1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44 
45 #include "c_can.h"
46 
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN		11
49 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50 
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR		BIT(8)
53 
54 /* control register */
55 #define CONTROL_TEST		BIT(7)
56 #define CONTROL_CCE		BIT(6)
57 #define CONTROL_DISABLE_AR	BIT(5)
58 #define CONTROL_ENABLE_AR	(0 << 5)
59 #define CONTROL_EIE		BIT(3)
60 #define CONTROL_SIE		BIT(2)
61 #define CONTROL_IE		BIT(1)
62 #define CONTROL_INIT		BIT(0)
63 
64 #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
65 
66 /* test register */
67 #define TEST_RX			BIT(7)
68 #define TEST_TX1		BIT(6)
69 #define TEST_TX2		BIT(5)
70 #define TEST_LBACK		BIT(4)
71 #define TEST_SILENT		BIT(3)
72 #define TEST_BASIC		BIT(2)
73 
74 /* status register */
75 #define STATUS_PDA		BIT(10)
76 #define STATUS_BOFF		BIT(7)
77 #define STATUS_EWARN		BIT(6)
78 #define STATUS_EPASS		BIT(5)
79 #define STATUS_RXOK		BIT(4)
80 #define STATUS_TXOK		BIT(3)
81 
82 /* error counter register */
83 #define ERR_CNT_TEC_MASK	0xff
84 #define ERR_CNT_TEC_SHIFT	0
85 #define ERR_CNT_REC_SHIFT	8
86 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
87 #define ERR_CNT_RP_SHIFT	15
88 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
89 
90 /* bit-timing register */
91 #define BTR_BRP_MASK		0x3f
92 #define BTR_BRP_SHIFT		0
93 #define BTR_SJW_SHIFT		6
94 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
95 #define BTR_TSEG1_SHIFT		8
96 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
97 #define BTR_TSEG2_SHIFT		12
98 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
99 
100 /* brp extension register */
101 #define BRP_EXT_BRPE_MASK	0x0f
102 #define BRP_EXT_BRPE_SHIFT	0
103 
104 /* IFx command request */
105 #define IF_COMR_BUSY		BIT(15)
106 
107 /* IFx command mask */
108 #define IF_COMM_WR		BIT(7)
109 #define IF_COMM_MASK		BIT(6)
110 #define IF_COMM_ARB		BIT(5)
111 #define IF_COMM_CONTROL		BIT(4)
112 #define IF_COMM_CLR_INT_PND	BIT(3)
113 #define IF_COMM_TXRQST		BIT(2)
114 #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
115 #define IF_COMM_DATAA		BIT(1)
116 #define IF_COMM_DATAB		BIT(0)
117 
118 /* TX buffer setup */
119 #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
120 				 IF_COMM_TXRQST |		 \
121 				 IF_COMM_DATAA | IF_COMM_DATAB)
122 
123 /* For the low buffers we clear the interrupt bit, but keep newdat */
124 #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
125 				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
126 				 IF_COMM_DATAA | IF_COMM_DATAB)
127 
128 /* For the high buffers we clear the interrupt bit and newdat */
129 #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
130 
131 
132 /* Receive setup of message objects */
133 #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
134 
135 /* Invalidation of message objects */
136 #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
137 
138 /* IFx arbitration */
139 #define IF_ARB_MSGVAL		BIT(31)
140 #define IF_ARB_MSGXTD		BIT(30)
141 #define IF_ARB_TRANSMIT		BIT(29)
142 
143 /* IFx message control */
144 #define IF_MCONT_NEWDAT		BIT(15)
145 #define IF_MCONT_MSGLST		BIT(14)
146 #define IF_MCONT_INTPND		BIT(13)
147 #define IF_MCONT_UMASK		BIT(12)
148 #define IF_MCONT_TXIE		BIT(11)
149 #define IF_MCONT_RXIE		BIT(10)
150 #define IF_MCONT_RMTEN		BIT(9)
151 #define IF_MCONT_TXRQST		BIT(8)
152 #define IF_MCONT_EOB		BIT(7)
153 #define IF_MCONT_DLC_MASK	0xf
154 
155 #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
156 #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
157 
158 #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
159 
160 /*
161  * Use IF1 for RX and IF2 for TX
162  */
163 #define IF_RX			0
164 #define IF_TX			1
165 
166 /* minimum timeout for checking BUSY status */
167 #define MIN_TIMEOUT_VALUE	6
168 
169 /* Wait for ~1 sec for INIT bit */
170 #define INIT_WAIT_MS		1000
171 
172 /* napi related */
173 #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
174 
175 /* c_can lec values */
176 enum c_can_lec_type {
177 	LEC_NO_ERROR = 0,
178 	LEC_STUFF_ERROR,
179 	LEC_FORM_ERROR,
180 	LEC_ACK_ERROR,
181 	LEC_BIT1_ERROR,
182 	LEC_BIT0_ERROR,
183 	LEC_CRC_ERROR,
184 	LEC_UNUSED,
185 	LEC_MASK = LEC_UNUSED,
186 };
187 
188 /*
189  * c_can error types:
190  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
