1/*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 */
19
20#include <linux/kernel.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23#include <linux/delay.h>
24#include <linux/rslib.h>
25#include <linux/moduleparam.h>
26#include <linux/slab.h>
27#include <asm/io.h>
28
29#include <linux/mtd/mtd.h>
30#include <linux/mtd/nand.h>
31#include <linux/mtd/doc2000.h>
32#include <linux/mtd/partitions.h>
33#include <linux/mtd/inftl.h>
34#include <linux/module.h>
35
36/* Where to look for the devices? */
37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39#endif
40
41static unsigned long doc_locations[] __initdata = {
42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49#else
50	0xc8000, 0xca000, 0xcc000, 0xce000,
51	0xd0000, 0xd2000, 0xd4000, 0xd6000,
52	0xd8000, 0xda000, 0xdc000, 0xde000,
53	0xe0000, 0xe2000, 0xe4000, 0xe6000,
54	0xe8000, 0xea000, 0xec000, 0xee000,
55#endif
56#endif
57	0xffffffff };
58
59static struct mtd_info *doclist = NULL;
60
61struct doc_priv {
62	void __iomem *virtadr;
63	unsigned long physadr;
64	u_char ChipID;
65	u_char CDSNControl;
66	int chips_per_floor;	/* The number of chips detected on each floor */
67	int curfloor;
68	int curchip;
69	int mh0_page;
70	int mh1_page;
71	struct mtd_info *nextdoc;
72};
73
74/* This is the syndrome computed by the HW ecc generator upon reading an empty
75   page, one with all 0xff for data and stored ecc code. */
76static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
77
78/* This is the ecc value computed by the HW ecc generator upon writing an empty
79   page, one with all 0xff for data. */
80static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
81
82#define INFTL_BBT_RESERVED_BLOCKS 4
83
84#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
85#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
86#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
87
88static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
89			      unsigned int bitmask);
90static void doc200x_select_chip(struct mtd_info *mtd, int chip);
91
92static int debug = 0;
93module_param(debug, int, 0);
94
95static int try_dword = 1;
96module_param(try_dword, int, 0);
97
98static int no_ecc_failures = 0;
99module_param(no_ecc_failures, int, 0);
100
101static int no_autopart = 0;
102module_param(no_autopart, int, 0);
103
104static int show_firmware_partition = 0;
105module_param(show_firmware_partition, int, 0);
106
107#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
108static int inftl_bbt_write = 1;
109#else
110static int inftl_bbt_write = 0;
111#endif
112module_param(inftl_bbt_write, int, 0);
113
114static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
115module_param(doc_config_location, ulong, 0);
116MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
117
118/* Sector size for HW ECC */
119#define SECTOR_SIZE 512
120/* The sector bytes are packed into NB_DATA 10 bit words */
121#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
122/* Number of roots */
123#define NROOTS 4
124/* First consective root */
125#define FCR 510
126/* Number of symbols */
127#define NN 1023
128
129/* the Reed Solomon control structure */
130static struct rs_control *rs_decoder;
131
132/*
133 * The HW decoder in the DoC ASIC's provides us a error syndrome,
134 * which we must convert to a standard syndrome usable by the generic
135 * Reed-Solomon library code.
136 *
137 * Fabrice Bellard figured this out in the old docecc code. I added
138 * some comments, improved a minor bit and converted it to make use
139 * of the generic Reed-Solomon library. tglx
140 */
141static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
142{
143	int i, j, nerr, errpos[8];
144	uint8_t parity;
145	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
146
147	memset(syn, 0, sizeof(syn));
148	/* Convert the ecc bytes into words */
149	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
150	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
151	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
152	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
153	parity = ecc[1];
154
155	/* Initialize the syndrome buffer */
156	for (i = 0; i < NROOTS; i++)
157		s[i] = ds[0];
158	/*
159	 *  Evaluate
160	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
161	 *  where x = alpha^(FCR + i)
162	 */
163	for (j = 1; j < NROOTS; j++) {
164		if (ds[j] == 0)
165			continue;
166		tmp = rs->index_of[ds[j]];
167		for (i = 0; i < NROOTS; i++)
168			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
169	}
170
171	/* Calc syn[i] = s[i] / alpha^(v + i) */
172	for (i = 0; i < NROOTS; i++) {
173		if (s[i])
174			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
175	}
176	/* Call the decoder library */
177	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
178
179	/* Incorrectable errors ? */
180	if (nerr < 0)
181		return nerr;
182
183	/*
184	 * Correct the errors. The bitpositions are a bit of magic,
185	 * but they are given by the design of the de/encoder circuit
186	 * in the DoC ASIC's.
