1/* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/kernel.h>
23#include <linux/device.h>  /* for dev_info() */
24#include <linux/timer.h>
25#include <linux/errno.h>
26#include <linux/ioport.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>
29#include <linux/pci.h>
30#include <linux/aer.h>
31#include <linux/init.h>
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
35#include <linux/dma-mapping.h>
36#include <linux/bitops.h>
37#include <linux/irq.h>
38#include <linux/delay.h>
39#include <asm/byteorder.h>
40#include <linux/time.h>
41#include <linux/ethtool.h>
42#include <linux/mii.h>
43#include <linux/if_vlan.h>
44#include <linux/crash_dump.h>
45#include <net/ip.h>
46#include <net/ipv6.h>
47#include <net/tcp.h>
48#include <net/vxlan.h>
49#include <net/checksum.h>
50#include <net/ip6_checksum.h>
51#include <linux/workqueue.h>
52#include <linux/crc32.h>
53#include <linux/crc32c.h>
54#include <linux/prefetch.h>
55#include <linux/zlib.h>
56#include <linux/io.h>
57#include <linux/semaphore.h>
58#include <linux/stringify.h>
59#include <linux/vmalloc.h>
60
61#include "bnx2x.h"
62#include "bnx2x_init.h"
63#include "bnx2x_init_ops.h"
64#include "bnx2x_cmn.h"
65#include "bnx2x_vfpf.h"
66#include "bnx2x_dcb.h"
67#include "bnx2x_sp.h"
68#include <linux/firmware.h>
69#include "bnx2x_fw_file_hdr.h"
70/* FW files */
71#define FW_FILE_VERSION					\
72	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
73	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
74	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
75	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
76#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
77#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
78#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
79
80/* Time in jiffies before concluding the transmitter is hung */
81#define TX_TIMEOUT		(5*HZ)
82
83static char version[] =
84	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
85	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
86
87MODULE_AUTHOR("Eliezer Tamir");
88MODULE_DESCRIPTION("Broadcom NetXtreme II "
89		   "BCM57710/57711/57711E/"
90		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
91		   "57840/57840_MF Driver");
92MODULE_LICENSE("GPL");
93MODULE_VERSION(DRV_MODULE_VERSION);
94MODULE_FIRMWARE(FW_FILE_NAME_E1);
95MODULE_FIRMWARE(FW_FILE_NAME_E1H);
96MODULE_FIRMWARE(FW_FILE_NAME_E2);
97
98int bnx2x_num_queues;
99module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
100MODULE_PARM_DESC(num_queues,
101		 " Set number of queues (default is as a number of CPUs)");
102
103static int disable_tpa;
104module_param(disable_tpa, int, S_IRUGO);
105MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106
107static int int_mode;
108module_param(int_mode, int, S_IRUGO);
109MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
110				"(1 INT#x; 2 MSI)");
111
112static int dropless_fc;
113module_param(dropless_fc, int, S_IRUGO);
114MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
115
116static int mrrs = -1;
117module_param(mrrs, int, S_IRUGO);
118MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
119
120static int debug;
121module_param(debug, int, S_IRUGO);
122MODULE_PARM_DESC(debug, " Default debug msglevel");
123
124static struct workqueue_struct *bnx2x_wq;
125struct workqueue_struct *bnx2x_iov_wq;
126
127struct bnx2x_mac_vals {
128	u32 xmac_addr;
129	u32 xmac_val;
130	u32 emac_addr;
131	u32 emac_val;
132	u32 umac_addr[2];
133	u32 umac_val[2];
134	u32 bmac_addr;
135	u32 bmac_val[2];
136};
137
138enum bnx2x_board_type {
139	BCM57710 = 0,
140	BCM57711,
141	BCM57711E,
142	BCM57712,
143	BCM57712_MF,
144	BCM57712_VF,
145	BCM57800,
146	BCM57800_MF,
147	BCM57800_VF,
148	BCM57810,
149	BCM57810_MF,
150	BCM57810_VF,
151	BCM57840_4_10,
152	BCM57840_2_20,
153	BCM57840_MF,
154	BCM57840_VF,
155	BCM57811,
156	BCM57811_MF,
157	BCM57840_O,
158	BCM57840_MFO,
159	BCM57811_VF
160};
161
162/* indexed by board_type, above */
163static struct {
164	char *name;
165} board_info[] = {
166	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
167	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
168	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
169	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
170	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
171	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
172	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
173	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
174	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
175	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
176	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
177	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
178	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
179	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
180	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
181	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
182	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
183	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
184	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
185	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
186	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
187};
188
189#ifndef PCI_DEVICE_ID_NX2_57710
190#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
191#endif
192#ifndef PCI_DEVICE_ID_NX2_57711
193#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
194#endif
195#ifndef PCI_DEVICE_ID_NX2_57711E
196#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
197#endif
198#ifndef PCI_DEVICE_ID_NX2_57712
199#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
200#endif
201#ifndef PCI_DEVICE_ID_NX2_57712_MF
202#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
203#endif
204#ifndef PCI_DEVICE_ID_NX2_57712_VF
205#define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
206#endif
207#ifndef PCI_DEVICE_ID_NX2_57800
208#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
209#endif
210#ifndef PCI_DEVICE_ID_NX2_57800_MF
211#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
212#endif
213#ifndef PCI_DEVICE_ID_NX2_57800_VF
214#define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
215#endif
216#ifndef PCI_DEVICE_ID_NX2_57810
217#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
218#endif
219#ifndef PCI_DEVICE_ID_NX2_57810_MF
220#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
221#endif
222#ifndef PCI_DEVICE_ID_NX2_57840_O
223#define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
224#endif
225#ifndef PCI_DEVICE_ID_NX2_57810_VF
226#define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
227#endif
228#ifndef PCI_DEVICE_ID_NX2_57840_4_10
229#define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
230#endif
231#ifndef PCI_DEVICE_ID_NX2_57840_2_20
232#define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
233#endif
234#ifndef PCI_DEVICE_ID_NX2_57840_MFO
235#define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
236#endif
237#ifndef PCI_DEVICE_ID_NX2_57840_MF
238#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
239#endif
240#ifndef PCI_DEVICE_ID_NX2_57840_VF
241#define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
242#endif
243#ifndef PCI_DEVICE_ID_NX2_57811
244#define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
245#endif
246#ifndef PCI_DEVICE_ID_NX2_57811_MF
247#define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
248#endif
249#ifndef PCI_DEVICE_ID_NX2_57811_VF
250#define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
251#endif
252
253static const struct pci_device_id bnx2x_pci_tbl[] = {
254	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
255	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
256	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
257	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
258	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
259	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
260	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
261	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
262	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
263	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
264	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
265	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
266	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
267	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
268	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
269	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
270	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
271	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
272	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
273	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
274	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
275	{ 0 }
276};
277
278MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
279
280/* Global resources for unloading a previously loaded device */
281#define BNX2X_PREV_WAIT_NEEDED 1
282static DEFINE_SEMAPHORE(bnx2x_prev_sem);
283static LIST_HEAD(bnx2x_prev_list);
284
285/* Forward declaration */
286static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
287static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
288static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
289
290/****************************************************************************
291* General service functions
292****************************************************************************/
293
294static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
295
296static void __storm_memset_dma_mapping(struct bnx2x *bp,
297				       u32 addr, dma_addr_t mapping)
298{
299	REG_WR(bp,  addr, U64_LO(mapping));
300	REG_WR(bp,  addr + 4, U64_HI(mapping));
301}
302
303static void storm_memset_spq_addr(struct bnx2x *bp,
304				  dma_addr_t mapping, u16 abs_fid)
305{
306	u32 addr = XSEM_REG_FAST_MEMORY +
307			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
308
309	__storm_memset_dma_mapping(bp, addr, mapping);
310}
311
312static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
313				  u16 pf_id)
314{
315	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
316		pf_id);
317	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
318		pf_id);
319	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
320		pf_id);
321	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
322		pf_id);
323}
324
325static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
326				 u8 enable)
327{
328	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
329		enable);
330	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
331		enable);
332	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
333		enable);
334	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
335		enable);
336}
337
338static void storm_memset_eq_data(struct bnx2x *bp,
339				 struct event_ring_data *eq_data,
340				u16 pfid)
341{
342	size_t size = sizeof(struct event_ring_data);
343
344	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
345
346	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
347}
348
349static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
350				 u16 pfid)
351{
352	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
353	REG_WR16(bp, addr, eq_prod);
354}
355
356/* used only at init
357 * locking is done by mcp
358 */
359static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
360{
361	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
362	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
363	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
364			       PCICFG_VENDOR_ID_OFFSET);
365}
366
367static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
368{
369	u32 val;
370
371	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
372	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
373	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
374			       PCICFG_VENDOR_ID_OFFSET);
375
376	return val;
377}
378
379#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
380#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
381#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
382#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
383#define DMAE_DP_DST_NONE	"dst_addr [none]"
384
385static void bnx2x_dp_dmae(struct bnx2x *bp,
386			  struct dmae_command *dmae, int msglvl)
387{
388	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
389	int i;
390
391	switch (dmae->opcode & DMAE_COMMAND_DST) {
392	case DMAE_CMD_DST_PCI:
393		if (src_type == DMAE_CMD_SRC_PCI)
394			DP(msglvl, "DMAE: opcode 0x%08x\n"
395			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
396			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
397			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
398			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
399			   dmae->comp_addr_hi, dmae->comp_addr_lo,
400			   dmae->comp_val);
401		else
402			DP(msglvl, "DMAE: opcode 0x%08x\n"
403			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
404			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
405			   dmae->opcode, dmae->src_addr_lo >> 2,
406			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
407			   dmae->comp_addr_hi, dmae->comp_addr_lo,
408			   dmae->comp_val);
409		break;
410	case DMAE_CMD_DST_GRC:
411		if (src_type == DMAE_CMD_SRC_PCI)
412			DP(msglvl, "DMAE: opcode 0x%08x\n"
413			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
414			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
415			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416			   dmae->len, dmae->dst_addr_lo >> 2,
417			   dmae->comp_addr_hi, dmae->comp_addr_lo,
418			   dmae->comp_val);
419		else
420			DP(msglvl, "DMAE: opcode 0x%08x\n"
421			   "src [%08x], len [%d*4], dst [%08x]\n"
422			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
423			   dmae->opcode, dmae->src_addr_lo >> 2,
424			   dmae->len, dmae->dst_addr_lo >> 2,
425			   dmae->comp_addr_hi, dmae->comp_addr_lo,
426			   dmae->comp_val);
427		break;
428	default:
429		if (src_type == DMAE_CMD_SRC_PCI)
430			DP(msglvl, "DMAE: opcode 0x%08x\n"
431			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
432			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
433			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
435			   dmae->comp_val);
436		else
437			DP(msglvl, "DMAE: opcode 0x%08x\n"
438			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
439			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
440			   dmae->opcode, dmae->src_addr_lo >> 2,
441			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
442			   dmae->comp_val);
443		break;
444	}
445
446	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
447		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
448		   i, *(((u32 *)dmae) + i));
449}
450
451/* copy command into DMAE command memory and set DMAE command go */
452void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
453{
454	u32 cmd_offset;
455	int i;
456
457	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
458	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
459		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
460	}
461	REG_WR(bp, dmae_reg_go_c[idx], 1);
462}
463
464u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
465{
466	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
467			   DMAE_CMD_C_ENABLE);
468}
469
470u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
471{
472	return opcode & ~DMAE_CMD_SRC_RESET;
473}
474
475u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
476			     bool with_comp, u8 comp_type)
477{
478	u32 opcode = 0;
479
480	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
481		   (dst_type << DMAE_COMMAND_DST_SHIFT));
482
483	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
484
485	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
486	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
487		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
488	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
489
490#ifdef __BIG_ENDIAN
491	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
492#else
493	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
494#endif
495	if (with_comp)
496		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
497	return opcode;
498}
499
500void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
501				      struct dmae_command *dmae,
502				      u8 src_type, u8 dst_type)
503{
504	memset(dmae, 0, sizeof(struct dmae_command));
505
506	/* set the opcode */
507	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
508					 true, DMAE_COMP_PCI);
509
510	/* fill in the completion parameters */
511	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
512	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
513	dmae->comp_val = DMAE_COMP_VAL;
514}
515
516/* issue a dmae command over the init-channel and wait for completion */
517int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
518			       u32 *comp)
519{
520	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
521	int rc = 0;
522
523	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
524
525	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
526	 * as long as this code is called both from syscall context and
527	 * from ndo_set_rx_mode() flow that may be called from BH.
528	 */
529
530	spin_lock_bh(&bp->dmae_lock);
531
532	/* reset completion */
533	*comp = 0;
534
535	/* post the command on the channel used for initializations */
536	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
537
538	/* wait for completion */
539	udelay(5);
540	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
541
542		if (!cnt ||
543		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
544		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
545			BNX2X_ERR("DMAE timeout!\n");
546			rc = DMAE_TIMEOUT;
547			goto unlock;
548		}
549		cnt--;
550		udelay(50);
551	}
552	if (*comp & DMAE_PCI_ERR_FLAG) {
553		BNX2X_ERR("DMAE PCI error!\n");
554		rc = DMAE_PCI_ERROR;
555	}
556
557unlock:
558
559	spin_unlock_bh(&bp->dmae_lock);
560
561	return rc;
562}
563
564void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
565		      u32 len32)
566{
567	int rc;
568	struct dmae_command dmae;
569
570	if (!bp->dmae_ready) {
571		u32 *data = bnx2x_sp(bp, wb_data[0]);
572
573		if (CHIP_IS_E1(bp))
574			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
575		else
576			bnx2x_init_str_wr(bp, dst_addr, data, len32);
577		return;
578	}
579
580	/* set opcode and fixed command fields */
581	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
582
583	/* fill in addresses and len */
584	dmae.src_addr_lo = U64_LO(dma_addr);
585	dmae.src_addr_hi = U64_HI(dma_addr);
586	dmae.dst_addr_lo = dst_addr >> 2;
587	dmae.dst_addr_hi = 0;
588	dmae.len = len32;
589
590	/* issue the command and wait for completion */
591	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
592	if (rc) {
593		BNX2X_ERR("DMAE returned failure %d\n", rc);
594#ifdef BNX2X_STOP_ON_ERROR
595		bnx2x_panic();
596#endif
597	}
598}
599
600void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
601{
602	int rc;
603	struct dmae_command dmae;
604
605	if (!bp->dmae_ready) {
606		u32 *data = bnx2x_sp(bp, wb_data[0]);
607		int i;
608
609		if (CHIP_IS_E1(bp))
610			for (i = 0; i < len32; i++)
611				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
612		else
613			for (i = 0; i < len32; i++)
614				data[i] = REG_RD(bp, src_addr + i*4);
615
616		return;
617	}
618
619	/* set opcode and fixed command fields */
620	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
621
622	/* fill in addresses and len */
623	dmae.src_addr_lo = src_addr >> 2;
624	dmae.src_addr_hi = 0;
625	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
626	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
627	dmae.len = len32;
628
629	/* issue the command and wait for completion */
630	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
631	if (rc) {
632		BNX2X_ERR("DMAE returned failure %d\n", rc);
633#ifdef BNX2X_STOP_ON_ERROR
634		bnx2x_panic();
635#endif
636	}
637}
638
639static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
640				      u32 addr, u32 len)
641{
642	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
643	int offset = 0;
644
645	while (len > dmae_wr_max) {
646		bnx2x_write_dmae(bp, phys_addr + offset,
647				 addr + offset, dmae_wr_max);
648		offset += dmae_wr_max * 4;
649		len -= dmae_wr_max;
650	}
651
652	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
653}
654
655enum storms {
656	   XSTORM,
657	   TSTORM,
658	   CSTORM,
659	   USTORM,
660	   MAX_STORMS
661};
662
663#define STORMS_NUM 4
664#define REGS_IN_ENTRY 4
665
666static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
667					      enum storms storm,
668					      int entry)
669{
670	switch (storm) {
671	case XSTORM:
672		return XSTORM_ASSERT_LIST_OFFSET(entry);
673	case TSTORM:
674		return TSTORM_ASSERT_LIST_OFFSET(entry);
675	case CSTORM:
676		return CSTORM_ASSERT_LIST_OFFSET(entry);
677	case USTORM:
678		return USTORM_ASSERT_LIST_OFFSET(entry);
679	case MAX_STORMS:
680	default:
681		BNX2X_ERR("unknown storm\n");
682	}
683	return -EINVAL;
684}
685
686static int bnx2x_mc_assert(struct bnx2x *bp)
687{
688	char last_idx;
689	int i, j, rc = 0;
690	enum storms storm;
691	u32 regs[REGS_IN_ENTRY];
692	u32 bar_storm_intmem[STORMS_NUM] = {
693		BAR_XSTRORM_INTMEM,
694		BAR_TSTRORM_INTMEM,
695		BAR_CSTRORM_INTMEM,
696		BAR_USTRORM_INTMEM
697	};
698	u32 storm_assert_list_index[STORMS_NUM] = {
699		XSTORM_ASSERT_LIST_INDEX_OFFSET,
700		TSTORM_ASSERT_LIST_INDEX_OFFSET,
701		CSTORM_ASSERT_LIST_INDEX_OFFSET,
702		USTORM_ASSERT_LIST_INDEX_OFFSET
703	};
704	char *storms_string[STORMS_NUM] = {
705		"XSTORM",
706		"TSTORM",
707		"CSTORM",
708		"USTORM"
709	};
710
711	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
712		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
713				   storm_assert_list_index[storm]);
714		if (last_idx)
715			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
716				  storms_string[storm], last_idx);
717
718		/* print the asserts */
719		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
720			/* read a single assert entry */
721			for (j = 0; j < REGS_IN_ENTRY; j++)
722				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
723					  bnx2x_get_assert_list_entry(bp,
724								      storm,
725								      i) +
726					  sizeof(u32) * j);
727
728			/* log entry if it contains a valid assert */
729			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
730				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
731					  storms_string[storm], i, regs[3],
732					  regs[2], regs[1], regs[0]);
733				rc++;
734			} else {
735				break;
736			}
737		}
738	}
739
740	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
741		  CHIP_IS_E1(bp) ? "everest1" :
742		  CHIP_IS_E1H(bp) ? "everest1h" :
743		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
744		  BCM_5710_FW_MAJOR_VERSION,
745		  BCM_5710_FW_MINOR_VERSION,
746		  BCM_5710_FW_REVISION_VERSION);
747
748	return rc;
749}
750
751#define MCPR_TRACE_BUFFER_SIZE	(0x800)
752#define SCRATCH_BUFFER_SIZE(bp)	\
753	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
754
755void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
756{
757	u32 addr, val;
758	u32 mark, offset;
759	__be32 data[9];
760	int word;
761	u32 trace_shmem_base;
762	if (BP_NOMCP(bp)) {
763		BNX2X_ERR("NO MCP - can not dump\n");
764		return;
765	}
766	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
767		(bp->common.bc_ver & 0xff0000) >> 16,
768		(bp->common.bc_ver & 0xff00) >> 8,
769		(bp->common.bc_ver & 0xff));
770
771	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
772	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
773		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
774
775	if (BP_PATH(bp) == 0)
776		trace_shmem_base = bp->common.shmem_base;
777	else
778		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
779
780	/* sanity */
781	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
782	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
783				SCRATCH_BUFFER_SIZE(bp)) {
784		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
785			  trace_shmem_base);
786		return;
787	}
788
789	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
790
791	/* validate TRCB signature */
792	mark = REG_RD(bp, addr);
793	if (mark != MFW_TRACE_SIGNATURE) {
794		BNX2X_ERR("Trace buffer signature is missing.");
795		return ;
796	}
797
798	/* read cyclic buffer pointer */
799	addr += 4;
800	mark = REG_RD(bp, addr);
801	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
802	if (mark >= trace_shmem_base || mark < addr + 4) {
803		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
804		return;
805	}
806	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
807
808	printk("%s", lvl);
809
810	/* dump buffer after the mark */
811	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
812		for (word = 0; word < 8; word++)
813			data[word] = htonl(REG_RD(bp, offset + 4*word));
814		data[8] = 0x0;
815		pr_cont("%s", (char *)data);
816	}
817
818	/* dump buffer before the mark */
819	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
820		for (word = 0; word < 8; word++)
821			data[word] = htonl(REG_RD(bp, offset + 4*word));
822		data[8] = 0x0;
823		pr_cont("%s", (char *)data);
824	}
825	printk("%s" "end of fw dump\n", lvl);
826}
827
828static void bnx2x_fw_dump(struct bnx2x *bp)
829{
830	bnx2x_fw_dump_lvl(bp, KERN_ERR);
831}
832
833static void bnx2x_hc_int_disable(struct bnx2x *bp)
834{
835	int port = BP_PORT(bp);
836	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
837	u32 val = REG_RD(bp, addr);
838
839	/* in E1 we must use only PCI configuration space to disable
840	 * MSI/MSIX capability
841	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
842	 */
843	if (CHIP_IS_E1(bp)) {
844		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
845		 * Use mask register to prevent from HC sending interrupts
846		 * after we exit the function
847		 */
848		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
849
850		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
851			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
852			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
853	} else
854		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
855			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
856			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
857			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858
859	DP(NETIF_MSG_IFDOWN,
860	   "write %x to HC %d (addr 0x%x)\n",
861	   val, port, addr);
862
863	/* flush all outstanding writes */
864	mmiowb();
865
866	REG_WR(bp, addr, val);
867	if (REG_RD(bp, addr) != val)
868		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
869}
870
871static void bnx2x_igu_int_disable(struct bnx2x *bp)
872{
873	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
874
875	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
876		 IGU_PF_CONF_INT_LINE_EN |
877		 IGU_PF_CONF_ATTN_BIT_EN);
878
879	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
880
881	/* flush all outstanding writes */
882	mmiowb();
883
884	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
885	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
886		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
887}
888
889static void bnx2x_int_disable(struct bnx2x *bp)
890{
891	if (bp->common.int_block == INT_BLOCK_HC)
892		bnx2x_hc_int_disable(bp);
893	else
894		bnx2x_igu_int_disable(bp);
895}
896
897void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
898{
899	int i;
900	u16 j;
901	struct hc_sp_status_block_data sp_sb_data;
902	int func = BP_FUNC(bp);
903#ifdef BNX2X_STOP_ON_ERROR
904	u16 start = 0, end = 0;
905	u8 cos;
906#endif
907	if (IS_PF(bp) && disable_int)
908		bnx2x_int_disable(bp);
909
910	bp->stats_state = STATS_STATE_DISABLED;
911	bp->eth_stats.unrecoverable_error++;
912	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
913
914	BNX2X_ERR("begin crash dump -----------------\n");
915
916	/* Indices */
917	/* Common */
918	if (IS_PF(bp)) {
919		struct host_sp_status_block *def_sb = bp->def_status_blk;
920		int data_size, cstorm_offset;
921
922		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
923			  bp->def_idx, bp->def_att_idx, bp->attn_state,
924			  bp->spq_prod_idx, bp->stats_counter);
925		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
926			  def_sb->atten_status_block.attn_bits,
927			  def_sb->atten_status_block.attn_bits_ack,
928			  def_sb->atten_status_block.status_block_id,
929			  def_sb->atten_status_block.attn_bits_index);
930		BNX2X_ERR("     def (");
931		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
932			pr_cont("0x%x%s",
933				def_sb->sp_sb.index_values[i],
934				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
935
936		data_size = sizeof(struct hc_sp_status_block_data) /
937			    sizeof(u32);
938		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
939		for (i = 0; i < data_size; i++)
940			*((u32 *)&sp_sb_data + i) =
941				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
942					   i * sizeof(u32));
943
944		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
945			sp_sb_data.igu_sb_id,
946			sp_sb_data.igu_seg_id,
947			sp_sb_data.p_func.pf_id,
948			sp_sb_data.p_func.vnic_id,
949			sp_sb_data.p_func.vf_id,
950			sp_sb_data.p_func.vf_valid,
951			sp_sb_data.state);
952	}
953
954	for_each_eth_queue(bp, i) {
955		struct bnx2x_fastpath *fp = &bp->fp[i];
956		int loop;
957		struct hc_status_block_data_e2 sb_data_e2;
958		struct hc_status_block_data_e1x sb_data_e1x;
959		struct hc_status_block_sm  *hc_sm_p =
960			CHIP_IS_E1x(bp) ?
961			sb_data_e1x.common.state_machine :
962			sb_data_e2.common.state_machine;
963		struct hc_index_data *hc_index_p =
964			CHIP_IS_E1x(bp) ?
965			sb_data_e1x.index_data :
966			sb_data_e2.index_data;
967		u8 data_size, cos;
968		u32 *sb_data_p;
969		struct bnx2x_fp_txdata txdata;
970
971		if (!bp->fp)
972			break;
973
974		if (!fp->rx_cons_sb)
975			continue;
976
977		/* Rx */
978		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
979			  i, fp->rx_bd_prod, fp->rx_bd_cons,
980			  fp->rx_comp_prod,
981			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
982		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
983			  fp->rx_sge_prod, fp->last_max_sge,
984			  le16_to_cpu(fp->fp_hc_idx));
985
986		/* Tx */
987		for_each_cos_in_tx_queue(fp, cos)
988		{
989			if (!fp->txdata_ptr[cos])
990				break;
991
992			txdata = *fp->txdata_ptr[cos];
993
994			if (!txdata.tx_cons_sb)
995				continue;
996
997			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
998				  i, txdata.tx_pkt_prod,
999				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1000				  txdata.tx_bd_cons,
1001				  le16_to_cpu(*txdata.tx_cons_sb));
1002		}
1003
1004		loop = CHIP_IS_E1x(bp) ?
1005			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1006
1007		/* host sb data */
1008
1009		if (IS_FCOE_FP(fp))
1010			continue;
1011
1012		BNX2X_ERR("     run indexes (");
1013		for (j = 0; j < HC_SB_MAX_SM; j++)
1014			pr_cont("0x%x%s",
1015			       fp->sb_running_index[j],
1016			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1017
1018		BNX2X_ERR("     indexes (");
1019		for (j = 0; j < loop; j++)
1020			pr_cont("0x%x%s",
1021			       fp->sb_index_values[j],
1022			       (j == loop - 1) ? ")" : " ");
1023
1024		/* VF cannot access FW refelection for status block */
1025		if (IS_VF(bp))
1026			continue;
1027
1028		/* fw sb data */
1029		data_size = CHIP_IS_E1x(bp) ?
1030			sizeof(struct hc_status_block_data_e1x) :
1031			sizeof(struct hc_status_block_data_e2);
1032		data_size /= sizeof(u32);
1033		sb_data_p = CHIP_IS_E1x(bp) ?
1034			(u32 *)&sb_data_e1x :
1035			(u32 *)&sb_data_e2;
1036		/* copy sb data in here */
1037		for (j = 0; j < data_size; j++)
1038			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1039				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1040				j * sizeof(u32));
1041
1042		if (!CHIP_IS_E1x(bp)) {
1043			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1044				sb_data_e2.common.p_func.pf_id,
1045				sb_data_e2.common.p_func.vf_id,
1046				sb_data_e2.common.p_func.vf_valid,
1047				sb_data_e2.common.p_func.vnic_id,
1048				sb_data_e2.common.same_igu_sb_1b,
1049				sb_data_e2.common.state);
1050		} else {
1051			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1052				sb_data_e1x.common.p_func.pf_id,
1053				sb_data_e1x.common.p_func.vf_id,
1054				sb_data_e1x.common.p_func.vf_valid,
1055				sb_data_e1x.common.p_func.vnic_id,
1056				sb_data_e1x.common.same_igu_sb_1b,
1057				sb_data_e1x.common.state);
1058		}
1059
1060		/* SB_SMs data */
1061		for (j = 0; j < HC_SB_MAX_SM; j++) {
1062			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1063				j, hc_sm_p[j].__flags,
1064				hc_sm_p[j].igu_sb_id,
1065				hc_sm_p[j].igu_seg_id,
1066				hc_sm_p[j].time_to_expire,
1067				hc_sm_p[j].timer_value);
1068		}
1069
1070		/* Indices data */
1071		for (j = 0; j < loop; j++) {
1072			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1073			       hc_index_p[j].flags,
1074			       hc_index_p[j].timeout);
1075		}
1076	}
1077
1078#ifdef BNX2X_STOP_ON_ERROR
1079	if (IS_PF(bp)) {
1080		/* event queue */
1081		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1082		for (i = 0; i < NUM_EQ_DESC; i++) {
1083			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1084
1085			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1086				  i, bp->eq_ring[i].message.opcode,
1087				  bp->eq_ring[i].message.error);
1088			BNX2X_ERR("data: %x %x %x\n",
1089				  data[0], data[1], data[2]);
1090		}
1091	}
1092
1093	/* Rings */
1094	/* Rx */
1095	for_each_valid_rx_queue(bp, i) {
1096		struct bnx2x_fastpath *fp = &bp->fp[i];
1097
1098		if (!bp->fp)
1099			break;
1100
1101		if (!fp->rx_cons_sb)
1102			continue;
1103
1104		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1105		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1106		for (j = start; j != end; j = RX_BD(j + 1)) {
1107			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1108			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1109
1110			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1111				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1112		}
1113
1114		start = RX_SGE(fp->rx_sge_prod);
1115		end = RX_SGE(fp->last_max_sge);
1116		for (j = start; j != end; j = RX_SGE(j + 1)) {
1117			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1118			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1119
1120			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1121				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1122		}
1123
1124		start = RCQ_BD(fp->rx_comp_cons - 10);
1125		end = RCQ_BD(fp->rx_comp_cons + 503);
1126		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1127			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1128
1129			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1130				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1131		}
1132	}
1133
1134	/* Tx */
1135	for_each_valid_tx_queue(bp, i) {
1136		struct bnx2x_fastpath *fp = &bp->fp[i];
1137
1138		if (!bp->fp)
1139			break;
1140
1141		for_each_cos_in_tx_queue(fp, cos) {
1142			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1143
1144			if (!fp->txdata_ptr[cos])
1145				break;
1146
1147			if (!txdata->tx_cons_sb)
1148				continue;
1149
1150			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1151			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1152			for (j = start; j != end; j = TX_BD(j + 1)) {
1153				struct sw_tx_bd *sw_bd =
1154					&txdata->tx_buf_ring[j];
1155
1156				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1157					  i, cos, j, sw_bd->skb,
1158					  sw_bd->first_bd);
1159			}
1160
1161			start = TX_BD(txdata->tx_bd_cons - 10);
1162			end = TX_BD(txdata->tx_bd_cons + 254);
1163			for (j = start; j != end; j = TX_BD(j + 1)) {
1164				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1165
1166				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1167					  i, cos, j, tx_bd[0], tx_bd[1],
1168					  tx_bd[2], tx_bd[3]);
1169			}
1170		}
1171	}
1172#endif
1173	if (IS_PF(bp)) {
1174		bnx2x_fw_dump(bp);
1175		bnx2x_mc_assert(bp);
1176	}
1177	BNX2X_ERR("end crash dump -----------------\n");
1178}
1179
1180/*
1181 * FLR Support for E2
1182 *
1183 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1184 * initialization.
1185 */
1186#define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1187#define FLR_WAIT_INTERVAL	50	/* usec */
1188#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1189
1190struct pbf_pN_buf_regs {
1191	int pN;
1192	u32 init_crd;
1193	u32 crd;
1194	u32 crd_freed;
1195};
1196
1197struct pbf_pN_cmd_regs {
1198	int pN;
1199	u32 lines_occup;
1200	u32 lines_freed;
1201};
1202
1203static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1204				     struct pbf_pN_buf_regs *regs,
1205				     u32 poll_count)
1206{
1207	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1208	u32 cur_cnt = poll_count;
1209
1210	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1211	crd = crd_start = REG_RD(bp, regs->crd);
1212	init_crd = REG_RD(bp, regs->init_crd);
1213
1214	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1215	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1216	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1217
1218	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1219	       (init_crd - crd_start))) {
1220		if (cur_cnt--) {
1221			udelay(FLR_WAIT_INTERVAL);
1222			crd = REG_RD(bp, regs->crd);
1223			crd_freed = REG_RD(bp, regs->crd_freed);
1224		} else {
1225			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1226			   regs->pN);
1227			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1228			   regs->pN, crd);
1229			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1230			   regs->pN, crd_freed);
1231			break;
1232		}
1233	}
1234	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1235	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236}
1237
1238static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1239				     struct pbf_pN_cmd_regs *regs,
1240				     u32 poll_count)
1241{
1242	u32 occup, to_free, freed, freed_start;
1243	u32 cur_cnt = poll_count;
1244
1245	occup = to_free = REG_RD(bp, regs->lines_occup);
1246	freed = freed_start = REG_RD(bp, regs->lines_freed);
1247
1248	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1249	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1250
1251	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1252		if (cur_cnt--) {
1253			udelay(FLR_WAIT_INTERVAL);
1254			occup = REG_RD(bp, regs->lines_occup);
1255			freed = REG_RD(bp, regs->lines_freed);
1256		} else {
1257			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1258			   regs->pN);
1259			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1260			   regs->pN, occup);
1261			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1262			   regs->pN, freed);
1263			break;
1264		}
1265	}
1266	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1267	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1268}
1269
1270static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1271				    u32 expected, u32 poll_count)
1272{
1273	u32 cur_cnt = poll_count;
1274	u32 val;
1275
1276	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1277		udelay(FLR_WAIT_INTERVAL);
1278
1279	return val;
1280}
1281
1282int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1283				    char *msg, u32 poll_cnt)
1284{
1285	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1286	if (val != 0) {
1287		BNX2X_ERR("%s usage count=%d\n", msg, val);
1288		return 1;
1289	}
1290	return 0;
1291}
1292
1293/* Common routines with VF FLR cleanup */
1294u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1295{
1296	/* adjust polling timeout */
1297	if (CHIP_REV_IS_EMUL(bp))
1298		return FLR_POLL_CNT * 2000;
1299
1300	if (CHIP_REV_IS_FPGA(bp))
1301		return FLR_POLL_CNT * 120;
1302
1303	return FLR_POLL_CNT;
1304}
1305
1306void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1307{
1308	struct pbf_pN_cmd_regs cmd_regs[] = {
1309		{0, (CHIP_IS_E3B0(bp)) ?
1310			PBF_REG_TQ_OCCUPANCY_Q0 :
1311			PBF_REG_P0_TQ_OCCUPANCY,
1312		    (CHIP_IS_E3B0(bp)) ?
1313			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1314			PBF_REG_P0_TQ_LINES_FREED_CNT},
1315		{1, (CHIP_IS_E3B0(bp)) ?
1316			PBF_REG_TQ_OCCUPANCY_Q1 :
1317			PBF_REG_P1_TQ_OCCUPANCY,
1318		    (CHIP_IS_E3B0(bp)) ?
1319			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1320			PBF_REG_P1_TQ_LINES_FREED_CNT},
1321		{4, (CHIP_IS_E3B0(bp)) ?
1322			PBF_REG_TQ_OCCUPANCY_LB_Q :
1323			PBF_REG_P4_TQ_OCCUPANCY,
1324		    (CHIP_IS_E3B0(bp)) ?
1325			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1326			PBF_REG_P4_TQ_LINES_FREED_CNT}
1327	};
1328
1329	struct pbf_pN_buf_regs buf_regs[] = {
1330		{0, (CHIP_IS_E3B0(bp)) ?
1331			PBF_REG_INIT_CRD_Q0 :
1332			PBF_REG_P0_INIT_CRD ,
1333		    (CHIP_IS_E3B0(bp)) ?
1334			PBF_REG_CREDIT_Q0 :
1335			PBF_REG_P0_CREDIT,
1336		    (CHIP_IS_E3B0(bp)) ?
1337			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1338			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1339		{1, (CHIP_IS_E3B0(bp)) ?
1340			PBF_REG_INIT_CRD_Q1 :
1341			PBF_REG_P1_INIT_CRD,
1342		    (CHIP_IS_E3B0(bp)) ?
1343			PBF_REG_CREDIT_Q1 :
1344			PBF_REG_P1_CREDIT,
1345		    (CHIP_IS_E3B0(bp)) ?
1346			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1347			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1348		{4, (CHIP_IS_E3B0(bp)) ?
1349			PBF_REG_INIT_CRD_LB_Q :
1350			PBF_REG_P4_INIT_CRD,
1351		    (CHIP_IS_E3B0(bp)) ?
1352			PBF_REG_CREDIT_LB_Q :
1353			PBF_REG_P4_CREDIT,
1354		    (CHIP_IS_E3B0(bp)) ?
1355			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1356			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1357	};
1358
1359	int i;
1360
1361	/* Verify the command queues are flushed P0, P1, P4 */
1362	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1363		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1364
1365	/* Verify the transmission buffers are flushed P0, P1, P4 */
1366	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1367		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1368}
1369
1370#define OP_GEN_PARAM(param) \
1371	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1372
1373#define OP_GEN_TYPE(type) \
1374	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1375
1376#define OP_GEN_AGG_VECT(index) \
1377	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1378
1379int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1380{
1381	u32 op_gen_command = 0;
1382	u32 comp_addr = BAR_CSTRORM_INTMEM +
1383			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1384	int ret = 0;
1385
1386	if (REG_RD(bp, comp_addr)) {
1387		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1388		return 1;
1389	}
1390
1391	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1392	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1393	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1394	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1395
1396	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1397	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1398
1399	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1400		BNX2X_ERR("FW final cleanup did not succeed\n");
1401		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1402		   (REG_RD(bp, comp_addr)));
1403		bnx2x_panic();
1404		return 1;
1405	}
1406	/* Zero completion for next FLR */
1407	REG_WR(bp, comp_addr, 0);
1408
1409	return ret;
1410}
1411
1412u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1413{
1414	u16 status;
1415
1416	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1417	return status & PCI_EXP_DEVSTA_TRPND;
1418}
1419
1420/* PF FLR specific routines
1421*/
1422static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1423{
1424	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1425	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426			CFC_REG_NUM_LCIDS_INSIDE_PF,
1427			"CFC PF usage counter timed out",
1428			poll_cnt))
1429		return 1;
1430
1431	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1432	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433			DORQ_REG_PF_USAGE_CNT,
1434			"DQ PF usage counter timed out",
1435			poll_cnt))
1436		return 1;
1437
1438	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1439	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1441			"QM PF usage counter timed out",
1442			poll_cnt))
1443		return 1;
1444
1445	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1446	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1448			"Timers VNIC usage counter timed out",
1449			poll_cnt))
1450		return 1;
1451	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1453			"Timers NUM_SCANS usage counter timed out",
1454			poll_cnt))
1455		return 1;
1456
1457	/* Wait DMAE PF usage counter to zero */
1458	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459			dmae_reg_go_c[INIT_DMAE_C(bp)],
1460			"DMAE command register timed out",
1461			poll_cnt))
1462		return 1;
1463
1464	return 0;
1465}
1466
1467static void bnx2x_hw_enable_status(struct bnx2x *bp)
1468{
1469	u32 val;
1470
1471	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1472	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1473
1474	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1475	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1476
1477	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1478	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1479
1480	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1481	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1482
1483	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1484	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1485
1486	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1487	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1488
1489	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1490	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1491
1492	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1493	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1494	   val);
1495}
1496
1497static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1498{
1499	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1500
1501	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1502
1503	/* Re-enable PF target read access */
1504	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1505
1506	/* Poll HW usage counters */
1507	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1508	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1509		return -EBUSY;
1510
1511	/* Zero the igu 'trailing edge' and 'leading edge' */
1512
1513	/* Send the FW cleanup command */
1514	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1515		return -EBUSY;
1516
1517	/* ATC cleanup */
1518
1519	/* Verify TX hw is flushed */
1520	bnx2x_tx_hw_flushed(bp, poll_cnt);
1521
1522	/* Wait 100ms (not adjusted according to platform) */
1523	msleep(100);
1524
1525	/* Verify no pending pci transactions */
1526	if (bnx2x_is_pcie_pending(bp->pdev))
1527		BNX2X_ERR("PCIE Transactions still pending\n");
1528
1529	/* Debug */
1530	bnx2x_hw_enable_status(bp);
1531
1532	/*
1533	 * Master enable - Due to WB DMAE writes performed before this
1534	 * register is re-initialized as part of the regular function init
1535	 */
1536	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1537
1538	return 0;
1539}
1540
1541static void bnx2x_hc_int_enable(struct bnx2x *bp)
1542{
1543	int port = BP_PORT(bp);
1544	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1545	u32 val = REG_RD(bp, addr);
1546	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549
1550	if (msix) {
1551		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1552			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1553		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1554			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1555		if (single_msix)
1556			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1557	} else if (msi) {
1558		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1559		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1560			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562	} else {
1563		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1566			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567
1568		if (!CHIP_IS_E1(bp)) {
1569			DP(NETIF_MSG_IFUP,
1570			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1571
1572			REG_WR(bp, addr, val);
1573
1574			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1575		}
1576	}
1577
1578	if (CHIP_IS_E1(bp))
1579		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1580
1581	DP(NETIF_MSG_IFUP,
1582	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1583	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1584
1585	REG_WR(bp, addr, val);
1586	/*
1587	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1588	 */
1589	mmiowb();
1590	barrier();
1591
1592	if (!CHIP_IS_E1(bp)) {
1593		/* init leading/trailing edge */
1594		if (IS_MF(bp)) {
1595			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1596			if (bp->port.pmf)
1597				/* enable nig and gpio3 attention */
1598				val |= 0x1100;
1599		} else
1600			val = 0xffff;
1601
1602		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1603		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1604	}
1605
1606	/* Make sure that interrupts are indeed enabled from here on */
1607	mmiowb();
1608}
1609
1610static void bnx2x_igu_int_enable(struct bnx2x *bp)
1611{
1612	u32 val;
1613	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1614	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1615	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1616
1617	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1618
1619	if (msix) {
1620		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1621			 IGU_PF_CONF_SINGLE_ISR_EN);
1622		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1623			IGU_PF_CONF_ATTN_BIT_EN);
1624
1625		if (single_msix)
1626			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1627	} else if (msi) {
1628		val &= ~IGU_PF_CONF_INT_LINE_EN;
1629		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630			IGU_PF_CONF_ATTN_BIT_EN |
1631			IGU_PF_CONF_SINGLE_ISR_EN);
1632	} else {
1633		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1634		val |= (IGU_PF_CONF_INT_LINE_EN |
1635			IGU_PF_CONF_ATTN_BIT_EN |
1636			IGU_PF_CONF_SINGLE_ISR_EN);
1637	}
1638
1639	/* Clean previous status - need to configure igu prior to ack*/
1640	if ((!msix) || single_msix) {
1641		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1642		bnx2x_ack_int(bp);
1643	}
1644
1645	val |= IGU_PF_CONF_FUNC_EN;
1646
1647	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1648	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1649
1650	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651
1652	if (val & IGU_PF_CONF_INT_LINE_EN)
1653		pci_intx(bp->pdev, true);
1654
1655	barrier();
1656
1657	/* init leading/trailing edge */
1658	if (IS_MF(bp)) {
1659		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1660		if (bp->port.pmf)
1661			/* enable nig and gpio3 attention */
1662			val |= 0x1100;
1663	} else
1664		val = 0xffff;
1665
1666	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1667	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1668
1669	/* Make sure that interrupts are indeed enabled from here on */
1670	mmiowb();
1671}
1672
1673void bnx2x_int_enable(struct bnx2x *bp)
1674{
1675	if (bp->common.int_block == INT_BLOCK_HC)
1676		bnx2x_hc_int_enable(bp);
1677	else
1678		bnx2x_igu_int_enable(bp);
1679}
1680
1681void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1682{
1683	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1684	int i, offset;
1685
1686	if (disable_hw)
1687		/* prevent the HW from sending interrupts */
1688		bnx2x_int_disable(bp);
1689
1690	/* make sure all ISRs are done */
1691	if (msix) {
1692		synchronize_irq(bp->msix_table[0].vector);
1693		offset = 1;
1694		if (CNIC_SUPPORT(bp))
1695			offset++;
1696		for_each_eth_queue(bp, i)
1697			synchronize_irq(bp->msix_table[offset++].vector);
1698	} else
1699		synchronize_irq(bp->pdev->irq);
1700
1701	/* make sure sp_task is not running */
1702	cancel_delayed_work(&bp->sp_task);
1703	cancel_delayed_work(&bp->period_task);
1704	flush_workqueue(bnx2x_wq);
1705}
1706
1707/* fast path */
1708
1709/*
1710 * General service functions
1711 */
1712
1713/* Return true if succeeded to acquire the lock */
1714static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1715{
1716	u32 lock_status;
1717	u32 resource_bit = (1 << resource);
1718	int func = BP_FUNC(bp);
1719	u32 hw_lock_control_reg;
1720
1721	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1722	   "Trying to take a lock on resource %d\n", resource);
1723
1724	/* Validating that the resource is within range */
1725	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1726		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1728		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1729		return false;
1730	}
1731
1732	if (func <= 5)
1733		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1734	else
1735		hw_lock_control_reg =
1736				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1737
1738	/* Try to acquire the lock */
1739	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1740	lock_status = REG_RD(bp, hw_lock_control_reg);
1741	if (lock_status & resource_bit)
1742		return true;
1743
1744	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745	   "Failed to get a lock on resource %d\n", resource);
1746	return false;
1747}
1748
1749/**
1750 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1751 *
1752 * @bp:	driver handle
1753 *
1754 * Returns the recovery leader resource id according to the engine this function
1755 * belongs to. Currently only only 2 engines is supported.
1756 */
1757static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1758{
1759	if (BP_PATH(bp))
1760		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1761	else
1762		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1763}
1764
1765/**
1766 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1767 *
1768 * @bp: driver handle
1769 *
1770 * Tries to acquire a leader lock for current engine.
1771 */
1772static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1773{
1774	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1775}
1776
1777static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1778
1779/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1780static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1781{
1782	/* Set the interrupt occurred bit for the sp-task to recognize it
1783	 * must ack the interrupt and transition according to the IGU
1784	 * state machine.
1785	 */
1786	atomic_set(&bp->interrupt_occurred, 1);
1787
1788	/* The sp_task must execute only after this bit
1789	 * is set, otherwise we will get out of sync and miss all
1790	 * further interrupts. Hence, the barrier.
1791	 */
1792	smp_wmb();
1793
1794	/* schedule sp_task to workqueue */
1795	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1796}
1797
1798void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1799{
1800	struct bnx2x *bp = fp->bp;
1801	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1803	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1804	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1805
1806	DP(BNX2X_MSG_SP,
1807	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1808	   fp->index, cid, command, bp->state,
1809	   rr_cqe->ramrod_cqe.ramrod_type);
1810
1811	/* If cid is within VF range, replace the slowpath object with the
1812	 * one corresponding to this VF
1813	 */
1814	if (cid >= BNX2X_FIRST_VF_CID  &&
1815	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1816		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1817
1818	switch (command) {
1819	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1820		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1821		drv_cmd = BNX2X_Q_CMD_UPDATE;
1822		break;
1823
1824	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1825		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1826		drv_cmd = BNX2X_Q_CMD_SETUP;
1827		break;
1828
1829	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1830		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1831		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1832		break;
1833
1834	case (RAMROD_CMD_ID_ETH_HALT):
1835		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1836		drv_cmd = BNX2X_Q_CMD_HALT;
1837		break;
1838
1839	case (RAMROD_CMD_ID_ETH_TERMINATE):
1840		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1841		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1842		break;
1843
1844	case (RAMROD_CMD_ID_ETH_EMPTY):
1845		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1846		drv_cmd = BNX2X_Q_CMD_EMPTY;
1847		break;
1848
1849	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1850		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1851		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1852		break;
1853
1854	default:
1855		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1856			  command, fp->index);
1857		return;
1858	}
1859
1860	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1861	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1862		/* q_obj->complete_cmd() failure means that this was
1863		 * an unexpected completion.
1864		 *
1865		 * In this case we don't want to increase the bp->spq_left
1866		 * because apparently we haven't sent this command the first
1867		 * place.
1868		 */
1869#ifdef BNX2X_STOP_ON_ERROR
1870		bnx2x_panic();
1871#else
1872		return;
1873#endif
1874
1875	smp_mb__before_atomic();
1876	atomic_inc(&bp->cq_spq_left);
1877	/* push the change in bp->spq_left and towards the memory */
1878	smp_mb__after_atomic();
1879
1880	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1881
1882	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1883	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1884		/* if Q update ramrod is completed for last Q in AFEX vif set
1885		 * flow, then ACK MCP at the end
1886		 *
1887		 * mark pending ACK to MCP bit.
1888		 * prevent case that both bits are cleared.
