1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
36#include <linux/io.h>
37#include <linux/pm_runtime.h>
38#include <linux/pinctrl/consumer.h>
39
40#include <linux/can.h>
41#include <linux/can/dev.h>
42#include <linux/can/error.h>
43#include <linux/can/led.h>
44
45#include "c_can.h"
46
47/* Number of interface registers */
48#define IF_ENUM_REG_LEN		11
49#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50
51/* control extension register D_CAN specific */
52#define CONTROL_EX_PDR		BIT(8)
53
54/* control register */
55#define CONTROL_TEST		BIT(7)
56#define CONTROL_CCE		BIT(6)
57#define CONTROL_DISABLE_AR	BIT(5)
58#define CONTROL_ENABLE_AR	(0 << 5)
59#define CONTROL_EIE		BIT(3)
60#define CONTROL_SIE		BIT(2)
61#define CONTROL_IE		BIT(1)
62#define CONTROL_INIT		BIT(0)
63
64#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
65
66/* test register */
67#define TEST_RX			BIT(7)
68#define TEST_TX1		BIT(6)
69#define TEST_TX2		BIT(5)
70#define TEST_LBACK		BIT(4)
71#define TEST_SILENT		BIT(3)
72#define TEST_BASIC		BIT(2)
73
74/* status register */
75#define STATUS_PDA		BIT(10)
76#define STATUS_BOFF		BIT(7)
77#define STATUS_EWARN		BIT(6)
78#define STATUS_EPASS		BIT(5)
79#define STATUS_RXOK		BIT(4)
80#define STATUS_TXOK		BIT(3)
81
82/* error counter register */
83#define ERR_CNT_TEC_MASK	0xff
84#define ERR_CNT_TEC_SHIFT	0
85#define ERR_CNT_REC_SHIFT	8
86#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
87#define ERR_CNT_RP_SHIFT	15
88#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
89
90/* bit-timing register */
91#define BTR_BRP_MASK		0x3f
92#define BTR_BRP_SHIFT		0
93#define BTR_SJW_SHIFT		6
94#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
95#define BTR_TSEG1_SHIFT		8
96#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
97#define BTR_TSEG2_SHIFT		12
98#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
99
100/* brp extension register */
101#define BRP_EXT_BRPE_MASK	0x0f
102#define BRP_EXT_BRPE_SHIFT	0
103
104/* IFx command request */
105#define IF_COMR_BUSY		BIT(15)
106
107/* IFx command mask */
108#define IF_COMM_WR		BIT(7)
109#define IF_COMM_MASK		BIT(6)
110#define IF_COMM_ARB		BIT(5)
111#define IF_COMM_CONTROL		BIT(4)
112#define IF_COMM_CLR_INT_PND	BIT(3)
113#define IF_COMM_TXRQST		BIT(2)
114#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
115#define IF_COMM_DATAA		BIT(1)
116#define IF_COMM_DATAB		BIT(0)
117
118/* TX buffer setup */
119#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
120				 IF_COMM_TXRQST |		 \
121				 IF_COMM_DATAA | IF_COMM_DATAB)
122
123/* For the low buffers we clear the interrupt bit, but keep newdat */
124#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
125				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
126				 IF_COMM_DATAA | IF_COMM_DATAB)
127
128/* For the high buffers we clear the interrupt bit and newdat */
129#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
130
131
132/* Receive setup of message objects */
133#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
134
135/* Invalidation of message objects */
136#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
137
138/* IFx arbitration */
139#define IF_ARB_MSGVAL		BIT(31)
140#define IF_ARB_MSGXTD		BIT(30)
141#define IF_ARB_TRANSMIT		BIT(29)
142
143/* IFx message control */
144#define IF_MCONT_NEWDAT		BIT(15)
145#define IF_MCONT_MSGLST		BIT(14)
146#define IF_MCONT_INTPND		BIT(13)
147#define IF_MCONT_UMASK		BIT(12)
148#define IF_MCONT_TXIE		BIT(11)
149#define IF_MCONT_RXIE		BIT(10)
150#define IF_MCONT_RMTEN		BIT(9)
151#define IF_MCONT_TXRQST		BIT(8)
152#define IF_MCONT_EOB		BIT(7)
153#define IF_MCONT_DLC_MASK	0xf
154
155#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
156#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
157
158#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
159
160/*
161 * Use IF1 for RX and IF2 for TX
162 */
163#define IF_RX			0
164#define IF_TX			1
165
166/* minimum timeout for checking BUSY status */
167#define MIN_TIMEOUT_VALUE	6
168
169/* Wait for ~1 sec for INIT bit */
170#define INIT_WAIT_MS		1000
