1/*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3 *
4 *  This file is free software: you may copy, redistribute and/or modify it
5 *  under the terms of the GNU General Public License as published by the
6 *  Free Software Foundation, either version 2 of the License, or (at your
7 *  option) any later version.
8 *
9 *  This file is distributed in the hope that it will be useful, but
10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12 *  General Public License for more details.
13 *
14 *  You should have received a copy of the GNU General Public License
15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16 *
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
19 *
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
21 *
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33 */
34
35#include <linux/module.h>
36#include <linux/pci.h>
37#include <linux/interrupt.h>
38#include <linux/ip.h>
39#include <linux/ipv6.h>
40#include <linux/if_vlan.h>
41#include <linux/mdio.h>
42#include <linux/aer.h>
43#include <linux/bitops.h>
44#include <linux/netdevice.h>
45#include <linux/etherdevice.h>
46#include <net/ip6_checksum.h>
47#include <linux/crc32.h>
48#include "alx.h"
49#include "hw.h"
50#include "reg.h"
51
52const char alx_drv_name[] = "alx";
53
54
55static void alx_free_txbuf(struct alx_priv *alx, int entry)
56{
57	struct alx_buffer *txb = &alx->txq.bufs[entry];
58
59	if (dma_unmap_len(txb, size)) {
60		dma_unmap_single(&alx->hw.pdev->dev,
61				 dma_unmap_addr(txb, dma),
62				 dma_unmap_len(txb, size),
63				 DMA_TO_DEVICE);
64		dma_unmap_len_set(txb, size, 0);
65	}
66
67	if (txb->skb) {
68		dev_kfree_skb_any(txb->skb);
69		txb->skb = NULL;
70	}
71}
72
73static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74{
75	struct alx_rx_queue *rxq = &alx->rxq;
76	struct sk_buff *skb;
77	struct alx_buffer *cur_buf;
78	dma_addr_t dma;
79	u16 cur, next, count = 0;
80
81	next = cur = rxq->write_idx;
82	if (++next == alx->rx_ringsz)
83		next = 0;
84	cur_buf = &rxq->bufs[cur];
85
86	while (!cur_buf->skb && next != rxq->read_idx) {
87		struct alx_rfd *rfd = &rxq->rfd[cur];
88
89		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
90		if (!skb)
91			break;
92		dma = dma_map_single(&alx->hw.pdev->dev,
93				     skb->data, alx->rxbuf_size,
94				     DMA_FROM_DEVICE);
95		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
96			dev_kfree_skb(skb);
97			break;
98		}
99
100		/* Unfortunately, RX descriptor buffers must be 4-byte
101		 * aligned, so we can't use IP alignment.
102		 */
103		if (WARN_ON(dma & 3)) {
104			dev_kfree_skb(skb);
105			break;
106		}
107
108		cur_buf->skb = skb;
109		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
110		dma_unmap_addr_set(cur_buf, dma, dma);
111		rfd->addr = cpu_to_le64(dma);
112
113		cur = next;
114		if (++next == alx->rx_ringsz)
115			next = 0;
116		cur_buf = &rxq->bufs[cur];
117		count++;
118	}
119
120	if (count) {
121		/* flush all updates before updating hardware */
122		wmb();
123		rxq->write_idx = cur;
124		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
125	}
126
127	return count;
128}
129
130static inline int alx_tpd_avail(struct alx_priv *alx)
131{
132	struct alx_tx_queue *txq = &alx->txq;
133
134	if (txq->write_idx >= txq->read_idx)
135		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
136	return txq->read_idx - txq->write_idx - 1;
137}
138
139static bool alx_clean_tx_irq(struct alx_priv *alx)
140{
141	struct alx_tx_queue *txq = &alx->txq;
142	u16 hw_read_idx, sw_read_idx;
143	unsigned int total_bytes = 0, total_packets = 0;
144	int budget = ALX_DEFAULT_TX_WORK;
145
146	sw_read_idx = txq->read_idx;
147	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
148
149	if (sw_read_idx != hw_read_idx) {
150		while (sw_read_idx != hw_read_idx && budget > 0) {
151			struct sk_buff *skb;
152
153			skb = txq->bufs[sw_read_idx].skb;
154			if (skb) {
155				total_bytes += skb->len;
156				total_packets++;
157				budget--;
158			}
159
160			alx_free_txbuf(alx, sw_read_idx);
161
162			if (++sw_read_idx == alx->tx_ringsz)
163				sw_read_idx = 0;
164		}
165		txq->read_idx = sw_read_idx;
166
167		netdev_completed_queue(alx->dev, total_packets, total_bytes);
168	}
169
170	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
171	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
172		netif_wake_queue(alx->dev);
173
174	return sw_read_idx == hw_read_idx;
175}
176
177static void alx_schedule_link_check(struct alx_priv *alx)
178{
179	schedule_work(&alx->link_check_wk);
180}
181
182static void alx_schedule_reset(struct alx_priv *alx)
183{
184	schedule_work(&alx->reset_wk);
185}
186
187static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
188{
189	struct alx_rx_queue *rxq = &alx->rxq;
190	struct alx_rrd *rrd;
191	struct alx_buffer *rxb;
192	struct sk_buff *skb;
193	u16 length, rfd_cleaned = 0;
194	int work = 0;
195
196	while (work < budget) {
197		rrd = &rxq->rrd[rxq->rrd_read_idx];
198		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
199			break;
200		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
201
202		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
203				  RRD_SI) != rxq->read_idx ||
204		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
205				  RRD_NOR) != 1) {
