1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
22 * UBI attaching sub-system.
23 *
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
26 *
27 * The attaching information is represented by a &struct ubi_attach_info'
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
36 * per-LEB objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 *
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
44 *
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
49 *
50 * UBI tries to distinguish between 2 types of corruptions.
51 *
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
58 *
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
62 *
63 * 2. Unexpected corruptions which are not caused by power cuts. During
64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some  point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
68 *
69 * However, it is difficult to reliably distinguish between these types of
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
75 * are as follows.
76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
77 *     to just erase this PEB - this is corruption type 1.
78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
79 *     NAND), it is probably a PEB which was being erased when power cut
80 *     happened, so this is corruption type 1. However, this is just a guess,
81 *     which might be wrong.
82 *   o Otherwise this is corruption type 2.
83 */
84
85#include <linux/err.h>
86#include <linux/slab.h>
87#include <linux/crc32.h>
88#include <linux/math64.h>
89#include <linux/random.h>
90#include "ubi.h"
91
92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93
94/* Temporary variables used during scanning */
95static struct ubi_ec_hdr *ech;
96static struct ubi_vid_hdr *vidh;
97
98/**
99 * add_to_list - add physical eraseblock to a list.
100 * @ai: attaching information
101 * @pnum: physical eraseblock number to add
102 * @vol_id: the last used volume id for the PEB
103 * @lnum: the last used LEB number for the PEB
104 * @ec: erase counter of the physical eraseblock
105 * @to_head: if not zero, add to the head of the list
106 * @list: the list to add to
107 *
108 * This function allocates a 'struct ubi_ainf_peb' object for physical
109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110 * It stores the @lnum and @vol_id alongside, which can both be
111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112 * If @to_head is not zero, PEB will be added to the head of the list, which
113 * basically means it will be processed first later. E.g., we add corrupted
114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
115 * sure we erase them first and get rid of corruptions ASAP. This function
116 * returns zero in case of success and a negative error code in case of
117 * failure.
118 */
119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120		       int lnum, int ec, int to_head, struct list_head *list)
121{
122	struct ubi_ainf_peb *aeb;
123
124	if (list == &ai->free) {
125		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126	} else if (list == &ai->erase) {
127		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128	} else if (list == &ai->alien) {
129		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130		ai->alien_peb_count += 1;
131	} else
132		BUG();
133
134	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135	if (!aeb)
136		return -ENOMEM;
137
138	aeb->pnum = pnum;
139	aeb->vol_id = vol_id;
140	aeb->lnum = lnum;
141	aeb->ec = ec;
142	if (to_head)
143		list_add(&aeb->u.list, list);
144	else
145		list_add_tail(&aeb->u.list, list);
146	return 0;
147}
148
149/**
150 * add_corrupted - add a corrupted physical eraseblock.
151 * @ai: attaching information
152 * @pnum: physical eraseblock number to add
153 * @ec: erase counter of the physical eraseblock
154 *
155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
157 * was presumably not caused by a power cut. Returns zero in case of success
158 * and a negative error code in case of failure.
159 */
160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
161{
162	struct ubi_ainf_peb *aeb;
163
164	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165
166	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167	if (!aeb)
168		return -ENOMEM;
169
170	ai->corr_peb_count += 1;
171	aeb->pnum = pnum;
172	aeb->ec = ec;
173	list_add(&aeb->u.list, &ai->corr);
174	return 0;
175}
176
177/**
178 * validate_vid_hdr - check volume identifier header.
179 * @ubi: UBI device description object
180 * @vid_hdr: the volume identifier header to check
181 * @av: information about the volume this logical eraseblock belongs to
182 * @pnum: physical eraseblock number the VID header came from
183 *
184 * This function checks that data stored in @vid_hdr is consistent. Returns
185 * non-zero if an inconsistency was found and zero if not.
186 *
187 * Note, UBI does sanity check of everything it reads from the flash media.
188 * Most of the checks are done in the I/O sub-system. Here we check that the
189 * information in the VID header is consistent to the information in other VID
190 * headers of the same volume.
191 */
192static int validate_vid_hdr(const struct ubi_device *ubi,
193			    const struct ubi_vid_hdr *vid_hdr,
194			    const struct ubi_ainf_volume *av, int pnum)
195{
196	int vol_type = vid_hdr->vol_type;
197	int vol_id = be32_to_cpu(vid_hdr->vol_id);
198	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
199	int data_pad = be32_to_cpu(vid_hdr->data_pad);
200
201	if (av->leb_count != 0) {
202		int av_vol_type;
203
204		/*
205		 * This is not the first logical eraseblock belonging to this
206		 * volume. Ensure that the data in its VID header is consistent
207		 * to the data in previous logical eraseblock headers.
208		 */
209
210		if (vol_id != av->vol_id) {
211			ubi_err(ubi, "inconsistent vol_id");
212			goto bad;
213		}
214
215		if (av->vol_type == UBI_STATIC_VOLUME)
216			av_vol_type = UBI_VID_STATIC;
217		else
218			av_vol_type = UBI_VID_DYNAMIC;
219
220		if (vol_type != av_vol_type) {
221			ubi_err(ubi, "inconsistent vol_type");
222			goto bad;
223		}
224
225		if (used_ebs != av->used_ebs) {
226			ubi_err(ubi, "inconsistent used_ebs");
227			goto bad;
228		}
229
230		if (data_pad != av->data_pad) {
231			ubi_err(ubi, "inconsistent data_pad");
232			goto bad;
233		}
234	}
235
236	return 0;
237
238bad:
239	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
240	ubi_dump_vid_hdr(vid_hdr);
241	ubi_dump_av(av);
242	return -EINVAL;
243}
244
245/**
246 * add_volume - add volume to the attaching information.
247 * @ai: attaching information
248 * @vol_id: ID of the volume to add
249 * @pnum: physical eraseblock number
250 * @vid_hdr: volume identifier header
251 *
252 * If the volume corresponding to the @vid_hdr logical eraseblock is already
253 * present in the attaching information, this function does nothing. Otherwise
254 * it adds corresponding volume to the attaching information. Returns a pointer
255 * to the allocated "av" object in case of success and a negative error code in
256 * case of failure.