1889		 * At the end of load/unload driver checks that
1890		 * sp_state is cleared, and this order prevents
1891		 * races
1892		 */
1893		smp_mb__before_atomic();
1894		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1895		wmb();
1896		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1897		smp_mb__after_atomic();
1898
1899		/* schedule the sp task as mcp ack is required */
1900		bnx2x_schedule_sp_task(bp);
1901	}
1902
1903	return;
1904}
1905
1906irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1907{
1908	struct bnx2x *bp = netdev_priv(dev_instance);
1909	u16 status = bnx2x_ack_int(bp);
1910	u16 mask;
1911	int i;
1912	u8 cos;
1913
1914	/* Return here if interrupt is shared and it's not for us */
1915	if (unlikely(status == 0)) {
1916		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1917		return IRQ_NONE;
1918	}
1919	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1920
1921#ifdef BNX2X_STOP_ON_ERROR
1922	if (unlikely(bp->panic))
1923		return IRQ_HANDLED;
1924#endif
1925
1926	for_each_eth_queue(bp, i) {
1927		struct bnx2x_fastpath *fp = &bp->fp[i];
1928
1929		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1930		if (status & mask) {
1931			/* Handle Rx or Tx according to SB id */
1932			for_each_cos_in_tx_queue(fp, cos)
1933				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1934			prefetch(&fp->sb_running_index[SM_RX_ID]);
1935			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1936			status &= ~mask;
1937		}
1938	}
1939
1940	if (CNIC_SUPPORT(bp)) {
1941		mask = 0x2;
1942		if (status & (mask | 0x1)) {
1943			struct cnic_ops *c_ops = NULL;
1944
1945			rcu_read_lock();
1946			c_ops = rcu_dereference(bp->cnic_ops);
1947			if (c_ops && (bp->cnic_eth_dev.drv_state &
1948				      CNIC_DRV_STATE_HANDLES_IRQ))
1949				c_ops->cnic_handler(bp->cnic_data, NULL);
1950			rcu_read_unlock();
1951
1952			status &= ~mask;
1953		}
1954	}
1955
1956	if (unlikely(status & 0x1)) {
1957
1958		/* schedule sp task to perform default status block work, ack
1959		 * attentions and enable interrupts.
1960		 */
1961		bnx2x_schedule_sp_task(bp);
1962
1963		status &= ~0x1;
1964		if (!status)
1965			return IRQ_HANDLED;
1966	}
1967
1968	if (unlikely(status))
1969		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1970		   status);
1971
1972	return IRQ_HANDLED;
1973}
1974
1975/* Link */
1976
1977/*
1978 * General service functions
1979 */
1980
1981int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1982{
1983	u32 lock_status;
1984	u32 resource_bit = (1 << resource);
1985	int func = BP_FUNC(bp);
1986	u32 hw_lock_control_reg;
1987	int cnt;
1988
1989	/* Validating that the resource is within range */
1990	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1991		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1992		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1993		return -EINVAL;
1994	}
1995
1996	if (func <= 5) {
1997		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1998	} else {
1999		hw_lock_control_reg =
2000				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2001	}
2002
2003	/* Validating that the resource is not already taken */
2004	lock_status = REG_RD(bp, hw_lock_control_reg);
2005	if (lock_status & resource_bit) {
2006		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2007		   lock_status, resource_bit);
2008		return -EEXIST;
2009	}
2010
2011	/* Try for 5 second every 5ms */
2012	for (cnt = 0; cnt < 1000; cnt++) {
2013		/* Try to acquire the lock */
2014		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2015		lock_status = REG_RD(bp, hw_lock_control_reg);
2016		if (lock_status & resource_bit)
2017			return 0;
2018
2019		usleep_range(5000, 10000);
2020	}
2021	BNX2X_ERR("Timeout\n");
2022	return -EAGAIN;
2023}
2024
2025int bnx2x_release_leader_lock(struct bnx2x *bp)
2026{
2027	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2028}
2029
2030int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2031{
2032	u32 lock_status;
2033	u32 resource_bit = (1 << resource);
2034	int func = BP_FUNC(bp);
2035	u32 hw_lock_control_reg;
2036
2037	/* Validating that the resource is within range */
2038	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2039		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2040		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2041		return -EINVAL;
2042	}
2043
2044	if (func <= 5) {
2045		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2046	} else {
2047		hw_lock_control_reg =
2048				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2049	}
2050
2051	/* Validating that the resource is currently taken */
2052	lock_status = REG_RD(bp, hw_lock_control_reg);
2053	if (!(lock_status & resource_bit)) {
2054		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2055			  lock_status, resource_bit);
2056		return -EFAULT;
2057	}
2058
2059	REG_WR(bp, hw_lock_control_reg, resource_bit);
2060	return 0;
2061}
2062
2063int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2064{
2065	/* The GPIO should be swapped if swap register is set and active */
2066	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2067			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2068	int gpio_shift = gpio_num +
2069			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2070	u32 gpio_mask = (1 << gpio_shift);
2071	u32 gpio_reg;
2072	int value;
2073
2074	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2075		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2076		return -EINVAL;
2077	}
2078
2079	/* read GPIO value */
2080	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2081
2082	/* get the requested pin value */
2083	if ((gpio_reg & gpio_mask) == gpio_mask)
2084		value = 1;
2085	else
2086		value = 0;
2087
2088	return value;
2089}
2090
2091int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2092{
2093	/* The GPIO should be swapped if swap register is set and active */
2094	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2095			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2096	int gpio_shift = gpio_num +
2097			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2098	u32 gpio_mask = (1 << gpio_shift);
2099	u32 gpio_reg;
2100
2101	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2102		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2103		return -EINVAL;
2104	}
2105
2106	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2107	/* read GPIO and mask except the float bits */
2108	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2109
2110	switch (mode) {
2111	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2112		DP(NETIF_MSG_LINK,
2113		   "Set GPIO %d (shift %d) -> output low\n",
2114		   gpio_num, gpio_shift);
2115		/* clear FLOAT and set CLR */
2116		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2117		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2118		break;
2119
2120	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2121		DP(NETIF_MSG_LINK,
2122		   "Set GPIO %d (shift %d) -> output high\n",
2123		   gpio_num, gpio_shift);
2124		/* clear FLOAT and set SET */
2125		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2127		break;
2128
2129	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2130		DP(NETIF_MSG_LINK,
2131		   "Set GPIO %d (shift %d) -> input\n",
2132		   gpio_num, gpio_shift);
2133		/* set FLOAT */
2134		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135		break;
2136
2137	default:
2138		break;
2139	}
2140
2141	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2142	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143
2144	return 0;
2145}
2146
2147int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2148{
2149	u32 gpio_reg = 0;
2150	int rc = 0;
2151
2152	/* Any port swapping should be handled by caller. */
2153
2154	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2155	/* read GPIO and mask except the float bits */
2156	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2157	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2158	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2159	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2160
2161	switch (mode) {
2162	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2163		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2164		/* set CLR */
2165		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2166		break;
2167
2168	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2169		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2170		/* set SET */
2171		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2172		break;
2173
2174	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2175		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2176		/* set FLOAT */
2177		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2178		break;
2179
2180	default:
2181		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2182		rc = -EINVAL;
2183		break;
2184	}
2185
2186	if (rc == 0)
2187		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2188
2189	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2190
2191	return rc;
2192}
2193
2194int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2195{
2196	/* The GPIO should be swapped if swap register is set and active */
2197	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2198			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2199	int gpio_shift = gpio_num +
2200			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2201	u32 gpio_mask = (1 << gpio_shift);
2202	u32 gpio_reg;
2203
2204	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2205		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2206		return -EINVAL;
2207	}
2208
2209	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2210	/* read GPIO int */
2211	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2212
2213	switch (mode) {
2214	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2215		DP(NETIF_MSG_LINK,
2216		   "Clear GPIO INT %d (shift %d) -> output low\n",
2217		   gpio_num, gpio_shift);
2218		/* clear SET and set CLR */
2219		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2220		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2221		break;
2222
2223	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2224		DP(NETIF_MSG_LINK,
2225		   "Set GPIO INT %d (shift %d) -> output high\n",
2226		   gpio_num, gpio_shift);
2227		/* clear CLR and set SET */
2228		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2229		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2230		break;
2231
2232	default:
2233		break;
2234	}
2235
2236	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2237	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2238
2239	return 0;
2240}
2241
2242static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2243{
2244	u32 spio_reg;
2245
2246	/* Only 2 SPIOs are configurable */
2247	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2248		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2249		return -EINVAL;
2250	}
2251
2252	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2253	/* read SPIO and mask except the float bits */
2254	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2255
2256	switch (mode) {
2257	case MISC_SPIO_OUTPUT_LOW:
2258		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2259		/* clear FLOAT and set CLR */
2260		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2261		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2262		break;
2263
2264	case MISC_SPIO_OUTPUT_HIGH:
2265		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2266		/* clear FLOAT and set SET */
2267		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2269		break;
2270
2271	case MISC_SPIO_INPUT_HI_Z:
2272		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2273		/* set FLOAT */
2274		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2275		break;
2276
2277	default:
2278		break;
2279	}
2280
2281	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2282	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2283
2284	return 0;
2285}
2286
2287void bnx2x_calc_fc_adv(struct bnx2x *bp)
2288{
2289	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2290	switch (bp->link_vars.ieee_fc &
2291		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2292	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2293		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2294						   ADVERTISED_Pause);
2295		break;
2296
2297	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2298		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2299						  ADVERTISED_Pause);
2300		break;
2301
2302	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2303		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2304		break;
2305
2306	default:
2307		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2308						   ADVERTISED_Pause);
2309		break;
2310	}
2311}
2312
2313static void bnx2x_set_requested_fc(struct bnx2x *bp)
2314{
2315	/* Initialize link parameters structure variables
2316	 * It is recommended to turn off RX FC for jumbo frames
2317	 *  for better performance
2318	 */
2319	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2320		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2321	else
2322		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2323}
2324
2325static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2326{
2327	u32 pause_enabled = 0;
2328
2329	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2330		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2331			pause_enabled = 1;
2332
2333		REG_WR(bp, BAR_USTRORM_INTMEM +
2334			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2335		       pause_enabled);
2336	}
2337
2338	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2339	   pause_enabled ? "enabled" : "disabled");
2340}
2341
2342int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2343{
2344	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2345	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2346
2347	if (!BP_NOMCP(bp)) {
2348		bnx2x_set_requested_fc(bp);
2349		bnx2x_acquire_phy_lock(bp);
2350
2351		if (load_mode == LOAD_DIAG) {
2352			struct link_params *lp = &bp->link_params;
2353			lp->loopback_mode = LOOPBACK_XGXS;
2354			/* do PHY loopback at 10G speed, if possible */
2355			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2356				if (lp->speed_cap_mask[cfx_idx] &
2357				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2358					lp->req_line_speed[cfx_idx] =
2359					SPEED_10000;
2360				else
2361					lp->req_line_speed[cfx_idx] =
2362					SPEED_1000;
2363			}
2364		}
2365
2366		if (load_mode == LOAD_LOOPBACK_EXT) {
2367			struct link_params *lp = &bp->link_params;
2368			lp->loopback_mode = LOOPBACK_EXT;
2369		}
2370
2371		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2372
2373		bnx2x_release_phy_lock(bp);
2374
2375		bnx2x_init_dropless_fc(bp);
2376
2377		bnx2x_calc_fc_adv(bp);
2378
2379		if (bp->link_vars.link_up) {
2380			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2381			bnx2x_link_report(bp);
2382		}
2383		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2384		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2385		return rc;
2386	}
2387	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2388	return -EINVAL;
2389}
2390
2391void bnx2x_link_set(struct bnx2x *bp)
2392{
2393	if (!BP_NOMCP(bp)) {
2394		bnx2x_acquire_phy_lock(bp);
2395		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2396		bnx2x_release_phy_lock(bp);
2397
2398		bnx2x_init_dropless_fc(bp);
2399
2400		bnx2x_calc_fc_adv(bp);
2401	} else
2402		BNX2X_ERR("Bootcode is missing - can not set link\n");
2403}
2404
2405static void bnx2x__link_reset(struct bnx2x *bp)
2406{
2407	if (!BP_NOMCP(bp)) {
2408		bnx2x_acquire_phy_lock(bp);
2409		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2410		bnx2x_release_phy_lock(bp);
2411	} else
2412		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2413}
2414
2415void bnx2x_force_link_reset(struct bnx2x *bp)
2416{
2417	bnx2x_acquire_phy_lock(bp);
2418	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2419	bnx2x_release_phy_lock(bp);
2420}
2421
2422u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2423{
2424	u8 rc = 0;
2425
2426	if (!BP_NOMCP(bp)) {
2427		bnx2x_acquire_phy_lock(bp);
2428		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2429				     is_serdes);
2430		bnx2x_release_phy_lock(bp);
2431	} else
2432		BNX2X_ERR("Bootcode is missing - can not test link\n");
2433
2434	return rc;
2435}
2436
2437/* Calculates the sum of vn_min_rates.
2438   It's needed for further normalizing of the min_rates.
2439   Returns:
2440     sum of vn_min_rates.
2441       or
2442     0 - if all the min_rates are 0.
2443     In the later case fairness algorithm should be deactivated.
2444     If not all min_rates are zero then those that are zeroes will be set to 1.
2445 */
2446static void bnx2x_calc_vn_min(struct bnx2x *bp,
2447				      struct cmng_init_input *input)
2448{
2449	int all_zero = 1;
2450	int vn;
2451
2452	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2453		u32 vn_cfg = bp->mf_config[vn];
2454		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2455				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2456
2457		/* Skip hidden vns */
2458		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2459			vn_min_rate = 0;
2460		/* If min rate is zero - set it to 1 */
2461		else if (!vn_min_rate)
2462			vn_min_rate = DEF_MIN_RATE;
2463		else
2464			all_zero = 0;
2465
2466		input->vnic_min_rate[vn] = vn_min_rate;
2467	}
2468
2469	/* if ETS or all min rates are zeros - disable fairness */
2470	if (BNX2X_IS_ETS_ENABLED(bp)) {
2471		input->flags.cmng_enables &=
2472					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2474	} else if (all_zero) {
2475		input->flags.cmng_enables &=
2476					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477		DP(NETIF_MSG_IFUP,
2478		   "All MIN values are zeroes fairness will be disabled\n");
2479	} else
2480		input->flags.cmng_enables |=
2481					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482}
2483
2484static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2485				    struct cmng_init_input *input)
2486{
2487	u16 vn_max_rate;
2488	u32 vn_cfg = bp->mf_config[vn];
2489
2490	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2491		vn_max_rate = 0;
2492	else {
2493		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2494
2495		if (IS_MF_SI(bp)) {
2496			/* maxCfg in percents of linkspeed */
2497			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2498		} else /* SD modes */
2499			/* maxCfg is absolute in 100Mb units */
2500			vn_max_rate = maxCfg * 100;
2501	}
2502
2503	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2504
2505	input->vnic_max_rate[vn] = vn_max_rate;
2506}
2507
2508static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2509{
2510	if (CHIP_REV_IS_SLOW(bp))
2511		return CMNG_FNS_NONE;
2512	if (IS_MF(bp))
2513		return CMNG_FNS_MINMAX;
2514
2515	return CMNG_FNS_NONE;
2516}
2517
2518void bnx2x_read_mf_cfg(struct bnx2x *bp)
2519{
2520	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2521
2522	if (BP_NOMCP(bp))
2523		return; /* what should be the default value in this case */
2524
2525	/* For 2 port configuration the absolute function number formula
2526	 * is:
2527	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2528	 *
2529	 *      and there are 4 functions per port
2530	 *
2531	 * For 4 port configuration it is
2532	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2533	 *
2534	 *      and there are 2 functions per port
2535	 */
2536	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2537		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2538
2539		if (func >= E1H_FUNC_MAX)
2540			break;
2541
2542		bp->mf_config[vn] =
2543			MF_CFG_RD(bp, func_mf_config[func].config);
2544	}
2545	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2546		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2547		bp->flags |= MF_FUNC_DIS;
2548	} else {
2549		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2550		bp->flags &= ~MF_FUNC_DIS;
2551	}
2552}
2553
2554static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2555{
2556	struct cmng_init_input input;
2557	memset(&input, 0, sizeof(struct cmng_init_input));
2558
2559	input.port_rate = bp->link_vars.line_speed;
2560
2561	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2562		int vn;
2563
2564		/* read mf conf from shmem */
2565		if (read_cfg)
2566			bnx2x_read_mf_cfg(bp);
2567
2568		/* vn_weight_sum and enable fairness if not 0 */
2569		bnx2x_calc_vn_min(bp, &input);
2570
2571		/* calculate and set min-max rate for each vn */
2572		if (bp->port.pmf)
2573			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2574				bnx2x_calc_vn_max(bp, vn, &input);
2575
2576		/* always enable rate shaping and fairness */
2577		input.flags.cmng_enables |=
2578					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2579
2580		bnx2x_init_cmng(&input, &bp->cmng);
2581		return;
2582	}
2583
2584	/* rate shaping and fairness are disabled */
2585	DP(NETIF_MSG_IFUP,
2586	   "rate shaping and fairness are disabled\n");
2587}
2588
2589static void storm_memset_cmng(struct bnx2x *bp,
2590			      struct cmng_init *cmng,
2591			      u8 port)
2592{
2593	int vn;
2594	size_t size = sizeof(struct cmng_struct_per_port);
2595
2596	u32 addr = BAR_XSTRORM_INTMEM +
2597			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2598
2599	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2600
2601	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2602		int func = func_by_vn(bp, vn);
2603
2604		addr = BAR_XSTRORM_INTMEM +
2605		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2606		size = sizeof(struct rate_shaping_vars_per_vn);
2607		__storm_memset_struct(bp, addr, size,
2608				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2609
2610		addr = BAR_XSTRORM_INTMEM +
2611		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2612		size = sizeof(struct fairness_vars_per_vn);
2613		__storm_memset_struct(bp, addr, size,
2614				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2615	}
2616}
2617
2618/* init cmng mode in HW according to local configuration */
2619void bnx2x_set_local_cmng(struct bnx2x *bp)
2620{
2621	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2622
2623	if (cmng_fns != CMNG_FNS_NONE) {
2624		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2625		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2626	} else {
2627		/* rate shaping and fairness are disabled */
2628		DP(NETIF_MSG_IFUP,
2629		   "single function mode without fairness\n");
2630	}
2631}
2632
2633/* This function is called upon link interrupt */
2634static void bnx2x_link_attn(struct bnx2x *bp)
2635{
2636	/* Make sure that we are synced with the current statistics */
2637	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2638
2639	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2640
2641	bnx2x_init_dropless_fc(bp);
2642
2643	if (bp->link_vars.link_up) {
2644
2645		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2646			struct host_port_stats *pstats;
2647
2648			pstats = bnx2x_sp(bp, port_stats);
2649			/* reset old mac stats */
2650			memset(&(pstats->mac_stx[0]), 0,
2651			       sizeof(struct mac_stx));
2652		}
2653		if (bp->state == BNX2X_STATE_OPEN)
2654			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2655	}
2656
2657	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2658		bnx2x_set_local_cmng(bp);
2659
2660	__bnx2x_link_report(bp);
2661
2662	if (IS_MF(bp))
2663		bnx2x_link_sync_notify(bp);
2664}
2665
2666void bnx2x__link_status_update(struct bnx2x *bp)
2667{
2668	if (bp->state != BNX2X_STATE_OPEN)
2669		return;
2670
2671	/* read updated dcb configuration */
2672	if (IS_PF(bp)) {
2673		bnx2x_dcbx_pmf_update(bp);
2674		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2675		if (bp->link_vars.link_up)
2676			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2677		else
2678			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2679			/* indicate link status */
2680		bnx2x_link_report(bp);
2681
2682	} else { /* VF */
2683		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2684					  SUPPORTED_10baseT_Full |
2685					  SUPPORTED_100baseT_Half |
2686					  SUPPORTED_100baseT_Full |
2687					  SUPPORTED_1000baseT_Full |
2688					  SUPPORTED_2500baseX_Full |
2689					  SUPPORTED_10000baseT_Full |
2690					  SUPPORTED_TP |
2691					  SUPPORTED_FIBRE |
2692					  SUPPORTED_Autoneg |
2693					  SUPPORTED_Pause |
2694					  SUPPORTED_Asym_Pause);
2695		bp->port.advertising[0] = bp->port.supported[0];
2696
2697		bp->link_params.bp = bp;
2698		bp->link_params.port = BP_PORT(bp);
2699		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2700		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2701		bp->link_params.req_line_speed[0] = SPEED_10000;
2702		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2703		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2704		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2705		bp->link_vars.line_speed = SPEED_10000;
2706		bp->link_vars.link_status =
2707			(LINK_STATUS_LINK_UP |
2708			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2709		bp->link_vars.link_up = 1;
2710		bp->link_vars.duplex = DUPLEX_FULL;
2711		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2712		__bnx2x_link_report(bp);
2713
2714		bnx2x_sample_bulletin(bp);
2715
2716		/* if bulletin board did not have an update for link status
2717		 * __bnx2x_link_report will report current status
2718		 * but it will NOT duplicate report in case of already reported
2719		 * during sampling bulletin board.
2720		 */
2721		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2722	}
2723}
2724
2725static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2726				  u16 vlan_val, u8 allowed_prio)
2727{
2728	struct bnx2x_func_state_params func_params = {NULL};
2729	struct bnx2x_func_afex_update_params *f_update_params =
2730		&func_params.params.afex_update;
2731
2732	func_params.f_obj = &bp->func_obj;
2733	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2734
2735	/* no need to wait for RAMROD completion, so don't
2736	 * set RAMROD_COMP_WAIT flag
2737	 */
2738
2739	f_update_params->vif_id = vifid;
2740	f_update_params->afex_default_vlan = vlan_val;
2741	f_update_params->allowed_priorities = allowed_prio;
2742
2743	/* if ramrod can not be sent, response to MCP immediately */
2744	if (bnx2x_func_state_change(bp, &func_params) < 0)
2745		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2746
2747	return 0;
2748}
2749
2750static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2751					  u16 vif_index, u8 func_bit_map)
2752{
2753	struct bnx2x_func_state_params func_params = {NULL};
2754	struct bnx2x_func_afex_viflists_params *update_params =
2755		&func_params.params.afex_viflists;
2756	int rc;
2757	u32 drv_msg_code;
2758
2759	/* validate only LIST_SET and LIST_GET are received from switch */
2760	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2761		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2762			  cmd_type);
2763
2764	func_params.f_obj = &bp->func_obj;
2765	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2766
2767	/* set parameters according to cmd_type */
2768	update_params->afex_vif_list_command = cmd_type;
2769	update_params->vif_list_index = vif_index;
2770	update_params->func_bit_map =
2771		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2772	update_params->func_to_clear = 0;
2773	drv_msg_code =
2774		(cmd_type == VIF_LIST_RULE_GET) ?
2775		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2776		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2777
2778	/* if ramrod can not be sent, respond to MCP immediately for
2779	 * SET and GET requests (other are not triggered from MCP)
2780	 */
2781	rc = bnx2x_func_state_change(bp, &func_params);
2782	if (rc < 0)
2783		bnx2x_fw_command(bp, drv_msg_code, 0);
2784
2785	return 0;
2786}
2787
2788static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2789{
2790	struct afex_stats afex_stats;
2791	u32 func = BP_ABS_FUNC(bp);
2792	u32 mf_config;
2793	u16 vlan_val;
2794	u32 vlan_prio;
2795	u16 vif_id;
2796	u8 allowed_prio;
2797	u8 vlan_mode;
2798	u32 addr_to_write, vifid, addrs, stats_type, i;
2799
2800	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2801		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802		DP(BNX2X_MSG_MCP,
2803		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2804		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2805	}
2806
2807	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2808		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2810		DP(BNX2X_MSG_MCP,
2811		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2812		   vifid, addrs);
2813		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2814					       addrs);
2815	}
2816
2817	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2818		addr_to_write = SHMEM2_RD(bp,
2819			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2820		stats_type = SHMEM2_RD(bp,
2821			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2822
2823		DP(BNX2X_MSG_MCP,
2824		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2825		   addr_to_write);
2826
2827		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2828
2829		/* write response to scratchpad, for MCP */
2830		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2831			REG_WR(bp, addr_to_write + i*sizeof(u32),
2832			       *(((u32 *)(&afex_stats))+i));
2833
2834		/* send ack message to MCP */
2835		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2836	}
2837
2838	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2839		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2840		bp->mf_config[BP_VN(bp)] = mf_config;
2841		DP(BNX2X_MSG_MCP,
2842		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2843		   mf_config);
2844
2845		/* if VIF_SET is "enabled" */
2846		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2847			/* set rate limit directly to internal RAM */
2848			struct cmng_init_input cmng_input;
2849			struct rate_shaping_vars_per_vn m_rs_vn;
2850			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2851			u32 addr = BAR_XSTRORM_INTMEM +
2852			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2853
2854			bp->mf_config[BP_VN(bp)] = mf_config;
2855
2856			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2857			m_rs_vn.vn_counter.rate =
2858				cmng_input.vnic_max_rate[BP_VN(bp)];
2859			m_rs_vn.vn_counter.quota =
2860				(m_rs_vn.vn_counter.rate *
2861				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2862
2863			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2864
2865			/* read relevant values from mf_cfg struct in shmem */
2866			vif_id =
2867				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2869				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2870			vlan_val =
2871				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2873				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2874			vlan_prio = (mf_config &
2875				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2876				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2877			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2878			vlan_mode =
2879				(MF_CFG_RD(bp,
2880					   func_mf_config[func].afex_config) &
2881				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2882				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2883			allowed_prio =
2884				(MF_CFG_RD(bp,
2885					   func_mf_config[func].afex_config) &
2886				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2887				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2888
2889			/* send ramrod to FW, return in case of failure */
2890			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2891						   allowed_prio))
2892				return;
2893
2894			bp->afex_def_vlan_tag = vlan_val;
2895			bp->afex_vlan_mode = vlan_mode;
2896		} else {
2897			/* notify link down because BP->flags is disabled */
2898			bnx2x_link_report(bp);
2899
2900			/* send INVALID VIF ramrod to FW */
2901			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2902
2903			/* Reset the default afex VLAN */
2904			bp->afex_def_vlan_tag = -1;
2905		}
2906	}
2907}
2908
2909static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2910{
2911	struct bnx2x_func_switch_update_params *switch_update_params;
2912	struct bnx2x_func_state_params func_params;
2913
2914	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2915	switch_update_params = &func_params.params.switch_update;
2916	func_params.f_obj = &bp->func_obj;
2917	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2918
2919	if (IS_MF_UFP(bp)) {
2920		int func = BP_ABS_FUNC(bp);
2921		u32 val;
2922
2923		/* Re-learn the S-tag from shmem */
2924		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925				FUNC_MF_CFG_E1HOV_TAG_MASK;
2926		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927			bp->mf_ov = val;
2928		} else {
2929			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930			goto fail;
2931		}
2932
2933		/* Configure new S-tag in LLH */
2934		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935		       bp->mf_ov);
2936
2937		/* Send Ramrod to update FW of change */
2938		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939			  &switch_update_params->changes);
2940		switch_update_params->vlan = bp->mf_ov;
2941
2942		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944				  bp->mf_ov);
2945			goto fail;
2946		}
2947
2948		DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2949
2950		bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2951
2952		return;
2953	}
2954
2955	/* not supported by SW yet */
2956fail:
2957	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958}
2959
2960static void bnx2x_pmf_update(struct bnx2x *bp)
2961{
2962	int port = BP_PORT(bp);
2963	u32 val;
2964
2965	bp->port.pmf = 1;
2966	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967
2968	/*
2969	 * We need the mb() to ensure the ordering between the writing to
2970	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971	 */
2972	smp_mb();
2973
2974	/* queue a periodic task */
2975	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976
2977	bnx2x_dcbx_pmf_update(bp);
2978
2979	/* enable nig attention */
2980	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981	if (bp->common.int_block == INT_BLOCK_HC) {
2982		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984	} else if (!CHIP_IS_E1x(bp)) {
2985		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987	}
2988
2989	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990}
2991
2992/* end of Link */
2993
2994/* slow path */
2995
2996/*
2997 * General service functions
2998 */
2999
3000/* send the MCP a request, block until there is a reply */
3001u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002{
3003	int mb_idx = BP_FW_MB_IDX(bp);
3004	u32 seq;
3005	u32 rc = 0;
3006	u32 cnt = 1;
3007	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008
3009	mutex_lock(&bp->fw_mb_mutex);
3010	seq = ++bp->fw_seq;
3011	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013
3014	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015			(command | seq), param);
3016
3017	do {
3018		/* let the FW do it's magic ... */
3019		msleep(delay);
3020
3021		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022
3023		/* Give the FW up to 5 second (500*10ms) */
3024	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025
3026	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027	   cnt*delay, rc, seq);
3028
3029	/* is this a reply to our command? */
3030	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031		rc &= FW_MSG_CODE_MASK;
3032	else {
3033		/* FW BUG! */
3034		BNX2X_ERR("FW failed to respond!\n");
3035		bnx2x_fw_dump(bp);
3036		rc = 0;
3037	}
3038	mutex_unlock(&bp->fw_mb_mutex);
3039
3040	return rc;
3041}
3042
3043static void storm_memset_func_cfg(struct bnx2x *bp,
3044				 struct tstorm_eth_function_common_config *tcfg,
3045				 u16 abs_fid)
3046{
3047	size_t size = sizeof(struct tstorm_eth_function_common_config);
3048
3049	u32 addr = BAR_TSTRORM_INTMEM +
3050			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051
3052	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053}
3054
3055void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056{
3057	if (CHIP_IS_E1x(bp)) {
3058		struct tstorm_eth_function_common_config tcfg = {0};
3059
3060		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061	}
3062
3063	/* Enable the function in the FW */
3064	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065	storm_memset_func_en(bp, p->func_id, 1);
3066
3067	/* spq */
3068	if (p->func_flgs & FUNC_FLG_SPQ) {
3069		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072	}
3073}
3074
3075/**
3076 * bnx2x_get_common_flags - Return common flags
3077 *
3078 * @bp		device handle
3079 * @fp		queue handle
3080 * @zero_stats	TRUE if statistics zeroing is needed
3081 *
3082 * Return the flags that are common for the Tx-only and not normal connections.
3083 */
3084static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085					    struct bnx2x_fastpath *fp,
3086					    bool zero_stats)
3087{
3088	unsigned long flags = 0;
3089
3090	/* PF driver will always initialize the Queue to an ACTIVE state */
3091	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092
3093	/* tx only connections collect statistics (on the same index as the
3094	 * parent connection). The statistics are zeroed when the parent
3095	 * connection is initialized.
3096	 */
3097
3098	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3099	if (zero_stats)
3100		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101
3102	if (bp->flags & TX_SWITCHING)
3103		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104
3105	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107
3108#ifdef BNX2X_STOP_ON_ERROR
3109	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110#endif
3111
3112	return flags;
3113}
3114
3115static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116				       struct bnx2x_fastpath *fp,
3117				       bool leading)
3118{
3119	unsigned long flags = 0;
3120
3121	/* calculate other queue flags */
3122	if (IS_MF_SD(bp))
3123		__set_bit(BNX2X_Q_FLG_OV, &flags);
3124
3125	if (IS_FCOE_FP(fp)) {
3126		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127		/* For FCoE - force usage of default priority (for afex) */
3128		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129	}
3130
3131	if (fp->mode != TPA_MODE_DISABLED) {
3132		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3133		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134		if (fp->mode == TPA_MODE_GRO)
3135			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136	}
3137
3138	if (leading) {
3139		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141	}
3142
3143	/* Always set HW VLAN stripping */
3144	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145
3146	/* configure silent vlan removal */
3147	if (IS_MF_AFEX(bp))
3148		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149
3150	return flags | bnx2x_get_common_flags(bp, fp, true);
3151}
3152
3153static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155	u8 cos)
3156{
3157	gen_init->stat_id = bnx2x_stats_id(fp);
3158	gen_init->spcl_id = fp->cl_id;
3159
3160	/* Always use mini-jumbo MTU for FCoE L2 ring */
3161	if (IS_FCOE_FP(fp))
3162		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163	else
3164		gen_init->mtu = bp->dev->mtu;
3165
3166	gen_init->cos = cos;
3167
3168	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169}
3170
3171static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173	struct bnx2x_rxq_setup_params *rxq_init)
3174{
3175	u8 max_sge = 0;
3176	u16 sge_sz = 0;
3177	u16 tpa_agg_size = 0;
3178
3179	if (fp->mode != TPA_MODE_DISABLED) {
3180		pause->sge_th_lo = SGE_TH_LO(bp);
3181		pause->sge_th_hi = SGE_TH_HI(bp);
3182
3183		/* validate SGE ring has enough to cross high threshold */
3184		WARN_ON(bp->dropless_fc &&
3185				pause->sge_th_hi + FW_PREFETCH_CNT >
3186				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187
3188		tpa_agg_size = TPA_AGG_SIZE;
3189		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190			SGE_PAGE_SHIFT;
3191		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194	}
3195
3196	/* pause - not for e1 */
3197	if (!CHIP_IS_E1(bp)) {
3198		pause->bd_th_lo = BD_TH_LO(bp);
3199		pause->bd_th_hi = BD_TH_HI(bp);
3200
3201		pause->rcq_th_lo = RCQ_TH_LO(bp);
3202		pause->rcq_th_hi = RCQ_TH_HI(bp);
3203		/*
3204		 * validate that rings have enough entries to cross
3205		 * high thresholds
3206		 */
3207		WARN_ON(bp->dropless_fc &&
3208				pause->bd_th_hi + FW_PREFETCH_CNT >
3209				bp->rx_ring_size);
3210		WARN_ON(bp->dropless_fc &&
3211				pause->rcq_th_hi + FW_PREFETCH_CNT >
3212				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213
3214		pause->pri_map = 1;
3215	}
3216
3217	/* rxq setup */
3218	rxq_init->dscr_map = fp->rx_desc_mapping;
3219	rxq_init->sge_map = fp->rx_sge_mapping;
3220	rxq_init->rcq_map = fp->rx_comp_mapping;
3221	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222
3223	/* This should be a maximum number of data bytes that may be
3224	 * placed on the BD (not including paddings).
3225	 */
3226	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228
3229	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230	rxq_init->tpa_agg_sz = tpa_agg_size;
3231	rxq_init->sge_buf_sz = sge_sz;
3232	rxq_init->max_sges_pkt = max_sge;
3233	rxq_init->rss_engine_id = BP_FUNC(bp);
3234	rxq_init->mcast_engine_id = BP_FUNC(bp);
3235
3236	/* Maximum number or simultaneous TPA aggregation for this Queue.
3237	 *
3238	 * For PF Clients it should be the maximum available number.
3239	 * VF driver(s) may want to define it to a smaller value.
3240	 */
3241	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242
3243	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244	rxq_init->fw_sb_id = fp->fw_sb_id;
3245
3246	if (IS_FCOE_FP(fp))
3247		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248	else
3249		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250	/* configure silent vlan removal
3251	 * if multi function mode is afex, then mask default vlan
3252	 */
3253	if (IS_MF_AFEX(bp)) {
3254		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256	}
3257}
3258
3259static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261	u8 cos)
3262{
3263	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266	txq_init->fw_sb_id = fp->fw_sb_id;
3267
3268	/*
3269	 * set the tss leading client id for TX classification ==
3270	 * leading RSS client id
3271	 */
3272	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273
3274	if (IS_FCOE_FP(fp)) {
3275		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277	}
3278}
3279
3280static void bnx2x_pf_init(struct bnx2x *bp)
3281{
3282	struct bnx2x_func_init_params func_init = {0};
3283	struct event_ring_data eq_data = { {0} };
3284	u16 flags;
3285
3286	if (!CHIP_IS_E1x(bp)) {
3287		/* reset IGU PF statistics: MSIX + ATTN */
3288		/* PF */
3289		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3290			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3291			   (CHIP_MODE_IS_4_PORT(bp) ?
3292				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3293		/* ATTN */
3294		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3295			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3296			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3297			   (CHIP_MODE_IS_4_PORT(bp) ?
3298				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299	}
3300
3301	/* function setup flags */
3302	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3303
3304	/* This flag is relevant for E1x only.
3305	 * E2 doesn't have a TPA configuration in a function level.
3306	 */
3307	flags |= (bp->dev->features & NETIF_F_LRO) ? FUNC_FLG_TPA : 0;
3308
3309	func_init.func_flgs = flags;
3310	func_init.pf_id = BP_FUNC(bp);
3311	func_init.func_id = BP_FUNC(bp);
3312	func_init.spq_map = bp->spq_mapping;
3313	func_init.spq_prod = bp->spq_prod_idx;
3314
3315	bnx2x_func_init(bp, &func_init);
3316
3317	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318
3319	/*
3320	 * Congestion management values depend on the link rate
3321	 * There is no active link so initial link rate is set to 10 Gbps.
3322	 * When the link comes up The congestion management values are
3323	 * re-calculated according to the actual link rate.
3324	 */
3325	bp->link_vars.line_speed = SPEED_10000;
3326	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327
3328	/* Only the PMF sets the HW */
3329	if (bp->port.pmf)
3330		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331
3332	/* init Event Queue - PCI bus guarantees correct endianity*/
3333	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335	eq_data.producer = bp->eq_prod;
3336	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337	eq_data.sb_id = DEF_SB_ID;
3338	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339}
3340
3341static void bnx2x_e1h_disable(struct bnx2x *bp)
3342{
3343	int port = BP_PORT(bp);
3344
3345	bnx2x_tx_disable(bp);
3346
3347	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348}
3349
3350static void bnx2x_e1h_enable(struct bnx2x *bp)
3351{
3352	int port = BP_PORT(bp);
3353
3354	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356
3357	/* Tx queue should be only re-enabled */
3358	netif_tx_wake_all_queues(bp->dev);
3359
3360	/*
3361	 * Should not call netif_carrier_on since it will be called if the link
3362	 * is up when checking for link state
3363	 */
3364}
3365
3366#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367
3368static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369{
3370	struct eth_stats_info *ether_stat =
3371		&bp->slowpath->drv_info_to_mcp.ether_stat;
3372	struct bnx2x_vlan_mac_obj *mac_obj =
3373		&bp->sp_objs->mac_obj;
3374	int i;
3375
3376	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377		ETH_STAT_INFO_VERSION_LEN);
3378
3379	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380	 * mac_local field in ether_stat struct. The base address is offset by 2
3381	 * bytes to account for the field being 8 bytes but a mac address is
3382	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384	 * allocated by the ether_stat struct, so the macs will land in their
3385	 * proper positions.
3386	 */
3387	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388		memset(ether_stat->mac_local + i, 0,
3389		       sizeof(ether_stat->mac_local[0]));
3390	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393				ETH_ALEN);
3394	ether_stat->mtu_size = bp->dev->mtu;
3395	if (bp->dev->features & NETIF_F_RXCSUM)
3396		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397	if (bp->dev->features & NETIF_F_TSO)
3398		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399	ether_stat->feature_flags |= bp->common.boot_mode;
3400
3401	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402
3403	ether_stat->txq_size = bp->tx_ring_size;
3404	ether_stat->rxq_size = bp->rx_ring_size;
3405
3406#ifdef CONFIG_BNX2X_SRIOV
3407	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408#endif
3409}
3410
3411static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412{
3413	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414	struct fcoe_stats_info *fcoe_stat =
3415		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416
3417	if (!CNIC_LOADED(bp))
3418		return;
3419
3420	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421
3422	fcoe_stat->qos_priority =
3423		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424
3425	/* insert FCoE stats from ramrod response */
3426	if (!NO_FCOE(bp)) {
3427		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429			tstorm_queue_statistics;
3430
3431		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433			xstorm_queue_statistics;
3434
3435		struct fcoe_statistics_params *fw_fcoe_stat =
3436			&bp->fw_stats_data->fcoe;
3437
3438		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439			  fcoe_stat->rx_bytes_lo,
3440			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441
3442		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444			  fcoe_stat->rx_bytes_lo,
3445			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446
3447		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449			  fcoe_stat->rx_bytes_lo,
3450			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451
3452		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454			  fcoe_stat->rx_bytes_lo,
3455			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456
3457		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458			  fcoe_stat->rx_frames_lo,
3459			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460
3461		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462			  fcoe_stat->rx_frames_lo,
3463			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464
3465		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466			  fcoe_stat->rx_frames_lo,
3467			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468
3469		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470			  fcoe_stat->rx_frames_lo,
3471			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472
3473		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474			  fcoe_stat->tx_bytes_lo,
3475			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476
3477		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479			  fcoe_stat->tx_bytes_lo,
3480			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481
3482		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484			  fcoe_stat->tx_bytes_lo,
3485			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486
3487		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489			  fcoe_stat->tx_bytes_lo,
3490			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491
3492		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493			  fcoe_stat->tx_frames_lo,
3494			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495
3496		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497			  fcoe_stat->tx_frames_lo,
3498			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3499
3500		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501			  fcoe_stat->tx_frames_lo,
3502			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3503
3504		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505			  fcoe_stat->tx_frames_lo,
3506			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3507	}
3508
3509	/* ask L5 driver to add data to the struct */
3510	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511}
3512
3513static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514{
3515	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516	struct iscsi_stats_info *iscsi_stat =
3517		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518
3519	if (!CNIC_LOADED(bp))
3520		return;
3521
3522	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523	       ETH_ALEN);
3524
3525	iscsi_stat->qos_priority =
3526		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527
3528	/* ask L5 driver to add data to the struct */
3529	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530}
3531
3532/* called due to MCP event (on pmf):
3533 *	reread new bandwidth configuration
3534 *	configure FW
3535 *	notify others function about the change
3536 */
3537static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538{
3539	if (bp->link_vars.link_up) {
3540		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541		bnx2x_link_sync_notify(bp);
3542	}
3543	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544}
3545
3546static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547{
3548	bnx2x_config_mf_bw(bp);
3549	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550}
3551
3552static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553{
3554	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556}
3557
3558#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3559#define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3560
3561static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562{
3563	enum drv_info_opcode op_code;
3564	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565	bool release = false;
3566	int wait;
3567
3568	/* if drv_info version supported by MFW doesn't match - send NACK */
3569	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571		return;
3572	}
3573
3574	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576
3577	/* Must prevent other flows from accessing drv_info_to_mcp */
3578	mutex_lock(&bp->drv_info_mutex);
3579
3580	memset(&bp->slowpath->drv_info_to_mcp, 0,
3581	       sizeof(union drv_info_to_mcp));
3582
3583	switch (op_code) {
3584	case ETH_STATS_OPCODE:
3585		bnx2x_drv_info_ether_stat(bp);
3586		break;
3587	case FCOE_STATS_OPCODE:
3588		bnx2x_drv_info_fcoe_stat(bp);
3589		break;
3590	case ISCSI_STATS_OPCODE:
3591		bnx2x_drv_info_iscsi_stat(bp);
3592		break;
3593	default:
3594		/* if op code isn't supported - send NACK */
3595		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596		goto out;
3597	}
3598
3599	/* if we got drv_info attn from MFW then these fields are defined in
3600	 * shmem2 for sure
3601	 */
3602	SHMEM2_WR(bp, drv_info_host_addr_lo,
3603		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604	SHMEM2_WR(bp, drv_info_host_addr_hi,
3605		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606
3607	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608
3609	/* Since possible management wants both this and get_driver_version
3610	 * need to wait until management notifies us it finished utilizing
3611	 * the buffer.
3612	 */
3613	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615	} else if (!bp->drv_info_mng_owner) {
3616		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617
3618		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620
3621			/* Management is done; need to clear indication */
3622			if (indication & bit) {
3623				SHMEM2_WR(bp, mfw_drv_indication,
3624					  indication & ~bit);
3625				release = true;
3626				break;
3627			}
3628
3629			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630		}
3631	}
3632	if (!release) {
3633		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634		bp->drv_info_mng_owner = true;
3635	}
3636
3637out:
3638	mutex_unlock(&bp->drv_info_mutex);
3639}
3640
3641static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642{
3643	u8 vals[4];
3644	int i = 0;
3645
3646	if (bnx2x_format) {
3647		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648			   &vals[0], &vals[1], &vals[2], &vals[3]);
3649		if (i > 0)
3650			vals[0] -= '0';
3651	} else {
3652		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653			   &vals[0], &vals[1], &vals[2], &vals[3]);
3654	}
3655
3656	while (i < 4)
3657		vals[i++] = 0;
3658
3659	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660}
3661
3662void bnx2x_update_mng_version(struct bnx2x *bp)
3663{
3664	u32 iscsiver = DRV_VER_NOT_LOADED;
3665	u32 fcoever = DRV_VER_NOT_LOADED;
3666	u32 ethver = DRV_VER_NOT_LOADED;
3667	int idx = BP_FW_MB_IDX(bp);
3668	u8 *version;
3669
3670	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671		return;
3672
3673	mutex_lock(&bp->drv_info_mutex);
3674	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675	if (bp->drv_info_mng_owner)
3676		goto out;
3677
3678	if (bp->state != BNX2X_STATE_OPEN)
3679		goto out;
3680
3681	/* Parse ethernet driver version */
3682	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683	if (!CNIC_LOADED(bp))
3684		goto out;
3685
3686	/* Try getting storage driver version via cnic */
3687	memset(&bp->slowpath->drv_info_to_mcp, 0,
3688	       sizeof(union drv_info_to_mcp));
3689	bnx2x_drv_info_iscsi_stat(bp);
3690	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691	iscsiver = bnx2x_update_mng_version_utility(version, false);
3692
3693	memset(&bp->slowpath->drv_info_to_mcp, 0,
3694	       sizeof(union drv_info_to_mcp));
3695	bnx2x_drv_info_fcoe_stat(bp);
3696	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697	fcoever = bnx2x_update_mng_version_utility(version, false);
3698
3699out:
3700	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703
3704	mutex_unlock(&bp->drv_info_mutex);
3705
3706	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707	   ethver, iscsiver, fcoever);
3708}
3709
3710static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3711{
3712	u32 cmd_ok, cmd_fail;
3713
3714	/* sanity */
3715	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3716	    event & DRV_STATUS_OEM_EVENT_MASK) {
3717		BNX2X_ERR("Received simultaneous events %08x\n", event);
3718		return;
3719	}
3720
3721	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3722		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3723		cmd_ok = DRV_MSG_CODE_DCC_OK;
3724	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3725		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3726		cmd_ok = DRV_MSG_CODE_OEM_OK;
3727	}
3728
3729	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3730
3731	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3732		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3733		/* This is the only place besides the function initialization
3734		 * where the bp->flags can change so it is done without any
3735		 * locks
3736		 */
3737		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3738			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3739			bp->flags |= MF_FUNC_DIS;
3740
3741			bnx2x_e1h_disable(bp);
3742		} else {
3743			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3744			bp->flags &= ~MF_FUNC_DIS;
3745
3746			bnx2x_e1h_enable(bp);
3747		}
3748		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3749			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3750	}
3751
3752	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3754		bnx2x_config_mf_bw(bp);
3755		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3756			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3757	}
3758
3759	/* Report results to MCP */
3760	if (event)
3761		bnx2x_fw_command(bp, cmd_fail, 0);
3762	else
3763		bnx2x_fw_command(bp, cmd_ok, 0);
3764}
3765
3766/* must be called under the spq lock */
3767static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3768{
3769	struct eth_spe *next_spe = bp->spq_prod_bd;
3770
3771	if (bp->spq_prod_bd == bp->spq_last_bd) {
3772		bp->spq_prod_bd = bp->spq;
3773		bp->spq_prod_idx = 0;
3774		DP(BNX2X_MSG_SP, "end of spq\n");
3775	} else {
3776		bp->spq_prod_bd++;
3777		bp->spq_prod_idx++;
3778	}
3779	return next_spe;
3780}
3781
3782/* must be called under the spq lock */
3783static void bnx2x_sp_prod_update(struct bnx2x *bp)
3784{
3785	int func = BP_FUNC(bp);
3786
3787	/*
3788	 * Make sure that BD data is updated before writing the producer:
3789	 * BD data is written to the memory, the producer is read from the
3790	 * memory, thus we need a full memory barrier to ensure the ordering.
3791	 */
3792	mb();
3793
3794	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3795		 bp->spq_prod_idx);
3796	mmiowb();
3797}
3798
3799/**
3800 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3801 *
3802 * @cmd:	command to check
3803 * @cmd_type:	command type
3804 */
3805static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3806{
3807	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3808	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3809	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3810	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3811	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3812	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3813	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3814		return true;
3815	else
3816		return false;
3817}
3818
3819/**
3820 * bnx2x_sp_post - place a single command on an SP ring
3821 *
3822 * @bp:		driver handle
3823 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3824 * @cid:	SW CID the command is related to
3825 * @data_hi:	command private data address (high 32 bits)
3826 * @data_lo:	command private data address (low 32 bits)
3827 * @cmd_type:	command type (e.g. NONE, ETH)
3828 *
3829 * SP data is handled as if it's always an address pair, thus data fields are
3830 * not swapped to little endian in upper functions. Instead this function swaps
3831 * data as if it's two u32 fields.
3832 */
3833int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3834		  u32 data_hi, u32 data_lo, int cmd_type)
3835{
3836	struct eth_spe *spe;
3837	u16 type;
3838	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3839
3840#ifdef BNX2X_STOP_ON_ERROR
3841	if (unlikely(bp->panic)) {
3842		BNX2X_ERR("Can't post SP when there is panic\n");
3843		return -EIO;
3844	}
3845#endif
3846
3847	spin_lock_bh(&bp->spq_lock);
3848
3849	if (common) {
3850		if (!atomic_read(&bp->eq_spq_left)) {
3851			BNX2X_ERR("BUG! EQ ring full!\n");
3852			spin_unlock_bh(&bp->spq_lock);
3853			bnx2x_panic();
3854			return -EBUSY;
3855		}
3856	} else if (!atomic_read(&bp->cq_spq_left)) {
3857			BNX2X_ERR("BUG! SPQ ring full!\n");
3858			spin_unlock_bh(&bp->spq_lock);
3859			bnx2x_panic();
3860			return -EBUSY;
3861	}
3862
3863	spe = bnx2x_sp_get_next(bp);
3864
3865	/* CID needs port number to be encoded int it */
3866	spe->hdr.conn_and_cmd_data =
3867			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3868				    HW_CID(bp, cid));
3869
3870	/* In some cases, type may already contain the func-id
3871	 * mainly in SRIOV related use cases, so we add it here only
3872	 * if it's not already set.