206			alx_schedule_reset(alx);
207			return work;
208		}
209
210		rxb = &rxq->bufs[rxq->read_idx];
211		dma_unmap_single(&alx->hw.pdev->dev,
212				 dma_unmap_addr(rxb, dma),
213				 dma_unmap_len(rxb, size),
214				 DMA_FROM_DEVICE);
215		dma_unmap_len_set(rxb, size, 0);
216		skb = rxb->skb;
217		rxb->skb = NULL;
218
219		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
220		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
221			rrd->word3 = 0;
222			dev_kfree_skb_any(skb);
223			goto next_pkt;
224		}
225
226		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
227				       RRD_PKTLEN) - ETH_FCS_LEN;
228		skb_put(skb, length);
229		skb->protocol = eth_type_trans(skb, alx->dev);
230
231		skb_checksum_none_assert(skb);
232		if (alx->dev->features & NETIF_F_RXCSUM &&
233		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
234				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
235			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
236					      RRD_PID)) {
237			case RRD_PID_IPV6UDP:
238			case RRD_PID_IPV4UDP:
239			case RRD_PID_IPV4TCP:
240			case RRD_PID_IPV6TCP:
241				skb->ip_summed = CHECKSUM_UNNECESSARY;
242				break;
243			}
244		}
245
246		napi_gro_receive(&alx->napi, skb);
247		work++;
248
249next_pkt:
250		if (++rxq->read_idx == alx->rx_ringsz)
251			rxq->read_idx = 0;
252		if (++rxq->rrd_read_idx == alx->rx_ringsz)
253			rxq->rrd_read_idx = 0;
254
255		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
256			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
257	}
258
259	if (rfd_cleaned)
260		alx_refill_rx_ring(alx, GFP_ATOMIC);
261
262	return work;
263}
264
265static int alx_poll(struct napi_struct *napi, int budget)
266{
267	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
268	struct alx_hw *hw = &alx->hw;
269	unsigned long flags;
270	bool tx_complete;
271	int work;
272
273	tx_complete = alx_clean_tx_irq(alx);
274	work = alx_clean_rx_irq(alx, budget);
275
276	if (!tx_complete || work == budget)
277		return budget;
278
279	napi_complete(&alx->napi);
280
281	/* enable interrupt */
282	spin_lock_irqsave(&alx->irq_lock, flags);
283	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
284	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
285	spin_unlock_irqrestore(&alx->irq_lock, flags);
286
287	alx_post_write(hw);
288
289	return work;
290}
291
292static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
293{
294	struct alx_hw *hw = &alx->hw;
295	bool write_int_mask = false;
296
297	spin_lock(&alx->irq_lock);
298
299	/* ACK interrupt */
300	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
301	intr &= alx->int_mask;
302
303	if (intr & ALX_ISR_FATAL) {
304		netif_warn(alx, hw, alx->dev,
305			   "fatal interrupt 0x%x, resetting\n", intr);
306		alx_schedule_reset(alx);
307		goto out;
308	}
309
310	if (intr & ALX_ISR_ALERT)
311		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
312
313	if (intr & ALX_ISR_PHY) {
314		/* suppress PHY interrupt, because the source
315		 * is from PHY internal. only the internal status
316		 * is cleared, the interrupt status could be cleared.
317		 */
318		alx->int_mask &= ~ALX_ISR_PHY;
319		write_int_mask = true;
320		alx_schedule_link_check(alx);
321	}
322
323	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
324		napi_schedule(&alx->napi);
325		/* mask rx/tx interrupt, enable them when napi complete */
326		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
327		write_int_mask = true;
328	}
329
330	if (write_int_mask)
331		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
332
333	alx_write_mem32(hw, ALX_ISR, 0);
334
335 out:
336	spin_unlock(&alx->irq_lock);
337	return IRQ_HANDLED;
338}
339
340static irqreturn_t alx_intr_msi(int irq, void *data)
341{
342	struct alx_priv *alx = data;
343
344	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
345}
346
347static irqreturn_t alx_intr_legacy(int irq, void *data)
348{
349	struct alx_priv *alx = data;
350	struct alx_hw *hw = &alx->hw;
351	u32 intr;
352
353	intr = alx_read_mem32(hw, ALX_ISR);
354
355	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
356		return IRQ_NONE;
357
358	return alx_intr_handle(alx, intr);
359}
360
361static void alx_init_ring_ptrs(struct alx_priv *alx)
362{
363	struct alx_hw *hw = &alx->hw;
364	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
365
366	alx->rxq.read_idx = 0;
367	alx->rxq.write_idx = 0;
368	alx->rxq.rrd_read_idx = 0;
369	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
370	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
371	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
372	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
373	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
374	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
375
376	alx->txq.read_idx = 0;
377	alx->txq.write_idx = 0;
378	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
379	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
380	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
381
382	/* load these pointers into the chip */
383	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
384}
385
386static void alx_free_txring_buf(struct alx_priv *alx)
387{
388	struct alx_tx_queue *txq = &alx->txq;
389	int i;
390
391	if (!txq->bufs)
