1/* 2 * Freescale Integrated Flash Controller NAND driver 3 * 4 * Copyright 2011-2012 Freescale Semiconductor, Inc 5 * 6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23#include <linux/module.h> 24#include <linux/types.h> 25#include <linux/kernel.h> 26#include <linux/of_address.h> 27#include <linux/slab.h> 28#include <linux/mtd/mtd.h> 29#include <linux/mtd/nand.h> 30#include <linux/mtd/partitions.h> 31#include <linux/mtd/nand_ecc.h> 32#include <linux/fsl_ifc.h> 33 34#define ERR_BYTE 0xFF /* Value returned for read 35 bytes when read failed */ 36#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait 37 for IFC NAND Machine */ 38 39struct fsl_ifc_ctrl; 40 41/* mtd information per set */ 42struct fsl_ifc_mtd { 43 struct mtd_info mtd; 44 struct nand_chip chip; 45 struct fsl_ifc_ctrl *ctrl; 46 47 struct device *dev; 48 int bank; /* Chip select bank number */ 49 unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ 50 u8 __iomem *vbase; /* Chip select base virtual address */ 51}; 52 53/* overview of the fsl ifc controller */ 54struct fsl_ifc_nand_ctrl { 55 struct nand_hw_control controller; 56 struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; 57 58 void __iomem *addr; /* Address of assigned IFC buffer */ 59 unsigned int page; /* Last page written to / read from */ 60 unsigned int read_bytes;/* Number of bytes read during command */ 61 unsigned int column; /* Saved column from SEQIN */ 62 unsigned int index; /* Pointer to next byte to 'read' */ 63 unsigned int oob; /* Non zero if operating on OOB data */ 64 unsigned int eccread; /* Non zero for a full-page ECC read */ 65 unsigned int counter; /* counter for the initializations */ 66 unsigned int max_bitflips; /* Saved during READ0 cmd */ 67}; 68 69static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; 70 71/* 512-byte page with 4-bit ECC, 8-bit */ 72static struct nand_ecclayout oob_512_8bit_ecc4 = { 73 .eccbytes = 8, 74 .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, 75 .oobfree = { {0, 5}, {6, 2} }, 76}; 77 78/* 512-byte page with 4-bit ECC, 16-bit */ 79static struct nand_ecclayout oob_512_16bit_ecc4 = { 80 .eccbytes = 8, 81 .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, 82 .oobfree = { {2, 6}, }, 83}; 84 85/* 2048-byte page size with 4-bit ECC */ 86static struct nand_ecclayout oob_2048_ecc4 = { 87 .eccbytes = 32, 88 .eccpos = { 89 8, 9, 10, 11, 12, 13, 14, 15, 90 16, 17, 18, 19, 20, 21, 22, 23, 91 24, 25, 26, 27, 28, 29, 30, 31, 92 32, 33, 34, 35, 36, 37, 38, 39, 93 }, 94 .oobfree = { {2, 6}, {40, 24} }, 95}; 96 97/* 4096-byte page size with 4-bit ECC */ 98static struct nand_ecclayout oob_4096_ecc4 = { 99 .eccbytes = 64, 100 .eccpos = { 101 8, 9, 10, 11, 12, 13, 14, 15, 102 16, 17, 18, 19, 20, 21, 22, 23, 103 24, 25, 26, 27, 28, 29, 30, 31, 104 32, 33, 34, 35, 36, 37, 38, 39, 105 40, 41, 42, 43, 44, 45, 46, 47, 106 48, 49, 50, 51, 52, 53, 54, 55, 107 56, 57, 58, 59, 60, 61, 62, 63, 108 64, 65, 66, 67, 68, 69, 70, 71, 109 }, 110 .oobfree = { {2, 6}, {72, 56} }, 111}; 112 113/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ 114static struct nand_ecclayout oob_4096_ecc8 = { 115 .eccbytes = 128, 116 .eccpos = { 117 8, 9, 10, 11, 12, 13, 14, 15, 118 16, 17, 18, 19, 20, 21, 22, 23, 119 24, 25, 26, 27, 28, 29, 30, 31, 120 32, 33, 34, 35, 36, 37, 38, 39, 121 40, 41, 42, 43, 44, 45, 46, 47, 122 48, 49, 50, 51, 52, 53, 54, 55, 123 56, 57, 58, 59, 60, 61, 62, 63, 124 64, 65, 66, 67, 68, 69, 70, 71, 125 72, 73, 74, 75, 76, 77, 78, 79, 126 80, 81, 82, 83, 84, 85, 86, 87, 127 88, 89, 90, 91, 92, 93, 94, 95, 128 96, 97, 98, 99, 100, 101, 102, 103, 129 104, 105, 106, 107, 108, 109, 110, 111, 130 112, 113, 114, 115, 116, 117, 118, 119, 131 120, 121, 122, 123, 124, 125, 126, 127, 132 128, 129, 130, 131, 132, 133, 134, 135, 133 }, 134 .oobfree = { {2, 6}, {136, 82} }, 135}; 136 137/* 8192-byte page size with 4-bit ECC */ 138static struct nand_ecclayout oob_8192_ecc4 = { 139 .eccbytes = 128, 140 .eccpos = { 141 8, 9, 10, 11, 12, 13, 14, 15, 142 16, 17, 18, 19, 20, 21, 22, 23, 143 24, 25, 26, 27, 28, 29, 30, 31, 144 32, 33, 34, 35, 36, 37, 38, 39, 145 40, 41, 42, 43, 44, 45, 46, 47, 146 48, 49, 50, 51, 52, 53, 54, 55, 147 56, 57, 58, 59, 60, 61, 62, 63, 148 64, 65, 66, 67, 68, 69, 70, 71, 149 72, 73, 74, 75, 76, 77, 78, 79, 150 80, 81, 82, 83, 84, 85, 86, 87, 151 88, 89, 90, 91, 92, 93, 94, 95, 152 96, 97, 98, 99, 100, 101, 102, 103, 153 104, 105, 106, 107, 108, 109, 110, 111, 154 112, 113, 114, 