3873	 */
3874	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3875		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3876			SPE_HDR_CONN_TYPE;
3877		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3878			 SPE_HDR_FUNCTION_ID);
3879	} else {
3880		type = cmd_type;
3881	}
3882
3883	spe->hdr.type = cpu_to_le16(type);
3884
3885	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3886	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3887
3888	/*
3889	 * It's ok if the actual decrement is issued towards the memory
3890	 * somewhere between the spin_lock and spin_unlock. Thus no
3891	 * more explicit memory barrier is needed.
3892	 */
3893	if (common)
3894		atomic_dec(&bp->eq_spq_left);
3895	else
3896		atomic_dec(&bp->cq_spq_left);
3897
3898	DP(BNX2X_MSG_SP,
3899	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3900	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3901	   (u32)(U64_LO(bp->spq_mapping) +
3902	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3903	   HW_CID(bp, cid), data_hi, data_lo, type,
3904	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3905
3906	bnx2x_sp_prod_update(bp);
3907	spin_unlock_bh(&bp->spq_lock);
3908	return 0;
3909}
3910
3911/* acquire split MCP access lock register */
3912static int bnx2x_acquire_alr(struct bnx2x *bp)
3913{
3914	u32 j, val;
3915	int rc = 0;
3916
3917	might_sleep();
3918	for (j = 0; j < 1000; j++) {
3919		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3920		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3921		if (val & MCPR_ACCESS_LOCK_LOCK)
3922			break;
3923
3924		usleep_range(5000, 10000);
3925	}
3926	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3927		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3928		rc = -EBUSY;
3929	}
3930
3931	return rc;
3932}
3933
3934/* release split MCP access lock register */
3935static void bnx2x_release_alr(struct bnx2x *bp)
3936{
3937	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3938}
3939
3940#define BNX2X_DEF_SB_ATT_IDX	0x0001
3941#define BNX2X_DEF_SB_IDX	0x0002
3942
3943static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3944{
3945	struct host_sp_status_block *def_sb = bp->def_status_blk;
3946	u16 rc = 0;
3947
3948	barrier(); /* status block is written to by the chip */
3949	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3950		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3951		rc |= BNX2X_DEF_SB_ATT_IDX;
3952	}
3953
3954	if (bp->def_idx != def_sb->sp_sb.running_index) {
3955		bp->def_idx = def_sb->sp_sb.running_index;
3956		rc |= BNX2X_DEF_SB_IDX;
3957	}
3958
3959	/* Do not reorder: indices reading should complete before handling */
3960	barrier();
3961	return rc;
3962}
3963
3964/*
3965 * slow path service functions
3966 */
3967
3968static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3969{
3970	int port = BP_PORT(bp);
3971	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3972			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3973	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3974				       NIG_REG_MASK_INTERRUPT_PORT0;
3975	u32 aeu_mask;
3976	u32 nig_mask = 0;
3977	u32 reg_addr;
3978
3979	if (bp->attn_state & asserted)
3980		BNX2X_ERR("IGU ERROR\n");
3981
3982	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3983	aeu_mask = REG_RD(bp, aeu_addr);
3984
3985	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3986	   aeu_mask, asserted);
3987	aeu_mask &= ~(asserted & 0x3ff);
3988	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3989
3990	REG_WR(bp, aeu_addr, aeu_mask);
3991	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3992
3993	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3994	bp->attn_state |= asserted;
3995	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3996
3997	if (asserted & ATTN_HARD_WIRED_MASK) {
3998		if (asserted & ATTN_NIG_FOR_FUNC) {
3999
4000			bnx2x_acquire_phy_lock(bp);
4001
4002			/* save nig interrupt mask */
4003			nig_mask = REG_RD(bp, nig_int_mask_addr);
4004
4005			/* If nig_mask is not set, no need to call the update
4006			 * function.
4007			 */
4008			if (nig_mask) {
4009				REG_WR(bp, nig_int_mask_addr, 0);
4010
4011				bnx2x_link_attn(bp);
4012			}
4013
4014			/* handle unicore attn? */
4015		}
4016		if (asserted & ATTN_SW_TIMER_4_FUNC)
4017			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4018
4019		if (asserted & GPIO_2_FUNC)
4020			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4021
4022		if (asserted & GPIO_3_FUNC)
4023			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4024
4025		if (asserted & GPIO_4_FUNC)
4026			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4027
4028		if (port == 0) {
4029			if (asserted & ATTN_GENERAL_ATTN_1) {
4030				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4031				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4032			}
4033			if (asserted & ATTN_GENERAL_ATTN_2) {
4034				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4035				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4036			}
4037			if (asserted & ATTN_GENERAL_ATTN_3) {
4038				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4039				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4040			}
4041		} else {
4042			if (asserted & ATTN_GENERAL_ATTN_4) {
4043				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4044				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4045			}
4046			if (asserted & ATTN_GENERAL_ATTN_5) {
4047				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4048				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4049			}
4050			if (asserted & ATTN_GENERAL_ATTN_6) {
4051				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4052				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4053			}
4054		}
4055
4056	} /* if hardwired */
4057
4058	if (bp->common.int_block == INT_BLOCK_HC)
4059		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4060			    COMMAND_REG_ATTN_BITS_SET);
4061	else
4062		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4063
4064	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4065	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4066	REG_WR(bp, reg_addr, asserted);
4067
4068	/* now set back the mask */
4069	if (asserted & ATTN_NIG_FOR_FUNC) {
4070		/* Verify that IGU ack through BAR was written before restoring
4071		 * NIG mask. This loop should exit after 2-3 iterations max.
4072		 */
4073		if (bp->common.int_block != INT_BLOCK_HC) {
4074			u32 cnt = 0, igu_acked;
4075			do {
4076				igu_acked = REG_RD(bp,
4077						   IGU_REG_ATTENTION_ACK_BITS);
4078			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4079				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4080			if (!igu_acked)
4081				DP(NETIF_MSG_HW,
4082				   "Failed to verify IGU ack on time\n");
4083			barrier();
4084		}
4085		REG_WR(bp, nig_int_mask_addr, nig_mask);
4086		bnx2x_release_phy_lock(bp);
4087	}
4088}
4089
4090static void bnx2x_fan_failure(struct bnx2x *bp)
4091{
4092	int port = BP_PORT(bp);
4093	u32 ext_phy_config;
4094	/* mark the failure */
4095	ext_phy_config =
4096		SHMEM_RD(bp,
4097			 dev_info.port_hw_config[port].external_phy_config);
4098
4099	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4100	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4101	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4102		 ext_phy_config);
4103
4104	/* log the failure */
4105	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4106			    "Please contact OEM Support for assistance\n");
4107
4108	/* Schedule device reset (unload)
4109	 * This is due to some boards consuming sufficient power when driver is
4110	 * up to overheat if fan fails.
4111	 */
4112	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4113}
4114
4115static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4116{
4117	int port = BP_PORT(bp);
4118	int reg_offset;
4119	u32 val;
4120
4121	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4122			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4123
4124	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4125
4126		val = REG_RD(bp, reg_offset);
4127		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4128		REG_WR(bp, reg_offset, val);
4129
4130		BNX2X_ERR("SPIO5 hw attention\n");
4131
4132		/* Fan failure attention */
4133		bnx2x_hw_reset_phy(&bp->link_params);
4134		bnx2x_fan_failure(bp);
4135	}
4136
4137	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4138		bnx2x_acquire_phy_lock(bp);
4139		bnx2x_handle_module_detect_int(&bp->link_params);
4140		bnx2x_release_phy_lock(bp);
4141	}
4142
4143	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4144
4145		val = REG_RD(bp, reg_offset);
4146		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4147		REG_WR(bp, reg_offset, val);
4148
4149		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4150			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4151		bnx2x_panic();
4152	}
4153}
4154
4155static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4156{
4157	u32 val;
4158
4159	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4160
4161		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4162		BNX2X_ERR("DB hw attention 0x%x\n", val);
4163		/* DORQ discard attention */
4164		if (val & 0x2)
4165			BNX2X_ERR("FATAL error from DORQ\n");
4166	}
4167
4168	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4169
4170		int port = BP_PORT(bp);
4171		int reg_offset;
4172
4173		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4174				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4175
4176		val = REG_RD(bp, reg_offset);
4177		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4178		REG_WR(bp, reg_offset, val);
4179
4180		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4181			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4182		bnx2x_panic();
4183	}
4184}
4185
4186static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4187{
4188	u32 val;
4189
4190	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4191
4192		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4193		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4194		/* CFC error attention */
4195		if (val & 0x2)
4196			BNX2X_ERR("FATAL error from CFC\n");
4197	}
4198
4199	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4200		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4201		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4202		/* RQ_USDMDP_FIFO_OVERFLOW */
4203		if (val & 0x18000)
4204			BNX2X_ERR("FATAL error from PXP\n");
4205
4206		if (!CHIP_IS_E1x(bp)) {
4207			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4208			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4209		}
4210	}
4211
4212	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4213
4214		int port = BP_PORT(bp);
4215		int reg_offset;
4216
4217		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4218				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4219
4220		val = REG_RD(bp, reg_offset);
4221		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4222		REG_WR(bp, reg_offset, val);
4223
4224		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4225			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4226		bnx2x_panic();
4227	}
4228}
4229
4230static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4231{
4232	u32 val;
4233
4234	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4235
4236		if (attn & BNX2X_PMF_LINK_ASSERT) {
4237			int func = BP_FUNC(bp);
4238
4239			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4240			bnx2x_read_mf_cfg(bp);
4241			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4242					func_mf_config[BP_ABS_FUNC(bp)].config);
4243			val = SHMEM_RD(bp,
4244				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4245
4246			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4247				   DRV_STATUS_OEM_EVENT_MASK))
4248				bnx2x_oem_event(bp,
4249					(val & (DRV_STATUS_DCC_EVENT_MASK |
4250						DRV_STATUS_OEM_EVENT_MASK)));
4251
4252			if (val & DRV_STATUS_SET_MF_BW)
4253				bnx2x_set_mf_bw(bp);
4254
4255			if (val & DRV_STATUS_DRV_INFO_REQ)
4256				bnx2x_handle_drv_info_req(bp);
4257
4258			if (val & DRV_STATUS_VF_DISABLED)
4259				bnx2x_schedule_iov_task(bp,
4260							BNX2X_IOV_HANDLE_FLR);
4261
4262			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4263				bnx2x_pmf_update(bp);
4264
4265			if (bp->port.pmf &&
4266			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4267				bp->dcbx_enabled > 0)
4268				/* start dcbx state machine */
4269				bnx2x_dcbx_set_params(bp,
4270					BNX2X_DCBX_STATE_NEG_RECEIVED);
4271			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4272				bnx2x_handle_afex_cmd(bp,
4273					val & DRV_STATUS_AFEX_EVENT_MASK);
4274			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4275				bnx2x_handle_eee_event(bp);
4276
4277			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4278				bnx2x_handle_update_svid_cmd(bp);
4279
4280			if (bp->link_vars.periodic_flags &
4281			    PERIODIC_FLAGS_LINK_EVENT) {
4282				/*  sync with link */
4283				bnx2x_acquire_phy_lock(bp);
4284				bp->link_vars.periodic_flags &=
4285					~PERIODIC_FLAGS_LINK_EVENT;
4286				bnx2x_release_phy_lock(bp);
4287				if (IS_MF(bp))
4288					bnx2x_link_sync_notify(bp);
4289				bnx2x_link_report(bp);
4290			}
4291			/* Always call it here: bnx2x_link_report() will
4292			 * prevent the link indication duplication.
4293			 */
4294			bnx2x__link_status_update(bp);
4295		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4296
4297			BNX2X_ERR("MC assert!\n");
4298			bnx2x_mc_assert(bp);
4299			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4300			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4301			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4302			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4303			bnx2x_panic();
4304
4305		} else if (attn & BNX2X_MCP_ASSERT) {
4306
4307			BNX2X_ERR("MCP assert!\n");
4308			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4309			bnx2x_fw_dump(bp);
4310
4311		} else
4312			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4313	}
4314
4315	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4316		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4317		if (attn & BNX2X_GRC_TIMEOUT) {
4318			val = CHIP_IS_E1(bp) ? 0 :
4319					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4320			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4321		}
4322		if (attn & BNX2X_GRC_RSV) {
4323			val = CHIP_IS_E1(bp) ? 0 :
4324					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4325			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4326		}
4327		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4328	}
4329}
4330
4331/*
4332 * Bits map:
4333 * 0-7   - Engine0 load counter.
4334 * 8-15  - Engine1 load counter.
4335 * 16    - Engine0 RESET_IN_PROGRESS bit.
4336 * 17    - Engine1 RESET_IN_PROGRESS bit.
4337 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4338 *         on the engine
4339 * 19    - Engine1 ONE_IS_LOADED.
4340 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4341 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4342 *         just the one belonging to its engine).
4343 *
4344 */
4345#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4346
4347#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4348#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4349#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4350#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4351#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4352#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4353#define BNX2X_GLOBAL_RESET_BIT		0x00040000
4354
4355/*
4356 * Set the GLOBAL_RESET bit.
4357 *
4358 * Should be run under rtnl lock
4359 */
4360void bnx2x_set_reset_global(struct bnx2x *bp)
4361{
4362	u32 val;
4363	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4365	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4366	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4367}
4368
4369/*
4370 * Clear the GLOBAL_RESET bit.
4371 *
4372 * Should be run under rtnl lock
4373 */
4374static void bnx2x_clear_reset_global(struct bnx2x *bp)
4375{
4376	u32 val;
4377	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4379	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4380	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4381}
4382
4383/*
4384 * Checks the GLOBAL_RESET bit.
4385 *
4386 * should be run under rtnl lock
4387 */
4388static bool bnx2x_reset_is_global(struct bnx2x *bp)
4389{
4390	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391
4392	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4393	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4394}
4395
4396/*
4397 * Clear RESET_IN_PROGRESS bit for the current engine.
4398 *
4399 * Should be run under rtnl lock
4400 */
4401static void bnx2x_set_reset_done(struct bnx2x *bp)
4402{
4403	u32 val;
4404	u32 bit = BP_PATH(bp) ?
4405		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4406	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4408
4409	/* Clear the bit */
4410	val &= ~bit;
4411	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4412
4413	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414}
4415
4416/*
4417 * Set RESET_IN_PROGRESS for the current engine.
4418 *
4419 * should be run under rtnl lock
4420 */
4421void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4422{
4423	u32 val;
4424	u32 bit = BP_PATH(bp) ?
4425		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4426	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428
4429	/* Set the bit */
4430	val |= bit;
4431	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4432	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433}
4434
4435/*
4436 * Checks the RESET_IN_PROGRESS bit for the given engine.
4437 * should be run under rtnl lock
4438 */
4439bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4440{
4441	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4442	u32 bit = engine ?
4443		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444
4445	/* return false if bit is set */
4446	return (val & bit) ? false : true;
4447}
4448
4449/*
4450 * set pf load for the current pf.
4451 *
4452 * should be run under rtnl lock
4453 */
4454void bnx2x_set_pf_load(struct bnx2x *bp)
4455{
4456	u32 val1, val;
4457	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4458			     BNX2X_PATH0_LOAD_CNT_MASK;
4459	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4460			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4461
4462	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464
4465	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4466
4467	/* get the current counter value */
4468	val1 = (val & mask) >> shift;
4469
4470	/* set bit of that PF */
4471	val1 |= (1 << bp->pf_num);
4472
4473	/* clear the old value */
4474	val &= ~mask;
4475
4476	/* set the new one */
4477	val |= ((val1 << shift) & mask);
4478
4479	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481}
4482
4483/**
4484 * bnx2x_clear_pf_load - clear pf load mark
4485 *
4486 * @bp:		driver handle
4487 *
4488 * Should be run under rtnl lock.
4489 * Decrements the load counter for the current engine. Returns
4490 * whether other functions are still loaded
4491 */
4492bool bnx2x_clear_pf_load(struct bnx2x *bp)
4493{
4494	u32 val1, val;
4495	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496			     BNX2X_PATH0_LOAD_CNT_MASK;
4497	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4499
4500	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4503
4504	/* get the current counter value */
4505	val1 = (val & mask) >> shift;
4506
4507	/* clear bit of that PF */
4508	val1 &= ~(1 << bp->pf_num);
4509
4510	/* clear the old value */
4511	val &= ~mask;
4512
4513	/* set the new one */
4514	val |= ((val1 << shift) & mask);
4515
4516	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518	return val1 != 0;
4519}
4520
4521/*
4522 * Read the load status for the current engine.
4523 *
4524 * should be run under rtnl lock
4525 */
4526static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4527{
4528	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4529			     BNX2X_PATH0_LOAD_CNT_MASK);
4530	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4531			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4532	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4533
4534	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4535
4536	val = (val & mask) >> shift;
4537
4538	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4539	   engine, val);
4540
4541	return val != 0;
4542}
4543
4544static void _print_parity(struct bnx2x *bp, u32 reg)
4545{
4546	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4547}
4548
4549static void _print_next_block(int idx, const char *blk)
4550{
4551	pr_cont("%s%s", idx ? ", " : "", blk);
4552}
4553
4554static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4555					    int *par_num, bool print)
4556{
4557	u32 cur_bit;
4558	bool res;
4559	int i;
4560
4561	res = false;
4562
4563	for (i = 0; sig; i++) {
4564		cur_bit = (0x1UL << i);
4565		if (sig & cur_bit) {
4566			res |= true; /* Each bit is real error! */
4567
4568			if (print) {
4569				switch (cur_bit) {
4570				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4571					_print_next_block((*par_num)++, "BRB");
4572					_print_parity(bp,
4573						      BRB1_REG_BRB1_PRTY_STS);
4574					break;
4575				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4576					_print_next_block((*par_num)++,
4577							  "PARSER");
4578					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4579					break;
4580				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4581					_print_next_block((*par_num)++, "TSDM");
4582					_print_parity(bp,
4583						      TSDM_REG_TSDM_PRTY_STS);
4584					break;
4585				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4586					_print_next_block((*par_num)++,
4587							  "SEARCHER");
4588					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4589					break;
4590				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4591					_print_next_block((*par_num)++, "TCM");
4592					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4593					break;
4594				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4595					_print_next_block((*par_num)++,
4596							  "TSEMI");
4597					_print_parity(bp,
4598						      TSEM_REG_TSEM_PRTY_STS_0);
4599					_print_parity(bp,
4600						      TSEM_REG_TSEM_PRTY_STS_1);
4601					break;
4602				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4603					_print_next_block((*par_num)++, "XPB");
4604					_print_parity(bp, GRCBASE_XPB +
4605							  PB_REG_PB_PRTY_STS);
4606					break;
4607				}
4608			}
4609
4610			/* Clear the bit */
4611			sig &= ~cur_bit;
4612		}
4613	}
4614
4615	return res;
4616}
4617
4618static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4619					    int *par_num, bool *global,
4620					    bool print)
4621{
4622	u32 cur_bit;
4623	bool res;
4624	int i;
4625
4626	res = false;
4627
4628	for (i = 0; sig; i++) {
4629		cur_bit = (0x1UL << i);
4630		if (sig & cur_bit) {
4631			res |= true; /* Each bit is real error! */
4632			switch (cur_bit) {
4633			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4634				if (print) {
4635					_print_next_block((*par_num)++, "PBF");
4636					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4637				}
4638				break;
4639			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4640				if (print) {
4641					_print_next_block((*par_num)++, "QM");
4642					_print_parity(bp, QM_REG_QM_PRTY_STS);
4643				}
4644				break;
4645			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4646				if (print) {
4647					_print_next_block((*par_num)++, "TM");
4648					_print_parity(bp, TM_REG_TM_PRTY_STS);
4649				}
4650				break;
4651			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4652				if (print) {
4653					_print_next_block((*par_num)++, "XSDM");
4654					_print_parity(bp,
4655						      XSDM_REG_XSDM_PRTY_STS);
4656				}
4657				break;
4658			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4659				if (print) {
4660					_print_next_block((*par_num)++, "XCM");
4661					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4662				}
4663				break;
4664			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4665				if (print) {
4666					_print_next_block((*par_num)++,
4667							  "XSEMI");
4668					_print_parity(bp,
4669						      XSEM_REG_XSEM_PRTY_STS_0);
4670					_print_parity(bp,
4671						      XSEM_REG_XSEM_PRTY_STS_1);
4672				}
4673				break;
4674			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4675				if (print) {
4676					_print_next_block((*par_num)++,
4677							  "DOORBELLQ");
4678					_print_parity(bp,
4679						      DORQ_REG_DORQ_PRTY_STS);
4680				}
4681				break;
4682			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4683				if (print) {
4684					_print_next_block((*par_num)++, "NIG");
4685					if (CHIP_IS_E1x(bp)) {
4686						_print_parity(bp,
4687							NIG_REG_NIG_PRTY_STS);
4688					} else {
4689						_print_parity(bp,
4690							NIG_REG_NIG_PRTY_STS_0);
4691						_print_parity(bp,
4692							NIG_REG_NIG_PRTY_STS_1);
4693					}
4694				}
4695				break;
4696			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4697				if (print)
4698					_print_next_block((*par_num)++,
4699							  "VAUX PCI CORE");
4700				*global = true;
4701				break;
4702			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4703				if (print) {
4704					_print_next_block((*par_num)++,
4705							  "DEBUG");
4706					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4707				}
4708				break;
4709			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4710				if (print) {
4711					_print_next_block((*par_num)++, "USDM");
4712					_print_parity(bp,
4713						      USDM_REG_USDM_PRTY_STS);
4714				}
4715				break;
4716			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4717				if (print) {
4718					_print_next_block((*par_num)++, "UCM");
4719					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4720				}
4721				break;
4722			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4723				if (print) {
4724					_print_next_block((*par_num)++,
4725							  "USEMI");
4726					_print_parity(bp,
4727						      USEM_REG_USEM_PRTY_STS_0);
4728					_print_parity(bp,
4729						      USEM_REG_USEM_PRTY_STS_1);
4730				}
4731				break;
4732			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4733				if (print) {
4734					_print_next_block((*par_num)++, "UPB");
4735					_print_parity(bp, GRCBASE_UPB +
4736							  PB_REG_PB_PRTY_STS);
4737				}
4738				break;
4739			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4740				if (print) {
4741					_print_next_block((*par_num)++, "CSDM");
4742					_print_parity(bp,
4743						      CSDM_REG_CSDM_PRTY_STS);
4744				}
4745				break;
4746			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4747				if (print) {
4748					_print_next_block((*par_num)++, "CCM");
4749					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4750				}
4751				break;
4752			}
4753
4754			/* Clear the bit */
4755			sig &= ~cur_bit;
4756		}
4757	}
4758
4759	return res;
4760}
4761
4762static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4763					    int *par_num, bool print)
4764{
4765	u32 cur_bit;
4766	bool res;
4767	int i;
4768
4769	res = false;
4770
4771	for (i = 0; sig; i++) {
4772		cur_bit = (0x1UL << i);
4773		if (sig & cur_bit) {
4774			res = true; /* Each bit is real error! */
4775			if (print) {
4776				switch (cur_bit) {
4777				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4778					_print_next_block((*par_num)++,
4779							  "CSEMI");
4780					_print_parity(bp,
4781						      CSEM_REG_CSEM_PRTY_STS_0);
4782					_print_parity(bp,
4783						      CSEM_REG_CSEM_PRTY_STS_1);
4784					break;
4785				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4786					_print_next_block((*par_num)++, "PXP");
4787					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4788					_print_parity(bp,
4789						      PXP2_REG_PXP2_PRTY_STS_0);
4790					_print_parity(bp,
4791						      PXP2_REG_PXP2_PRTY_STS_1);
4792					break;
4793				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4794					_print_next_block((*par_num)++,
4795							  "PXPPCICLOCKCLIENT");
4796					break;
4797				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4798					_print_next_block((*par_num)++, "CFC");
4799					_print_parity(bp,
4800						      CFC_REG_CFC_PRTY_STS);
4801					break;
4802				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4803					_print_next_block((*par_num)++, "CDU");
4804					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4805					break;
4806				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4807					_print_next_block((*par_num)++, "DMAE");
4808					_print_parity(bp,
4809						      DMAE_REG_DMAE_PRTY_STS);
4810					break;
4811				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4812					_print_next_block((*par_num)++, "IGU");
4813					if (CHIP_IS_E1x(bp))
4814						_print_parity(bp,
4815							HC_REG_HC_PRTY_STS);
4816					else
4817						_print_parity(bp,
4818							IGU_REG_IGU_PRTY_STS);
4819					break;
4820				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4821					_print_next_block((*par_num)++, "MISC");
4822					_print_parity(bp,
4823						      MISC_REG_MISC_PRTY_STS);
4824					break;
4825				}
4826			}
4827
4828			/* Clear the bit */
4829			sig &= ~cur_bit;
4830		}
4831	}
4832
4833	return res;
4834}
4835
4836static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4837					    int *par_num, bool *global,
4838					    bool print)
4839{
4840	bool res = false;
4841	u32 cur_bit;
4842	int i;
4843
4844	for (i = 0; sig; i++) {
4845		cur_bit = (0x1UL << i);
4846		if (sig & cur_bit) {
4847			switch (cur_bit) {
4848			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4849				if (print)
4850					_print_next_block((*par_num)++,
4851							  "MCP ROM");
4852				*global = true;
4853				res = true;
4854				break;
4855			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4856				if (print)
4857					_print_next_block((*par_num)++,
4858							  "MCP UMP RX");
4859				*global = true;
4860				res = true;
4861				break;
4862			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4863				if (print)
4864					_print_next_block((*par_num)++,
4865							  "MCP UMP TX");
4866				*global = true;
4867				res = true;
4868				break;
4869			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4870				if (print)
4871					_print_next_block((*par_num)++,
4872							  "MCP SCPAD");
4873				/* clear latched SCPAD PATIRY from MCP */
4874				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4875				       1UL << 10);
4876				break;
4877			}
4878
4879			/* Clear the bit */
4880			sig &= ~cur_bit;
4881		}
4882	}
4883
4884	return res;
4885}
4886
4887static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4888					    int *par_num, bool print)
4889{
4890	u32 cur_bit;
4891	bool res;
4892	int i;
4893
4894	res = false;
4895
4896	for (i = 0; sig; i++) {
4897		cur_bit = (0x1UL << i);
4898		if (sig & cur_bit) {
4899			res = true; /* Each bit is real error! */
4900			if (print) {
4901				switch (cur_bit) {
4902				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4903					_print_next_block((*par_num)++,
4904							  "PGLUE_B");
4905					_print_parity(bp,
4906						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4907					break;
4908				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4909					_print_next_block((*par_num)++, "ATC");
4910					_print_parity(bp,
4911						      ATC_REG_ATC_PRTY_STS);
4912					break;
4913				}
4914			}
4915			/* Clear the bit */
4916			sig &= ~cur_bit;
4917		}
4918	}
4919
4920	return res;
4921}
4922
4923static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4924			      u32 *sig)
4925{
4926	bool res = false;
4927
4928	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4929	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4930	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4931	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4932	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4933		int par_num = 0;
4934		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4935				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4936			  sig[0] & HW_PRTY_ASSERT_SET_0,
4937			  sig[1] & HW_PRTY_ASSERT_SET_1,
4938			  sig[2] & HW_PRTY_ASSERT_SET_2,
4939			  sig[3] & HW_PRTY_ASSERT_SET_3,
4940			  sig[4] & HW_PRTY_ASSERT_SET_4);
4941		if (print)
4942			netdev_err(bp->dev,
4943				   "Parity errors detected in blocks: ");
4944		res |= bnx2x_check_blocks_with_parity0(bp,
4945			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4946		res |= bnx2x_check_blocks_with_parity1(bp,
4947			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4948		res |= bnx2x_check_blocks_with_parity2(bp,
4949			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4950		res |= bnx2x_check_blocks_with_parity3(bp,
4951			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4952		res |= bnx2x_check_blocks_with_parity4(bp,
4953			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4954
4955		if (print)
4956			pr_cont("\n");
4957	}
4958
4959	return res;
4960}
4961
4962/**
4963 * bnx2x_chk_parity_attn - checks for parity attentions.
4964 *
4965 * @bp:		driver handle
4966 * @global:	true if there was a global attention
4967 * @print:	show parity attention in syslog
4968 */
4969bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4970{
4971	struct attn_route attn = { {0} };
4972	int port = BP_PORT(bp);
4973
4974	attn.sig[0] = REG_RD(bp,
4975		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4976			     port*4);
4977	attn.sig[1] = REG_RD(bp,
4978		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4979			     port*4);
4980	attn.sig[2] = REG_RD(bp,
4981		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4982			     port*4);
4983	attn.sig[3] = REG_RD(bp,
4984		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4985			     port*4);
4986	/* Since MCP attentions can't be disabled inside the block, we need to
4987	 * read AEU registers to see whether they're currently disabled
4988	 */
4989	attn.sig[3] &= ((REG_RD(bp,
4990				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4991				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4992			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4993			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4994
4995	if (!CHIP_IS_E1x(bp))
4996		attn.sig[4] = REG_RD(bp,
4997			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4998				     port*4);
4999
5000	return bnx2x_parity_attn(bp, global, print, attn.sig);
5001}
5002
5003static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5004{
5005	u32 val;
5006	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5007
5008		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5009		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5010		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5011			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5012		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5013			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5014		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5015			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5016		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5017			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5018		if (val &
5019		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5020			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5021		if (val &
5022		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5023			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5024		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5025			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5026		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5027			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5028		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5029			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5030	}
5031	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5032		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5033		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5034		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5035			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5036		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5037			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5038		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5039			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5040		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5041			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5042		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5043			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5044		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5045			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5046	}
5047
5048	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5049		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5050		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5051		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5052		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5053	}
5054}
5055
5056static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5057{
5058	struct attn_route attn, *group_mask;
5059	int port = BP_PORT(bp);
5060	int index;
5061	u32 reg_addr;
5062	u32 val;
5063	u32 aeu_mask;
5064	bool global = false;
5065
5066	/* need to take HW lock because MCP or other port might also
5067	   try to handle this event */
5068	bnx2x_acquire_alr(bp);
5069
5070	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5071#ifndef BNX2X_STOP_ON_ERROR
5072		bp->recovery_state = BNX2X_RECOVERY_INIT;
5073		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5074		/* Disable HW interrupts */
5075		bnx2x_int_disable(bp);
5076		/* In case of parity errors don't handle attentions so that
5077		 * other function would "see" parity errors.
5078		 */
5079#else
5080		bnx2x_panic();
5081#endif
5082		bnx2x_release_alr(bp);
5083		return;
5084	}
5085
5086	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5087	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5088	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5089	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5090	if (!CHIP_IS_E1x(bp))
5091		attn.sig[4] =
5092		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5093	else
5094		attn.sig[4] = 0;
5095
5096	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5097	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5098
5099	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5100		if (deasserted & (1 << index)) {
5101			group_mask = &bp->attn_group[index];
5102
5103			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5104			   index,
5105			   group_mask->sig[0], group_mask->sig[1],
5106			   group_mask->sig[2], group_mask->sig[3],
5107			   group_mask->sig[4]);
5108
5109			bnx2x_attn_int_deasserted4(bp,
5110					attn.sig[4] & group_mask->sig[4]);
5111			bnx2x_attn_int_deasserted3(bp,
5112					attn.sig[3] & group_mask->sig[3]);
5113			bnx2x_attn_int_deasserted1(bp,
5114					attn.sig[1] & group_mask->sig[1]);
5115			bnx2x_attn_int_deasserted2(bp,
5116					attn.sig[2] & group_mask->sig[2]);
5117			bnx2x_attn_int_deasserted0(bp,
5118					attn.sig[0] & group_mask->sig[0]);
5119		}
5120	}
5121
5122	bnx2x_release_alr(bp);
5123
5124	if (bp->common.int_block == INT_BLOCK_HC)
5125		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5126			    COMMAND_REG_ATTN_BITS_CLR);
5127	else
5128		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5129
5130	val = ~deasserted;
5131	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5132	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5133	REG_WR(bp, reg_addr, val);
5134
5135	if (~bp->attn_state & deasserted)
5136		BNX2X_ERR("IGU ERROR\n");
5137
5138	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5139			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5140
5141	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5142	aeu_mask = REG_RD(bp, reg_addr);
5143
5144	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5145	   aeu_mask, deasserted);
5146	aeu_mask |= (deasserted & 0x3ff);
5147	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5148
5149	REG_WR(bp, reg_addr, aeu_mask);
5150	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5151
5152	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5153	bp->attn_state &= ~deasserted;
5154	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5155}
5156
5157static void bnx2x_attn_int(struct bnx2x *bp)
5158{
5159	/* read local copy of bits */
5160	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5161								attn_bits);
5162	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5163								attn_bits_ack);
5164	u32 attn_state = bp->attn_state;
5165
5166	/* look for changed bits */
5167	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5168	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5169
5170	DP(NETIF_MSG_HW,
5171	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5172	   attn_bits, attn_ack, asserted, deasserted);
5173
5174	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5175		BNX2X_ERR("BAD attention state\n");
5176
5177	/* handle bits that were raised */
5178	if (asserted)
5179		bnx2x_attn_int_asserted(bp, asserted);
5180
5181	if (deasserted)
5182		bnx2x_attn_int_deasserted(bp, deasserted);
5183}
5184
5185void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5186		      u16 index, u8 op, u8 update)
5187{
5188	u32 igu_addr = bp->igu_base_addr;
5189	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5190	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5191			     igu_addr);
5192}
5193
5194static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5195{
5196	/* No memory barriers */
5197	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5198	mmiowb(); /* keep prod updates ordered */
5199}
5200
5201static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5202				      union event_ring_elem *elem)
5203{
5204	u8 err = elem->message.error;
5205
5206	if (!bp->cnic_eth_dev.starting_cid  ||
5207	    (cid < bp->cnic_eth_dev.starting_cid &&
5208	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5209		return 1;
5210
5211	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5212
5213	if (unlikely(err)) {
5214
5215		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5216			  cid);
5217		bnx2x_panic_dump(bp, false);
5218	}
5219	bnx2x_cnic_cfc_comp(bp, cid, err);
5220	return 0;
5221}
5222
5223static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5224{
5225	struct bnx2x_mcast_ramrod_params rparam;
5226	int rc;
5227
5228	memset(&rparam, 0, sizeof(rparam));
5229
5230	rparam.mcast_obj = &bp->mcast_obj;
5231
5232	netif_addr_lock_bh(bp->dev);
5233
5234	/* Clear pending state for the last command */
5235	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5236
5237	/* If there are pending mcast commands - send them */
5238	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5239		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5240		if (rc < 0)
5241			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5242				  rc);
5243	}
5244
5245	netif_addr_unlock_bh(bp->dev);
5246}
5247
5248static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5249					    union event_ring_elem *elem)
5250{
5251	unsigned long ramrod_flags = 0;
5252	int rc = 0;
5253	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5254	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5255
5256	/* Always push next commands out, don't wait here */
5257	__set_bit(RAMROD_CONT, &ramrod_flags);
5258
5259	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5260			    >> BNX2X_SWCID_SHIFT) {
5261	case BNX2X_FILTER_MAC_PENDING:
5262		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5263		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5264			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5265		else
5266			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5267
5268		break;
5269	case BNX2X_FILTER_MCAST_PENDING:
5270		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5271		/* This is only relevant for 57710 where multicast MACs are
5272		 * configured as unicast MACs using the same ramrod.
5273		 */
5274		bnx2x_handle_mcast_eqe(bp);
5275		return;
5276	default:
5277		BNX2X_ERR("Unsupported classification command: %d\n",
5278			  elem->message.data.eth_event.echo);
5279		return;
5280	}
5281
5282	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5283
5284	if (rc < 0)
5285		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5286	else if (rc > 0)
5287		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5288}
5289
5290static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5291
5292static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5293{
5294	netif_addr_lock_bh(bp->dev);
5295
5296	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5297
5298	/* Send rx_mode command again if was requested */
5299	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5300		bnx2x_set_storm_rx_mode(bp);
5301	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5302				    &bp->sp_state))
5303		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5304	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5305				    &bp->sp_state))
5306		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5307
5308	netif_addr_unlock_bh(bp->dev);
5309}
5310
5311static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5312					      union event_ring_elem *elem)
5313{
5314	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5315		DP(BNX2X_MSG_SP,
5316		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5317		   elem->message.data.vif_list_event.func_bit_map);
5318		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5319			elem->message.data.vif_list_event.func_bit_map);
5320	} else if (elem->message.data.vif_list_event.echo ==
5321		   VIF_LIST_RULE_SET) {
5322		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5323		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5324	}
5325}
5326
5327/* called with rtnl_lock */
5328static void bnx2x_after_function_update(struct bnx2x *bp)
5329{
5330	int q, rc;
5331	struct bnx2x_fastpath *fp;
5332	struct bnx2x_queue_state_params queue_params = {NULL};
5333	struct bnx2x_queue_update_params *q_update_params =
5334		&queue_params.params.update;
5335
5336	/* Send Q update command with afex vlan removal values for all Qs */
5337	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5338
5339	/* set silent vlan removal values according to vlan mode */
5340	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5341		  &q_update_params->update_flags);
5342	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5343		  &q_update_params->update_flags);
5344	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5345
5346	/* in access mode mark mask and value are 0 to strip all vlans */
5347	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5348		q_update_params->silent_removal_value = 0;
5349		q_update_params->silent_removal_mask = 0;
5350	} else {
5351		q_update_params->silent_removal_value =
5352			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5353		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5354	}
5355
5356	for_each_eth_queue(bp, q) {
5357		/* Set the appropriate Queue object */
5358		fp = &bp->fp[q];
5359		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5360
5361		/* send the ramrod */
5362		rc = bnx2x_queue_state_change(bp, &queue_params);
5363		if (rc < 0)
5364			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5365				  q);
5366	}
5367
5368	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5369		fp = &bp->fp[FCOE_IDX(bp)];
5370		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5371
5372		/* clear pending completion bit */
5373		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5374
5375		/* mark latest Q bit */
5376		smp_mb__before_atomic();
5377		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5378		smp_mb__after_atomic();
5379
5380		/* send Q update ramrod for FCoE Q */
5381		rc = bnx2x_queue_state_change(bp, &queue_params);
5382		if (rc < 0)
5383			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5384				  q);
5385	} else {
5386		/* If no FCoE ring - ACK MCP now */
5387		bnx2x_link_report(bp);
5388		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5389	}
5390}
5391
5392static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5393	struct bnx2x *bp, u32 cid)
5394{
5395	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5396
5397	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5398		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5399	else
5400		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5401}
5402
5403static void bnx2x_eq_int(struct bnx2x *bp)
5404{
5405	u16 hw_cons, sw_cons, sw_prod;
5406	union event_ring_elem *elem;
5407	u8 echo;
5408	u32 cid;
5409	u8 opcode;
5410	int rc, spqe_cnt = 0;
5411	struct bnx2x_queue_sp_obj *q_obj;
5412	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5413	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5414
5415	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5416
5417	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5418	 * when we get the next-page we need to adjust so the loop
5419	 * condition below will be met. The next element is the size of a
5420	 * regular element and hence incrementing by 1
5421	 */
5422	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5423		hw_cons++;
5424
5425	/* This function may never run in parallel with itself for a
5426	 * specific bp, thus there is no need in "paired" read memory
5427	 * barrier here.
5428	 */
5429	sw_cons = bp->eq_cons;
5430	sw_prod = bp->eq_prod;
5431
5432	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5433			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5434
5435	for (; sw_cons != hw_cons;
5436	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5437
5438		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5439
5440		rc = bnx2x_iov_eq_sp_event(bp, elem);
5441		if (!rc) {
5442			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5443			   rc);
5444			goto next_spqe;
5445		}
5446
5447		/* elem CID originates from FW; actually LE */
5448		cid = SW_CID((__force __le32)
5449			     elem->message.data.cfc_del_event.cid);
5450		opcode = elem->message.opcode;
5451
5452		/* handle eq element */
5453		switch (opcode) {
5454		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5455			bnx2x_vf_mbx_schedule(bp,
5456					      &elem->message.data.vf_pf_event);
5457			continue;
5458
5459		case EVENT_RING_OPCODE_STAT_QUERY:
5460			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5461			       "got statistics comp event %d\n",
5462			       bp->stats_comp++);
5463			/* nothing to do with stats comp */
5464			goto next_spqe;
5465
5466		case EVENT_RING_OPCODE_CFC_DEL:
5467			/* handle according to cid range */
5468			/*
5469			 * we may want to verify here that the bp state is
5470			 * HALTING
5471			 */
5472			DP(BNX2X_MSG_SP,
5473			   "got delete ramrod for MULTI[%d]\n", cid);
5474
5475			if (CNIC_LOADED(bp) &&
5476			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5477				goto next_spqe;
5478
5479			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5480
5481			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5482				break;
5483
5484			goto next_spqe;
5485
5486		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5487			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5488			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5489			if (f_obj->complete_cmd(bp, f_obj,
5490						BNX2X_F_CMD_TX_STOP))
5491				break;
5492			goto next_spqe;
5493
5494		case EVENT_RING_OPCODE_START_TRAFFIC:
5495			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5496			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5497			if (f_obj->complete_cmd(bp, f_obj,
5498						BNX2X_F_CMD_TX_START))
5499				break;
5500			goto next_spqe;
5501
5502		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5503			echo = elem->message.data.function_update_event.echo;
5504			if (echo == SWITCH_UPDATE) {
5505				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5506				   "got FUNC_SWITCH_UPDATE ramrod\n");
5507				if (f_obj->complete_cmd(
5508					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5509					break;
5510
5511			} else {
5512				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5513
5514				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5515				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5516				f_obj->complete_cmd(bp, f_obj,
5517						    BNX2X_F_CMD_AFEX_UPDATE);
5518
5519				/* We will perform the Queues update from
5520				 * sp_rtnl task as all Queue SP operations
5521				 * should run under rtnl_lock.
5522				 */
5523				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5524			}
5525
5526			goto next_spqe;
5527
5528		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5529			f_obj->complete_cmd(bp, f_obj,
5530					    BNX2X_F_CMD_AFEX_VIFLISTS);
5531			bnx2x_after_afex_vif_lists(bp, elem);
5532			goto next_spqe;
5533		case EVENT_RING_OPCODE_FUNCTION_START:
5534			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5535			   "got FUNC_START ramrod\n");
5536			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5537				break;
5538
5539			goto next_spqe;
5540
5541		case EVENT_RING_OPCODE_FUNCTION_STOP:
5542			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5543			   "got FUNC_STOP ramrod\n");
5544			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5545				break;
5546
5547			goto next_spqe;
5548
5549		case EVENT_RING_OPCODE_SET_TIMESYNC:
5550			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5551			   "got set_timesync ramrod completion\n");
5552			if (f_obj->complete_cmd(bp, f_obj,
5553						BNX2X_F_CMD_SET_TIMESYNC))
5554				break;
5555			goto next_spqe;
5556		}
5557
5558		switch (opcode | bp->state) {
5559		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5560		      BNX2X_STATE_OPEN):
5561		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5562		      BNX2X_STATE_OPENING_WAIT4_PORT):
5563			cid = elem->message.data.eth_event.echo &
5564				BNX2X_SWCID_MASK;
5565			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5566			   cid);
5567			rss_raw->clear_pending(rss_raw);
5568			break;
5569
5570		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5571		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5572		case (EVENT_RING_OPCODE_SET_MAC |
5573		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5574		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5575		      BNX2X_STATE_OPEN):
5576		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5577		      BNX2X_STATE_DIAG):
5578		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5579		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5580			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5581			bnx2x_handle_classification_eqe(bp, elem);
5582			break;
5583
5584		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5585		      BNX2X_STATE_OPEN):
5586		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5587		      BNX2X_STATE_DIAG):
5588		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5589		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5590			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5591			bnx2x_handle_mcast_eqe(bp);
5592			break;
5593
5594		case (EVENT_RING_OPCODE_FILTERS_RULES |
5595		      BNX2X_STATE_OPEN):
5596		case (EVENT_RING_OPCODE_FILTERS_RULES |
5597		      BNX2X_STATE_DIAG):
5598		case (EVENT_RING_OPCODE_FILTERS_RULES |
5599		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5600			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5601			bnx2x_handle_rx_mode_eqe(bp);
5602			break;
5603		default:
5604			/* unknown event log error and continue */
5605			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5606				  elem->message.opcode, bp->state);
5607		}
5608next_spqe:
5609		spqe_cnt++;
5610	} /* for */
5611
5612	smp_mb__before_atomic();
5613	atomic_add(spqe_cnt, &bp->eq_spq_left);
5614
5615	bp->eq_cons = sw_cons;
5616	bp->eq_prod = sw_prod;
5617	/* Make sure that above mem writes were issued towards the memory */
5618	smp_wmb();
5619
5620	/* update producer */
5621	bnx2x_update_eq_prod(bp, bp->eq_prod);
5622}
5623
5624static void bnx2x_sp_task(struct work_struct *work)
5625{
5626	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5627
5628	DP(BNX2X_MSG_SP, "sp task invoked\n");
5629
5630	/* make sure the atomic interrupt_occurred has been written */
5631	smp_rmb();
5632	if (atomic_read(&bp->interrupt_occurred)) {
5633
5634		/* what work needs to be performed? */
5635		u16 status = bnx2x_update_dsb_idx(bp);
5636
5637		DP(BNX2X_MSG_SP, "status %x\n", status);
5638		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5639		atomic_set(&bp->interrupt_occurred, 0);
5640
5641		/* HW attentions */
5642		if (status & BNX2X_DEF_SB_ATT_IDX) {
5643			bnx2x_attn_int(bp);
5644			status &= ~BNX2X_DEF_SB_ATT_IDX;
5645		}
5646
5647		/* SP events: STAT_QUERY and others */
5648		if (status & BNX2X_DEF_SB_IDX) {
5649			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5650
5651		if (FCOE_INIT(bp) &&
5652			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5653				/* Prevent local bottom-halves from running as
5654				 * we are going to change the local NAPI list.
5655				 */
5656				local_bh_disable();
5657				napi_schedule(&bnx2x_fcoe(bp, napi));
5658				local_bh_enable();
5659			}
5660
5661			/* Handle EQ completions */
5662			bnx2x_eq_int(bp);
5663			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5664				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5665
5666			status &= ~BNX2X_DEF_SB_IDX;
5667		}
5668
5669		/* if status is non zero then perhaps something went wrong */
5670		if (unlikely(status))
5671			DP(BNX2X_MSG_SP,
5672			   "got an unknown interrupt! (status 0x%x)\n", status);
5673
5674		/* ack status block only if something was actually handled */
5675		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5676			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5677	}
5678
5679	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5680	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5681			       &bp->sp_state)) {
5682		bnx2x_link_report(bp);
5683		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5684	}
5685}
5686
5687irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5688{
5689	struct net_device *dev = dev_instance;
5690	struct bnx2x *bp = netdev_priv(dev);
5691
5692	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5693		     IGU_INT_DISABLE, 0);
5694
5695#ifdef BNX2X_STOP_ON_ERROR
5696	if (unlikely(bp->panic))
5697		return IRQ_HANDLED;
5698#endif
5699
5700	if (CNIC_LOADED(bp)) {
5701		struct cnic_ops *c_ops;
5702
5703		rcu_read_lock();
5704		c_ops = rcu_dereference(bp->cnic_ops);
5705		if (c_ops)
5706			c_ops->cnic_handler(bp->cnic_data, NULL);
5707		rcu_read_unlock();
5708	}
5709
5710	/* schedule sp task to perform default status block work, ack
5711	 * attentions and enable interrupts.
5712	 */
5713	bnx2x_schedule_sp_task(bp);
5714
5715	return IRQ_HANDLED;
5716}
5717
5718/* end of slow path */
5719
5720void bnx2x_drv_pulse(struct bnx2x *bp)
5721{
5722	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5723		 bp->fw_drv_pulse_wr_seq);
5724}
5725
5726static void bnx2x_timer(unsigned long data)
5727{
5728	struct bnx2x *bp = (struct bnx2x *) data;
5729
5730	if (!netif_running(bp->dev))
5731		return;
5732
5733	if (IS_PF(bp) &&
5734	    !BP_NOMCP(bp)) {
5735		int mb_idx = BP_FW_MB_IDX(bp);
5736		u16 drv_pulse;
5737		u16 mcp_pulse;
5738
5739		++bp->fw_drv_pulse_wr_seq;
5740		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5741		drv_pulse = bp->fw_drv_pulse_wr_seq;
5742		bnx2x_drv_pulse(bp);
5743
5744		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5745			     MCP_PULSE_SEQ_MASK);
5746		/* The delta between driver pulse and mcp response
5747		 * should not get too big. If the MFW is more than 5 pulses
5748		 * behind, we should worry about it enough to generate an error
5749		 * log.