171
172/* napi related */
173#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
174
175/* c_can lec values */
176enum c_can_lec_type {
177	LEC_NO_ERROR = 0,
178	LEC_STUFF_ERROR,
179	LEC_FORM_ERROR,
180	LEC_ACK_ERROR,
181	LEC_BIT1_ERROR,
182	LEC_BIT0_ERROR,
183	LEC_CRC_ERROR,
184	LEC_UNUSED,
185	LEC_MASK = LEC_UNUSED,
186};
187
188/*
189 * c_can error types:
190 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
191 */
192enum c_can_bus_error_types {
193	C_CAN_NO_ERROR = 0,
194	C_CAN_BUS_OFF,
195	C_CAN_ERROR_WARNING,
196	C_CAN_ERROR_PASSIVE,
197};
198
199static const struct can_bittiming_const c_can_bittiming_const = {
200	.name = KBUILD_MODNAME,
201	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
202	.tseg1_max = 16,
203	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
204	.tseg2_max = 8,
205	.sjw_max = 4,
206	.brp_min = 1,
207	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
208	.brp_inc = 1,
209};
210
211static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
212{
213	if (priv->device)
214		pm_runtime_enable(priv->device);
215}
216
217static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
218{
219	if (priv->device)
220		pm_runtime_disable(priv->device);
221}
222
223static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
224{
225	if (priv->device)
226		pm_runtime_get_sync(priv->device);
227}
228
229static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
230{
231	if (priv->device)
232		pm_runtime_put_sync(priv->device);
233}
234
235static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
236{
237	if (priv->raminit)
238		priv->raminit(priv, enable);
239}
240
241static void c_can_irq_control(struct c_can_priv *priv, bool enable)
242{
243	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
244
245	if (enable)
246		ctrl |= CONTROL_IRQMSK;
247
248	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
249}
250
251static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
252{
253	struct c_can_priv *priv = netdev_priv(dev);
254	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
255
256	priv->write_reg32(priv, reg, (cmd << 16) | obj);
257
258	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
259		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
260			return;
261		udelay(1);
262	}
263	netdev_err(dev, "Updating object timed out\n");
264
265}
266
267static inline void c_can_object_get(struct net_device *dev, int iface,
268				    u32 obj, u32 cmd)
269{
270	c_can_obj_update(dev, iface, cmd, obj);
271}
272
273static inline void c_can_object_put(struct net_device *dev, int iface,
274				    u32 obj, u32 cmd)
275{
276	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
277}
278
279/*
280 * Note: According to documentation clearing TXIE while MSGVAL is set
281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
282 * load significantly.
283 */
284static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
285{
286	struct c_can_priv *priv = netdev_priv(dev);
287
288	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
289	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
290}
291
292static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
293{
294	struct c_can_priv *priv = netdev_priv(dev);
295
296	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
297	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
298	c_can_inval_tx_object(dev, iface, obj);
299}
300
301static void c_can_setup_tx_object(struct net_device *dev, int iface,
302				  struct can_frame *frame, int idx)
303{
304	struct c_can_priv *priv = netdev_priv(dev);
305	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
306	bool rtr = frame->can_id & CAN_RTR_FLAG;
307	u32 arb = IF_ARB_MSGVAL;
308	int i;
309
310	if (frame->can_id & CAN_EFF_FLAG) {
311		arb |= frame->can_id & CAN_EFF_MASK;
312		arb |= IF_ARB_MSGXTD;
313	} else {
314		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
315	}
316
317	if (!rtr)
318		arb |= IF_ARB_TRANSMIT;
319
320	/*
321	 * If we change the DIR bit, we need to invalidate the buffer
322	 * first, i.e. clear the MSGVAL flag in the arbiter.
