1/*
2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4 *
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 *
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/mutex.h>
18#include <linux/math64.h>
19
20#include <linux/mtd/cfi.h>
21#include <linux/mtd/mtd.h>
22#include <linux/of_platform.h>
23#include <linux/spi/flash.h>
24#include <linux/mtd/spi-nor.h>
25
26/* Define max times to check status register before we give up. */
27#define	MAX_READY_WAIT_JIFFIES	(40 * HZ) /* M25P16 specs 40s max chip erase */
28
29#define SPI_NOR_MAX_ID_LEN	6
30
31struct flash_info {
32	/*
33	 * This array stores the ID bytes.
34	 * The first three bytes are the JEDIC ID.
35	 * JEDEC ID zero means "no ID" (mostly older chips).
36	 */
37	u8		id[SPI_NOR_MAX_ID_LEN];
38	u8		id_len;
39
40	/* The size listed here is what works with SPINOR_OP_SE, which isn't
41	 * necessarily called a "sector" by the vendor.
42	 */
43	unsigned	sector_size;
44	u16		n_sectors;
45
46	u16		page_size;
47	u16		addr_width;
48
49	u16		flags;
50#define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
51#define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
52#define	SST_WRITE		0x04	/* use SST byte programming */
53#define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
54#define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
55#define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
56#define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
57#define	USE_FSR			0x80	/* use flag status register */
58};
59
60#define JEDEC_MFR(info)	((info)->id[0])
61
62static const struct spi_device_id *spi_nor_match_id(const char *name);
63
64/*
65 * Read the status register, returning its value in the location
66 * Return the status register value.
67 * Returns negative if error occurred.
68 */
69static int read_sr(struct spi_nor *nor)
70{
71	int ret;
72	u8 val;
73
74	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
75	if (ret < 0) {
76		pr_err("error %d reading SR\n", (int) ret);
77		return ret;
78	}
79
80	return val;
81}
82
83/*
84 * Read the flag status register, returning its value in the location
85 * Return the status register value.
86 * Returns negative if error occurred.
87 */
88static int read_fsr(struct spi_nor *nor)
89{
90	int ret;
91	u8 val;
92
93	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
94	if (ret < 0) {
95		pr_err("error %d reading FSR\n", ret);
96		return ret;
97	}
98
99	return val;
100}
101
102/*
103 * Read configuration register, returning its value in the
104 * location. Return the configuration register value.
105 * Returns negative if error occured.
106 */
107static int read_cr(struct spi_nor *nor)
108{
109	int ret;
110	u8 val;
111
112	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
113	if (ret < 0) {
114		dev_err(nor->dev, "error %d reading CR\n", ret);
115		return ret;
116	}
117
118	return val;
119}
120
121/*
122 * Dummy Cycle calculation for different type of read.
123 * It can be used to support more commands with
124 * different dummy cycle requirements.
125 */
126static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
127{
128	switch (nor->flash_read) {
129	case SPI_NOR_FAST:
130	case SPI_NOR_DUAL:
131	case SPI_NOR_QUAD:
132		return 8;
133	case SPI_NOR_NORMAL:
134		return 0;
135	}
136	return 0;
137}
138
139/*
140 * Write status register 1 byte
141 * Returns negative if error occurred.
142 */
143static inline int write_sr(struct spi_nor *nor, u8 val)
144{
145	nor->cmd_buf[0] = val;
146	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
147}
148
149/*
150 * Set write enable latch with Write Enable command.
151 * Returns negative if error occurred.
152 */
153static inline int write_enable(struct spi_nor *nor)
154{
155	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
156}
157
158/*
159 * Send write disble instruction to the chip.
