1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21/*
22 * UBI wear-leveling sub-system.
23 *
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
33 *
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44 * bad.
45 *
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
49 *
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
54 *
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
60 *
61 * All this protection stuff is needed because:
62 *  o we don't want to move physical eraseblocks just after we have given them
63 *    to the user; instead, we first want to let users fill them up with data;
64 *
65 *  o there is a chance that the user will put the physical eraseblock very
66 *    soon, so it makes sense not to move it for some time, but wait.
67 *
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
74 *
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 *   erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
83 *
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
86 *
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
91 *
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
99 */
100
101#include <linux/slab.h>
102#include <linux/crc32.h>
103#include <linux/freezer.h>
104#include <linux/kthread.h>
105#include "ubi.h"
106#include "wl.h"
107
108/* Number of physical eraseblocks reserved for wear-leveling purposes */
109#define WL_RESERVED_PEBS 1
110
111/*
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
116 */
117#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119/*
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132/*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136#define WL_MAX_FAILURES 32
137
138static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139static int self_check_in_wl_tree(const struct ubi_device *ubi,
140				 struct ubi_wl_entry *e, struct rb_root *root);
141static int self_check_in_pq(const struct ubi_device *ubi,
142			    struct ubi_wl_entry *e);
143
144/**
145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146 * @e: the wear-leveling entry to add
147 * @root: the root of the tree
148 *
149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150 * the @ubi->used and @ubi->free RB-trees.
151 */
152static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153{
154	struct rb_node **p, *parent = NULL;
155
156	p = &root->rb_node;
157	while (*p) {
158		struct ubi_wl_entry *e1;
159
160		parent = *p;
161		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163		if (e->ec < e1->ec)
164			p = &(*p)->rb_left;
165		else if (e->ec > e1->ec)
166			p = &(*p)->rb_right;
167		else {
168			ubi_assert(e->pnum != e1->pnum);
169			if (e->pnum < e1->pnum)
170				p = &(*p)->rb_left;
171			else
172				p = &(*p)->rb_right;
173		}
174	}
175
176	rb_link_node(&e->u.rb, parent, p);
177	rb_insert_color(&e->u.rb, root);
178}
179
180/**
181 * wl_tree_destroy - destroy a wear-leveling entry.
182 * @ubi: UBI device description object
183 * @e: the wear-leveling entry to add
184 *
185 * This function destroys a wear leveling entry and removes
186 * the reference from the lookup table.
187 */
188static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189{
190	ubi->lookuptbl[e->pnum] = NULL;
191	kmem_cache_free(ubi_wl_entry_slab, e);
192}
193
194/**
195 * do_work - do one pending work.
196 * @ubi: UBI device description object
197 *
198 * This function returns zero in case of success and a negative error code in
199 * case of failure.
200 */
201static int do_work(struct ubi_device *ubi)
202{
203	int err;
204	struct ubi_work *wrk;
205
206	cond_resched();
207
208	/*
209	 * @ubi->work_sem is used to synchronize with the workers. Workers take
210	 * it in read mode, so many of them may be doing works at a time. But
211	 * the queue flush code has to be sure the whole queue of works is
212	 * done, and it takes the mutex in write mode.
213	 */
214	down_read(&ubi->work_sem);
215	spin_lock(&ubi->wl_lock);
216	if (list_empty(&ubi->works)) {
217		spin_unlock(&ubi->wl_lock);
218		up_read(&ubi->work_sem);
219		return 0;
220	}
221
222	wrk = list_entry(ubi->works.next, struct ubi_work, list);
223	list_del(&wrk->list);
224	ubi->works_count -= 1;
225	ubi_assert(ubi->works_count >= 0);
226	spin_unlock(&ubi->wl_lock);
227
228	/*
229	 * Call the worker function. Do not touch the work structure
230	 * after this call as it will have been freed or reused by that
231	 * time by the worker function.
232	 */
233	err = wrk->func(ubi, wrk, 0);
234	if (err)
235		ubi_err(ubi, "work failed with error code %d", err);
236	up_read(&ubi->work_sem);
237
238	return err;
239}
240
241/**
242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243 * @e: the wear-leveling entry to check
244 * @root: the root of the tree
245 *
246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
247 * is not.
248 */
249static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250{
251	struct rb_node *p;
252
253	p = root->rb_node;
254	while (p) {
255		struct ubi_wl_entry *e1;
256
257		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259		if (e->pnum == e1->pnum) {
260			ubi_assert(e == e1);
261			return 1;
262		}
263
264		if (e->ec < e1->ec)
265			p = p->rb_left;
266		else if (e->ec > e1->ec)
267			p = p->rb_right;
268		else {
269			ubi_assert(e->pnum != e1->pnum);
270			if (e->pnum < e1->pnum)
271				p = p->rb_left;
272			else
273				p = p->rb_right;
274		}
275	}
276
277	return 0;
278}
279
280/**
281 * prot_queue_add - add physical eraseblock to the protection queue.
282 * @ubi: UBI device description object
283 * @e: the physical eraseblock to add
284 *
285 * This function adds @e to the tail of the protection queue @ubi->pq, where
286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288 * be locked.
289 */
290static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291{
292	int pq_tail = ubi->pq_head - 1;
293
294	if (pq_tail < 0)
295		pq_tail = UBI_PROT_QUEUE_LEN - 1;
296	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299}
300
301/**
302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303 * @ubi: UBI device description object
304 * @root: the RB-tree where to look for
305 * @diff: maximum possible difference from the smallest erase counter
306 *
307 * This function looks for a wear leveling entry with erase counter closest to
308 * min + @diff, where min is the smallest erase counter.