323	 */
324	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
325		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
326
327		c_can_inval_msg_object(dev, iface, obj);
328		change_bit(idx, &priv->tx_dir);
329	}
330
331	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
332
333	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
334
335	for (i = 0; i < frame->can_dlc; i += 2) {
336		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
337				frame->data[i] | (frame->data[i + 1] << 8));
338	}
339}
340
341static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
342						       int iface)
343{
344	int i;
345
346	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
347		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
348}
349
350static int c_can_handle_lost_msg_obj(struct net_device *dev,
351				     int iface, int objno, u32 ctrl)
352{
353	struct net_device_stats *stats = &dev->stats;
354	struct c_can_priv *priv = netdev_priv(dev);
355	struct can_frame *frame;
356	struct sk_buff *skb;
357
358	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
359	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
360	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
361
362	stats->rx_errors++;
363	stats->rx_over_errors++;
364
365	/* create an error msg */
366	skb = alloc_can_err_skb(dev, &frame);
367	if (unlikely(!skb))
368		return 0;
369
370	frame->can_id |= CAN_ERR_CRTL;
371	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
372
373	netif_receive_skb(skb);
374	return 1;
375}
376
377static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
378{
379	struct net_device_stats *stats = &dev->stats;
380	struct c_can_priv *priv = netdev_priv(dev);
381	struct can_frame *frame;
382	struct sk_buff *skb;
383	u32 arb, data;
384
385	skb = alloc_can_skb(dev, &frame);
386	if (!skb) {
387		stats->rx_dropped++;
388		return -ENOMEM;
389	}
390
391	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
392
393	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
394
395	if (arb & IF_ARB_MSGXTD)
396		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
397	else
398		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
399
400	if (arb & IF_ARB_TRANSMIT) {
401		frame->can_id |= CAN_RTR_FLAG;
402	} else {
403		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
404
405		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
406			data = priv->read_reg(priv, dreg);
407			frame->data[i] = data;
408			frame->data[i + 1] = data >> 8;
409		}
410	}
411
412	stats->rx_packets++;
413	stats->rx_bytes += frame->can_dlc;
414
415	netif_receive_skb(skb);
416	return 0;
417}
418
419static void c_can_setup_receive_object(struct net_device *dev, int iface,
420				       u32 obj, u32 mask, u32 id, u32 mcont)
421{
422	struct c_can_priv *priv = netdev_priv(dev);
423
424	mask |= BIT(29);
425	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
426
427	id |= IF_ARB_MSGVAL;
428	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
429
430	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
431	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
432}
433
434static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
435				    struct net_device *dev)
436{
437	struct can_frame *frame = (struct can_frame *)skb->data;
438	struct c_can_priv *priv = netdev_priv(dev);
439	u32 idx, obj;
440
441	if (can_dropped_invalid_skb(dev, skb))
442		return NETDEV_TX_OK;
443	/*
444	 * This is not a FIFO. C/D_CAN sends out the buffers
445	 * prioritized. The lowest buffer number wins.
446	 */
447	idx = fls(atomic_read(&priv->tx_active));
448	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
449
450	/* If this is the last buffer, stop the xmit queue */
451	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
452		netif_stop_queue(dev);
453	/*
454	 * Store the message in the interface so we can call
455	 * can_put_echo_skb(). We must do this before we enable
456	 * transmit as we might race against do_tx().
457	 */
458	c_can_setup_tx_object(dev, IF_TX, frame, idx);
459	priv->dlc[idx] = frame->can_dlc;
460	can_put_echo_skb(skb, dev, idx);
461
462	/* Update the active bits */
463	atomic_add((1 << idx), &priv->tx_active);
464	/* Start transmission */
465	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
466
467	return NETDEV_TX_OK;
468}
469
470static int c_can_wait_for_ctrl_init(struct net_device *dev,
471				    struct c_can_priv *priv, u32 init)
472{
473	int retry = 0;
474
475	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
476		udelay(10);
477		if (retry++ > 1000) {
478			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
479			return -EIO;
480		}
481	}
482	return 0;
483}
484
485static int c_can_set_bittiming(struct net_device *dev)
486{
487	unsigned int reg_btr, reg_brpe, ctrl_save;
488	u8 brp, brpe, sjw, tseg1, tseg2;
489	u32 ten_bit_brp;
490	struct c_can_priv *priv = netdev_priv(dev);
491	const struct can_bittiming *bt = &priv->can.bittiming;
492	int res;
493
494	/* c_can provides a 6-bit brp and 4-bit brpe fields */
495	ten_bit_brp = bt->brp - 1;
496	brp = ten_bit_brp & BTR_BRP_MASK;
497	brpe = ten_bit_brp >> 6;
498
499	sjw = bt->sjw - 1;
500	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
501	tseg2 = bt->phase_seg2 - 1;
502	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
503			(tseg2 << BTR_TSEG2_SHIFT);
504	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
505
506	netdev_info(dev,
507		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
508
509	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
510	ctrl_save &= ~CONTROL_INIT;
511	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
512	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
513	if (res)
514		return res;
515
516	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
517	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
518	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
519
520	return c_can_wait_for_ctrl_init(dev, priv, 0);
521}
522
523/*
524 * Configure C_CAN message objects for Tx and Rx purposes:
525 * C_CAN provides a total of 32 message objects that can be configured
526 * either for Tx or Rx purposes. Here the first 16 message objects are used as
527 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
528 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
529 * See user guide document for further details on configuring message
530 * objects.