5750		 */
5751		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5752			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5753				  drv_pulse, mcp_pulse);
5754	}
5755
5756	if (bp->state == BNX2X_STATE_OPEN)
5757		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5758
5759	/* sample pf vf bulletin board for new posts from pf */
5760	if (IS_VF(bp))
5761		bnx2x_timer_sriov(bp);
5762
5763	mod_timer(&bp->timer, jiffies + bp->current_interval);
5764}
5765
5766/* end of Statistics */
5767
5768/* nic init */
5769
5770/*
5771 * nic init service functions
5772 */
5773
5774static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5775{
5776	u32 i;
5777	if (!(len%4) && !(addr%4))
5778		for (i = 0; i < len; i += 4)
5779			REG_WR(bp, addr + i, fill);
5780	else
5781		for (i = 0; i < len; i++)
5782			REG_WR8(bp, addr + i, fill);
5783}
5784
5785/* helper: writes FP SP data to FW - data_size in dwords */
5786static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5787				int fw_sb_id,
5788				u32 *sb_data_p,
5789				u32 data_size)
5790{
5791	int index;
5792	for (index = 0; index < data_size; index++)
5793		REG_WR(bp, BAR_CSTRORM_INTMEM +
5794			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5795			sizeof(u32)*index,
5796			*(sb_data_p + index));
5797}
5798
5799static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5800{
5801	u32 *sb_data_p;
5802	u32 data_size = 0;
5803	struct hc_status_block_data_e2 sb_data_e2;
5804	struct hc_status_block_data_e1x sb_data_e1x;
5805
5806	/* disable the function first */
5807	if (!CHIP_IS_E1x(bp)) {
5808		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5809		sb_data_e2.common.state = SB_DISABLED;
5810		sb_data_e2.common.p_func.vf_valid = false;
5811		sb_data_p = (u32 *)&sb_data_e2;
5812		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5813	} else {
5814		memset(&sb_data_e1x, 0,
5815		       sizeof(struct hc_status_block_data_e1x));
5816		sb_data_e1x.common.state = SB_DISABLED;
5817		sb_data_e1x.common.p_func.vf_valid = false;
5818		sb_data_p = (u32 *)&sb_data_e1x;
5819		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5820	}
5821	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5822
5823	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5824			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5825			CSTORM_STATUS_BLOCK_SIZE);
5826	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5827			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5828			CSTORM_SYNC_BLOCK_SIZE);
5829}
5830
5831/* helper:  writes SP SB data to FW */
5832static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5833		struct hc_sp_status_block_data *sp_sb_data)
5834{
5835	int func = BP_FUNC(bp);
5836	int i;
5837	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5838		REG_WR(bp, BAR_CSTRORM_INTMEM +
5839			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5840			i*sizeof(u32),
5841			*((u32 *)sp_sb_data + i));
5842}
5843
5844static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5845{
5846	int func = BP_FUNC(bp);
5847	struct hc_sp_status_block_data sp_sb_data;
5848	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5849
5850	sp_sb_data.state = SB_DISABLED;
5851	sp_sb_data.p_func.vf_valid = false;
5852
5853	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5854
5855	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5856			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5857			CSTORM_SP_STATUS_BLOCK_SIZE);
5858	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5859			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5860			CSTORM_SP_SYNC_BLOCK_SIZE);
5861}
5862
5863static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5864					   int igu_sb_id, int igu_seg_id)
5865{
5866	hc_sm->igu_sb_id = igu_sb_id;
5867	hc_sm->igu_seg_id = igu_seg_id;
5868	hc_sm->timer_value = 0xFF;
5869	hc_sm->time_to_expire = 0xFFFFFFFF;
5870}
5871
5872/* allocates state machine ids. */
5873static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5874{
5875	/* zero out state machine indices */
5876	/* rx indices */
5877	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5878
5879	/* tx indices */
5880	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5881	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5882	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5883	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5884
5885	/* map indices */
5886	/* rx indices */
5887	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5888		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5889
5890	/* tx indices */
5891	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5892		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5893	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5894		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5895	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5896		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5897	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5898		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5899}
5900
5901void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5902			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5903{
5904	int igu_seg_id;
5905
5906	struct hc_status_block_data_e2 sb_data_e2;
5907	struct hc_status_block_data_e1x sb_data_e1x;
5908	struct hc_status_block_sm  *hc_sm_p;
5909	int data_size;
5910	u32 *sb_data_p;
5911
5912	if (CHIP_INT_MODE_IS_BC(bp))
5913		igu_seg_id = HC_SEG_ACCESS_NORM;
5914	else
5915		igu_seg_id = IGU_SEG_ACCESS_NORM;
5916
5917	bnx2x_zero_fp_sb(bp, fw_sb_id);
5918
5919	if (!CHIP_IS_E1x(bp)) {
5920		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5921		sb_data_e2.common.state = SB_ENABLED;
5922		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5923		sb_data_e2.common.p_func.vf_id = vfid;
5924		sb_data_e2.common.p_func.vf_valid = vf_valid;
5925		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5926		sb_data_e2.common.same_igu_sb_1b = true;
5927		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5928		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5929		hc_sm_p = sb_data_e2.common.state_machine;
5930		sb_data_p = (u32 *)&sb_data_e2;
5931		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5932		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5933	} else {
5934		memset(&sb_data_e1x, 0,
5935		       sizeof(struct hc_status_block_data_e1x));
5936		sb_data_e1x.common.state = SB_ENABLED;
5937		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5938		sb_data_e1x.common.p_func.vf_id = 0xff;
5939		sb_data_e1x.common.p_func.vf_valid = false;
5940		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5941		sb_data_e1x.common.same_igu_sb_1b = true;
5942		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5943		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5944		hc_sm_p = sb_data_e1x.common.state_machine;
5945		sb_data_p = (u32 *)&sb_data_e1x;
5946		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5947		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5948	}
5949
5950	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5951				       igu_sb_id, igu_seg_id);
5952	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5953				       igu_sb_id, igu_seg_id);
5954
5955	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5956
5957	/* write indices to HW - PCI guarantees endianity of regpairs */
5958	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5959}
5960
5961static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5962				     u16 tx_usec, u16 rx_usec)
5963{
5964	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5965				    false, rx_usec);
5966	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5967				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5968				       tx_usec);
5969	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5970				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5971				       tx_usec);
5972	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5973				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5974				       tx_usec);
5975}
5976
5977static void bnx2x_init_def_sb(struct bnx2x *bp)
5978{
5979	struct host_sp_status_block *def_sb = bp->def_status_blk;
5980	dma_addr_t mapping = bp->def_status_blk_mapping;
5981	int igu_sp_sb_index;
5982	int igu_seg_id;
5983	int port = BP_PORT(bp);
5984	int func = BP_FUNC(bp);
5985	int reg_offset, reg_offset_en5;
5986	u64 section;
5987	int index;
5988	struct hc_sp_status_block_data sp_sb_data;
5989	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5990
5991	if (CHIP_INT_MODE_IS_BC(bp)) {
5992		igu_sp_sb_index = DEF_SB_IGU_ID;
5993		igu_seg_id = HC_SEG_ACCESS_DEF;
5994	} else {
5995		igu_sp_sb_index = bp->igu_dsb_id;
5996		igu_seg_id = IGU_SEG_ACCESS_DEF;
5997	}
5998
5999	/* ATTN */
6000	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6001					    atten_status_block);
6002	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6003
6004	bp->attn_state = 0;
6005
6006	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6007			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6008	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6009				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6010	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6011		int sindex;
6012		/* take care of sig[0]..sig[4] */
6013		for (sindex = 0; sindex < 4; sindex++)
6014			bp->attn_group[index].sig[sindex] =
6015			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6016
6017		if (!CHIP_IS_E1x(bp))
6018			/*
6019			 * enable5 is separate from the rest of the registers,
6020			 * and therefore the address skip is 4
6021			 * and not 16 between the different groups
6022			 */
6023			bp->attn_group[index].sig[4] = REG_RD(bp,
6024					reg_offset_en5 + 0x4*index);
6025		else
6026			bp->attn_group[index].sig[4] = 0;
6027	}
6028
6029	if (bp->common.int_block == INT_BLOCK_HC) {
6030		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6031				     HC_REG_ATTN_MSG0_ADDR_L);
6032
6033		REG_WR(bp, reg_offset, U64_LO(section));
6034		REG_WR(bp, reg_offset + 4, U64_HI(section));
6035	} else if (!CHIP_IS_E1x(bp)) {
6036		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6037		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6038	}
6039
6040	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6041					    sp_sb);
6042
6043	bnx2x_zero_sp_sb(bp);
6044
6045	/* PCI guarantees endianity of regpairs */
6046	sp_sb_data.state		= SB_ENABLED;
6047	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6048	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6049	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6050	sp_sb_data.igu_seg_id		= igu_seg_id;
6051	sp_sb_data.p_func.pf_id		= func;
6052	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6053	sp_sb_data.p_func.vf_id		= 0xff;
6054
6055	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6056
6057	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6058}
6059
6060void bnx2x_update_coalesce(struct bnx2x *bp)
6061{
6062	int i;
6063
6064	for_each_eth_queue(bp, i)
6065		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6066					 bp->tx_ticks, bp->rx_ticks);
6067}
6068
6069static void bnx2x_init_sp_ring(struct bnx2x *bp)
6070{
6071	spin_lock_init(&bp->spq_lock);
6072	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6073
6074	bp->spq_prod_idx = 0;
6075	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6076	bp->spq_prod_bd = bp->spq;
6077	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6078}
6079
6080static void bnx2x_init_eq_ring(struct bnx2x *bp)
6081{
6082	int i;
6083	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6084		union event_ring_elem *elem =
6085			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6086
6087		elem->next_page.addr.hi =
6088			cpu_to_le32(U64_HI(bp->eq_mapping +
6089				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6090		elem->next_page.addr.lo =
6091			cpu_to_le32(U64_LO(bp->eq_mapping +
6092				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6093	}
6094	bp->eq_cons = 0;
6095	bp->eq_prod = NUM_EQ_DESC;
6096	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6097	/* we want a warning message before it gets wrought... */
6098	atomic_set(&bp->eq_spq_left,
6099		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6100}
6101
6102/* called with netif_addr_lock_bh() */
6103static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6104			       unsigned long rx_mode_flags,
6105			       unsigned long rx_accept_flags,
6106			       unsigned long tx_accept_flags,
6107			       unsigned long ramrod_flags)
6108{
6109	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6110	int rc;
6111
6112	memset(&ramrod_param, 0, sizeof(ramrod_param));
6113
6114	/* Prepare ramrod parameters */
6115	ramrod_param.cid = 0;
6116	ramrod_param.cl_id = cl_id;
6117	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6118	ramrod_param.func_id = BP_FUNC(bp);
6119
6120	ramrod_param.pstate = &bp->sp_state;
6121	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6122
6123	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6124	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6125
6126	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6127
6128	ramrod_param.ramrod_flags = ramrod_flags;
6129	ramrod_param.rx_mode_flags = rx_mode_flags;
6130
6131	ramrod_param.rx_accept_flags = rx_accept_flags;
6132	ramrod_param.tx_accept_flags = tx_accept_flags;
6133
6134	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6135	if (rc < 0) {
6136		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6137		return rc;
6138	}
6139
6140	return 0;
6141}
6142
6143static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6144				   unsigned long *rx_accept_flags,
6145				   unsigned long *tx_accept_flags)
6146{
6147	/* Clear the flags first */
6148	*rx_accept_flags = 0;
6149	*tx_accept_flags = 0;
6150
6151	switch (rx_mode) {
6152	case BNX2X_RX_MODE_NONE:
6153		/*
6154		 * 'drop all' supersedes any accept flags that may have been
6155		 * passed to the function.
6156		 */
6157		break;
6158	case BNX2X_RX_MODE_NORMAL:
6159		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6160		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6161		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6162
6163		/* internal switching mode */
6164		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6165		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6166		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6167
6168		break;
6169	case BNX2X_RX_MODE_ALLMULTI:
6170		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6171		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6172		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6173
6174		/* internal switching mode */
6175		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6176		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6177		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6178
6179		break;
6180	case BNX2X_RX_MODE_PROMISC:
6181		/* According to definition of SI mode, iface in promisc mode
6182		 * should receive matched and unmatched (in resolution of port)
6183		 * unicast packets.
6184		 */
6185		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6186		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6187		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6188		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6189
6190		/* internal switching mode */
6191		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6192		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6193
6194		if (IS_MF_SI(bp))
6195			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6196		else
6197			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6198
6199		break;
6200	default:
6201		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6202		return -EINVAL;
6203	}
6204
6205	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6206	if (rx_mode != BNX2X_RX_MODE_NONE) {
6207		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209	}
6210
6211	return 0;
6212}
6213
6214/* called with netif_addr_lock_bh() */
6215static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6216{
6217	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6218	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6219	int rc;
6220
6221	if (!NO_FCOE(bp))
6222		/* Configure rx_mode of FCoE Queue */
6223		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6224
6225	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6226				     &tx_accept_flags);
6227	if (rc)
6228		return rc;
6229
6230	__set_bit(RAMROD_RX, &ramrod_flags);
6231	__set_bit(RAMROD_TX, &ramrod_flags);
6232
6233	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6234				   rx_accept_flags, tx_accept_flags,
6235				   ramrod_flags);
6236}
6237
6238static void bnx2x_init_internal_common(struct bnx2x *bp)
6239{
6240	int i;
6241
6242	/* Zero this manually as its initialization is
6243	   currently missing in the initTool */
6244	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6245		REG_WR(bp, BAR_USTRORM_INTMEM +
6246		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6247	if (!CHIP_IS_E1x(bp)) {
6248		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6249			CHIP_INT_MODE_IS_BC(bp) ?
6250			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6251	}
6252}
6253
6254static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6255{
6256	switch (load_code) {
6257	case FW_MSG_CODE_DRV_LOAD_COMMON:
6258	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6259		bnx2x_init_internal_common(bp);
6260		/* no break */
6261
6262	case FW_MSG_CODE_DRV_LOAD_PORT:
6263		/* nothing to do */
6264		/* no break */
6265
6266	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6267		/* internal memory per function is
6268		   initialized inside bnx2x_pf_init */
6269		break;
6270
6271	default:
6272		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6273		break;
6274	}
6275}
6276
6277static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6278{
6279	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6280}
6281
6282static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6283{
6284	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6285}
6286
6287static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6288{
6289	if (CHIP_IS_E1x(fp->bp))
6290		return BP_L_ID(fp->bp) + fp->index;
6291	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6292		return bnx2x_fp_igu_sb_id(fp);
6293}
6294
6295static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6296{
6297	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6298	u8 cos;
6299	unsigned long q_type = 0;
6300	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6301	fp->rx_queue = fp_idx;
6302	fp->cid = fp_idx;
6303	fp->cl_id = bnx2x_fp_cl_id(fp);
6304	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6305	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6306	/* qZone id equals to FW (per path) client id */
6307	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6308
6309	/* init shortcut */
6310	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6311
6312	/* Setup SB indices */
6313	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6314
6315	/* Configure Queue State object */
6316	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6317	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6318
6319	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6320
6321	/* init tx data */
6322	for_each_cos_in_tx_queue(fp, cos) {
6323		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6324				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6325				  FP_COS_TO_TXQ(fp, cos, bp),
6326				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6327		cids[cos] = fp->txdata_ptr[cos]->cid;
6328	}
6329
6330	/* nothing more for vf to do here */
6331	if (IS_VF(bp))
6332		return;
6333
6334	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6335		      fp->fw_sb_id, fp->igu_sb_id);
6336	bnx2x_update_fpsb_idx(fp);
6337	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6338			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6339			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6340
6341	/**
6342	 * Configure classification DBs: Always enable Tx switching
6343	 */
6344	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6345
6346	DP(NETIF_MSG_IFUP,
6347	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6348	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6349	   fp->igu_sb_id);
6350}
6351
6352static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6353{
6354	int i;
6355
6356	for (i = 1; i <= NUM_TX_RINGS; i++) {
6357		struct eth_tx_next_bd *tx_next_bd =
6358			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6359
6360		tx_next_bd->addr_hi =
6361			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6362				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6363		tx_next_bd->addr_lo =
6364			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6365				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6366	}
6367
6368	*txdata->tx_cons_sb = cpu_to_le16(0);
6369
6370	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6371	txdata->tx_db.data.zero_fill1 = 0;
6372	txdata->tx_db.data.prod = 0;
6373
6374	txdata->tx_pkt_prod = 0;
6375	txdata->tx_pkt_cons = 0;
6376	txdata->tx_bd_prod = 0;
6377	txdata->tx_bd_cons = 0;
6378	txdata->tx_pkt = 0;
6379}
6380
6381static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6382{
6383	int i;
6384
6385	for_each_tx_queue_cnic(bp, i)
6386		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6387}
6388
6389static void bnx2x_init_tx_rings(struct bnx2x *bp)
6390{
6391	int i;
6392	u8 cos;
6393
6394	for_each_eth_queue(bp, i)
6395		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6396			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6397}
6398
6399static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6400{
6401	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6402	unsigned long q_type = 0;
6403
6404	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6405	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6406						     BNX2X_FCOE_ETH_CL_ID_IDX);
6407	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6408	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6409	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6410	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6411	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6412			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6413			  fp);
6414
6415	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6416
6417	/* qZone id equals to FW (per path) client id */
6418	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6419	/* init shortcut */
6420	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6421		bnx2x_rx_ustorm_prods_offset(fp);
6422
6423	/* Configure Queue State object */
6424	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6425	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6426
6427	/* No multi-CoS for FCoE L2 client */
6428	BUG_ON(fp->max_cos != 1);
6429
6430	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6431			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6432			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6433
6434	DP(NETIF_MSG_IFUP,
6435	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6436	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6437	   fp->igu_sb_id);
6438}
6439
6440void bnx2x_nic_init_cnic(struct bnx2x *bp)
6441{
6442	if (!NO_FCOE(bp))
6443		bnx2x_init_fcoe_fp(bp);
6444
6445	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6446		      BNX2X_VF_ID_INVALID, false,
6447		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6448
6449	/* ensure status block indices were read */
6450	rmb();
6451	bnx2x_init_rx_rings_cnic(bp);
6452	bnx2x_init_tx_rings_cnic(bp);
6453
6454	/* flush all */
6455	mb();
6456	mmiowb();
6457}
6458
6459void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6460{
6461	int i;
6462
6463	/* Setup NIC internals and enable interrupts */
6464	for_each_eth_queue(bp, i)
6465		bnx2x_init_eth_fp(bp, i);
6466
6467	/* ensure status block indices were read */
6468	rmb();
6469	bnx2x_init_rx_rings(bp);
6470	bnx2x_init_tx_rings(bp);
6471
6472	if (IS_PF(bp)) {
6473		/* Initialize MOD_ABS interrupts */
6474		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6475				       bp->common.shmem_base,
6476				       bp->common.shmem2_base, BP_PORT(bp));
6477
6478		/* initialize the default status block and sp ring */
6479		bnx2x_init_def_sb(bp);
6480		bnx2x_update_dsb_idx(bp);
6481		bnx2x_init_sp_ring(bp);
6482	} else {
6483		bnx2x_memset_stats(bp);
6484	}
6485}
6486
6487void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6488{
6489	bnx2x_init_eq_ring(bp);
6490	bnx2x_init_internal(bp, load_code);
6491	bnx2x_pf_init(bp);
6492	bnx2x_stats_init(bp);
6493
6494	/* flush all before enabling interrupts */
6495	mb();
6496	mmiowb();
6497
6498	bnx2x_int_enable(bp);
6499
6500	/* Check for SPIO5 */
6501	bnx2x_attn_int_deasserted0(bp,
6502		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6503				   AEU_INPUTS_ATTN_BITS_SPIO5);
6504}
6505
6506/* gzip service functions */
6507static int bnx2x_gunzip_init(struct bnx2x *bp)
6508{
6509	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6510					    &bp->gunzip_mapping, GFP_KERNEL);
6511	if (bp->gunzip_buf  == NULL)
6512		goto gunzip_nomem1;
6513
6514	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6515	if (bp->strm  == NULL)
6516		goto gunzip_nomem2;
6517
6518	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6519	if (bp->strm->workspace == NULL)
6520		goto gunzip_nomem3;
6521
6522	return 0;
6523
6524gunzip_nomem3:
6525	kfree(bp->strm);
6526	bp->strm = NULL;
6527
6528gunzip_nomem2:
6529	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6530			  bp->gunzip_mapping);
6531	bp->gunzip_buf = NULL;
6532
6533gunzip_nomem1:
6534	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6535	return -ENOMEM;
6536}
6537
6538static void bnx2x_gunzip_end(struct bnx2x *bp)
6539{
6540	if (bp->strm) {
6541		vfree(bp->strm->workspace);
6542		kfree(bp->strm);
6543		bp->strm = NULL;
6544	}
6545
6546	if (bp->gunzip_buf) {
6547		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6548				  bp->gunzip_mapping);
6549		bp->gunzip_buf = NULL;
6550	}
6551}
6552
6553static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6554{
6555	int n, rc;
6556
6557	/* check gzip header */
6558	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6559		BNX2X_ERR("Bad gzip header\n");
6560		return -EINVAL;
6561	}
6562
6563	n = 10;
6564
6565#define FNAME				0x8
6566
6567	if (zbuf[3] & FNAME)
6568		while ((zbuf[n++] != 0) && (n < len));
6569
6570	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6571	bp->strm->avail_in = len - n;
6572	bp->strm->next_out = bp->gunzip_buf;
6573	bp->strm->avail_out = FW_BUF_SIZE;
6574
6575	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6576	if (rc != Z_OK)
6577		return rc;
6578
6579	rc = zlib_inflate(bp->strm, Z_FINISH);
6580	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6581		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6582			   bp->strm->msg);
6583
6584	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6585	if (bp->gunzip_outlen & 0x3)
6586		netdev_err(bp->dev,
6587			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6588				bp->gunzip_outlen);
6589	bp->gunzip_outlen >>= 2;
6590
6591	zlib_inflateEnd(bp->strm);
6592
6593	if (rc == Z_STREAM_END)
6594		return 0;
6595
6596	return rc;
6597}
6598
6599/* nic load/unload */
6600
6601/*
6602 * General service functions
6603 */
6604
6605/* send a NIG loopback debug packet */
6606static void bnx2x_lb_pckt(struct bnx2x *bp)
6607{
6608	u32 wb_write[3];
6609
6610	/* Ethernet source and destination addresses */
6611	wb_write[0] = 0x55555555;
6612	wb_write[1] = 0x55555555;
6613	wb_write[2] = 0x20;		/* SOP */
6614	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6615
6616	/* NON-IP protocol */
6617	wb_write[0] = 0x09000000;
6618	wb_write[1] = 0x55555555;
6619	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6620	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6621}
6622
6623/* some of the internal memories
6624 * are not directly readable from the driver
6625 * to test them we send debug packets
6626 */
6627static int bnx2x_int_mem_test(struct bnx2x *bp)
6628{
6629	int factor;
6630	int count, i;
6631	u32 val = 0;
6632
6633	if (CHIP_REV_IS_FPGA(bp))
6634		factor = 120;
6635	else if (CHIP_REV_IS_EMUL(bp))
6636		factor = 200;
6637	else
6638		factor = 1;
6639
6640	/* Disable inputs of parser neighbor blocks */
6641	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6642	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6643	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6644	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6645
6646	/*  Write 0 to parser credits for CFC search request */
6647	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6648
6649	/* send Ethernet packet */
6650	bnx2x_lb_pckt(bp);
6651
6652	/* TODO do i reset NIG statistic? */
6653	/* Wait until NIG register shows 1 packet of size 0x10 */
6654	count = 1000 * factor;
6655	while (count) {
6656
6657		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6658		val = *bnx2x_sp(bp, wb_data[0]);
6659		if (val == 0x10)
6660			break;
6661
6662		usleep_range(10000, 20000);
6663		count--;
6664	}
6665	if (val != 0x10) {
6666		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6667		return -1;
6668	}
6669
6670	/* Wait until PRS register shows 1 packet */
6671	count = 1000 * factor;
6672	while (count) {
6673		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6674		if (val == 1)
6675			break;
6676
6677		usleep_range(10000, 20000);
6678		count--;
6679	}
6680	if (val != 0x1) {
6681		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6682		return -2;
6683	}
6684
6685	/* Reset and init BRB, PRS */
6686	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6687	msleep(50);
6688	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6689	msleep(50);
6690	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6691	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6692
6693	DP(NETIF_MSG_HW, "part2\n");
6694
6695	/* Disable inputs of parser neighbor blocks */
6696	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6697	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6698	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6699	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6700
6701	/* Write 0 to parser credits for CFC search request */
6702	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6703
6704	/* send 10 Ethernet packets */
6705	for (i = 0; i < 10; i++)
6706		bnx2x_lb_pckt(bp);
6707
6708	/* Wait until NIG register shows 10 + 1
6709	   packets of size 11*0x10 = 0xb0 */
6710	count = 1000 * factor;
6711	while (count) {
6712
6713		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6714		val = *bnx2x_sp(bp, wb_data[0]);
6715		if (val == 0xb0)
6716			break;
6717
6718		usleep_range(10000, 20000);
6719		count--;
6720	}
6721	if (val != 0xb0) {
6722		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6723		return -3;
6724	}
6725
6726	/* Wait until PRS register shows 2 packets */
6727	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728	if (val != 2)
6729		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6730
6731	/* Write 1 to parser credits for CFC search request */
6732	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6733
6734	/* Wait until PRS register shows 3 packets */
6735	msleep(10 * factor);
6736	/* Wait until NIG register shows 1 packet of size 0x10 */
6737	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738	if (val != 3)
6739		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6740
6741	/* clear NIG EOP FIFO */
6742	for (i = 0; i < 11; i++)
6743		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6744	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6745	if (val != 1) {
6746		BNX2X_ERR("clear of NIG failed\n");
6747		return -4;
6748	}
6749
6750	/* Reset and init BRB, PRS, NIG */
6751	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6752	msleep(50);
6753	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6754	msleep(50);
6755	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6756	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6757	if (!CNIC_SUPPORT(bp))
6758		/* set NIC mode */
6759		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6760
6761	/* Enable inputs of parser neighbor blocks */
6762	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6763	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6764	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6765	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6766
6767	DP(NETIF_MSG_HW, "done\n");
6768
6769	return 0; /* OK */
6770}
6771
6772static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6773{
6774	u32 val;
6775
6776	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6777	if (!CHIP_IS_E1x(bp))
6778		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6779	else
6780		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6781	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6782	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6783	/*
6784	 * mask read length error interrupts in brb for parser
6785	 * (parsing unit and 'checksum and crc' unit)
6786	 * these errors are legal (PU reads fixed length and CAC can cause
6787	 * read length error on truncated packets)
6788	 */
6789	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6790	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6791	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6792	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6793	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6794	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6795/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6796/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6797	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6798	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6799	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6800/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6801/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6802	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6803	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6804	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6805	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6806/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6807/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6808
6809	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6810		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6811		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6812	if (!CHIP_IS_E1x(bp))
6813		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6814			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6815	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6816
6817	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6818	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6819	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6820/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6821
6822	if (!CHIP_IS_E1x(bp))
6823		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6824		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6825
6826	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6827	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6828/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6829	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6830}
6831
6832static void bnx2x_reset_common(struct bnx2x *bp)
6833{
6834	u32 val = 0x1400;
6835
6836	/* reset_common */
6837	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6838	       0xd3ffff7f);
6839
6840	if (CHIP_IS_E3(bp)) {
6841		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6842		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6843	}
6844
6845	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6846}
6847
6848static void bnx2x_setup_dmae(struct bnx2x *bp)
6849{
6850	bp->dmae_ready = 0;
6851	spin_lock_init(&bp->dmae_lock);
6852}
6853
6854static void bnx2x_init_pxp(struct bnx2x *bp)
6855{
6856	u16 devctl;
6857	int r_order, w_order;
6858
6859	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6860	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6861	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6862	if (bp->mrrs == -1)
6863		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6864	else {
6865		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6866		r_order = bp->mrrs;
6867	}
6868
6869	bnx2x_init_pxp_arb(bp, r_order, w_order);
6870}
6871
6872static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6873{
6874	int is_required;
6875	u32 val;
6876	int port;
6877
6878	if (BP_NOMCP(bp))
6879		return;
6880
6881	is_required = 0;
6882	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6883	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6884
6885	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6886		is_required = 1;
6887
6888	/*
6889	 * The fan failure mechanism is usually related to the PHY type since
6890	 * the power consumption of the board is affected by the PHY. Currently,
6891	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6892	 */
6893	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6894		for (port = PORT_0; port < PORT_MAX; port++) {
6895			is_required |=
6896				bnx2x_fan_failure_det_req(
6897					bp,
6898					bp->common.shmem_base,
6899					bp->common.shmem2_base,
6900					port);
6901		}
6902
6903	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6904
6905	if (is_required == 0)
6906		return;
6907
6908	/* Fan failure is indicated by SPIO 5 */
6909	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6910
6911	/* set to active low mode */
6912	val = REG_RD(bp, MISC_REG_SPIO_INT);
6913	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6914	REG_WR(bp, MISC_REG_SPIO_INT, val);
6915
6916	/* enable interrupt to signal the IGU */
6917	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6918	val |= MISC_SPIO_SPIO5;
6919	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6920}
6921
6922void bnx2x_pf_disable(struct bnx2x *bp)
6923{
6924	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6925	val &= ~IGU_PF_CONF_FUNC_EN;
6926
6927	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6928	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6929	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6930}
6931
6932static void bnx2x__common_init_phy(struct bnx2x *bp)
6933{
6934	u32 shmem_base[2], shmem2_base[2];
6935	/* Avoid common init in case MFW supports LFA */
6936	if (SHMEM2_RD(bp, size) >
6937	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6938		return;
6939	shmem_base[0] =  bp->common.shmem_base;
6940	shmem2_base[0] = bp->common.shmem2_base;
6941	if (!CHIP_IS_E1x(bp)) {
6942		shmem_base[1] =
6943			SHMEM2_RD(bp, other_shmem_base_addr);
6944		shmem2_base[1] =
6945			SHMEM2_RD(bp, other_shmem2_base_addr);
6946	}
6947	bnx2x_acquire_phy_lock(bp);
6948	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6949			      bp->common.chip_id);
6950	bnx2x_release_phy_lock(bp);
6951}
6952
6953static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6954{
6955	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6956	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6957	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6958	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6959	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6960
6961	/* make sure this value is 0 */
6962	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6963
6964	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6965	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6966	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6967	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6968}
6969
6970static void bnx2x_set_endianity(struct bnx2x *bp)
6971{
6972#ifdef __BIG_ENDIAN
6973	bnx2x_config_endianity(bp, 1);
6974#else
6975	bnx2x_config_endianity(bp, 0);
6976#endif
6977}
6978
6979static void bnx2x_reset_endianity(struct bnx2x *bp)
6980{
6981	bnx2x_config_endianity(bp, 0);
6982}
6983
6984/**
6985 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6986 *
6987 * @bp:		driver handle
6988 */
6989static int bnx2x_init_hw_common(struct bnx2x *bp)
6990{
6991	u32 val;
6992
6993	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6994
6995	/*
6996	 * take the RESET lock to protect undi_unload flow from accessing
6997	 * registers while we're resetting the chip
6998	 */
6999	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7000
7001	bnx2x_reset_common(bp);
7002	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7003
7004	val = 0xfffc;
7005	if (CHIP_IS_E3(bp)) {
7006		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7007		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7008	}
7009	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7010
7011	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7012
7013	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7014
7015	if (!CHIP_IS_E1x(bp)) {
7016		u8 abs_func_id;
7017
7018		/**
7019		 * 4-port mode or 2-port mode we need to turn of master-enable
7020		 * for everyone, after that, turn it back on for self.
7021		 * so, we disregard multi-function or not, and always disable
7022		 * for all functions on the given path, this means 0,2,4,6 for
7023		 * path 0 and 1,3,5,7 for path 1
7024		 */
7025		for (abs_func_id = BP_PATH(bp);
7026		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7027			if (abs_func_id == BP_ABS_FUNC(bp)) {
7028				REG_WR(bp,
7029				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7030				    1);
7031				continue;
7032			}
7033
7034			bnx2x_pretend_func(bp, abs_func_id);
7035			/* clear pf enable */
7036			bnx2x_pf_disable(bp);
7037			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7038		}
7039	}
7040
7041	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7042	if (CHIP_IS_E1(bp)) {
7043		/* enable HW interrupt from PXP on USDM overflow
7044		   bit 16 on INT_MASK_0 */
7045		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7046	}
7047
7048	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7049	bnx2x_init_pxp(bp);
7050	bnx2x_set_endianity(bp);
7051	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7052
7053	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7054		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7055
7056	/* let the HW do it's magic ... */
7057	msleep(100);
7058	/* finish PXP init */
7059	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7060	if (val != 1) {
7061		BNX2X_ERR("PXP2 CFG failed\n");
7062		return -EBUSY;
7063	}
7064	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7065	if (val != 1) {
7066		BNX2X_ERR("PXP2 RD_INIT failed\n");
7067		return -EBUSY;
7068	}
7069
7070	/* Timers bug workaround E2 only. We need to set the entire ILT to
7071	 * have entries with value "0" and valid bit on.
7072	 * This needs to be done by the first PF that is loaded in a path
7073	 * (i.e. common phase)
7074	 */
7075	if (!CHIP_IS_E1x(bp)) {
7076/* In E2 there is a bug in the timers block that can cause function 6 / 7
7077 * (i.e. vnic3) to start even if it is marked as "scan-off".
7078 * This occurs when a different function (func2,3) is being marked
7079 * as "scan-off". Real-life scenario for example: if a driver is being
7080 * load-unloaded while func6,7 are down. This will cause the timer to access
7081 * the ilt, translate to a logical address and send a request to read/write.
7082 * Since the ilt for the function that is down is not valid, this will cause
7083 * a translation error which is unrecoverable.
7084 * The Workaround is intended to make sure that when this happens nothing fatal
7085 * will occur. The workaround:
7086 *	1.  First PF driver which loads on a path will:
7087 *		a.  After taking the chip out of reset, by using pretend,
7088 *		    it will write "0" to the following registers of
7089 *		    the other vnics.
7090 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7091 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7092 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7093 *		    And for itself it will write '1' to
7094 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7095 *		    dmae-operations (writing to pram for example.)
7096 *		    note: can be done for only function 6,7 but cleaner this
7097 *			  way.
7098 *		b.  Write zero+valid to the entire ILT.
7099 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7100 *		    VNIC3 (of that port). The range allocated will be the
7101 *		    entire ILT. This is needed to prevent  ILT range error.
7102 *	2.  Any PF driver load flow:
7103 *		a.  ILT update with the physical addresses of the allocated
7104 *		    logical pages.
7105 *		b.  Wait 20msec. - note that this timeout is needed to make
7106 *		    sure there are no requests in one of the PXP internal
7107 *		    queues with "old" ILT addresses.
7108 *		c.  PF enable in the PGLC.
7109 *		d.  Clear the was_error of the PF in the PGLC. (could have
7110 *		    occurred while driver was down)
7111 *		e.  PF enable in the CFC (WEAK + STRONG)
7112 *		f.  Timers scan enable
7113 *	3.  PF driver unload flow:
7114 *		a.  Clear the Timers scan_en.
7115 *		b.  Polling for scan_on=0 for that PF.
7116 *		c.  Clear the PF enable bit in the PXP.
7117 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7118 *		e.  Write zero+valid to all ILT entries (The valid bit must
7119 *		    stay set)
7120 *		f.  If this is VNIC 3 of a port then also init
7121 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7122 *		    to the last entry in the ILT.
7123 *
7124 *	Notes:
7125 *	Currently the PF error in the PGLC is non recoverable.
7126 *	In the future the there will be a recovery routine for this error.
7127 *	Currently attention is masked.
7128 *	Having an MCP lock on the load/unload process does not guarantee that
7129 *	there is no Timer disable during Func6/7 enable. This is because the
7130 *	Timers scan is currently being cleared by the MCP on FLR.
7131 *	Step 2.d can be done only for PF6/7 and the driver can also check if
7132 *	there is error before clearing it. But the flow above is simpler and
7133 *	more general.
7134 *	All ILT entries are written by zero+valid and not just PF6/7
7135 *	ILT entries since in the future the ILT entries allocation for
7136 *	PF-s might be dynamic.
7137 */
7138		struct ilt_client_info ilt_cli;
7139		struct bnx2x_ilt ilt;
7140		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7141		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7142
7143		/* initialize dummy TM client */
7144		ilt_cli.start = 0;
7145		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7146		ilt_cli.client_num = ILT_CLIENT_TM;
7147
7148		/* Step 1: set zeroes to all ilt page entries with valid bit on
7149		 * Step 2: set the timers first/last ilt entry to point
7150		 * to the entire range to prevent ILT range error for 3rd/4th
7151		 * vnic	(this code assumes existence of the vnic)
7152		 *
7153		 * both steps performed by call to bnx2x_ilt_client_init_op()
7154		 * with dummy TM client
7155		 *
7156		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7157		 * and his brother are split registers
7158		 */
7159		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7160		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7161		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7162
7163		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7164		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7165		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7166	}
7167
7168	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7169	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7170
7171	if (!CHIP_IS_E1x(bp)) {
7172		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7173				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7174		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7175
7176		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7177
7178		/* let the HW do it's magic ... */
7179		do {
7180			msleep(200);
7181			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7182		} while (factor-- && (val != 1));
7183
7184		if (val != 1) {
7185			BNX2X_ERR("ATC_INIT failed\n");
7186			return -EBUSY;
7187		}
7188	}
7189
7190	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7191
7192	bnx2x_iov_init_dmae(bp);
7193
7194	/* clean the DMAE memory */
7195	bp->dmae_ready = 1;
7196	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7197
7198	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7199
7200	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7201
7202	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7203
7204	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7205
7206	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7207	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7208	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7209	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7210
7211	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7212
7213	/* QM queues pointers table */
7214	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7215
7216	/* soft reset pulse */
7217	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7218	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7219
7220	if (CNIC_SUPPORT(bp))
7221		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7222
7223	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7224
7225	if (!CHIP_REV_IS_SLOW(bp))
7226		/* enable hw interrupt from doorbell Q */
7227		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7228
7229	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7230
7231	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7232	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7233
7234	if (!CHIP_IS_E1(bp))
7235		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7236
7237	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7238		if (IS_MF_AFEX(bp)) {
7239			/* configure that VNTag and VLAN headers must be
7240			 * received in afex mode
7241			 */
7242			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7243			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7244			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7245			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7246			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7247		} else {
7248			/* Bit-map indicating which L2 hdrs may appear
7249			 * after the basic Ethernet header
7250			 */
7251			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7252			       bp->path_has_ovlan ? 7 : 6);
7253		}
7254	}
7255
7256	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7257	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7258	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7259	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7260
7261	if (!CHIP_IS_E1x(bp)) {
7262		/* reset VFC memories */
7263		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7264			   VFC_MEMORIES_RST_REG_CAM_RST |
7265			   VFC_MEMORIES_RST_REG_RAM_RST);
7266		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7267			   VFC_MEMORIES_RST_REG_CAM_RST |
7268			   VFC_MEMORIES_RST_REG_RAM_RST);
7269
7270		msleep(20);
7271	}
7272
7273	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7274	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7275	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7276	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7277
7278	/* sync semi rtc */
7279	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7280	       0x80000000);
7281	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7282	       0x80000000);
7283
7284	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7285	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7286	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7287
7288	if (!CHIP_IS_E1x(bp)) {
7289		if (IS_MF_AFEX(bp)) {
7290			/* configure that VNTag and VLAN headers must be
7291			 * sent in afex mode
7292			 */
7293			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7294			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7295			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7296			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7297			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7298		} else {
7299			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7300			       bp->path_has_ovlan ? 7 : 6);
7301		}
7302	}
7303
7304	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7305
7306	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7307
7308	if (CNIC_SUPPORT(bp)) {
7309		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7310		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7311		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7312		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7313		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7314		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7315		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7316		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7317		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7318		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7319	}
7320	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7321
7322	if (sizeof(union cdu_context) != 1024)
7323		/* we currently assume that a context is 1024 bytes */
7324		dev_alert(&bp->pdev->dev,
7325			  "please adjust the size of cdu_context(%ld)\n",
7326			  (long)sizeof(union cdu_context));
7327
7328	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7329	val = (4 << 24) + (0 << 12) + 1024;
7330	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7331
7332	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7333	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7334	/* enable context validation interrupt from CFC */
7335	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7336
7337	/* set the thresholds to prevent CFC/CDU race */
7338	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7339
7340	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7341
7342	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7343		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7344
7345	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7346	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7347
7348	/* Reset PCIE errors for debug */
7349	REG_WR(bp, 0x2814, 0xffffffff);
7350	REG_WR(bp, 0x3820, 0xffffffff);
7351
7352	if (!CHIP_IS_E1x(bp)) {
7353		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7354			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7355				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7356		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7357			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7358				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7359				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7360		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7361			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7362				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7363				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7364	}
7365
7366	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7367	if (!CHIP_IS_E1(bp)) {
7368		/* in E3 this done in per-port section */
7369		if (!CHIP_IS_E3(bp))
7370			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7371	}
7372	if (CHIP_IS_E1H(bp))
7373		/* not applicable for E2 (and above ...) */
7374		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7375
7376	if (CHIP_REV_IS_SLOW(bp))
7377		msleep(200);
7378
7379	/* finish CFC init */
7380	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7381	if (val != 1) {
7382		BNX2X_ERR("CFC LL_INIT failed\n");
7383		return -EBUSY;
7384	}
7385	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7386	if (val != 1) {
7387		BNX2X_ERR("CFC AC_INIT failed\n");
7388		return -EBUSY;
7389	}
7390	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7391	if (val != 1) {
7392		BNX2X_ERR("CFC CAM_INIT failed\n");
7393		return -EBUSY;
7394	}
7395	REG_WR(bp, CFC_REG_DEBUG0, 0);
7396
7397	if (CHIP_IS_E1(bp)) {
7398		/* read NIG statistic
7399		   to see if this is our first up since powerup */
7400		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7401		val = *bnx2x_sp(bp, wb_data[0]);
7402
7403		/* do internal memory self test */
7404		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7405			BNX2X_ERR("internal mem self test failed\n");
7406			return -EBUSY;
7407		}
7408	}
7409
7410	bnx2x_setup_fan_failure_detection(bp);
7411
7412	/* clear PXP2 attentions */
7413	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7414
7415	bnx2x_enable_blocks_attention(bp);
7416	bnx2x_enable_blocks_parity(bp);
7417
7418	if (!BP_NOMCP(bp)) {
7419		if (CHIP_IS_E1x(bp))
7420			bnx2x__common_init_phy(bp);
7421	} else
7422		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7423
7424	return 0;
7425}
7426
7427/**
7428 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7429 *
7430 * @bp:		driver handle
7431 */
7432static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7433{
7434	int rc = bnx2x_init_hw_common(bp);
7435
7436	if (rc)
7437		return rc;
7438
7439	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7440	if (!BP_NOMCP(bp))
7441		bnx2x__common_init_phy(bp);
7442
7443	return 0;
7444}
7445
7446static int bnx2x_init_hw_port(struct bnx2x *bp)
7447{
7448	int port = BP_PORT(bp);
7449	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7450	u32 low, high;
7451	u32 val, reg;
7452
7453	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7454
7455	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7456
7457	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7458	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7459	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7460
7461	/* Timers bug workaround: disables the pf_master bit in pglue at
7462	 * common phase, we need to enable it here before any dmae access are
7463	 * attempted. Therefore we manually added the enable-master to the
7464	 * port phase (it also happens in the function phase)
7465	 */
7466	if (!CHIP_IS_E1x(bp))
7467		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7468
7469	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7470	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7471	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7472	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7473
7474	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7475	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7476	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7477	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7478
7479	/* QM cid (connection) count */
7480	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7481
7482	if (CNIC_SUPPORT(bp)) {
7483		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7484		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7485		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7486	}
7487
7488	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7489
7490	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7491
7492	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7493
7494		if (IS_MF(bp))
7495			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7496		else if (bp->dev->mtu > 4096) {
7497			if (bp->flags & ONE_PORT_FLAG)
7498				low = 160;
7499			else {
7500				val = bp->dev->mtu;
7501				/* (24*1024 + val*4)/256 */
7502				low = 96 + (val/64) +
7503						((val % 64) ? 1 : 0);
7504			}
7505		} else
7506			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7507		high = low + 56;	/* 14*1024/256 */
7508		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7509		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7510	}
7511
7512	if (CHIP_MODE_IS_4_PORT(bp))
7513		REG_WR(bp, (BP_PORT(bp) ?
7514			    BRB1_REG_MAC_GUARANTIED_1 :
7515			    BRB1_REG_MAC_GUARANTIED_0), 40);
7516
7517	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7518	if (CHIP_IS_E3B0(bp)) {
7519		if (IS_MF_AFEX(bp)) {
7520			/* configure headers for AFEX mode */
7521			REG_WR(bp, BP_PORT(bp) ?
7522			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7523			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7524			REG_WR(bp, BP_PORT(bp) ?
7525			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7526			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7527			REG_WR(bp, BP_PORT(bp) ?
7528			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7529			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7530		} else {
7531			/* Ovlan exists only if we are in multi-function +
7532			 * switch-dependent mode, in switch-independent there
7533			 * is no ovlan headers
7534			 */
7535			REG_WR(bp, BP_PORT(bp) ?
7536			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7537			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7538			       (bp->path_has_ovlan ? 7 : 6));
7539		}
7540	}
7541
7542	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7543	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7544	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7545	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7546
7547	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7548	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7549	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7550	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7551
7552	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7553	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7554
7555	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7556
7557	if (CHIP_IS_E1x(bp)) {
7558		/* configure PBF to work without PAUSE mtu 9000 */
7559		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7560
7561		/* update threshold */
7562		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7563		/* update init credit */
7564		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7565
7566		/* probe changes */
7567		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7568		udelay(50);
7569		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7570	}
7571
7572	if (CNIC_SUPPORT(bp))
7573		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7574
7575	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7576	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7577
7578	if (CHIP_IS_E1(bp)) {
7579		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7580		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7581	}
7582	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7583
7584	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7585
7586	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7587	/* init aeu_mask_attn_func_0/1:
7588	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7589	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7590	 *             bits 4-7 are used for "per vn group attention" */
7591	val = IS_MF(bp) ? 0xF7 : 0x7;
7592	/* Enable DCBX attention for all but E1 */
7593	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7594	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7595
7596	/* SCPAD_PARITY should NOT trigger close the gates */
7597	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7598	REG_WR(bp, reg,
7599	       REG_RD(bp, reg) &
7600	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7601
7602	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7603	REG_WR(bp, reg,
7604	       REG_RD(bp, reg) &
7605	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7606
7607	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7608
7609	if (!CHIP_IS_E1x(bp)) {
7610		/* Bit-map indicating which L2 hdrs may appear after the
7611		 * basic Ethernet header
7612		 */
7613		if (IS_MF_AFEX(bp))
7614			REG_WR(bp, BP_PORT(bp) ?
7615			       NIG_REG_P1_HDRS_AFTER_BASIC :
7616			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7617		else
7618			REG_WR(bp, BP_PORT(bp) ?
7619			       NIG_REG_P1_HDRS_AFTER_BASIC :
7620			       NIG_REG_P0_HDRS_AFTER_BASIC,
7621			       IS_MF_SD(bp) ? 7 : 6);
7622
7623		if (CHIP_IS_E3(bp))
7624			REG_WR(bp, BP_PORT(bp) ?
7625				   NIG_REG_LLH1_MF_MODE :
7626				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7627	}
7628	if (!CHIP_IS_E3(bp))
7629		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7630
7631	if (!CHIP_IS_E1(bp)) {
7632		/* 0x2 disable mf_ov, 0x1 enable */
7633		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7634		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7635
7636		if (!CHIP_IS_E1x(bp)) {
7637			val = 0;
7638			switch (bp->mf_mode) {
7639			case MULTI_FUNCTION_SD:
7640				val = 1;
7641				break;
7642			case MULTI_FUNCTION_SI:
7643			case MULTI_FUNCTION_AFEX:
7644				val = 2;
7645				break;
7646			}
7647
7648			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7649						  NIG_REG_LLH0_CLS_TYPE), val);
7650		}
7651		{
7652			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7653			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7654			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7655		}
7656	}
7657
7658	/* If SPIO5 is set to generate interrupts, enable it for this port */
7659	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7660	if (val & MISC_SPIO_SPIO5) {
7661		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7662				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7663		val = REG_RD(bp, reg_addr);
7664		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7665		REG_WR(bp, reg_addr, val);
7666	}
7667
7668	return 0;
7669}
7670
7671static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7672{
7673	int reg;
7674	u32 wb_write[2];
7675
7676	if (CHIP_IS_E1(bp))
7677		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7678	else
7679		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7680
7681	wb_write[0] = ONCHIP_ADDR1(addr);
7682	wb_write[1] = ONCHIP_ADDR2(addr);
7683	REG_WR_DMAE(bp, reg, wb_write, 2);
7684}
7685
7686void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7687{
7688	u32 data, ctl, cnt = 100;
7689	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7690	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7691	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7692	u32 sb_bit =  1 << (idu_sb_id%32);
7693	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7694	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7695
7696	/* Not supported in BC mode */
7697	if (CHIP_INT_MODE_IS_BC(bp))
7698		return;
7699
7700	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7701			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7702		IGU_REGULAR_CLEANUP_SET				|
7703		IGU_REGULAR_BCLEANUP;
7704
7705	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7706	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7707	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7708
7709	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7710			 data, igu_addr_data);
7711	REG_WR(bp, igu_addr_data, data);
7712	mmiowb();
7713	barrier();
7714	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7715			  ctl, igu_addr_ctl);
7716	REG_WR(bp, igu_addr_ctl, ctl);
7717	mmiowb();
7718	barrier();
7719
7720	/* wait for clean up to finish */
7721	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7722		msleep(20);
7723
7724	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7725		DP(NETIF_MSG_HW,
7726		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7727			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7728	}
7729}
7730
7731static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7732{
7733	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7734}
7735
7736static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7737{
7738	u32 i, base = FUNC_ILT_BASE(func);
7739	for (i = base; i < base + ILT_PER_FUNC; i++)
7740		bnx2x_ilt_wr(bp, i, 0);
7741}
7742
7743static void bnx2x_init_searcher(struct bnx2x *bp)
7744{
7745	int port = BP_PORT(bp);
7746	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7747	/* T1 hash bits value determines the T1 number of entries */
7748	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7749}
7750
7751static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7752{
7753	int rc;
7754	struct bnx2x_func_state_params func_params = {NULL};
7755	struct bnx2x_func_switch_update_params *switch_update_params =
7756		&func_params.params.switch_update;
7757
7758	/* Prepare parameters for function state transitions */
7759	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7760	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7761
7762	func_params.f_obj = &bp->func_obj;
7763	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7764
7765	/* Function parameters */
7766	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7767		  &switch_update_params->changes);
7768	if (suspend)
7769		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7770			  &switch_update_params->changes);
7771
7772	rc = bnx2x_func_state_change(bp, &func_params);
7773
7774	return rc;
7775}
7776
7777static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7778{
7779	int rc, i, port = BP_PORT(bp);
7780	int vlan_en = 0, mac_en[NUM_MACS];
7781
7782	/* Close input from network */
7783	if (bp->mf_mode == SINGLE_FUNCTION) {
7784		bnx2x_set_rx_filter(&bp->link_params, 0);
7785	} else {
7786		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7787				   NIG_REG_LLH0_FUNC_EN);
7788		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7789			  NIG_REG_LLH0_FUNC_EN, 0);
7790		for (i = 0; i < NUM_MACS; i++) {
7791			mac_en[i] = REG_RD(bp, port ?