309 */
310static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311					  struct rb_root *root, int diff)
312{
313	struct rb_node *p;
314	struct ubi_wl_entry *e, *prev_e = NULL;
315	int max;
316
317	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318	max = e->ec + diff;
319
320	p = root->rb_node;
321	while (p) {
322		struct ubi_wl_entry *e1;
323
324		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325		if (e1->ec >= max)
326			p = p->rb_left;
327		else {
328			p = p->rb_right;
329			prev_e = e;
330			e = e1;
331		}
332	}
333
334	/* If no fastmap has been written and this WL entry can be used
335	 * as anchor PEB, hold it back and return the second best WL entry
336	 * such that fastmap can use the anchor PEB later. */
337	if (prev_e && !ubi->fm_disabled &&
338	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
339		return prev_e;
340
341	return e;
342}
343
344/**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354					       struct rb_root *root)
355{
356	struct ubi_wl_entry *e, *first, *last;
357
358	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364		/* If no fastmap has been written and this WL entry can be used
365		 * as anchor PEB, hold it back and return the second best
366		 * WL entry such that fastmap can use the anchor PEB later. */
367		e = may_reserve_for_fm(ubi, e, root);
368	} else
369		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371	return e;
372}
373
374/**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383{
384	struct ubi_wl_entry *e;
385
386	e = find_mean_wl_entry(ubi, &ubi->free);
387	if (!e) {
388		ubi_err(ubi, "no free eraseblocks");
389		return NULL;
390	}
391
392	self_check_in_wl_tree(ubi, e, &ubi->free);
393
394	/*
395	 * Move the physical eraseblock to the protection queue where it will
396	 * be protected from being moved for some time.
397	 */
398	rb_erase(&e->u.rb, &ubi->free);
399	ubi->free_count--;
400	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402	return e;
403}
404
405/**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
413static int prot_queue_del(struct ubi_device *ubi, int pnum)
414{
415	struct ubi_wl_entry *e;
416
417	e = ubi->lookuptbl[pnum];
418	if (!e)
419		return -ENODEV;
420
421	if (self_check_in_pq(ubi, e))
422		return -ENODEV;
423
424	list_del(&e->u.list);
425	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426	return 0;
427}
428
429/**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439		      int torture)
440{
441	int err;
442	struct ubi_ec_hdr *ec_hdr;
443	unsigned long long ec = e->ec;
444
445	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447	err = self_check_ec(ubi, e->pnum, e->ec);
448	if (err)
449		return -EINVAL;
450
451	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452	if (!ec_hdr)
453		return -ENOMEM;
454
455	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456	if (err < 0)
457		goto out_free;
458
459	ec += err;
460	if (ec > UBI_MAX_ERASECOUNTER) {
461		/*
462		 * Erase counter overflow. Upgrade UBI and use 64-bit
463		 * erase counters internally.
464		 */
465		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466			e->pnum, ec);
467		err = -EINVAL;
468		goto out_free;
469	}
470
471	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473	ec_hdr->ec = cpu_to_be64(ec);
474
475	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476	if (err)
477		goto out_free;
478
479	e->ec = ec;
480	spin_lock(&ubi->wl_lock);
481	if (e->ec > ubi->max_ec)
482		ubi->max_ec = e->ec;
483	spin_unlock(&ubi->wl_lock);
484
485out_free:
486	kfree(ec_hdr);
487	return err;
488}
489
490/**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
498static void serve_prot_queue(struct ubi_device *ubi)
499{
500	struct ubi_wl_entry *e, *tmp;
501	int count;
502
503	/*
504	 * There may be several protected physical eraseblock to remove,
505	 * process them all.
506	 */
507repeat:
508	count = 0;
509	spin_lock(&ubi->wl_lock);
510	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511		dbg_wl("PEB %d EC %d protection over, move to used tree",
512			e->pnum, e->ec);
513
514		list_del(&e->u.list);
515		wl_tree_add(e, &ubi->used);
516		if (count++ > 32) {
517			/*
518			 * Let's be nice and avoid holding the spinlock for
519			 * too long.
520			 */
521			spin_unlock(&ubi->wl_lock);
522			cond_resched();
523			goto repeat;
524		}
525	}
526
527	ubi->pq_head += 1;
528	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529		ubi->pq_head = 0;
530	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531	spin_unlock(&ubi->wl_lock);
532}
533
534/**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543{
544	spin_lock(&ubi->wl_lock);
545	list_add_tail(&wrk->list, &ubi->works);
546	ubi_assert(ubi->works_count >= 0);
547	ubi->works_count += 1;
548	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549		wake_up_process(ubi->bgt_thread);
550	spin_unlock(&ubi->wl_lock);
551}
552
553/**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562{
563	down_read(&ubi->work_sem);
564	__schedule_ubi_work(ubi, wrk);
565	up_read(&ubi->work_sem);
566}
567
568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569			int shutdown);
570
571/**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
582static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583			  int vol_id, int lnum, int torture)
584{
585	struct ubi_work *wl_wrk;
586
587	ubi_assert(e);
588
589	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590	       e->pnum, e->ec, torture);
591
592	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593	if (!wl_wrk)
594		return -ENOMEM;
595
596	wl_wrk->func = &erase_worker;
597	wl_wrk->e = e;
598	wl_wrk->vol_id = vol_id;
599	wl_wrk->lnum = lnum;
600	wl_wrk->torture = torture;
601
602	schedule_ubi_work(ubi, wl_wrk);
603	return 0;
604}
605
606/**
607 * do_sync_erase - run the erase worker synchronously.
608 * @ubi: UBI device description object
609 * @e: the WL entry of the physical eraseblock to erase
610 * @vol_id: the volume ID that last used this PEB
611 * @lnum: the last used logical eraseblock number for the PEB
612 * @torture: if the physical eraseblock has to be tortured
613 *
614 */
615static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
616			 int vol_id, int lnum, int torture)
617{
618	struct ubi_work *wl_wrk;
619
620	dbg_wl("sync erase of PEB %i", e->pnum);
621
622	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
623	if (!wl_wrk)
624		return -ENOMEM;
625
626	wl_wrk->e = e;
627	wl_wrk->vol_id = vol_id;
628	wl_wrk->lnum = lnum;
629	wl_wrk->torture = torture;
630
631	return erase_worker(ubi, wl_wrk, 0);
632}
633
634/**
635 * wear_leveling_worker - wear-leveling worker function.
636 * @ubi: UBI device description object
637 * @wrk: the work object
638 * @shutdown: non-zero if the worker has to free memory and exit
639 * because the WL-subsystem is shutting down
640 *
641 * This function copies a more worn out physical eraseblock to a less worn out
642 * one. Returns zero in case of success and a negative error code in case of
643 * failure.