392		return;
393
394	for (i = 0; i < alx->tx_ringsz; i++)
395		alx_free_txbuf(alx, i);
396
397	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
398	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
399	txq->write_idx = 0;
400	txq->read_idx = 0;
401
402	netdev_reset_queue(alx->dev);
403}
404
405static void alx_free_rxring_buf(struct alx_priv *alx)
406{
407	struct alx_rx_queue *rxq = &alx->rxq;
408	struct alx_buffer *cur_buf;
409	u16 i;
410
411	if (rxq == NULL)
412		return;
413
414	for (i = 0; i < alx->rx_ringsz; i++) {
415		cur_buf = rxq->bufs + i;
416		if (cur_buf->skb) {
417			dma_unmap_single(&alx->hw.pdev->dev,
418					 dma_unmap_addr(cur_buf, dma),
419					 dma_unmap_len(cur_buf, size),
420					 DMA_FROM_DEVICE);
421			dev_kfree_skb(cur_buf->skb);
422			cur_buf->skb = NULL;
423			dma_unmap_len_set(cur_buf, size, 0);
424			dma_unmap_addr_set(cur_buf, dma, 0);
425		}
426	}
427
428	rxq->write_idx = 0;
429	rxq->read_idx = 0;
430	rxq->rrd_read_idx = 0;
431}
432
433static void alx_free_buffers(struct alx_priv *alx)
434{
435	alx_free_txring_buf(alx);
436	alx_free_rxring_buf(alx);
437}
438
439static int alx_reinit_rings(struct alx_priv *alx)
440{
441	alx_free_buffers(alx);
442
443	alx_init_ring_ptrs(alx);
444
445	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
446		return -ENOMEM;
447
448	return 0;
449}
450
451static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
452{
453	u32 crc32, bit, reg;
454
455	crc32 = ether_crc(ETH_ALEN, addr);
456	reg = (crc32 >> 31) & 0x1;
457	bit = (crc32 >> 26) & 0x1F;
458
459	mc_hash[reg] |= BIT(bit);
460}
461
462static void __alx_set_rx_mode(struct net_device *netdev)
463{
464	struct alx_priv *alx = netdev_priv(netdev);
465	struct alx_hw *hw = &alx->hw;
466	struct netdev_hw_addr *ha;
467	u32 mc_hash[2] = {};
468
469	if (!(netdev->flags & IFF_ALLMULTI)) {
470		netdev_for_each_mc_addr(ha, netdev)
471			alx_add_mc_addr(hw, ha->addr, mc_hash);
472
473		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
474		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
475	}
476
477	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
478	if (netdev->flags & IFF_PROMISC)
479		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
480	if (netdev->flags & IFF_ALLMULTI)
481		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
482
483	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
484}
485
486static void alx_set_rx_mode(struct net_device *netdev)
487{
488	__alx_set_rx_mode(netdev);
489}
490
491static int alx_set_mac_address(struct net_device *netdev, void *data)
492{
493	struct alx_priv *alx = netdev_priv(netdev);
494	struct alx_hw *hw = &alx->hw;
495	struct sockaddr *addr = data;
496
497	if (!is_valid_ether_addr(addr->sa_data))
498		return -EADDRNOTAVAIL;
499
500	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
501		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
502
503	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
504	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
505	alx_set_macaddr(hw, hw->mac_addr);
506
507	return 0;
508}
509
510static int alx_alloc_descriptors(struct alx_priv *alx)
511{
512	alx->txq.bufs = kcalloc(alx->tx_ringsz,
513				sizeof(struct alx_buffer),
514				GFP_KERNEL);
515	if (!alx->txq.bufs)
516		return -ENOMEM;
517
518	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
519				sizeof(struct alx_buffer),
520				GFP_KERNEL);
521	if (!alx->rxq.bufs)
522		goto out_free;
523
524	/* physical tx/rx ring descriptors
525	 *
526	 * Allocate them as a single chunk because they must not cross a
527	 * 4G boundary (hardware has a single register for high 32 bits
528	 * of addresses only)
529	 */
530	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
531			    sizeof(struct alx_rrd) * alx->rx_ringsz +
532			    sizeof(struct alx_rfd) * alx->rx_ringsz;
533	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
534						alx->descmem.size,
535						&alx->descmem.dma,
536						GFP_KERNEL);
537	if (!alx->descmem.virt)
538		goto out_free;
539
540	alx->txq.tpd = alx->descmem.virt;
541	alx->txq.tpd_dma = alx->descmem.dma;
542
543	/* alignment requirement for next block */
544	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
545
546	alx->rxq.rrd =
547		(void *)((u8 *)alx->descmem.virt +
548			 sizeof(struct alx_txd) * alx->tx_ringsz);
549	alx->rxq.rrd_dma = alx->descmem.dma +
550			   sizeof(struct alx_txd) * alx->tx_ringsz;
551
552	/* alignment requirement for next block */
553	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
554
555	alx->rxq.rfd =
556		(void *)((u8 *)alx->descmem.virt +
557			 sizeof(struct alx_txd) * alx->tx_ringsz +
558			 sizeof(struct alx_rrd) * alx->rx_ringsz);
559	alx->rxq.rfd_dma = alx->descmem.dma +
560			   sizeof(struct alx_txd) * alx->tx_ringsz +
561			   sizeof(struct alx_rrd) * alx->rx_ringsz;
562
563	return 0;
564out_free:
565	kfree(alx->txq.bufs);
566	kfree(alx->rxq.bufs);
567	return -ENOMEM;
568}
569
570static int alx_alloc_rings(struct alx_priv *alx)
571{
572	int err;
573
574	err = alx_alloc_descriptors(alx);
575	if (err)
576		return err;
577
578	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
579	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
580	alx->tx_ringsz = alx->tx_ringsz;
581