191  */
192 enum c_can_bus_error_types {
193 	C_CAN_NO_ERROR = 0,
194 	C_CAN_BUS_OFF,
195 	C_CAN_ERROR_WARNING,
196 	C_CAN_ERROR_PASSIVE,
197 };
198 
199 static const struct can_bittiming_const c_can_bittiming_const = {
200 	.name = KBUILD_MODNAME,
201 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
202 	.tseg1_max = 16,
203 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
204 	.tseg2_max = 8,
205 	.sjw_max = 4,
206 	.brp_min = 1,
207 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
208 	.brp_inc = 1,
209 };
210 
c_can_pm_runtime_enable(const struct c_can_priv * priv)211 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
212 {
213 	if (priv->device)
214 		pm_runtime_enable(priv->device);
215 }
216 
c_can_pm_runtime_disable(const struct c_can_priv * priv)217 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
218 {
219 	if (priv->device)
220 		pm_runtime_disable(priv->device);
221 }
222 
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)223 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
224 {
225 	if (priv->device)
226 		pm_runtime_get_sync(priv->device);
227 }
228 
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)229 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
230 {
231 	if (priv->device)
232 		pm_runtime_put_sync(priv->device);
233 }
234 
c_can_reset_ram(const struct c_can_priv * priv,bool enable)235 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
236 {
237 	if (priv->raminit)
238 		priv->raminit(priv, enable);
239 }
240 
c_can_irq_control(struct c_can_priv * priv,bool enable)241 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
242 {
243 	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
244 
245 	if (enable)
246 		ctrl |= CONTROL_IRQMSK;
247 
248 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
249 }
250 
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)251 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
252 {
253 	struct c_can_priv *priv = netdev_priv(dev);
254 	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
255 
256 	priv->write_reg32(priv, reg, (cmd << 16) | obj);
257 
258 	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
259 		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
260 			return;
261 		udelay(1);
262 	}
263 	netdev_err(dev, "Updating object timed out\n");
264 
265 }
266 
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)267 static inline void c_can_object_get(struct net_device *dev, int iface,
268 				    u32 obj, u32 cmd)
269 {
270 	c_can_obj_update(dev, iface, cmd, obj);
271 }
272 
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)273 static inline void c_can_object_put(struct net_device *dev, int iface,
274 				    u32 obj, u32 cmd)
275 {
276 	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
277 }
278 
279 /*
280  * Note: According to documentation clearing TXIE while MSGVAL is set
281  * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
282  * load significantly.
283  */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)284 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
285 {
286 	struct c_can_priv *priv = netdev_priv(dev);
287 
288 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
289 	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
290 }
291 
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)292 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
293 {
294 	struct c_can_priv *priv = netdev_priv(dev);
295 
296 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
297 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
298 	c_can_inval_tx_object(dev, iface, obj);
299 }
300 
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)301 static void c_can_setup_tx_object(struct net_device *dev, int iface,
302 				  struct can_frame *frame, int idx)
303 {
304 	struct c_can_priv *priv = netdev_priv(dev);
305 	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
306 	bool rtr = frame->can_id & CAN_RTR_FLAG;
307 	u32 arb = IF_ARB_MSGVAL;
308 	int i;
309 
310 	if (frame->can_id & CAN_EFF_FLAG) {
311 		arb |= frame->can_id & CAN_EFF_MASK;
312 		arb |= IF_ARB_MSGXTD;
313 	} else {
314 		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
315 	}
316 
317 	if (!rtr)
318 		arb |= IF_ARB_TRANSMIT;
319 
320 	/*
321 	 * If we change the DIR bit, we need to invalidate the buffer
322 	 * first, i.e. clear the MSGVAL flag in the arbiter.