187	 */
188	for (i = 0; i < nerr; i++) {
189		int index, bitpos, pos = 1015 - errpos[i];
190		uint8_t val;
191		if (pos >= NB_DATA && pos < 1019)
192			continue;
193		if (pos < NB_DATA) {
194			/* extract bit position (MSB first) */
195			pos = 10 * (NB_DATA - 1 - pos) - 6;
196			/* now correct the following 10 bits. At most two bytes
197			   can be modified since pos is even */
198			index = (pos >> 3) ^ 1;
199			bitpos = pos & 7;
200			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
201				val = (uint8_t) (errval[i] >> (2 + bitpos));
202				parity ^= val;
203				if (index < SECTOR_SIZE)
204					data[index] ^= val;
205			}
206			index = ((pos >> 3) + 1) ^ 1;
207			bitpos = (bitpos + 10) & 7;
208			if (bitpos == 0)
209				bitpos = 8;
210			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
211				val = (uint8_t) (errval[i] << (8 - bitpos));
212				parity ^= val;
213				if (index < SECTOR_SIZE)
214					data[index] ^= val;
215			}
216		}
217	}
218	/* If the parity is wrong, no rescue possible */
219	return parity ? -EBADMSG : nerr;
220}
221
222static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
223{
224	volatile char dummy;
225	int i;
226
227	for (i = 0; i < cycles; i++) {
228		if (DoC_is_Millennium(doc))
229			dummy = ReadDOC(doc->virtadr, NOP);
230		else if (DoC_is_MillenniumPlus(doc))
231			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
232		else
233			dummy = ReadDOC(doc->virtadr, DOCStatus);
234	}
235
236}
237
238#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
239
240/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
241static int _DoC_WaitReady(struct doc_priv *doc)
242{
243	void __iomem *docptr = doc->virtadr;
244	unsigned long timeo = jiffies + (HZ * 10);
245
246	if (debug)
247		printk("_DoC_WaitReady...\n");
248	/* Out-of-line routine to wait for chip response */
249	if (DoC_is_MillenniumPlus(doc)) {
250		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
251			if (time_after(jiffies, timeo)) {
252				printk("_DoC_WaitReady timed out.\n");
253				return -EIO;
254			}
255			udelay(1);
256			cond_resched();
257		}
258	} else {
259		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
260			if (time_after(jiffies, timeo)) {
261				printk("_DoC_WaitReady timed out.\n");
262				return -EIO;
263			}
264			udelay(1);
265			cond_resched();
266		}
267	}
268
269	return 0;
270}
271
272static inline int DoC_WaitReady(struct doc_priv *doc)
273{
274	void __iomem *docptr = doc->virtadr;
275	int ret = 0;
276
277	if (DoC_is_MillenniumPlus(doc)) {
278		DoC_Delay(doc, 4);
279
280		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
281			/* Call the out-of-line routine to wait */
282			ret = _DoC_WaitReady(doc);
283	} else {
284		DoC_Delay(doc, 4);
285
286		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
287			/* Call the out-of-line routine to wait */
288			ret = _DoC_WaitReady(doc);
289		DoC_Delay(doc, 2);
290	}
291
292	if (debug)
293		printk("DoC_WaitReady OK\n");
294	return ret;
295}
296
297static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
298{
299	struct nand_chip *this = mtd->priv;
300	struct doc_priv *doc = this->priv;
301	void __iomem *docptr = doc->virtadr;
302
303	if (debug)
304		printk("write_byte %02x\n", datum);
305	WriteDOC(datum, docptr, CDSNSlowIO);
306	WriteDOC(datum, docptr, 2k_CDSN_IO);
307}
308
309static u_char doc2000_read_byte(struct mtd_info *mtd)
310{
311	struct nand_chip *this = mtd->priv;
312	struct doc_priv *doc = this->priv;
313	void __iomem *docptr = doc->virtadr;
314	u_char ret;
315
316	ReadDOC(docptr, CDSNSlowIO);
317	DoC_Delay(doc, 2);
318	ret = ReadDOC(docptr, 2k_CDSN_IO);
319	if (debug)
320		printk("read_byte returns %02x\n", ret);
321	return ret;
322}
323
324static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
325{
326	struct nand_chip *this = mtd->priv;
327	struct doc_priv *doc = this->priv;
328	void __iomem *docptr = doc->virtadr;
329	int i;
330	if (debug)
331		printk("writebuf of %d bytes: ", len);
332	for (i = 0; i < len; i++) {
333		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
334		if (debug && i < 16)
335			printk("%02x ", buf[i]);
336	}
337	if (debug)
338		printk("\n");
339}
340
341static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
342{
343	struct nand_chip *this = mtd->priv;