582	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
583
584	alx_reinit_rings(alx);
585	return 0;
586}
587
588static void alx_free_rings(struct alx_priv *alx)
589{
590	netif_napi_del(&alx->napi);
591	alx_free_buffers(alx);
592
593	kfree(alx->txq.bufs);
594	kfree(alx->rxq.bufs);
595
596	dma_free_coherent(&alx->hw.pdev->dev,
597			  alx->descmem.size,
598			  alx->descmem.virt,
599			  alx->descmem.dma);
600}
601
602static void alx_config_vector_mapping(struct alx_priv *alx)
603{
604	struct alx_hw *hw = &alx->hw;
605
606	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
607	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
608	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
609}
610
611static void alx_irq_enable(struct alx_priv *alx)
612{
613	struct alx_hw *hw = &alx->hw;
614
615	/* level-1 interrupt switch */
616	alx_write_mem32(hw, ALX_ISR, 0);
617	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
618	alx_post_write(hw);
619}
620
621static void alx_irq_disable(struct alx_priv *alx)
622{
623	struct alx_hw *hw = &alx->hw;
624
625	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
626	alx_write_mem32(hw, ALX_IMR, 0);
627	alx_post_write(hw);
628
629	synchronize_irq(alx->hw.pdev->irq);
630}
631
632static int alx_request_irq(struct alx_priv *alx)
633{
634	struct pci_dev *pdev = alx->hw.pdev;
635	struct alx_hw *hw = &alx->hw;
636	int err;
637	u32 msi_ctrl;
638
639	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
640
641	if (!pci_enable_msi(alx->hw.pdev)) {
642		alx->msi = true;
643
644		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
645				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
646		err = request_irq(pdev->irq, alx_intr_msi, 0,
647				  alx->dev->name, alx);
648		if (!err)
649			goto out;
650		/* fall back to legacy interrupt */
651		pci_disable_msi(alx->hw.pdev);
652	}
653
654	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
655	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
656			  alx->dev->name, alx);
657out:
658	if (!err)
659		alx_config_vector_mapping(alx);
660	return err;
661}
662
663static void alx_free_irq(struct alx_priv *alx)
664{
665	struct pci_dev *pdev = alx->hw.pdev;
666
667	free_irq(pdev->irq, alx);
668
669	if (alx->msi) {
670		pci_disable_msi(alx->hw.pdev);
671		alx->msi = false;
672	}
673}
674
675static int alx_identify_hw(struct alx_priv *alx)
676{
677	struct alx_hw *hw = &alx->hw;
678	int rev = alx_hw_revision(hw);
679
680	if (rev > ALX_REV_C0)
681		return -EINVAL;
682
683	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
684
685	return 0;
686}
687
688static int alx_init_sw(struct alx_priv *alx)
689{
690	struct pci_dev *pdev = alx->hw.pdev;
691	struct alx_hw *hw = &alx->hw;
692	int err;
693
694	err = alx_identify_hw(alx);
695	if (err) {
696		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
697		return err;
698	}
699
700	alx->hw.lnk_patch =
701		pdev->device == ALX_DEV_ID_AR8161 &&
702		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
703		pdev->subsystem_device == 0x0091 &&
704		pdev->revision == 0;
705
706	hw->smb_timer = 400;
707	hw->mtu = alx->dev->mtu;
708	alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
709	alx->tx_ringsz = 256;
710	alx->rx_ringsz = 512;
711	hw->imt = 200;
712	alx->int_mask = ALX_ISR_MISC;
713	hw->dma_chnl = hw->max_dma_chnl;
714	hw->ith_tpd = alx->tx_ringsz / 3;
715	hw->link_speed = SPEED_UNKNOWN;
716	hw->duplex = DUPLEX_UNKNOWN;
717	hw->adv_cfg = ADVERTISED_Autoneg |
718		      ADVERTISED_10baseT_Half |
719		      ADVERTISED_10baseT_Full |
720		      ADVERTISED_100baseT_Full |
721		      ADVERTISED_100baseT_Half |
722		      ADVERTISED_1000baseT_Full;
723	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
724
725	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
726		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
727		      ALX_MAC_CTRL_BRD_EN |
728		      ALX_MAC_CTRL_PCRCE |
729		      ALX_MAC_CTRL_CRCE |
730		      ALX_MAC_CTRL_RXFC_EN |
731		      ALX_MAC_CTRL_TXFC_EN |
732		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
733
734	return err;
735}
736
737
738static netdev_features_t alx_fix_features(struct net_device *netdev,
739					  netdev_features_t features)
740{
741	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
742		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
743
744	return features;
745}
746
747static void alx_netif_stop(struct alx_priv *alx)
748{
749	alx->dev->trans_start = jiffies;
750	if (netif_carrier_ok(alx->dev)) {
751		netif_carrier_off(alx->dev);
752		netif_tx_disable(alx->dev);
753		napi_disable(&alx->napi);
754	}
755}
756
757static void alx_halt(struct alx_priv *alx)
758{
759	struct alx_hw *hw = &alx->hw;
760
761	alx_netif_stop(alx);
762	hw->link_speed = SPEED_UNKNOWN;
763	hw->duplex = DUPLEX_UNKNOWN;
764
765	alx_reset_mac(hw);
766
767	/* disable l0s/l1 */
768	alx_enable_aspm(hw, false, false);
769	alx_irq_disable(alx);
770	alx_free_buffers(alx);
771}
772
773static void alx_configure(struct alx_priv *alx)
774{
775	struct alx_hw *hw = &alx->hw;
776
777	alx_configure_basic(hw);
778	alx_disable_rss(hw);
779	__alx_set_rx_mode(alx->dev);
780
781	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
782}
783
784static void alx_activate(struct alx_priv *alx)
785{
786	/* hardware setting lost, restore it */