323 	 */
324 	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
325 		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
326 
327 		c_can_inval_msg_object(dev, iface, obj);
328 		change_bit(idx, &priv->tx_dir);
329 	}
330 
331 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
332 
333 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
334 
335 	for (i = 0; i < frame->can_dlc; i += 2) {
336 		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
337 				frame->data[i] | (frame->data[i + 1] << 8));
338 	}
339 }
340 
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface)341 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
342 						       int iface)
343 {
344 	int i;
345 
346 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
347 		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
348 }
349 
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)350 static int c_can_handle_lost_msg_obj(struct net_device *dev,
351 				     int iface, int objno, u32 ctrl)
352 {
353 	struct net_device_stats *stats = &dev->stats;
354 	struct c_can_priv *priv = netdev_priv(dev);
355 	struct can_frame *frame;
356 	struct sk_buff *skb;
357 
358 	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
359 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
360 	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
361 
362 	stats->rx_errors++;
363 	stats->rx_over_errors++;
364 
365 	/* create an error msg */
366 	skb = alloc_can_err_skb(dev, &frame);
367 	if (unlikely(!skb))
368 		return 0;
369 
370 	frame->can_id |= CAN_ERR_CRTL;
371 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
372 
373 	netif_receive_skb(skb);
374 	return 1;
375 }
376 
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)377 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
378 {
379 	struct net_device_stats *stats = &dev->stats;
380 	struct c_can_priv *priv = netdev_priv(dev);
381 	struct can_frame *frame;
382 	struct sk_buff *skb;
383 	u32 arb, data;
384 
385 	skb = alloc_can_skb(dev, &frame);
386 	if (!skb) {
387 		stats->rx_dropped++;
388 		return -ENOMEM;
389 	}
390 
391 	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
392 
393 	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
394 
395 	if (arb & IF_ARB_MSGXTD)
396 		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
397 	else
398 		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
399 
400 	if (arb & IF_ARB_TRANSMIT) {
401 		frame->can_id |= CAN_RTR_FLAG;
402 	} else {
403 		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
404 
405 		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
406 			data = priv->read_reg(priv, dreg);
407 			frame->data[i] = data;
408 			frame->data[i + 1] = data >> 8;
409 		}
410 	}
411 
412 	stats->rx_packets++;
413 	stats->rx_bytes += frame->can_dlc;
414 
415 	netif_receive_skb(skb);
416 	return 0;
417 }
418 
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)419 static void c_can_setup_receive_object(struct net_device *dev, int iface,
420 				       u32 obj, u32 mask, u32 id, u32 mcont)
421 {
422 	struct c_can_priv *priv = netdev_priv(dev);
423 
424 	mask |= BIT(29);
425 	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
426 
427 	id |= IF_ARB_MSGVAL;
428 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
429 
430 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
431 	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
432 }
433 
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)434 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
435 				    struct net_device *dev)
436 {
437 	struct can_frame *frame = (struct can_frame *)skb->data;
438 	struct c_can_priv *priv = netdev_priv(dev);
439 	u32 idx, obj;
440 
441 	if (can_dropped_invalid_skb(dev, skb))
442 		return NETDEV_TX_OK;
443 	/*
444 	 * This is not a FIFO. C/D_CAN sends out the buffers
445 	 * prioritized. The lowest buffer number wins.
446 	 */
447 	idx = fls(atomic_read(&priv->tx_active));
448 	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
449 
450 	/* If this is the last buffer, stop the xmit queue */
451 	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
452 		netif_stop_queue(dev);
453 	/*
454 	 * Store the message in the interface so we can call
455 	 * can_put_echo_skb(). We must do this before we enable
456 	 * transmit as we might race against do_tx().
457 	 */
458 	c_can_setup_tx_object(dev, IF_TX, frame, idx);
459 	priv->dlc[idx] = frame->can_dlc;
460 	can_put_echo_skb(skb, dev, idx);
461 
462 	/* Update the active bits */
463 	atomic_add((1 << idx), &priv->tx_active);
464 	/* Start transmission */
465 	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
466 
467 	return NETDEV_TX_OK;
468 }
469 
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)470 static int c_can_wait_for_ctrl_init(struct net_device *dev,
471 				    struct c_can_priv *priv, u32 init)
472 {
473 	int retry = 0;
474 
475 	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
476 		udelay(10);
477 		if (retry++ > 1000) {
478 			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
479 			return -EIO;
480 		}
481 	}
482 	return 0;
483 }
484 
c_can_set_bittiming(struct net_device * dev)485 static int c_can_set_bittiming(struct net_device *dev)
486 {
487 	unsigned int reg_btr, reg_brpe, ctrl_save;
488 	u8 brp, brpe, sjw, tseg1, tseg2;
489 	u32 ten_bit_brp;
490 	struct c_can_priv *priv = netdev_priv(dev);
491 	const struct can_bittiming *bt = &priv->can.bittiming;
492 	int res;
493 
494 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
495 	ten_bit_brp = bt->brp - 1;
496 	brp = ten_bit_brp & BTR_BRP_MASK;
497 	brpe = ten_bit_brp >> 6;
498 
499 	sjw = bt->sjw - 1;
500 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
501 	tseg2 = bt->phase_seg2 - 1;
502 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
503 			(tseg2 << BTR_TSEG2_SHIFT);
504 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
505 
506 	netdev_info(dev,
507 		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
508 
509 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
510 	ctrl_save &= ~CONTROL_INIT;
511 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
512 	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
513 	if (res)
514 		return res;
515 
516 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
517 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
518 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
519 
520 	return c_can_wait_for_ctrl_init(dev, priv, 0);
521 }
522 
523 /*
524  * Configure C_CAN message objects for Tx and Rx purposes:
525  * C_CAN provides a total of 32 message objects that can be configured
526  * either for Tx or Rx purposes. Here the first 16 message objects are used as
527  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
528  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
529  * See user guide document for further details on configuring message
530  * objects.