344	struct doc_priv *doc = this->priv;
345	void __iomem *docptr = doc->virtadr;
346	int i;
347
348	if (debug)
349		printk("readbuf of %d bytes: ", len);
350
351	for (i = 0; i < len; i++) {
352		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
353	}
354}
355
356static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
357{
358	struct nand_chip *this = mtd->priv;
359	struct doc_priv *doc = this->priv;
360	void __iomem *docptr = doc->virtadr;
361	int i;
362
363	if (debug)
364		printk("readbuf_dword of %d bytes: ", len);
365
366	if (unlikely((((unsigned long)buf) | len) & 3)) {
367		for (i = 0; i < len; i++) {
368			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
369		}
370	} else {
371		for (i = 0; i < len; i += 4) {
372			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
373		}
374	}
375}
376
377static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
378{
379	struct nand_chip *this = mtd->priv;
380	struct doc_priv *doc = this->priv;
381	uint16_t ret;
382
383	doc200x_select_chip(mtd, nr);
384	doc200x_hwcontrol(mtd, NAND_CMD_READID,
385			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
386	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
387	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
388
389	/* We can't use dev_ready here, but at least we wait for the
390	 * command to complete
391	 */
392	udelay(50);
393
394	ret = this->read_byte(mtd) << 8;
395	ret |= this->read_byte(mtd);
396
397	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
398		/* First chip probe. See if we get same results by 32-bit access */
399		union {
400			uint32_t dword;
401			uint8_t byte[4];
402		} ident;
403		void __iomem *docptr = doc->virtadr;
404
405		doc200x_hwcontrol(mtd, NAND_CMD_READID,
406				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
407		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
408		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
409				  NAND_NCE | NAND_CTRL_CHANGE);
410
411		udelay(50);
412
413		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
414		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
415			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
416			this->read_buf = &doc2000_readbuf_dword;
417		}
418	}
419
420	return ret;
421}
422
423static void __init doc2000_count_chips(struct mtd_info *mtd)
424{
425	struct nand_chip *this = mtd->priv;
426	struct doc_priv *doc = this->priv;
427	uint16_t mfrid;
428	int i;
429
430	/* Max 4 chips per floor on DiskOnChip 2000 */
431	doc->chips_per_floor = 4;
432
433	/* Find out what the first chip is */
434	mfrid = doc200x_ident_chip(mtd, 0);
435
436	/* Find how many chips in each floor. */
437	for (i = 1; i < 4; i++) {
438		if (doc200x_ident_chip(mtd, i) != mfrid)
439			break;
440	}
441	doc->chips_per_floor = i;
442	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
443}
444
445static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
446{
447	struct doc_priv *doc = this->priv;
448
449	int status;
450
451	DoC_WaitReady(doc);
452	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
453	DoC_WaitReady(doc);
454	status = (int)this->read_byte(mtd);
455
456	return status;
457}
458
459static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
460{
461	struct nand_chip *this = mtd->priv;
462	struct doc_priv *doc = this->priv;
463	void __iomem *docptr = doc->virtadr;
464
465	WriteDOC(datum, docptr, CDSNSlowIO);
466	WriteDOC(datum, docptr, Mil_CDSN_IO);
467	WriteDOC(datum, docptr, WritePipeTerm);
468}
469
470static u_char doc2001_read_byte(struct mtd_info *mtd)
471{
472	struct nand_chip *this = mtd->priv;
473	struct doc_priv *doc = this->priv;
474	void __iomem *docptr = doc->virtadr;
475
476	//ReadDOC(docptr, CDSNSlowIO);
477	/* 11.4.5 -- delay twice to allow extended length cycle */
478	DoC_Delay(doc, 2);
479	ReadDOC(docptr, ReadPipeInit);
480	//return ReadDOC(docptr, Mil_CDSN_IO);
481	return ReadDOC(docptr, LastDataRead);
482}
483
484static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
485{
486	struct nand_chip *this = mtd->priv;
487	struct doc_priv *doc = this->priv;
488	void __iomem *docptr = doc->virtadr;
489	int i;
490
491	for (i = 0; i < len; i++)
492		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
493	/* Terminate write pipeline */
494	WriteDOC(0x00, docptr, WritePipeTerm);
495}
496