160 */
161static inline int write_disable(struct spi_nor *nor)
162{
163	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
164}
165
166static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
167{
168	return mtd->priv;
169}
170
171/* Enable/disable 4-byte addressing mode. */
172static inline int set_4byte(struct spi_nor *nor, struct flash_info *info,
173			    int enable)
174{
175	int status;
176	bool need_wren = false;
177	u8 cmd;
178
179	switch (JEDEC_MFR(info)) {
180	case CFI_MFR_ST: /* Micron, actually */
181		/* Some Micron need WREN command; all will accept it */
182		need_wren = true;
183	case CFI_MFR_MACRONIX:
184	case 0xEF /* winbond */:
185		if (need_wren)
186			write_enable(nor);
187
188		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
189		status = nor->write_reg(nor, cmd, NULL, 0, 0);
190		if (need_wren)
191			write_disable(nor);
192
193		return status;
194	default:
195		/* Spansion style */
196		nor->cmd_buf[0] = enable << 7;
197		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
198	}
199}
200static inline int spi_nor_sr_ready(struct spi_nor *nor)
201{
202	int sr = read_sr(nor);
203	if (sr < 0)
204		return sr;
205	else
206		return !(sr & SR_WIP);
207}
208
209static inline int spi_nor_fsr_ready(struct spi_nor *nor)
210{
211	int fsr = read_fsr(nor);
212	if (fsr < 0)
213		return fsr;
214	else
215		return fsr & FSR_READY;
216}
217
218static int spi_nor_ready(struct spi_nor *nor)
219{
220	int sr, fsr;
221	sr = spi_nor_sr_ready(nor);
222	if (sr < 0)
223		return sr;
224	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
225	if (fsr < 0)
226		return fsr;
227	return sr && fsr;
228}
229
230/*
231 * Service routine to read status register until ready, or timeout occurs.
232 * Returns non-zero if error.
233 */
234static int spi_nor_wait_till_ready(struct spi_nor *nor)
235{
236	unsigned long deadline;
237	int timeout = 0, ret;
238
239	deadline = jiffies + MAX_READY_WAIT_JIFFIES;
240
241	while (!timeout) {
242		if (time_after_eq(jiffies, deadline))
243			timeout = 1;
244
245		ret = spi_nor_ready(nor);
246		if (ret < 0)
247			return ret;
248		if (ret)
249			return 0;
250
251		cond_resched();
252	}
253
254	dev_err(nor->dev, "flash operation timed out\n");
255
256	return -ETIMEDOUT;
257}
258
259/*
260 * Erase the whole flash memory
261 *
262 * Returns 0 if successful, non-zero otherwise.
263 */
264static int erase_chip(struct spi_nor *nor)
265{
266	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
267
268	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
269}
270
271static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
272{
273	int ret = 0;
274
275	mutex_lock(&nor->lock);
276
277	if (nor->prepare) {
278		ret = nor->prepare(nor, ops);
279		if (ret) {
280			dev_err(nor->dev, "failed in the preparation.\n");
281			mutex_unlock(&nor->lock);
282			return ret;
283		}
284	}
285	return ret;
286}
287
288static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
289{
290	if (nor->unprepare)
291		nor->unprepare(nor, ops);
292	mutex_unlock(&nor->lock);
293}
294
295/*
296 * Erase an address range on the nor chip.  The address range may extend
297 * one or more erase sectors.  Return an error is there is a problem erasing.
298 */
299static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
300{
301	struct spi_nor *nor = mtd_to_spi_nor(mtd);
302	u32 addr, len;
303	uint32_t rem;
304	int ret;
305
306	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
307			(long long)instr->len);
308
309	div_u64_rem(instr->len, mtd->erasesize, &rem);
310	if (rem)
311		return -EINVAL;
312
313	addr = instr->addr;
314	len = instr->len;
315
316	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
317	if (ret)
318		return ret;
319
320	/* whole-chip erase? */
321	if (len == mtd->size) {
322		write_enable(nor);
323
324		if (erase_chip(nor)) {
325			ret = -EIO;
326			goto erase_err;
327		}
328
329		ret = spi_nor_wait_till_ready(nor);
330		if (ret)
331			goto erase_err;
332
333	/* REVISIT in some cases we could speed up erasing large regions
334	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
335	 * to use "small sector erase", but that's not always optimal.