7792					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7793					      4 * i) :
7794					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7795					      4 * i));
7796			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7797					      4 * i) :
7798				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7799		}
7800	}
7801
7802	/* Close BMC to host */
7803	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7804	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7805
7806	/* Suspend Tx switching to the PF. Completion of this ramrod
7807	 * further guarantees that all the packets of that PF / child
7808	 * VFs in BRB were processed by the Parser, so it is safe to
7809	 * change the NIC_MODE register.
7810	 */
7811	rc = bnx2x_func_switch_update(bp, 1);
7812	if (rc) {
7813		BNX2X_ERR("Can't suspend tx-switching!\n");
7814		return rc;
7815	}
7816
7817	/* Change NIC_MODE register */
7818	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7819
7820	/* Open input from network */
7821	if (bp->mf_mode == SINGLE_FUNCTION) {
7822		bnx2x_set_rx_filter(&bp->link_params, 1);
7823	} else {
7824		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7825			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7826		for (i = 0; i < NUM_MACS; i++) {
7827			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7828					      4 * i) :
7829				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7830				  mac_en[i]);
7831		}
7832	}
7833
7834	/* Enable BMC to host */
7835	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7836	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7837
7838	/* Resume Tx switching to the PF */
7839	rc = bnx2x_func_switch_update(bp, 0);
7840	if (rc) {
7841		BNX2X_ERR("Can't resume tx-switching!\n");
7842		return rc;
7843	}
7844
7845	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7846	return 0;
7847}
7848
7849int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7850{
7851	int rc;
7852
7853	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7854
7855	if (CONFIGURE_NIC_MODE(bp)) {
7856		/* Configure searcher as part of function hw init */
7857		bnx2x_init_searcher(bp);
7858
7859		/* Reset NIC mode */
7860		rc = bnx2x_reset_nic_mode(bp);
7861		if (rc)
7862			BNX2X_ERR("Can't change NIC mode!\n");
7863		return rc;
7864	}
7865
7866	return 0;
7867}
7868
7869/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7870 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7871 * the addresses of the transaction, resulting in was-error bit set in the pci
7872 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7873 * to clear the interrupt which detected this from the pglueb and the was done
7874 * bit
7875 */
7876static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7877{
7878	if (!CHIP_IS_E1x(bp))
7879		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7880		       1 << BP_ABS_FUNC(bp));
7881}
7882
7883static int bnx2x_init_hw_func(struct bnx2x *bp)
7884{
7885	int port = BP_PORT(bp);
7886	int func = BP_FUNC(bp);
7887	int init_phase = PHASE_PF0 + func;
7888	struct bnx2x_ilt *ilt = BP_ILT(bp);
7889	u16 cdu_ilt_start;
7890	u32 addr, val;
7891	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7892	int i, main_mem_width, rc;
7893
7894	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7895
7896	/* FLR cleanup - hmmm */
7897	if (!CHIP_IS_E1x(bp)) {
7898		rc = bnx2x_pf_flr_clnup(bp);
7899		if (rc) {
7900			bnx2x_fw_dump(bp);
7901			return rc;
7902		}
7903	}
7904
7905	/* set MSI reconfigure capability */
7906	if (bp->common.int_block == INT_BLOCK_HC) {
7907		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7908		val = REG_RD(bp, addr);
7909		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7910		REG_WR(bp, addr, val);
7911	}
7912
7913	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7914	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7915
7916	ilt = BP_ILT(bp);
7917	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7918
7919	if (IS_SRIOV(bp))
7920		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7921	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7922
7923	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7924	 * those of the VFs, so start line should be reset
7925	 */
7926	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7927	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7928		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7929		ilt->lines[cdu_ilt_start + i].page_mapping =
7930			bp->context[i].cxt_mapping;
7931		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7932	}
7933
7934	bnx2x_ilt_init_op(bp, INITOP_SET);
7935
7936	if (!CONFIGURE_NIC_MODE(bp)) {
7937		bnx2x_init_searcher(bp);
7938		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7939		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7940	} else {
7941		/* Set NIC mode */
7942		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7943		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7944	}
7945
7946	if (!CHIP_IS_E1x(bp)) {
7947		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7948
7949		/* Turn on a single ISR mode in IGU if driver is going to use
7950		 * INT#x or MSI
7951		 */
7952		if (!(bp->flags & USING_MSIX_FLAG))
7953			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7954		/*
7955		 * Timers workaround bug: function init part.
7956		 * Need to wait 20msec after initializing ILT,
7957		 * needed to make sure there are no requests in
7958		 * one of the PXP internal queues with "old" ILT addresses
7959		 */
7960		msleep(20);
7961		/*
7962		 * Master enable - Due to WB DMAE writes performed before this
7963		 * register is re-initialized as part of the regular function
7964		 * init
7965		 */
7966		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7967		/* Enable the function in IGU */
7968		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7969	}
7970
7971	bp->dmae_ready = 1;
7972
7973	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7974
7975	bnx2x_clean_pglue_errors(bp);
7976
7977	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7978	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7979	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7980	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7981	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7982	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7983	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7984	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7985	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7986	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7987	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7988	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7989	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7990
7991	if (!CHIP_IS_E1x(bp))
7992		REG_WR(bp, QM_REG_PF_EN, 1);
7993
7994	if (!CHIP_IS_E1x(bp)) {
7995		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7996		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7997		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7998		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7999	}
8000	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8001
8002	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8003	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8004	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8005
8006	bnx2x_iov_init_dq(bp);
8007
8008	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8009	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8010	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8011	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8012	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8013	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8014	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8015	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8016	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8017	if (!CHIP_IS_E1x(bp))
8018		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8019
8020	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8021
8022	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8023
8024	if (!CHIP_IS_E1x(bp))
8025		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8026
8027	if (IS_MF(bp)) {
8028		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8029			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8030			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8031			       bp->mf_ov);
8032		}
8033	}
8034
8035	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8036
8037	/* HC init per function */
8038	if (bp->common.int_block == INT_BLOCK_HC) {
8039		if (CHIP_IS_E1H(bp)) {
8040			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8041
8042			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8043			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8044		}
8045		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8046
8047	} else {
8048		int num_segs, sb_idx, prod_offset;
8049
8050		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8051
8052		if (!CHIP_IS_E1x(bp)) {
8053			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8054			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8055		}
8056
8057		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8058
8059		if (!CHIP_IS_E1x(bp)) {
8060			int dsb_idx = 0;
8061			/**
8062			 * Producer memory:
8063			 * E2 mode: address 0-135 match to the mapping memory;
8064			 * 136 - PF0 default prod; 137 - PF1 default prod;
8065			 * 138 - PF2 default prod; 139 - PF3 default prod;
8066			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8067			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8068			 * 144-147 reserved.
8069			 *
8070			 * E1.5 mode - In backward compatible mode;
8071			 * for non default SB; each even line in the memory
8072			 * holds the U producer and each odd line hold
8073			 * the C producer. The first 128 producers are for
8074			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8075			 * producers are for the DSB for each PF.
8076			 * Each PF has five segments: (the order inside each
8077			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8078			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8079			 * 144-147 attn prods;
8080			 */
8081			/* non-default-status-blocks */
8082			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8083				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8084			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8085				prod_offset = (bp->igu_base_sb + sb_idx) *
8086					num_segs;
8087
8088				for (i = 0; i < num_segs; i++) {
8089					addr = IGU_REG_PROD_CONS_MEMORY +
8090							(prod_offset + i) * 4;
8091					REG_WR(bp, addr, 0);
8092				}
8093				/* send consumer update with value 0 */
8094				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8095					     USTORM_ID, 0, IGU_INT_NOP, 1);
8096				bnx2x_igu_clear_sb(bp,
8097						   bp->igu_base_sb + sb_idx);
8098			}
8099
8100			/* default-status-blocks */
8101			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8102				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8103
8104			if (CHIP_MODE_IS_4_PORT(bp))
8105				dsb_idx = BP_FUNC(bp);
8106			else
8107				dsb_idx = BP_VN(bp);
8108
8109			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8110				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8111				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8112
8113			/*
8114			 * igu prods come in chunks of E1HVN_MAX (4) -
8115			 * does not matters what is the current chip mode
8116			 */
8117			for (i = 0; i < (num_segs * E1HVN_MAX);
8118			     i += E1HVN_MAX) {
8119				addr = IGU_REG_PROD_CONS_MEMORY +
8120							(prod_offset + i)*4;
8121				REG_WR(bp, addr, 0);
8122			}
8123			/* send consumer update with 0 */
8124			if (CHIP_INT_MODE_IS_BC(bp)) {
8125				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8126					     USTORM_ID, 0, IGU_INT_NOP, 1);
8127				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8128					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8129				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8130					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8131				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8132					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8133				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8134					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8135			} else {
8136				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8137					     USTORM_ID, 0, IGU_INT_NOP, 1);
8138				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8139					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8140			}
8141			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8142
8143			/* !!! These should become driver const once
8144			   rf-tool supports split-68 const */
8145			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8146			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8147			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8148			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8149			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8150			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8151		}
8152	}
8153
8154	/* Reset PCIE errors for debug */
8155	REG_WR(bp, 0x2114, 0xffffffff);
8156	REG_WR(bp, 0x2120, 0xffffffff);
8157
8158	if (CHIP_IS_E1x(bp)) {
8159		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8160		main_mem_base = HC_REG_MAIN_MEMORY +
8161				BP_PORT(bp) * (main_mem_size * 4);
8162		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8163		main_mem_width = 8;
8164
8165		val = REG_RD(bp, main_mem_prty_clr);
8166		if (val)
8167			DP(NETIF_MSG_HW,
8168			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8169			   val);
8170
8171		/* Clear "false" parity errors in MSI-X table */
8172		for (i = main_mem_base;
8173		     i < main_mem_base + main_mem_size * 4;
8174		     i += main_mem_width) {
8175			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8176			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8177					 i, main_mem_width / 4);
8178		}
8179		/* Clear HC parity attention */
8180		REG_RD(bp, main_mem_prty_clr);
8181	}
8182
8183#ifdef BNX2X_STOP_ON_ERROR
8184	/* Enable STORMs SP logging */
8185	REG_WR8(bp, BAR_USTRORM_INTMEM +
8186	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8187	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8188	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8189	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8190	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8191	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8192	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8193#endif
8194
8195	bnx2x_phy_probe(&bp->link_params);
8196
8197	return 0;
8198}
8199
8200void bnx2x_free_mem_cnic(struct bnx2x *bp)
8201{
8202	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8203
8204	if (!CHIP_IS_E1x(bp))
8205		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8206			       sizeof(struct host_hc_status_block_e2));
8207	else
8208		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8209			       sizeof(struct host_hc_status_block_e1x));
8210
8211	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8212}
8213
8214void bnx2x_free_mem(struct bnx2x *bp)
8215{
8216	int i;
8217
8218	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8219		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8220
8221	if (IS_VF(bp))
8222		return;
8223
8224	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8225		       sizeof(struct host_sp_status_block));
8226
8227	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8228		       sizeof(struct bnx2x_slowpath));
8229
8230	for (i = 0; i < L2_ILT_LINES(bp); i++)
8231		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8232			       bp->context[i].size);
8233	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8234
8235	BNX2X_FREE(bp->ilt->lines);
8236
8237	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8238
8239	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8240		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8241
8242	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8243
8244	bnx2x_iov_free_mem(bp);
8245}
8246
8247int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8248{
8249	if (!CHIP_IS_E1x(bp)) {
8250		/* size = the status block + ramrod buffers */
8251		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8252						    sizeof(struct host_hc_status_block_e2));
8253		if (!bp->cnic_sb.e2_sb)
8254			goto alloc_mem_err;
8255	} else {
8256		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8257						     sizeof(struct host_hc_status_block_e1x));
8258		if (!bp->cnic_sb.e1x_sb)
8259			goto alloc_mem_err;
8260	}
8261
8262	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8263		/* allocate searcher T2 table, as it wasn't allocated before */
8264		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8265		if (!bp->t2)
8266			goto alloc_mem_err;
8267	}
8268
8269	/* write address to which L5 should insert its values */
8270	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8271		&bp->slowpath->drv_info_to_mcp;
8272
8273	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8274		goto alloc_mem_err;
8275
8276	return 0;
8277
8278alloc_mem_err:
8279	bnx2x_free_mem_cnic(bp);
8280	BNX2X_ERR("Can't allocate memory\n");
8281	return -ENOMEM;
8282}
8283
8284int bnx2x_alloc_mem(struct bnx2x *bp)
8285{
8286	int i, allocated, context_size;
8287
8288	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8289		/* allocate searcher T2 table */
8290		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8291		if (!bp->t2)
8292			goto alloc_mem_err;
8293	}
8294
8295	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8296					     sizeof(struct host_sp_status_block));
8297	if (!bp->def_status_blk)
8298		goto alloc_mem_err;
8299
8300	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8301				       sizeof(struct bnx2x_slowpath));
8302	if (!bp->slowpath)
8303		goto alloc_mem_err;
8304
8305	/* Allocate memory for CDU context:
8306	 * This memory is allocated separately and not in the generic ILT
8307	 * functions because CDU differs in few aspects:
8308	 * 1. There are multiple entities allocating memory for context -
8309	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8310	 * its own ILT lines.
8311	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8312	 * for the other ILT clients), to be efficient we want to support
8313	 * allocation of sub-page-size in the last entry.
8314	 * 3. Context pointers are used by the driver to pass to FW / update
8315	 * the context (for the other ILT clients the pointers are used just to
8316	 * free the memory during unload).
8317	 */
8318	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8319
8320	for (i = 0, allocated = 0; allocated < context_size; i++) {
8321		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8322					  (context_size - allocated));
8323		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8324						      bp->context[i].size);
8325		if (!bp->context[i].vcxt)
8326			goto alloc_mem_err;
8327		allocated += bp->context[i].size;
8328	}
8329	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8330				 GFP_KERNEL);
8331	if (!bp->ilt->lines)
8332		goto alloc_mem_err;
8333
8334	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8335		goto alloc_mem_err;
8336
8337	if (bnx2x_iov_alloc_mem(bp))
8338		goto alloc_mem_err;
8339
8340	/* Slow path ring */
8341	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8342	if (!bp->spq)
8343		goto alloc_mem_err;
8344
8345	/* EQ */
8346	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8347				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8348	if (!bp->eq_ring)
8349		goto alloc_mem_err;
8350
8351	return 0;
8352
8353alloc_mem_err:
8354	bnx2x_free_mem(bp);
8355	BNX2X_ERR("Can't allocate memory\n");
8356	return -ENOMEM;
8357}
8358
8359/*
8360 * Init service functions
8361 */
8362
8363int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8364		      struct bnx2x_vlan_mac_obj *obj, bool set,
8365		      int mac_type, unsigned long *ramrod_flags)
8366{
8367	int rc;
8368	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8369
8370	memset(&ramrod_param, 0, sizeof(ramrod_param));
8371
8372	/* Fill general parameters */
8373	ramrod_param.vlan_mac_obj = obj;
8374	ramrod_param.ramrod_flags = *ramrod_flags;
8375
8376	/* Fill a user request section if needed */
8377	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8378		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8379
8380		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8381
8382		/* Set the command: ADD or DEL */
8383		if (set)
8384			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8385		else
8386			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8387	}
8388
8389	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8390
8391	if (rc == -EEXIST) {
8392		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8393		/* do not treat adding same MAC as error */
8394		rc = 0;
8395	} else if (rc < 0)
8396		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8397
8398	return rc;
8399}
8400
8401int bnx2x_del_all_macs(struct bnx2x *bp,
8402		       struct bnx2x_vlan_mac_obj *mac_obj,
8403		       int mac_type, bool wait_for_comp)
8404{
8405	int rc;
8406	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8407
8408	/* Wait for completion of requested */
8409	if (wait_for_comp)
8410		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8411
8412	/* Set the mac type of addresses we want to clear */
8413	__set_bit(mac_type, &vlan_mac_flags);
8414
8415	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8416	if (rc < 0)
8417		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8418
8419	return rc;
8420}
8421
8422int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8423{
8424	if (IS_PF(bp)) {
8425		unsigned long ramrod_flags = 0;
8426
8427		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8428		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8429		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8430					 &bp->sp_objs->mac_obj, set,
8431					 BNX2X_ETH_MAC, &ramrod_flags);
8432	} else { /* vf */
8433		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8434					     bp->fp->index, true);
8435	}
8436}
8437
8438int bnx2x_setup_leading(struct bnx2x *bp)
8439{
8440	if (IS_PF(bp))
8441		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8442	else /* VF */
8443		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8444}
8445
8446/**
8447 * bnx2x_set_int_mode - configure interrupt mode
8448 *
8449 * @bp:		driver handle
8450 *
8451 * In case of MSI-X it will also try to enable MSI-X.
8452 */
8453int bnx2x_set_int_mode(struct bnx2x *bp)
8454{
8455	int rc = 0;
8456
8457	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8458		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8459		return -EINVAL;
8460	}
8461
8462	switch (int_mode) {
8463	case BNX2X_INT_MODE_MSIX:
8464		/* attempt to enable msix */
8465		rc = bnx2x_enable_msix(bp);
8466
8467		/* msix attained */
8468		if (!rc)
8469			return 0;
8470
8471		/* vfs use only msix */
8472		if (rc && IS_VF(bp))
8473			return rc;
8474
8475		/* failed to enable multiple MSI-X */
8476		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8477			       bp->num_queues,
8478			       1 + bp->num_cnic_queues);
8479
8480		/* falling through... */
8481	case BNX2X_INT_MODE_MSI:
8482		bnx2x_enable_msi(bp);
8483
8484		/* falling through... */
8485	case BNX2X_INT_MODE_INTX:
8486		bp->num_ethernet_queues = 1;
8487		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8488		BNX2X_DEV_INFO("set number of queues to 1\n");
8489		break;
8490	default:
8491		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8492		return -EINVAL;
8493	}
8494	return 0;
8495}
8496
8497/* must be called prior to any HW initializations */
8498static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8499{
8500	if (IS_SRIOV(bp))
8501		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8502	return L2_ILT_LINES(bp);
8503}
8504
8505void bnx2x_ilt_set_info(struct bnx2x *bp)
8506{
8507	struct ilt_client_info *ilt_client;
8508	struct bnx2x_ilt *ilt = BP_ILT(bp);
8509	u16 line = 0;
8510
8511	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8512	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8513
8514	/* CDU */
8515	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8516	ilt_client->client_num = ILT_CLIENT_CDU;
8517	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8518	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8519	ilt_client->start = line;
8520	line += bnx2x_cid_ilt_lines(bp);
8521
8522	if (CNIC_SUPPORT(bp))
8523		line += CNIC_ILT_LINES;
8524	ilt_client->end = line - 1;
8525
8526	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8527	   ilt_client->start,
8528	   ilt_client->end,
8529	   ilt_client->page_size,
8530	   ilt_client->flags,
8531	   ilog2(ilt_client->page_size >> 12));
8532
8533	/* QM */
8534	if (QM_INIT(bp->qm_cid_count)) {
8535		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8536		ilt_client->client_num = ILT_CLIENT_QM;
8537		ilt_client->page_size = QM_ILT_PAGE_SZ;
8538		ilt_client->flags = 0;
8539		ilt_client->start = line;
8540
8541		/* 4 bytes for each cid */
8542		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8543							 QM_ILT_PAGE_SZ);
8544
8545		ilt_client->end = line - 1;
8546
8547		DP(NETIF_MSG_IFUP,
8548		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8549		   ilt_client->start,
8550		   ilt_client->end,
8551		   ilt_client->page_size,
8552		   ilt_client->flags,
8553		   ilog2(ilt_client->page_size >> 12));
8554	}
8555
8556	if (CNIC_SUPPORT(bp)) {
8557		/* SRC */
8558		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8559		ilt_client->client_num = ILT_CLIENT_SRC;
8560		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8561		ilt_client->flags = 0;
8562		ilt_client->start = line;
8563		line += SRC_ILT_LINES;
8564		ilt_client->end = line - 1;
8565
8566		DP(NETIF_MSG_IFUP,
8567		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8568		   ilt_client->start,
8569		   ilt_client->end,
8570		   ilt_client->page_size,
8571		   ilt_client->flags,
8572		   ilog2(ilt_client->page_size >> 12));
8573
8574		/* TM */
8575		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8576		ilt_client->client_num = ILT_CLIENT_TM;
8577		ilt_client->page_size = TM_ILT_PAGE_SZ;
8578		ilt_client->flags = 0;
8579		ilt_client->start = line;
8580		line += TM_ILT_LINES;
8581		ilt_client->end = line - 1;
8582
8583		DP(NETIF_MSG_IFUP,
8584		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8585		   ilt_client->start,
8586		   ilt_client->end,
8587		   ilt_client->page_size,
8588		   ilt_client->flags,
8589		   ilog2(ilt_client->page_size >> 12));
8590	}
8591
8592	BUG_ON(line > ILT_MAX_LINES);
8593}
8594
8595/**
8596 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8597 *
8598 * @bp:			driver handle
8599 * @fp:			pointer to fastpath
8600 * @init_params:	pointer to parameters structure
8601 *
8602 * parameters configured:
8603 *      - HC configuration
8604 *      - Queue's CDU context
8605 */
8606static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8607	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8608{
8609	u8 cos;
8610	int cxt_index, cxt_offset;
8611
8612	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8613	if (!IS_FCOE_FP(fp)) {
8614		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8615		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8616
8617		/* If HC is supported, enable host coalescing in the transition
8618		 * to INIT state.
8619		 */
8620		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8621		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8622
8623		/* HC rate */
8624		init_params->rx.hc_rate = bp->rx_ticks ?
8625			(1000000 / bp->rx_ticks) : 0;
8626		init_params->tx.hc_rate = bp->tx_ticks ?
8627			(1000000 / bp->tx_ticks) : 0;
8628
8629		/* FW SB ID */
8630		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8631			fp->fw_sb_id;
8632
8633		/*
8634		 * CQ index among the SB indices: FCoE clients uses the default
8635		 * SB, therefore it's different.
8636		 */
8637		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8638		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8639	}
8640
8641	/* set maximum number of COSs supported by this queue */
8642	init_params->max_cos = fp->max_cos;
8643
8644	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8645	    fp->index, init_params->max_cos);
8646
8647	/* set the context pointers queue object */
8648	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8649		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8650		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8651				ILT_PAGE_CIDS);
8652		init_params->cxts[cos] =
8653			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8654	}
8655}
8656
8657static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8658			struct bnx2x_queue_state_params *q_params,
8659			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8660			int tx_index, bool leading)
8661{
8662	memset(tx_only_params, 0, sizeof(*tx_only_params));
8663
8664	/* Set the command */
8665	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8666
8667	/* Set tx-only QUEUE flags: don't zero statistics */
8668	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8669
8670	/* choose the index of the cid to send the slow path on */
8671	tx_only_params->cid_index = tx_index;
8672
8673	/* Set general TX_ONLY_SETUP parameters */
8674	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8675
8676	/* Set Tx TX_ONLY_SETUP parameters */
8677	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8678
8679	DP(NETIF_MSG_IFUP,
8680	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8681	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8682	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8683	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8684
8685	/* send the ramrod */
8686	return bnx2x_queue_state_change(bp, q_params);
8687}
8688
8689/**
8690 * bnx2x_setup_queue - setup queue
8691 *
8692 * @bp:		driver handle
8693 * @fp:		pointer to fastpath
8694 * @leading:	is leading
8695 *
8696 * This function performs 2 steps in a Queue state machine
8697 *      actually: 1) RESET->INIT 2) INIT->SETUP
8698 */
8699
8700int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8701		       bool leading)
8702{
8703	struct bnx2x_queue_state_params q_params = {NULL};
8704	struct bnx2x_queue_setup_params *setup_params =
8705						&q_params.params.setup;
8706	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8707						&q_params.params.tx_only;
8708	int rc;
8709	u8 tx_index;
8710
8711	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8712
8713	/* reset IGU state skip FCoE L2 queue */
8714	if (!IS_FCOE_FP(fp))
8715		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8716			     IGU_INT_ENABLE, 0);
8717
8718	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8719	/* We want to wait for completion in this context */
8720	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8721
8722	/* Prepare the INIT parameters */
8723	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8724
8725	/* Set the command */
8726	q_params.cmd = BNX2X_Q_CMD_INIT;
8727
8728	/* Change the state to INIT */
8729	rc = bnx2x_queue_state_change(bp, &q_params);
8730	if (rc) {
8731		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8732		return rc;
8733	}
8734
8735	DP(NETIF_MSG_IFUP, "init complete\n");
8736
8737	/* Now move the Queue to the SETUP state... */
8738	memset(setup_params, 0, sizeof(*setup_params));
8739
8740	/* Set QUEUE flags */
8741	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8742
8743	/* Set general SETUP parameters */
8744	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8745				FIRST_TX_COS_INDEX);
8746
8747	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8748			    &setup_params->rxq_params);
8749
8750	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8751			   FIRST_TX_COS_INDEX);
8752
8753	/* Set the command */
8754	q_params.cmd = BNX2X_Q_CMD_SETUP;
8755
8756	if (IS_FCOE_FP(fp))
8757		bp->fcoe_init = true;
8758
8759	/* Change the state to SETUP */
8760	rc = bnx2x_queue_state_change(bp, &q_params);
8761	if (rc) {
8762		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8763		return rc;
8764	}
8765
8766	/* loop through the relevant tx-only indices */
8767	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8768	      tx_index < fp->max_cos;
8769	      tx_index++) {
8770
8771		/* prepare and send tx-only ramrod*/
8772		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8773					  tx_only_params, tx_index, leading);
8774		if (rc) {
8775			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8776				  fp->index, tx_index);
8777			return rc;
8778		}
8779	}
8780
8781	return rc;
8782}
8783
8784static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8785{
8786	struct bnx2x_fastpath *fp = &bp->fp[index];
8787	struct bnx2x_fp_txdata *txdata;
8788	struct bnx2x_queue_state_params q_params = {NULL};
8789	int rc, tx_index;
8790
8791	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8792
8793	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8794	/* We want to wait for completion in this context */
8795	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8796
8797	/* close tx-only connections */
8798	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8799	     tx_index < fp->max_cos;
8800	     tx_index++){
8801
8802		/* ascertain this is a normal queue*/
8803		txdata = fp->txdata_ptr[tx_index];
8804
8805		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8806							txdata->txq_index);
8807
8808		/* send halt terminate on tx-only connection */
8809		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8810		memset(&q_params.params.terminate, 0,
8811		       sizeof(q_params.params.terminate));
8812		q_params.params.terminate.cid_index = tx_index;
8813
8814		rc = bnx2x_queue_state_change(bp, &q_params);
8815		if (rc)
8816			return rc;
8817
8818		/* send halt terminate on tx-only connection */
8819		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8820		memset(&q_params.params.cfc_del, 0,
8821		       sizeof(q_params.params.cfc_del));
8822		q_params.params.cfc_del.cid_index = tx_index;
8823		rc = bnx2x_queue_state_change(bp, &q_params);
8824		if (rc)
8825			return rc;
8826	}
8827	/* Stop the primary connection: */
8828	/* ...halt the connection */
8829	q_params.cmd = BNX2X_Q_CMD_HALT;
8830	rc = bnx2x_queue_state_change(bp, &q_params);
8831	if (rc)
8832		return rc;
8833
8834	/* ...terminate the connection */
8835	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8836	memset(&q_params.params.terminate, 0,
8837	       sizeof(q_params.params.terminate));
8838	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8839	rc = bnx2x_queue_state_change(bp, &q_params);
8840	if (rc)
8841		return rc;
8842	/* ...delete cfc entry */
8843	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8844	memset(&q_params.params.cfc_del, 0,
8845	       sizeof(q_params.params.cfc_del));
8846	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8847	return bnx2x_queue_state_change(bp, &q_params);
8848}
8849
8850static void bnx2x_reset_func(struct bnx2x *bp)
8851{
8852	int port = BP_PORT(bp);
8853	int func = BP_FUNC(bp);
8854	int i;
8855
8856	/* Disable the function in the FW */
8857	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8858	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8859	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8860	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8861
8862	/* FP SBs */
8863	for_each_eth_queue(bp, i) {
8864		struct bnx2x_fastpath *fp = &bp->fp[i];
8865		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8866			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8867			   SB_DISABLED);
8868	}
8869
8870	if (CNIC_LOADED(bp))
8871		/* CNIC SB */
8872		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8873			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8874			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8875
8876	/* SP SB */
8877	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8878		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8879		SB_DISABLED);
8880
8881	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8882		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8883		       0);
8884
8885	/* Configure IGU */
8886	if (bp->common.int_block == INT_BLOCK_HC) {
8887		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8888		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8889	} else {
8890		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8891		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8892	}
8893
8894	if (CNIC_LOADED(bp)) {
8895		/* Disable Timer scan */
8896		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8897		/*
8898		 * Wait for at least 10ms and up to 2 second for the timers
8899		 * scan to complete
8900		 */
8901		for (i = 0; i < 200; i++) {
8902			usleep_range(10000, 20000);
8903			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8904				break;
8905		}
8906	}
8907	/* Clear ILT */
8908	bnx2x_clear_func_ilt(bp, func);
8909
8910	/* Timers workaround bug for E2: if this is vnic-3,
8911	 * we need to set the entire ilt range for this timers.
8912	 */
8913	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8914		struct ilt_client_info ilt_cli;
8915		/* use dummy TM client */
8916		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8917		ilt_cli.start = 0;
8918		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8919		ilt_cli.client_num = ILT_CLIENT_TM;
8920
8921		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8922	}
8923
8924	/* this assumes that reset_port() called before reset_func()*/
8925	if (!CHIP_IS_E1x(bp))
8926		bnx2x_pf_disable(bp);
8927
8928	bp->dmae_ready = 0;
8929}
8930
8931static void bnx2x_reset_port(struct bnx2x *bp)
8932{
8933	int port = BP_PORT(bp);
8934	u32 val;
8935
8936	/* Reset physical Link */
8937	bnx2x__link_reset(bp);
8938
8939	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8940
8941	/* Do not rcv packets to BRB */
8942	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8943	/* Do not direct rcv packets that are not for MCP to the BRB */
8944	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8945			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8946
8947	/* Configure AEU */
8948	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8949
8950	msleep(100);
8951	/* Check for BRB port occupancy */
8952	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8953	if (val)
8954		DP(NETIF_MSG_IFDOWN,
8955		   "BRB1 is not empty  %d blocks are occupied\n", val);
8956
8957	/* TODO: Close Doorbell port? */
8958}
8959
8960static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8961{
8962	struct bnx2x_func_state_params func_params = {NULL};
8963
8964	/* Prepare parameters for function state transitions */
8965	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8966
8967	func_params.f_obj = &bp->func_obj;
8968	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8969
8970	func_params.params.hw_init.load_phase = load_code;
8971
8972	return bnx2x_func_state_change(bp, &func_params);
8973}
8974
8975static int bnx2x_func_stop(struct bnx2x *bp)
8976{
8977	struct bnx2x_func_state_params func_params = {NULL};
8978	int rc;
8979
8980	/* Prepare parameters for function state transitions */
8981	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8982	func_params.f_obj = &bp->func_obj;
8983	func_params.cmd = BNX2X_F_CMD_STOP;
8984
8985	/*
8986	 * Try to stop the function the 'good way'. If fails (in case
8987	 * of a parity error during bnx2x_chip_cleanup()) and we are
8988	 * not in a debug mode, perform a state transaction in order to
8989	 * enable further HW_RESET transaction.
8990	 */
8991	rc = bnx2x_func_state_change(bp, &func_params);
8992	if (rc) {
8993#ifdef BNX2X_STOP_ON_ERROR
8994		return rc;
8995#else
8996		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8997		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8998		return bnx2x_func_state_change(bp, &func_params);
8999#endif
9000	}
9001
9002	return 0;
9003}
9004
9005/**
9006 * bnx2x_send_unload_req - request unload mode from the MCP.
9007 *
9008 * @bp:			driver handle
9009 * @unload_mode:	requested function's unload mode
9010 *
9011 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9012 */
9013u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9014{
9015	u32 reset_code = 0;
9016	int port = BP_PORT(bp);
9017
9018	/* Select the UNLOAD request mode */
9019	if (unload_mode == UNLOAD_NORMAL)
9020		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9021
9022	else if (bp->flags & NO_WOL_FLAG)
9023		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9024
9025	else if (bp->wol) {
9026		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9027		u8 *mac_addr = bp->dev->dev_addr;
9028		struct pci_dev *pdev = bp->pdev;
9029		u32 val;
9030		u16 pmc;
9031
9032		/* The mac address is written to entries 1-4 to
9033		 * preserve entry 0 which is used by the PMF
9034		 */
9035		u8 entry = (BP_VN(bp) + 1)*8;
9036
9037		val = (mac_addr[0] << 8) | mac_addr[1];
9038		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9039
9040		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9041		      (mac_addr[4] << 8) | mac_addr[5];
9042		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9043
9044		/* Enable the PME and clear the status */
9045		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9046		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9047		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9048
9049		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9050
9051	} else
9052		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9053
9054	/* Send the request to the MCP */
9055	if (!BP_NOMCP(bp))
9056		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9057	else {
9058		int path = BP_PATH(bp);
9059
9060		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9061		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9062		   bnx2x_load_count[path][2]);
9063		bnx2x_load_count[path][0]--;
9064		bnx2x_load_count[path][1 + port]--;
9065		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9066		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9067		   bnx2x_load_count[path][2]);
9068		if (bnx2x_load_count[path][0] == 0)
9069			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9070		else if (bnx2x_load_count[path][1 + port] == 0)
9071			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9072		else
9073			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9074	}
9075
9076	return reset_code;
9077}
9078
9079/**
9080 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9081 *
9082 * @bp:		driver handle
9083 * @keep_link:		true iff link should be kept up
9084 */
9085void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9086{
9087	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9088
9089	/* Report UNLOAD_DONE to MCP */
9090	if (!BP_NOMCP(bp))
9091		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9092}
9093
9094static int bnx2x_func_wait_started(struct bnx2x *bp)
9095{
9096	int tout = 50;
9097	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9098
9099	if (!bp->port.pmf)
9100		return 0;
9101
9102	/*
9103	 * (assumption: No Attention from MCP at this stage)
9104	 * PMF probably in the middle of TX disable/enable transaction
9105	 * 1. Sync IRS for default SB
9106	 * 2. Sync SP queue - this guarantees us that attention handling started
9107	 * 3. Wait, that TX disable/enable transaction completes
9108	 *
9109	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9110	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9111	 * received completion for the transaction the state is TX_STOPPED.
9112	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9113	 * transaction.
9114	 */
9115
9116	/* make sure default SB ISR is done */
9117	if (msix)
9118		synchronize_irq(bp->msix_table[0].vector);
9119	else
9120		synchronize_irq(bp->pdev->irq);
9121
9122	flush_workqueue(bnx2x_wq);
9123	flush_workqueue(bnx2x_iov_wq);
9124
9125	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9126				BNX2X_F_STATE_STARTED && tout--)
9127		msleep(20);
9128
9129	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9130						BNX2X_F_STATE_STARTED) {
9131#ifdef BNX2X_STOP_ON_ERROR
9132		BNX2X_ERR("Wrong function state\n");
9133		return -EBUSY;
9134#else
9135		/*
9136		 * Failed to complete the transaction in a "good way"
9137		 * Force both transactions with CLR bit
9138		 */
9139		struct bnx2x_func_state_params func_params = {NULL};
9140
9141		DP(NETIF_MSG_IFDOWN,
9142		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9143
9144		func_params.f_obj = &bp->func_obj;
9145		__set_bit(RAMROD_DRV_CLR_ONLY,
9146					&func_params.ramrod_flags);
9147
9148		/* STARTED-->TX_ST0PPED */
9149		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9150		bnx2x_func_state_change(bp, &func_params);
9151
9152		/* TX_ST0PPED-->STARTED */
9153		func_params.cmd = BNX2X_F_CMD_TX_START;
9154		return bnx2x_func_state_change(bp, &func_params);
9155#endif
9156	}
9157
9158	return 0;
9159}
9160
9161static void bnx2x_disable_ptp(struct bnx2x *bp)
9162{
9163	int port = BP_PORT(bp);
9164
9165	/* Disable sending PTP packets to host */
9166	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9167	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9168
9169	/* Reset PTP event detection rules */
9170	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9171	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9172	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9173	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9174	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9175	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9176	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9177	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9178
9179	/* Disable the PTP feature */
9180	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9181	       NIG_REG_P0_PTP_EN, 0x0);
9182}
9183
9184/* Called during unload, to stop PTP-related stuff */
9185static void bnx2x_stop_ptp(struct bnx2x *bp)
9186{
9187	/* Cancel PTP work queue. Should be done after the Tx queues are
9188	 * drained to prevent additional scheduling.
9189	 */
9190	cancel_work_sync(&bp->ptp_task);
9191
9192	if (bp->ptp_tx_skb) {
9193		dev_kfree_skb_any(bp->ptp_tx_skb);
9194		bp->ptp_tx_skb = NULL;
9195	}
9196
9197	/* Disable PTP in HW */
9198	bnx2x_disable_ptp(bp);
9199
9200	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9201}
9202
9203void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9204{
9205	int port = BP_PORT(bp);
9206	int i, rc = 0;
9207	u8 cos;
9208	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9209	u32 reset_code;
9210
9211	/* Wait until tx fastpath tasks complete */
9212	for_each_tx_queue(bp, i) {
9213		struct bnx2x_fastpath *fp = &bp->fp[i];
9214
9215		for_each_cos_in_tx_queue(fp, cos)
9216			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9217#ifdef BNX2X_STOP_ON_ERROR
9218		if (rc)
9219			return;
9220#endif
9221	}
9222
9223	/* Give HW time to discard old tx messages */
9224	usleep_range(1000, 2000);
9225
9226	/* Clean all ETH MACs */
9227	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9228				false);
9229	if (rc < 0)
9230		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9231
9232	/* Clean up UC list  */
9233	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9234				true);
9235	if (rc < 0)
9236		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9237			  rc);
9238
9239	/* Disable LLH */
9240	if (!CHIP_IS_E1(bp))
9241		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9242
9243	/* Set "drop all" (stop Rx).
9244	 * We need to take a netif_addr_lock() here in order to prevent
9245	 * a race between the completion code and this code.
9246	 */
9247	netif_addr_lock_bh(bp->dev);
9248	/* Schedule the rx_mode command */
9249	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9250		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9251	else
9252		bnx2x_set_storm_rx_mode(bp);
9253
9254	/* Cleanup multicast configuration */
9255	rparam.mcast_obj = &bp->mcast_obj;
9256	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9257	if (rc < 0)
9258		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9259
9260	netif_addr_unlock_bh(bp->dev);
9261
9262	bnx2x_iov_chip_cleanup(bp);
9263
9264	/*
9265	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9266	 * this function should perform FUNC, PORT or COMMON HW
9267	 * reset.
9268	 */
9269	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9270
9271	/*
9272	 * (assumption: No Attention from MCP at this stage)
9273	 * PMF probably in the middle of TX disable/enable transaction
9274	 */
9275	rc = bnx2x_func_wait_started(bp);
9276	if (rc) {
9277		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9278#ifdef BNX2X_STOP_ON_ERROR
9279		return;
9280#endif
9281	}
9282
9283	/* Close multi and leading connections
9284	 * Completions for ramrods are collected in a synchronous way
9285	 */
9286	for_each_eth_queue(bp, i)
9287		if (bnx2x_stop_queue(bp, i))
9288#ifdef BNX2X_STOP_ON_ERROR
9289			return;
9290#else
9291			goto unload_error;
9292#endif
9293
9294	if (CNIC_LOADED(bp)) {
9295		for_each_cnic_queue(bp, i)
9296			if (bnx2x_stop_queue(bp, i))
9297#ifdef BNX2X_STOP_ON_ERROR
9298				return;
9299#else
9300				goto unload_error;
9301#endif
9302	}
9303
9304	/* If SP settings didn't get completed so far - something
9305	 * very wrong has happen.
9306	 */
9307	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9308		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9309
9310#ifndef BNX2X_STOP_ON_ERROR
9311unload_error:
9312#endif
9313	rc = bnx2x_func_stop(bp);
9314	if (rc) {
9315		BNX2X_ERR("Function stop failed!\n");
9316#ifdef BNX2X_STOP_ON_ERROR
9317		return;
9318#endif
9319	}
9320
9321	/* stop_ptp should be after the Tx queues are drained to prevent
9322	 * scheduling to the cancelled PTP work queue. It should also be after
9323	 * function stop ramrod is sent, since as part of this ramrod FW access
9324	 * PTP registers.
9325	 */
9326	if (bp->flags & PTP_SUPPORTED)
9327		bnx2x_stop_ptp(bp);
9328
9329	/* Disable HW interrupts, NAPI */
9330	bnx2x_netif_stop(bp, 1);
9331	/* Delete all NAPI objects */
9332	bnx2x_del_all_napi(bp);
9333	if (CNIC_LOADED(bp))
9334		bnx2x_del_all_napi_cnic(bp);
9335
9336	/* Release IRQs */
9337	bnx2x_free_irq(bp);
9338
9339	/* Reset the chip */
9340	rc = bnx2x_reset_hw(bp, reset_code);
9341	if (rc)
9342		BNX2X_ERR("HW_RESET failed\n");
9343
9344	/* Report UNLOAD_DONE to MCP */
9345	bnx2x_send_unload_done(bp, keep_link);
9346}
9347
9348void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9349{
9350	u32 val;
9351
9352	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9353
9354	if (CHIP_IS_E1(bp)) {
9355		int port = BP_PORT(bp);
9356		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9357			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9358
9359		val = REG_RD(bp, addr);
9360		val &= ~(0x300);
9361		REG_WR(bp, addr, val);
9362	} else {
9363		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9364		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9365			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9366		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9367	}
9368}
9369
9370/* Close gates #2, #3 and #4: */
9371static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9372{
9373	u32 val;
9374
9375	/* Gates #2 and #4a are closed/opened for "not E1" only */
9376	if (!CHIP_IS_E1(bp)) {
9377		/* #4 */
9378		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9379		/* #2 */
9380		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9381	}
9382
9383	/* #3 */
9384	if (CHIP_IS_E1x(bp)) {
9385		/* Prevent interrupts from HC on both ports */
9386		val = REG_RD(bp, HC_REG_CONFIG_1);
9387		REG_WR(bp, HC_REG_CONFIG_1,
9388		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9389		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9390
9391		val = REG_RD(bp, HC_REG_CONFIG_0);
9392		REG_WR(bp, HC_REG_CONFIG_0,
9393		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9394		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9395	} else {
9396		/* Prevent incoming interrupts in IGU */
9397		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9398
9399		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9400		       (!close) ?
9401		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9402		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9403	}
9404
9405	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9406		close ? "closing" : "opening");
9407	mmiowb();
9408}
9409
9410#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9411
9412static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9413{
9414	/* Do some magic... */
9415	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9416	*magic_val = val & SHARED_MF_CLP_MAGIC;
9417	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9418}
9419
9420/**
9421 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9422 *
9423 * @bp:		driver handle
9424 * @magic_val:	old value of the `magic' bit.
9425 */
9426static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9427{
9428	/* Restore the `magic' bit value... */
9429	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9430	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9431		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9432}
9433
9434/**
9435 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9436 *
9437 * @bp:		driver handle
9438 * @magic_val:	old value of 'magic' bit.
9439 *
9440 * Takes care of CLP configurations.
9441 */
9442static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9443{
9444	u32 shmem;
9445	u32 validity_offset;
9446
9447	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9448
9449	/* Set `magic' bit in order to save MF config */
9450	if (!CHIP_IS_E1(bp))
9451		bnx2x_clp_reset_prep(bp, magic_val);
9452
9453	/* Get shmem offset */
9454	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9455	validity_offset =
9456		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9457
9458	/* Clear validity map flags */
9459	if (shmem > 0)
9460		REG_WR(bp, shmem + validity_offset, 0);
9461}
9462
9463#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9464#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9465
9466/**
9467 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9468 *
9469 * @bp:	driver handle
9470 */
9471static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9472{
9473	/* special handling for emulation and FPGA,
9474	   wait 10 times longer */
9475	if (CHIP_REV_IS_SLOW(bp))
9476		msleep(MCP_ONE_TIMEOUT*10);
9477	else
9478		msleep(MCP_ONE_TIMEOUT);
9479}
9480
9481/*
9482 * initializes bp->common.shmem_base and waits for validity signature to appear
9483 */
9484static int bnx2x_init_shmem(struct bnx2x *bp)
9485{
9486	int cnt = 0;
9487	u32 val = 0;
9488
9489	do {
9490		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9491		if (bp->common.shmem_base) {
9492			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9493			if (val & SHR_MEM_VALIDITY_MB)
9494				return 0;
9495		}
9496
9497		bnx2x_mcp_wait_one(bp);
9498
9499	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9500
9501	BNX2X_ERR("BAD MCP validity signature\n");
9502
9503	return -ENODEV;
9504}
9505
9506static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9507{
9508	int rc = bnx2x_init_shmem(bp);
9509
9510	/* Restore the `magic' bit value */
9511	if (!CHIP_IS_E1(bp))
9512		bnx2x_clp_reset_done(bp, magic_val);
9513
9514	return rc;
9515}
9516
9517static void bnx2x_pxp_prep(struct bnx2x *bp)
9518{
9519	if (!CHIP_IS_E1(bp)) {
9520		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9521		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9522		mmiowb();
9523	}
9524}
9525
9526/*
9527 * Reset the whole chip except for:
9528 *      - PCIE core
9529 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9530 *              one reset bit)
9531 *      - IGU
9532 *      - MISC (including AEU)
9533 *      - GRC
9534 *      - RBCN, RBCP
9535 */
9536static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9537{
9538	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9539	u32 global_bits2, stay_reset2;
9540
9541	/*
9542	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9543	 * (per chip) blocks.
9544	 */
9545	global_bits2 =
9546		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9547		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9548
9549	/* Don't reset the following blocks.
9550	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9551	 *            reset, as in 4 port device they might still be owned
9552	 *            by the MCP (there is only one leader per path).
9553	 */
9554	not_reset_mask1 =
9555		MISC_REGISTERS_RESET_REG_1_RST_HC |
9556		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9557		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9558
9559	not_reset_mask2 =
9560		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9561		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9562		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9563		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9564		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9565		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9566		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9567		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9568		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9569		MISC_REGISTERS_RESET_REG_2_PGLC |
9570		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9571		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9572		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9573		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9574		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9575		MISC_REGISTERS_RESET_REG_2_UMAC1;
9576
9577	/*
9578	 * Keep the following blocks in reset:
9579	 *  - all xxMACs are handled by the bnx2x_link code.