115, 116, 117, 118, 119, 155 120, 121, 122, 123, 124, 125, 126, 127, 156 128, 129, 130, 131, 132, 133, 134, 135, 157 }, 158 .oobfree = { {2, 6}, {136, 208} }, 159}; 160 161/* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */ 162static struct nand_ecclayout oob_8192_ecc8 = { 163 .eccbytes = 256, 164 .eccpos = { 165 8, 9, 10, 11, 12, 13, 14, 15, 166 16, 17, 18, 19, 20, 21, 22, 23, 167 24, 25, 26, 27, 28, 29, 30, 31, 168 32, 33, 34, 35, 36, 37, 38, 39, 169 40, 41, 42, 43, 44, 45, 46, 47, 170 48, 49, 50, 51, 52, 53, 54, 55, 171 56, 57, 58, 59, 60, 61, 62, 63, 172 64, 65, 66, 67, 68, 69, 70, 71, 173 72, 73, 74, 75, 76, 77, 78, 79, 174 80, 81, 82, 83, 84, 85, 86, 87, 175 88, 89, 90, 91, 92, 93, 94, 95, 176 96, 97, 98, 99, 100, 101, 102, 103, 177 104, 105, 106, 107, 108, 109, 110, 111, 178 112, 113, 114, 115, 116, 117, 118, 119, 179 120, 121, 122, 123, 124, 125, 126, 127, 180 128, 129, 130, 131, 132, 133, 134, 135, 181 136, 137, 138, 139, 140, 141, 142, 143, 182 144, 145, 146, 147, 148, 149, 150, 151, 183 152, 153, 154, 155, 156, 157, 158, 159, 184 160, 161, 162, 163, 164, 165, 166, 167, 185 168, 169, 170, 171, 172, 173, 174, 175, 186 176, 177, 178, 179, 180, 181, 182, 183, 187 184, 185, 186, 187, 188, 189, 190, 191, 188 192, 193, 194, 195, 196, 197, 198, 199, 189 200, 201, 202, 203, 204, 205, 206, 207, 190 208, 209, 210, 211, 212, 213, 214, 215, 191 216, 217, 218, 219, 220, 221, 222, 223, 192 224, 225, 226, 227, 228, 229, 230, 231, 193 232, 233, 234, 235, 236, 237, 238, 239, 194 240, 241, 242, 243, 244, 245, 246, 247, 195 248, 249, 250, 251, 252, 253, 254, 255, 196 256, 257, 258, 259, 260, 261, 262, 263, 197 }, 198 .oobfree = { {2, 6}, {264, 80} }, 199}; 200 201/* 202 * Generic flash bbt descriptors 203 */ 204static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; 205static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; 206 207static struct nand_bbt_descr bbt_main_descr = { 208 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 209 NAND_BBT_2BIT | NAND_BBT_VERSION, 210 .offs = 2, /* 0 on 8-bit small page */ 211 .len = 4, 212 .veroffs = 6, 213 .maxblocks = 4, 214 .pattern = bbt_pattern, 215}; 216 217static struct nand_bbt_descr bbt_mirror_descr = { 218 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 219 NAND_BBT_2BIT | NAND_BBT_VERSION, 220 .offs = 2, /* 0 on 8-bit small page */ 221 .len = 4, 222 .veroffs = 6, 223 .maxblocks = 4, 224 .pattern = mirror_pattern, 225}; 226 227/* 228 * Set up the IFC hardware block and page address fields, and the ifc nand 229 * structure addr field to point to the correct IFC buffer in memory 230 */ 231static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) 232{ 233 struct nand_chip *chip = mtd->priv; 234 struct fsl_ifc_mtd *priv = chip->priv; 235 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 236 struct fsl_ifc_regs __iomem *ifc = ctrl->regs; 237 int buf_num; 238 239 ifc_nand_ctrl->page = page_addr; 240 /* Program ROW0/COL0 */ 241 iowrite32be(page_addr, &ifc->ifc_nand.row0); 242 iowrite32be((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); 243 244 buf_num = page_addr & priv->bufnum_mask; 245 246 ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); 247 ifc_nand_ctrl->index = column; 248 249 /* for OOB data point to the second half of the buffer */ 250 if (oob) 251 ifc_nand_ctrl->index += mtd->writesize; 252} 253 254static int is_blank(struct mtd_info *mtd, unsigned int bufnum) 255{ 256 struct nand_chip *chip = mtd->priv; 257 struct fsl_ifc_mtd *priv = chip->priv; 258 u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); 259 u32 __iomem *mainarea = (u32 __iomem *)addr; 260 u8 __iomem *oob = addr + mtd->writesize; 261 int i; 262 263 for (i = 0; i < mtd->writesize / 4; i++) { 264 if (__raw_readl(&mainarea[i]) != 0xffffffff) 265 return 0; 266 } 267 268 for (i = 0; i < chip->ecc.layout->eccbytes; i++) { 269 int pos = chip->ecc.layout->eccpos[i]; 270 271 if (__raw_readb(&oob[pos]) != 0xff) 272 return 0; 273 } 274 275 return 1; 276} 277 278/* returns nonzero if entire page is blank */ 279static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, 280 u32 *eccstat, unsigned int bufnum) 281{ 282 u32 reg = eccstat[bufnum / 4]; 283 int errors; 284 285 errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; 286 287 return errors; 288} 289 290/* 291 * execute IFC NAND command and wait for it to complete 292 */ 293static void fsl_ifc_run_command(struct mtd_info *mtd) 294{ 295 struct nand_chip *chip = mtd->priv; 