336	 */
337
338	/* "sector"-at-a-time erase */
339	} else {
340		while (len) {
341			write_enable(nor);
342
343			if (nor->erase(nor, addr)) {
344				ret = -EIO;
345				goto erase_err;
346			}
347
348			addr += mtd->erasesize;
349			len -= mtd->erasesize;
350
351			ret = spi_nor_wait_till_ready(nor);
352			if (ret)
353				goto erase_err;
354		}
355	}
356
357	write_disable(nor);
358
359	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
360
361	instr->state = MTD_ERASE_DONE;
362	mtd_erase_callback(instr);
363
364	return ret;
365
366erase_err:
367	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
368	instr->state = MTD_ERASE_FAILED;
369	return ret;
370}
371
372static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
373{
374	struct mtd_info *mtd = nor->mtd;
375	uint32_t offset = ofs;
376	uint8_t status_old, status_new;
377	int ret = 0;
378
379	status_old = read_sr(nor);
380
381	if (offset < mtd->size - (mtd->size / 2))
382		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
383	else if (offset < mtd->size - (mtd->size / 4))
384		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
385	else if (offset < mtd->size - (mtd->size / 8))
386		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
387	else if (offset < mtd->size - (mtd->size / 16))
388		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
389	else if (offset < mtd->size - (mtd->size / 32))
390		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
391	else if (offset < mtd->size - (mtd->size / 64))
392		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
393	else
394		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
395
396	/* Only modify protection if it will not unlock other areas */
397	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
398				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
399		write_enable(nor);
400		ret = write_sr(nor, status_new);
401	}
402
403	return ret;
404}
405
406static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
407{
408	struct mtd_info *mtd = nor->mtd;
409	uint32_t offset = ofs;
410	uint8_t status_old, status_new;
411	int ret = 0;
412
413	status_old = read_sr(nor);
414
415	if (offset+len > mtd->size - (mtd->size / 64))
416		status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
417	else if (offset+len > mtd->size - (mtd->size / 32))
418		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
419	else if (offset+len > mtd->size - (mtd->size / 16))
420		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
421	else if (offset+len > mtd->size - (mtd->size / 8))
422		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
423	else if (offset+len > mtd->size - (mtd->size / 4))
424		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
425	else if (offset+len > mtd->size - (mtd->size / 2))
426		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
427	else
428		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
429
430	/* Only modify protection if it will not lock other areas */
431	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
432				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
433		write_enable(nor);
434		ret = write_sr(nor, status_new);
435	}
436
437	return ret;
438}
439
440static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
441{
442	struct spi_nor *nor = mtd_to_spi_nor(mtd);
443	int ret;
444
445	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
446	if (ret)
447		return ret;
448
449	ret = nor->flash_lock(nor, ofs, len);
450
451	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
452	return ret;
453}
454
455static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
456{
457	struct spi_nor *nor = mtd_to_spi_nor(mtd);
458	int ret;
459
460	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
461	if (ret)
462		return ret;
463
464	ret = nor->flash_unlock(nor, ofs, len);
465
466	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
467	return ret;
468}
469
470/* Used when the "_ext_id" is two bytes at most */
471#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
472	((kernel_ulong_t)&(struct flash_info) {				\
473		.id = {							\
474			((_jedec_id) >> 16) & 0xff,			\
475			((_jedec_id) >> 8) & 0xff,			\
476			(_jedec_id) & 0xff,				\
477			((_ext_id) >> 8) & 0xff,			\
478			(_ext_id) & 0xff,				\
479			},						\
480		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
481		.sector_size = (_sector_size),				\
482		.n_sectors = (_n_sectors),				\
483		.page_size = 256,					\
484		.flags = (_flags),					\
485	})
486
487#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
488	((kernel_ulong_t)&(struct flash_info) {				\
489		.id = {							\
490			((_jedec_id) >> 16) & 0xff,			\
491			((_jedec_id) >> 8) & 0xff,			\
492			(_jedec_id) & 0xff,				\
493			((_ext_id) >> 16) & 0xff,			\
494			((_ext_id) >> 8) & 0xff,			\
495			(_ext_id) & 0xff,				\
496			},						\
497		.id_len = 6,						\
498		.sector_size = (_sector_size),				\
499		.n_sectors = (_n_sectors),				\
500		.page_size = 256,					\
501		.flags = (_flags),					\
502	})
503
504#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
505	((kernel_ulong_t)&(struct flash_info) {				\
506		.sector_size = (_sector_size),				\
507		.n_sectors = (_n_sectors),				\
508		.page_size = (_page_size),				\
509		.addr_width = (_addr_width),				\
510		.flags = (_flags),					\
511	})
512
513/* NOTE: double check command sets and memory organization when you add
514 * more nor chips.  This current list focusses on newer chips, which
515 * have been converging on command sets which including JEDEC ID.