9580	 */
9581	stay_reset2 =
9582		MISC_REGISTERS_RESET_REG_2_XMAC |
9583		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9584
9585	/* Full reset masks according to the chip */
9586	reset_mask1 = 0xffffffff;
9587
9588	if (CHIP_IS_E1(bp))
9589		reset_mask2 = 0xffff;
9590	else if (CHIP_IS_E1H(bp))
9591		reset_mask2 = 0x1ffff;
9592	else if (CHIP_IS_E2(bp))
9593		reset_mask2 = 0xfffff;
9594	else /* CHIP_IS_E3 */
9595		reset_mask2 = 0x3ffffff;
9596
9597	/* Don't reset global blocks unless we need to */
9598	if (!global)
9599		reset_mask2 &= ~global_bits2;
9600
9601	/*
9602	 * In case of attention in the QM, we need to reset PXP
9603	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9604	 * because otherwise QM reset would release 'close the gates' shortly
9605	 * before resetting the PXP, then the PSWRQ would send a write
9606	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9607	 * read the payload data from PSWWR, but PSWWR would not
9608	 * respond. The write queue in PGLUE would stuck, dmae commands
9609	 * would not return. Therefore it's important to reset the second
9610	 * reset register (containing the
9611	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9612	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9613	 * bit).
9614	 */
9615	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9616	       reset_mask2 & (~not_reset_mask2));
9617
9618	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9619	       reset_mask1 & (~not_reset_mask1));
9620
9621	barrier();
9622	mmiowb();
9623
9624	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9625	       reset_mask2 & (~stay_reset2));
9626
9627	barrier();
9628	mmiowb();
9629
9630	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9631	mmiowb();
9632}
9633
9634/**
9635 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9636 * It should get cleared in no more than 1s.
9637 *
9638 * @bp:	driver handle
9639 *
9640 * It should get cleared in no more than 1s. Returns 0 if
9641 * pending writes bit gets cleared.
9642 */
9643static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9644{
9645	u32 cnt = 1000;
9646	u32 pend_bits = 0;
9647
9648	do {
9649		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9650
9651		if (pend_bits == 0)
9652			break;
9653
9654		usleep_range(1000, 2000);
9655	} while (cnt-- > 0);
9656
9657	if (cnt <= 0) {
9658		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9659			  pend_bits);
9660		return -EBUSY;
9661	}
9662
9663	return 0;
9664}
9665
9666static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9667{
9668	int cnt = 1000;
9669	u32 val = 0;
9670	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9671	u32 tags_63_32 = 0;
9672
9673	/* Empty the Tetris buffer, wait for 1s */
9674	do {
9675		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9676		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9677		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9678		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9679		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9680		if (CHIP_IS_E3(bp))
9681			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9682
9683		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9684		    ((port_is_idle_0 & 0x1) == 0x1) &&
9685		    ((port_is_idle_1 & 0x1) == 0x1) &&
9686		    (pgl_exp_rom2 == 0xffffffff) &&
9687		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9688			break;
9689		usleep_range(1000, 2000);
9690	} while (cnt-- > 0);
9691
9692	if (cnt <= 0) {
9693		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9694		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9695			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9696			  pgl_exp_rom2);
9697		return -EAGAIN;
9698	}
9699
9700	barrier();
9701
9702	/* Close gates #2, #3 and #4 */
9703	bnx2x_set_234_gates(bp, true);
9704
9705	/* Poll for IGU VQs for 57712 and newer chips */
9706	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9707		return -EAGAIN;
9708
9709	/* TBD: Indicate that "process kill" is in progress to MCP */
9710
9711	/* Clear "unprepared" bit */
9712	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9713	barrier();
9714
9715	/* Make sure all is written to the chip before the reset */
9716	mmiowb();
9717
9718	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9719	 * PSWHST, GRC and PSWRD Tetris buffer.
9720	 */
9721	usleep_range(1000, 2000);
9722
9723	/* Prepare to chip reset: */
9724	/* MCP */
9725	if (global)
9726		bnx2x_reset_mcp_prep(bp, &val);
9727
9728	/* PXP */
9729	bnx2x_pxp_prep(bp);
9730	barrier();
9731
9732	/* reset the chip */
9733	bnx2x_process_kill_chip_reset(bp, global);
9734	barrier();
9735
9736	/* clear errors in PGB */
9737	if (!CHIP_IS_E1x(bp))
9738		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9739
9740	/* Recover after reset: */
9741	/* MCP */
9742	if (global && bnx2x_reset_mcp_comp(bp, val))
9743		return -EAGAIN;
9744
9745	/* TBD: Add resetting the NO_MCP mode DB here */
9746
9747	/* Open the gates #2, #3 and #4 */
9748	bnx2x_set_234_gates(bp, false);
9749
9750	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9751	 * reset state, re-enable attentions. */
9752
9753	return 0;
9754}
9755
9756static int bnx2x_leader_reset(struct bnx2x *bp)
9757{
9758	int rc = 0;
9759	bool global = bnx2x_reset_is_global(bp);
9760	u32 load_code;
9761
9762	/* if not going to reset MCP - load "fake" driver to reset HW while
9763	 * driver is owner of the HW
9764	 */
9765	if (!global && !BP_NOMCP(bp)) {
9766		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9767					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9768		if (!load_code) {
9769			BNX2X_ERR("MCP response failure, aborting\n");
9770			rc = -EAGAIN;
9771			goto exit_leader_reset;
9772		}
9773		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9774		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9775			BNX2X_ERR("MCP unexpected resp, aborting\n");
9776			rc = -EAGAIN;
9777			goto exit_leader_reset2;
9778		}
9779		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9780		if (!load_code) {
9781			BNX2X_ERR("MCP response failure, aborting\n");
9782			rc = -EAGAIN;
9783			goto exit_leader_reset2;
9784		}
9785	}
9786
9787	/* Try to recover after the failure */
9788	if (bnx2x_process_kill(bp, global)) {
9789		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9790			  BP_PATH(bp));
9791		rc = -EAGAIN;
9792		goto exit_leader_reset2;
9793	}
9794
9795	/*
9796	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9797	 * state.
9798	 */
9799	bnx2x_set_reset_done(bp);
9800	if (global)
9801		bnx2x_clear_reset_global(bp);
9802
9803exit_leader_reset2:
9804	/* unload "fake driver" if it was loaded */
9805	if (!global && !BP_NOMCP(bp)) {
9806		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9807		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9808	}
9809exit_leader_reset:
9810	bp->is_leader = 0;
9811	bnx2x_release_leader_lock(bp);
9812	smp_mb();
9813	return rc;
9814}
9815
9816static void bnx2x_recovery_failed(struct bnx2x *bp)
9817{
9818	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9819
9820	/* Disconnect this device */
9821	netif_device_detach(bp->dev);
9822
9823	/*
9824	 * Block ifup for all function on this engine until "process kill"
9825	 * or power cycle.
9826	 */
9827	bnx2x_set_reset_in_progress(bp);
9828
9829	/* Shut down the power */
9830	bnx2x_set_power_state(bp, PCI_D3hot);
9831
9832	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9833
9834	smp_mb();
9835}
9836
9837/*
9838 * Assumption: runs under rtnl lock. This together with the fact
9839 * that it's called only from bnx2x_sp_rtnl() ensure that it
9840 * will never be called when netif_running(bp->dev) is false.
9841 */
9842static void bnx2x_parity_recover(struct bnx2x *bp)
9843{
9844	bool global = false;
9845	u32 error_recovered, error_unrecovered;
9846	bool is_parity;
9847
9848	DP(NETIF_MSG_HW, "Handling parity\n");
9849	while (1) {
9850		switch (bp->recovery_state) {
9851		case BNX2X_RECOVERY_INIT:
9852			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9853			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9854			WARN_ON(!is_parity);
9855
9856			/* Try to get a LEADER_LOCK HW lock */
9857			if (bnx2x_trylock_leader_lock(bp)) {
9858				bnx2x_set_reset_in_progress(bp);
9859				/*
9860				 * Check if there is a global attention and if
9861				 * there was a global attention, set the global
9862				 * reset bit.
9863				 */
9864
9865				if (global)
9866					bnx2x_set_reset_global(bp);
9867
9868				bp->is_leader = 1;
9869			}
9870
9871			/* Stop the driver */
9872			/* If interface has been removed - break */
9873			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9874				return;
9875
9876			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9877
9878			/* Ensure "is_leader", MCP command sequence and
9879			 * "recovery_state" update values are seen on other
9880			 * CPUs.
9881			 */
9882			smp_mb();
9883			break;
9884
9885		case BNX2X_RECOVERY_WAIT:
9886			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9887			if (bp->is_leader) {
9888				int other_engine = BP_PATH(bp) ? 0 : 1;
9889				bool other_load_status =
9890					bnx2x_get_load_status(bp, other_engine);
9891				bool load_status =
9892					bnx2x_get_load_status(bp, BP_PATH(bp));
9893				global = bnx2x_reset_is_global(bp);
9894
9895				/*
9896				 * In case of a parity in a global block, let
9897				 * the first leader that performs a
9898				 * leader_reset() reset the global blocks in
9899				 * order to clear global attentions. Otherwise
9900				 * the gates will remain closed for that
9901				 * engine.
9902				 */
9903				if (load_status ||
9904				    (global && other_load_status)) {
9905					/* Wait until all other functions get
9906					 * down.
9907					 */
9908					schedule_delayed_work(&bp->sp_rtnl_task,
9909								HZ/10);
9910					return;
9911				} else {
9912					/* If all other functions got down -
9913					 * try to bring the chip back to
9914					 * normal. In any case it's an exit
9915					 * point for a leader.
9916					 */
9917					if (bnx2x_leader_reset(bp)) {
9918						bnx2x_recovery_failed(bp);
9919						return;
9920					}
9921
9922					/* If we are here, means that the
9923					 * leader has succeeded and doesn't
9924					 * want to be a leader any more. Try
9925					 * to continue as a none-leader.
9926					 */
9927					break;
9928				}
9929			} else { /* non-leader */
9930				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9931					/* Try to get a LEADER_LOCK HW lock as
9932					 * long as a former leader may have
9933					 * been unloaded by the user or
9934					 * released a leadership by another
9935					 * reason.
9936					 */
9937					if (bnx2x_trylock_leader_lock(bp)) {
9938						/* I'm a leader now! Restart a
9939						 * switch case.
9940						 */
9941						bp->is_leader = 1;
9942						break;
9943					}
9944
9945					schedule_delayed_work(&bp->sp_rtnl_task,
9946								HZ/10);
9947					return;
9948
9949				} else {
9950					/*
9951					 * If there was a global attention, wait
9952					 * for it to be cleared.
9953					 */
9954					if (bnx2x_reset_is_global(bp)) {
9955						schedule_delayed_work(
9956							&bp->sp_rtnl_task,
9957							HZ/10);
9958						return;
9959					}
9960
9961					error_recovered =
9962					  bp->eth_stats.recoverable_error;
9963					error_unrecovered =
9964					  bp->eth_stats.unrecoverable_error;
9965					bp->recovery_state =
9966						BNX2X_RECOVERY_NIC_LOADING;
9967					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9968						error_unrecovered++;
9969						netdev_err(bp->dev,
9970							   "Recovery failed. Power cycle needed\n");
9971						/* Disconnect this device */
9972						netif_device_detach(bp->dev);
9973						/* Shut down the power */
9974						bnx2x_set_power_state(
9975							bp, PCI_D3hot);
9976						smp_mb();
9977					} else {
9978						bp->recovery_state =
9979							BNX2X_RECOVERY_DONE;
9980						error_recovered++;
9981						smp_mb();
9982					}
9983					bp->eth_stats.recoverable_error =
9984						error_recovered;
9985					bp->eth_stats.unrecoverable_error =
9986						error_unrecovered;
9987
9988					return;
9989				}
9990			}
9991		default:
9992			return;
9993		}
9994	}
9995}
9996
9997static int bnx2x_close(struct net_device *dev);
9998
9999/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10000 * scheduled on a general queue in order to prevent a dead lock.
10001 */
10002static void bnx2x_sp_rtnl_task(struct work_struct *work)
10003{
10004	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10005
10006	rtnl_lock();
10007
10008	if (!netif_running(bp->dev)) {
10009		rtnl_unlock();
10010		return;
10011	}
10012
10013	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10014#ifdef BNX2X_STOP_ON_ERROR
10015		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10016			  "you will need to reboot when done\n");
10017		goto sp_rtnl_not_reset;
10018#endif
10019		/*
10020		 * Clear all pending SP commands as we are going to reset the
10021		 * function anyway.
10022		 */
10023		bp->sp_rtnl_state = 0;
10024		smp_mb();
10025
10026		bnx2x_parity_recover(bp);
10027
10028		rtnl_unlock();
10029		return;
10030	}
10031
10032	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10033#ifdef BNX2X_STOP_ON_ERROR
10034		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10035			  "you will need to reboot when done\n");
10036		goto sp_rtnl_not_reset;
10037#endif
10038
10039		/*
10040		 * Clear all pending SP commands as we are going to reset the
10041		 * function anyway.
10042		 */
10043		bp->sp_rtnl_state = 0;
10044		smp_mb();
10045
10046		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10047		bnx2x_nic_load(bp, LOAD_NORMAL);
10048
10049		rtnl_unlock();
10050		return;
10051	}
10052#ifdef BNX2X_STOP_ON_ERROR
10053sp_rtnl_not_reset:
10054#endif
10055	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10056		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10057	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10058		bnx2x_after_function_update(bp);
10059	/*
10060	 * in case of fan failure we need to reset id if the "stop on error"
10061	 * debug flag is set, since we trying to prevent permanent overheating
10062	 * damage
10063	 */
10064	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10065		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10066		netif_device_detach(bp->dev);
10067		bnx2x_close(bp->dev);
10068		rtnl_unlock();
10069		return;
10070	}
10071
10072	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10073		DP(BNX2X_MSG_SP,
10074		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10075		bnx2x_vfpf_set_mcast(bp->dev);
10076	}
10077	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10078			       &bp->sp_rtnl_state)){
10079		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10080			bnx2x_tx_disable(bp);
10081			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10082		}
10083	}
10084
10085	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10086		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10087		bnx2x_set_rx_mode_inner(bp);
10088	}
10089
10090	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10091			       &bp->sp_rtnl_state))
10092		bnx2x_pf_set_vfs_vlan(bp);
10093
10094	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10095		bnx2x_dcbx_stop_hw_tx(bp);
10096		bnx2x_dcbx_resume_hw_tx(bp);
10097	}
10098
10099	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10100			       &bp->sp_rtnl_state))
10101		bnx2x_update_mng_version(bp);
10102
10103	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10104	 * can be called from other contexts as well)
10105	 */
10106	rtnl_unlock();
10107
10108	/* enable SR-IOV if applicable */
10109	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10110					       &bp->sp_rtnl_state)) {
10111		bnx2x_disable_sriov(bp);
10112		bnx2x_enable_sriov(bp);
10113	}
10114}
10115
10116static void bnx2x_period_task(struct work_struct *work)
10117{
10118	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10119
10120	if (!netif_running(bp->dev))
10121		goto period_task_exit;
10122
10123	if (CHIP_REV_IS_SLOW(bp)) {
10124		BNX2X_ERR("period task called on emulation, ignoring\n");
10125		goto period_task_exit;
10126	}
10127
10128	bnx2x_acquire_phy_lock(bp);
10129	/*
10130	 * The barrier is needed to ensure the ordering between the writing to
10131	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10132	 * the reading here.
10133	 */
10134	smp_mb();
10135	if (bp->port.pmf) {
10136		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10137
10138		/* Re-queue task in 1 sec */
10139		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10140	}
10141
10142	bnx2x_release_phy_lock(bp);
10143period_task_exit:
10144	return;
10145}
10146
10147/*
10148 * Init service functions
10149 */
10150
10151static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10152{
10153	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10154	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10155	return base + (BP_ABS_FUNC(bp)) * stride;
10156}
10157
10158static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10159					 u8 port, u32 reset_reg,
10160					 struct bnx2x_mac_vals *vals)
10161{
10162	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10163	u32 base_addr;
10164
10165	if (!(mask & reset_reg))
10166		return false;
10167
10168	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10169	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10170	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10171	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10172	REG_WR(bp, vals->umac_addr[port], 0);
10173
10174	return true;
10175}
10176
10177static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10178					struct bnx2x_mac_vals *vals)
10179{
10180	u32 val, base_addr, offset, mask, reset_reg;
10181	bool mac_stopped = false;
10182	u8 port = BP_PORT(bp);
10183
10184	/* reset addresses as they also mark which values were changed */
10185	memset(vals, 0, sizeof(*vals));
10186
10187	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10188
10189	if (!CHIP_IS_E3(bp)) {
10190		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10191		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10192		if ((mask & reset_reg) && val) {
10193			u32 wb_data[2];
10194			BNX2X_DEV_INFO("Disable bmac Rx\n");
10195			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10196						: NIG_REG_INGRESS_BMAC0_MEM;
10197			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10198						: BIGMAC_REGISTER_BMAC_CONTROL;
10199
10200			/*
10201			 * use rd/wr since we cannot use dmae. This is safe
10202			 * since MCP won't access the bus due to the request
10203			 * to unload, and no function on the path can be
10204			 * loaded at this time.
10205			 */
10206			wb_data[0] = REG_RD(bp, base_addr + offset);
10207			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10208			vals->bmac_addr = base_addr + offset;
10209			vals->bmac_val[0] = wb_data[0];
10210			vals->bmac_val[1] = wb_data[1];
10211			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10212			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10213			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10214		}
10215		BNX2X_DEV_INFO("Disable emac Rx\n");
10216		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10217		vals->emac_val = REG_RD(bp, vals->emac_addr);
10218		REG_WR(bp, vals->emac_addr, 0);
10219		mac_stopped = true;
10220	} else {
10221		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10222			BNX2X_DEV_INFO("Disable xmac Rx\n");
10223			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10224			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10225			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10226			       val & ~(1 << 1));
10227			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10228			       val | (1 << 1));
10229			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10230			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10231			REG_WR(bp, vals->xmac_addr, 0);
10232			mac_stopped = true;
10233		}
10234
10235		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10236							    reset_reg, vals);
10237		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10238							    reset_reg, vals);
10239	}
10240
10241	if (mac_stopped)
10242		msleep(20);
10243}
10244
10245#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10246#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10247					0x1848 + ((f) << 4))
10248#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10249#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10250#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10251
10252#define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10253#define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10254#define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10255
10256static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10257{
10258	/* UNDI marks its presence in DORQ -
10259	 * it initializes CID offset for normal bell to 0x7
10260	 */
10261	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10262	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10263		return false;
10264
10265	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10266		BNX2X_DEV_INFO("UNDI previously loaded\n");
10267		return true;
10268	}
10269
10270	return false;
10271}
10272
10273static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10274{
10275	u16 rcq, bd;
10276	u32 addr, tmp_reg;
10277
10278	if (BP_FUNC(bp) < 2)
10279		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10280	else
10281		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10282
10283	tmp_reg = REG_RD(bp, addr);
10284	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10285	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10286
10287	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10288	REG_WR(bp, addr, tmp_reg);
10289
10290	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10291		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10292}
10293
10294static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10295{
10296	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10297				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10298	if (!rc) {
10299		BNX2X_ERR("MCP response failure, aborting\n");
10300		return -EBUSY;
10301	}
10302
10303	return 0;
10304}
10305
10306static struct bnx2x_prev_path_list *
10307		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10308{
10309	struct bnx2x_prev_path_list *tmp_list;
10310
10311	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10312		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10313		    bp->pdev->bus->number == tmp_list->bus &&
10314		    BP_PATH(bp) == tmp_list->path)
10315			return tmp_list;
10316
10317	return NULL;
10318}
10319
10320static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10321{
10322	struct bnx2x_prev_path_list *tmp_list;
10323	int rc;
10324
10325	rc = down_interruptible(&bnx2x_prev_sem);
10326	if (rc) {
10327		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10328		return rc;
10329	}
10330
10331	tmp_list = bnx2x_prev_path_get_entry(bp);
10332	if (tmp_list) {
10333		tmp_list->aer = 1;
10334		rc = 0;
10335	} else {
10336		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10337			  BP_PATH(bp));
10338	}
10339
10340	up(&bnx2x_prev_sem);
10341
10342	return rc;
10343}
10344
10345static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10346{
10347	struct bnx2x_prev_path_list *tmp_list;
10348	bool rc = false;
10349
10350	if (down_trylock(&bnx2x_prev_sem))
10351		return false;
10352
10353	tmp_list = bnx2x_prev_path_get_entry(bp);
10354	if (tmp_list) {
10355		if (tmp_list->aer) {
10356			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10357			   BP_PATH(bp));
10358		} else {
10359			rc = true;
10360			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10361				       BP_PATH(bp));
10362		}
10363	}
10364
10365	up(&bnx2x_prev_sem);
10366
10367	return rc;
10368}
10369
10370bool bnx2x_port_after_undi(struct bnx2x *bp)
10371{
10372	struct bnx2x_prev_path_list *entry;
10373	bool val;
10374
10375	down(&bnx2x_prev_sem);
10376
10377	entry = bnx2x_prev_path_get_entry(bp);
10378	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10379
10380	up(&bnx2x_prev_sem);
10381
10382	return val;
10383}
10384
10385static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10386{
10387	struct bnx2x_prev_path_list *tmp_list;
10388	int rc;
10389
10390	rc = down_interruptible(&bnx2x_prev_sem);
10391	if (rc) {
10392		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10393		return rc;
10394	}
10395
10396	/* Check whether the entry for this path already exists */
10397	tmp_list = bnx2x_prev_path_get_entry(bp);
10398	if (tmp_list) {
10399		if (!tmp_list->aer) {
10400			BNX2X_ERR("Re-Marking the path.\n");
10401		} else {
10402			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10403			   BP_PATH(bp));
10404			tmp_list->aer = 0;
10405		}
10406		up(&bnx2x_prev_sem);
10407		return 0;
10408	}
10409	up(&bnx2x_prev_sem);
10410
10411	/* Create an entry for this path and add it */
10412	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10413	if (!tmp_list) {
10414		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10415		return -ENOMEM;
10416	}
10417
10418	tmp_list->bus = bp->pdev->bus->number;
10419	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10420	tmp_list->path = BP_PATH(bp);
10421	tmp_list->aer = 0;
10422	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10423
10424	rc = down_interruptible(&bnx2x_prev_sem);
10425	if (rc) {
10426		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10427		kfree(tmp_list);
10428	} else {
10429		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10430		   BP_PATH(bp));
10431		list_add(&tmp_list->list, &bnx2x_prev_list);
10432		up(&bnx2x_prev_sem);
10433	}
10434
10435	return rc;
10436}
10437
10438static int bnx2x_do_flr(struct bnx2x *bp)
10439{
10440	struct pci_dev *dev = bp->pdev;
10441
10442	if (CHIP_IS_E1x(bp)) {
10443		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10444		return -EINVAL;
10445	}
10446
10447	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10448	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10449		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10450			  bp->common.bc_ver);
10451		return -EINVAL;
10452	}
10453
10454	if (!pci_wait_for_pending_transaction(dev))
10455		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10456
10457	BNX2X_DEV_INFO("Initiating FLR\n");
10458	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10459
10460	return 0;
10461}
10462
10463static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10464{
10465	int rc;
10466
10467	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10468
10469	/* Test if previous unload process was already finished for this path */
10470	if (bnx2x_prev_is_path_marked(bp))
10471		return bnx2x_prev_mcp_done(bp);
10472
10473	BNX2X_DEV_INFO("Path is unmarked\n");
10474
10475	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10476	if (bnx2x_prev_is_after_undi(bp))
10477		goto out;
10478
10479	/* If function has FLR capabilities, and existing FW version matches
10480	 * the one required, then FLR will be sufficient to clean any residue
10481	 * left by previous driver
10482	 */
10483	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10484
10485	if (!rc) {
10486		/* fw version is good */
10487		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10488		rc = bnx2x_do_flr(bp);
10489	}
10490
10491	if (!rc) {
10492		/* FLR was performed */
10493		BNX2X_DEV_INFO("FLR successful\n");
10494		return 0;
10495	}
10496
10497	BNX2X_DEV_INFO("Could not FLR\n");
10498
10499out:
10500	/* Close the MCP request, return failure*/
10501	rc = bnx2x_prev_mcp_done(bp);
10502	if (!rc)
10503		rc = BNX2X_PREV_WAIT_NEEDED;
10504
10505	return rc;
10506}
10507
10508static int bnx2x_prev_unload_common(struct bnx2x *bp)
10509{
10510	u32 reset_reg, tmp_reg = 0, rc;
10511	bool prev_undi = false;
10512	struct bnx2x_mac_vals mac_vals;
10513
10514	/* It is possible a previous function received 'common' answer,
10515	 * but hasn't loaded yet, therefore creating a scenario of
10516	 * multiple functions receiving 'common' on the same path.
10517	 */
10518	BNX2X_DEV_INFO("Common unload Flow\n");
10519
10520	memset(&mac_vals, 0, sizeof(mac_vals));
10521
10522	if (bnx2x_prev_is_path_marked(bp))
10523		return bnx2x_prev_mcp_done(bp);
10524
10525	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10526
10527	/* Reset should be performed after BRB is emptied */
10528	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10529		u32 timer_count = 1000;
10530
10531		/* Close the MAC Rx to prevent BRB from filling up */
10532		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10533
10534		/* close LLH filters for both ports towards the BRB */
10535		bnx2x_set_rx_filter(&bp->link_params, 0);
10536		bp->link_params.port ^= 1;
10537		bnx2x_set_rx_filter(&bp->link_params, 0);
10538		bp->link_params.port ^= 1;
10539
10540		/* Check if the UNDI driver was previously loaded */
10541		if (bnx2x_prev_is_after_undi(bp)) {
10542			prev_undi = true;
10543			/* clear the UNDI indication */
10544			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10545			/* clear possible idle check errors */
10546			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10547		}
10548		if (!CHIP_IS_E1x(bp))
10549			/* block FW from writing to host */
10550			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10551
10552		/* wait until BRB is empty */
10553		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10554		while (timer_count) {
10555			u32 prev_brb = tmp_reg;
10556
10557			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10558			if (!tmp_reg)
10559				break;
10560
10561			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10562
10563			/* reset timer as long as BRB actually gets emptied */
10564			if (prev_brb > tmp_reg)
10565				timer_count = 1000;
10566			else
10567				timer_count--;
10568
10569			/* If UNDI resides in memory, manually increment it */
10570			if (prev_undi)
10571				bnx2x_prev_unload_undi_inc(bp, 1);
10572
10573			udelay(10);
10574		}
10575
10576		if (!timer_count)
10577			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10578	}
10579
10580	/* No packets are in the pipeline, path is ready for reset */
10581	bnx2x_reset_common(bp);
10582
10583	if (mac_vals.xmac_addr)
10584		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10585	if (mac_vals.umac_addr[0])
10586		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10587	if (mac_vals.umac_addr[1])
10588		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10589	if (mac_vals.emac_addr)
10590		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10591	if (mac_vals.bmac_addr) {
10592		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10593		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10594	}
10595
10596	rc = bnx2x_prev_mark_path(bp, prev_undi);
10597	if (rc) {
10598		bnx2x_prev_mcp_done(bp);
10599		return rc;
10600	}
10601
10602	return bnx2x_prev_mcp_done(bp);
10603}
10604
10605static int bnx2x_prev_unload(struct bnx2x *bp)
10606{
10607	int time_counter = 10;
10608	u32 rc, fw, hw_lock_reg, hw_lock_val;
10609	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10610
10611	/* clear hw from errors which may have resulted from an interrupted
10612	 * dmae transaction.
10613	 */
10614	bnx2x_clean_pglue_errors(bp);
10615
10616	/* Release previously held locks */
10617	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10618		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10619		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10620
10621	hw_lock_val = REG_RD(bp, hw_lock_reg);
10622	if (hw_lock_val) {
10623		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10624			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10625			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10626			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10627		}
10628
10629		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10630		REG_WR(bp, hw_lock_reg, 0xffffffff);
10631	} else
10632		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10633
10634	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10635		BNX2X_DEV_INFO("Release previously held alr\n");
10636		bnx2x_release_alr(bp);
10637	}
10638
10639	do {
10640		int aer = 0;
10641		/* Lock MCP using an unload request */
10642		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10643		if (!fw) {
10644			BNX2X_ERR("MCP response failure, aborting\n");
10645			rc = -EBUSY;
10646			break;
10647		}
10648
10649		rc = down_interruptible(&bnx2x_prev_sem);
10650		if (rc) {
10651			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10652				  rc);
10653		} else {
10654			/* If Path is marked by EEH, ignore unload status */
10655			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10656				 bnx2x_prev_path_get_entry(bp)->aer);
10657			up(&bnx2x_prev_sem);
10658		}
10659
10660		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10661			rc = bnx2x_prev_unload_common(bp);
10662			break;
10663		}
10664
10665		/* non-common reply from MCP might require looping */
10666		rc = bnx2x_prev_unload_uncommon(bp);
10667		if (rc != BNX2X_PREV_WAIT_NEEDED)
10668			break;
10669
10670		msleep(20);
10671	} while (--time_counter);
10672
10673	if (!time_counter || rc) {
10674		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10675		rc = -EPROBE_DEFER;
10676	}
10677
10678	/* Mark function if its port was used to boot from SAN */
10679	if (bnx2x_port_after_undi(bp))
10680		bp->link_params.feature_config_flags |=
10681			FEATURE_CONFIG_BOOT_FROM_SAN;
10682
10683	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10684
10685	return rc;
10686}
10687
10688static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10689{
10690	u32 val, val2, val3, val4, id, boot_mode;
10691	u16 pmc;
10692
10693	/* Get the chip revision id and number. */
10694	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10695	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10696	id = ((val & 0xffff) << 16);
10697	val = REG_RD(bp, MISC_REG_CHIP_REV);
10698	id |= ((val & 0xf) << 12);
10699
10700	/* Metal is read from PCI regs, but we can't access >=0x400 from
10701	 * the configuration space (so we need to reg_rd)
10702	 */
10703	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10704	id |= (((val >> 24) & 0xf) << 4);
10705	val = REG_RD(bp, MISC_REG_BOND_ID);
10706	id |= (val & 0xf);
10707	bp->common.chip_id = id;
10708
10709	/* force 57811 according to MISC register */
10710	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10711		if (CHIP_IS_57810(bp))
10712			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10713				(bp->common.chip_id & 0x0000FFFF);
10714		else if (CHIP_IS_57810_MF(bp))
10715			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10716				(bp->common.chip_id & 0x0000FFFF);
10717		bp->common.chip_id |= 0x1;
10718	}
10719
10720	/* Set doorbell size */
10721	bp->db_size = (1 << BNX2X_DB_SHIFT);
10722
10723	if (!CHIP_IS_E1x(bp)) {
10724		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10725		if ((val & 1) == 0)
10726			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10727		else
10728			val = (val >> 1) & 1;
10729		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10730						       "2_PORT_MODE");
10731		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10732						 CHIP_2_PORT_MODE;
10733
10734		if (CHIP_MODE_IS_4_PORT(bp))
10735			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10736		else
10737			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10738	} else {
10739		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10740		bp->pfid = bp->pf_num;			/* 0..7 */
10741	}
10742
10743	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10744
10745	bp->link_params.chip_id = bp->common.chip_id;
10746	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10747
10748	val = (REG_RD(bp, 0x2874) & 0x55);
10749	if ((bp->common.chip_id & 0x1) ||
10750	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10751		bp->flags |= ONE_PORT_FLAG;
10752		BNX2X_DEV_INFO("single port device\n");
10753	}
10754
10755	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10756	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10757				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10758	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10759		       bp->common.flash_size, bp->common.flash_size);
10760
10761	bnx2x_init_shmem(bp);
10762
10763	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10764					MISC_REG_GENERIC_CR_1 :
10765					MISC_REG_GENERIC_CR_0));
10766
10767	bp->link_params.shmem_base = bp->common.shmem_base;
10768	bp->link_params.shmem2_base = bp->common.shmem2_base;
10769	if (SHMEM2_RD(bp, size) >
10770	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10771		bp->link_params.lfa_base =
10772		REG_RD(bp, bp->common.shmem2_base +
10773		       (u32)offsetof(struct shmem2_region,
10774				     lfa_host_addr[BP_PORT(bp)]));
10775	else
10776		bp->link_params.lfa_base = 0;
10777	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10778		       bp->common.shmem_base, bp->common.shmem2_base);
10779
10780	if (!bp->common.shmem_base) {
10781		BNX2X_DEV_INFO("MCP not active\n");
10782		bp->flags |= NO_MCP_FLAG;
10783		return;
10784	}
10785
10786	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10787	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10788
10789	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10790					SHARED_HW_CFG_LED_MODE_MASK) >>
10791				       SHARED_HW_CFG_LED_MODE_SHIFT);
10792
10793	bp->link_params.feature_config_flags = 0;
10794	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10795	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10796		bp->link_params.feature_config_flags |=
10797				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10798	else
10799		bp->link_params.feature_config_flags &=
10800				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10801
10802	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10803	bp->common.bc_ver = val;
10804	BNX2X_DEV_INFO("bc_ver %X\n", val);
10805	if (val < BNX2X_BC_VER) {
10806		/* for now only warn
10807		 * later we might need to enforce this */
10808		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10809			  BNX2X_BC_VER, val);
10810	}
10811	bp->link_params.feature_config_flags |=
10812				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10813				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10814
10815	bp->link_params.feature_config_flags |=
10816		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10817		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10818	bp->link_params.feature_config_flags |=
10819		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10820		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10821	bp->link_params.feature_config_flags |=
10822		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10823		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10824
10825	bp->link_params.feature_config_flags |=
10826		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10827		FEATURE_CONFIG_MT_SUPPORT : 0;
10828
10829	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10830			BC_SUPPORTS_PFC_STATS : 0;
10831
10832	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10833			BC_SUPPORTS_FCOE_FEATURES : 0;
10834
10835	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10836			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10837
10838	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10839			BC_SUPPORTS_RMMOD_CMD : 0;
10840
10841	boot_mode = SHMEM_RD(bp,
10842			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10843			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10844	switch (boot_mode) {
10845	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10846		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10847		break;
10848	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10849		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10850		break;
10851	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10852		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10853		break;
10854	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10855		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10856		break;
10857	}
10858
10859	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10860	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10861
10862	BNX2X_DEV_INFO("%sWoL capable\n",
10863		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10864
10865	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10866	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10867	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10868	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10869
10870	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10871		 val, val2, val3, val4);
10872}
10873
10874#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10875#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10876
10877static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10878{
10879	int pfid = BP_FUNC(bp);
10880	int igu_sb_id;
10881	u32 val;
10882	u8 fid, igu_sb_cnt = 0;
10883
10884	bp->igu_base_sb = 0xff;
10885	if (CHIP_INT_MODE_IS_BC(bp)) {
10886		int vn = BP_VN(bp);
10887		igu_sb_cnt = bp->igu_sb_cnt;
10888		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10889			FP_SB_MAX_E1x;
10890
10891		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10892			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10893
10894		return 0;
10895	}
10896
10897	/* IGU in normal mode - read CAM */
10898	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10899	     igu_sb_id++) {
10900		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10901		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10902			continue;
10903		fid = IGU_FID(val);
10904		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10905			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10906				continue;
10907			if (IGU_VEC(val) == 0)
10908				/* default status block */
10909				bp->igu_dsb_id = igu_sb_id;
10910			else {
10911				if (bp->igu_base_sb == 0xff)
10912					bp->igu_base_sb = igu_sb_id;
10913				igu_sb_cnt++;
10914			}
10915		}
10916	}
10917
10918#ifdef CONFIG_PCI_MSI
10919	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10920	 * optional that number of CAM entries will not be equal to the value
10921	 * advertised in PCI.
10922	 * Driver should use the minimal value of both as the actual status
10923	 * block count
10924	 */
10925	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10926#endif
10927
10928	if (igu_sb_cnt == 0) {
10929		BNX2X_ERR("CAM configuration error\n");
10930		return -EINVAL;
10931	}
10932
10933	return 0;
10934}
10935
10936static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10937{
10938	int cfg_size = 0, idx, port = BP_PORT(bp);
10939
10940	/* Aggregation of supported attributes of all external phys */
10941	bp->port.supported[0] = 0;
10942	bp->port.supported[1] = 0;
10943	switch (bp->link_params.num_phys) {
10944	case 1:
10945		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10946		cfg_size = 1;
10947		break;
10948	case 2:
10949		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10950		cfg_size = 1;
10951		break;
10952	case 3:
10953		if (bp->link_params.multi_phy_config &
10954		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10955			bp->port.supported[1] =
10956				bp->link_params.phy[EXT_PHY1].supported;
10957			bp->port.supported[0] =
10958				bp->link_params.phy[EXT_PHY2].supported;
10959		} else {
10960			bp->port.supported[0] =
10961				bp->link_params.phy[EXT_PHY1].supported;
10962			bp->port.supported[1] =
10963				bp->link_params.phy[EXT_PHY2].supported;
10964		}
10965		cfg_size = 2;
10966		break;
10967	}
10968
10969	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10970		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10971			   SHMEM_RD(bp,
10972			   dev_info.port_hw_config[port].external_phy_config),
10973			   SHMEM_RD(bp,
10974			   dev_info.port_hw_config[port].external_phy_config2));
10975			return;
10976	}
10977
10978	if (CHIP_IS_E3(bp))
10979		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10980	else {
10981		switch (switch_cfg) {
10982		case SWITCH_CFG_1G:
10983			bp->port.phy_addr = REG_RD(
10984				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10985			break;
10986		case SWITCH_CFG_10G:
10987			bp->port.phy_addr = REG_RD(
10988				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10989			break;
10990		default:
10991			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10992				  bp->port.link_config[0]);
10993			return;
10994		}
10995	}
10996	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10997	/* mask what we support according to speed_cap_mask per configuration */
10998	for (idx = 0; idx < cfg_size; idx++) {
10999		if (!(bp->link_params.speed_cap_mask[idx] &
11000				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11001			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11002
11003		if (!(bp->link_params.speed_cap_mask[idx] &
11004				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11005			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11006
11007		if (!(bp->link_params.speed_cap_mask[idx] &
11008				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11009			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11010
11011		if (!(bp->link_params.speed_cap_mask[idx] &
11012				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11013			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11014
11015		if (!(bp->link_params.speed_cap_mask[idx] &
11016					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11017			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11018						     SUPPORTED_1000baseT_Full);
11019
11020		if (!(bp->link_params.speed_cap_mask[idx] &
11021					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11022			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11023
11024		if (!(bp->link_params.speed_cap_mask[idx] &
11025					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11026			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11027
11028		if (!(bp->link_params.speed_cap_mask[idx] &
11029					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11030			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11031	}
11032
11033	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11034		       bp->port.supported[1]);
11035}
11036
11037static void bnx2x_link_settings_requested(struct bnx2x *bp)
11038{
11039	u32 link_config, idx, cfg_size = 0;
11040	bp->port.advertising[0] = 0;
11041	bp->port.advertising[1] = 0;
11042	switch (bp->link_params.num_phys) {
11043	case 1:
11044	case 2:
11045		cfg_size = 1;
11046		break;
11047	case 3:
11048		cfg_size = 2;
11049		break;
11050	}
11051	for (idx = 0; idx < cfg_size; idx++) {
11052		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11053		link_config = bp->port.link_config[idx];
11054		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11055		case PORT_FEATURE_LINK_SPEED_AUTO:
11056			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11057				bp->link_params.req_line_speed[idx] =
11058					SPEED_AUTO_NEG;
11059				bp->port.advertising[idx] |=
11060					bp->port.supported[idx];
11061				if (bp->link_params.phy[EXT_PHY1].type ==
11062				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11063					bp->port.advertising[idx] |=
11064					(SUPPORTED_100baseT_Half |
11065					 SUPPORTED_100baseT_Full);
11066			} else {
11067				/* force 10G, no AN */
11068				bp->link_params.req_line_speed[idx] =
11069					SPEED_10000;
11070				bp->port.advertising[idx] |=
11071					(ADVERTISED_10000baseT_Full |
11072					 ADVERTISED_FIBRE);
11073				continue;
11074			}
11075			break;
11076
11077		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11078			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11079				bp->link_params.req_line_speed[idx] =
11080					SPEED_10;
11081				bp->port.advertising[idx] |=
11082					(ADVERTISED_10baseT_Full |
11083					 ADVERTISED_TP);
11084			} else {
11085				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11086					    link_config,
11087				    bp->link_params.speed_cap_mask[idx]);
11088				return;
11089			}
11090			break;
11091
11092		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11093			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11094				bp->link_params.req_line_speed[idx] =
11095					SPEED_10;
11096				bp->link_params.req_duplex[idx] =
11097					DUPLEX_HALF;
11098				bp->port.advertising[idx] |=
11099					(ADVERTISED_10baseT_Half |
11100					 ADVERTISED_TP);
11101			} else {
11102				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11103					    link_config,
11104					  bp->link_params.speed_cap_mask[idx]);
11105				return;
11106			}
11107			break;
11108
11109		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11110			if (bp->port.supported[idx] &
11111			    SUPPORTED_100baseT_Full) {
11112				bp->link_params.req_line_speed[idx] =
11113					SPEED_100;
11114				bp->port.advertising[idx] |=
11115					(ADVERTISED_100baseT_Full |
11116					 ADVERTISED_TP);
11117			} else {
11118				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11119					    link_config,
11120					  bp->link_params.speed_cap_mask[idx]);
11121				return;
11122			}
11123			break;
11124
11125		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11126			if (bp->port.supported[idx] &
11127			    SUPPORTED_100baseT_Half) {
11128				bp->link_params.req_line_speed[idx] =
11129								SPEED_100;
11130				bp->link_params.req_duplex[idx] =
11131								DUPLEX_HALF;
11132				bp->port.advertising[idx] |=
11133					(ADVERTISED_100baseT_Half |
11134					 ADVERTISED_TP);
11135			} else {
11136				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11137				    link_config,
11138				    bp->link_params.speed_cap_mask[idx]);
11139				return;
11140			}
11141			break;
11142
11143		case PORT_FEATURE_LINK_SPEED_1G:
11144			if (bp->port.supported[idx] &
11145			    SUPPORTED_1000baseT_Full) {
11146				bp->link_params.req_line_speed[idx] =
11147					SPEED_1000;
11148				bp->port.advertising[idx] |=
11149					(ADVERTISED_1000baseT_Full |
11150					 ADVERTISED_TP);
11151			} else {
11152				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11153				    link_config,
11154				    bp->link_params.speed_cap_mask[idx]);
11155				return;
11156			}
11157			break;
11158
11159		case PORT_FEATURE_LINK_SPEED_2_5G:
11160			if (bp->port.supported[idx] &
11161			    SUPPORTED_2500baseX_Full) {
11162				bp->link_params.req_line_speed[idx] =
11163					SPEED_2500;
11164				bp->port.advertising[idx] |=
11165					(ADVERTISED_2500baseX_Full |
11166						ADVERTISED_TP);
11167			} else {
11168				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11169				    link_config,
11170				    bp->link_params.speed_cap_mask[idx]);
11171				return;
11172			}
11173			break;
11174
11175		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11176			if (bp->port.supported[idx] &
11177			    SUPPORTED_10000baseT_Full) {
11178				bp->link_params.req_line_speed[idx] =
11179					SPEED_10000;
11180				bp->port.advertising[idx] |=
11181					(ADVERTISED_10000baseT_Full |
11182						ADVERTISED_FIBRE);
11183			} else {
11184				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11185				    link_config,
11186				    bp->link_params.speed_cap_mask[idx]);
11187				return;
11188			}
11189			break;
11190		case PORT_FEATURE_LINK_SPEED_20G:
11191			bp->link_params.req_line_speed[idx] = SPEED_20000;
11192
11193			break;
11194		default:
11195			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11196				  link_config);
11197				bp->link_params.req_line_speed[idx] =
11198							SPEED_AUTO_NEG;
11199				bp->port.advertising[idx] =
11200						bp->port.supported[idx];
11201			break;
11202		}
11203
11204		bp->link_params.req_flow_ctrl[idx] = (link_config &
11205					 PORT_FEATURE_FLOW_CONTROL_MASK);
11206		if (bp->link_params.req_flow_ctrl[idx] ==
11207		    BNX2X_FLOW_CTRL_AUTO) {
11208			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11209				bp->link_params.req_flow_ctrl[idx] =
11210							BNX2X_FLOW_CTRL_NONE;
11211			else
11212				bnx2x_set_requested_fc(bp);
11213		}
11214
11215		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11216			       bp->link_params.req_line_speed[idx],
11217			       bp->link_params.req_duplex[idx],
11218			       bp->link_params.req_flow_ctrl[idx],
11219			       bp->port.advertising[idx]);
11220	}
11221}
11222
11223static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11224{
11225	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11226	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11227	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11228	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11229}
11230
11231static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11232{
11233	int port = BP_PORT(bp);
11234	u32 config;
11235	u32 ext_phy_type, ext_phy_config, eee_mode;
11236
11237	bp->link_params.bp = bp;
11238	bp->link_params.port = port;
11239
11240	bp->link_params.lane_config =
11241		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11242
11243	bp->link_params.speed_cap_mask[0] =
11244		SHMEM_RD(bp,
11245			 dev_info.port_hw_config[port].speed_capability_mask) &
11246		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11247	bp->link_params.speed_cap_mask[1] =
11248		SHMEM_RD(bp,
11249			 dev_info.port_hw_config[port].speed_capability_mask2) &
11250		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11251	bp->port.link_config[0] =
11252		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11253
11254	bp->port.link_config[1] =
11255		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11256
11257	bp->link_params.multi_phy_config =
11258		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11259	/* If the device is capable of WoL, set the default state according
11260	 * to the HW
11261	 */
11262	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11263	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11264		   (config & PORT_FEATURE_WOL_ENABLED));
11265
11266	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11267	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11268		bp->flags |= NO_ISCSI_FLAG;
11269	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11270	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11271		bp->flags |= NO_FCOE_FLAG;
11272
11273	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11274		       bp->link_params.lane_config,
11275		       bp->link_params.speed_cap_mask[0],
11276		       bp->port.link_config[0]);
11277
11278	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11279				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11280	bnx2x_phy_probe(&bp->link_params);
11281	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11282
11283	bnx2x_link_settings_requested(bp);
11284
11285	/*
11286	 * If connected directly, work with the internal PHY, otherwise, work
11287	 * with the external PHY
11288	 */
11289	ext_phy_config =
11290		SHMEM_RD(bp,
11291			 dev_info.port_hw_config[port].external_phy_config);
11292	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11293	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11294		bp->mdio.prtad = bp->port.phy_addr;
11295
11296	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11297		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11298		bp->mdio.prtad =
11299			XGXS_EXT_PHY_ADDR(ext_phy_config);
11300
11301	/* Configure link feature according to nvram value */
11302	eee_mode = (((SHMEM_RD(bp, dev_info.
11303		      port_feature_config[port].eee_power_mode)) &
11304		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11305		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11306	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11307		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11308					   EEE_MODE_ENABLE_LPI |
11309					   EEE_MODE_OUTPUT_TIME;
11310	} else {
11311		bp->link_params.eee_mode = 0;
11312	}
11313}
11314
11315void bnx2x_get_iscsi_info(struct bnx2x *bp)
11316{
11317	u32 no_flags = NO_ISCSI_FLAG;
11318	int port = BP_PORT(bp);
11319	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11320				drv_lic_key[port].max_iscsi_conn);
11321
11322	if (!CNIC_SUPPORT(bp)) {
11323		bp->flags |= no_flags;
11324		return;
11325	}
11326
11327	/* Get the number of maximum allowed iSCSI connections */
11328	bp->cnic_eth_dev.max_iscsi_conn =
11329		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11330		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11331
11332	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11333		       bp->cnic_eth_dev.max_iscsi_conn);
11334
11335	/*
11336	 * If maximum allowed number of connections is zero -
11337	 * disable the feature.
11338	 */
11339	if (!bp->cnic_eth_dev.max_iscsi_conn)
11340		bp->flags |= no_flags;
11341}
11342
11343static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11344{
11345	/* Port info */
11346	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11347		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11348	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11349		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11350
11351	/* Node info */
11352	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11353		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11354	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11355		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11356}
11357
11358static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11359{
11360	u8 count = 0;
11361
11362	if (IS_MF(bp)) {
11363		u8 fid;
11364
11365		/* iterate over absolute function ids for this path: */
11366		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11367			if (IS_MF_SD(bp)) {
11368				u32 cfg = MF_CFG_RD(bp,
11369						    func_mf_config[fid].config);
11370
11371				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11372				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11373					    FUNC_MF_CFG_PROTOCOL_FCOE))
11374					count++;
11375			} else {
11376				u32 cfg = MF_CFG_RD(bp,
11377						    func_ext_config[fid].
11378								      func_cfg);
11379
11380				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11381				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11382					count++;
11383			}
11384		}
11385	} else { /* SF */
11386		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11387
11388		for (port = 0; port < port_cnt; port++) {
11389			u32 lic = SHMEM_RD(bp,
11390					   drv_lic_key[port].max_fcoe_conn) ^
11391				  FW_ENCODE_32BIT_PATTERN;
11392			if (lic)
11393				count++;
11394		}
11395	}
11396
11397	return count;
11398}
11399
11400static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11401{
11402	int port = BP_PORT(bp);
11403	int func = BP_ABS_FUNC(bp);
11404	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11405				drv_lic_key[port].max_fcoe_conn);
11406	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11407
11408	if (!CNIC_SUPPORT(bp)) {
11409		bp->flags |= NO_FCOE_FLAG;
11410		return;
11411	}
11412
11413	/* Get the number of maximum allowed FCoE connections */
11414	bp->cnic_eth_dev.max_fcoe_conn =
11415		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11416		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11417
11418	/* Calculate the number of maximum allowed FCoE tasks */
11419	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11420
11421	/* check if FCoE resources must be shared between different functions */
11422	if (num_fcoe_func)
11423		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11424
11425	/* Read the WWN: */
11426	if (!IS_MF(bp)) {
11427		/* Port info */
11428		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11429			SHMEM_RD(bp,
11430				 dev_info.port_hw_config[port].