644 */
645static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
646				int shutdown)
647{
648	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
649	int vol_id = -1, lnum = -1;
650#ifdef CONFIG_MTD_UBI_FASTMAP
651	int anchor = wrk->anchor;
652#endif
653	struct ubi_wl_entry *e1, *e2;
654	struct ubi_vid_hdr *vid_hdr;
655
656	kfree(wrk);
657	if (shutdown)
658		return 0;
659
660	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
661	if (!vid_hdr)
662		return -ENOMEM;
663
664	mutex_lock(&ubi->move_mutex);
665	spin_lock(&ubi->wl_lock);
666	ubi_assert(!ubi->move_from && !ubi->move_to);
667	ubi_assert(!ubi->move_to_put);
668
669	if (!ubi->free.rb_node ||
670	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
671		/*
672		 * No free physical eraseblocks? Well, they must be waiting in
673		 * the queue to be erased. Cancel movement - it will be
674		 * triggered again when a free physical eraseblock appears.
675		 *
676		 * No used physical eraseblocks? They must be temporarily
677		 * protected from being moved. They will be moved to the
678		 * @ubi->used tree later and the wear-leveling will be
679		 * triggered again.
680		 */
681		dbg_wl("cancel WL, a list is empty: free %d, used %d",
682		       !ubi->free.rb_node, !ubi->used.rb_node);
683		goto out_cancel;
684	}
685
686#ifdef CONFIG_MTD_UBI_FASTMAP
687	/* Check whether we need to produce an anchor PEB */
688	if (!anchor)
689		anchor = !anchor_pebs_avalible(&ubi->free);
690
691	if (anchor) {
692		e1 = find_anchor_wl_entry(&ubi->used);
693		if (!e1)
694			goto out_cancel;
695		e2 = get_peb_for_wl(ubi);
696		if (!e2)
697			goto out_cancel;
698
699		self_check_in_wl_tree(ubi, e1, &ubi->used);
700		rb_erase(&e1->u.rb, &ubi->used);
701		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
702	} else if (!ubi->scrub.rb_node) {
703#else
704	if (!ubi->scrub.rb_node) {
705#endif
706		/*
707		 * Now pick the least worn-out used physical eraseblock and a
708		 * highly worn-out free physical eraseblock. If the erase
709		 * counters differ much enough, start wear-leveling.
710		 */
711		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
712		e2 = get_peb_for_wl(ubi);
713		if (!e2)
714			goto out_cancel;
715
716		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
717			dbg_wl("no WL needed: min used EC %d, max free EC %d",
718			       e1->ec, e2->ec);
719
720			/* Give the unused PEB back */
721			wl_tree_add(e2, &ubi->free);
722			ubi->free_count++;
723			goto out_cancel;
724		}
725		self_check_in_wl_tree(ubi, e1, &ubi->used);
726		rb_erase(&e1->u.rb, &ubi->used);
727		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
728		       e1->pnum, e1->ec, e2->pnum, e2->ec);
729	} else {
730		/* Perform scrubbing */
731		scrubbing = 1;
732		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
733		e2 = get_peb_for_wl(ubi);
734		if (!e2)
735			goto out_cancel;
736
737		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
738		rb_erase(&e1->u.rb, &ubi->scrub);
739		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
740	}
741
742	ubi->move_from = e1;
743	ubi->move_to = e2;
744	spin_unlock(&ubi->wl_lock);
745
746	/*
747	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
748	 * We so far do not know which logical eraseblock our physical
749	 * eraseblock (@e1) belongs to. We have to read the volume identifier
750	 * header first.
751	 *
752	 * Note, we are protected from this PEB being unmapped and erased. The
753	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
754	 * which is being moved was unmapped.
755	 */
756
757	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
758	if (err && err != UBI_IO_BITFLIPS) {
759		if (err == UBI_IO_FF) {
760			/*
761			 * We are trying to move PEB without a VID header. UBI
762			 * always write VID headers shortly after the PEB was
763			 * given, so we have a situation when it has not yet
764			 * had a chance to write it, because it was preempted.
765			 * So add this PEB to the protection queue so far,
766			 * because presumably more data will be written there
767			 * (including the missing VID header), and then we'll
768			 * move it.
769			 */
770			dbg_wl("PEB %d has no VID header", e1->pnum);
771			protect = 1;
772			goto out_not_moved;
773		} else if (err == UBI_IO_FF_BITFLIPS) {
774			/*
775			 * The same situation as %UBI_IO_FF, but bit-flips were
776			 * detected. It is better to schedule this PEB for
777			 * scrubbing.
778			 */
779			dbg_wl("PEB %d has no VID header but has bit-flips",
780			       e1->pnum);
781			scrubbing = 1;
782			goto out_not_moved;
783		}
784
785		ubi_err(ubi, "error %d while reading VID header from PEB %d",
786			err, e1->pnum);
787		goto out_error;
788	}
789
790	vol_id = be32_to_cpu(vid_hdr->vol_id);
791	lnum = be32_to_cpu(vid_hdr->lnum);
792
793	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
794	if (err) {
795		if (err == MOVE_CANCEL_RACE) {
796			/*
797			 * The LEB has not been moved because the volume is
798			 * being deleted or the PEB has been put meanwhile. We
799			 * should prevent this PEB from being selected for
800			 * wear-leveling movement again, so put it to the
801			 * protection queue.
802			 */
803			protect = 1;
804			goto out_not_moved;
805		}
806		if (err == MOVE_RETRY) {
807			scrubbing = 1;
808			goto out_not_moved;
809		}
810		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
811		    err == MOVE_TARGET_RD_ERR) {
812			/*
813			 * Target PEB had bit-flips or write error - torture it.
814			 */
815			torture = 1;
816			goto out_not_moved;
817		}
818
819		if (err == MOVE_SOURCE_RD_ERR) {
820			/*
821			 * An error happened while reading the source PEB. Do
822			 * not switch to R/O mode in this case, and give the
823			 * upper layers a possibility to recover from this,
824			 * e.g. by unmapping corresponding LEB. Instead, just
825			 * put this PEB to the @ubi->erroneous list to prevent
826			 * UBI from trying to move it over and over again.