787	alx_reinit_rings(alx);
788	alx_configure(alx);
789
790	/* clear old interrupts */
791	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
792
793	alx_irq_enable(alx);
794
795	alx_schedule_link_check(alx);
796}
797
798static void alx_reinit(struct alx_priv *alx)
799{
800	ASSERT_RTNL();
801
802	alx_halt(alx);
803	alx_activate(alx);
804}
805
806static int alx_change_mtu(struct net_device *netdev, int mtu)
807{
808	struct alx_priv *alx = netdev_priv(netdev);
809	int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
810
811	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
812	    (max_frame > ALX_MAX_FRAME_SIZE))
813		return -EINVAL;
814
815	if (netdev->mtu == mtu)
816		return 0;
817
818	netdev->mtu = mtu;
819	alx->hw.mtu = mtu;
820	alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
821			   ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
822	netdev_update_features(netdev);
823	if (netif_running(netdev))
824		alx_reinit(alx);
825	return 0;
826}
827
828static void alx_netif_start(struct alx_priv *alx)
829{
830	netif_tx_wake_all_queues(alx->dev);
831	napi_enable(&alx->napi);
832	netif_carrier_on(alx->dev);
833}
834
835static int __alx_open(struct alx_priv *alx, bool resume)
836{
837	int err;
838
839	if (!resume)
840		netif_carrier_off(alx->dev);
841
842	err = alx_alloc_rings(alx);
843	if (err)
844		return err;
845
846	alx_configure(alx);
847
848	err = alx_request_irq(alx);
849	if (err)
850		goto out_free_rings;
851
852	/* clear old interrupts */
853	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
854
855	alx_irq_enable(alx);
856
857	if (!resume)
858		netif_tx_start_all_queues(alx->dev);
859
860	alx_schedule_link_check(alx);
861	return 0;
862
863out_free_rings:
864	alx_free_rings(alx);
865	return err;
866}
867
868static void __alx_stop(struct alx_priv *alx)
869{
870	alx_halt(alx);
871	alx_free_irq(alx);
872	alx_free_rings(alx);
873}
874
875static const char *alx_speed_desc(struct alx_hw *hw)
876{
877	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
878	case ADVERTISED_1000baseT_Full:
879		return "1 Gbps Full";
880	case ADVERTISED_100baseT_Full:
881		return "100 Mbps Full";
882	case ADVERTISED_100baseT_Half:
883		return "100 Mbps Half";
884	case ADVERTISED_10baseT_Full:
885		return "10 Mbps Full";
886	case ADVERTISED_10baseT_Half:
887		return "10 Mbps Half";
888	default:
889		return "Unknown speed";
890	}
891}
892
893static void alx_check_link(struct alx_priv *alx)
894{
895	struct alx_hw *hw = &alx->hw;
896	unsigned long flags;
897	int old_speed;
898	u8 old_duplex;
899	int err;
900
901	/* clear PHY internal interrupt status, otherwise the main
902	 * interrupt status will be asserted forever
903	 */
904	alx_clear_phy_intr(hw);
905
906	old_speed = hw->link_speed;
907	old_duplex = hw->duplex;
908	err = alx_read_phy_link(hw);
909	if (err < 0)
910		goto reset;
911
912	spin_lock_irqsave(&alx->irq_lock, flags);
913	alx->int_mask |= ALX_ISR_PHY;
914	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
915	spin_unlock_irqrestore(&alx->irq_lock, flags);
916
917	if (old_speed == hw->link_speed)
918		return;
919
920	if (hw->link_speed != SPEED_UNKNOWN) {
921		netif_info(alx, link, alx->dev,
922			   "NIC Up: %s\n", alx_speed_desc(hw));
923		alx_post_phy_link(hw);
924		alx_enable_aspm(hw, true, true);
925		alx_start_mac(hw);
926
927		if (old_speed == SPEED_UNKNOWN)
928			alx_netif_start(alx);
929	} else {
930		/* link is now down */
931		alx_netif_stop(alx);
932		netif_info(alx, link, alx->dev, "Link Down\n");
933		err = alx_reset_mac(hw);
934		if (err)
935			goto reset;
936		alx_irq_disable(alx);
937
938		/* MAC reset causes all HW settings to be lost, restore all */
939		err = alx_reinit_rings(alx);
940		if (err)
941			goto reset;
942		alx_configure(alx);
943		alx_enable_aspm(hw, false, true);
944		alx_post_phy_link(hw);
945		alx_irq_enable(alx);
946	}
947
948	return;
949
950reset:
951	alx_schedule_reset(alx);
952}
953
954static int alx_open(struct net_device *netdev)
955{
956	return __alx_open(netdev_priv(netdev), false);
957}
958
959static int alx_stop(struct net_device *netdev)
960{
961	__alx_stop(netdev_priv(netdev));
962	return 0;
963}
964
965static void alx_link_check(struct work_struct *work)
966{
967	struct alx_priv *alx;
968
969	alx = container_of(work, struct alx_priv, link_check_wk);
970
971	rtnl_lock();
972	alx_check_link(alx);
973	rtnl_unlock();
974}
975
976static void alx_reset(struct work_struct *work)
977{
978	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
979
980	rtnl_lock();
981	alx_reinit(alx);
982	rtnl_unlock();
983}
984
985static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
986{
987	u8 cso, css;
988
989	if (skb->ip_summed != CHECKSUM_PARTIAL)
990		return 0;
991
992	cso = skb_checksum_start_offset(skb);
993	if (cso & 1)
994		return -EINVAL;
995
996	css = cso + skb->csum_offset;
997	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
998	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
999	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1000
1001	return 0;
1002}
1003
1004static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1005{
1006	struct alx_tx_queue *txq = &alx->txq;
1007	struct alx_txd *tpd, *first_tpd;
1008	dma_addr_t dma;
1009	int maplen, f, first_idx = txq->write_idx;