257 */
258static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
259					  int vol_id, int pnum,
260					  const struct ubi_vid_hdr *vid_hdr)
261{
262	struct ubi_ainf_volume *av;
263	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
264
265	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
266
267	/* Walk the volume RB-tree to look if this volume is already present */
268	while (*p) {
269		parent = *p;
270		av = rb_entry(parent, struct ubi_ainf_volume, rb);
271
272		if (vol_id == av->vol_id)
273			return av;
274
275		if (vol_id > av->vol_id)
276			p = &(*p)->rb_left;
277		else
278			p = &(*p)->rb_right;
279	}
280
281	/* The volume is absent - add it */
282	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
283	if (!av)
284		return ERR_PTR(-ENOMEM);
285
286	av->highest_lnum = av->leb_count = 0;
287	av->vol_id = vol_id;
288	av->root = RB_ROOT;
289	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
290	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
291	av->compat = vid_hdr->compat;
292	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
293							    : UBI_STATIC_VOLUME;
294	if (vol_id > ai->highest_vol_id)
295		ai->highest_vol_id = vol_id;
296
297	rb_link_node(&av->rb, parent, p);
298	rb_insert_color(&av->rb, &ai->volumes);
299	ai->vols_found += 1;
300	dbg_bld("added volume %d", vol_id);
301	return av;
302}
303
304/**
305 * ubi_compare_lebs - find out which logical eraseblock is newer.
306 * @ubi: UBI device description object
307 * @aeb: first logical eraseblock to compare
308 * @pnum: physical eraseblock number of the second logical eraseblock to
309 * compare
310 * @vid_hdr: volume identifier header of the second logical eraseblock
311 *
312 * This function compares 2 copies of a LEB and informs which one is newer. In
313 * case of success this function returns a positive value, in case of failure, a
314 * negative error code is returned. The success return codes use the following
315 * bits:
316 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
317 *       second PEB (described by @pnum and @vid_hdr);
318 *     o bit 0 is set: the second PEB is newer;
319 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
320 *     o bit 1 is set: bit-flips were detected in the newer LEB;
321 *     o bit 2 is cleared: the older LEB is not corrupted;
322 *     o bit 2 is set: the older LEB is corrupted.
323 */
324int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
325			int pnum, const struct ubi_vid_hdr *vid_hdr)
326{
327	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
328	uint32_t data_crc, crc;
329	struct ubi_vid_hdr *vh = NULL;
330	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
331
332	if (sqnum2 == aeb->sqnum) {
333		/*
334		 * This must be a really ancient UBI image which has been
335		 * created before sequence numbers support has been added. At
336		 * that times we used 32-bit LEB versions stored in logical
337		 * eraseblocks. That was before UBI got into mainline. We do not
338		 * support these images anymore. Well, those images still work,
339		 * but only if no unclean reboots happened.
340		 */
341		ubi_err(ubi, "unsupported on-flash UBI format");
342		return -EINVAL;
343	}
344
345	/* Obviously the LEB with lower sequence counter is older */
346	second_is_newer = (sqnum2 > aeb->sqnum);
347
348	/*
349	 * Now we know which copy is newer. If the copy flag of the PEB with
350	 * newer version is not set, then we just return, otherwise we have to
351	 * check data CRC. For the second PEB we already have the VID header,
352	 * for the first one - we'll need to re-read it from flash.
353	 *
354	 * Note: this may be optimized so that we wouldn't read twice.
355	 */
356
357	if (second_is_newer) {
358		if (!vid_hdr->copy_flag) {
359			/* It is not a copy, so it is newer */
360			dbg_bld("second PEB %d is newer, copy_flag is unset",
361				pnum);
362			return 1;
363		}
364	} else {
365		if (!aeb->copy_flag) {
366			/* It is not a copy, so it is newer */
367			dbg_bld("first PEB %d is newer, copy_flag is unset",
368				pnum);
369			return bitflips << 1;
370		}
371
372		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
373		if (!vh)
374			return -ENOMEM;
375
376		pnum = aeb->pnum;
377		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
378		if (err) {
379			if (err == UBI_IO_BITFLIPS)
380				bitflips = 1;
381			else {
382				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
383					pnum, err);
384				if (err > 0)
385					err = -EIO;
386
387				goto out_free_vidh;
388			}
389		}
390
391		vid_hdr = vh;
392	}
393
394	/* Read the data of the copy and check the CRC */
395
396	len = be32_to_cpu(vid_hdr->data_size);
397
398	mutex_lock(&ubi->buf_mutex);
399	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
400	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
401		goto out_unlock;
402
403	data_crc = be32_to_cpu(vid_hdr->data_crc);
404	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
405	if (crc != data_crc) {
406		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
407			pnum, crc, data_crc);
408		corrupted = 1;
409		bitflips = 0;
410		second_is_newer = !second_is_newer;
411	} else {
412		dbg_bld("PEB %d CRC is OK", pnum);
413		bitflips |= !!err;
414	}
415	mutex_unlock(&ubi->buf_mutex);
416
417	ubi_free_vid_hdr(ubi, vh);
418
419	if (second_is_newer)
420		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
421	else
422		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
423
424	return second_is_newer | (bitflips << 1) | (corrupted << 2);
425
426out_unlock:
427	mutex_unlock(&ubi->buf_mutex);
428out_free_vidh:
429	ubi_free_vid_hdr(ubi, vh);
430	return err;
431}
432
433/**
434 * ubi_add_to_av - add used physical eraseblock to the attaching information.
435 * @ubi: UBI device description object
436 * @ai: attaching information
437 * @pnum: the physical eraseblock number
438 * @ec: erase counter
439 * @vid_hdr: the volume identifier header
440 * @bitflips: if bit-flips were detected when this physical eraseblock was read
441 *
442 * This function adds information about a used physical eraseblock to the
443 * 'used' tree of the corresponding volume. The function is rather complex
444 * because it has to handle cases when this is not the first physical
445 * eraseblock belonging to the same logical eraseblock, and the newer one has
446 * to be picked, while the older one has to be dropped. This function returns
447 * zero in case of success and a negative error code in case of failure.
448 */
449int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
450		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
451{
452	int err, vol_id, lnum;
453	unsigned long long sqnum;
454	struct ubi_ainf_volume *av;
455	struct ubi_ainf_peb *aeb;
456	struct rb_node **p, *parent = NULL;
457
458	vol_id = be32_to_cpu(vid_hdr->vol_id);
459	lnum = be32_to_cpu(vid_hdr->lnum);
460	sqnum = be64_to_cpu(vid_hdr->sqnum);
461
462	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
463		pnum, vol_id, lnum, ec, sqnum, bitflips);
464
465	av = add_volume(ai, vol_id, pnum, vid_hdr);
466	if (IS_ERR(av))
467		return PTR_ERR(av);
468
469	if (ai->max_sqnum < sqnum)
470		ai->max_sqnum = sqnum;
471
472	/*
473	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
474	 * if this is the first instance of this logical eraseblock or not.