531  */
c_can_configure_msg_objects(struct net_device * dev)532 static void c_can_configure_msg_objects(struct net_device *dev)
533 {
534 	int i;
535 
536 	/* first invalidate all message objects */
537 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
538 		c_can_inval_msg_object(dev, IF_RX, i);
539 
540 	/* setup receive message objects */
541 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
542 		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
543 
544 	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
545 				   IF_MCONT_RCV_EOB);
546 }
547 
548 /*
549  * Configure C_CAN chip:
550  * - enable/disable auto-retransmission
551  * - set operating mode
552  * - configure message objects
553  */
c_can_chip_config(struct net_device * dev)554 static int c_can_chip_config(struct net_device *dev)
555 {
556 	struct c_can_priv *priv = netdev_priv(dev);
557 
558 	/* enable automatic retransmission */
559 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
560 
561 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
562 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
563 		/* loopback + silent mode : useful for hot self-test */
564 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
565 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
566 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
567 		/* loopback mode : useful for self-test function */
568 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
569 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
570 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
571 		/* silent mode : bus-monitoring mode */
572 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
573 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
574 	}
575 
576 	/* configure message objects */
577 	c_can_configure_msg_objects(dev);
578 
579 	/* set a `lec` value so that we can check for updates later */
580 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
581 
582 	/* Clear all internal status */
583 	atomic_set(&priv->tx_active, 0);
584 	priv->rxmasked = 0;
585 	priv->tx_dir = 0;
586 
587 	/* set bittiming params */
588 	return c_can_set_bittiming(dev);
589 }
590 
c_can_start(struct net_device * dev)591 static int c_can_start(struct net_device *dev)
592 {
593 	struct c_can_priv *priv = netdev_priv(dev);
594 	int err;
595 	struct pinctrl *p;
596 
597 	/* basic c_can configuration */
598 	err = c_can_chip_config(dev);
599 	if (err)
600 		return err;
601 
602 	/* Setup the command for new messages */
603 	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
604 		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
605 
606 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
607 
608 	/* Attempt to use "active" if available else use "default" */
609 	p = pinctrl_get_select(priv->device, "active");
610 	if (!IS_ERR(p))
611 		pinctrl_put(p);
612 	else
613 		pinctrl_pm_select_default_state(priv->device);
614 
615 	return 0;
616 }
617 
c_can_stop(struct net_device * dev)618 static void c_can_stop(struct net_device *dev)
619 {
620 	struct c_can_priv *priv = netdev_priv(dev);
621 
622 	c_can_irq_control(priv, false);
623 
624 	/* put ctrl to init on stop to end ongoing transmission */
625 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
626 
627 	/* deactivate pins */
628 	pinctrl_pm_select_sleep_state(dev->dev.parent);
629 	priv->can.state = CAN_STATE_STOPPED;
630 }
631 
c_can_set_mode(struct net_device * dev,enum can_mode mode)632 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
633 {
634 	struct c_can_priv *priv = netdev_priv(dev);
635 	int err;
636 
637 	switch (mode) {
638 	case CAN_MODE_START:
639 		err = c_can_start(dev);
640 		if (err)
641 			return err;
642 		netif_wake_queue(dev);
643 		c_can_irq_control(priv, true);
644 		break;
645 	default:
646 		return -EOPNOTSUPP;
647 	}
648 
649 	return 0;
650 }
651 
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)652 static int __c_can_get_berr_counter(const struct net_device *dev,
653 				    struct can_berr_counter *bec)
654 {
655 	unsigned int reg_err_counter;
656 	struct c_can_priv *priv = netdev_priv(dev);
657 
658 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
659 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
660 				ERR_CNT_REC_SHIFT;
661 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
662 
663 	return 0;
664 }
665 
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)666 static int c_can_get_berr_counter(const struct net_device *dev,
667 				  struct can_berr_counter *bec)
668 {
669 	struct c_can_priv *priv = netdev_priv(dev);
670 	int err;
671 
672 	c_can_pm_runtime_get_sync(priv);
673 	err = __c_can_get_berr_counter(dev, bec);
674 	c_can_pm_runtime_put_sync(priv);
675 
676 	return err;
677 }
678 
c_can_do_tx(struct net_device * dev)679 static void c_can_do_tx(struct net_device *dev)
680 {
681 	struct c_can_priv *priv = netdev_priv(dev);
682 	struct net_device_stats *stats = &dev->stats;
683 	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
684 
685 	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
686 
687 	while ((idx = ffs(pend))) {
688 		idx--;
689 		pend &= ~(1 << idx);
690 		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
691 		c_can_inval_tx_object(dev, IF_RX, obj);
692 		can_get_echo_skb(dev, idx);
693 		bytes += priv->dlc[idx];
694 		pkts++;
695 	}
696 
697 	/* Clear the bits in the tx_active mask */
698 	atomic_sub(clr, &priv->tx_active);
699 
700 	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
701 		netif_wake_queue(dev);
702 
703 	if (pkts) {
704 		stats->tx_bytes += bytes;
705 		stats->tx_packets += pkts;
706 		can_led_event(dev, CAN_LED_EVENT_TX);
707 	}
708 }
709 
710 /*
711  * If we have a gap in the pending bits, that means we either
712  * raced with the hardware or failed to readout all upper
713  * objects in the last run due to quota limit.