296 struct fsl_ifc_mtd *priv = chip->priv; 297 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 298 struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; 299 struct fsl_ifc_regs __iomem *ifc = ctrl->regs; 300 u32 eccstat[4]; 301 int i; 302 303 /* set the chip select for NAND Transaction */ 304 iowrite32be(priv->bank << IFC_NAND_CSEL_SHIFT, 305 &ifc->ifc_nand.nand_csel); 306 307 dev_vdbg(priv->dev, 308 "%s: fir0=%08x fcr0=%08x\n", 309 __func__, 310 ioread32be(&ifc->ifc_nand.nand_fir0), 311 ioread32be(&ifc->ifc_nand.nand_fcr0)); 312 313 ctrl->nand_stat = 0; 314 315 /* start read/write seq */ 316 iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); 317 318 /* wait for command complete flag or timeout */ 319 wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, 320 msecs_to_jiffies(IFC_TIMEOUT_MSECS)); 321 322 /* ctrl->nand_stat will be updated from IRQ context */ 323 if (!ctrl->nand_stat) 324 dev_err(priv->dev, "Controller is not responding\n"); 325 if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) 326 dev_err(priv->dev, "NAND Flash Timeout Error\n"); 327 if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) 328 dev_err(priv->dev, "NAND Flash Write Protect Error\n"); 329 330 nctrl->max_bitflips = 0; 331 332 if (nctrl->eccread) { 333 int errors; 334 int bufnum = nctrl->page & priv->bufnum_mask; 335 int sector = bufnum * chip->ecc.steps; 336 int sector_end = sector + chip->ecc.steps - 1; 337 338 for (i = sector / 4; i <= sector_end / 4; i++) 339 eccstat[i] = ioread32be(&ifc->ifc_nand.nand_eccstat[i]); 340 341 for (i = sector; i <= sector_end; i++) { 342 errors = check_read_ecc(mtd, ctrl, eccstat, i); 343 344 if (errors == 15) { 345 /* 346 * Uncorrectable error. 347 * OK only if the whole page is blank. 348 * 349 * We disable ECCER reporting due to... 350 * erratum IFC-A002770 -- so report it now if we 351 * see an uncorrectable error in ECCSTAT. 352 */ 353 if (!is_blank(mtd, bufnum)) 354 ctrl->nand_stat |= 355 IFC_NAND_EVTER_STAT_ECCER; 356 break; 357 } 358 359 mtd->ecc_stats.corrected += errors; 360 nctrl->max_bitflips = max_t(unsigned int, 361 nctrl->max_bitflips, 362 errors); 363 } 364 365 nctrl->eccread = 0; 366 } 367} 368 369static void fsl_ifc_do_read(struct nand_chip *chip, 370 int oob, 371 struct mtd_info *mtd) 372{ 373 struct fsl_ifc_mtd *priv = chip->priv; 374 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 375 struct fsl_ifc_regs __iomem *ifc = ctrl->regs; 376 377 /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ 378 if (mtd->writesize > 512) { 379 iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 380 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | 381 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | 382 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | 383 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), 384 &ifc->ifc_nand.nand_fir0); 385 iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); 386 387 iowrite32be((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | 388 (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), 389 &ifc->ifc_nand.nand_fcr0); 390 } else { 391 iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 392 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | 393 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | 394 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), 395 &ifc->ifc_nand.nand_fir0); 396 iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); 397 398 if (oob) 399 iowrite32be(NAND_CMD_READOOB << 400 IFC_NAND_FCR0_CMD0_SHIFT, 401 &ifc->ifc_nand.nand_fcr0); 402 else 403 iowrite32be(NAND_CMD_READ0 << 404 IFC_NAND_FCR0_CMD0_SHIFT, 405 &ifc->ifc_nand.nand_fcr0); 406 } 407} 408 409/* cmdfunc send commands to the IFC NAND Machine */ 410static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, 411 int column, int page_addr) { 412 struct nand_chip *chip = mtd->priv; 413 struct fsl_ifc_mtd *priv = chip->priv; 414 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 415 struct fsl_ifc_regs __iomem *ifc = ctrl->regs; 416 417 /* clear the read buffer */ 418 ifc_nand_ctrl->read_bytes = 0; 419 if (command != NAND_CMD_PAGEPROG) 420 ifc_nand_ctrl->index = 0; 421 422 switch (command) { 423 /* READ0 read the entire buffer to use hardware ECC. */ 424 case NAND_CMD_READ0: 425 iowrite32be(0, &ifc->ifc_nand.nand_fbcr); 426 set_addr(mtd, 0, page_addr, 0); 427 428 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; 429 ifc_nand_ctrl->index += column; 430 