1010
1011	first_tpd = &txq->tpd[txq->write_idx];
1012	tpd = first_tpd;
1013
1014	maplen = skb_headlen(skb);
1015	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1016			     DMA_TO_DEVICE);
1017	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1018		goto err_dma;
1019
1020	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1021	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1022
1023	tpd->adrl.addr = cpu_to_le64(dma);
1024	tpd->len = cpu_to_le16(maplen);
1025
1026	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1027		struct skb_frag_struct *frag;
1028
1029		frag = &skb_shinfo(skb)->frags[f];
1030
1031		if (++txq->write_idx == alx->tx_ringsz)
1032			txq->write_idx = 0;
1033		tpd = &txq->tpd[txq->write_idx];
1034
1035		tpd->word1 = first_tpd->word1;
1036
1037		maplen = skb_frag_size(frag);
1038		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1039				       maplen, DMA_TO_DEVICE);
1040		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1041			goto err_dma;
1042		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1043		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1044
1045		tpd->adrl.addr = cpu_to_le64(dma);
1046		tpd->len = cpu_to_le16(maplen);
1047	}
1048
1049	/* last TPD, set EOP flag and store skb */
1050	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1051	txq->bufs[txq->write_idx].skb = skb;
1052
1053	if (++txq->write_idx == alx->tx_ringsz)
1054		txq->write_idx = 0;
1055
1056	return 0;
1057
1058err_dma:
1059	f = first_idx;
1060	while (f != txq->write_idx) {
1061		alx_free_txbuf(alx, f);
1062		if (++f == alx->tx_ringsz)
1063			f = 0;
1064	}
1065	return -ENOMEM;
1066}
1067
1068static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1069				  struct net_device *netdev)
1070{
1071	struct alx_priv *alx = netdev_priv(netdev);
1072	struct alx_tx_queue *txq = &alx->txq;
1073	struct alx_txd *first;
1074	int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1075
1076	if (alx_tpd_avail(alx) < tpdreq) {
1077		netif_stop_queue(alx->dev);
1078		goto drop;
1079	}
1080
1081	first = &txq->tpd[txq->write_idx];
1082	memset(first, 0, sizeof(*first));
1083
1084	if (alx_tx_csum(skb, first))
1085		goto drop;
1086
1087	if (alx_map_tx_skb(alx, skb) < 0)
1088		goto drop;
1089
1090	netdev_sent_queue(alx->dev, skb->len);
1091
1092	/* flush updates before updating hardware */
1093	wmb();
1094	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1095
1096	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1097		netif_stop_queue(alx->dev);
1098
1099	return NETDEV_TX_OK;
1100
1101drop:
1102	dev_kfree_skb_any(skb);
1103	return NETDEV_TX_OK;
1104}
1105
1106static void alx_tx_timeout(struct net_device *dev)
1107{
1108	struct alx_priv *alx = netdev_priv(dev);
1109
1110	alx_schedule_reset(alx);
1111}
1112
1113static int alx_mdio_read(struct net_device *netdev,
1114			 int prtad, int devad, u16 addr)
1115{
1116	struct alx_priv *alx = netdev_priv(netdev);
1117	struct alx_hw *hw = &alx->hw;
1118	u16 val;
1119	int err;
1120
1121	if (prtad != hw->mdio.prtad)
1122		return -EINVAL;
1123
1124	if (devad == MDIO_DEVAD_NONE)
1125		err = alx_read_phy_reg(hw, addr, &val);
1126	else
1127		err = alx_read_phy_ext(hw, devad, addr, &val);
1128
1129	if (err)
1130		return err;
1131	return val;
1132}
1133
1134static int alx_mdio_write(struct net_device *netdev,
1135			  int prtad, int devad, u16 addr, u16 val)
1136{
1137	struct alx_priv *alx = netdev_priv(netdev);
1138	struct alx_hw *hw = &alx->hw;
1139
1140	if (prtad != hw->mdio.prtad)
1141		return -EINVAL;
1142
1143	if (devad == MDIO_DEVAD_NONE)
1144		return alx_write_phy_reg(hw, addr, val);
1145
1146	return alx_write_phy_ext(hw, devad, addr, val);
1147}
1148
1149static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1150{
1151	struct alx_priv *alx = netdev_priv(netdev);
1152
1153	if (!netif_running(netdev))
1154		return -EAGAIN;
1155
1156	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1157}
1158
1159#ifdef CONFIG_NET_POLL_CONTROLLER
1160static void alx_poll_controller(struct net_device *netdev)
1161{
1162	struct alx_priv *alx = netdev_priv(netdev);
1163
1164	if (alx->msi)
1165		alx_intr_msi(0, alx);
1166	else
1167		alx_intr_legacy(0, alx);
1168}
1169#endif
1170
1171static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1172					struct rtnl_link_stats64 *net_stats)
1173{
1174	struct alx_priv *alx = netdev_priv(dev);
1175	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1176
1177	spin_lock(&alx->stats_lock);
1178
1179	alx_update_hw_stats(&alx->hw);
1180
1181	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1182	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1183	net_stats->multicast  = hw_stats->rx_mcast;
1184	net_stats->collisions = hw_stats->tx_single_col +
1185				hw_stats->tx_multi_col +
1186				hw_stats->tx_late_col +
1187				hw_stats->tx_abort_col;
1188
1189	net_stats->rx_errors  = hw_stats->rx_frag +
1190				hw_stats->rx_fcs_err +
1191				hw_stats->rx_len_err +
1192				hw_stats->rx_ov_sz +
1193				hw_stats->rx_ov_rrd +
1194				hw_stats->rx_align_err +
1195				hw_stats->rx_ov_rxf;
1196
1197	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1198	net_stats->rx_length_errors = hw_stats->rx_len_err;