475	 */
476	p = &av->root.rb_node;
477	while (*p) {
478		int cmp_res;
479
480		parent = *p;
481		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
482		if (lnum != aeb->lnum) {
483			if (lnum < aeb->lnum)
484				p = &(*p)->rb_left;
485			else
486				p = &(*p)->rb_right;
487			continue;
488		}
489
490		/*
491		 * There is already a physical eraseblock describing the same
492		 * logical eraseblock present.
493		 */
494
495		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
496			aeb->pnum, aeb->sqnum, aeb->ec);
497
498		/*
499		 * Make sure that the logical eraseblocks have different
500		 * sequence numbers. Otherwise the image is bad.
501		 *
502		 * However, if the sequence number is zero, we assume it must
503		 * be an ancient UBI image from the era when UBI did not have
504		 * sequence numbers. We still can attach these images, unless
505		 * there is a need to distinguish between old and new
506		 * eraseblocks, in which case we'll refuse the image in
507		 * 'ubi_compare_lebs()'. In other words, we attach old clean
508		 * images, but refuse attaching old images with duplicated
509		 * logical eraseblocks because there was an unclean reboot.
510		 */
511		if (aeb->sqnum == sqnum && sqnum != 0) {
512			ubi_err(ubi, "two LEBs with same sequence number %llu",
513				sqnum);
514			ubi_dump_aeb(aeb, 0);
515			ubi_dump_vid_hdr(vid_hdr);
516			return -EINVAL;
517		}
518
519		/*
520		 * Now we have to drop the older one and preserve the newer
521		 * one.
522		 */
523		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
524		if (cmp_res < 0)
525			return cmp_res;
526
527		if (cmp_res & 1) {
528			/*
529			 * This logical eraseblock is newer than the one
530			 * found earlier.
531			 */
532			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
533			if (err)
534				return err;
535
536			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
537					  aeb->lnum, aeb->ec, cmp_res & 4,
538					  &ai->erase);
539			if (err)
540				return err;
541
542			aeb->ec = ec;
543			aeb->pnum = pnum;
544			aeb->vol_id = vol_id;
545			aeb->lnum = lnum;
546			aeb->scrub = ((cmp_res & 2) || bitflips);
547			aeb->copy_flag = vid_hdr->copy_flag;
548			aeb->sqnum = sqnum;
549
550			if (av->highest_lnum == lnum)
551				av->last_data_size =
552					be32_to_cpu(vid_hdr->data_size);
553
554			return 0;
555		} else {
556			/*
557			 * This logical eraseblock is older than the one found
558			 * previously.
559			 */
560			return add_to_list(ai, pnum, vol_id, lnum, ec,
561					   cmp_res & 4, &ai->erase);
562		}
563	}
564
565	/*
566	 * We've met this logical eraseblock for the first time, add it to the
567	 * attaching information.
568	 */
569
570	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
571	if (err)
572		return err;
573
574	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
575	if (!aeb)
576		return -ENOMEM;
577
578	aeb->ec = ec;
579	aeb->pnum = pnum;
580	aeb->vol_id = vol_id;
581	aeb->lnum = lnum;
582	aeb->scrub = bitflips;
583	aeb->copy_flag = vid_hdr->copy_flag;
584	aeb->sqnum = sqnum;
585
586	if (av->highest_lnum <= lnum) {
587		av->highest_lnum = lnum;
588		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
589	}
590
591	av->leb_count += 1;
592	rb_link_node(&aeb->u.rb, parent, p);
593	rb_insert_color(&aeb->u.rb, &av->root);
594	return 0;
595}
596
597/**
598 * ubi_find_av - find volume in the attaching information.
599 * @ai: attaching information
600 * @vol_id: the requested volume ID
601 *
602 * This function returns a pointer to the volume description or %NULL if there
603 * are no data about this volume in the attaching information.
604 */
605struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
606				    int vol_id)
607{
608	struct ubi_ainf_volume *av;
609	struct rb_node *p = ai->volumes.rb_node;
610
611	while (p) {
612		av = rb_entry(p, struct ubi_ainf_volume, rb);
613
614		if (vol_id == av->vol_id)
615			return av;
616
617		if (vol_id > av->vol_id)
618			p = p->rb_left;
619		else
620			p = p->rb_right;
621	}
622
623	return NULL;
624}
625
626/**
627 * ubi_remove_av - delete attaching information about a volume.
628 * @ai: attaching information
629 * @av: the volume attaching information to delete
630 */
631void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
632{
633	struct rb_node *rb;
634	struct ubi_ainf_peb *aeb;
635
636	dbg_bld("remove attaching information about volume %d", av->vol_id);
637
638	while ((rb = rb_first(&av->root))) {
639		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
640		rb_erase(&aeb->u.rb, &av->root);
641		list_add_tail(&aeb->u.list, &ai->erase);
642	}
643
644	rb_erase(&av->rb, &ai->volumes);
645	kfree(av);
646	ai->vols_found -= 1;
647}
648
649/**
650 * early_erase_peb - erase a physical eraseblock.
651 * @ubi: UBI device description object
652 * @ai: attaching information
653 * @pnum: physical eraseblock number to erase;
654 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
655 *
656 * This function erases physical eraseblock 'pnum', and writes the erase
657 * counter header to it. This function should only be used on UBI device
658 * initialization stages, when the EBA sub-system had not been yet initialized.
659 * This function returns zero in case of success and a negative error code in
660 * case of failure.
661 */
662static int early_erase_peb(struct ubi_device *ubi,
663			   const struct ubi_attach_info *ai, int pnum, int ec)
664{
665	int err;
666	struct ubi_ec_hdr *ec_hdr;
667
668	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
669		/*
670		 * Erase counter overflow. Upgrade UBI and use 64-bit
671		 * erase counters internally.