516 */
517static const struct spi_device_id spi_nor_ids[] = {
518	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
519	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
520	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
521
522	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
523	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
524	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
525
526	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
527	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
528	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
529	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
530
531	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
532
533	/* EON -- en25xxx */
534	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
535	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
536	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
537	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
538	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
539	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
540	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
541	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, 0) },
542
543	/* ESMT */
544	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
545
546	/* Everspin */
547	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
548	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
549
550	/* Fujitsu */
551	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
552
553	/* GigaDevice */
554	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
555	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
556	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
557
558	/* Intel/Numonyx -- xxxs33b */
559	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
560	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
561	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
562
563	/* Macronix */
564	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
565	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
566	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
567	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
568	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
569	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
570	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
571	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
572	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
573	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
574	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
575	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
576	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
577	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
578
579	/* Micron */
580	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
581	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SPI_NOR_QUAD_READ) },
582	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
583	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
584	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
585	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
586	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
587	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
588
589	/* PMC */
590	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
591	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
592	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
593
594	/* Spansion -- single (large) sector size only, at least
595	 * for the chips listed here (without boot sectors).
596	 */
597	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
598	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
599	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
600	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
601	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
602	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
603	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
604	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
605	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
606	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
607	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
608	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
609	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
610	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
611	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
612	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
613	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K) },
614	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
615	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
616	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, 0) },
617
618	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
619	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
620	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
621	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
622	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
623	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
624	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
625	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
626	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
627	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
628	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
629
630	/* ST Microelectronics -- newer production may have feature updates */
631	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
632	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
633	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
634	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
635	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
636	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
637	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
638	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
639	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
640
641	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
642	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
643	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
644	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
645	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
646	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
647	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
648	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
649	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
650
651	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
652	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
653	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
654
655	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