1199	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1200	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1201	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1202
1203	net_stats->tx_errors = hw_stats->tx_late_col +
1204			       hw_stats->tx_abort_col +
1205			       hw_stats->tx_underrun +
1206			       hw_stats->tx_trunc;
1207
1208	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1209	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1210	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1211
1212	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1213	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1214
1215	spin_unlock(&alx->stats_lock);
1216
1217	return net_stats;
1218}
1219
1220static const struct net_device_ops alx_netdev_ops = {
1221	.ndo_open               = alx_open,
1222	.ndo_stop               = alx_stop,
1223	.ndo_start_xmit         = alx_start_xmit,
1224	.ndo_get_stats64        = alx_get_stats64,
1225	.ndo_set_rx_mode        = alx_set_rx_mode,
1226	.ndo_validate_addr      = eth_validate_addr,
1227	.ndo_set_mac_address    = alx_set_mac_address,
1228	.ndo_change_mtu         = alx_change_mtu,
1229	.ndo_do_ioctl           = alx_ioctl,
1230	.ndo_tx_timeout         = alx_tx_timeout,
1231	.ndo_fix_features	= alx_fix_features,
1232#ifdef CONFIG_NET_POLL_CONTROLLER
1233	.ndo_poll_controller    = alx_poll_controller,
1234#endif
1235};
1236
1237static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1238{
1239	struct net_device *netdev;
1240	struct alx_priv *alx;
1241	struct alx_hw *hw;
1242	bool phy_configured;
1243	int bars, err;
1244
1245	err = pci_enable_device_mem(pdev);
1246	if (err)
1247		return err;
1248
1249	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1250	 * shared register for the high 32 bits, so only a single, aligned,
1251	 * 4 GB physical address range can be used for descriptors.
1252	 */
1253	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1254		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1255	} else {
1256		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1257		if (err) {
1258			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1259			goto out_pci_disable;
1260		}
1261	}
1262
1263	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1264	err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1265	if (err) {
1266		dev_err(&pdev->dev,
1267			"pci_request_selected_regions failed(bars:%d)\n", bars);
1268		goto out_pci_disable;
1269	}
1270
1271	pci_enable_pcie_error_reporting(pdev);
1272	pci_set_master(pdev);
1273
1274	if (!pdev->pm_cap) {
1275		dev_err(&pdev->dev,
1276			"Can't find power management capability, aborting\n");
1277		err = -EIO;
1278		goto out_pci_release;
1279	}
1280
1281	netdev = alloc_etherdev(sizeof(*alx));
1282	if (!netdev) {
1283		err = -ENOMEM;
1284		goto out_pci_release;
1285	}
1286
1287	SET_NETDEV_DEV(netdev, &pdev->dev);
1288	alx = netdev_priv(netdev);
1289	spin_lock_init(&alx->hw.mdio_lock);
1290	spin_lock_init(&alx->irq_lock);
1291	spin_lock_init(&alx->stats_lock);
1292	alx->dev = netdev;
1293	alx->hw.pdev = pdev;
1294	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1295			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1296	hw = &alx->hw;
1297	pci_set_drvdata(pdev, alx);
1298
1299	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1300	if (!hw->hw_addr) {
1301		dev_err(&pdev->dev, "cannot map device registers\n");
1302		err = -EIO;
1303		goto out_free_netdev;
1304	}
1305
1306	netdev->netdev_ops = &alx_netdev_ops;
1307	netdev->ethtool_ops = &alx_ethtool_ops;
1308	netdev->irq = pdev->irq;
1309	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1310
1311	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1312		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1313
1314	err = alx_init_sw(alx);
1315	if (err) {
1316		dev_err(&pdev->dev, "net device private data init failed\n");
1317		goto out_unmap;
1318	}
1319
1320	alx_reset_pcie(hw);
1321
1322	phy_configured = alx_phy_configured(hw);
1323
1324	if (!phy_configured)
1325		alx_reset_phy(hw);
1326
1327	err = alx_reset_mac(hw);
1328	if (err) {
1329		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1330		goto out_unmap;
1331	}
1332
1333	/* setup link to put it in a known good starting state */
1334	if (!phy_configured) {
1335		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1336		if (err) {
1337			dev_err(&pdev->dev,
1338				"failed to configure PHY speed/duplex (err=%d)\n",
1339				err);
1340			goto out_unmap;
1341		}
1342	}
1343
1344	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1345
1346	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1347		dev_warn(&pdev->dev,
1348			 "Invalid permanent address programmed, using random one\n");
1349		eth_hw_addr_random(netdev);
1350		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1351	}
1352
1353	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1354	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1355	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1356
1357	hw->mdio.prtad = 0;
1358	hw->mdio.mmds = 0;
1359	hw->mdio.dev = netdev;
1360	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1361				MDIO_SUPPORTS_C22 |
1362				MDIO_EMULATE_C22;
1363	hw->mdio.mdio_read = alx_mdio_read;
1364	hw->mdio.mdio_write = alx_mdio_write;
1365