672		 */
673		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
674			pnum, ec);
675		return -EINVAL;
676	}
677
678	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
679	if (!ec_hdr)
680		return -ENOMEM;
681
682	ec_hdr->ec = cpu_to_be64(ec);
683
684	err = ubi_io_sync_erase(ubi, pnum, 0);
685	if (err < 0)
686		goto out_free;
687
688	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
689
690out_free:
691	kfree(ec_hdr);
692	return err;
693}
694
695/**
696 * ubi_early_get_peb - get a free physical eraseblock.
697 * @ubi: UBI device description object
698 * @ai: attaching information
699 *
700 * This function returns a free physical eraseblock. It is supposed to be
701 * called on the UBI initialization stages when the wear-leveling sub-system is
702 * not initialized yet. This function picks a physical eraseblocks from one of
703 * the lists, writes the EC header if it is needed, and removes it from the
704 * list.
705 *
706 * This function returns a pointer to the "aeb" of the found free PEB in case
707 * of success and an error code in case of failure.
708 */
709struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
710				       struct ubi_attach_info *ai)
711{
712	int err = 0;
713	struct ubi_ainf_peb *aeb, *tmp_aeb;
714
715	if (!list_empty(&ai->free)) {
716		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
717		list_del(&aeb->u.list);
718		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
719		return aeb;
720	}
721
722	/*
723	 * We try to erase the first physical eraseblock from the erase list
724	 * and pick it if we succeed, or try to erase the next one if not. And
725	 * so forth. We don't want to take care about bad eraseblocks here -
726	 * they'll be handled later.
727	 */
728	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
729		if (aeb->ec == UBI_UNKNOWN)
730			aeb->ec = ai->mean_ec;
731
732		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
733		if (err)
734			continue;
735
736		aeb->ec += 1;
737		list_del(&aeb->u.list);
738		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
739		return aeb;
740	}
741
742	ubi_err(ubi, "no free eraseblocks");
743	return ERR_PTR(-ENOSPC);
744}
745
746/**
747 * check_corruption - check the data area of PEB.
748 * @ubi: UBI device description object
749 * @vid_hdr: the (corrupted) VID header of this PEB
750 * @pnum: the physical eraseblock number to check
751 *
752 * This is a helper function which is used to distinguish between VID header
753 * corruptions caused by power cuts and other reasons. If the PEB contains only
754 * 0xFF bytes in the data area, the VID header is most probably corrupted
755 * because of a power cut (%0 is returned in this case). Otherwise, it was
756 * probably corrupted for some other reasons (%1 is returned in this case). A
757 * negative error code is returned if a read error occurred.
758 *
759 * If the corruption reason was a power cut, UBI can safely erase this PEB.
760 * Otherwise, it should preserve it to avoid possibly destroying important
761 * information.
762 */
763static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
764			    int pnum)
765{
766	int err;
767
768	mutex_lock(&ubi->buf_mutex);
769	memset(ubi->peb_buf, 0x00, ubi->leb_size);
770
771	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
772			  ubi->leb_size);
773	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
774		/*
775		 * Bit-flips or integrity errors while reading the data area.
776		 * It is difficult to say for sure what type of corruption is
777		 * this, but presumably a power cut happened while this PEB was
778		 * erased, so it became unstable and corrupted, and should be
779		 * erased.
780		 */
781		err = 0;
782		goto out_unlock;
783	}
784
785	if (err)
786		goto out_unlock;
787
788	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
789		goto out_unlock;
790
791	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
792		pnum);
793	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
794	ubi_dump_vid_hdr(vid_hdr);
795	pr_err("hexdump of PEB %d offset %d, length %d",
796	       pnum, ubi->leb_start, ubi->leb_size);
797	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
798			       ubi->peb_buf, ubi->leb_size, 1);
799	err = 1;
800
801out_unlock:
802	mutex_unlock(&ubi->buf_mutex);
803	return err;
804}
805
806/**
807 * scan_peb - scan and process UBI headers of a PEB.
808 * @ubi: UBI device description object
809 * @ai: attaching information
810 * @pnum: the physical eraseblock number
811 * @vid: The volume ID of the found volume will be stored in this pointer
812 * @sqnum: The sqnum of the found volume will be stored in this pointer
813 *
814 * This function reads UBI headers of PEB @pnum, checks them, and adds
815 * information about this PEB to the corresponding list or RB-tree in the
816 * "attaching info" structure. Returns zero if the physical eraseblock was
817 * successfully handled and a negative error code in case of failure.
818 */
819static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
820		    int pnum, int *vid, unsigned long long *sqnum)
821{
822	long long uninitialized_var(ec);
823	int err, bitflips = 0, vol_id = -1, ec_err = 0;
824
825	dbg_bld("scan PEB %d", pnum);
826
827	/* Skip bad physical eraseblocks */
828	err = ubi_io_is_bad(ubi, pnum);
829	if (err < 0)
830		return err;
831	else if (err) {
832		ai->bad_peb_count += 1;
833		return 0;
834	}
835
836	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
837	if (err < 0)
838		return err;
839	switch (err) {
840	case 0:
841		break;
842	case UBI_IO_BITFLIPS:
843		bitflips = 1;
844		break;
845	case UBI_IO_FF:
846		ai->empty_peb_count += 1;
847		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
848				   UBI_UNKNOWN, 0, &ai->erase);
849	case UBI_IO_FF_BITFLIPS:
850		ai->empty_peb_count += 1;
851		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
852				   UBI_UNKNOWN, 1, &ai->erase);
853	case UBI_IO_BAD_HDR_EBADMSG:
854	case UBI_IO_BAD_HDR:
855		/*
856		 * We have to also look at the VID header, possibly it is not
857		 * corrupted. Set %bitflips flag in order to make this PEB be
858		 * moved and EC be re-created.
859		 */
860		ec_err = err;
861		ec = UBI_UNKNOWN;
862		bitflips = 1;
863		break;
864	default:
865		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
866			err);
867		return -EINVAL;
868	}
869
870	if (!ec_err) {
871		int image_seq;
872
873		/* Make sure UBI version is OK */
874		if (ech->version != UBI_VERSION) {
875			ubi_err(ubi, "this UBI version is %d, image version is %d",
876				UBI_VERSION, (int)ech->version);
877			return -EINVAL;
878		}
879
880		ec = be64_to_cpu(ech->ec);
881		if (ec > UBI_MAX_ERASECOUNTER) {
882			/*
883			 * Erase counter overflow. The EC headers have 64 bits
884			 * reserved, but we anyway make use of only 31 bit
885			 * values, as this seems to be enough for any existing
886			 * flash. Upgrade UBI and use 64-bit erase counters
887			 * internally.
