1/*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
20 */
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/mii.h>
24#include <linux/crc32.h>
25
26#include "atl1e.h"
27
28/*
29 * check_eeprom_exist
30 * return 0 if eeprom exist
31 */
32int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
33{
34	u32 value;
35
36	value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
37	if (value & SPI_FLASH_CTRL_EN_VPD) {
38		value &= ~SPI_FLASH_CTRL_EN_VPD;
39		AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
40	}
41	value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
42	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
43}
44
45void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
46{
47	u32 value;
48	/*
49	 * 00-0B-6A-F6-00-DC
50	 * 0:  6AF600DC 1: 000B
51	 * low dword
52	 */
53	value = (((u32)hw->mac_addr[2]) << 24) |
54		(((u32)hw->mac_addr[3]) << 16) |
55		(((u32)hw->mac_addr[4]) << 8)  |
56		(((u32)hw->mac_addr[5])) ;
57	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
58	/* hight dword */
59	value = (((u32)hw->mac_addr[0]) << 8) |
60		(((u32)hw->mac_addr[1])) ;
61	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
62}
63
64/*
65 * atl1e_get_permanent_address
66 * return 0 if get valid mac address,
67 */
68static int atl1e_get_permanent_address(struct atl1e_hw *hw)
69{
70	u32 addr[2];
71	u32 i;
72	u32 twsi_ctrl_data;
73	u8  eth_addr[ETH_ALEN];
74
75	if (is_valid_ether_addr(hw->perm_mac_addr))
76		return 0;
77
78	/* init */
79	addr[0] = addr[1] = 0;
80
81	if (!atl1e_check_eeprom_exist(hw)) {
82		/* eeprom exist */
83		twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
84		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
85		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
86		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
87			msleep(10);
88			twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
89			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
90				break;
91		}
92		if (i >= AT_TWSI_EEPROM_TIMEOUT)
93			return AT_ERR_TIMEOUT;
94	}
95
96	/* maybe MAC-address is from BIOS */
97	addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
98	addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
99	*(u32 *) &eth_addr[2] = swab32(addr[0]);
100	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
101
102	if (is_valid_ether_addr(eth_addr)) {
103		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
104		return 0;
105	}
106
107	return AT_ERR_EEPROM;
108}
109
110bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
111{
112	return true;
113}
114
115bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
116{
117	int i;
118	u32 control;
119
120	if (offset & 3)
121		return false; /* address do not align */
122
123	AT_WRITE_REG(hw, REG_VPD_DATA, 0);
124	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
125	AT_WRITE_REG(hw, REG_VPD_CAP, control);
126
127	for (i = 0; i < 10; i++) {
128		msleep(2);
129		control = AT_READ_REG(hw, REG_VPD_CAP);
130		if (control & VPD_CAP_VPD_FLAG)
131			break;
132	}
133	if (control & VPD_CAP_VPD_FLAG) {
134		*p_value = AT_READ_REG(hw, REG_VPD_DATA);
135		return true;
136	}
137	return false; /* timeout */
138}
139
140void atl1e_force_ps(struct atl1e_hw *hw)
141{
142	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
143			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
144}
145
146/*
147 * Reads the adapter's MAC address from the EEPROM
148 *
149 * hw - Struct containing variables accessed by shared code
150 */
151int atl1e_read_mac_addr(struct atl1e_hw *hw)
152{
153	int err = 0;
154
155	err = atl1e_get_permanent_address(hw);
156	if (err)
157		return AT_ERR_EEPROM;
158	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
159	return 0;
160}
161
162/*
163 * atl1e_hash_mc_addr
164 *  purpose
165 *      set hash value for a multicast address
166 */
167u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
168{
169	u32 crc32;
170	u32 value = 0;
171	int i;
172
173	crc32 = ether_crc_le(6, mc_addr);
174	for (i = 0; i < 32; i++)
175		value |= (((crc32 >> i) & 1) << (31 - i));
176
177	return value;
178}
179
180/*
181 * Sets the bit in the multicast table corresponding to the hash value.
