284 3285 /* If this is an internal GPHY, power it back on now, before UniMAC is 3286 * brought out of reset as absolutely no UniMAC activity is allowed 3287 */ 3288 if (phy_is_internal(priv->phydev)) 3289 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3290 3291 bcmgenet_umac_reset(priv); 3292 3293 ret = init_umac(priv); 3294 if (ret) 3295 goto out_clk_disable; 3296 3297 /* From WOL-enabled suspend, switch to regular clock */ 3298 if (priv->wolopts) 3299 clk_disable_unprepare(priv->clk_wol); 3300 3301 phy_init_hw(priv->phydev); 3302 /* Speed settings must be restored */ 3303 bcmgenet_mii_config(priv->dev, false); 3304 3305 /* disable ethernet MAC while updating its registers */ 3306 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); 3307 3308 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3309 3310 if (phy_is_internal(priv->phydev)) { 3311 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 3312 reg |= EXT_ENERGY_DET_MASK; 3313 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 3314 } 3315 3316 if (priv->wolopts) 3317 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 3318 3319 /* Disable RX/TX DMA and flush TX queues */ 3320 dma_ctrl = bcmgenet_dma_disable(priv); 3321 3322 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3323 ret = bcmgenet_init_dma(priv); 3324 if (ret) { 3325 netdev_err(dev, "failed to initialize DMA\n"); 3326 goto out_clk_disable; 3327 } 3328 3329 /* Always enable ring 16 - descriptor ring */ 3330 bcmgenet_enable_dma(priv, dma_ctrl); 3331 3332 netif_device_attach(dev); 3333 3334 phy_resume(priv->phydev); 3335 3336 if (priv->eee.eee_enabled) 3337 bcmgenet_eee_enable_set(dev, true); 3338 3339 bcmgenet_netif_start(dev); 3340 3341 return 0; 3342 3343out_clk_disable: 3344 clk_disable_unprepare(priv->clk); 3345 return ret; 3346} 3347#endif /* CONFIG_PM_SLEEP */ 3348 3349static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume); 3350 3351static struct platform_driver bcmgenet_driver = { 3352 .probe = bcmgenet_probe, 3353 .remove = bcmgenet_remove, 3354 .driver = { 3355 .name = "bcmgenet", 3356 .of_match_table = bcmgenet_match, 3357 .pm = &bcmgenet_pm_ops, 3358 }, 3359}; 3360module_platform_driver(bcmgenet_driver); 3361 3362MODULE_AUTHOR("Broadcom Corporation"); 3363MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 3364MODULE_ALIAS("platform:bcmgenet"); 3365MODULE_LICENSE("GPL"); 3366