656	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
657	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
658
659	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
660	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
661	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
662	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
663	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
664	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
665
666	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
667	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
668	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
669	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
670	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
671	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
672	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
673	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
674	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
675	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
676	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
677	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
678	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
679	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
680	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
681	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
682	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
683
684	/* Catalyst / On Semiconductor -- non-JEDEC */
685	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
686	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
687	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
688	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
689	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
690	{ },
691};
692
693static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
694{
695	int			tmp;
696	u8			id[SPI_NOR_MAX_ID_LEN];
697	struct flash_info	*info;
698
699	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
700	if (tmp < 0) {
701		dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
702		return ERR_PTR(tmp);
703	}
704
705	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
706		info = (void *)spi_nor_ids[tmp].driver_data;
707		if (info->id_len) {
708			if (!memcmp(info->id, id, info->id_len))
709				return &spi_nor_ids[tmp];
710		}
711	}
712	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
713		id[0], id[1], id[2]);
714	return ERR_PTR(-ENODEV);
715}
716
717static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
718			size_t *retlen, u_char *buf)
719{
720	struct spi_nor *nor = mtd_to_spi_nor(mtd);
721	int ret;
722
723	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
724
725	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
726	if (ret)
727		return ret;
728
729	ret = nor->read(nor, from, len, retlen, buf);
730
731	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
732	return ret;
733}
734
735static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
736		size_t *retlen, const u_char *buf)
737{
738	struct spi_nor *nor = mtd_to_spi_nor(mtd);
739	size_t actual;
740	int ret;
741
742	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
743
744	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
745	if (ret)
746		return ret;
747
748	write_enable(nor);
749
750	nor->sst_write_second = false;
751
752	actual = to % 2;
753	/* Start write from odd address. */
754	if (actual) {
755		nor->program_opcode = SPINOR_OP_BP;
756
757		/* write one byte. */
758		nor->write(nor, to, 1, retlen, buf);
759		ret = spi_nor_wait_till_ready(nor);
760		if (ret)
761			goto time_out;
762	}
763	to += actual;
764
765	/* Write out most of the data here. */
766	for (; actual < len - 1; actual += 2) {
767		nor->program_opcode = SPINOR_OP_AAI_WP;
768
769		/* write two bytes. */
770		nor->write(nor, to, 2, retlen, buf + actual);
771		ret = spi_nor_wait_till_ready(nor);
772		if (ret)
773			goto time_out;
774		to += 2;
775		nor->sst_write_second = true;
776	}
777	nor->sst_write_second = false;
778
779	write_disable(nor);
780	ret = spi_nor_wait_till_ready(nor);
781	if (ret)
782		goto time_out;
783
784	/* Write out trailing byte if it exists. */
785	if (actual != len) {
786		write_enable(nor);
787
788		nor->program_opcode = SPINOR_OP_BP;
789		nor->write(nor, to, 1, retlen, buf + actual);
790
791		ret = spi_nor_wait_till_ready(nor);
792		if (ret)
793			goto time_out;
794		write_disable(nor);
795	}
796time_out:
797	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
798	return ret;
799}
800
801/*
802 * Write an address range to the nor chip.  Data must be written in
803 * FLASH_PAGESIZE chunks.  The address range may be any size provided
804 * it is within the physical boundaries.
805 */
806static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
807	size_t *retlen, const u_char *buf)
808{
809	struct spi_nor *nor = mtd_to_spi_nor(mtd);
810	u32 page_offset, page_size, i;
811	int ret;
812
813	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
814
815	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
816	if (ret)
817		return ret;
818
819	write_enable(nor);
820
821	page_offset = to & (nor->page_size - 1);
822
823	/* do all the bytes fit onto one page? */
824	if (page_offset + len <= nor->page_size) {
825		nor->write(nor, to, len, retlen, buf);
826	} else {
827		/* the size of data remaining on the first page */
828		page_size = nor->page_size - page_offset;
829		nor->write(nor, to, page_size, retlen, buf);
830
831		/* write everything in nor->page_size chunks */
832		for (i = page_size; i < len; i += page_size) {
833			page_size = len - i;
834			if (page_size > nor->page_size)
835				page_size = nor->page_size;
836
837			ret = spi_nor_wait_till_ready(nor);
838			if (ret)
839				goto write_err;
840
841			write_enable(nor);
842
843			nor->write(nor, to + i, page_size, retlen, buf + i);
844		}
845	}
846
847	ret = spi_nor_wait_till_ready(nor);
848write_err:
849	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
850	return ret;
851}
852
853static int macronix_quad_enable(struct spi_nor *nor)
854{
855	int ret, val;
856
857	val = read_sr(nor);
858	write_enable(nor);
859
860	nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
861	nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
862
863	if (spi_nor_wait_till_ready(nor))
864		return 1;
865
866	ret = read_sr(nor);
867	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
868		dev_err(nor->dev, "Macronix Quad bit not set\n");
869		return -EINVAL;
870	}
871
872	return 0;
873}
874
875/*
876 * Write status Register and configuration register with 2 bytes
877 * The first byte will be written to the status register, while the
878 * second byte will be written to the configuration register.