827			 */
828			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
829				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
830					ubi->erroneous_peb_count);
831				goto out_error;
832			}
833			erroneous = 1;
834			goto out_not_moved;
835		}
836
837		if (err < 0)
838			goto out_error;
839
840		ubi_assert(0);
841	}
842
843	/* The PEB has been successfully moved */
844	if (scrubbing)
845		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
846			e1->pnum, vol_id, lnum, e2->pnum);
847	ubi_free_vid_hdr(ubi, vid_hdr);
848
849	spin_lock(&ubi->wl_lock);
850	if (!ubi->move_to_put) {
851		wl_tree_add(e2, &ubi->used);
852		e2 = NULL;
853	}
854	ubi->move_from = ubi->move_to = NULL;
855	ubi->move_to_put = ubi->wl_scheduled = 0;
856	spin_unlock(&ubi->wl_lock);
857
858	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
859	if (err) {
860		if (e2)
861			wl_entry_destroy(ubi, e2);
862		goto out_ro;
863	}
864
865	if (e2) {
866		/*
867		 * Well, the target PEB was put meanwhile, schedule it for
868		 * erasure.
869		 */
870		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
871		       e2->pnum, vol_id, lnum);
872		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
873		if (err)
874			goto out_ro;
875	}
876
877	dbg_wl("done");
878	mutex_unlock(&ubi->move_mutex);
879	return 0;
880
881	/*
882	 * For some reasons the LEB was not moved, might be an error, might be
883	 * something else. @e1 was not changed, so return it back. @e2 might
884	 * have been changed, schedule it for erasure.
885	 */
886out_not_moved:
887	if (vol_id != -1)
888		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
889		       e1->pnum, vol_id, lnum, e2->pnum, err);
890	else
891		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
892		       e1->pnum, e2->pnum, err);
893	spin_lock(&ubi->wl_lock);
894	if (protect)
895		prot_queue_add(ubi, e1);
896	else if (erroneous) {
897		wl_tree_add(e1, &ubi->erroneous);
898		ubi->erroneous_peb_count += 1;
899	} else if (scrubbing)
900		wl_tree_add(e1, &ubi->scrub);
901	else
902		wl_tree_add(e1, &ubi->used);
903	ubi_assert(!ubi->move_to_put);
904	ubi->move_from = ubi->move_to = NULL;
905	ubi->wl_scheduled = 0;
906	spin_unlock(&ubi->wl_lock);
907
908	ubi_free_vid_hdr(ubi, vid_hdr);
909	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
910	if (err)
911		goto out_ro;
912
913	mutex_unlock(&ubi->move_mutex);
914	return 0;
915
916out_error:
917	if (vol_id != -1)
918		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
919			err, e1->pnum, e2->pnum);
920	else
921		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
922			err, e1->pnum, vol_id, lnum, e2->pnum);
923	spin_lock(&ubi->wl_lock);
924	ubi->move_from = ubi->move_to = NULL;
925	ubi->move_to_put = ubi->wl_scheduled = 0;
926	spin_unlock(&ubi->wl_lock);
927
928	ubi_free_vid_hdr(ubi, vid_hdr);
929	wl_entry_destroy(ubi, e1);
930	wl_entry_destroy(ubi, e2);
931
932out_ro:
933	ubi_ro_mode(ubi);
934	mutex_unlock(&ubi->move_mutex);
935	ubi_assert(err != 0);
936	return err < 0 ? err : -EIO;
937
938out_cancel:
939	ubi->wl_scheduled = 0;
940	spin_unlock(&ubi->wl_lock);
941	mutex_unlock(&ubi->move_mutex);
942	ubi_free_vid_hdr(ubi, vid_hdr);
943	return 0;
944}
945
946/**
947 * ensure_wear_leveling - schedule wear-leveling if it is needed.
948 * @ubi: UBI device description object
949 * @nested: set to non-zero if this function is called from UBI worker
950 *
951 * This function checks if it is time to start wear-leveling and schedules it
952 * if yes. This function returns zero in case of success and a negative error
953 * code in case of failure.
954 */
955static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
956{
957	int err = 0;
958	struct ubi_wl_entry *e1;
959	struct ubi_wl_entry *e2;
960	struct ubi_work *wrk;
961
962	spin_lock(&ubi->wl_lock);
963	if (ubi->wl_scheduled)
964		/* Wear-leveling is already in the work queue */
965		goto out_unlock;
966
967	/*
968	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
969	 * the WL worker has to be scheduled anyway.
970	 */
971	if (!ubi->scrub.rb_node) {
972		if (!ubi->used.rb_node || !ubi->free.rb_node)
973			/* No physical eraseblocks - no deal */
974			goto out_unlock;
975
976		/*
977		 * We schedule wear-leveling only if the difference between the
978		 * lowest erase counter of used physical eraseblocks and a high
979		 * erase counter of free physical eraseblocks is greater than
980		 * %UBI_WL_THRESHOLD.
981		 */
982		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
983		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
984
985		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
986			goto out_unlock;
987		dbg_wl("schedule wear-leveling");
988	} else
989		dbg_wl("schedule scrubbing");
990
991	ubi->wl_scheduled = 1;
992	spin_unlock(&ubi->wl_lock);
993
994	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
995	if (!wrk) {
996		err = -ENOMEM;
997		goto out_cancel;
998	}
999
1000	wrk->anchor = 0;
1001	wrk->func = &wear_leveling_worker;
1002	if (nested)
1003		__schedule_ubi_work(ubi, wrk);
1004	else
1005		schedule_ubi_work(ubi, wrk);
1006	return err;
1007
1008out_cancel:
1009	spin_lock(&ubi->wl_lock);
1010	ubi->wl_scheduled = 0;
1011out_unlock:
1012	spin_unlock(&ubi->wl_lock);
1013	return err;
1014}
1015
1016/**
1017 * erase_worker - physical eraseblock erase worker function.
1018 * @ubi: UBI device description object
1019 * @wl_wrk: the work object
1020 * @shutdown: non-zero if the worker has to free memory and exit
1021 * because the WL sub-system is shutting down
1022 *
1023 * This function erases a physical eraseblock and perform torture testing if
1024 * needed. It also takes care about marking the physical eraseblock bad if
1025 * needed. Returns zero in case of success and a negative error code in case of
1026 * failure.