531 */
532static void c_can_configure_msg_objects(struct net_device *dev)
533{
534	int i;
535
536	/* first invalidate all message objects */
537	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
538		c_can_inval_msg_object(dev, IF_RX, i);
539
540	/* setup receive message objects */
541	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
542		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
543
544	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
545				   IF_MCONT_RCV_EOB);
546}
547
548/*
549 * Configure C_CAN chip:
550 * - enable/disable auto-retransmission
551 * - set operating mode
552 * - configure message objects
553 */
554static int c_can_chip_config(struct net_device *dev)
555{
556	struct c_can_priv *priv = netdev_priv(dev);
557
558	/* enable automatic retransmission */
559	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
560
561	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
562	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
563		/* loopback + silent mode : useful for hot self-test */
564		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
565		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
566	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
567		/* loopback mode : useful for self-test function */
568		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
569		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
570	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
571		/* silent mode : bus-monitoring mode */
572		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
573		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
574	}
575
576	/* configure message objects */
577	c_can_configure_msg_objects(dev);
578
579	/* set a `lec` value so that we can check for updates later */
580	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
581
582	/* Clear all internal status */
583	atomic_set(&priv->tx_active, 0);
584	priv->rxmasked = 0;
585	priv->tx_dir = 0;
586
587	/* set bittiming params */
588	return c_can_set_bittiming(dev);
589}
590
591static int c_can_start(struct net_device *dev)
592{
593	struct c_can_priv *priv = netdev_priv(dev);
594	int err;
595	struct pinctrl *p;
596
597	/* basic c_can configuration */
598	err = c_can_chip_config(dev);
599	if (err)
600		return err;
601
602	/* Setup the command for new messages */
603	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
604		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
605
606	priv->can.state = CAN_STATE_ERROR_ACTIVE;
607
608	/* Attempt to use "active" if available else use "default" */
609	p = pinctrl_get_select(priv->device, "active");
610	if (!IS_ERR(p))
611		pinctrl_put(p);
612	else
613		pinctrl_pm_select_default_state(priv->device);
614
615	return 0;
616}
617
618static void c_can_stop(struct net_device *dev)
619{
620	struct c_can_priv *priv = netdev_priv(dev);
621
622	c_can_irq_control(priv, false);
623
624	/* put ctrl to init on stop to end ongoing transmission */
625	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
626
627	/* deactivate pins */
628	pinctrl_pm_select_sleep_state(dev->dev.parent);
629	priv->can.state = CAN_STATE_STOPPED;
630}
631
632static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
633{
634	struct c_can_priv *priv = netdev_priv(dev);
635	int err;
636
637	switch (mode) {
638	case CAN_MODE_START:
639		err = c_can_start(dev);
640		if (err)
641			return err;
642		netif_wake_queue(dev);
643		c_can_irq_control(priv, true);
644		break;
645	default:
646		return -EOPNOTSUPP;
647	}
648
649	return 0;
650}
651
652static int __c_can_get_berr_counter(const struct net_device *dev,
653				    struct can_berr_counter *bec)
654{
655	unsigned int reg_err_counter;
656	struct c_can_priv *priv = netdev_priv(dev);
657
658	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
659	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
660				ERR_CNT_REC_SHIFT;
661	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
662
663	return 0;
664}
665
666static int c_can_get_berr_counter(const struct net_device *dev,
667				  struct can_berr_counter *bec)
668{
669	struct c_can_priv *priv = netdev_priv(dev);
670	int err;
671
672	c_can_pm_runtime_get_sync(priv);
673	err = __c_can_get_berr_counter(dev, bec);
674	c_can_pm_runtime_put_sync(priv);
675
676	return err;
677}
678
679static void c_can_do_tx(struct net_device *dev)
680{
681	struct c_can_priv *priv = netdev_priv(dev);
682	struct net_device_stats *stats = &dev->stats;
683	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
684
685	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
686
687	while ((idx = ffs(pend))) {
688		idx--;
689		pend &= ~(1 << idx);
690		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
691		c_can_inval_tx_object(dev, IF_RX, obj);
692		can_get_echo_skb(dev, idx);
693		bytes += priv->dlc[idx];
694		pkts++;
695	}
696
697	/* Clear the bits in the tx_active mask */
698	atomic_sub(clr, &priv->tx_active);
699
700	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
701		netif_wake_queue(dev);
702
703	if (pkts) {
704		stats->tx_bytes += bytes;
705		stats->tx_packets += pkts;
706		can_led_event(dev, CAN_LED_EVENT_TX);
707	}
708}
709
710/*
711 * If we have a gap in the pending bits, that means we either
712 * raced with the hardware or failed to readout all upper
713 * objects in the last run due to quota limit.