879 * Return negative if error occured.
880 */
881static int write_sr_cr(struct spi_nor *nor, u16 val)
882{
883	nor->cmd_buf[0] = val & 0xff;
884	nor->cmd_buf[1] = (val >> 8);
885
886	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
887}
888
889static int spansion_quad_enable(struct spi_nor *nor)
890{
891	int ret;
892	int quad_en = CR_QUAD_EN_SPAN << 8;
893
894	write_enable(nor);
895
896	ret = write_sr_cr(nor, quad_en);
897	if (ret < 0) {
898		dev_err(nor->dev,
899			"error while writing configuration register\n");
900		return -EINVAL;
901	}
902
903	/* read back and check it */
904	ret = read_cr(nor);
905	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
906		dev_err(nor->dev, "Spansion Quad bit not set\n");
907		return -EINVAL;
908	}
909
910	return 0;
911}
912
913static int micron_quad_enable(struct spi_nor *nor)
914{
915	int ret;
916	u8 val;
917
918	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
919	if (ret < 0) {
920		dev_err(nor->dev, "error %d reading EVCR\n", ret);
921		return ret;
922	}
923
924	write_enable(nor);
925
926	/* set EVCR, enable quad I/O */
927	nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
928	ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0);
929	if (ret < 0) {
930		dev_err(nor->dev, "error while writing EVCR register\n");
931		return ret;
932	}
933
934	ret = spi_nor_wait_till_ready(nor);
935	if (ret)
936		return ret;
937
938	/* read EVCR and check it */
939	ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
940	if (ret < 0) {
941		dev_err(nor->dev, "error %d reading EVCR\n", ret);
942		return ret;
943	}
944	if (val & EVCR_QUAD_EN_MICRON) {
945		dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
946		return -EINVAL;
947	}
948
949	return 0;
950}
951
952static int set_quad_mode(struct spi_nor *nor, struct flash_info *info)
953{
954	int status;
955
956	switch (JEDEC_MFR(info)) {
957	case CFI_MFR_MACRONIX:
958		status = macronix_quad_enable(nor);
959		if (status) {
960			dev_err(nor->dev, "Macronix quad-read not enabled\n");
961			return -EINVAL;
962		}
963		return status;
964	case CFI_MFR_ST:
965		status = micron_quad_enable(nor);
966		if (status) {
967			dev_err(nor->dev, "Micron quad-read not enabled\n");
968			return -EINVAL;
969		}
970		return status;
971	default:
972		status = spansion_quad_enable(nor);
973		if (status) {
974			dev_err(nor->dev, "Spansion quad-read not enabled\n");
975			return -EINVAL;
976		}
977		return status;
978	}
979}
980
981static int spi_nor_check(struct spi_nor *nor)
982{
983	if (!nor->dev || !nor->read || !nor->write ||
984		!nor->read_reg || !nor->write_reg || !nor->erase) {
985		pr_err("spi-nor: please fill all the necessary fields!\n");
986		return -EINVAL;
987	}
988
989	return 0;
990}
991
992int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
993{
994	const struct spi_device_id	*id = NULL;
995	struct flash_info		*info;
996	struct device *dev = nor->dev;
997	struct mtd_info *mtd = nor->mtd;
998	struct device_node *np = dev->of_node;
999	int ret;
1000	int i;
1001
1002	ret = spi_nor_check(nor);
1003	if (ret)
1004		return ret;
1005
1006	/* Try to auto-detect if chip name wasn't specified */
1007	if (!name)
1008		id = spi_nor_read_id(nor);
1009	else
1010		id = spi_nor_match_id(name);
1011	if (IS_ERR_OR_NULL(id))
1012		return -ENOENT;
1013
1014	info = (void *)id->driver_data;
1015
1016	/*
1017	 * If caller has specified name of flash model that can normally be
1018	 * detected using JEDEC, let's verify it.