1027 */
1028static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1029			int shutdown)
1030{
1031	struct ubi_wl_entry *e = wl_wrk->e;
1032	int pnum = e->pnum;
1033	int vol_id = wl_wrk->vol_id;
1034	int lnum = wl_wrk->lnum;
1035	int err, available_consumed = 0;
1036
1037	if (shutdown) {
1038		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1039		kfree(wl_wrk);
1040		wl_entry_destroy(ubi, e);
1041		return 0;
1042	}
1043
1044	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1045	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1046
1047	err = sync_erase(ubi, e, wl_wrk->torture);
1048	if (!err) {
1049		/* Fine, we've erased it successfully */
1050		kfree(wl_wrk);
1051
1052		spin_lock(&ubi->wl_lock);
1053		wl_tree_add(e, &ubi->free);
1054		ubi->free_count++;
1055		spin_unlock(&ubi->wl_lock);
1056
1057		/*
1058		 * One more erase operation has happened, take care about
1059		 * protected physical eraseblocks.
1060		 */
1061		serve_prot_queue(ubi);
1062
1063		/* And take care about wear-leveling */
1064		err = ensure_wear_leveling(ubi, 1);
1065		return err;
1066	}
1067
1068	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1069	kfree(wl_wrk);
1070
1071	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072	    err == -EBUSY) {
1073		int err1;
1074
1075		/* Re-schedule the LEB for erasure */
1076		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1077		if (err1) {
1078			err = err1;
1079			goto out_ro;
1080		}
1081		return err;
1082	}
1083
1084	wl_entry_destroy(ubi, e);
1085	if (err != -EIO)
1086		/*
1087		 * If this is not %-EIO, we have no idea what to do. Scheduling
1088		 * this physical eraseblock for erasure again would cause
1089		 * errors again and again. Well, lets switch to R/O mode.
1090		 */
1091		goto out_ro;
1092
1093	/* It is %-EIO, the PEB went bad */
1094
1095	if (!ubi->bad_allowed) {
1096		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1097		goto out_ro;
1098	}
1099
1100	spin_lock(&ubi->volumes_lock);
1101	if (ubi->beb_rsvd_pebs == 0) {
1102		if (ubi->avail_pebs == 0) {
1103			spin_unlock(&ubi->volumes_lock);
1104			ubi_err(ubi, "no reserved/available physical eraseblocks");
1105			goto out_ro;
1106		}
1107		ubi->avail_pebs -= 1;
1108		available_consumed = 1;
1109	}
1110	spin_unlock(&ubi->volumes_lock);
1111
1112	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1113	err = ubi_io_mark_bad(ubi, pnum);
1114	if (err)
1115		goto out_ro;
1116
1117	spin_lock(&ubi->volumes_lock);
1118	if (ubi->beb_rsvd_pebs > 0) {
1119		if (available_consumed) {
1120			/*
1121			 * The amount of reserved PEBs increased since we last
1122			 * checked.
1123			 */
1124			ubi->avail_pebs += 1;
1125			available_consumed = 0;
1126		}
1127		ubi->beb_rsvd_pebs -= 1;
1128	}
1129	ubi->bad_peb_count += 1;
1130	ubi->good_peb_count -= 1;
1131	ubi_calculate_reserved(ubi);
1132	if (available_consumed)
1133		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1134	else if (ubi->beb_rsvd_pebs)
1135		ubi_msg(ubi, "%d PEBs left in the reserve",
1136			ubi->beb_rsvd_pebs);
1137	else
1138		ubi_warn(ubi, "last PEB from the reserve was used");
1139	spin_unlock(&ubi->volumes_lock);
1140
1141	return err;
1142
1143out_ro:
1144	if (available_consumed) {
1145		spin_lock(&ubi->volumes_lock);
1146		ubi->avail_pebs += 1;
1147		spin_unlock(&ubi->volumes_lock);
1148	}
1149	ubi_ro_mode(ubi);
1150	return err;
1151}
1152
1153/**
1154 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1155 * @ubi: UBI device description object
1156 * @vol_id: the volume ID that last used this PEB
1157 * @lnum: the last used logical eraseblock number for the PEB
1158 * @pnum: physical eraseblock to return
1159 * @torture: if this physical eraseblock has to be tortured
1160 *
1161 * This function is called to return physical eraseblock @pnum to the pool of
1162 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1163 * occurred to this @pnum and it has to be tested. This function returns zero
1164 * in case of success, and a negative error code in case of failure.
1165 */
1166int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1167		   int pnum, int torture)
1168{
1169	int err;
1170	struct ubi_wl_entry *e;
1171
1172	dbg_wl("PEB %d", pnum);
1173	ubi_assert(pnum >= 0);
1174	ubi_assert(pnum < ubi->peb_count);
1175
1176	down_read(&ubi->fm_protect);
1177
1178retry:
1179	spin_lock(&ubi->wl_lock);
1180	e = ubi->lookuptbl[pnum];
1181	if (e == ubi->move_from) {
1182		/*
1183		 * User is putting the physical eraseblock which was selected to
1184		 * be moved. It will be scheduled for erasure in the
1185		 * wear-leveling worker.
1186		 */
1187		dbg_wl("PEB %d is being moved, wait", pnum);
1188		spin_unlock(&ubi->wl_lock);
1189
1190		/* Wait for the WL worker by taking the @ubi->move_mutex */
1191		mutex_lock(&ubi->move_mutex);
1192		mutex_unlock(&ubi->move_mutex);
1193		goto retry;
1194	} else if (e == ubi->move_to) {
1195		/*
1196		 * User is putting the physical eraseblock which was selected
1197		 * as the target the data is moved to. It may happen if the EBA
1198		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1199		 * but the WL sub-system has not put the PEB to the "used" tree
1200		 * yet, but it is about to do this. So we just set a flag which
1201		 * will tell the WL worker that the PEB is not needed anymore
1202		 * and should be scheduled for erasure.