888			 */
889			ubi_err(ubi, "erase counter overflow, max is %d",
890				UBI_MAX_ERASECOUNTER);
891			ubi_dump_ec_hdr(ech);
892			return -EINVAL;
893		}
894
895		/*
896		 * Make sure that all PEBs have the same image sequence number.
897		 * This allows us to detect situations when users flash UBI
898		 * images incorrectly, so that the flash has the new UBI image
899		 * and leftovers from the old one. This feature was added
900		 * relatively recently, and the sequence number was always
901		 * zero, because old UBI implementations always set it to zero.
902		 * For this reasons, we do not panic if some PEBs have zero
903		 * sequence number, while other PEBs have non-zero sequence
904		 * number.
905		 */
906		image_seq = be32_to_cpu(ech->image_seq);
907		if (!ubi->image_seq)
908			ubi->image_seq = image_seq;
909		if (image_seq && ubi->image_seq != image_seq) {
910			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
911				image_seq, pnum, ubi->image_seq);
912			ubi_dump_ec_hdr(ech);
913			return -EINVAL;
914		}
915	}
916
917	/* OK, we've done with the EC header, let's look at the VID header */
918
919	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
920	if (err < 0)
921		return err;
922	switch (err) {
923	case 0:
924		break;
925	case UBI_IO_BITFLIPS:
926		bitflips = 1;
927		break;
928	case UBI_IO_BAD_HDR_EBADMSG:
929		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
930			/*
931			 * Both EC and VID headers are corrupted and were read
932			 * with data integrity error, probably this is a bad
933			 * PEB, bit it is not marked as bad yet. This may also
934			 * be a result of power cut during erasure.
935			 */
936			ai->maybe_bad_peb_count += 1;
937	case UBI_IO_BAD_HDR:
938		if (ec_err)
939			/*
940			 * Both headers are corrupted. There is a possibility
941			 * that this a valid UBI PEB which has corresponding
942			 * LEB, but the headers are corrupted. However, it is
943			 * impossible to distinguish it from a PEB which just
944			 * contains garbage because of a power cut during erase
945			 * operation. So we just schedule this PEB for erasure.
946			 *
947			 * Besides, in case of NOR flash, we deliberately
948			 * corrupt both headers because NOR flash erasure is
949			 * slow and can start from the end.
950			 */
951			err = 0;
952		else
953			/*
954			 * The EC was OK, but the VID header is corrupted. We
955			 * have to check what is in the data area.
956			 */
957			err = check_corruption(ubi, vidh, pnum);
958
959		if (err < 0)
960			return err;
961		else if (!err)
962			/* This corruption is caused by a power cut */
963			err = add_to_list(ai, pnum, UBI_UNKNOWN,
964					  UBI_UNKNOWN, ec, 1, &ai->erase);
965		else
966			/* This is an unexpected corruption */
967			err = add_corrupted(ai, pnum, ec);
968		if (err)
969			return err;
970		goto adjust_mean_ec;
971	case UBI_IO_FF_BITFLIPS:
972		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
973				  ec, 1, &ai->erase);
974		if (err)
975			return err;
976		goto adjust_mean_ec;
977	case UBI_IO_FF:
978		if (ec_err || bitflips)
979			err = add_to_list(ai, pnum, UBI_UNKNOWN,
980					  UBI_UNKNOWN, ec, 1, &ai->erase);
981		else
982			err = add_to_list(ai, pnum, UBI_UNKNOWN,
983					  UBI_UNKNOWN, ec, 0, &ai->free);
984		if (err)
985			return err;
986		goto adjust_mean_ec;
987	default:
988		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
989			err);
990		return -EINVAL;
991	}
992
993	vol_id = be32_to_cpu(vidh->vol_id);
994	if (vid)
995		*vid = vol_id;
996	if (sqnum)
997		*sqnum = be64_to_cpu(vidh->sqnum);
998	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
999		int lnum = be32_to_cpu(vidh->lnum);
1000
1001		/* Unsupported internal volume */
1002		switch (vidh->compat) {
1003		case UBI_COMPAT_DELETE:
1004			if (vol_id != UBI_FM_SB_VOLUME_ID
1005			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1006				ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1007					vol_id, lnum);
1008			}
1009			err = add_to_list(ai, pnum, vol_id, lnum,
1010					  ec, 1, &ai->erase);
1011			if (err)
1012				return err;
1013			return 0;
1014
1015		case UBI_COMPAT_RO:
1016			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1017				vol_id, lnum);
1018			ubi->ro_mode = 1;
1019			break;
1020
1021		case UBI_COMPAT_PRESERVE:
1022			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1023				vol_id, lnum);
1024			err = add_to_list(ai, pnum, vol_id, lnum,
1025					  ec, 0, &ai->alien);
1026			if (err)
1027				return err;
1028			return 0;
1029
1030		case UBI_COMPAT_REJECT:
1031			ubi_err(ubi, "incompatible internal volume %d:%d found",
1032				vol_id, lnum);
1033			return -EINVAL;
1034		}
1035	}
1036
1037	if (ec_err)
1038		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1039			 pnum);
1040	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1041	if (err)
1042		return err;
1043
1044adjust_mean_ec:
1045	if (!ec_err) {
1046		ai->ec_sum += ec;
1047		ai->ec_count += 1;
1048		if (ec > ai->max_ec)
1049			ai->max_ec = ec;
1050		if (ec < ai->min_ec)
1051			ai->min_ec = ec;
1052	}
1053
1054	return 0;
1055}
1056
1057/**
1058 * late_analysis - analyze the overall situation with PEB.
1059 * @ubi: UBI device description object
1060 * @ai: attaching information
1061 *
1062 * This is a helper function which takes a look what PEBs we have after we
1063 * gather information about all of them ("ai" is compete). It decides whether
1064 * the flash is empty and should be formatted of whether there are too many
1065 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1066 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1067 */
1068static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1069{
1070	struct ubi_ainf_peb *aeb;
1071	int max_corr, peb_count;
1072
1073	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1074	max_corr = peb_count / 20 ?: 8;
1075
1076	/*
1077	 * Few corrupted PEBs is not a problem and may be just a result of
1078	 * unclean reboots. However, many of them may indicate some problems
1079	 * with the flash HW or driver.