431 if (chip->ecc.mode == NAND_ECC_HW) 432 ifc_nand_ctrl->eccread = 1; 433 434 fsl_ifc_do_read(chip, 0, mtd); 435 fsl_ifc_run_command(mtd); 436 return; 437 438 /* READOOB reads only the OOB because no ECC is performed. */ 439 case NAND_CMD_READOOB: 440 iowrite32be(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); 441 set_addr(mtd, column, page_addr, 1); 442 443 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; 444 445 fsl_ifc_do_read(chip, 1, mtd); 446 fsl_ifc_run_command(mtd); 447 448 return; 449 450 case NAND_CMD_READID: 451 case NAND_CMD_PARAM: { 452 int timing = IFC_FIR_OP_RB; 453 if (command == NAND_CMD_PARAM) 454 timing = IFC_FIR_OP_RBCD; 455 456 iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 457 (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | 458 (timing << IFC_NAND_FIR0_OP2_SHIFT), 459 &ifc->ifc_nand.nand_fir0); 460 iowrite32be(command << IFC_NAND_FCR0_CMD0_SHIFT, 461 &ifc->ifc_nand.nand_fcr0); 462 iowrite32be(column, &ifc->ifc_nand.row3); 463 464 /* 465 * although currently it's 8 bytes for READID, we always read 466 * the maximum 256 bytes(for PARAM) 467 */ 468 iowrite32be(256, &ifc->ifc_nand.nand_fbcr); 469 ifc_nand_ctrl->read_bytes = 256; 470 471 set_addr(mtd, 0, 0, 0); 472 fsl_ifc_run_command(mtd); 473 return; 474 } 475 476 /* ERASE1 stores the block and page address */ 477 case NAND_CMD_ERASE1: 478 set_addr(mtd, 0, page_addr, 0); 479 return; 480 481 /* ERASE2 uses the block and page address from ERASE1 */ 482 case NAND_CMD_ERASE2: 483 iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 484 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | 485 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), 486 &ifc->ifc_nand.nand_fir0); 487 488 iowrite32be((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | 489 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), 490 &ifc->ifc_nand.nand_fcr0); 491 492 iowrite32be(0, &ifc->ifc_nand.nand_fbcr); 493 ifc_nand_ctrl->read_bytes = 0; 494 fsl_ifc_run_command(mtd); 495 return; 496 497 /* SEQIN sets up the addr buffer and all registers except the length */ 498 case NAND_CMD_SEQIN: { 499 u32 nand_fcr0; 500 ifc_nand_ctrl->column = column; 501 ifc_nand_ctrl->oob = 0; 502 503 if (mtd->writesize > 512) { 504 nand_fcr0 = 505 (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | 506 (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | 507 (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); 508 509 iowrite32be( 510 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 511 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | 512 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | 513 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | 514 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), 515 &ifc->ifc_nand.nand_fir0); 516 iowrite32be( 517 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | 518 (IFC_FIR_OP_RDSTAT << 519 IFC_NAND_FIR1_OP6_SHIFT) | 520 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), 521 &ifc->ifc_nand.nand_fir1); 522 } else { 523 nand_fcr0 = ((NAND_CMD_PAGEPROG << 524 IFC_NAND_FCR0_CMD1_SHIFT) | 525 (NAND_CMD_SEQIN << 526 IFC_NAND_FCR0_CMD2_SHIFT) | 527 (NAND_CMD_STATUS << 528 IFC_NAND_FCR0_CMD3_SHIFT)); 529 530 iowrite32be( 531 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 532 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | 533 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | 534 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | 535 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), 536 &ifc->ifc_nand.nand_fir0); 537 iowrite32be( 538 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | 539 (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | 540 (IFC_FIR_OP_RDSTAT << 541 IFC_NAND_FIR1_OP7_SHIFT) | 542 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), 543 &ifc->ifc_nand.nand_fir1); 544 545 if (column >= mtd->writesize) 546 nand_fcr0 |= 547 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; 548 else 549 nand_fcr0 |= 550 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; 551 } 552 553 if (column >= mtd->writesize) { 554 /* OOB area --> READOOB */ 555 column -= mtd->writesize; 556 ifc_nand_ctrl->oob = 1; 557 } 558 iowrite32be(nand_fcr0, &ifc->ifc_nand.nand_fcr0); 559 set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); 560 return; 561 } 562 563 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ 564 case NAND_CMD_PAGEPROG: { 565 if (ifc_nand_ctrl->oob) { 566 iowrite32be(ifc_nand_ctrl->index - 567 ifc_nand_ctrl->column, 568 &ifc->ifc_nand.nand_fbcr); 569 } else { 570 iowrite32be(0, &ifc->ifc_nand.nand_fbcr); 571 } 572 573 fsl_ifc_run_command(mtd); 574 return; 575 } 576 577 case NAND_CMD_STATUS: 578 iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 579 (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), 580 &ifc->ifc_nand.nand_fir0); 581 iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, 582 &ifc->ifc_nand.nand_fcr0); 583 iowrite32be(1, &ifc->ifc_nand.nand_fbcr); 584 set_addr(mtd, 0, 0, 0); 585 ifc_nand_ctrl->read_bytes = 1; 586 587 fsl_ifc_run_command(mtd); 588 589 /* 590 * The chip always seems to report that it is 591 * write-protected, even when it is not. 592 */ 593 if (chip->options & NAND_BUSWIDTH_16) 594 setbits16(ifc_nand_ctrl->addr, NAND_STATUS_WP); 595 else 596 setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); 597 return; 598 599 case NAND_CMD_RESET: 600 iowrite32be(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, 601 &ifc->ifc_nand.nand_fir0); 602 iowrite32be(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, 603 &ifc->ifc_nand.nand_fcr0); 604 fsl_ifc_run_command(mtd); 605 return; 606 607 default: 608 dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", 609 __func__, command); 610 } 611} 612 613static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) 614{ 615 /* The hardware does not seem to support multiple 616 * chips per bank. 617 */ 618} 619 620/* 621 * Write buf to the IFC NAND Controller Data Buffer 622 */ 623static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) 624{ 625 struct nand_chip *chip = mtd->priv; 626 struct fsl_ifc_mtd *priv = chip->priv; 627 unsigned int bufsize = mtd->writesize + mtd->oobsize; 628 629 if (len <= 0) { 630 dev_err(priv->dev, "%s: len %d bytes", __func__, len); 631 return; 632 } 633 634 if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { 635 dev_err(priv->dev, 636 "%s: beyond end of buffer (%d requested, %u available)\n", 637 __func__, len, bufsize - ifc_nand_ctrl->index); 638 len = bufsize - ifc_nand_ctrl->index; 639 } 640 641 memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); 642 ifc_nand_ctrl->index += len; 643} 644 645/* 646 * Read a byte from either the IFC hardware buffer 647 * read function for 8-bit buswidth 648 */ 649static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) 650{ 651 struct nand_chip *chip = mtd->priv; 652 struct fsl_ifc_mtd *priv = chip->priv; 653 unsigned int offset; 654 655 /* 656 * If there are still bytes in the IFC buffer, then use the 657 * next byte. 658 */ 659 if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { 660 offset = ifc_nand_ctrl->index++; 661 return in_8(ifc_nand_ctrl->addr + offset); 662 } 663 664 dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); 665 return ERR_BYTE; 666} 667 668/* 669 * Read two bytes from the IFC hardware buffer 670 * read function for 16-bit buswith 671 */ 672static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) 673{ 674 struct nand_chip *chip = mtd->priv; 675 struct fsl_ifc_mtd *priv = chip->priv; 676 uint16_t data; 677 678 /* 679 * If there are still bytes in the IFC buffer, then use the 680 * next byte. 681 */ 682 if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { 683 data = in_be16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); 684 ifc_nand_ctrl->index += 2; 685 return (uint8_t) data; 686 } 687 688 dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); 689 return ERR_BYTE; 690} 691 692/* 693 * Read from the IFC Controller Data Buffer 694 */ 695static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) 696{ 697 struct nand_chip *chip = mtd->priv; 698 struct fsl_ifc_mtd *priv = chip->priv; 699 int avail; 700 701 if (len < 0) { 702 dev_err(priv->dev, "%s: len %d bytes", __func__, len); 703 return; 704 } 705 706 avail = min((unsigned int)len, 707 ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); 708 memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); 709 ifc_nand_ctrl->index += avail; 710 711 if (len > avail) 712 dev_err(priv->dev, 713 "%s: beyond end of buffer (%d requested, %d available)\n", 714 __func__, len, avail); 715} 716 717/* 718 * This function is called after Program and Erase Operations to 719 * check for success or failure. 