182 * hw - Struct containing variables accessed by shared code
183 * hash_value - Multicast address hash value
184 */
185void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
186{
187	u32 hash_bit, hash_reg;
188	u32 mta;
189
190	/*
191	 * The HASH Table  is a register array of 2 32-bit registers.
192	 * It is treated like an array of 64 bits.  We want to set
193	 * bit BitArray[hash_value]. So we figure out what register
194	 * the bit is in, read it, OR in the new bit, then write
195	 * back the new value.  The register is determined by the
196	 * upper 7 bits of the hash value and the bit within that
197	 * register are determined by the lower 5 bits of the value.
198	 */
199	hash_reg = (hash_value >> 31) & 0x1;
200	hash_bit = (hash_value >> 26) & 0x1F;
201
202	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
203
204	mta |= (1 << hash_bit);
205
206	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
207}
208/*
209 * Reads the value from a PHY register
210 * hw - Struct containing variables accessed by shared code
211 * reg_addr - address of the PHY register to read
212 */
213int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
214{
215	u32 val;
216	int i;
217
218	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
219		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
220		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
221
222	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
223
224	wmb();
225
226	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
227		udelay(2);
228		val = AT_READ_REG(hw, REG_MDIO_CTRL);
229		if (!(val & (MDIO_START | MDIO_BUSY)))
230			break;
231		wmb();
232	}
233	if (!(val & (MDIO_START | MDIO_BUSY))) {
234		*phy_data = (u16)val;
235		return 0;
236	}
237
238	return AT_ERR_PHY;
239}
240
241/*
242 * Writes a value to a PHY register
243 * hw - Struct containing variables accessed by shared code
244 * reg_addr - address of the PHY register to write
245 * data - data to write to the PHY
246 */
247int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
248{
249	int i;
250	u32 val;
251
252	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
253	       (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
254	       MDIO_SUP_PREAMBLE |
255	       MDIO_START |
256	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
257
258	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
259	wmb();
260
261	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
262		udelay(2);
263		val = AT_READ_REG(hw, REG_MDIO_CTRL);
264		if (!(val & (MDIO_START | MDIO_BUSY)))
265			break;
266		wmb();
267	}
268
269	if (!(val & (MDIO_START | MDIO_BUSY)))
270		return 0;
271
272	return AT_ERR_PHY;
273}
274
275/*
276 * atl1e_init_pcie - init PCIE module
277 */
278static void atl1e_init_pcie(struct atl1e_hw *hw)
279{
280	u32 value;
281	/* comment 2lines below to save more power when sususpend
282	   value = LTSSM_TEST_MODE_DEF;
283	   AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
284	 */
285
286	/* pcie flow control mode change */
287	value = AT_READ_REG(hw, 0x1008);
288	value |= 0x8000;
289	AT_WRITE_REG(hw, 0x1008, value);
290}
291/*
292 * Configures PHY autoneg and flow control advertisement settings
293 *
294 * hw - Struct containing variables accessed by shared code
295 */
296static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
297{
298	s32 ret_val;
299	u16 mii_autoneg_adv_reg;
300	u16 mii_1000t_ctrl_reg;
301
302	if (0 != hw->mii_autoneg_adv_reg)
303		return 0;
304	/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
305	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
306	mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
307
308	/*
309	 * Need to parse autoneg_advertised  and set up
310	 * the appropriate PHY registers.  First we will parse for
311	 * autoneg_advertised software override.  Since we can advertise
312	 * a plethora of combinations, we need to check each bit
313	 * individually.
314	 */
315
316	/*
317	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
318	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
319	 * the  1000Base-T control Register (Address 9).
320	 */
321	mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
322	mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
323
324	/*
325	 * Need to parse MediaType and setup the
326	 * appropriate PHY registers.