1366	if (!alx_get_phy_info(hw)) {
1367		dev_err(&pdev->dev, "failed to identify PHY\n");
1368		err = -EIO;
1369		goto out_unmap;
1370	}
1371
1372	INIT_WORK(&alx->link_check_wk, alx_link_check);
1373	INIT_WORK(&alx->reset_wk, alx_reset);
1374	netif_carrier_off(netdev);
1375
1376	err = register_netdev(netdev);
1377	if (err) {
1378		dev_err(&pdev->dev, "register netdevice failed\n");
1379		goto out_unmap;
1380	}
1381
1382	netdev_info(netdev,
1383		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1384		    netdev->dev_addr);
1385
1386	return 0;
1387
1388out_unmap:
1389	iounmap(hw->hw_addr);
1390out_free_netdev:
1391	free_netdev(netdev);
1392out_pci_release:
1393	pci_release_selected_regions(pdev, bars);
1394out_pci_disable:
1395	pci_disable_device(pdev);
1396	return err;
1397}
1398
1399static void alx_remove(struct pci_dev *pdev)
1400{
1401	struct alx_priv *alx = pci_get_drvdata(pdev);
1402	struct alx_hw *hw = &alx->hw;
1403
1404	cancel_work_sync(&alx->link_check_wk);
1405	cancel_work_sync(&alx->reset_wk);
1406
1407	/* restore permanent mac address */
1408	alx_set_macaddr(hw, hw->perm_addr);
1409
1410	unregister_netdev(alx->dev);
1411	iounmap(hw->hw_addr);
1412	pci_release_selected_regions(pdev,
1413				     pci_select_bars(pdev, IORESOURCE_MEM));
1414
1415	pci_disable_pcie_error_reporting(pdev);
1416	pci_disable_device(pdev);
1417
1418	free_netdev(alx->dev);
1419}
1420
1421#ifdef CONFIG_PM_SLEEP
1422static int alx_suspend(struct device *dev)
1423{
1424	struct pci_dev *pdev = to_pci_dev(dev);
1425	struct alx_priv *alx = pci_get_drvdata(pdev);
1426
1427	if (!netif_running(alx->dev))
1428		return 0;
1429	netif_device_detach(alx->dev);
1430	__alx_stop(alx);
1431	return 0;
1432}
1433
1434static int alx_resume(struct device *dev)
1435{
1436	struct pci_dev *pdev = to_pci_dev(dev);
1437	struct alx_priv *alx = pci_get_drvdata(pdev);
1438	struct alx_hw *hw = &alx->hw;
1439
1440	alx_reset_phy(hw);
1441
1442	if (!netif_running(alx->dev))
1443		return 0;
1444	netif_device_attach(alx->dev);
1445	return __alx_open(alx, true);
1446}
1447
1448static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1449#define ALX_PM_OPS      (&alx_pm_ops)
1450#else
1451#define ALX_PM_OPS      NULL
1452#endif
1453
1454
1455static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1456					       pci_channel_state_t state)
1457{
1458	struct alx_priv *alx = pci_get_drvdata(pdev);
1459	struct net_device *netdev = alx->dev;
1460	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1461
1462	dev_info(&pdev->dev, "pci error detected\n");
1463
1464	rtnl_lock();
1465
1466	if (netif_running(netdev)) {
1467		netif_device_detach(netdev);
1468		alx_halt(alx);
1469	}
1470
1471	if (state == pci_channel_io_perm_failure)
1472		rc = PCI_ERS_RESULT_DISCONNECT;
1473	else
1474		pci_disable_device(pdev);
1475
1476	rtnl_unlock();
1477
1478	return rc;
1479}
1480
1481static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1482{
1483	struct alx_priv *alx = pci_get_drvdata(pdev);
1484	struct alx_hw *hw = &alx->hw;
1485	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1486
1487	dev_info(&pdev->dev, "pci error slot reset\n");
1488
1489	rtnl_lock();
1490
1491	if (pci_enable_device(pdev)) {
1492		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1493		goto out;
1494	}
1495
1496	pci_set_master(pdev);
1497
1498	alx_reset_pcie(hw);
1499	if (!alx_reset_mac(hw))
1500		rc = PCI_ERS_RESULT_RECOVERED;
1501out:
1502	pci_cleanup_aer_uncorrect_error_status(pdev);
1503
1504	rtnl_unlock();
1505
1506	return rc;
1507}
1508
1509static void alx_pci_error_resume(struct pci_dev *pdev)
1510{
1511	struct alx_priv *alx = pci_get_drvdata(pdev);
1512	struct net_device *netdev = alx->dev;
1513
1514	dev_info(&pdev->dev, "pci error resume\n");
1515
1516	rtnl_lock();
1517
1518	if (netif_running(netdev)) {
1519		alx_activate(alx);
1520		netif_device_attach(netdev);
1521	}
1522
1523	rtnl_unlock();
1524}
1525
1526static const struct pci_error_handlers alx_err_handlers = {
1527	.error_detected = alx_pci_error_detected,
1528	.slot_reset     = alx_pci_error_slot_reset,
1529	.resume         = alx_pci_error_resume,
1530};
1531
1532static const struct pci_device_id alx_pci_tbl[] = {
1533	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1534	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1535	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1536	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1537	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1538	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1539	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1540	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1541	{}
1542};
1543
1544static struct pci_driver alx_driver = {
1545	.name        = alx_drv_name,
1546	.id_table    = alx_pci_tbl,
1547	.probe       = alx_probe,
1548	.remove      = alx_remove,
1549	.err_handler = &alx_err_handlers,
1550	.driver.pm   = ALX_PM_OPS,
1551};
1552
1553module_pci_driver(alx_driver);
1554MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1555MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1556MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1557MODULE_DESCRIPTION(
1558	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1559MODULE_LICENSE("GPL");
1560