714 */
715static u32 c_can_adjust_pending(u32 pend)
716{
717	u32 weight, lasts;
718
719	if (pend == RECEIVE_OBJECT_BITS)
720		return pend;
721
722	/*
723	 * If the last set bit is larger than the number of pending
724	 * bits we have a gap.
725	 */
726	weight = hweight32(pend);
727	lasts = fls(pend);
728
729	/* If the bits are linear, nothing to do */
730	if (lasts == weight)
731		return pend;
732
733	/*
734	 * Find the first set bit after the gap. We walk backwards
735	 * from the last set bit.
736	 */
737	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
738
739	return pend & ~((1 << lasts) - 1);
740}
741
742static inline void c_can_rx_object_get(struct net_device *dev,
743				       struct c_can_priv *priv, u32 obj)
744{
745		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
746}
747
748static inline void c_can_rx_finalize(struct net_device *dev,
749				     struct c_can_priv *priv, u32 obj)
750{
751	if (priv->type != BOSCH_D_CAN)
752		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
753}
754
755static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
756			      u32 pend, int quota)
757{
758	u32 pkts = 0, ctrl, obj;
759
760	while ((obj = ffs(pend)) && quota > 0) {
761		pend &= ~BIT(obj - 1);
762
763		c_can_rx_object_get(dev, priv, obj);
764		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
765
766		if (ctrl & IF_MCONT_MSGLST) {
767			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
768
769			pkts += n;
770			quota -= n;
771			continue;
772		}
773
774		/*
775		 * This really should not happen, but this covers some
776		 * odd HW behaviour. Do not remove that unless you
777		 * want to brick your machine.
778		 */
779		if (!(ctrl & IF_MCONT_NEWDAT))
780			continue;
781
782		/* read the data from the message object */
783		c_can_read_msg_object(dev, IF_RX, ctrl);
784
785		c_can_rx_finalize(dev, priv, obj);
786
787		pkts++;
788		quota--;
789	}
790
791	return pkts;
792}
793
794static inline u32 c_can_get_pending(struct c_can_priv *priv)
795{
796	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
797
798	return pend;
799}
800
801/*
802 * theory of operation:
803 *
804 * c_can core saves a received CAN message into the first free message
805 * object it finds free (starting with the lowest). Bits NEWDAT and
806 * INTPND are set for this message object indicating that a new message
807 * has arrived. To work-around this issue, we keep two groups of message
808 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
809 *
810 * We clear the newdat bit right away.
811 *
812 * This can result in packet reordering when the readout is slow.
813 */
814static int c_can_do_rx_poll(struct net_device *dev, int quota)
815{
816	struct c_can_priv *priv = netdev_priv(dev);
817	u32 pkts = 0, pend = 0, toread, n;
818
819	/*
820	 * It is faster to read only one 16bit register. This is only possible
821	 * for a maximum number of 16 objects.
822	 */
823	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
824			"Implementation does not support more message objects than 16");
825
826	while (quota > 0) {
827		if (!pend) {
828			pend = c_can_get_pending(priv);
829			if (!pend)
830				break;
831			/*
832			 * If the pending field has a gap, handle the
833			 * bits above the gap first.