714  */
c_can_adjust_pending(u32 pend)715 static u32 c_can_adjust_pending(u32 pend)
716 {
717 	u32 weight, lasts;
718 
719 	if (pend == RECEIVE_OBJECT_BITS)
720 		return pend;
721 
722 	/*
723 	 * If the last set bit is larger than the number of pending
724 	 * bits we have a gap.
725 	 */
726 	weight = hweight32(pend);
727 	lasts = fls(pend);
728 
729 	/* If the bits are linear, nothing to do */
730 	if (lasts == weight)
731 		return pend;
732 
733 	/*
734 	 * Find the first set bit after the gap. We walk backwards
735 	 * from the last set bit.
736 	 */
737 	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
738 
739 	return pend & ~((1 << lasts) - 1);
740 }
741 
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)742 static inline void c_can_rx_object_get(struct net_device *dev,
743 				       struct c_can_priv *priv, u32 obj)
744 {
745 		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
746 }
747 
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)748 static inline void c_can_rx_finalize(struct net_device *dev,
749 				     struct c_can_priv *priv, u32 obj)
750 {
751 	if (priv->type != BOSCH_D_CAN)
752 		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
753 }
754 
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)755 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
756 			      u32 pend, int quota)
757 {
758 	u32 pkts = 0, ctrl, obj;
759 
760 	while ((obj = ffs(pend)) && quota > 0) {
761 		pend &= ~BIT(obj - 1);
762 
763 		c_can_rx_object_get(dev, priv, obj);
764 		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
765 
766 		if (ctrl & IF_MCONT_MSGLST) {
767 			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
768 
769 			pkts += n;
770 			quota -= n;
771 			continue;
772 		}
773 
774 		/*
775 		 * This really should not happen, but this covers some
776 		 * odd HW behaviour. Do not remove that unless you
777 		 * want to brick your machine.
778 		 */
779 		if (!(ctrl & IF_MCONT_NEWDAT))
780 			continue;
781 
782 		/* read the data from the message object */
783 		c_can_read_msg_object(dev, IF_RX, ctrl);
784 
785 		c_can_rx_finalize(dev, priv, obj);
786 
787 		pkts++;
788 		quota--;
789 	}
790 
791 	return pkts;
792 }
793 
c_can_get_pending(struct c_can_priv * priv)794 static inline u32 c_can_get_pending(struct c_can_priv *priv)
795 {
796 	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
797 
798 	return pend;
799 }
800 
801 /*
802  * theory of operation:
803  *
804  * c_can core saves a received CAN message into the first free message
805  * object it finds free (starting with the lowest). Bits NEWDAT and
806  * INTPND are set for this message object indicating that a new message
807  * has arrived. To work-around this issue, we keep two groups of message
808  * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
809  *
810  * We clear the newdat bit right away.
811  *
812  * This can result in packet reordering when the readout is slow.
813  */
c_can_do_rx_poll(struct net_device * dev,int quota)814 static int c_can_do_rx_poll(struct net_device *dev, int quota)
815 {
816 	struct c_can_priv *priv = netdev_priv(dev);
817 	u32 pkts = 0, pend = 0, toread, n;
818 
819 	/*
820 	 * It is faster to read only one 16bit register. This is only possible
821 	 * for a maximum number of 16 objects.
822 	 */
823 	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
824 			"Implementation does not support more message objects than 16");
825 
826 	while (quota > 0) {
827 		if (!pend) {
828 			pend = c_can_get_pending(priv);
829 			if (!pend)
830 				break;
831 			/*
832 			 * If the pending field has a gap, handle the
833 			 * bits above the gap first.