11431				 fcoe_wwn_port_name_upper);
11432		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11433			SHMEM_RD(bp,
11434				 dev_info.port_hw_config[port].
11435				 fcoe_wwn_port_name_lower);
11436
11437		/* Node info */
11438		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11439			SHMEM_RD(bp,
11440				 dev_info.port_hw_config[port].
11441				 fcoe_wwn_node_name_upper);
11442		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11443			SHMEM_RD(bp,
11444				 dev_info.port_hw_config[port].
11445				 fcoe_wwn_node_name_lower);
11446	} else if (!IS_MF_SD(bp)) {
11447		/* Read the WWN info only if the FCoE feature is enabled for
11448		 * this function.
11449		 */
11450		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11451			bnx2x_get_ext_wwn_info(bp, func);
11452	} else {
11453		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11454			bnx2x_get_ext_wwn_info(bp, func);
11455	}
11456
11457	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11458
11459	/*
11460	 * If maximum allowed number of connections is zero -
11461	 * disable the feature.
11462	 */
11463	if (!bp->cnic_eth_dev.max_fcoe_conn)
11464		bp->flags |= NO_FCOE_FLAG;
11465}
11466
11467static void bnx2x_get_cnic_info(struct bnx2x *bp)
11468{
11469	/*
11470	 * iSCSI may be dynamically disabled but reading
11471	 * info here we will decrease memory usage by driver
11472	 * if the feature is disabled for good
11473	 */
11474	bnx2x_get_iscsi_info(bp);
11475	bnx2x_get_fcoe_info(bp);
11476}
11477
11478static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11479{
11480	u32 val, val2;
11481	int func = BP_ABS_FUNC(bp);
11482	int port = BP_PORT(bp);
11483	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11484	u8 *fip_mac = bp->fip_mac;
11485
11486	if (IS_MF(bp)) {
11487		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11488		 * FCoE MAC then the appropriate feature should be disabled.
11489		 * In non SD mode features configuration comes from struct
11490		 * func_ext_config.
11491		 */
11492		if (!IS_MF_SD(bp)) {
11493			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11494			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11495				val2 = MF_CFG_RD(bp, func_ext_config[func].
11496						 iscsi_mac_addr_upper);
11497				val = MF_CFG_RD(bp, func_ext_config[func].
11498						iscsi_mac_addr_lower);
11499				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11500				BNX2X_DEV_INFO
11501					("Read iSCSI MAC: %pM\n", iscsi_mac);
11502			} else {
11503				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11504			}
11505
11506			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11507				val2 = MF_CFG_RD(bp, func_ext_config[func].
11508						 fcoe_mac_addr_upper);
11509				val = MF_CFG_RD(bp, func_ext_config[func].
11510						fcoe_mac_addr_lower);
11511				bnx2x_set_mac_buf(fip_mac, val, val2);
11512				BNX2X_DEV_INFO
11513					("Read FCoE L2 MAC: %pM\n", fip_mac);
11514			} else {
11515				bp->flags |= NO_FCOE_FLAG;
11516			}
11517
11518			bp->mf_ext_config = cfg;
11519
11520		} else { /* SD MODE */
11521			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11522				/* use primary mac as iscsi mac */
11523				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11524
11525				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11526				BNX2X_DEV_INFO
11527					("Read iSCSI MAC: %pM\n", iscsi_mac);
11528			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11529				/* use primary mac as fip mac */
11530				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11531				BNX2X_DEV_INFO("SD FCoE MODE\n");
11532				BNX2X_DEV_INFO
11533					("Read FIP MAC: %pM\n", fip_mac);
11534			}
11535		}
11536
11537		/* If this is a storage-only interface, use SAN mac as
11538		 * primary MAC. Notice that for SD this is already the case,
11539		 * as the SAN mac was copied from the primary MAC.
11540		 */
11541		if (IS_MF_FCOE_AFEX(bp))
11542			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11543	} else {
11544		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11545				iscsi_mac_upper);
11546		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11547			       iscsi_mac_lower);
11548		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11549
11550		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11551				fcoe_fip_mac_upper);
11552		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11553			       fcoe_fip_mac_lower);
11554		bnx2x_set_mac_buf(fip_mac, val, val2);
11555	}
11556
11557	/* Disable iSCSI OOO if MAC configuration is invalid. */
11558	if (!is_valid_ether_addr(iscsi_mac)) {
11559		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11560		eth_zero_addr(iscsi_mac);
11561	}
11562
11563	/* Disable FCoE if MAC configuration is invalid. */
11564	if (!is_valid_ether_addr(fip_mac)) {
11565		bp->flags |= NO_FCOE_FLAG;
11566		eth_zero_addr(bp->fip_mac);
11567	}
11568}
11569
11570static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11571{
11572	u32 val, val2;
11573	int func = BP_ABS_FUNC(bp);
11574	int port = BP_PORT(bp);
11575
11576	/* Zero primary MAC configuration */
11577	eth_zero_addr(bp->dev->dev_addr);
11578
11579	if (BP_NOMCP(bp)) {
11580		BNX2X_ERROR("warning: random MAC workaround active\n");
11581		eth_hw_addr_random(bp->dev);
11582	} else if (IS_MF(bp)) {
11583		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11584		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11585		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11586		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11587			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11588
11589		if (CNIC_SUPPORT(bp))
11590			bnx2x_get_cnic_mac_hwinfo(bp);
11591	} else {
11592		/* in SF read MACs from port configuration */
11593		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11594		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11595		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11596
11597		if (CNIC_SUPPORT(bp))
11598			bnx2x_get_cnic_mac_hwinfo(bp);
11599	}
11600
11601	if (!BP_NOMCP(bp)) {
11602		/* Read physical port identifier from shmem */
11603		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11604		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11605		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11606		bp->flags |= HAS_PHYS_PORT_ID;
11607	}
11608
11609	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11610
11611	if (!is_valid_ether_addr(bp->dev->dev_addr))
11612		dev_err(&bp->pdev->dev,
11613			"bad Ethernet MAC address configuration: %pM\n"
11614			"change it manually before bringing up the appropriate network interface\n",
11615			bp->dev->dev_addr);
11616}
11617
11618static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11619{
11620	int tmp;
11621	u32 cfg;
11622
11623	if (IS_VF(bp))
11624		return false;
11625
11626	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11627		/* Take function: tmp = func */
11628		tmp = BP_ABS_FUNC(bp);
11629		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11630		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11631	} else {
11632		/* Take port: tmp = port */
11633		tmp = BP_PORT(bp);
11634		cfg = SHMEM_RD(bp,
11635			       dev_info.port_hw_config[tmp].generic_features);
11636		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11637	}
11638	return cfg;
11639}
11640
11641static void validate_set_si_mode(struct bnx2x *bp)
11642{
11643	u8 func = BP_ABS_FUNC(bp);
11644	u32 val;
11645
11646	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11647
11648	/* check for legal mac (upper bytes) */
11649	if (val != 0xffff) {
11650		bp->mf_mode = MULTI_FUNCTION_SI;
11651		bp->mf_config[BP_VN(bp)] =
11652			MF_CFG_RD(bp, func_mf_config[func].config);
11653	} else
11654		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11655}
11656
11657static int bnx2x_get_hwinfo(struct bnx2x *bp)
11658{
11659	int /*abs*/func = BP_ABS_FUNC(bp);
11660	int vn;
11661	u32 val = 0, val2 = 0;
11662	int rc = 0;
11663
11664	/* Validate that chip access is feasible */
11665	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11666		dev_err(&bp->pdev->dev,
11667			"Chip read returns all Fs. Preventing probe from continuing\n");
11668		return -EINVAL;
11669	}
11670
11671	bnx2x_get_common_hwinfo(bp);
11672
11673	/*
11674	 * initialize IGU parameters
11675	 */
11676	if (CHIP_IS_E1x(bp)) {
11677		bp->common.int_block = INT_BLOCK_HC;
11678
11679		bp->igu_dsb_id = DEF_SB_IGU_ID;
11680		bp->igu_base_sb = 0;
11681	} else {
11682		bp->common.int_block = INT_BLOCK_IGU;
11683
11684		/* do not allow device reset during IGU info processing */
11685		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11686
11687		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11688
11689		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11690			int tout = 5000;
11691
11692			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11693
11694			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11695			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11696			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11697
11698			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11699				tout--;
11700				usleep_range(1000, 2000);
11701			}
11702
11703			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11704				dev_err(&bp->pdev->dev,
11705					"FORCING Normal Mode failed!!!\n");
11706				bnx2x_release_hw_lock(bp,
11707						      HW_LOCK_RESOURCE_RESET);
11708				return -EPERM;
11709			}
11710		}
11711
11712		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11713			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11714			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11715		} else
11716			BNX2X_DEV_INFO("IGU Normal Mode\n");
11717
11718		rc = bnx2x_get_igu_cam_info(bp);
11719		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11720		if (rc)
11721			return rc;
11722	}
11723
11724	/*
11725	 * set base FW non-default (fast path) status block id, this value is
11726	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11727	 * determine the id used by the FW.
11728	 */
11729	if (CHIP_IS_E1x(bp))
11730		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11731	else /*
11732	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11733	      * the same queue are indicated on the same IGU SB). So we prefer
11734	      * FW and IGU SBs to be the same value.
11735	      */
11736		bp->base_fw_ndsb = bp->igu_base_sb;
11737
11738	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11739		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11740		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11741
11742	/*
11743	 * Initialize MF configuration
11744	 */
11745
11746	bp->mf_ov = 0;
11747	bp->mf_mode = 0;
11748	bp->mf_sub_mode = 0;
11749	vn = BP_VN(bp);
11750
11751	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11752		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11753			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11754			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11755
11756		if (SHMEM2_HAS(bp, mf_cfg_addr))
11757			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11758		else
11759			bp->common.mf_cfg_base = bp->common.shmem_base +
11760				offsetof(struct shmem_region, func_mb) +
11761				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11762		/*
11763		 * get mf configuration:
11764		 * 1. Existence of MF configuration
11765		 * 2. MAC address must be legal (check only upper bytes)
11766		 *    for  Switch-Independent mode;
11767		 *    OVLAN must be legal for Switch-Dependent mode
11768		 * 3. SF_MODE configures specific MF mode
11769		 */
11770		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11771			/* get mf configuration */
11772			val = SHMEM_RD(bp,
11773				       dev_info.shared_feature_config.config);
11774			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11775
11776			switch (val) {
11777			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11778				validate_set_si_mode(bp);
11779				break;
11780			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11781				if ((!CHIP_IS_E1x(bp)) &&
11782				    (MF_CFG_RD(bp, func_mf_config[func].
11783					       mac_upper) != 0xffff) &&
11784				    (SHMEM2_HAS(bp,
11785						afex_driver_support))) {
11786					bp->mf_mode = MULTI_FUNCTION_AFEX;
11787					bp->mf_config[vn] = MF_CFG_RD(bp,
11788						func_mf_config[func].config);
11789				} else {
11790					BNX2X_DEV_INFO("can not configure afex mode\n");
11791				}
11792				break;
11793			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11794				/* get OV configuration */
11795				val = MF_CFG_RD(bp,
11796					func_mf_config[FUNC_0].e1hov_tag);
11797				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11798
11799				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11800					bp->mf_mode = MULTI_FUNCTION_SD;
11801					bp->mf_config[vn] = MF_CFG_RD(bp,
11802						func_mf_config[func].config);
11803				} else
11804					BNX2X_DEV_INFO("illegal OV for SD\n");
11805				break;
11806			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11807				bp->mf_mode = MULTI_FUNCTION_SD;
11808				bp->mf_sub_mode = SUB_MF_MODE_UFP;
11809				bp->mf_config[vn] =
11810					MF_CFG_RD(bp,
11811						  func_mf_config[func].config);
11812				break;
11813			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11814				bp->mf_config[vn] = 0;
11815				break;
11816			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11817				val2 = SHMEM_RD(bp,
11818					dev_info.shared_hw_config.config_3);
11819				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11820				switch (val2) {
11821				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11822					validate_set_si_mode(bp);
11823					bp->mf_sub_mode =
11824							SUB_MF_MODE_NPAR1_DOT_5;
11825					break;
11826				default:
11827					/* Unknown configuration */
11828					bp->mf_config[vn] = 0;
11829					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11830						       val);
11831				}
11832				break;
11833			default:
11834				/* Unknown configuration: reset mf_config */
11835				bp->mf_config[vn] = 0;
11836				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11837			}
11838		}
11839
11840		BNX2X_DEV_INFO("%s function mode\n",
11841			       IS_MF(bp) ? "multi" : "single");
11842
11843		switch (bp->mf_mode) {
11844		case MULTI_FUNCTION_SD:
11845			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11846			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11847			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11848				bp->mf_ov = val;
11849				bp->path_has_ovlan = true;
11850
11851				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11852					       func, bp->mf_ov, bp->mf_ov);
11853			} else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11854				dev_err(&bp->pdev->dev,
11855					"Unexpected - no valid MF OV for func %d in UFP mode\n",
11856					func);
11857				bp->path_has_ovlan = true;
11858			} else {
11859				dev_err(&bp->pdev->dev,
11860					"No valid MF OV for func %d, aborting\n",
11861					func);
11862				return -EPERM;
11863			}
11864			break;
11865		case MULTI_FUNCTION_AFEX:
11866			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11867			break;
11868		case MULTI_FUNCTION_SI:
11869			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11870				       func);
11871			break;
11872		default:
11873			if (vn) {
11874				dev_err(&bp->pdev->dev,
11875					"VN %d is in a single function mode, aborting\n",
11876					vn);
11877				return -EPERM;
11878			}
11879			break;
11880		}
11881
11882		/* check if other port on the path needs ovlan:
11883		 * Since MF configuration is shared between ports
11884		 * Possible mixed modes are only
11885		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11886		 */
11887		if (CHIP_MODE_IS_4_PORT(bp) &&
11888		    !bp->path_has_ovlan &&
11889		    !IS_MF(bp) &&
11890		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11891			u8 other_port = !BP_PORT(bp);
11892			u8 other_func = BP_PATH(bp) + 2*other_port;
11893			val = MF_CFG_RD(bp,
11894					func_mf_config[other_func].e1hov_tag);
11895			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11896				bp->path_has_ovlan = true;
11897		}
11898	}
11899
11900	/* adjust igu_sb_cnt to MF for E1H */
11901	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11902		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11903
11904	/* port info */
11905	bnx2x_get_port_hwinfo(bp);
11906
11907	/* Get MAC addresses */
11908	bnx2x_get_mac_hwinfo(bp);
11909
11910	bnx2x_get_cnic_info(bp);
11911
11912	return rc;
11913}
11914
11915static void bnx2x_read_fwinfo(struct bnx2x *bp)
11916{
11917	int cnt, i, block_end, rodi;
11918	char vpd_start[BNX2X_VPD_LEN+1];
11919	char str_id_reg[VENDOR_ID_LEN+1];
11920	char str_id_cap[VENDOR_ID_LEN+1];
11921	char *vpd_data;
11922	char *vpd_extended_data = NULL;
11923	u8 len;
11924
11925	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11926	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11927
11928	if (cnt < BNX2X_VPD_LEN)
11929		goto out_not_found;
11930
11931	/* VPD RO tag should be first tag after identifier string, hence
11932	 * we should be able to find it in first BNX2X_VPD_LEN chars
11933	 */
11934	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11935			     PCI_VPD_LRDT_RO_DATA);
11936	if (i < 0)
11937		goto out_not_found;
11938
11939	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11940		    pci_vpd_lrdt_size(&vpd_start[i]);
11941
11942	i += PCI_VPD_LRDT_TAG_SIZE;
11943
11944	if (block_end > BNX2X_VPD_LEN) {
11945		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11946		if (vpd_extended_data  == NULL)
11947			goto out_not_found;
11948
11949		/* read rest of vpd image into vpd_extended_data */
11950		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11951		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11952				   block_end - BNX2X_VPD_LEN,
11953				   vpd_extended_data + BNX2X_VPD_LEN);
11954		if (cnt < (block_end - BNX2X_VPD_LEN))
11955			goto out_not_found;
11956		vpd_data = vpd_extended_data;
11957	} else
11958		vpd_data = vpd_start;
11959
11960	/* now vpd_data holds full vpd content in both cases */
11961
11962	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11963				   PCI_VPD_RO_KEYWORD_MFR_ID);
11964	if (rodi < 0)
11965		goto out_not_found;
11966
11967	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11968
11969	if (len != VENDOR_ID_LEN)
11970		goto out_not_found;
11971
11972	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11973
11974	/* vendor specific info */
11975	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11976	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11977	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11978	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11979
11980		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11981						PCI_VPD_RO_KEYWORD_VENDOR0);
11982		if (rodi >= 0) {
11983			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11984
11985			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11986
11987			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11988				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11989				bp->fw_ver[len] = ' ';
11990			}
11991		}
11992		kfree(vpd_extended_data);
11993		return;
11994	}
11995out_not_found:
11996	kfree(vpd_extended_data);
11997	return;
11998}
11999
12000static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12001{
12002	u32 flags = 0;
12003
12004	if (CHIP_REV_IS_FPGA(bp))
12005		SET_FLAGS(flags, MODE_FPGA);
12006	else if (CHIP_REV_IS_EMUL(bp))
12007		SET_FLAGS(flags, MODE_EMUL);
12008	else
12009		SET_FLAGS(flags, MODE_ASIC);
12010
12011	if (CHIP_MODE_IS_4_PORT(bp))
12012		SET_FLAGS(flags, MODE_PORT4);
12013	else
12014		SET_FLAGS(flags, MODE_PORT2);
12015
12016	if (CHIP_IS_E2(bp))
12017		SET_FLAGS(flags, MODE_E2);
12018	else if (CHIP_IS_E3(bp)) {
12019		SET_FLAGS(flags, MODE_E3);
12020		if (CHIP_REV(bp) == CHIP_REV_Ax)
12021			SET_FLAGS(flags, MODE_E3_A0);
12022		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12023			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12024	}
12025
12026	if (IS_MF(bp)) {
12027		SET_FLAGS(flags, MODE_MF);
12028		switch (bp->mf_mode) {
12029		case MULTI_FUNCTION_SD:
12030			SET_FLAGS(flags, MODE_MF_SD);
12031			break;
12032		case MULTI_FUNCTION_SI:
12033			SET_FLAGS(flags, MODE_MF_SI);
12034			break;
12035		case MULTI_FUNCTION_AFEX:
12036			SET_FLAGS(flags, MODE_MF_AFEX);
12037			break;
12038		}
12039	} else
12040		SET_FLAGS(flags, MODE_SF);
12041
12042#if defined(__LITTLE_ENDIAN)
12043	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12044#else /*(__BIG_ENDIAN)*/
12045	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12046#endif
12047	INIT_MODE_FLAGS(bp) = flags;
12048}
12049
12050static int bnx2x_init_bp(struct bnx2x *bp)
12051{
12052	int func;
12053	int rc;
12054
12055	mutex_init(&bp->port.phy_mutex);
12056	mutex_init(&bp->fw_mb_mutex);
12057	mutex_init(&bp->drv_info_mutex);
12058	sema_init(&bp->stats_lock, 1);
12059	bp->drv_info_mng_owner = false;
12060
12061	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12062	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12063	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12064	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12065	if (IS_PF(bp)) {
12066		rc = bnx2x_get_hwinfo(bp);
12067		if (rc)
12068			return rc;
12069	} else {
12070		eth_zero_addr(bp->dev->dev_addr);
12071	}
12072
12073	bnx2x_set_modes_bitmap(bp);
12074
12075	rc = bnx2x_alloc_mem_bp(bp);
12076	if (rc)
12077		return rc;
12078
12079	bnx2x_read_fwinfo(bp);
12080
12081	func = BP_FUNC(bp);
12082
12083	/* need to reset chip if undi was active */
12084	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12085		/* init fw_seq */
12086		bp->fw_seq =
12087			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12088							DRV_MSG_SEQ_NUMBER_MASK;
12089		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12090
12091		rc = bnx2x_prev_unload(bp);
12092		if (rc) {
12093			bnx2x_free_mem_bp(bp);
12094			return rc;
12095		}
12096	}
12097
12098	if (CHIP_REV_IS_FPGA(bp))
12099		dev_err(&bp->pdev->dev, "FPGA detected\n");
12100
12101	if (BP_NOMCP(bp) && (func == 0))
12102		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12103
12104	bp->disable_tpa = disable_tpa;
12105	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12106	/* Reduce memory usage in kdump environment by disabling TPA */
12107	bp->disable_tpa |= is_kdump_kernel();
12108
12109	/* Set TPA flags */
12110	if (bp->disable_tpa) {
12111		bp->dev->hw_features &= ~NETIF_F_LRO;
12112		bp->dev->features &= ~NETIF_F_LRO;
12113	}
12114
12115	if (CHIP_IS_E1(bp))
12116		bp->dropless_fc = 0;
12117	else
12118		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12119
12120	bp->mrrs = mrrs;
12121
12122	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12123	if (IS_VF(bp))
12124		bp->rx_ring_size = MAX_RX_AVAIL;
12125
12126	/* make sure that the numbers are in the right granularity */
12127	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12128	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12129
12130	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12131
12132	init_timer(&bp->timer);
12133	bp->timer.expires = jiffies + bp->current_interval;
12134	bp->timer.data = (unsigned long) bp;
12135	bp->timer.function = bnx2x_timer;
12136
12137	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12138	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12139	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12140	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12141		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12142		bnx2x_dcbx_init_params(bp);
12143	} else {
12144		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12145	}
12146
12147	if (CHIP_IS_E1x(bp))
12148		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12149	else
12150		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12151
12152	/* multiple tx priority */
12153	if (IS_VF(bp))
12154		bp->max_cos = 1;
12155	else if (CHIP_IS_E1x(bp))
12156		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12157	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12158		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12159	else if (CHIP_IS_E3B0(bp))
12160		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12161	else
12162		BNX2X_ERR("unknown chip %x revision %x\n",
12163			  CHIP_NUM(bp), CHIP_REV(bp));
12164	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12165
12166	/* We need at least one default status block for slow-path events,
12167	 * second status block for the L2 queue, and a third status block for
12168	 * CNIC if supported.
12169	 */
12170	if (IS_VF(bp))
12171		bp->min_msix_vec_cnt = 1;
12172	else if (CNIC_SUPPORT(bp))
12173		bp->min_msix_vec_cnt = 3;
12174	else /* PF w/o cnic */
12175		bp->min_msix_vec_cnt = 2;
12176	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12177
12178	bp->dump_preset_idx = 1;
12179
12180	if (CHIP_IS_E3B0(bp))
12181		bp->flags |= PTP_SUPPORTED;
12182
12183	return rc;
12184}
12185
12186/****************************************************************************
12187* General service functions
12188****************************************************************************/
12189
12190/*
12191 * net_device service functions
12192 */
12193
12194/* called with rtnl_lock */
12195static int bnx2x_open(struct net_device *dev)
12196{
12197	struct bnx2x *bp = netdev_priv(dev);
12198	int rc;
12199
12200	bp->stats_init = true;
12201
12202	netif_carrier_off(dev);
12203
12204	bnx2x_set_power_state(bp, PCI_D0);
12205
12206	/* If parity had happen during the unload, then attentions
12207	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12208	 * want the first function loaded on the current engine to
12209	 * complete the recovery.
12210	 * Parity recovery is only relevant for PF driver.
12211	 */
12212	if (IS_PF(bp)) {
12213		int other_engine = BP_PATH(bp) ? 0 : 1;
12214		bool other_load_status, load_status;
12215		bool global = false;
12216
12217		other_load_status = bnx2x_get_load_status(bp, other_engine);
12218		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12219		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12220		    bnx2x_chk_parity_attn(bp, &global, true)) {
12221			do {
12222				/* If there are attentions and they are in a
12223				 * global blocks, set the GLOBAL_RESET bit
12224				 * regardless whether it will be this function
12225				 * that will complete the recovery or not.
12226				 */
12227				if (global)
12228					bnx2x_set_reset_global(bp);
12229
12230				/* Only the first function on the current
12231				 * engine should try to recover in open. In case
12232				 * of attentions in global blocks only the first
12233				 * in the chip should try to recover.
12234				 */
12235				if ((!load_status &&
12236				     (!global || !other_load_status)) &&
12237				      bnx2x_trylock_leader_lock(bp) &&
12238				      !bnx2x_leader_reset(bp)) {
12239					netdev_info(bp->dev,
12240						    "Recovered in open\n");
12241					break;
12242				}
12243
12244				/* recovery has failed... */
12245				bnx2x_set_power_state(bp, PCI_D3hot);
12246				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12247
12248				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12249					  "If you still see this message after a few retries then power cycle is required.\n");
12250
12251				return -EAGAIN;
12252			} while (0);
12253		}
12254	}
12255
12256	bp->recovery_state = BNX2X_RECOVERY_DONE;
12257	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12258	if (rc)
12259		return rc;
12260	return 0;
12261}
12262
12263/* called with rtnl_lock */
12264static int bnx2x_close(struct net_device *dev)
12265{
12266	struct bnx2x *bp = netdev_priv(dev);
12267
12268	/* Unload the driver, release IRQs */
12269	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12270
12271	return 0;
12272}
12273
12274static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12275				      struct bnx2x_mcast_ramrod_params *p)
12276{
12277	int mc_count = netdev_mc_count(bp->dev);
12278	struct bnx2x_mcast_list_elem *mc_mac =
12279		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12280	struct netdev_hw_addr *ha;
12281
12282	if (!mc_mac)
12283		return -ENOMEM;
12284
12285	INIT_LIST_HEAD(&p->mcast_list);
12286
12287	netdev_for_each_mc_addr(ha, bp->dev) {
12288		mc_mac->mac = bnx2x_mc_addr(ha);
12289		list_add_tail(&mc_mac->link, &p->mcast_list);
12290		mc_mac++;
12291	}
12292
12293	p->mcast_list_len = mc_count;
12294
12295	return 0;
12296}
12297
12298static void bnx2x_free_mcast_macs_list(
12299	struct bnx2x_mcast_ramrod_params *p)
12300{
12301	struct bnx2x_mcast_list_elem *mc_mac =
12302		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12303				 link);
12304
12305	WARN_ON(!mc_mac);
12306	kfree(mc_mac);
12307}
12308
12309/**
12310 * bnx2x_set_uc_list - configure a new unicast MACs list.
12311 *
12312 * @bp: driver handle
12313 *
12314 * We will use zero (0) as a MAC type for these MACs.
12315 */
12316static int bnx2x_set_uc_list(struct bnx2x *bp)
12317{
12318	int rc;
12319	struct net_device *dev = bp->dev;
12320	struct netdev_hw_addr *ha;
12321	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12322	unsigned long ramrod_flags = 0;
12323
12324	/* First schedule a cleanup up of old configuration */
12325	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12326	if (rc < 0) {
12327		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12328		return rc;
12329	}
12330
12331	netdev_for_each_uc_addr(ha, dev) {
12332		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12333				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12334		if (rc == -EEXIST) {
12335			DP(BNX2X_MSG_SP,
12336			   "Failed to schedule ADD operations: %d\n", rc);
12337			/* do not treat adding same MAC as error */
12338			rc = 0;
12339
12340		} else if (rc < 0) {
12341
12342			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12343				  rc);
12344			return rc;
12345		}
12346	}
12347
12348	/* Execute the pending commands */
12349	__set_bit(RAMROD_CONT, &ramrod_flags);
12350	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12351				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12352}
12353
12354static int bnx2x_set_mc_list(struct bnx2x *bp)
12355{
12356	struct net_device *dev = bp->dev;
12357	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12358	int rc = 0;
12359
12360	rparam.mcast_obj = &bp->mcast_obj;
12361
12362	/* first, clear all configured multicast MACs */
12363	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12364	if (rc < 0) {
12365		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12366		return rc;
12367	}
12368
12369	/* then, configure a new MACs list */
12370	if (netdev_mc_count(dev)) {
12371		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12372		if (rc) {
12373			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12374				  rc);
12375			return rc;
12376		}
12377
12378		/* Now add the new MACs */
12379		rc = bnx2x_config_mcast(bp, &rparam,
12380					BNX2X_MCAST_CMD_ADD);
12381		if (rc < 0)
12382			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12383				  rc);
12384
12385		bnx2x_free_mcast_macs_list(&rparam);
12386	}
12387
12388	return rc;
12389}
12390
12391/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12392static void bnx2x_set_rx_mode(struct net_device *dev)
12393{
12394	struct bnx2x *bp = netdev_priv(dev);
12395
12396	if (bp->state != BNX2X_STATE_OPEN) {
12397		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12398		return;
12399	} else {
12400		/* Schedule an SP task to handle rest of change */
12401		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12402				       NETIF_MSG_IFUP);
12403	}
12404}
12405
12406void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12407{
12408	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12409
12410	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12411
12412	netif_addr_lock_bh(bp->dev);
12413
12414	if (bp->dev->flags & IFF_PROMISC) {
12415		rx_mode = BNX2X_RX_MODE_PROMISC;
12416	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12417		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12418		    CHIP_IS_E1(bp))) {
12419		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12420	} else {
12421		if (IS_PF(bp)) {
12422			/* some multicasts */
12423			if (bnx2x_set_mc_list(bp) < 0)
12424				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12425
12426			/* release bh lock, as bnx2x_set_uc_list might sleep */
12427			netif_addr_unlock_bh(bp->dev);
12428			if (bnx2x_set_uc_list(bp) < 0)
12429				rx_mode = BNX2X_RX_MODE_PROMISC;
12430			netif_addr_lock_bh(bp->dev);
12431		} else {
12432			/* configuring mcast to a vf involves sleeping (when we
12433			 * wait for the pf's response).
12434			 */
12435			bnx2x_schedule_sp_rtnl(bp,
12436					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12437		}
12438	}
12439
12440	bp->rx_mode = rx_mode;
12441	/* handle ISCSI SD mode */
12442	if (IS_MF_ISCSI_ONLY(bp))
12443		bp->rx_mode = BNX2X_RX_MODE_NONE;
12444
12445	/* Schedule the rx_mode command */
12446	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12447		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12448		netif_addr_unlock_bh(bp->dev);
12449		return;
12450	}
12451
12452	if (IS_PF(bp)) {
12453		bnx2x_set_storm_rx_mode(bp);
12454		netif_addr_unlock_bh(bp->dev);
12455	} else {
12456		/* VF will need to request the PF to make this change, and so
12457		 * the VF needs to release the bottom-half lock prior to the
12458		 * request (as it will likely require sleep on the VF side)
12459		 */
12460		netif_addr_unlock_bh(bp->dev);
12461		bnx2x_vfpf_storm_rx_mode(bp);
12462	}
12463}
12464
12465/* called with rtnl_lock */
12466static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12467			   int devad, u16 addr)
12468{
12469	struct bnx2x *bp = netdev_priv(netdev);
12470	u16 value;
12471	int rc;
12472
12473	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12474	   prtad, devad, addr);
12475
12476	/* The HW expects different devad if CL22 is used */
12477	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12478
12479	bnx2x_acquire_phy_lock(bp);
12480	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12481	bnx2x_release_phy_lock(bp);
12482	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12483
12484	if (!rc)
12485		rc = value;
12486	return rc;
12487}
12488
12489/* called with rtnl_lock */
12490static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12491			    u16 addr, u16 value)
12492{
12493	struct bnx2x *bp = netdev_priv(netdev);
12494	int rc;
12495
12496	DP(NETIF_MSG_LINK,
12497	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12498	   prtad, devad, addr, value);
12499
12500	/* The HW expects different devad if CL22 is used */
12501	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12502
12503	bnx2x_acquire_phy_lock(bp);
12504	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12505	bnx2x_release_phy_lock(bp);
12506	return rc;
12507}
12508
12509/* called with rtnl_lock */
12510static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12511{
12512	struct bnx2x *bp = netdev_priv(dev);
12513	struct mii_ioctl_data *mdio = if_mii(ifr);
12514
12515	if (!netif_running(dev))
12516		return -EAGAIN;
12517
12518	switch (cmd) {
12519	case SIOCSHWTSTAMP:
12520		return bnx2x_hwtstamp_ioctl(bp, ifr);
12521	default:
12522		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12523		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12524		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12525	}
12526}
12527
12528#ifdef CONFIG_NET_POLL_CONTROLLER
12529static void poll_bnx2x(struct net_device *dev)
12530{
12531	struct bnx2x *bp = netdev_priv(dev);
12532	int i;
12533
12534	for_each_eth_queue(bp, i) {
12535		struct bnx2x_fastpath *fp = &bp->fp[i];
12536		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12537	}
12538}
12539#endif
12540
12541static int bnx2x_validate_addr(struct net_device *dev)
12542{
12543	struct bnx2x *bp = netdev_priv(dev);
12544
12545	/* query the bulletin board for mac address configured by the PF */
12546	if (IS_VF(bp))
12547		bnx2x_sample_bulletin(bp);
12548
12549	if (!is_valid_ether_addr(dev->dev_addr)) {
12550		BNX2X_ERR("Non-valid Ethernet address\n");
12551		return -EADDRNOTAVAIL;
12552	}
12553	return 0;
12554}
12555
12556static int bnx2x_get_phys_port_id(struct net_device *netdev,
12557				  struct netdev_phys_item_id *ppid)
12558{
12559	struct bnx2x *bp = netdev_priv(netdev);
12560
12561	if (!(bp->flags & HAS_PHYS_PORT_ID))
12562		return -EOPNOTSUPP;
12563
12564	ppid->id_len = sizeof(bp->phys_port_id);
12565	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12566
12567	return 0;
12568}
12569
12570static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12571					      struct net_device *dev,
12572					      netdev_features_t features)
12573{
12574	features = vlan_features_check(skb, features);
12575	return vxlan_features_check(skb, features);
12576}
12577
12578static const struct net_device_ops bnx2x_netdev_ops = {
12579	.ndo_open		= bnx2x_open,
12580	.ndo_stop		= bnx2x_close,
12581	.ndo_start_xmit		= bnx2x_start_xmit,
12582	.ndo_select_queue	= bnx2x_select_queue,
12583	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12584	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12585	.ndo_validate_addr	= bnx2x_validate_addr,
12586	.ndo_do_ioctl		= bnx2x_ioctl,
12587	.ndo_change_mtu		= bnx2x_change_mtu,
12588	.ndo_fix_features	= bnx2x_fix_features,
12589	.ndo_set_features	= bnx2x_set_features,
12590	.ndo_tx_timeout		= bnx2x_tx_timeout,
12591#ifdef CONFIG_NET_POLL_CONTROLLER
12592	.ndo_poll_controller	= poll_bnx2x,
12593#endif
12594	.ndo_setup_tc		= bnx2x_setup_tc,
12595#ifdef CONFIG_BNX2X_SRIOV
12596	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12597	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12598	.ndo_get_vf_config	= bnx2x_get_vf_config,
12599#endif
12600#ifdef NETDEV_FCOE_WWNN
12601	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12602#endif
12603
12604#ifdef CONFIG_NET_RX_BUSY_POLL
12605	.ndo_busy_poll		= bnx2x_low_latency_recv,
12606#endif
12607	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12608	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
12609	.ndo_features_check	= bnx2x_features_check,
12610};
12611
12612static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12613{
12614	struct device *dev = &bp->pdev->dev;
12615
12616	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12617	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12618		dev_err(dev, "System does not support DMA, aborting\n");
12619		return -EIO;
12620	}
12621
12622	return 0;
12623}
12624
12625static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12626{
12627	if (bp->flags & AER_ENABLED) {
12628		pci_disable_pcie_error_reporting(bp->pdev);
12629		bp->flags &= ~AER_ENABLED;
12630	}
12631}
12632
12633static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12634			  struct net_device *dev, unsigned long board_type)
12635{
12636	int rc;
12637	u32 pci_cfg_dword;
12638	bool chip_is_e1x = (board_type == BCM57710 ||
12639			    board_type == BCM57711 ||
12640			    board_type == BCM57711E);
12641
12642	SET_NETDEV_DEV(dev, &pdev->dev);
12643
12644	bp->dev = dev;
12645	bp->pdev = pdev;
12646
12647	rc = pci_enable_device(pdev);
12648	if (rc) {
12649		dev_err(&bp->pdev->dev,
12650			"Cannot enable PCI device, aborting\n");
12651		goto err_out;
12652	}
12653
12654	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12655		dev_err(&bp->pdev->dev,
12656			"Cannot find PCI device base address, aborting\n");
12657		rc = -ENODEV;
12658		goto err_out_disable;
12659	}
12660
12661	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12662		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12663		rc = -ENODEV;
12664		goto err_out_disable;
12665	}
12666
12667	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12668	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12669	    PCICFG_REVESION_ID_ERROR_VAL) {
12670		pr_err("PCI device error, probably due to fan failure, aborting\n");
12671		rc = -ENODEV;
12672		goto err_out_disable;
12673	}
12674
12675	if (atomic_read(&pdev->enable_cnt) == 1) {
12676		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12677		if (rc) {
12678			dev_err(&bp->pdev->dev,
12679				"Cannot obtain PCI resources, aborting\n");
12680			goto err_out_disable;
12681		}
12682
12683		pci_set_master(pdev);
12684		pci_save_state(pdev);
12685	}
12686
12687	if (IS_PF(bp)) {
12688		if (!pdev->pm_cap) {
12689			dev_err(&bp->pdev->dev,
12690				"Cannot find power management capability, aborting\n");
12691			rc = -EIO;
12692			goto err_out_release;
12693		}
12694	}
12695
12696	if (!pci_is_pcie(pdev)) {
12697		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12698		rc = -EIO;
12699		goto err_out_release;
12700	}
12701
12702	rc = bnx2x_set_coherency_mask(bp);
12703	if (rc)
12704		goto err_out_release;
12705
12706	dev->mem_start = pci_resource_start(pdev, 0);
12707	dev->base_addr = dev->mem_start;
12708	dev->mem_end = pci_resource_end(pdev, 0);
12709
12710	dev->irq = pdev->irq;
12711
12712	bp->regview = pci_ioremap_bar(pdev, 0);
12713	if (!bp->regview) {
12714		dev_err(&bp->pdev->dev,
12715			"Cannot map register space, aborting\n");
12716		rc = -ENOMEM;
12717		goto err_out_release;
12718	}
12719
12720	/* In E1/E1H use pci device function given by kernel.
12721	 * In E2/E3 read physical function from ME register since these chips
12722	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12723	 * (depending on hypervisor).
12724	 */
12725	if (chip_is_e1x) {
12726		bp->pf_num = PCI_FUNC(pdev->devfn);
12727	} else {
12728		/* chip is E2/3*/
12729		pci_read_config_dword(bp->pdev,
12730				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12731		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12732				  ME_REG_ABS_PF_NUM_SHIFT);
12733	}
12734	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12735
12736	/* clean indirect addresses */
12737	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12738			       PCICFG_VENDOR_ID_OFFSET);
12739
12740	/* Set PCIe reset type to fundamental for EEH recovery */
12741	pdev->needs_freset = 1;
12742
12743	/* AER (Advanced Error reporting) configuration */
12744	rc = pci_enable_pcie_error_reporting(pdev);
12745	if (!rc)
12746		bp->flags |= AER_ENABLED;
12747	else
12748		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12749
12750	/*
12751	 * Clean the following indirect addresses for all functions since it
12752	 * is not used by the driver.
12753	 */
12754	if (IS_PF(bp)) {
12755		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12756		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12757		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12758		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12759
12760		if (chip_is_e1x) {
12761			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12762			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12763			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12764			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12765		}
12766
12767		/* Enable internal target-read (in case we are probed after PF
12768		 * FLR). Must be done prior to any BAR read access. Only for
12769		 * 57712 and up
12770		 */
12771		if (!chip_is_e1x)
12772			REG_WR(bp,
12773			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12774	}
12775
12776	dev->watchdog_timeo = TX_TIMEOUT;
12777
12778	dev->netdev_ops = &bnx2x_netdev_ops;
12779	bnx2x_set_ethtool_ops(bp, dev);
12780
12781	dev->priv_flags |= IFF_UNICAST_FLT;
12782
12783	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12784		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12785		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12786		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12787	if (!chip_is_e1x) {
12788		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12789				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12790		dev->hw_enc_features =
12791			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12792			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12793			NETIF_F_GSO_IPIP |
12794			NETIF_F_GSO_SIT |
12795			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12796	}
12797
12798	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12799		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12800
12801	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12802	dev->features |= NETIF_F_HIGHDMA;
12803
12804	/* Add Loopback capability to the device */
12805	dev->hw_features |= NETIF_F_LOOPBACK;
12806
12807#ifdef BCM_DCBNL
12808	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12809#endif
12810
12811	/* get_port_hwinfo() will set prtad and mmds properly */
12812	bp->mdio.prtad = MDIO_PRTAD_NONE;
12813	bp->mdio.mmds = 0;
12814	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12815	bp->mdio.dev = dev;
12816	bp->mdio.mdio_read = bnx2x_mdio_read;
12817	bp->mdio.mdio_write = bnx2x_mdio_write;
12818
12819	return 0;
12820
12821err_out_release:
12822	if (atomic_read(&pdev->enable_cnt) == 1)
12823		pci_release_regions(pdev);
12824
12825err_out_disable:
12826	pci_disable_device(pdev);
12827
12828err_out:
12829	return rc;
12830}
12831
12832static int bnx2x_check_firmware(struct bnx2x *bp)
12833{
12834	const struct firmware *firmware = bp->firmware;
12835	struct bnx2x_fw_file_hdr *fw_hdr;
12836	struct bnx2x_fw_file_section *sections;
12837	u32 offset, len, num_ops;
12838	__be16 *ops_offsets;
12839	int i;
12840	const u8 *fw_ver;
12841
12842	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12843		BNX2X_ERR("Wrong FW size\n");
12844		return -EINVAL;
12845	}
12846
12847	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12848	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12849
12850	/* Make sure none of the offsets and sizes make us read beyond
12851	 * the end of the firmware data */
12852	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12853		offset = be32_to_cpu(sections[i].offset);
12854		len = be32_to_cpu(sections[i].len);
12855		if (offset + len > firmware->size) {
12856			BNX2X_ERR("Section %d length is out of bounds\n", i);
12857			return -EINVAL;
12858		}
12859	}
12860
12861	/* Likewise for the init_ops offsets */
12862	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12863	ops_offsets = (__force __be16 *)(firmware->data + offset);
12864	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12865
12866	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12867		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12868			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12869			return -EINVAL;
12870		}
12871	}
12872
12873	/* Check FW version */
12874	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12875	fw_ver = firmware->data + offset;
12876	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12877	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12878	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12879	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12880		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12881		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12882		       BCM_5710_FW_MAJOR_VERSION,
12883		       BCM_5710_FW_MINOR_VERSION,
12884		       BCM_5710_FW_REVISION_VERSION,
12885		       BCM_5710_FW_ENGINEERING_VERSION);
12886		return -EINVAL;
12887	}
12888
12889	return 0;
12890}
12891
12892static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12893{
12894	const __be32 *source = (const __be32 *)_source;
12895	u32 *target = (u32 *)_target;
12896	u32 i;
12897
12898	for (i = 0; i < n/4; i++)
12899		target[i] = be32_to_cpu(source[i]);
12900}
12901
12902/*
12903   Ops array is stored in the following format:
12904   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12905 */
12906static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12907{
12908	const __be32 *source = (const __be32 *)_source;
12909	struct raw_op *target = (struct raw_op *)_target;
12910	u32 i, j, tmp;
12911
12912	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12913		tmp = be32_to_cpu(source[j]);
12914		target[i].op = (tmp >> 24) & 0xff;
12915		target[i].offset = tmp & 0xffffff;
12916		target[i].raw_data = be32_to_cpu(source[j + 1]);
12917	}
12918}
12919
12920/* IRO array is stored in the following format:
12921 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12922 */
12923static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12924{
12925	const __be32 *source = (const __be32 *)_source;
12926	struct iro *target = (struct iro *)_target;
12927	u32 i, j, tmp;
12928
12929	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12930		target[i].base = be32_to_cpu(source[j]);
12931		j++;
12932		tmp = be32_to_cpu(source[j]);
12933		target[i].m1 = (tmp >> 16) & 0xffff;
12934		target[i].m2 = tmp & 0xffff;
12935		j++;
12936		tmp = be32_to_cpu(source[j]);
12937		target[i].m3 = (tmp >> 16) & 0xffff;
12938		target[i].size = tmp & 0xffff;
12939		j++;
12940	}
12941}
12942
12943static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12944{
12945	const __be16 *source = (const __be16 *)_source;
12946	u16 *target = (u16 *)_target;
12947	u32 i;
12948
12949	for (i = 0; i < n/2; i++)
12950		target[i] = be16_to_cpu(source[i]);
12951}
12952
12953#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12954do {									\
12955	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12956	bp->arr = kmalloc(len, GFP_KERNEL);				\
12957	if (!bp->arr)							\
12958		goto lbl;						\
12959	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12960	     (u8 *)bp->arr, len);					\
12961} while (0)
12962
12963static int bnx2x_init_firmware(struct bnx2x *bp)
12964{
12965	const char *fw_file_name;
12966	struct bnx2x_fw_file_hdr *fw_hdr;
12967	int rc;
12968
12969	if (bp->firmware)
12970		return 0;
12971
12972	if (CHIP_IS_E1(bp))
12973		fw_file_name = FW_FILE_NAME_E1;
12974	else if (CHIP_IS_E1H(bp))
12975		fw_file_name = FW_FILE_NAME_E1H;
12976	else if (!CHIP_IS_E1x(bp))
12977		fw_file_name = FW_FILE_NAME_E2;
12978	else {
12979		BNX2X_ERR("Unsupported chip revision\n");
12980		return -EINVAL;
12981	}
12982	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12983
12984	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12985	if (rc) {
12986		BNX2X_ERR("Can't load firmware file %s\n",
12987			  fw_file_name);
12988		goto request_firmware_exit;
12989	}
12990
12991	rc = bnx2x_check_firmware(bp);
12992	if (rc) {
12993		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12994		goto request_firmware_exit;
12995	}
12996
12997	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12998
12999	/* Initialize the pointers to the init arrays */
13000	/* Blob */
13001	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13002
13003	/* Opcodes */
13004	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13005
13006	/* Offsets */
13007	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13008			    be16_to_cpu_n);
13009
13010	/* STORMs firmware */
13011	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13012			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13013	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13014			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13015	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13016			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13017	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13018			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13019	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13020			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13021	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13022			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13023	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13024			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13025	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13026			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13027	/* IRO */
13028	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13029
13030	return 0;
13031
13032iro_alloc_err:
13033	kfree(bp->init_ops_offsets);
13034init_offsets_alloc_err:
13035	kfree(bp->init_ops);
13036init_ops_alloc_err:
13037	kfree(bp->init_data);
13038request_firmware_exit:
13039	release_firmware(bp->firmware);
13040	bp->firmware = NULL;
13041
13042	return rc;
13043}
13044
13045static void bnx2x_release_firmware(struct bnx2x *bp)
13046{
13047	kfree(bp->init_ops_offsets);
13048	kfree(bp->init_ops);
13049	kfree(bp->init_data);
13050	release_firmware(bp->firmware);
13051	bp->firmware = NULL;
13052}
13053
13054static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13055	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13056	.init_hw_cmn      = bnx2x_init_hw_common,
13057	.init_hw_port     = bnx2x_init_hw_port,
13058	.init_hw_func     = bnx2x_init_hw_func,
13059
13060	.reset_hw_cmn     = bnx2x_reset_common,
13061	.reset_hw_port    = bnx2x_reset_port,
13062	.reset_hw_func    = bnx2x_reset_func,
13063
13064	.gunzip_init      = bnx2x_gunzip_init,
13065	.gunzip_end       = bnx2x_gunzip_end,
13066
13067	.init_fw          = bnx2x_init_firmware,
13068	.release_fw       = bnx2x_release_firmware,
13069};
13070
13071void bnx2x__init_func_obj(struct bnx2x *bp)
13072{
13073	/* Prepare DMAE related driver resources */
13074	bnx2x_setup_dmae(bp);
13075
13076	bnx2x_init_func_obj(bp, &bp->func_obj,
13077			    bnx2x_sp(bp, func_rdata),
13078			    bnx2x_sp_mapping(bp, func_rdata),
13079			    bnx2x_sp(bp, func_afex_rdata),
13080			    bnx2x_sp_mapping(bp, func_afex_rdata),
13081			    &bnx2x_func_sp_drv);
13082}
13083
13084/* must be called after sriov-enable */
13085static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13086{
13087	int cid_count = BNX2X_L2_MAX_CID(bp);
13088
13089	if (IS_SRIOV(bp))
13090		cid_count += BNX2X_VF_CIDS;
13091
13092	if (CNIC_SUPPORT(bp))
13093		cid_count += CNIC_CID_MAX;
13094
13095	return roundup(cid_count, QM_CID_ROUND);
13096}
13097
13098/**
13099 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13100 *
13101 * @dev:	pci device
13102 *
13103 */
13104static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13105{
13106	int index;
13107	u16 control = 0;
13108
13109	/*
13110	 * If MSI-X is not supported - return number of SBs needed to support
13111	 * one fast path queue: one FP queue + SB for CNIC
13112	 */
13113	if (!pdev->msix_cap) {
13114		dev_info(&pdev->dev, "no msix capability found\n");
13115		return 1 + cnic_cnt;
13116	}
13117	dev_info(&pdev->dev, "msix capability found\n");
13118
13119	/*
13120	 * The value in the PCI configuration space is the index of the last
13121	 * entry, namely one less than the actual size of the table, which is
13122	 * exactly what we want to return from this function: number of all SBs
13123	 * without the default SB.