1203		 */
1204		dbg_wl("PEB %d is the target of data moving", pnum);
1205		ubi_assert(!ubi->move_to_put);
1206		ubi->move_to_put = 1;
1207		spin_unlock(&ubi->wl_lock);
1208		up_read(&ubi->fm_protect);
1209		return 0;
1210	} else {
1211		if (in_wl_tree(e, &ubi->used)) {
1212			self_check_in_wl_tree(ubi, e, &ubi->used);
1213			rb_erase(&e->u.rb, &ubi->used);
1214		} else if (in_wl_tree(e, &ubi->scrub)) {
1215			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1216			rb_erase(&e->u.rb, &ubi->scrub);
1217		} else if (in_wl_tree(e, &ubi->erroneous)) {
1218			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1219			rb_erase(&e->u.rb, &ubi->erroneous);
1220			ubi->erroneous_peb_count -= 1;
1221			ubi_assert(ubi->erroneous_peb_count >= 0);
1222			/* Erroneous PEBs should be tortured */
1223			torture = 1;
1224		} else {
1225			err = prot_queue_del(ubi, e->pnum);
1226			if (err) {
1227				ubi_err(ubi, "PEB %d not found", pnum);
1228				ubi_ro_mode(ubi);
1229				spin_unlock(&ubi->wl_lock);
1230				up_read(&ubi->fm_protect);
1231				return err;
1232			}
1233		}
1234	}
1235	spin_unlock(&ubi->wl_lock);
1236
1237	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1238	if (err) {
1239		spin_lock(&ubi->wl_lock);
1240		wl_tree_add(e, &ubi->used);
1241		spin_unlock(&ubi->wl_lock);
1242	}
1243
1244	up_read(&ubi->fm_protect);
1245	return err;
1246}
1247
1248/**
1249 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1250 * @ubi: UBI device description object
1251 * @pnum: the physical eraseblock to schedule
1252 *
1253 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1254 * needs scrubbing. This function schedules a physical eraseblock for
1255 * scrubbing which is done in background. This function returns zero in case of
1256 * success and a negative error code in case of failure.
1257 */
1258int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1259{
1260	struct ubi_wl_entry *e;
1261
1262	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1263
1264retry:
1265	spin_lock(&ubi->wl_lock);
1266	e = ubi->lookuptbl[pnum];
1267	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1268				   in_wl_tree(e, &ubi->erroneous)) {
1269		spin_unlock(&ubi->wl_lock);
1270		return 0;
1271	}
1272
1273	if (e == ubi->move_to) {
1274		/*
1275		 * This physical eraseblock was used to move data to. The data
1276		 * was moved but the PEB was not yet inserted to the proper
1277		 * tree. We should just wait a little and let the WL worker
1278		 * proceed.
1279		 */
1280		spin_unlock(&ubi->wl_lock);
1281		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1282		yield();
1283		goto retry;
1284	}
1285
1286	if (in_wl_tree(e, &ubi->used)) {
1287		self_check_in_wl_tree(ubi, e, &ubi->used);
1288		rb_erase(&e->u.rb, &ubi->used);
1289	} else {
1290		int err;
1291
1292		err = prot_queue_del(ubi, e->pnum);
1293		if (err) {
1294			ubi_err(ubi, "PEB %d not found", pnum);
1295			ubi_ro_mode(ubi);
1296			spin_unlock(&ubi->wl_lock);
1297			return err;
1298		}
1299	}
1300
1301	wl_tree_add(e, &ubi->scrub);
1302	spin_unlock(&ubi->wl_lock);
1303
1304	/*
1305	 * Technically scrubbing is the same as wear-leveling, so it is done
1306	 * by the WL worker.
1307	 */
1308	return ensure_wear_leveling(ubi, 0);
1309}
1310
1311/**
1312 * ubi_wl_flush - flush all pending works.
1313 * @ubi: UBI device description object
1314 * @vol_id: the volume id to flush for
1315 * @lnum: the logical eraseblock number to flush for
1316 *
1317 * This function executes all pending works for a particular volume id /
1318 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1319 * acts as a wildcard for all of the corresponding volume numbers or logical
1320 * eraseblock numbers. It returns zero in case of success and a negative error
1321 * code in case of failure.
1322 */
1323int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1324{
1325	int err = 0;
1326	int found = 1;
1327
1328	/*
1329	 * Erase while the pending works queue is not empty, but not more than
1330	 * the number of currently pending works.
1331	 */
1332	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1333	       vol_id, lnum, ubi->works_count);
1334
1335	while (found) {
1336		struct ubi_work *wrk, *tmp;
1337		found = 0;
1338
1339		down_read(&ubi->work_sem);
1340		spin_lock(&ubi->wl_lock);
1341		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1342			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1343			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1344				list_del(&wrk->list);
1345				ubi->works_count -= 1;
1346				ubi_assert(ubi->works_count >= 0);
1347				spin_unlock(&ubi->wl_lock);
1348
1349				err = wrk->func(ubi, wrk, 0);
1350				if (err) {
1351					up_read(&ubi->work_sem);
1352					return err;
1353				}
1354
1355				spin_lock(&ubi->wl_lock);
1356				found = 1;
1357				break;
1358			}
1359		}
1360		spin_unlock(&ubi->wl_lock);
1361		up_read(&ubi->work_sem);
1362	}
1363
1364	/*
1365	 * Make sure all the works which have been done in parallel are
1366	 * finished.
1367	 */
1368	down_write(&ubi->work_sem);
1369	up_write(&ubi->work_sem);
1370
1371	return err;
1372}
1373
1374/**
1375 * tree_destroy - destroy an RB-tree.
1376 * @ubi: UBI device description object
1377 * @root: the root of the tree to destroy
1378 */
1379static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1380{
1381	struct rb_node *rb;
1382	struct ubi_wl_entry *e;
1383
1384	rb = root->rb_node;
1385	while (rb) {
1386		if (rb->rb_left)
1387			rb = rb->rb_left;
1388		else if (rb->rb_right)
1389			rb = rb->rb_right;
1390		else {
1391			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1392
1393			rb = rb_parent(rb);
1394			if (rb) {
1395				if (rb->rb_left == &e->u.rb)
1396					rb->rb_left = NULL;
1397				else
1398					rb->rb_right = NULL;
1399			}
1400
1401			wl_entry_destroy(ubi, e);
1402		}
1403	}
1404}
1405
1406/**
1407 * ubi_thread - UBI background thread.
1408 * @u: the UBI device description object pointer
1409 */
1410int ubi_thread(void *u)
1411{
1412	int failures = 0;
1413	struct ubi_device *ubi = u;
1414
1415	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1416		ubi->bgt_name, task_pid_nr(current));
1417
1418	set_freezable();
1419	for (;;) {
1420		int err;
1421
1422		if (kthread_should_stop())
1423			break;
1424
1425		if (try_to_freeze())
1426			continue;
1427
1428		spin_lock(&ubi->wl_lock);
1429		if (list_empty(&ubi->works) || ubi->ro_mode ||
1430		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1431			set_current_state(TASK_INTERRUPTIBLE);
1432			spin_unlock(&ubi->wl_lock);
1433			schedule();
1434			continue;
1435		}
1436		spin_unlock(&ubi->wl_lock);
1437
1438		err = do_work(ubi);
1439		if (err) {
1440			ubi_err(ubi, "%s: work failed with error code %d",
1441				ubi->bgt_name, err);
1442			if (failures++ > WL_MAX_FAILURES) {
1443				/*
1444				 * Too many failures, disable the thread and
1445				 * switch to read-only mode.