834 			 */
835 			toread = c_can_adjust_pending(pend);
836 		} else {
837 			toread = pend;
838 		}
839 		/* Remove the bits from pend */
840 		pend &= ~toread;
841 		/* Read the objects */
842 		n = c_can_read_objects(dev, priv, toread, quota);
843 		pkts += n;
844 		quota -= n;
845 	}
846 
847 	if (pkts)
848 		can_led_event(dev, CAN_LED_EVENT_RX);
849 
850 	return pkts;
851 }
852 
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)853 static int c_can_handle_state_change(struct net_device *dev,
854 				enum c_can_bus_error_types error_type)
855 {
856 	unsigned int reg_err_counter;
857 	unsigned int rx_err_passive;
858 	struct c_can_priv *priv = netdev_priv(dev);
859 	struct net_device_stats *stats = &dev->stats;
860 	struct can_frame *cf;
861 	struct sk_buff *skb;
862 	struct can_berr_counter bec;
863 
864 	switch (error_type) {
865 	case C_CAN_ERROR_WARNING:
866 		/* error warning state */
867 		priv->can.can_stats.error_warning++;
868 		priv->can.state = CAN_STATE_ERROR_WARNING;
869 		break;
870 	case C_CAN_ERROR_PASSIVE:
871 		/* error passive state */
872 		priv->can.can_stats.error_passive++;
873 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
874 		break;
875 	case C_CAN_BUS_OFF:
876 		/* bus-off state */
877 		priv->can.state = CAN_STATE_BUS_OFF;
878 		priv->can.can_stats.bus_off++;
879 		break;
880 	default:
881 		break;
882 	}
883 
884 	/* propagate the error condition to the CAN stack */
885 	skb = alloc_can_err_skb(dev, &cf);
886 	if (unlikely(!skb))
887 		return 0;
888 
889 	__c_can_get_berr_counter(dev, &bec);
890 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
891 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
892 				ERR_CNT_RP_SHIFT;
893 
894 	switch (error_type) {
895 	case C_CAN_ERROR_WARNING:
896 		/* error warning state */
897 		cf->can_id |= CAN_ERR_CRTL;
898 		cf->data[1] = (bec.txerr > bec.rxerr) ?
899 			CAN_ERR_CRTL_TX_WARNING :
900 			CAN_ERR_CRTL_RX_WARNING;
901 		cf->data[6] = bec.txerr;
902 		cf->data[7] = bec.rxerr;
903 
904 		break;
905 	case C_CAN_ERROR_PASSIVE:
906 		/* error passive state */
907 		cf->can_id |= CAN_ERR_CRTL;
908 		if (rx_err_passive)
909 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
910 		if (bec.txerr > 127)
911 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
912 
913 		cf->data[6] = bec.txerr;
914 		cf->data[7] = bec.rxerr;
915 		break;
916 	case C_CAN_BUS_OFF:
917 		/* bus-off state */
918 		cf->can_id |= CAN_ERR_BUSOFF;
919 		can_bus_off(dev);
920 		break;
921 	default:
922 		break;
923 	}
924 
925 	stats->rx_packets++;
926 	stats->rx_bytes += cf->can_dlc;
927 	netif_receive_skb(skb);
928 
929 	return 1;
930 }
931 
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)932 static int c_can_handle_bus_err(struct net_device *dev,
933 				enum c_can_lec_type lec_type)
934 {
935 	struct c_can_priv *priv = netdev_priv(dev);
936 	struct net_device_stats *stats = &dev->stats;
937 	struct can_frame *cf;
938 	struct sk_buff *skb;
939 
940 	/*
941 	 * early exit if no lec update or no error.
942 	 * no lec update means that no CAN bus event has been detected
943 	 * since CPU wrote 0x7 value to status reg.
944 	 */
945 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
946 		return 0;
947 
948 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
949 		return 0;
950 
951 	/* common for all type of bus errors */
952 	priv->can.can_stats.bus_error++;
953 	stats->rx_errors++;
954 
955 	/* propagate the error condition to the CAN stack */
956 	skb = alloc_can_err_skb(dev, &cf);
957 	if (unlikely(!skb))
958 		return 0;
959 
960 	/*
961 	 * check for 'last error code' which tells us the
962 	 * type of the last error to occur on the CAN bus
963 	 */
964 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
965 	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
966 
967 	switch (lec_type) {
968 	case LEC_STUFF_ERROR:
969 		netdev_dbg(dev, "stuff error\n");
970 		cf->data[2] |= CAN_ERR_PROT_STUFF;
971 		break;
972 	case LEC_FORM_ERROR:
973 		netdev_dbg(dev, "form error\n");
974 		cf->data[2] |= CAN_ERR_PROT_FORM;
975 		break;
976 	case LEC_ACK_ERROR:
977 		netdev_dbg(dev, "ack error\n");
978 		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
979 				CAN_ERR_PROT_LOC_ACK_DEL);
980 		break;
981 	case LEC_BIT1_ERROR:
982 		netdev_dbg(dev, "bit1 error\n");
983 		cf->data[2] |= CAN_ERR_PROT_BIT1;
984 		break;
985 	case LEC_BIT0_ERROR:
986 		netdev_dbg(dev, "bit0 error\n");
987 		cf->data[2] |= CAN_ERR_PROT_BIT0;
988 		break;
989 	case LEC_CRC_ERROR:
990 		netdev_dbg(dev, "CRC error\n");
991 		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