720 */ 721static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) 722{ 723 struct fsl_ifc_mtd *priv = chip->priv; 724 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 725 struct fsl_ifc_regs __iomem *ifc = ctrl->regs; 726 u32 nand_fsr; 727 728 /* Use READ_STATUS command, but wait for the device to be ready */ 729 iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 730 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), 731 &ifc->ifc_nand.nand_fir0); 732 iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, 733 &ifc->ifc_nand.nand_fcr0); 734 iowrite32be(1, &ifc->ifc_nand.nand_fbcr); 735 set_addr(mtd, 0, 0, 0); 736 ifc_nand_ctrl->read_bytes = 1; 737 738 fsl_ifc_run_command(mtd); 739 740 nand_fsr = ioread32be(&ifc->ifc_nand.nand_fsr); 741 742 /* 743 * The chip always seems to report that it is 744 * write-protected, even when it is not. 745 */ 746 return nand_fsr | NAND_STATUS_WP; 747} 748 749static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, 750 uint8_t *buf, int oob_required, int page) 751{ 752 struct fsl_ifc_mtd *priv = chip->priv; 753 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 754 struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; 755 756 fsl_ifc_read_buf(mtd, buf, mtd->writesize); 757 if (oob_required) 758 fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); 759 760 if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) 761 dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n"); 762 763 if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) 764 mtd->ecc_stats.failed++; 765 766 return nctrl->max_bitflips; 767} 768 769/* ECC will be calculated automatically, and errors will be detected in 770 * waitfunc. 771 */ 772static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, 773 const uint8_t *buf, int oob_required) 774{ 775 fsl_ifc_write_buf(mtd, buf, mtd->writesize); 776 fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); 777 778 return 0; 779} 780 781static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) 782{ 783 struct nand_chip *chip = mtd->priv; 784 struct fsl_ifc_mtd *priv = chip->priv; 785 786 dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, 787 chip->numchips); 788 dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, 789 chip->chipsize); 790 dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, 791 chip->pagemask); 792 dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, 793 chip->chip_delay); 794 dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, 795 chip->badblockpos); 796 dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, 797 chip->chip_shift); 798 dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, 799 chip->page_shift); 800 dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, 801 chip->phys_erase_shift); 802 dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, 803 chip->ecc.mode); 804 dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, 805 chip->ecc.steps); 806 dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, 807 chip->ecc.bytes); 808 dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, 809 chip->ecc.total); 810 dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__, 811 chip->ecc.layout); 812 dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); 813 dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); 814 dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, 815 mtd->erasesize); 816 dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, 817 mtd->writesize); 818 dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, 819 mtd->oobsize); 820 821 return 0; 822} 823 824static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) 825{ 826 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 827 struct fsl_ifc_regs __iomem *ifc = ctrl->regs; 828 uint32_t csor = 0, csor_8k = 0, csor_ext = 0; 829 uint32_t cs = priv->bank; 830 831 /* Save CSOR and CSOR_ext */ 832 csor = ioread32be(&ifc->csor_cs[cs].csor); 833 csor_ext = ioread32be(&ifc->csor_cs[cs].csor_ext); 834 835 /* chage PageSize 8K and SpareSize 1K*/ 836 csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; 837 iowrite32be(csor_8k, &ifc->csor_cs[cs].csor); 838 iowrite32be(0x0000400, &ifc->csor_cs[cs].csor_ext); 839 840 /* READID */ 841 iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | 842 (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | 843 (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), 844 &ifc->ifc_nand.nand_fir0); 845 iowrite32be(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, 846 &ifc->ifc_nand.nand_fcr0); 847 iowrite32be(0x0, &ifc->ifc_nand.row3); 848 849 iowrite32be(0x0, &ifc->ifc_nand.nand_fbcr); 850 851 /* Program ROW0/COL0 */ 852 