327	 */
328	switch (hw->media_type) {
329	case MEDIA_TYPE_AUTO_SENSOR:
330		mii_autoneg_adv_reg |= ADVERTISE_ALL;
331		hw->autoneg_advertised = ADVERTISE_ALL;
332		if (hw->nic_type == athr_l1e) {
333			mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
334			hw->autoneg_advertised |= ADVERTISE_1000_FULL;
335		}
336		break;
337
338	case MEDIA_TYPE_100M_FULL:
339		mii_autoneg_adv_reg   |= ADVERTISE_100FULL;
340		hw->autoneg_advertised = ADVERTISE_100_FULL;
341		break;
342
343	case MEDIA_TYPE_100M_HALF:
344		mii_autoneg_adv_reg   |= ADVERTISE_100_HALF;
345		hw->autoneg_advertised = ADVERTISE_100_HALF;
346		break;
347
348	case MEDIA_TYPE_10M_FULL:
349		mii_autoneg_adv_reg   |= ADVERTISE_10_FULL;
350		hw->autoneg_advertised = ADVERTISE_10_FULL;
351		break;
352
353	default:
354		mii_autoneg_adv_reg   |= ADVERTISE_10_HALF;
355		hw->autoneg_advertised = ADVERTISE_10_HALF;
356		break;
357	}
358
359	/* flow control fixed to enable all */
360	mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
361
362	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
363	hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
364
365	ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
366	if (ret_val)
367		return ret_val;
368
369	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
370		ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
371					   mii_1000t_ctrl_reg);
372		if (ret_val)
373			return ret_val;
374	}
375
376	return 0;
377}
378
379
380/*
381 * Resets the PHY and make all config validate
382 *
383 * hw - Struct containing variables accessed by shared code
384 *
385 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
386 */
387int atl1e_phy_commit(struct atl1e_hw *hw)
388{
389	struct atl1e_adapter *adapter = hw->adapter;
390	int ret_val;
391	u16 phy_data;
392
393	phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
394
395	ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
396	if (ret_val) {
397		u32 val;
398		int i;
399		/**************************************
400		 * pcie serdes link may be down !
401		 **************************************/
402		for (i = 0; i < 25; i++) {
403			msleep(1);
404			val = AT_READ_REG(hw, REG_MDIO_CTRL);
405			if (!(val & (MDIO_START | MDIO_BUSY)))
406				break;
407		}
408
409		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
410			netdev_err(adapter->netdev,
411				   "pcie linkdown at least for 25ms\n");
412			return ret_val;
413		}
414
415		netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
416	}
417	return 0;
418}
419
420int atl1e_phy_init(struct atl1e_hw *hw)
421{
422	struct atl1e_adapter *adapter = hw->adapter;
423	s32 ret_val;
424	u16 phy_val;
425
426	if (hw->phy_configured) {
427		if (hw->re_autoneg) {
428			hw->re_autoneg = false;
429			return atl1e_restart_autoneg(hw);
430		}
431		return 0;
432	}
433
434	/* RESET GPHY Core */
435	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
436	msleep(2);
437	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
438		      GPHY_CTRL_EXT_RESET);
439	msleep(2);
440
441	/* patches */
442	/* p1. eable hibernation mode */
443	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
444	if (ret_val)
445		return ret_val;
446	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
447	if (ret_val)
448		return ret_val;
449	/* p2. set Class A/B for all modes */
450	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
451	if (ret_val)
452		return ret_val;
453	phy_val = 0x02ef;
454	/* remove Class AB */
455	/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
456	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
457	if (ret_val)
458		return ret_val;
459	/* p3. 10B ??? */
460	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
461	if (ret_val)
462		return ret_val;
463	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
464	if (ret_val)
465		return ret_val;
466	/* p4. 1000T power */
467	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
468	if (ret_val)
469		return ret_val;
470	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
471	if (ret_val)
472		return ret_val;
473
474	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
475	if (ret_val)
476		return ret_val;
477	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
478	if (ret_val)
479		return ret_val;
480
481	msleep(1);
482
483	/*Enable PHY LinkChange Interrupt */
484	ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
485	if (ret_val) {
486		netdev_err(adapter->netdev,
487			   "Error enable PHY linkChange Interrupt\n");
488		return ret_val;
489	}
490	/* setup AutoNeg parameters */
491	ret_val = atl1e_phy_setup_autoneg_adv(hw);
492	if (ret_val) {
493		netdev_err(adapter->netdev,
494			   "Error Setting up Auto-Negotiation\n");
495		return ret_val;
496	}
497	/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
498	netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
499	ret_val = atl1e_phy_commit(hw);
500	if (ret_val) {
501		netdev_err(adapter->netdev, "Error resetting the phy\n");
502		return ret_val;
503	}
504
505	hw->phy_configured = true;
506
507	return 0;
508}
509
510/*
511 * Reset the transmit and receive units; mask and clear all interrupts.