1446				 */
1447				ubi_msg(ubi, "%s: %d consecutive failures",
1448					ubi->bgt_name, WL_MAX_FAILURES);
1449				ubi_ro_mode(ubi);
1450				ubi->thread_enabled = 0;
1451				continue;
1452			}
1453		} else
1454			failures = 0;
1455
1456		cond_resched();
1457	}
1458
1459	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1460	return 0;
1461}
1462
1463/**
1464 * shutdown_work - shutdown all pending works.
1465 * @ubi: UBI device description object
1466 */
1467static void shutdown_work(struct ubi_device *ubi)
1468{
1469#ifdef CONFIG_MTD_UBI_FASTMAP
1470	flush_work(&ubi->fm_work);
1471#endif
1472	while (!list_empty(&ubi->works)) {
1473		struct ubi_work *wrk;
1474
1475		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1476		list_del(&wrk->list);
1477		wrk->func(ubi, wrk, 1);
1478		ubi->works_count -= 1;
1479		ubi_assert(ubi->works_count >= 0);
1480	}
1481}
1482
1483/**
1484 * ubi_wl_init - initialize the WL sub-system using attaching information.
1485 * @ubi: UBI device description object
1486 * @ai: attaching information
1487 *
1488 * This function returns zero in case of success, and a negative error code in
1489 * case of failure.
1490 */
1491int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1492{
1493	int err, i, reserved_pebs, found_pebs = 0;
1494	struct rb_node *rb1, *rb2;
1495	struct ubi_ainf_volume *av;
1496	struct ubi_ainf_peb *aeb, *tmp;
1497	struct ubi_wl_entry *e;
1498
1499	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1500	spin_lock_init(&ubi->wl_lock);
1501	mutex_init(&ubi->move_mutex);
1502	init_rwsem(&ubi->work_sem);
1503	ubi->max_ec = ai->max_ec;
1504	INIT_LIST_HEAD(&ubi->works);
1505
1506	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1507
1508	err = -ENOMEM;
1509	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1510	if (!ubi->lookuptbl)
1511		return err;
1512
1513	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1514		INIT_LIST_HEAD(&ubi->pq[i]);
1515	ubi->pq_head = 0;
1516
1517	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1518		cond_resched();
1519
1520		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1521		if (!e)
1522			goto out_free;
1523
1524		e->pnum = aeb->pnum;
1525		e->ec = aeb->ec;
1526		ubi->lookuptbl[e->pnum] = e;
1527		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1528			wl_entry_destroy(ubi, e);
1529			goto out_free;
1530		}
1531
1532		found_pebs++;
1533	}
1534
1535	ubi->free_count = 0;
1536	list_for_each_entry(aeb, &ai->free, u.list) {
1537		cond_resched();
1538
1539		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1540		if (!e)
1541			goto out_free;
1542
1543		e->pnum = aeb->pnum;
1544		e->ec = aeb->ec;
1545		ubi_assert(e->ec >= 0);
1546
1547		wl_tree_add(e, &ubi->free);
1548		ubi->free_count++;
1549
1550		ubi->lookuptbl[e->pnum] = e;
1551
1552		found_pebs++;
1553	}
1554
1555	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1556		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1557			cond_resched();
1558
1559			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560			if (!e)
1561				goto out_free;
1562
1563			e->pnum = aeb->pnum;
1564			e->ec = aeb->ec;
1565			ubi->lookuptbl[e->pnum] = e;
1566
1567			if (!aeb->scrub) {
1568				dbg_wl("add PEB %d EC %d to the used tree",
1569				       e->pnum, e->ec);
1570				wl_tree_add(e, &ubi->used);
1571			} else {
1572				dbg_wl("add PEB %d EC %d to the scrub tree",
1573				       e->pnum, e->ec);
1574				wl_tree_add(e, &ubi->scrub);
1575			}
1576
1577			found_pebs++;
1578		}
1579	}
1580
1581	dbg_wl("found %i PEBs", found_pebs);
1582
1583	if (ubi->fm) {
1584		ubi_assert(ubi->good_peb_count == \
1585			   found_pebs + ubi->fm->used_blocks);
1586
1587		for (i = 0; i < ubi->fm->used_blocks; i++) {
1588			e = ubi->fm->e[i];
1589			ubi->lookuptbl[e->pnum] = e;
1590		}
1591	}
1592	else
1593		ubi_assert(ubi->good_peb_count == found_pebs);
1594
1595	reserved_pebs = WL_RESERVED_PEBS;
1596	ubi_fastmap_init(ubi, &reserved_pebs);
1597
1598	if (ubi->avail_pebs < reserved_pebs) {
1599		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1600			ubi->avail_pebs, reserved_pebs);
1601		if (ubi->corr_peb_count)
1602			ubi_err(ubi, "%d PEBs are corrupted and not used",
1603				ubi->corr_peb_count);
1604		err = -ENOSPC;
1605		goto out_free;
1606	}
1607	ubi->avail_pebs -= reserved_pebs;
1608	ubi->rsvd_pebs += reserved_pebs;
1609
1610	/* Schedule wear-leveling if needed */
1611	err = ensure_wear_leveling(ubi, 0);
1612	if (err)
1613		goto out_free;
1614
1615	return 0;
1616
1617out_free:
1618	shutdown_work(ubi);
1619	tree_destroy(ubi, &ubi->used);
1620	tree_destroy(ubi, &ubi->free);
1621	tree_destroy(ubi, &ubi->scrub);
1622	kfree(ubi->lookuptbl);
1623	return err;
1624}
1625
1626/**
1627 * protection_queue_destroy - destroy the protection queue.
1628 * @ubi: UBI device description object
1629 */
1630static void protection_queue_destroy(struct ubi_device *ubi)
1631{
1632	int i;
1633	struct ubi_wl_entry *e, *tmp;
1634
1635	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1636		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1637			list_del(&e->u.list);
1638			wl_entry_destroy(ubi, e);
1639		}
1640	}
1641}
1642
1643/**
1644 * ubi_wl_close - close the wear-leveling sub-system.