13124	 * For VFs there is no default SB, then we return (index+1).
13125	 */
13126	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13127
13128	index = control & PCI_MSIX_FLAGS_QSIZE;
13129
13130	return index;
13131}
13132
13133static int set_max_cos_est(int chip_id)
13134{
13135	switch (chip_id) {
13136	case BCM57710:
13137	case BCM57711:
13138	case BCM57711E:
13139		return BNX2X_MULTI_TX_COS_E1X;
13140	case BCM57712:
13141	case BCM57712_MF:
13142		return BNX2X_MULTI_TX_COS_E2_E3A0;
13143	case BCM57800:
13144	case BCM57800_MF:
13145	case BCM57810:
13146	case BCM57810_MF:
13147	case BCM57840_4_10:
13148	case BCM57840_2_20:
13149	case BCM57840_O:
13150	case BCM57840_MFO:
13151	case BCM57840_MF:
13152	case BCM57811:
13153	case BCM57811_MF:
13154		return BNX2X_MULTI_TX_COS_E3B0;
13155	case BCM57712_VF:
13156	case BCM57800_VF:
13157	case BCM57810_VF:
13158	case BCM57840_VF:
13159	case BCM57811_VF:
13160		return 1;
13161	default:
13162		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13163		return -ENODEV;
13164	}
13165}
13166
13167static int set_is_vf(int chip_id)
13168{
13169	switch (chip_id) {
13170	case BCM57712_VF:
13171	case BCM57800_VF:
13172	case BCM57810_VF:
13173	case BCM57840_VF:
13174	case BCM57811_VF:
13175		return true;
13176	default:
13177		return false;
13178	}
13179}
13180
13181/* nig_tsgen registers relative address */
13182#define tsgen_ctrl 0x0
13183#define tsgen_freecount 0x10
13184#define tsgen_synctime_t0 0x20
13185#define tsgen_offset_t0 0x28
13186#define tsgen_drift_t0 0x30
13187#define tsgen_synctime_t1 0x58
13188#define tsgen_offset_t1 0x60
13189#define tsgen_drift_t1 0x68
13190
13191/* FW workaround for setting drift */
13192static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13193					  int best_val, int best_period)
13194{
13195	struct bnx2x_func_state_params func_params = {NULL};
13196	struct bnx2x_func_set_timesync_params *set_timesync_params =
13197		&func_params.params.set_timesync;
13198
13199	/* Prepare parameters for function state transitions */
13200	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13201	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13202
13203	func_params.f_obj = &bp->func_obj;
13204	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13205
13206	/* Function parameters */
13207	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13208	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13209	set_timesync_params->add_sub_drift_adjust_value =
13210		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13211	set_timesync_params->drift_adjust_value = best_val;
13212	set_timesync_params->drift_adjust_period = best_period;
13213
13214	return bnx2x_func_state_change(bp, &func_params);
13215}
13216
13217static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13218{
13219	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13220	int rc;
13221	int drift_dir = 1;
13222	int val, period, period1, period2, dif, dif1, dif2;
13223	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13224
13225	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13226
13227	if (!netif_running(bp->dev)) {
13228		DP(BNX2X_MSG_PTP,
13229		   "PTP adjfreq called while the interface is down\n");
13230		return -EFAULT;
13231	}
13232
13233	if (ppb < 0) {
13234		ppb = -ppb;
13235		drift_dir = 0;
13236	}
13237
13238	if (ppb == 0) {
13239		best_val = 1;
13240		best_period = 0x1FFFFFF;
13241	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13242		best_val = 31;
13243		best_period = 1;
13244	} else {
13245		/* Changed not to allow val = 8, 16, 24 as these values
13246		 * are not supported in workaround.
13247		 */
13248		for (val = 0; val <= 31; val++) {
13249			if ((val & 0x7) == 0)
13250				continue;
13251			period1 = val * 1000000 / ppb;
13252			period2 = period1 + 1;
13253			if (period1 != 0)
13254				dif1 = ppb - (val * 1000000 / period1);
13255			else
13256				dif1 = BNX2X_MAX_PHC_DRIFT;
13257			if (dif1 < 0)
13258				dif1 = -dif1;
13259			dif2 = ppb - (val * 1000000 / period2);
13260			if (dif2 < 0)
13261				dif2 = -dif2;
13262			dif = (dif1 < dif2) ? dif1 : dif2;
13263			period = (dif1 < dif2) ? period1 : period2;
13264			if (dif < best_dif) {
13265				best_dif = dif;
13266				best_val = val;
13267				best_period = period;
13268			}
13269		}
13270	}
13271
13272	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13273					    best_period);
13274	if (rc) {
13275		BNX2X_ERR("Failed to set drift\n");
13276		return -EFAULT;
13277	}
13278
13279	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13280	   best_period);
13281
13282	return 0;
13283}
13284
13285static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13286{
13287	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13288
13289	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13290
13291	timecounter_adjtime(&bp->timecounter, delta);
13292
13293	return 0;
13294}
13295
13296static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13297{
13298	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13299	u64 ns;
13300
13301	ns = timecounter_read(&bp->timecounter);
13302
13303	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13304
13305	*ts = ns_to_timespec64(ns);
13306
13307	return 0;
13308}
13309
13310static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13311			     const struct timespec64 *ts)
13312{
13313	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13314	u64 ns;
13315
13316	ns = timespec64_to_ns(ts);
13317
13318	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13319
13320	/* Re-init the timecounter */
13321	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13322
13323	return 0;
13324}
13325
13326/* Enable (or disable) ancillary features of the phc subsystem */
13327static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13328			    struct ptp_clock_request *rq, int on)
13329{
13330	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13331
13332	BNX2X_ERR("PHC ancillary features are not supported\n");
13333	return -ENOTSUPP;
13334}
13335
13336static void bnx2x_register_phc(struct bnx2x *bp)
13337{
13338	/* Fill the ptp_clock_info struct and register PTP clock*/
13339	bp->ptp_clock_info.owner = THIS_MODULE;
13340	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13341	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13342	bp->ptp_clock_info.n_alarm = 0;
13343	bp->ptp_clock_info.n_ext_ts = 0;
13344	bp->ptp_clock_info.n_per_out = 0;
13345	bp->ptp_clock_info.pps = 0;
13346	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13347	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13348	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13349	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13350	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13351
13352	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13353	if (IS_ERR(bp->ptp_clock)) {
13354		bp->ptp_clock = NULL;
13355		BNX2X_ERR("PTP clock registeration failed\n");
13356	}
13357}
13358
13359static int bnx2x_init_one(struct pci_dev *pdev,
13360				    const struct pci_device_id *ent)
13361{
13362	struct net_device *dev = NULL;
13363	struct bnx2x *bp;
13364	enum pcie_link_width pcie_width;
13365	enum pci_bus_speed pcie_speed;
13366	int rc, max_non_def_sbs;
13367	int rx_count, tx_count, rss_count, doorbell_size;
13368	int max_cos_est;
13369	bool is_vf;
13370	int cnic_cnt;
13371
13372	/* Management FW 'remembers' living interfaces. Allow it some time
13373	 * to forget previously living interfaces, allowing a proper re-load.
13374	 */
13375	if (is_kdump_kernel()) {
13376		ktime_t now = ktime_get_boottime();
13377		ktime_t fw_ready_time = ktime_set(5, 0);
13378
13379		if (ktime_before(now, fw_ready_time))
13380			msleep(ktime_ms_delta(fw_ready_time, now));
13381	}
13382
13383	/* An estimated maximum supported CoS number according to the chip
13384	 * version.
13385	 * We will try to roughly estimate the maximum number of CoSes this chip
13386	 * may support in order to minimize the memory allocated for Tx
13387	 * netdev_queue's. This number will be accurately calculated during the
13388	 * initialization of bp->max_cos based on the chip versions AND chip
13389	 * revision in the bnx2x_init_bp().
13390	 */
13391	max_cos_est = set_max_cos_est(ent->driver_data);
13392	if (max_cos_est < 0)
13393		return max_cos_est;
13394	is_vf = set_is_vf(ent->driver_data);
13395	cnic_cnt = is_vf ? 0 : 1;
13396
13397	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13398
13399	/* add another SB for VF as it has no default SB */
13400	max_non_def_sbs += is_vf ? 1 : 0;
13401
13402	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13403	rss_count = max_non_def_sbs - cnic_cnt;
13404
13405	if (rss_count < 1)
13406		return -EINVAL;
13407
13408	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13409	rx_count = rss_count + cnic_cnt;
13410
13411	/* Maximum number of netdev Tx queues:
13412	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13413	 */
13414	tx_count = rss_count * max_cos_est + cnic_cnt;
13415
13416	/* dev zeroed in init_etherdev */
13417	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13418	if (!dev)
13419		return -ENOMEM;
13420
13421	bp = netdev_priv(dev);
13422
13423	bp->flags = 0;
13424	if (is_vf)
13425		bp->flags |= IS_VF_FLAG;
13426
13427	bp->igu_sb_cnt = max_non_def_sbs;
13428	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13429	bp->msg_enable = debug;
13430	bp->cnic_support = cnic_cnt;
13431	bp->cnic_probe = bnx2x_cnic_probe;
13432
13433	pci_set_drvdata(pdev, dev);
13434
13435	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13436	if (rc < 0) {
13437		free_netdev(dev);
13438		return rc;
13439	}
13440
13441	BNX2X_DEV_INFO("This is a %s function\n",
13442		       IS_PF(bp) ? "physical" : "virtual");
13443	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13444	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13445	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13446		       tx_count, rx_count);
13447
13448	rc = bnx2x_init_bp(bp);
13449	if (rc)
13450		goto init_one_exit;
13451
13452	/* Map doorbells here as we need the real value of bp->max_cos which
13453	 * is initialized in bnx2x_init_bp() to determine the number of
13454	 * l2 connections.
13455	 */
13456	if (IS_VF(bp)) {
13457		bp->doorbells = bnx2x_vf_doorbells(bp);
13458		rc = bnx2x_vf_pci_alloc(bp);
13459		if (rc)
13460			goto init_one_exit;
13461	} else {
13462		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13463		if (doorbell_size > pci_resource_len(pdev, 2)) {
13464			dev_err(&bp->pdev->dev,
13465				"Cannot map doorbells, bar size too small, aborting\n");
13466			rc = -ENOMEM;
13467			goto init_one_exit;
13468		}
13469		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13470						doorbell_size);
13471	}
13472	if (!bp->doorbells) {
13473		dev_err(&bp->pdev->dev,
13474			"Cannot map doorbell space, aborting\n");
13475		rc = -ENOMEM;
13476		goto init_one_exit;
13477	}
13478
13479	if (IS_VF(bp)) {
13480		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13481		if (rc)
13482			goto init_one_exit;
13483	}
13484
13485	/* Enable SRIOV if capability found in configuration space */
13486	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13487	if (rc)
13488		goto init_one_exit;
13489
13490	/* calc qm_cid_count */
13491	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13492	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13493
13494	/* disable FCOE L2 queue for E1x*/
13495	if (CHIP_IS_E1x(bp))
13496		bp->flags |= NO_FCOE_FLAG;
13497
13498	/* Set bp->num_queues for MSI-X mode*/
13499	bnx2x_set_num_queues(bp);
13500
13501	/* Configure interrupt mode: try to enable MSI-X/MSI if
13502	 * needed.
13503	 */
13504	rc = bnx2x_set_int_mode(bp);
13505	if (rc) {
13506		dev_err(&pdev->dev, "Cannot set interrupts\n");
13507		goto init_one_exit;
13508	}
13509	BNX2X_DEV_INFO("set interrupts successfully\n");
13510
13511	/* register the net device */
13512	rc = register_netdev(dev);
13513	if (rc) {
13514		dev_err(&pdev->dev, "Cannot register net device\n");
13515		goto init_one_exit;
13516	}
13517	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13518
13519	if (!NO_FCOE(bp)) {
13520		/* Add storage MAC address */
13521		rtnl_lock();
13522		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13523		rtnl_unlock();
13524	}
13525	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13526	    pcie_speed == PCI_SPEED_UNKNOWN ||
13527	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13528		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13529	else
13530		BNX2X_DEV_INFO(
13531		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13532		       board_info[ent->driver_data].name,
13533		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13534		       pcie_width,
13535		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13536		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13537		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13538		       "Unknown",
13539		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13540
13541	bnx2x_register_phc(bp);
13542
13543	return 0;
13544
13545init_one_exit:
13546	bnx2x_disable_pcie_error_reporting(bp);
13547
13548	if (bp->regview)
13549		iounmap(bp->regview);
13550
13551	if (IS_PF(bp) && bp->doorbells)
13552		iounmap(bp->doorbells);
13553
13554	free_netdev(dev);
13555
13556	if (atomic_read(&pdev->enable_cnt) == 1)
13557		pci_release_regions(pdev);
13558
13559	pci_disable_device(pdev);
13560
13561	return rc;
13562}
13563
13564static void __bnx2x_remove(struct pci_dev *pdev,
13565			   struct net_device *dev,
13566			   struct bnx2x *bp,
13567			   bool remove_netdev)
13568{
13569	if (bp->ptp_clock) {
13570		ptp_clock_unregister(bp->ptp_clock);
13571		bp->ptp_clock = NULL;
13572	}
13573
13574	/* Delete storage MAC address */
13575	if (!NO_FCOE(bp)) {
13576		rtnl_lock();
13577		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13578		rtnl_unlock();
13579	}
13580
13581#ifdef BCM_DCBNL
13582	/* Delete app tlvs from dcbnl */
13583	bnx2x_dcbnl_update_applist(bp, true);
13584#endif
13585
13586	if (IS_PF(bp) &&
13587	    !BP_NOMCP(bp) &&
13588	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13589		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13590
13591	/* Close the interface - either directly or implicitly */
13592	if (remove_netdev) {
13593		unregister_netdev(dev);
13594	} else {
13595		rtnl_lock();
13596		dev_close(dev);
13597		rtnl_unlock();
13598	}
13599
13600	bnx2x_iov_remove_one(bp);
13601
13602	/* Power on: we can't let PCI layer write to us while we are in D3 */
13603	if (IS_PF(bp)) {
13604		bnx2x_set_power_state(bp, PCI_D0);
13605
13606		/* Set endianity registers to reset values in case next driver
13607		 * boots in different endianty environment.
13608		 */
13609		bnx2x_reset_endianity(bp);
13610	}
13611
13612	/* Disable MSI/MSI-X */
13613	bnx2x_disable_msi(bp);
13614
13615	/* Power off */
13616	if (IS_PF(bp))
13617		bnx2x_set_power_state(bp, PCI_D3hot);
13618
13619	/* Make sure RESET task is not scheduled before continuing */
13620	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13621
13622	/* send message via vfpf channel to release the resources of this vf */
13623	if (IS_VF(bp))
13624		bnx2x_vfpf_release(bp);
13625
13626	/* Assumes no further PCIe PM changes will occur */
13627	if (system_state == SYSTEM_POWER_OFF) {
13628		pci_wake_from_d3(pdev, bp->wol);
13629		pci_set_power_state(pdev, PCI_D3hot);
13630	}
13631
13632	bnx2x_disable_pcie_error_reporting(bp);
13633	if (remove_netdev) {
13634		if (bp->regview)
13635			iounmap(bp->regview);
13636
13637		/* For vfs, doorbells are part of the regview and were unmapped
13638		 * along with it. FW is only loaded by PF.
13639		 */
13640		if (IS_PF(bp)) {
13641			if (bp->doorbells)
13642				iounmap(bp->doorbells);
13643
13644			bnx2x_release_firmware(bp);
13645		} else {
13646			bnx2x_vf_pci_dealloc(bp);
13647		}
13648		bnx2x_free_mem_bp(bp);
13649
13650		free_netdev(dev);
13651
13652		if (atomic_read(&pdev->enable_cnt) == 1)
13653			pci_release_regions(pdev);
13654
13655		pci_disable_device(pdev);
13656	}
13657}
13658
13659static void bnx2x_remove_one(struct pci_dev *pdev)
13660{
13661	struct net_device *dev = pci_get_drvdata(pdev);
13662	struct bnx2x *bp;
13663
13664	if (!dev) {
13665		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13666		return;
13667	}
13668	bp = netdev_priv(dev);
13669
13670	__bnx2x_remove(pdev, dev, bp, true);
13671}
13672
13673static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13674{
13675	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13676
13677	bp->rx_mode = BNX2X_RX_MODE_NONE;
13678
13679	if (CNIC_LOADED(bp))
13680		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13681
13682	/* Stop Tx */
13683	bnx2x_tx_disable(bp);
13684	/* Delete all NAPI objects */
13685	bnx2x_del_all_napi(bp);
13686	if (CNIC_LOADED(bp))
13687		bnx2x_del_all_napi_cnic(bp);
13688	netdev_reset_tc(bp->dev);
13689
13690	del_timer_sync(&bp->timer);
13691	cancel_delayed_work_sync(&bp->sp_task);
13692	cancel_delayed_work_sync(&bp->period_task);
13693
13694	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
13695		bp->stats_state = STATS_STATE_DISABLED;
13696		up(&bp->stats_lock);
13697	}
13698
13699	bnx2x_save_statistics(bp);
13700
13701	netif_carrier_off(bp->dev);
13702
13703	return 0;
13704}
13705
13706/**
13707 * bnx2x_io_error_detected - called when PCI error is detected
13708 * @pdev: Pointer to PCI device
13709 * @state: The current pci connection state
13710 *
13711 * This function is called after a PCI bus error affecting
13712 * this device has been detected.
13713 */
13714static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13715						pci_channel_state_t state)
13716{
13717	struct net_device *dev = pci_get_drvdata(pdev);
13718	struct bnx2x *bp = netdev_priv(dev);
13719
13720	rtnl_lock();
13721
13722	BNX2X_ERR("IO error detected\n");
13723
13724	netif_device_detach(dev);
13725
13726	if (state == pci_channel_io_perm_failure) {
13727		rtnl_unlock();
13728		return PCI_ERS_RESULT_DISCONNECT;
13729	}
13730
13731	if (netif_running(dev))
13732		bnx2x_eeh_nic_unload(bp);
13733
13734	bnx2x_prev_path_mark_eeh(bp);
13735
13736	pci_disable_device(pdev);
13737
13738	rtnl_unlock();
13739
13740	/* Request a slot reset */
13741	return PCI_ERS_RESULT_NEED_RESET;
13742}
13743
13744/**
13745 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13746 * @pdev: Pointer to PCI device
13747 *
13748 * Restart the card from scratch, as if from a cold-boot.
13749 */
13750static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13751{
13752	struct net_device *dev = pci_get_drvdata(pdev);
13753	struct bnx2x *bp = netdev_priv(dev);
13754	int i;
13755
13756	rtnl_lock();
13757	BNX2X_ERR("IO slot reset initializing...\n");
13758	if (pci_enable_device(pdev)) {
13759		dev_err(&pdev->dev,
13760			"Cannot re-enable PCI device after reset\n");
13761		rtnl_unlock();
13762		return PCI_ERS_RESULT_DISCONNECT;
13763	}
13764
13765	pci_set_master(pdev);
13766	pci_restore_state(pdev);
13767	pci_save_state(pdev);
13768
13769	if (netif_running(dev))
13770		bnx2x_set_power_state(bp, PCI_D0);
13771
13772	if (netif_running(dev)) {
13773		BNX2X_ERR("IO slot reset --> driver unload\n");
13774
13775		/* MCP should have been reset; Need to wait for validity */
13776		bnx2x_init_shmem(bp);
13777
13778		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13779			u32 v;
13780
13781			v = SHMEM2_RD(bp,
13782				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13783			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13784				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13785		}
13786		bnx2x_drain_tx_queues(bp);
13787		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13788		bnx2x_netif_stop(bp, 1);
13789		bnx2x_free_irq(bp);
13790
13791		/* Report UNLOAD_DONE to MCP */
13792		bnx2x_send_unload_done(bp, true);
13793
13794		bp->sp_state = 0;
13795		bp->port.pmf = 0;
13796
13797		bnx2x_prev_unload(bp);
13798
13799		/* We should have reseted the engine, so It's fair to
13800		 * assume the FW will no longer write to the bnx2x driver.
13801		 */
13802		bnx2x_squeeze_objects(bp);
13803		bnx2x_free_skbs(bp);
13804		for_each_rx_queue(bp, i)
13805			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13806		bnx2x_free_fp_mem(bp);
13807		bnx2x_free_mem(bp);
13808
13809		bp->state = BNX2X_STATE_CLOSED;
13810	}
13811
13812	rtnl_unlock();
13813
13814	/* If AER, perform cleanup of the PCIe registers */
13815	if (bp->flags & AER_ENABLED) {
13816		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13817			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13818		else
13819			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13820	}
13821
13822	return PCI_ERS_RESULT_RECOVERED;
13823}
13824
13825/**
13826 * bnx2x_io_resume - called when traffic can start flowing again
13827 * @pdev: Pointer to PCI device
13828 *
13829 * This callback is called when the error recovery driver tells us that
13830 * its OK to resume normal operation.
13831 */
13832static void bnx2x_io_resume(struct pci_dev *pdev)
13833{
13834	struct net_device *dev = pci_get_drvdata(pdev);
13835	struct bnx2x *bp = netdev_priv(dev);
13836
13837	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13838		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13839		return;
13840	}
13841
13842	rtnl_lock();
13843
13844	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13845							DRV_MSG_SEQ_NUMBER_MASK;
13846
13847	if (netif_running(dev))
13848		bnx2x_nic_load(bp, LOAD_NORMAL);
13849
13850	netif_device_attach(dev);
13851
13852	rtnl_unlock();
13853}
13854
13855static const struct pci_error_handlers bnx2x_err_handler = {
13856	.error_detected = bnx2x_io_error_detected,
13857	.slot_reset     = bnx2x_io_slot_reset,
13858	.resume         = bnx2x_io_resume,
13859};
13860
13861static void bnx2x_shutdown(struct pci_dev *pdev)
13862{
13863	struct net_device *dev = pci_get_drvdata(pdev);
13864	struct bnx2x *bp;
13865
13866	if (!dev)
13867		return;
13868
13869	bp = netdev_priv(dev);
13870	if (!bp)
13871		return;
13872
13873	rtnl_lock();
13874	netif_device_detach(dev);
13875	rtnl_unlock();
13876
13877	/* Don't remove the netdevice, as there are scenarios which will cause
13878	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13879	 * rootfs is mounted from SAN.
13880	 */
13881	__bnx2x_remove(pdev, dev, bp, false);
13882}
13883
13884static struct pci_driver bnx2x_pci_driver = {
13885	.name        = DRV_MODULE_NAME,
13886	.id_table    = bnx2x_pci_tbl,
13887	.probe       = bnx2x_init_one,
13888	.remove      = bnx2x_remove_one,
13889	.suspend     = bnx2x_suspend,
13890	.resume      = bnx2x_resume,
13891	.err_handler = &bnx2x_err_handler,
13892#ifdef CONFIG_BNX2X_SRIOV
13893	.sriov_configure = bnx2x_sriov_configure,
13894#endif
13895	.shutdown    = bnx2x_shutdown,
13896};
13897
13898static int __init bnx2x_init(void)
13899{
13900	int ret;
13901
13902	pr_info("%s", version);
13903
13904	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13905	if (bnx2x_wq == NULL) {
13906		pr_err("Cannot create workqueue\n");
13907		return -ENOMEM;
13908	}
13909	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13910	if (!bnx2x_iov_wq) {
13911		pr_err("Cannot create iov workqueue\n");
13912		destroy_workqueue(bnx2x_wq);
13913		return -ENOMEM;
13914	}
13915
13916	ret = pci_register_driver(&bnx2x_pci_driver);
13917	if (ret) {
13918		pr_err("Cannot register driver\n");
13919		destroy_workqueue(bnx2x_wq);
13920		destroy_workqueue(bnx2x_iov_wq);
13921	}
13922	return ret;
13923}
13924
13925static void __exit bnx2x_cleanup(void)
13926{
13927	struct list_head *pos, *q;
13928
13929	pci_unregister_driver(&bnx2x_pci_driver);
13930
13931	destroy_workqueue(bnx2x_wq);
13932	destroy_workqueue(bnx2x_iov_wq);
13933
13934	/* Free globally allocated resources */
13935	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13936		struct bnx2x_prev_path_list *tmp =
13937			list_entry(pos, struct bnx2x_prev_path_list, list);
13938		list_del(pos);
13939		kfree(tmp);
13940	}
13941}
13942
13943void bnx2x_notify_link_changed(struct bnx2x *bp)
13944{
13945	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13946}
13947
13948module_init(bnx2x_init);
13949module_exit(bnx2x_cleanup);
13950
13951/**
13952 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13953 *
13954 * @bp:		driver handle
13955 * @set:	set or clear the CAM entry
13956 *
13957 * This function will wait until the ramrod completion returns.
13958 * Return 0 if success, -ENODEV if ramrod doesn't return.
13959 */
13960static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13961{
13962	unsigned long ramrod_flags = 0;
13963
13964	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13965	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13966				 &bp->iscsi_l2_mac_obj, true,
13967				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13968}
13969
13970/* count denotes the number of new completions we have seen */
13971static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13972{
13973	struct eth_spe *spe;
13974	int cxt_index, cxt_offset;
13975
13976#ifdef BNX2X_STOP_ON_ERROR
13977	if (unlikely(bp->panic))
13978		return;
13979#endif
13980
13981	spin_lock_bh(&bp->spq_lock);
13982	BUG_ON(bp->cnic_spq_pending < count);
13983	bp->cnic_spq_pending -= count;
13984
13985	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13986		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13987				& SPE_HDR_CONN_TYPE) >>
13988				SPE_HDR_CONN_TYPE_SHIFT;
13989		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13990				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13991
13992		/* Set validation for iSCSI L2 client before sending SETUP
13993		 *  ramrod
13994		 */
13995		if (type == ETH_CONNECTION_TYPE) {
13996			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13997				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13998					ILT_PAGE_CIDS;
13999				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14000					(cxt_index * ILT_PAGE_CIDS);
14001				bnx2x_set_ctx_validation(bp,
14002					&bp->context[cxt_index].
14003							 vcxt[cxt_offset].eth,
14004					BNX2X_ISCSI_ETH_CID(bp));
14005			}
14006		}
14007
14008		/*
14009		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14010		 * and in the air. We also check that number of outstanding
14011		 * COMMON ramrods is not more than the EQ and SPQ can
14012		 * accommodate.
14013		 */
14014		if (type == ETH_CONNECTION_TYPE) {
14015			if (!atomic_read(&bp->cq_spq_left))
14016				break;
14017			else
14018				atomic_dec(&bp->cq_spq_left);
14019		} else if (type == NONE_CONNECTION_TYPE) {
14020			if (!atomic_read(&bp->eq_spq_left))
14021				break;
14022			else
14023				atomic_dec(&bp->eq_spq_left);
14024		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14025			   (type == FCOE_CONNECTION_TYPE)) {
14026			if (bp->cnic_spq_pending >=
14027			    bp->cnic_eth_dev.max_kwqe_pending)
14028				break;
14029			else
14030				bp->cnic_spq_pending++;
14031		} else {
14032			BNX2X_ERR("Unknown SPE type: %d\n", type);
14033			bnx2x_panic();
14034			break;
14035		}
14036
14037		spe = bnx2x_sp_get_next(bp);
14038		*spe = *bp->cnic_kwq_cons;
14039
14040		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14041		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14042
14043		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14044			bp->cnic_kwq_cons = bp->cnic_kwq;
14045		else
14046			bp->cnic_kwq_cons++;
14047	}
14048	bnx2x_sp_prod_update(bp);
14049	spin_unlock_bh(&bp->spq_lock);
14050}
14051
14052static int bnx2x_cnic_sp_queue(struct net_device *dev,
14053			       struct kwqe_16 *kwqes[], u32 count)
14054{
14055	struct bnx2x *bp = netdev_priv(dev);
14056	int i;
14057
14058#ifdef BNX2X_STOP_ON_ERROR
14059	if (unlikely(bp->panic)) {
14060		BNX2X_ERR("Can't post to SP queue while panic\n");
14061		return -EIO;
14062	}
14063#endif
14064
14065	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14066	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14067		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14068		return -EAGAIN;
14069	}
14070
14071	spin_lock_bh(&bp->spq_lock);
14072
14073	for (i = 0; i < count; i++) {
14074		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14075
14076		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14077			break;
14078
14079		*bp->cnic_kwq_prod = *spe;
14080
14081		bp->cnic_kwq_pending++;
14082
14083		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14084		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14085		   spe->data.update_data_addr.hi,
14086		   spe->data.update_data_addr.lo,
14087		   bp->cnic_kwq_pending);
14088
14089		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14090			bp->cnic_kwq_prod = bp->cnic_kwq;
14091		else
14092			bp->cnic_kwq_prod++;
14093	}
14094
14095	spin_unlock_bh(&bp->spq_lock);
14096
14097	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14098		bnx2x_cnic_sp_post(bp, 0);
14099
14100	return i;
14101}
14102
14103static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14104{
14105	struct cnic_ops *c_ops;
14106	int rc = 0;
14107
14108	mutex_lock(&bp->cnic_mutex);
14109	c_ops = rcu_dereference_protected(bp->cnic_ops,
14110					  lockdep_is_held(&bp->cnic_mutex));
14111	if (c_ops)
14112		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14113	mutex_unlock(&bp->cnic_mutex);
14114
14115	return rc;
14116}
14117
14118static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14119{
14120	struct cnic_ops *c_ops;
14121	int rc = 0;
14122
14123	rcu_read_lock();
14124	c_ops = rcu_dereference(bp->cnic_ops);
14125	if (c_ops)
14126		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14127	rcu_read_unlock();
14128
14129	return rc;
14130}
14131
14132/*
14133 * for commands that have no data
14134 */
14135int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14136{
14137	struct cnic_ctl_info ctl = {0};
14138
14139	ctl.cmd = cmd;
14140
14141	return bnx2x_cnic_ctl_send(bp, &ctl);
14142}
14143
14144static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14145{
14146	struct cnic_ctl_info ctl = {0};
14147
14148	/* first we tell CNIC and only then we count this as a completion */
14149	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14150	ctl.data.comp.cid = cid;
14151	ctl.data.comp.error = err;
14152
14153	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14154	bnx2x_cnic_sp_post(bp, 0);
14155}
14156
14157/* Called with netif_addr_lock_bh() taken.
14158 * Sets an rx_mode config for an iSCSI ETH client.
14159 * Doesn't block.
14160 * Completion should be checked outside.
14161 */
14162static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14163{
14164	unsigned long accept_flags = 0, ramrod_flags = 0;
14165	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14166	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14167
14168	if (start) {
14169		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14170		 * because it's the only way for UIO Queue to accept
14171		 * multicasts (in non-promiscuous mode only one Queue per
14172		 * function will receive multicast packets (leading in our
14173		 * case).
14174		 */
14175		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14176		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14177		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14178		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14179
14180		/* Clear STOP_PENDING bit if START is requested */
14181		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14182
14183		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14184	} else
14185		/* Clear START_PENDING bit if STOP is requested */
14186		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14187
14188	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14189		set_bit(sched_state, &bp->sp_state);
14190	else {
14191		__set_bit(RAMROD_RX, &ramrod_flags);
14192		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14193				    ramrod_flags);
14194	}
14195}
14196
14197static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14198{
14199	struct bnx2x *bp = netdev_priv(dev);
14200	int rc = 0;
14201
14202	switch (ctl->cmd) {
14203	case DRV_CTL_CTXTBL_WR_CMD: {
14204		u32 index = ctl->data.io.offset;
14205		dma_addr_t addr = ctl->data.io.dma_addr;
14206
14207		bnx2x_ilt_wr(bp, index, addr);
14208		break;
14209	}
14210
14211	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14212		int count = ctl->data.credit.credit_count;
14213
14214		bnx2x_cnic_sp_post(bp, count);
14215		break;
14216	}
14217
14218	/* rtnl_lock is held.  */
14219	case DRV_CTL_START_L2_CMD: {
14220		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14221		unsigned long sp_bits = 0;
14222
14223		/* Configure the iSCSI classification object */
14224		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14225				   cp->iscsi_l2_client_id,
14226				   cp->iscsi_l2_cid, BP_FUNC(bp),
14227				   bnx2x_sp(bp, mac_rdata),
14228				   bnx2x_sp_mapping(bp, mac_rdata),
14229				   BNX2X_FILTER_MAC_PENDING,
14230				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14231				   &bp->macs_pool);
14232
14233		/* Set iSCSI MAC address */
14234		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14235		if (rc)
14236			break;
14237
14238		mmiowb();
14239		barrier();
14240
14241		/* Start accepting on iSCSI L2 ring */
14242
14243		netif_addr_lock_bh(dev);
14244		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14245		netif_addr_unlock_bh(dev);
14246
14247		/* bits to wait on */
14248		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14249		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14250
14251		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14252			BNX2X_ERR("rx_mode completion timed out!\n");
14253
14254		break;
14255	}
14256
14257	/* rtnl_lock is held.  */
14258	case DRV_CTL_STOP_L2_CMD: {
14259		unsigned long sp_bits = 0;
14260
14261		/* Stop accepting on iSCSI L2 ring */
14262		netif_addr_lock_bh(dev);
14263		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14264		netif_addr_unlock_bh(dev);
14265
14266		/* bits to wait on */
14267		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14268		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14269
14270		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14271			BNX2X_ERR("rx_mode completion timed out!\n");
14272
14273		mmiowb();
14274		barrier();
14275
14276		/* Unset iSCSI L2 MAC */
14277		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14278					BNX2X_ISCSI_ETH_MAC, true);
14279		break;
14280	}
14281	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14282		int count = ctl->data.credit.credit_count;
14283
14284		smp_mb__before_atomic();
14285		atomic_add(count, &bp->cq_spq_left);
14286		smp_mb__after_atomic();
14287		break;
14288	}
14289	case DRV_CTL_ULP_REGISTER_CMD: {
14290		int ulp_type = ctl->data.register_data.ulp_type;
14291
14292		if (CHIP_IS_E3(bp)) {
14293			int idx = BP_FW_MB_IDX(bp);
14294			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14295			int path = BP_PATH(bp);
14296			int port = BP_PORT(bp);
14297			int i;
14298			u32 scratch_offset;
14299			u32 *host_addr;
14300
14301			/* first write capability to shmem2 */
14302			if (ulp_type == CNIC_ULP_ISCSI)
14303				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14304			else if (ulp_type == CNIC_ULP_FCOE)
14305				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14306			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14307
14308			if ((ulp_type != CNIC_ULP_FCOE) ||
14309			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14310			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14311				break;
14312
14313			/* if reached here - should write fcoe capabilities */
14314			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14315			if (!scratch_offset)
14316				break;
14317			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14318						   fcoe_features[path][port]);
14319			host_addr = (u32 *) &(ctl->data.register_data.
14320					      fcoe_features);
14321			for (i = 0; i < sizeof(struct fcoe_capabilities);
14322			     i += 4)
14323				REG_WR(bp, scratch_offset + i,
14324				       *(host_addr + i/4));
14325		}
14326		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14327		break;
14328	}
14329
14330	case DRV_CTL_ULP_UNREGISTER_CMD: {
14331		int ulp_type = ctl->data.ulp_type;
14332
14333		if (CHIP_IS_E3(bp)) {
14334			int idx = BP_FW_MB_IDX(bp);
14335			u32 cap;
14336
14337			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14338			if (ulp_type == CNIC_ULP_ISCSI)
14339				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14340			else if (ulp_type == CNIC_ULP_FCOE)
14341				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14342			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14343		}
14344		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14345		break;
14346	}
14347
14348	default:
14349		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14350		rc = -EINVAL;
14351	}
14352
14353	return rc;
14354}
14355
14356void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14357{
14358	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14359
14360	if (bp->flags & USING_MSIX_FLAG) {
14361		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14362		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14363		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14364	} else {
14365		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14366		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14367	}
14368	if (!CHIP_IS_E1x(bp))
14369		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14370	else
14371		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14372
14373	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14374	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14375	cp->irq_arr[1].status_blk = bp->def_status_blk;
14376	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14377	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14378
14379	cp->num_irq = 2;
14380}
14381
14382void bnx2x_setup_cnic_info(struct bnx2x *bp)
14383{
14384	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14385
14386	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14387			     bnx2x_cid_ilt_lines(bp);
14388	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14389	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14390	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14391
14392	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14393	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14394	   cp->iscsi_l2_cid);
14395
14396	if (NO_ISCSI_OOO(bp))
14397		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14398}
14399
14400static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14401			       void *data)
14402{
14403	struct bnx2x *bp = netdev_priv(dev);
14404	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14405	int rc;
14406
14407	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14408
14409	if (ops == NULL) {
14410		BNX2X_ERR("NULL ops received\n");
14411		return -EINVAL;
14412	}
14413
14414	if (!CNIC_SUPPORT(bp)) {
14415		BNX2X_ERR("Can't register CNIC when not supported\n");
14416		return -EOPNOTSUPP;
14417	}
14418
14419	if (!CNIC_LOADED(bp)) {
14420		rc = bnx2x_load_cnic(bp);
14421		if (rc) {
14422			BNX2X_ERR("CNIC-related load failed\n");
14423			return rc;
14424		}
14425	}
14426
14427	bp->cnic_enabled = true;
14428
14429	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14430	if (!bp->cnic_kwq)
14431		return -ENOMEM;
14432
14433	bp->cnic_kwq_cons = bp->cnic_kwq;
14434	bp->cnic_kwq_prod = bp->cnic_kwq;
14435	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14436
14437	bp->cnic_spq_pending = 0;
14438	bp->cnic_kwq_pending = 0;
14439
14440	bp->cnic_data = data;
14441
14442	cp->num_irq = 0;
14443	cp->drv_state |= CNIC_DRV_STATE_REGD;
14444	cp->iro_arr = bp->iro_arr;
14445
14446	bnx2x_setup_cnic_irq_info(bp);
14447
14448	rcu_assign_pointer(bp->cnic_ops, ops);
14449
14450	/* Schedule driver to read CNIC driver versions */
14451	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14452
14453	return 0;
14454}
14455
14456static int bnx2x_unregister_cnic(struct net_device *dev)
14457{
14458	struct bnx2x *bp = netdev_priv(dev);
14459	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14460
14461	mutex_lock(&bp->cnic_mutex);
14462	cp->drv_state = 0;
14463	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14464	mutex_unlock(&bp->cnic_mutex);
14465	synchronize_rcu();
14466	bp->cnic_enabled = false;
14467	kfree(bp->cnic_kwq);
14468	bp->cnic_kwq = NULL;
14469
14470	return 0;
14471}
14472
14473static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14474{
14475	struct bnx2x *bp = netdev_priv(dev);
14476	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14477
14478	/* If both iSCSI and FCoE are disabled - return NULL in
14479	 * order to indicate CNIC that it should not try to work
14480	 * with this device.
14481	 */
14482	if (NO_ISCSI(bp) && NO_FCOE(bp))
14483		return NULL;
14484
14485	cp->drv_owner = THIS_MODULE;
14486	cp->chip_id = CHIP_ID(bp);
14487	cp->pdev = bp->pdev;
14488	cp->io_base = bp->regview;
14489	cp->io_base2 = bp->doorbells;
14490	cp->max_kwqe_pending = 8;
14491	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14492	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14493			     bnx2x_cid_ilt_lines(bp);
14494	cp->ctx_tbl_len = CNIC_ILT_LINES;
14495	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14496	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14497	cp->drv_ctl = bnx2x_drv_ctl;
14498	cp->drv_register_cnic = bnx2x_register_cnic;
14499	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14500	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14501	cp->iscsi_l2_client_id =
14502		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14503	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14504
14505	if (NO_ISCSI_OOO(bp))
14506		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14507
14508	if (NO_ISCSI(bp))
14509		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14510
14511	if (NO_FCOE(bp))
14512		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14513
14514	BNX2X_DEV_INFO(
14515		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14516	   cp->ctx_blk_size,
14517	   cp->ctx_tbl_offset,
14518	   cp->ctx_tbl_len,
14519	   cp->starting_cid);
14520	return cp;
14521}
14522
14523static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14524{
14525	struct bnx2x *bp = fp->bp;
14526	u32 offset = BAR_USTRORM_INTMEM;
14527
14528	if (IS_VF(bp))
14529		return bnx2x_vf_ustorm_prods_offset(bp, fp);
14530	else if (!CHIP_IS_E1x(bp))
14531		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14532	else
14533		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14534
14535	return offset;
14536}
14537
14538/* called only on E1H or E2.
14539 * When pretending to be PF, the pretend value is the function number 0...7
14540 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14541 * combination
14542 */
14543int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14544{
14545	u32 pretend_reg;
14546
14547	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14548		return -1;
14549
14550	/* get my own pretend register */
14551	pretend_reg = bnx2x_get_pretend_reg(bp);
14552	REG_WR(bp, pretend_reg, pretend_func_val);
14553	REG_RD(bp, pretend_reg);
14554	return 0;
14555}
14556
14557static void bnx2x_ptp_task(struct work_struct *work)
14558{
14559	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14560	int port = BP_PORT(bp);
14561	u32 val_seq;
14562	u64 timestamp, ns;
14563	struct skb_shared_hwtstamps shhwtstamps;
14564
14565	/* Read Tx timestamp registers */
14566	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14567			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14568	if (val_seq & 0x10000) {
14569		/* There is a valid timestamp value */
14570		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14571				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14572		timestamp <<= 32;
14573		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14574				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14575		/* Reset timestamp register to allow new timestamp */
14576		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14577		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14578		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14579
14580		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14581		shhwtstamps.hwtstamp = ns_to_ktime(ns);
14582		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14583		dev_kfree_skb_any(bp->ptp_tx_skb);
14584		bp->ptp_tx_skb = NULL;
14585
14586		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14587		   timestamp, ns);
14588	} else {
14589		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14590		/* Reschedule to keep checking for a valid timestamp value */
14591		schedule_work(&bp->ptp_task);
14592	}
14593}
14594
14595void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14596{
14597	int port = BP_PORT(bp);
14598	u64 timestamp, ns;
14599
14600	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14601			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14602	timestamp <<= 32;
14603	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14604			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14605
14606	/* Reset timestamp register to allow new timestamp */
14607	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14608	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14609
14610	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14611
14612	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14613
14614	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14615	   timestamp, ns);
14616}
14617
14618/* Read the PHC */
14619static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14620{
14621	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14622	int port = BP_PORT(bp);
14623	u32 wb_data[2];
14624	u64 phc_cycles;
14625
14626	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14627		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14628	phc_cycles = wb_data[1];
14629	phc_cycles = (phc_cycles << 32) + wb_data[0];
14630
14631	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14632
14633	return phc_cycles;
14634}
14635
14636static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14637{
14638	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14639	bp->cyclecounter.read = bnx2x_cyclecounter_read;
14640	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
14641	bp->cyclecounter.shift = 1;
14642	bp->cyclecounter.mult = 1;
14643}
14644
14645static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14646{
14647	struct bnx2x_func_state_params func_params = {NULL};
14648	struct bnx2x_func_set_timesync_params *set_timesync_params =
14649		&func_params.params.set_timesync;
14650
14651	/* Prepare parameters for function state transitions */
14652	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14653	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14654
14655	func_params.f_obj = &bp->func_obj;
14656	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14657
14658	/* Function parameters */
14659	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14660	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14661
14662	return bnx2x_func_state_change(bp, &func_params);
14663}
14664
14665static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14666{
14667	struct bnx2x_queue_state_params q_params;
14668	int rc, i;
14669
14670	/* send queue update ramrod to enable PTP packets */
14671	memset(&q_params, 0, sizeof(q_params));
14672	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14673	q_params.cmd = BNX2X_Q_CMD_UPDATE;
14674	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14675		  &q_params.params.update.update_flags);
14676	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14677		  &q_params.params.update.update_flags);
14678
14679	/* send the ramrod on all the queues of the PF */
14680	for_each_eth_queue(bp, i) {
14681		struct bnx2x_fastpath *fp = &bp->fp[i];
14682
14683		/* Set the appropriate Queue object */
14684		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14685
14686		/* Update the Queue state */
14687		rc = bnx2x_queue_state_change(bp, &q_params);
14688		if (rc) {
14689			BNX2X_ERR("Failed to enable PTP packets\n");
14690			return rc;
14691		}
14692	}
14693
14694	return 0;
14695}
14696
14697int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14698{
14699	int port = BP_PORT(bp);
14700	int rc;
14701
14702	if (!bp->hwtstamp_ioctl_called)
14703		return 0;
14704
14705	switch (bp->tx_type) {
14706	case HWTSTAMP_TX_ON:
14707		bp->flags |= TX_TIMESTAMPING_EN;
14708		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14709		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14710		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14711		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14712		break;
14713	case HWTSTAMP_TX_ONESTEP_SYNC:
14714		BNX2X_ERR("One-step timestamping is not supported\n");
14715		return -ERANGE;
14716	}
14717
14718	switch (bp->rx_filter) {
14719	case HWTSTAMP_FILTER_NONE:
14720		break;
14721	case HWTSTAMP_FILTER_ALL:
14722	case HWTSTAMP_FILTER_SOME:
14723		bp->rx_filter = HWTSTAMP_FILTER_NONE;
14724		break;
14725	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14726	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14727	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14728		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14729		/* Initialize PTP detection for UDP/IPv4 events */
14730		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14731		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14732		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14733		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14734		break;
14735	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14736	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14737	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14738		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14739		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14740		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14741		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14742		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14743		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14744		break;
14745	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14746	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14747	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14748		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14749		/* Initialize PTP detection L2 events */
14750		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14751		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14752		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14753		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14754
14755		break;
14756	case HWTSTAMP_FILTER_PTP_V2_EVENT:
14757	case HWTSTAMP_FILTER_PTP_V2_SYNC:
14758	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14759		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14760		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14761		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14762		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14763		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14764		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14765		break;
14766	}
14767
14768	/* Indicate to FW that this PF expects recorded PTP packets */
14769	rc = bnx2x_enable_ptp_packets(bp);
14770	if (rc)
14771		return rc;
14772
14773	/* Enable sending PTP packets to host */
14774	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14775	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14776
14777	return 0;
14778}
14779
14780static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14781{
14782	struct hwtstamp_config config;
14783	int rc;
14784
14785	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14786
14787	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14788		return -EFAULT;
14789
14790	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14791	   config.tx_type, config.rx_filter);
14792
14793	if (config.flags) {
14794		BNX2X_ERR("config.flags is reserved for future use\n");
14795		return -EINVAL;
14796	}
14797
14798	bp->hwtstamp_ioctl_called = 1;
14799	bp->tx_type = config.tx_type;
14800	bp->rx_filter = config.rx_filter;
14801
14802	rc = bnx2x_configure_ptp_filters(bp);
14803	if (rc)
14804		return rc;
14805
14806	config.rx_filter = bp->rx_filter;
14807
14808	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14809		-EFAULT : 0;
14810}
14811
14812/* Configures HW for PTP */
14813static int bnx2x_configure_ptp(struct bnx2x *bp)
14814{
14815	int rc, port = BP_PORT(bp);
14816	u32 wb_data[2];
14817
14818	/* Reset PTP event detection rules - will be configured in the IOCTL */
14819	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14820	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14821	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14822	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14823	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14824	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14825	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14826	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14827
14828	/* Disable PTP packets to host - will be configured in the IOCTL*/
14829	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14830	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14831
14832	/* Enable the PTP feature */
14833	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14834	       NIG_REG_P0_PTP_EN, 0x3F);
14835
14836	/* Enable the free-running counter */
14837	wb_data[0] = 0;
14838	wb_data[1] = 0;
14839	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14840
14841	/* Reset drift register (offset register is not reset) */
14842	rc = bnx2x_send_reset_timesync_ramrod(bp);
14843	if (rc) {
14844		BNX2X_ERR("Failed to reset PHC drift register\n");
14845		return -EFAULT;
14846	}
14847
14848	/* Reset possibly old timestamps */
14849	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14850	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14851	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14852	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14853
14854	return 0;
14855}
14856
14857/* Called during load, to initialize PTP-related stuff */
14858void bnx2x_init_ptp(struct bnx2x *bp)
14859{
14860	int rc;
14861
14862	/* Configure PTP in HW */
14863	rc = bnx2x_configure_ptp(bp);
14864	if (rc) {
14865		BNX2X_ERR("Stopping PTP initialization\n");
14866		return;
14867	}
14868
14869	/* Init work queue for Tx timestamping */
14870	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14871
14872	/* Init cyclecounter and timecounter. This is done only in the first
14873	 * load. If done in every load, PTP application will fail when doing
14874	 * unload / load (e.g. MTU change) while it is running.
14875	 */
14876	if (!bp->timecounter_init_done) {
14877		bnx2x_init_cyclecounter(bp);
14878		timecounter_init(&bp->timecounter, &bp->cyclecounter,
14879				 ktime_to_ns(ktime_get_real()));
14880		bp->timecounter_init_done = 1;
14881	}
14882
14883	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14884}
14885