512 * hw - Struct containing variables accessed by shared code
513 * return : 0  or  idle status (if error)
514 */
515int atl1e_reset_hw(struct atl1e_hw *hw)
516{
517	struct atl1e_adapter *adapter = hw->adapter;
518	struct pci_dev *pdev = adapter->pdev;
519
520	u32 idle_status_data = 0;
521	u16 pci_cfg_cmd_word = 0;
522	int timeout = 0;
523
524	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
525	pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
526	if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
527				CMD_MEMORY_SPACE | CMD_BUS_MASTER))
528			!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
529		pci_cfg_cmd_word |= (CMD_IO_SPACE |
530				     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
531		pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
532	}
533
534	/*
535	 * Issue Soft Reset to the MAC.  This will reset the chip's
536	 * transmit, receive, DMA.  It will not effect
537	 * the current PCI configuration.  The global reset bit is self-
538	 * clearing, and should clear within a microsecond.
539	 */
540	AT_WRITE_REG(hw, REG_MASTER_CTRL,
541			MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
542	wmb();
543	msleep(1);
544
545	/* Wait at least 10ms for All module to be Idle */
546	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
547		idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
548		if (idle_status_data == 0)
549			break;
550		msleep(1);
551		cpu_relax();
552	}
553
554	if (timeout >= AT_HW_MAX_IDLE_DELAY) {
555		netdev_err(adapter->netdev,
556			   "MAC state machine can't be idle since disabled for 10ms second\n");
557		return AT_ERR_TIMEOUT;
558	}
559
560	return 0;
561}
562
563
564/*
565 * Performs basic configuration of the adapter.
566 *
567 * hw - Struct containing variables accessed by shared code
568 * Assumes that the controller has previously been reset and is in a
569 * post-reset uninitialized state. Initializes multicast table,
570 * and  Calls routines to setup link
571 * Leaves the transmit and receive units disabled and uninitialized.
572 */
573int atl1e_init_hw(struct atl1e_hw *hw)
574{
575	s32 ret_val = 0;
576
577	atl1e_init_pcie(hw);
578
579	/* Zero out the Multicast HASH table */
580	/* clear the old settings from the multicast hash table */
581	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
582	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
583
584	ret_val = atl1e_phy_init(hw);
585
586	return ret_val;
587}
588
589/*
590 * Detects the current speed and duplex settings of the hardware.
591 *
592 * hw - Struct containing variables accessed by shared code
593 * speed - Speed of the connection
594 * duplex - Duplex setting of the connection
595 */
596int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
597{
598	int err;
599	u16 phy_data;
600
601	/* Read   PHY Specific Status Register (17) */
602	err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
603	if (err)
604		return err;
605
606	if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
607		return AT_ERR_PHY_RES;
608
609	switch (phy_data & MII_AT001_PSSR_SPEED) {
610	case MII_AT001_PSSR_1000MBS:
611		*speed = SPEED_1000;
612		break;
613	case MII_AT001_PSSR_100MBS:
614		*speed = SPEED_100;
615		break;
616	case MII_AT001_PSSR_10MBS:
617		*speed = SPEED_10;
618		break;
619	default:
620		return AT_ERR_PHY_SPEED;
621	}
622
623	if (phy_data & MII_AT001_PSSR_DPLX)
624		*duplex = FULL_DUPLEX;
625	else
626		*duplex = HALF_DUPLEX;
627
628	return 0;
629}
630
631int atl1e_restart_autoneg(struct atl1e_hw *hw)
632{
633	int err = 0;
634
635	err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
636	if (err)
637		return err;
638
639	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
640		err = atl1e_write_phy_reg(hw, MII_CTRL1000,
641				       hw->mii_1000t_ctrl_reg);
642		if (err)
643			return err;
644	}
645
646	err = atl1e_write_phy_reg(hw, MII_BMCR,
647			BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
648	return err;
649}
650
651