1645 * @ubi: UBI device description object
1646 */
1647void ubi_wl_close(struct ubi_device *ubi)
1648{
1649	dbg_wl("close the WL sub-system");
1650	ubi_fastmap_close(ubi);
1651	shutdown_work(ubi);
1652	protection_queue_destroy(ubi);
1653	tree_destroy(ubi, &ubi->used);
1654	tree_destroy(ubi, &ubi->erroneous);
1655	tree_destroy(ubi, &ubi->free);
1656	tree_destroy(ubi, &ubi->scrub);
1657	kfree(ubi->lookuptbl);
1658}
1659
1660/**
1661 * self_check_ec - make sure that the erase counter of a PEB is correct.
1662 * @ubi: UBI device description object
1663 * @pnum: the physical eraseblock number to check
1664 * @ec: the erase counter to check
1665 *
1666 * This function returns zero if the erase counter of physical eraseblock @pnum
1667 * is equivalent to @ec, and a negative error code if not or if an error
1668 * occurred.
1669 */
1670static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1671{
1672	int err;
1673	long long read_ec;
1674	struct ubi_ec_hdr *ec_hdr;
1675
1676	if (!ubi_dbg_chk_gen(ubi))
1677		return 0;
1678
1679	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1680	if (!ec_hdr)
1681		return -ENOMEM;
1682
1683	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1684	if (err && err != UBI_IO_BITFLIPS) {
1685		/* The header does not have to exist */
1686		err = 0;
1687		goto out_free;
1688	}
1689
1690	read_ec = be64_to_cpu(ec_hdr->ec);
1691	if (ec != read_ec && read_ec - ec > 1) {
1692		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1693		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1694		dump_stack();
1695		err = 1;
1696	} else
1697		err = 0;
1698
1699out_free:
1700	kfree(ec_hdr);
1701	return err;
1702}
1703
1704/**
1705 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1706 * @ubi: UBI device description object
1707 * @e: the wear-leveling entry to check
1708 * @root: the root of the tree
1709 *
1710 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1711 * is not.
1712 */
1713static int self_check_in_wl_tree(const struct ubi_device *ubi,
1714				 struct ubi_wl_entry *e, struct rb_root *root)
1715{
1716	if (!ubi_dbg_chk_gen(ubi))
1717		return 0;
1718
1719	if (in_wl_tree(e, root))
1720		return 0;
1721
1722	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1723		e->pnum, e->ec, root);
1724	dump_stack();
1725	return -EINVAL;
1726}
1727
1728/**
1729 * self_check_in_pq - check if wear-leveling entry is in the protection
1730 *                        queue.
1731 * @ubi: UBI device description object
1732 * @e: the wear-leveling entry to check
1733 *
1734 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1735 */
1736static int self_check_in_pq(const struct ubi_device *ubi,
1737			    struct ubi_wl_entry *e)
1738{
1739	struct ubi_wl_entry *p;
1740	int i;
1741
1742	if (!ubi_dbg_chk_gen(ubi))
1743		return 0;
1744
1745	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1746		list_for_each_entry(p, &ubi->pq[i], u.list)
1747			if (p == e)
1748				return 0;
1749
1750	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1751		e->pnum, e->ec);
1752	dump_stack();
1753	return -EINVAL;
1754}
1755#ifndef CONFIG_MTD_UBI_FASTMAP
1756static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1757{
1758	struct ubi_wl_entry *e;
1759
1760	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1761	self_check_in_wl_tree(ubi, e, &ubi->free);
1762	ubi->free_count--;
1763	ubi_assert(ubi->free_count >= 0);
1764	rb_erase(&e->u.rb, &ubi->free);
1765
1766	return e;
1767}
1768
1769/**
1770 * produce_free_peb - produce a free physical eraseblock.
1771 * @ubi: UBI device description object
1772 *
1773 * This function tries to make a free PEB by means of synchronous execution of
1774 * pending works. This may be needed if, for example the background thread is
1775 * disabled. Returns zero in case of success and a negative error code in case
1776 * of failure.
1777 */
1778static int produce_free_peb(struct ubi_device *ubi)
1779{
1780	int err;
1781
1782	while (!ubi->free.rb_node && ubi->works_count) {
1783		spin_unlock(&ubi->wl_lock);
1784
1785		dbg_wl("do one work synchronously");
1786		err = do_work(ubi);
1787
1788		spin_lock(&ubi->wl_lock);
1789		if (err)
1790			return err;
1791	}
1792
1793	return 0;
1794}
1795
1796/**
1797 * ubi_wl_get_peb - get a physical eraseblock.
1798 * @ubi: UBI device description object
1799 *
1800 * This function returns a physical eraseblock in case of success and a
1801 * negative error code in case of failure.
1802 * Returns with ubi->fm_eba_sem held in read mode!
1803 */
1804int ubi_wl_get_peb(struct ubi_device *ubi)
1805{
1806	int err;
1807	struct ubi_wl_entry *e;
1808
1809retry:
1810	down_read(&ubi->fm_eba_sem);
1811	spin_lock(&ubi->wl_lock);
1812	if (!ubi->free.rb_node) {
1813		if (ubi->works_count == 0) {
1814			ubi_err(ubi, "no free eraseblocks");
1815			ubi_assert(list_empty(&ubi->works));
1816			spin_unlock(&ubi->wl_lock);
1817			return -ENOSPC;
1818		}
1819
1820		err = produce_free_peb(ubi);
1821		if (err < 0) {
1822			spin_unlock(&ubi->wl_lock);
1823			return err;
1824		}
1825		spin_unlock(&ubi->wl_lock);
1826		up_read(&ubi->fm_eba_sem);
1827		goto retry;
1828
1829	}
1830	e = wl_get_wle(ubi);
1831	prot_queue_add(ubi, e);
1832	spin_unlock(&ubi->wl_lock);
1833
1834	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1835				    ubi->peb_size - ubi->vid_hdr_aloffset);
1836	if (err) {
1837		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1838		return err;
1839	}
1840
1841	return e->pnum;
1842}
1843#else
1844#include "fastmap-wl.c"
1845#endif
1846