834			 */
835			toread = c_can_adjust_pending(pend);
836		} else {
837			toread = pend;
838		}
839		/* Remove the bits from pend */
840		pend &= ~toread;
841		/* Read the objects */
842		n = c_can_read_objects(dev, priv, toread, quota);
843		pkts += n;
844		quota -= n;
845	}
846
847	if (pkts)
848		can_led_event(dev, CAN_LED_EVENT_RX);
849
850	return pkts;
851}
852
853static int c_can_handle_state_change(struct net_device *dev,
854				enum c_can_bus_error_types error_type)
855{
856	unsigned int reg_err_counter;
857	unsigned int rx_err_passive;
858	struct c_can_priv *priv = netdev_priv(dev);
859	struct net_device_stats *stats = &dev->stats;
860	struct can_frame *cf;
861	struct sk_buff *skb;
862	struct can_berr_counter bec;
863
864	switch (error_type) {
865	case C_CAN_ERROR_WARNING:
866		/* error warning state */
867		priv->can.can_stats.error_warning++;
868		priv->can.state = CAN_STATE_ERROR_WARNING;
869		break;
870	case C_CAN_ERROR_PASSIVE:
871		/* error passive state */
872		priv->can.can_stats.error_passive++;
873		priv->can.state = CAN_STATE_ERROR_PASSIVE;
874		break;
875	case C_CAN_BUS_OFF:
876		/* bus-off state */
877		priv->can.state = CAN_STATE_BUS_OFF;
878		priv->can.can_stats.bus_off++;
879		break;
880	default:
881		break;
882	}
883
884	/* propagate the error condition to the CAN stack */
885	skb = alloc_can_err_skb(dev, &cf);
886	if (unlikely(!skb))
887		return 0;
888
889	__c_can_get_berr_counter(dev, &bec);
890	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
891	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
892				ERR_CNT_RP_SHIFT;
893
894	switch (error_type) {
895	case C_CAN_ERROR_WARNING:
896		/* error warning state */
897		cf->can_id |= CAN_ERR_CRTL;
898		cf->data[1] = (bec.txerr > bec.rxerr) ?
899			CAN_ERR_CRTL_TX_WARNING :
900			CAN_ERR_CRTL_RX_WARNING;
901		cf->data[6] = bec.txerr;
902		cf->data[7] = bec.rxerr;
903
904		break;
905	case C_CAN_ERROR_PASSIVE:
906		/* error passive state */
907		cf->can_id |= CAN_ERR_CRTL;
908		if (rx_err_passive)
909			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
910		if (bec.txerr > 127)
911			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
912
913		cf->data[6] = bec.txerr;
914		cf->data[7] = bec.rxerr;
915		break;
916	case C_CAN_BUS_OFF:
917		/* bus-off state */
918		cf->can_id |= CAN_ERR_BUSOFF;
919		can_bus_off(dev);
920		break;
921	default:
922		break;
923	}
924
925	stats->rx_packets++;
926	stats->rx_bytes += cf->can_dlc;
927	netif_receive_skb(skb);
928
929	return 1;
930}
931
932static int c_can_handle_bus_err(struct net_device *dev,
933				enum c_can_lec_type lec_type)
934{
935	struct c_can_priv *priv = netdev_priv(dev);
936	struct net_device_stats *stats = &dev->stats;
937	struct can_frame *cf;
938	struct sk_buff *skb;
939
940	/*
941	 * early exit if no lec update or no error.
942	 * no lec update means that no CAN bus event has been detected
943	 * since CPU wrote 0x7 value to status reg.
944	 */
945	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
946		return 0;
947
948	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
949		return 0;
950
951	/* common for all type of bus errors */
952	priv->can.can_stats.bus_error++;
953	stats->rx_errors++;
954
955	/* propagate the error condition to the CAN stack */
956	skb = alloc_can_err_skb(dev, &cf);
957	if (unlikely(!skb))
958		return 0;
959
960	/*
961	 * check for 'last error code' which tells us the
962	 * type of the last error to occur on the CAN bus
963	 */
964	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
965	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
966
967	switch (lec_type) {
968	case LEC_STUFF_ERROR:
969		netdev_dbg(dev, "stuff error\n");
970		cf->data[2] |= CAN_ERR_PROT_STUFF;
971		break;
972	case LEC_FORM_ERROR:
973		netdev_dbg(dev, "form error\n");
974		cf->data[2] |= CAN_ERR_PROT_FORM;
975		break;
976	case LEC_ACK_ERROR:
977		netdev_dbg(dev, "ack error\n");
978		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
979				CAN_ERR_PROT_LOC_ACK_DEL);
980		break;
981	case LEC_BIT1_ERROR:
982		netdev_dbg(dev, "bit1 error\n");
983		cf->data[2] |= CAN_ERR_PROT_BIT1;
984		break;
985	case LEC_BIT0_ERROR:
986		netdev_dbg(dev, "bit0 error\n");
987		cf->data[2] |= CAN_ERR_PROT_BIT0;
988		break;
989	case LEC_CRC_ERROR:
990		netdev_dbg(dev, "CRC error\n");
991		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
992				CAN_ERR_PROT_LOC_CRC_DEL);
993		break;
994	default:
995		break;
996	}
997
998	stats->rx_packets++;
999	stats->rx_bytes += cf->can_dlc;
1000	netif_receive_skb(skb);
1001	return 1;
1002}
1003
1004static int c_can_poll(struct napi_struct *napi, int quota)
1005{
1006	struct net_device *dev = napi->dev;
1007	struct c_can_priv *priv = netdev_priv(dev);
1008	u16 curr, last = priv->last_status;
1009	int work_done = 0;
1010
1011	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1012	/* Ack status on C_CAN. D_CAN is self clearing */
1013	if (priv->type != BOSCH_D_CAN)
1014		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1015
1016	/* handle state changes */
1017	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1018		netdev_dbg(dev, "entered error warning state\n");
1019		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1020	}
1021
1022	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1023		netdev_dbg(dev, "entered error passive state\n");
1024		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1025	}
1026
1027	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1028		netdev_dbg(dev, "entered bus off state\n");
1029		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1030		goto end;
1031	}
1032
1033	/* handle bus recovery events */
1034	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1035		netdev_dbg(dev, "left bus off state\n");
1036		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1037	}
1038	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1039		netdev_dbg(dev, "left error passive state\n");
1040		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1041	}
1042
1043	/* handle lec errors on the bus */
1044	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1045
1046	/* Handle Tx/Rx events. We do this unconditionally */
1047	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1048	c_can_do_tx(dev);
1049
1050end:
1051	if (work_done < quota) {
1052		napi_complete(napi);
1053		/* enable all IRQs if we are not in bus off state */
1054		if (priv->can.state != CAN_STATE_BUS_OFF)
1055			c_can_irq_control(priv, true);
1056	}
1057
1058	return work_done;
1059}
1060
1061static irqreturn_t c_can_isr(int irq, void *dev_id)
1062{
1063	struct net_device *dev = (struct net_device *)dev_id;
1064	struct c_can_priv *priv = netdev_priv(dev);
1065
1066	if (!priv->read_reg(priv, C_CAN_INT_REG))
1067		return IRQ_NONE;
1068
1069	/* disable all interrupts and schedule the NAPI */
1070	c_can_irq_control(priv, false);
1071	napi_schedule(&priv->napi);
1072
1073	return IRQ_HANDLED;
1074}
1075
1076static int c_can_open(struct net_device *dev)
1077{
1078	int err;
1079	struct c_can_priv *priv = netdev_priv(dev);
1080
1081	c_can_pm_runtime_get_sync(priv);
1082	c_can_reset_ram(priv, true);
1083
1084	/* open the can device */
1085	err = open_candev(dev);
1086	if (err) {
1087		netdev_err(dev, "failed to open can device\n");
1088		goto exit_open_fail;
1089	}
1090
1091	/* register interrupt handler */
1092	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1093				dev);
1094	if (err < 0) {
1095		netdev_err(dev, "failed to request interrupt\n");
1096		goto exit_irq_fail;
1097	}
1098
1099	/* start the c_can controller */
1100	err = c_can_start(dev);
1101	if (err)
1102		goto exit_start_fail;
1103
1104	can_led_event(dev, CAN_LED_EVENT_OPEN);
1105
1106	napi_enable(&priv->napi);
1107	/* enable status change, error and module interrupts */
1108	c_can_irq_control(priv, true);
1109	netif_start_queue(dev);
1110
1111	return 0;
1112
1113exit_start_fail:
1114	free_irq(dev->irq, dev);
1115exit_irq_fail:
1116	close_candev(dev);
1117exit_open_fail:
1118	c_can_reset_ram(priv, false);
1119	c_can_pm_runtime_put_sync(priv);
1120	return err;
1121}
1122
1123static int c_can_close(struct net_device *dev)
1124{
1125	struct c_can_priv *priv = netdev_priv(dev);
1126
1127	netif_stop_queue(dev);
1128	napi_disable(&priv->napi);
1129	c_can_stop(dev);
1130	free_irq(dev->irq, dev);
1131	close_candev(dev);
1132
1133	c_can_reset_ram(priv, false);
1134	c_can_pm_runtime_put_sync(priv);
1135
1136	can_led_event(dev, CAN_LED_EVENT_STOP);
1137
1138	return 0;
1139}
1140
1141struct net_device *alloc_c_can_dev(void)
1142{
1143	struct net_device *dev;