1080	 */
1081	if (ai->corr_peb_count) {
1082		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1083			ai->corr_peb_count);
1084		pr_err("Corrupted PEBs are:");
1085		list_for_each_entry(aeb, &ai->corr, u.list)
1086			pr_cont(" %d", aeb->pnum);
1087		pr_cont("\n");
1088
1089		/*
1090		 * If too many PEBs are corrupted, we refuse attaching,
1091		 * otherwise, only print a warning.
1092		 */
1093		if (ai->corr_peb_count >= max_corr) {
1094			ubi_err(ubi, "too many corrupted PEBs, refusing");
1095			return -EINVAL;
1096		}
1097	}
1098
1099	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1100		/*
1101		 * All PEBs are empty, or almost all - a couple PEBs look like
1102		 * they may be bad PEBs which were not marked as bad yet.
1103		 *
1104		 * This piece of code basically tries to distinguish between
1105		 * the following situations:
1106		 *
1107		 * 1. Flash is empty, but there are few bad PEBs, which are not
1108		 *    marked as bad so far, and which were read with error. We
1109		 *    want to go ahead and format this flash. While formatting,
1110		 *    the faulty PEBs will probably be marked as bad.
1111		 *
1112		 * 2. Flash contains non-UBI data and we do not want to format
1113		 *    it and destroy possibly important information.
1114		 */
1115		if (ai->maybe_bad_peb_count <= 2) {
1116			ai->is_empty = 1;
1117			ubi_msg(ubi, "empty MTD device detected");
1118			get_random_bytes(&ubi->image_seq,
1119					 sizeof(ubi->image_seq));
1120		} else {
1121			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1122			return -EINVAL;
1123		}
1124
1125	}
1126
1127	return 0;
1128}
1129
1130/**
1131 * destroy_av - free volume attaching information.
1132 * @av: volume attaching information
1133 * @ai: attaching information
1134 *
1135 * This function destroys the volume attaching information.
1136 */
1137static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1138{
1139	struct ubi_ainf_peb *aeb;
1140	struct rb_node *this = av->root.rb_node;
1141
1142	while (this) {
1143		if (this->rb_left)
1144			this = this->rb_left;
1145		else if (this->rb_right)
1146			this = this->rb_right;
1147		else {
1148			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1149			this = rb_parent(this);
1150			if (this) {
1151				if (this->rb_left == &aeb->u.rb)
1152					this->rb_left = NULL;
1153				else
1154					this->rb_right = NULL;
1155			}
1156
1157			kmem_cache_free(ai->aeb_slab_cache, aeb);
1158		}
1159	}
1160	kfree(av);
1161}
1162
1163/**
1164 * destroy_ai - destroy attaching information.
1165 * @ai: attaching information
1166 */
1167static void destroy_ai(struct ubi_attach_info *ai)
1168{
1169	struct ubi_ainf_peb *aeb, *aeb_tmp;
1170	struct ubi_ainf_volume *av;
1171	struct rb_node *rb;
1172
1173	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1174		list_del(&aeb->u.list);
1175		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176	}
1177	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1178		list_del(&aeb->u.list);
1179		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180	}
1181	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1182		list_del(&aeb->u.list);
1183		kmem_cache_free(ai->aeb_slab_cache, aeb);
1184	}
1185	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1186		list_del(&aeb->u.list);
1187		kmem_cache_free(ai->aeb_slab_cache, aeb);
1188	}
1189
1190	/* Destroy the volume RB-tree */
1191	rb = ai->volumes.rb_node;
1192	while (rb) {
1193		if (rb->rb_left)
1194			rb = rb->rb_left;
1195		else if (rb->rb_right)
1196			rb = rb->rb_right;
1197		else {
1198			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1199
1200			rb = rb_parent(rb);
1201			if (rb) {
1202				if (rb->rb_left == &av->rb)
1203					rb->rb_left = NULL;
1204				else
1205					rb->rb_right = NULL;
1206			}
1207
1208			destroy_av(ai, av);
1209		}
1210	}
1211
1212	if (ai->aeb_slab_cache)
1213		kmem_cache_destroy(ai->aeb_slab_cache);
1214
1215	kfree(ai);
1216}
1217
1218/**
1219 * scan_all - scan entire MTD device.
1220 * @ubi: UBI device description object
1221 * @ai: attach info object
1222 * @start: start scanning at this PEB
1223 *
1224 * This function does full scanning of an MTD device and returns complete
1225 * information about it in form of a "struct ubi_attach_info" object. In case
1226 * of failure, an error code is returned.
1227 */
1228static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1229		    int start)
1230{
1231	int err, pnum;
1232	struct rb_node *rb1, *rb2;
1233	struct ubi_ainf_volume *av;
1234	struct ubi_ainf_peb *aeb;
1235
1236	err = -ENOMEM;
1237
1238	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1239	if (!ech)
1240		return err;
1241
1242	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1243	if (!vidh)
1244		goto out_ech;
1245
1246	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1247		cond_resched();
1248
1249		dbg_gen("process PEB %d", pnum);
1250		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1251		if (err < 0)
1252			goto out_vidh;
1253	}
1254
1255	ubi_msg(ubi, "scanning is finished");
1256
1257	/* Calculate mean erase counter */
1258	if (ai->ec_count)
1259		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1260
1261	err = late_analysis(ubi, ai);
1262	if (err)
1263		goto out_vidh;
1264
1265	/*
1266	 * In case of unknown erase counter we use the mean erase counter
1267	 * value.