iowrite32be(0x0, &ifc->ifc_nand.row0); 853 iowrite32be(0x0, &ifc->ifc_nand.col0); 854 855 /* set the chip select for NAND Transaction */ 856 iowrite32be(cs << IFC_NAND_CSEL_SHIFT, &ifc->ifc_nand.nand_csel); 857 858 /* start read seq */ 859 iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); 860 861 /* wait for command complete flag or timeout */ 862 wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, 863 msecs_to_jiffies(IFC_TIMEOUT_MSECS)); 864 865 if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) 866 printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); 867 868 /* Restore CSOR and CSOR_ext */ 869 iowrite32be(csor, &ifc->csor_cs[cs].csor); 870 iowrite32be(csor_ext, &ifc->csor_cs[cs].csor_ext); 871} 872 873static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) 874{ 875 struct fsl_ifc_ctrl *ctrl = priv->ctrl; 876 struct fsl_ifc_regs __iomem *ifc = ctrl->regs; 877 struct nand_chip *chip = &priv->chip; 878 struct nand_ecclayout *layout; 879 u32 csor; 880 881 /* Fill in fsl_ifc_mtd structure */ 882 priv->mtd.priv = chip; 883 priv->mtd.owner = THIS_MODULE; 884 885 /* fill in nand_chip structure */ 886 /* set up function call table */ 887 if ((ioread32be(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) 888 chip->read_byte = fsl_ifc_read_byte16; 889 else 890 chip->read_byte = fsl_ifc_read_byte; 891 892 chip->write_buf = fsl_ifc_write_buf; 893 chip->read_buf = fsl_ifc_read_buf; 894 chip->select_chip = fsl_ifc_select_chip; 895 chip->cmdfunc = fsl_ifc_cmdfunc; 896 chip->waitfunc = fsl_ifc_wait; 897 898 chip->bbt_td = &bbt_main_descr; 899 chip->bbt_md = &bbt_mirror_descr; 900 901 iowrite32be(0x0, &ifc->ifc_nand.ncfgr); 902 903 /* set up nand options */ 904 chip->bbt_options = NAND_BBT_USE_FLASH; 905 chip->options = NAND_NO_SUBPAGE_WRITE; 906 907 if (ioread32be(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { 908 chip->read_byte = fsl_ifc_read_byte16; 909 chip->options |= NAND_BUSWIDTH_16; 910 } else { 911 chip->read_byte = fsl_ifc_read_byte; 912 } 913 914 chip->controller = &ifc_nand_ctrl->controller; 915 chip->priv = priv; 916 917 chip->ecc.read_page = fsl_ifc_read_page; 918 chip->ecc.write_page = fsl_ifc_write_page; 919 920 csor = ioread32be(&ifc->csor_cs[priv->bank].csor); 921 922 /* Hardware generates ECC per 512 Bytes */ 923 chip->ecc.size = 512; 924 chip->ecc.bytes = 8; 925 chip->ecc.strength = 4; 926 927 switch (csor & CSOR_NAND_PGS_MASK) { 928 case CSOR_NAND_PGS_512: 929 if (chip->options & NAND_BUSWIDTH_16) { 930 layout = &oob_512_16bit_ecc4; 931 } else { 932 layout = &oob_512_8bit_ecc4; 933 934 /* Avoid conflict with bad block marker */ 935 bbt_main_descr.offs = 0; 936 bbt_mirror_descr.offs = 0; 937 } 938 939 priv->bufnum_mask = 15; 940 break; 941 942 case CSOR_NAND_PGS_2K: 943 layout = &oob_2048_ecc4; 944 priv->bufnum_mask = 3; 945 break; 946 947 case CSOR_NAND_PGS_4K: 948 if ((csor & CSOR_NAND_ECC_MODE_MASK) == 949 CSOR_NAND_ECC_MODE_4) { 950 layout = &oob_4096_ecc4; 951 } else { 952 layout = &oob_4096_ecc8; 953 chip->ecc.bytes = 16; 954 chip->ecc.strength = 8; 955 } 956 957 priv->bufnum_mask = 1; 958 break; 959 960 case CSOR_NAND_PGS_8K: 961 if ((csor & CSOR_NAND_ECC_MODE_MASK) == 962 CSOR_NAND_ECC_MODE_4) { 963 layout = &oob_8192_ecc4; 964 } else { 965 layout = &oob_8192_ecc8; 966 chip->ecc.bytes = 16; 967 chip->ecc.strength = 8; 968 } 969 970 priv->bufnum_mask = 0; 971 break; 972 973 default: 974 dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); 975 return -ENODEV; 976 } 977 978 /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ 979 if (csor & CSOR_NAND_ECC_DEC_EN) { 980 chip->ecc.mode = NAND_ECC_HW; 981 chip->ecc.layout = layout; 982 } else { 983 chip->ecc.mode = NAND_ECC_SOFT; 984 } 985 986 if (ctrl->version == FSL_IFC_VERSION_1_1_0) 987 fsl_ifc_sram_init(priv); 988 989 return 0; 990} 991 992static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) 993{ 994 nand_release(&priv->mtd); 995 996 kfree(priv->mtd.name); 997 998 if (priv->vbase) 999 iounmap(priv->vbase); 1000 1001 ifc_nand_ctrl->chips[priv->bank] = NULL; 1002 1003 return 0; 1004} 1005 1006static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, 1007 phys_addr_t addr) 1008{ 1009 u32 cspr = ioread32be(&ifc->cspr_cs[bank].cspr); 1010 1011 if (!