1144	struct c_can_priv *priv;
1145
1146	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1147	if (!dev)
1148		return NULL;
1149
1150	priv = netdev_priv(dev);
1151	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1152
1153	priv->dev = dev;
1154	priv->can.bittiming_const = &c_can_bittiming_const;
1155	priv->can.do_set_mode = c_can_set_mode;
1156	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1157	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1158					CAN_CTRLMODE_LISTENONLY |
1159					CAN_CTRLMODE_BERR_REPORTING;
1160
1161	return dev;
1162}
1163EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1164
1165#ifdef CONFIG_PM
1166int c_can_power_down(struct net_device *dev)
1167{
1168	u32 val;
1169	unsigned long time_out;
1170	struct c_can_priv *priv = netdev_priv(dev);
1171
1172	if (!(dev->flags & IFF_UP))
1173		return 0;
1174
1175	WARN_ON(priv->type != BOSCH_D_CAN);
1176
1177	/* set PDR value so the device goes to power down mode */
1178	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1179	val |= CONTROL_EX_PDR;
1180	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1181
1182	/* Wait for the PDA bit to get set */
1183	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1184	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1185				time_after(time_out, jiffies))
1186		cpu_relax();
1187
1188	if (time_after(jiffies, time_out))
1189		return -ETIMEDOUT;
1190
1191	c_can_stop(dev);
1192
1193	c_can_reset_ram(priv, false);
1194	c_can_pm_runtime_put_sync(priv);
1195
1196	return 0;
1197}
1198EXPORT_SYMBOL_GPL(c_can_power_down);
1199
1200int c_can_power_up(struct net_device *dev)
1201{
1202	u32 val;
1203	unsigned long time_out;
1204	struct c_can_priv *priv = netdev_priv(dev);
1205	int ret;
1206
1207	if (!(dev->flags & IFF_UP))
1208		return 0;
1209
1210	WARN_ON(priv->type != BOSCH_D_CAN);
1211
1212	c_can_pm_runtime_get_sync(priv);
1213	c_can_reset_ram(priv, true);
1214
1215	/* Clear PDR and INIT bits */
1216	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1217	val &= ~CONTROL_EX_PDR;
1218	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1219	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1220	val &= ~CONTROL_INIT;
1221	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1222
1223	/* Wait for the PDA bit to get clear */
1224	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1225	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1226				time_after(time_out, jiffies))
1227		cpu_relax();
1228
1229	if (time_after(jiffies, time_out))
1230		return -ETIMEDOUT;
1231
1232	ret = c_can_start(dev);
1233	if (!ret)
1234		c_can_irq_control(priv, true);
1235
1236	return ret;
1237}
1238EXPORT_SYMBOL_GPL(c_can_power_up);
1239#endif
1240
1241void free_c_can_dev(struct net_device *dev)
1242{
1243	struct c_can_priv *priv = netdev_priv(dev);
1244
1245	netif_napi_del(&priv->napi);
1246	free_candev(dev);
1247}
1248EXPORT_SYMBOL_GPL(free_c_can_dev);
1249
1250static const struct net_device_ops c_can_netdev_ops = {
1251	.ndo_open = c_can_open,
1252	.ndo_stop = c_can_close,
1253	.ndo_start_xmit = c_can_start_xmit,
1254	.ndo_change_mtu = can_change_mtu,
1255};
1256
1257int register_c_can_dev(struct net_device *dev)
1258{
1259	struct c_can_priv *priv = netdev_priv(dev);
1260	int err;
1261
1262	/* Deactivate pins to prevent DRA7 DCAN IP from being
1263	 * stuck in transition when module is disabled.
1264	 * Pins are activated in c_can_start() and deactivated
1265	 * in c_can_stop()
1266	 */
1267	pinctrl_pm_select_sleep_state(dev->dev.parent);
1268
1269	c_can_pm_runtime_enable(priv);
1270
1271	dev->flags |= IFF_ECHO;	/* we support local echo */
1272	dev->netdev_ops = &c_can_netdev_ops;
1273
1274	err = register_candev(dev);
1275	if (err)
1276		c_can_pm_runtime_disable(priv);
1277	else
1278		devm_can_led_init(dev);
1279
1280	return err;
1281}
1282EXPORT_SYMBOL_GPL(register_c_can_dev);
1283
1284void unregister_c_can_dev(struct net_device *dev)
1285{
1286	struct c_can_priv *priv = netdev_priv(dev);
1287
1288	unregister_candev(dev);
1289
1290	c_can_pm_runtime_disable(priv);
1291}
1292EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1293
1294MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1295MODULE_LICENSE("GPL v2");
1296MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1297