992 				CAN_ERR_PROT_LOC_CRC_DEL);
993 		break;
994 	default:
995 		break;
996 	}
997 
998 	stats->rx_packets++;
999 	stats->rx_bytes += cf->can_dlc;
1000 	netif_receive_skb(skb);
1001 	return 1;
1002 }
1003 
c_can_poll(struct napi_struct * napi,int quota)1004 static int c_can_poll(struct napi_struct *napi, int quota)
1005 {
1006 	struct net_device *dev = napi->dev;
1007 	struct c_can_priv *priv = netdev_priv(dev);
1008 	u16 curr, last = priv->last_status;
1009 	int work_done = 0;
1010 
1011 	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1012 	/* Ack status on C_CAN. D_CAN is self clearing */
1013 	if (priv->type != BOSCH_D_CAN)
1014 		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1015 
1016 	/* handle state changes */
1017 	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1018 		netdev_dbg(dev, "entered error warning state\n");
1019 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1020 	}
1021 
1022 	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1023 		netdev_dbg(dev, "entered error passive state\n");
1024 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1025 	}
1026 
1027 	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1028 		netdev_dbg(dev, "entered bus off state\n");
1029 		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1030 		goto end;
1031 	}
1032 
1033 	/* handle bus recovery events */
1034 	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1035 		netdev_dbg(dev, "left bus off state\n");
1036 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1037 	}
1038 	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1039 		netdev_dbg(dev, "left error passive state\n");
1040 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1041 	}
1042 
1043 	/* handle lec errors on the bus */
1044 	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1045 
1046 	/* Handle Tx/Rx events. We do this unconditionally */
1047 	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1048 	c_can_do_tx(dev);
1049 
1050 end:
1051 	if (work_done < quota) {
1052 		napi_complete(napi);
1053 		/* enable all IRQs if we are not in bus off state */
1054 		if (priv->can.state != CAN_STATE_BUS_OFF)
1055 			c_can_irq_control(priv, true);
1056 	}
1057 
1058 	return work_done;
1059 }
1060 
c_can_isr(int irq,void * dev_id)1061 static irqreturn_t c_can_isr(int irq, void *dev_id)
1062 {
1063 	struct net_device *dev = (struct net_device *)dev_id;
1064 	struct c_can_priv *priv = netdev_priv(dev);
1065 
1066 	if (!priv->read_reg(priv, C_CAN_INT_REG))
1067 		return IRQ_NONE;
1068 
1069 	/* disable all interrupts and schedule the NAPI */
1070 	c_can_irq_control(priv, false);
1071 	napi_schedule(&priv->napi);
1072 
1073 	return IRQ_HANDLED;
1074 }
1075 
c_can_open(struct net_device * dev)1076 static int c_can_open(struct net_device *dev)
1077 {
1078 	int err;
1079 	struct c_can_priv *priv = netdev_priv(dev);
1080 
1081 	c_can_pm_runtime_get_sync(priv);
1082 	c_can_reset_ram(priv, true);
1083 
1084 	/* open the can device */
1085 	err = open_candev(dev);
1086 	if (err) {
1087 		netdev_err(dev, "failed to open can device\n");
1088 		goto exit_open_fail;
1089 	}
1090 
1091 	/* register interrupt handler */
1092 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1093 				dev);
1094 	if (err < 0) {
1095 		netdev_err(dev, "failed to request interrupt\n");
1096 		goto exit_irq_fail;
1097 	}
1098 
1099 	/* start the c_can controller */
1100 	err = c_can_start(dev);
1101 	if (err)
1102 		goto exit_start_fail;
1103 
1104 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1105 
1106 	napi_enable(&priv->napi);
1107 	/* enable status change, error and module interrupts */
1108 	c_can_irq_control(priv, true);
1109 	netif_start_queue(dev);
1110 
1111 	return 0;
1112 
1113 exit_start_fail:
1114 	free_irq(dev->irq, dev);
1115 exit_irq_fail:
1116 	close_candev(dev);
1117 exit_open_fail:
1118 	c_can_reset_ram(priv, false);
1119 	c_can_pm_runtime_put_sync(priv);
1120 	return err;
1121 }
1122 
c_can_close(struct net_device * dev)1123 static int c_can_close(struct net_device *dev)
1124 {
1125 	struct c_can_priv *priv = netdev_priv(dev);
1126 
1127 	netif_stop_queue(dev);
1128 	napi_disable(&priv->napi);
1129 	c_can_stop(dev);
1130 	free_irq(dev->irq, dev);
1131 	close_candev(dev);
1132 
1133 	c_can_reset_ram(priv, false);
1134 	c_can_pm_runtime_put_sync(priv);
1135 
1136 	can_led_event(dev, CAN_LED_EVENT_STOP);
1137 
1138 	return 0;
1139 }
1140 
alloc_c_can_dev(void)1141 struct net_device *alloc_c_can_dev(void)
1142 {
1143 	struct net_device *dev;
1144 	struct c_can_priv *priv;
1145 