1019	 */
1020	if (name && info->id_len) {
1021		const struct spi_device_id *jid;
1022
1023		jid = spi_nor_read_id(nor);
1024		if (IS_ERR(jid)) {
1025			return PTR_ERR(jid);
1026		} else if (jid != id) {
1027			/*
1028			 * JEDEC knows better, so overwrite platform ID. We
1029			 * can't trust partitions any longer, but we'll let
1030			 * mtd apply them anyway, since some partitions may be
1031			 * marked read-only, and we don't want to lose that
1032			 * information, even if it's not 100% accurate.
1033			 */
1034			dev_warn(dev, "found %s, expected %s\n",
1035				 jid->name, id->name);
1036			id = jid;
1037			info = (void *)jid->driver_data;
1038		}
1039	}
1040
1041	mutex_init(&nor->lock);
1042
1043	/*
1044	 * Atmel, SST and Intel/Numonyx serial nor tend to power
1045	 * up with the software protection bits set
1046	 */
1047
1048	if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
1049	    JEDEC_MFR(info) == CFI_MFR_INTEL ||
1050	    JEDEC_MFR(info) == CFI_MFR_SST) {
1051		write_enable(nor);
1052		write_sr(nor, 0);
1053	}
1054
1055	if (!mtd->name)
1056		mtd->name = dev_name(dev);
1057	mtd->type = MTD_NORFLASH;
1058	mtd->writesize = 1;
1059	mtd->flags = MTD_CAP_NORFLASH;
1060	mtd->size = info->sector_size * info->n_sectors;
1061	mtd->_erase = spi_nor_erase;
1062	mtd->_read = spi_nor_read;
1063
1064	/* nor protection support for STmicro chips */
1065	if (JEDEC_MFR(info) == CFI_MFR_ST) {
1066		nor->flash_lock = stm_lock;
1067		nor->flash_unlock = stm_unlock;
1068	}
1069
1070	if (nor->flash_lock && nor->flash_unlock) {
1071		mtd->_lock = spi_nor_lock;
1072		mtd->_unlock = spi_nor_unlock;
1073	}
1074
1075	/* sst nor chips use AAI word program */
1076	if (info->flags & SST_WRITE)
1077		mtd->_write = sst_write;
1078	else
1079		mtd->_write = spi_nor_write;
1080
1081	if (info->flags & USE_FSR)
1082		nor->flags |= SNOR_F_USE_FSR;
1083
1084#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1085	/* prefer "small sector" erase if possible */
1086	if (info->flags & SECT_4K) {
1087		nor->erase_opcode = SPINOR_OP_BE_4K;
1088		mtd->erasesize = 4096;
1089	} else if (info->flags & SECT_4K_PMC) {
1090		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1091		mtd->erasesize = 4096;
1092	} else
1093#endif
1094	{
1095		nor->erase_opcode = SPINOR_OP_SE;
1096		mtd->erasesize = info->sector_size;
1097	}
1098
1099	if (info->flags & SPI_NOR_NO_ERASE)
1100		mtd->flags |= MTD_NO_ERASE;
1101
1102	mtd->dev.parent = dev;
1103	nor->page_size = info->page_size;
1104	mtd->writebufsize = nor->page_size;
1105
1106	if (np) {
1107		/* If we were instantiated by DT, use it */
1108		if (of_property_read_bool(np, "m25p,fast-read"))
1109			nor->flash_read = SPI_NOR_FAST;
1110		else
1111			nor->flash_read = SPI_NOR_NORMAL;
1112	} else {
1113		/* If we weren't instantiated by DT, default to fast-read */
1114		nor->flash_read = SPI_NOR_FAST;
1115	}
1116
1117	/* Some devices cannot do fast-read, no matter what DT tells us */
1118	if (info->flags & SPI_NOR_NO_FR)
1119		nor->flash_read = SPI_NOR_NORMAL;
1120
1121	/* Quad/Dual-read mode takes precedence over fast/normal */
1122	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1123		ret = set_quad_mode(nor, info);