1268	 */
1269	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1270		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1271			if (aeb->ec == UBI_UNKNOWN)
1272				aeb->ec = ai->mean_ec;
1273	}
1274
1275	list_for_each_entry(aeb, &ai->free, u.list) {
1276		if (aeb->ec == UBI_UNKNOWN)
1277			aeb->ec = ai->mean_ec;
1278	}
1279
1280	list_for_each_entry(aeb, &ai->corr, u.list)
1281		if (aeb->ec == UBI_UNKNOWN)
1282			aeb->ec = ai->mean_ec;
1283
1284	list_for_each_entry(aeb, &ai->erase, u.list)
1285		if (aeb->ec == UBI_UNKNOWN)
1286			aeb->ec = ai->mean_ec;
1287
1288	err = self_check_ai(ubi, ai);
1289	if (err)
1290		goto out_vidh;
1291
1292	ubi_free_vid_hdr(ubi, vidh);
1293	kfree(ech);
1294
1295	return 0;
1296
1297out_vidh:
1298	ubi_free_vid_hdr(ubi, vidh);
1299out_ech:
1300	kfree(ech);
1301	return err;
1302}
1303
1304static struct ubi_attach_info *alloc_ai(void)
1305{
1306	struct ubi_attach_info *ai;
1307
1308	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1309	if (!ai)
1310		return ai;
1311
1312	INIT_LIST_HEAD(&ai->corr);
1313	INIT_LIST_HEAD(&ai->free);
1314	INIT_LIST_HEAD(&ai->erase);
1315	INIT_LIST_HEAD(&ai->alien);
1316	ai->volumes = RB_ROOT;
1317	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1318					       sizeof(struct ubi_ainf_peb),
1319					       0, 0, NULL);
1320	if (!ai->aeb_slab_cache) {
1321		kfree(ai);
1322		ai = NULL;
1323	}
1324
1325	return ai;
1326}
1327
1328#ifdef CONFIG_MTD_UBI_FASTMAP
1329
1330/**
1331 * scan_fastmap - try to find a fastmap and attach from it.
1332 * @ubi: UBI device description object
1333 * @ai: attach info object
1334 *
1335 * Returns 0 on success, negative return values indicate an internal
1336 * error.
1337 * UBI_NO_FASTMAP denotes that no fastmap was found.
1338 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1339 */
1340static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1341{
1342	int err, pnum, fm_anchor = -1;
1343	unsigned long long max_sqnum = 0;
1344
1345	err = -ENOMEM;
1346
1347	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1348	if (!ech)
1349		goto out;
1350
1351	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1352	if (!vidh)
1353		goto out_ech;
1354
1355	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1356		int vol_id = -1;
1357		unsigned long long sqnum = -1;
1358		cond_resched();
1359
1360		dbg_gen("process PEB %d", pnum);
1361		err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1362		if (err < 0)
1363			goto out_vidh;
1364
1365		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1366			max_sqnum = sqnum;
1367			fm_anchor = pnum;
1368		}
1369	}
1370
1371	ubi_free_vid_hdr(ubi, vidh);
1372	kfree(ech);
1373
1374	if (fm_anchor < 0)
1375		return UBI_NO_FASTMAP;
1376
1377	destroy_ai(*ai);
1378	*ai = alloc_ai();
1379	if (!*ai)
1380		return -ENOMEM;
1381
1382	return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1383
1384out_vidh:
1385	ubi_free_vid_hdr(ubi, vidh);
1386out_ech:
1387	kfree(ech);
1388out:
1389	return err;
1390}
1391
1392#endif
1393
1394/**
1395 * ubi_attach - attach an MTD device.
1396 * @ubi: UBI device descriptor
1397 * @force_scan: if set to non-zero attach by scanning
1398 *
1399 * This function returns zero in case of success and a negative error code in
1400 * case of failure.
1401 */
1402int ubi_attach(struct ubi_device *ubi, int force_scan)
1403{
1404	int err;
1405	struct ubi_attach_info *ai;
1406
1407	ai = alloc_ai();
1408	if (!ai)
1409		return -ENOMEM;
1410
1411#ifdef CONFIG_MTD_UBI_FASTMAP
1412	/* On small flash devices we disable fastmap in any case. */
1413	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1414		ubi->fm_disabled = 1;
1415		force_scan = 1;
1416	}
1417
1418	if (force_scan)
1419		err = scan_all(ubi, ai, 0);
1420	else {
1421		err = scan_fast(ubi, &ai);
1422		if (err > 0 || mtd_is_eccerr(err)) {
1423			if (err != UBI_NO_FASTMAP) {
1424				destroy_ai(ai);
1425				ai = alloc_ai();
1426				if (!ai)
1427					return -ENOMEM;
1428
1429				err = scan_all(ubi, ai, 0);
1430			} else {
1431				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1432			}
1433		}
1434	}
1435#else
1436	err = scan_all(ubi, ai, 0);
1437#endif
1438	if (err)
1439		goto out_ai;
1440
1441	ubi->bad_peb_count = ai->bad_peb_count;
1442	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1443	ubi->corr_peb_count = ai->corr_peb_count;
1444	ubi->max_ec = ai->max_ec;
1445	ubi->mean_ec = ai->mean_ec;
1446	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1447
1448	err = ubi_read_volume_table(ubi, ai);
1449	if (err)
1450		goto out_ai;
1451
1452	err = ubi_wl_init(ubi, ai);
1453	if (err)
1454		goto out_vtbl;
1455
1456	err = ubi_eba_init(ubi, ai);
1457	if (err)
1458		goto out_wl;
1459
1460#ifdef CONFIG_MTD_UBI_FASTMAP
1461	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1462		struct ubi_attach_info *scan_ai;
1463
1464		scan_ai = alloc_ai();
1465		if (!scan_ai) {
1466			err = -ENOMEM;
1467			goto out_wl;
1468		}
1469
1470		err = scan_all(ubi, scan_ai, 0);
1471		if (err) {
1472			destroy_ai(scan_ai);
1473			goto out_wl;
1474		}
1475
1476		err = self_check_eba(ubi, ai, scan_ai);
1477		destroy_ai(scan_ai);
1478
1479		if (err)
1480			goto out_wl;
1481	}
1482#endif
1483
1484	destroy_ai(ai);
1485	return 0;
1486
1487out_wl:
1488	ubi_wl_close(ubi);
1489out_vtbl:
1490	ubi_free_internal_volumes(ubi);
1491	vfree(ubi->vtbl);
1492out_ai:
1493	destroy_ai(ai);
1494	return err;
1495}
1496
1497/**
1498 * self_check_ai - check the attaching information.
1499 * @ubi: UBI device description object
1500 * @ai: attaching information
1501 *
1502 * This function returns zero if the attaching information is all right, and a
1503 * negative error code if not or if an error occurred.
1504 */
1505static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1506{
1507	int pnum, err, vols_found = 0;
1508	struct rb_node *rb1, *rb2;
1509	struct ubi_ainf_volume *av;
1510	struct ubi_ainf_peb *aeb, *last_aeb;
1511	uint8_t *buf;
1512
1513	if (!ubi_dbg_chk_gen(ubi))
1514		return 0;
1515
1516	/*
1517	 * At first, check that attaching information is OK.