1146 	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1147 	if (!dev)
1148 		return NULL;
1149 
1150 	priv = netdev_priv(dev);
1151 	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1152 
1153 	priv->dev = dev;
1154 	priv->can.bittiming_const = &c_can_bittiming_const;
1155 	priv->can.do_set_mode = c_can_set_mode;
1156 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1157 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1158 					CAN_CTRLMODE_LISTENONLY |
1159 					CAN_CTRLMODE_BERR_REPORTING;
1160 
1161 	return dev;
1162 }
1163 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1164 
1165 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1166 int c_can_power_down(struct net_device *dev)
1167 {
1168 	u32 val;
1169 	unsigned long time_out;
1170 	struct c_can_priv *priv = netdev_priv(dev);
1171 
1172 	if (!(dev->flags & IFF_UP))
1173 		return 0;
1174 
1175 	WARN_ON(priv->type != BOSCH_D_CAN);
1176 
1177 	/* set PDR value so the device goes to power down mode */
1178 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1179 	val |= CONTROL_EX_PDR;
1180 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1181 
1182 	/* Wait for the PDA bit to get set */
1183 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1184 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1185 				time_after(time_out, jiffies))
1186 		cpu_relax();
1187 
1188 	if (time_after(jiffies, time_out))
1189 		return -ETIMEDOUT;
1190 
1191 	c_can_stop(dev);
1192 
1193 	c_can_reset_ram(priv, false);
1194 	c_can_pm_runtime_put_sync(priv);
1195 
1196 	return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(c_can_power_down);
1199 
c_can_power_up(struct net_device * dev)1200 int c_can_power_up(struct net_device *dev)
1201 {
1202 	u32 val;
1203 	unsigned long time_out;
1204 	struct c_can_priv *priv = netdev_priv(dev);
1205 	int ret;
1206 
1207 	if (!(dev->flags & IFF_UP))
1208 		return 0;
1209 
1210 	WARN_ON(priv->type != BOSCH_D_CAN);
1211 
1212 	c_can_pm_runtime_get_sync(priv);
1213 	c_can_reset_ram(priv, true);
1214 
1215 	/* Clear PDR and INIT bits */
1216 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1217 	val &= ~CONTROL_EX_PDR;
1218 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1219 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1220 	val &= ~CONTROL_INIT;
1221 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1222 
1223 	/* Wait for the PDA bit to get clear */
1224 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1225 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1226 				time_after(time_out, jiffies))
1227 		cpu_relax();
1228 
1229 	if (time_after(jiffies, time_out))
1230 		return -ETIMEDOUT;
1231 
1232 	ret = c_can_start(dev);
1233 	if (!ret)
1234 		c_can_irq_control(priv, true);
1235 
1236 	return ret;
1237 }
1238 EXPORT_SYMBOL_GPL(c_can_power_up);
1239 #endif
1240 
free_c_can_dev(struct net_device * dev)1241 void free_c_can_dev(struct net_device *dev)
1242 {
1243 	struct c_can_priv *priv = netdev_priv(dev);
1244 
1245 	netif_napi_del(&priv->napi);
1246 	free_candev(dev);
1247 }
1248 EXPORT_SYMBOL_GPL(free_c_can_dev);
1249 
1250 static const struct net_device_ops c_can_netdev_ops = {
1251 	.ndo_open = c_can_open,
1252 	.ndo_stop = c_can_close,
1253 	.ndo_start_xmit = c_can_start_xmit,
1254 	.ndo_change_mtu = can_change_mtu,
1255 };
1256 
register_c_can_dev(struct net_device * dev)1257 int register_c_can_dev(struct net_device *dev)
1258 {
1259 	struct c_can_priv *priv = netdev_priv(dev);
1260 	int err;
1261 
1262 	/* Deactivate pins to prevent DRA7 DCAN IP from being
1263 	 * stuck in transition when module is disabled.
1264 	 * Pins are activated in c_can_start() and deactivated
1265 	 * in c_can_stop()
1266 	 */
1267 	pinctrl_pm_select_sleep_state(dev->dev.parent);
1268 
1269 	c_can_pm_runtime_enable(priv);
1270 
1271 	dev->flags |= IFF_ECHO;	/* we support local echo */
1272 	dev->netdev_ops = &c_can_netdev_ops;
1273 
1274 	err = register_candev(dev);
1275 	if (err)
1276 		c_can_pm_runtime_disable(priv);
1277 	else
1278 		devm_can_led_init(dev);
1279 
1280 	return err;
1281 }
1282 EXPORT_SYMBOL_GPL(register_c_can_dev);
1283 
unregister_c_can_dev(struct net_device * dev)1284 void unregister_c_can_dev(struct net_device *dev)
1285 {
1286 	struct c_can_priv *priv = netdev_priv(dev);
1287 
1288 	unregister_candev(dev);
1289 
1290 	c_can_pm_runtime_disable(priv);
1291 }
1292 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1293 
1294 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1295 MODULE_LICENSE("GPL v2");
1296 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1297