1124		if (ret) {
1125			dev_err(dev, "quad mode not supported\n");
1126			return ret;
1127		}
1128		nor->flash_read = SPI_NOR_QUAD;
1129	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1130		nor->flash_read = SPI_NOR_DUAL;
1131	}
1132
1133	/* Default commands */
1134	switch (nor->flash_read) {
1135	case SPI_NOR_QUAD:
1136		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1137		break;
1138	case SPI_NOR_DUAL:
1139		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1140		break;
1141	case SPI_NOR_FAST:
1142		nor->read_opcode = SPINOR_OP_READ_FAST;
1143		break;
1144	case SPI_NOR_NORMAL:
1145		nor->read_opcode = SPINOR_OP_READ;
1146		break;
1147	default:
1148		dev_err(dev, "No Read opcode defined\n");
1149		return -EINVAL;
1150	}
1151
1152	nor->program_opcode = SPINOR_OP_PP;
1153
1154	if (info->addr_width)
1155		nor->addr_width = info->addr_width;
1156	else if (mtd->size > 0x1000000) {
1157		/* enable 4-byte addressing if the device exceeds 16MiB */
1158		nor->addr_width = 4;
1159		if (JEDEC_MFR(info) == CFI_MFR_AMD) {
1160			/* Dedicated 4-byte command set */
1161			switch (nor->flash_read) {
1162			case SPI_NOR_QUAD:
1163				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1164				break;
1165			case SPI_NOR_DUAL:
1166				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1167				break;
1168			case SPI_NOR_FAST:
1169				nor->read_opcode = SPINOR_OP_READ4_FAST;
1170				break;
1171			case SPI_NOR_NORMAL:
1172				nor->read_opcode = SPINOR_OP_READ4;
1173				break;
1174			}
1175			nor->program_opcode = SPINOR_OP_PP_4B;
1176			/* No small sector erase for 4-byte command set */
1177			nor->erase_opcode = SPINOR_OP_SE_4B;
1178			mtd->erasesize = info->sector_size;
1179		} else
1180			set_4byte(nor, info, 1);
1181	} else {
1182		nor->addr_width = 3;
1183	}
1184
1185	nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1186
1187	dev_info(dev, "%s (%lld Kbytes)\n", id->name,
1188			(long long)mtd->size >> 10);
1189
1190	dev_dbg(dev,
1191		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
1192		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1193		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1194		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1195
1196	if (mtd->numeraseregions)
1197		for (i = 0; i < mtd->numeraseregions; i++)
1198			dev_dbg(dev,
1199				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
1200				".erasesize = 0x%.8x (%uKiB), "
1201				".numblocks = %d }\n",
1202				i, (long long)mtd->eraseregions[i].offset,
1203				mtd->eraseregions[i].erasesize,
1204				mtd->eraseregions[i].erasesize / 1024,
1205				mtd->eraseregions[i].numblocks);
1206	return 0;
1207}
1208EXPORT_SYMBOL_GPL(spi_nor_scan);
1209
1210static const struct spi_device_id *spi_nor_match_id(const char *name)
1211{
1212	const struct spi_device_id *id = spi_nor_ids;
1213
1214	while (id->name[0]) {
1215		if (!strcmp(name, id->name))
1216			return id;
1217		id++;
1218	}
1219	return NULL;
1220}
1221
1222MODULE_LICENSE("GPL");
1223MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1224MODULE_AUTHOR("Mike Lavender");
1225MODULE_DESCRIPTION("framework for SPI NOR");
1226