(cspr & CSPR_V)) 1012 return 0; 1013 if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) 1014 return 0; 1015 1016 return (cspr & CSPR_BA) == convert_ifc_address(addr); 1017} 1018 1019static DEFINE_MUTEX(fsl_ifc_nand_mutex); 1020 1021static int fsl_ifc_nand_probe(struct platform_device *dev) 1022{ 1023 struct fsl_ifc_regs __iomem *ifc; 1024 struct fsl_ifc_mtd *priv; 1025 struct resource res; 1026 static const char *part_probe_types[] 1027 = { "cmdlinepart", "RedBoot", "ofpart", NULL }; 1028 int ret; 1029 int bank; 1030 struct device_node *node = dev->dev.of_node; 1031 struct mtd_part_parser_data ppdata; 1032 1033 ppdata.of_node = dev->dev.of_node; 1034 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs) 1035 return -ENODEV; 1036 ifc = fsl_ifc_ctrl_dev->regs; 1037 1038 /* get, allocate and map the memory resource */ 1039 ret = of_address_to_resource(node, 0, &res); 1040 if (ret) { 1041 dev_err(&dev->dev, "%s: failed to get resource\n", __func__); 1042 return ret; 1043 } 1044 1045 /* find which chip select it is connected to */ 1046 for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) { 1047 if (match_bank(ifc, bank, res.start)) 1048 break; 1049 } 1050 1051 if (bank >= fsl_ifc_ctrl_dev->banks) { 1052 dev_err(&dev->dev, "%s: address did not match any chip selects\n", 1053 __func__); 1054 return -ENODEV; 1055 } 1056 1057 priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); 1058 if (!priv) 1059 return -ENOMEM; 1060 1061 mutex_lock(&fsl_ifc_nand_mutex); 1062 if (!fsl_ifc_ctrl_dev->nand) { 1063 ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); 1064 if (!ifc_nand_ctrl) { 1065 mutex_unlock(&fsl_ifc_nand_mutex); 1066 return -ENOMEM; 1067 } 1068 1069 ifc_nand_ctrl->read_bytes = 0; 1070 ifc_nand_ctrl->index = 0; 1071 ifc_nand_ctrl->addr = NULL; 1072 fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; 1073 1074 spin_lock_init(&ifc_nand_ctrl->controller.lock); 1075 init_waitqueue_head(&ifc_nand_ctrl->controller.wq); 1076 } else { 1077 ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; 1078 } 1079 mutex_unlock(&fsl_ifc_nand_mutex); 1080 1081 ifc_nand_ctrl->chips[bank] = priv; 1082 priv->bank = bank; 1083 priv->ctrl = fsl_ifc_ctrl_dev; 1084 priv->dev = &dev->dev; 1085 1086 priv->vbase = ioremap(res.start, resource_size(&res)); 1087 if (!priv->vbase) { 1088 dev_err(priv->dev, "%s: failed to map chip region\n", __func__); 1089 ret = -ENOMEM; 1090 goto err; 1091 } 1092 1093 dev_set_drvdata(priv->dev, priv); 1094 1095 iowrite32be(IFC_NAND_EVTER_EN_OPC_EN | 1096 IFC_NAND_EVTER_EN_FTOER_EN | 1097 IFC_NAND_EVTER_EN_WPER_EN, 1098 &ifc->ifc_nand.nand_evter_en); 1099 1100 /* enable NAND Machine Interrupts */ 1101 iowrite32be(IFC_NAND_EVTER_INTR_OPCIR_EN | 1102 IFC_NAND_EVTER_INTR_FTOERIR_EN | 1103 IFC_NAND_EVTER_INTR_WPERIR_EN, 1104 &ifc->ifc_nand.nand_evter_intr_en); 1105 priv->mtd.name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); 1106 if (!priv->mtd.name) { 1107 ret = -ENOMEM; 1108 goto err; 1109 } 1110 1111 ret = fsl_ifc_chip_init(priv); 1112 if (ret) 1113 goto err; 1114 1115 ret = nand_scan_ident(&priv->mtd, 1, NULL); 1116 if (ret) 1117 goto err; 1118 1119 ret = fsl_ifc_chip_init_tail(&priv->mtd); 1120 if (ret) 1121 goto err; 1122 1123 ret = nand_scan_tail(&priv->mtd); 1124 if (ret) 1125 goto err; 1126 1127 /* First look for RedBoot table or partitions on the command 1128 * line, these take precedence over device tree information */ 1129 mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, 1130 NULL, 0); 1131 1132 dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", 1133 (unsigned long long)res.start, priv->bank); 1134 return 0; 1135 1136err: 1137 fsl_ifc_chip_remove(priv); 1138 return ret; 1139} 1140 1141static int fsl_ifc_nand_remove(struct platform_device *dev) 1142{ 1143 struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); 1144 1145 fsl_ifc_chip_remove(priv); 1146 1147 mutex_lock(&fsl_ifc_nand_mutex); 1148 ifc_nand_ctrl->counter--; 1149 if (!ifc_nand_ctrl->counter) { 1150 fsl_ifc_ctrl_dev->nand = NULL; 1151 kfree(ifc_nand_ctrl); 1152 } 1153 mutex_unlock(&fsl_ifc_nand_mutex); 1154 1155 return 0; 1156} 1157 1158static const struct of_device_id fsl_ifc_nand_match[] = { 1159 { 1160 .compatible = "fsl,ifc-nand", 1161 }, 1162 {} 1163}; 1164 1165static struct platform_driver fsl_ifc_nand_driver = { 1166 .driver = { 1167 .name = "fsl,ifc-nand", 1168 .of_match_table = fsl_ifc_nand_match, 1169 }, 1170 .probe = fsl_ifc_nand_probe, 1171 .remove = fsl_ifc_nand_remove, 1172}; 1173 1174module_platform_driver(fsl_ifc_nand_driver); 1175 1176MODULE_LICENSE("GPL"); 1177MODULE_AUTHOR("Freescale"); 1178MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); 1179