1518	 */
1519	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1520		int leb_count = 0;
1521
1522		cond_resched();
1523
1524		vols_found += 1;
1525
1526		if (ai->is_empty) {
1527			ubi_err(ubi, "bad is_empty flag");
1528			goto bad_av;
1529		}
1530
1531		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1532		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1533		    av->data_pad < 0 || av->last_data_size < 0) {
1534			ubi_err(ubi, "negative values");
1535			goto bad_av;
1536		}
1537
1538		if (av->vol_id >= UBI_MAX_VOLUMES &&
1539		    av->vol_id < UBI_INTERNAL_VOL_START) {
1540			ubi_err(ubi, "bad vol_id");
1541			goto bad_av;
1542		}
1543
1544		if (av->vol_id > ai->highest_vol_id) {
1545			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1546				ai->highest_vol_id, av->vol_id);
1547			goto out;
1548		}
1549
1550		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1551		    av->vol_type != UBI_STATIC_VOLUME) {
1552			ubi_err(ubi, "bad vol_type");
1553			goto bad_av;
1554		}
1555
1556		if (av->data_pad > ubi->leb_size / 2) {
1557			ubi_err(ubi, "bad data_pad");
1558			goto bad_av;
1559		}
1560
1561		last_aeb = NULL;
1562		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1563			cond_resched();
1564
1565			last_aeb = aeb;
1566			leb_count += 1;
1567
1568			if (aeb->pnum < 0 || aeb->ec < 0) {
1569				ubi_err(ubi, "negative values");
1570				goto bad_aeb;
1571			}
1572
1573			if (aeb->ec < ai->min_ec) {
1574				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1575					ai->min_ec, aeb->ec);
1576				goto bad_aeb;
1577			}
1578
1579			if (aeb->ec > ai->max_ec) {
1580				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1581					ai->max_ec, aeb->ec);
1582				goto bad_aeb;
1583			}
1584
1585			if (aeb->pnum >= ubi->peb_count) {
1586				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1587					aeb->pnum, ubi->peb_count);
1588				goto bad_aeb;
1589			}
1590
1591			if (av->vol_type == UBI_STATIC_VOLUME) {
1592				if (aeb->lnum >= av->used_ebs) {
1593					ubi_err(ubi, "bad lnum or used_ebs");
1594					goto bad_aeb;
1595				}
1596			} else {
1597				if (av->used_ebs != 0) {
1598					ubi_err(ubi, "non-zero used_ebs");
1599					goto bad_aeb;
1600				}
1601			}
1602
1603			if (aeb->lnum > av->highest_lnum) {
1604				ubi_err(ubi, "incorrect highest_lnum or lnum");
1605				goto bad_aeb;
1606			}
1607		}
1608
1609		if (av->leb_count != leb_count) {
1610			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1611				leb_count);
1612			goto bad_av;
1613		}
1614
1615		if (!last_aeb)
1616			continue;
1617
1618		aeb = last_aeb;
1619
1620		if (aeb->lnum != av->highest_lnum) {
1621			ubi_err(ubi, "bad highest_lnum");
1622			goto bad_aeb;
1623		}
1624	}
1625
1626	if (vols_found != ai->vols_found) {
1627		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1628			ai->vols_found, vols_found);
1629		goto out;
1630	}
1631
1632	/* Check that attaching information is correct */
1633	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1634		last_aeb = NULL;
1635		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1636			int vol_type;
1637
1638			cond_resched();
1639
1640			last_aeb = aeb;
1641
1642			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1643			if (err && err != UBI_IO_BITFLIPS) {
1644				ubi_err(ubi, "VID header is not OK (%d)",
1645					err);
1646				if (err > 0)
1647					err = -EIO;
1648				return err;
1649			}
1650
1651			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1652				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1653			if (av->vol_type != vol_type) {
1654				ubi_err(ubi, "bad vol_type");
1655				goto bad_vid_hdr;
1656			}
1657
1658			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1659				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1660				goto bad_vid_hdr;
1661			}
1662
1663			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1664				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1665				goto bad_vid_hdr;
1666			}
1667
1668			if (av->compat != vidh->compat) {
1669				ubi_err(ubi, "bad compat %d", vidh->compat);
1670				goto bad_vid_hdr;
1671			}
1672
1673			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1674				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1675				goto bad_vid_hdr;
1676			}
1677
1678			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1679				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1680				goto bad_vid_hdr;
1681			}
1682
1683			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1684				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1685				goto bad_vid_hdr;
1686			}
1687		}
1688
1689		if (!last_aeb)
1690			continue;
1691
1692		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1693			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1694			goto bad_vid_hdr;
1695		}
1696
1697		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1698			ubi_err(ubi, "bad last_data_size %d",
1699				av->last_data_size);
1700			goto bad_vid_hdr;
1701		}
1702	}
1703
1704	/*
1705	 * Make sure that all the physical eraseblocks are in one of the lists
1706	 * or trees.
1707	 */
1708	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1709	if (!buf)
1710		return -ENOMEM;
1711
1712	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1713		err = ubi_io_is_bad(ubi, pnum);
1714		if (err < 0) {
1715			kfree(buf);
1716			return err;
1717		} else if (err)
1718			buf[pnum] = 1;
1719	}
1720
1721	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1722		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1723			buf[aeb->pnum] = 1;
1724
1725	list_for_each_entry(aeb, &ai->free, u.list)
1726		buf[aeb->pnum] = 1;
1727
1728	list_for_each_entry(aeb, &ai->corr, u.list)
1729		buf[aeb->pnum] = 1;
1730
1731	list_for_each_entry(aeb, &ai->erase, u.list)
1732		buf[aeb->pnum] = 1;
1733
1734	list_for_each_entry(aeb, &ai->alien, u.list)
1735		buf[aeb->pnum] = 1;
1736
1737	err = 0;
1738	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1739		if (!buf[pnum]) {
1740			ubi_err(ubi, "PEB %d is not referred", pnum);
1741			err = 1;
1742		}
1743
1744	kfree(buf);
1745	if (err)
1746		goto out;
1747	return 0;
1748
1749bad_aeb:
1750	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1751	ubi_dump_aeb(aeb, 0);
1752	ubi_dump_av(av);
1753	goto out;
1754
1755bad_av:
1756	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1757	ubi_dump_av(av);
1758	goto out;
1759
1760bad_vid_hdr:
1761	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1762	ubi_dump_av(av);
1763	ubi_dump_vid_hdr(vidh);
1764
1765out:
1766	dump_stack();
1767	return -EINVAL;
1768}
1769