497static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
498{
499	struct nand_chip *this = mtd->priv;
500	struct doc_priv *doc = this->priv;
501	void __iomem *docptr = doc->virtadr;
502	int i;
503
504	/* Start read pipeline */
505	ReadDOC(docptr, ReadPipeInit);
506
507	for (i = 0; i < len - 1; i++)
508		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
509
510	/* Terminate read pipeline */
511	buf[i] = ReadDOC(docptr, LastDataRead);
512}
513
514static u_char doc2001plus_read_byte(struct mtd_info *mtd)
515{
516	struct nand_chip *this = mtd->priv;
517	struct doc_priv *doc = this->priv;
518	void __iomem *docptr = doc->virtadr;
519	u_char ret;
520
521	ReadDOC(docptr, Mplus_ReadPipeInit);
522	ReadDOC(docptr, Mplus_ReadPipeInit);
523	ret = ReadDOC(docptr, Mplus_LastDataRead);
524	if (debug)
525		printk("read_byte returns %02x\n", ret);
526	return ret;
527}
528
529static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
530{
531	struct nand_chip *this = mtd->priv;
532	struct doc_priv *doc = this->priv;
533	void __iomem *docptr = doc->virtadr;
534	int i;
535
536	if (debug)
537		printk("writebuf of %d bytes: ", len);
538	for (i = 0; i < len; i++) {
539		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
540		if (debug && i < 16)
541			printk("%02x ", buf[i]);
542	}
543	if (debug)
544		printk("\n");
545}
546
547static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
548{
549	struct nand_chip *this = mtd->priv;
550	struct doc_priv *doc = this->priv;
551	void __iomem *docptr = doc->virtadr;
552	int i;
553
554	if (debug)
555		printk("readbuf of %d bytes: ", len);
556
557	/* Start read pipeline */
558	ReadDOC(docptr, Mplus_ReadPipeInit);
559	ReadDOC(docptr, Mplus_ReadPipeInit);
560
561	for (i = 0; i < len - 2; i++) {
562		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
563		if (debug && i < 16)
564			printk("%02x ", buf[i]);
565	}
566
567	/* Terminate read pipeline */
568	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
569	if (debug && i < 16)
570		printk("%02x ", buf[len - 2]);
571	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
572	if (debug && i < 16)
573		printk("%02x ", buf[len - 1]);
574	if (debug)
575		printk("\n");
576}
577
578static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
579{
580	struct nand_chip *this = mtd->priv;
581	struct doc_priv *doc = this->priv;
582	void __iomem *docptr = doc->virtadr;
583	int floor = 0;
584
585	if (debug)
586		printk("select chip (%d)\n", chip);
587
588	if (chip == -1) {
589		/* Disable flash internally */
590		WriteDOC(0, docptr, Mplus_FlashSelect);
591		return;
592	}
593
594	floor = chip / doc->chips_per_floor;
595	chip -= (floor * doc->chips_per_floor);
596
597	/* Assert ChipEnable and deassert WriteProtect */
598	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
599	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
600
601	doc->curchip = chip;
602	doc->curfloor = floor;
603}
604
605static void doc200x_select_chip(struct mtd_info *mtd, int chip)
606{
607	struct nand_chip *this = mtd->priv;
608	struct doc_priv *doc = this->priv;
609	void __iomem *docptr = doc->virtadr;
610	int floor = 0;
611
612	if (debug)
613		printk("select chip (%d)\n", chip);
614
615	if (chip == -1)
616		return;
617
618	floor = chip / doc->chips_per_floor;
619	chip -= (floor * doc->chips_per_floor);
620
621	/* 11.4.4 -- deassert CE before changing chip */
622	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
623
624	WriteDOC(floor, docptr, FloorSelect);
625	WriteDOC(chip, docptr, CDSNDeviceSelect);
626
627	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
628
629	doc->curchip = chip;
630	doc->curfloor = floor;
631}
632
633#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
634
635static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
636			      unsigned int ctrl)
637{
638	struct nand_chip *this = mtd->priv;
639	struct doc_priv *doc = this->priv;
640	void __iomem *docptr = doc->virtadr;
641
642	if (ctrl & NAND_CTRL_CHANGE) {
643		doc->CDSNControl &= ~CDSN_CTRL_MSK;
644		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
645		if (debug)
646			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
647		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
648		/* 11.4.3 -- 4 NOPs after CSDNControl write */
649		DoC_Delay(doc, 4);
650	}
651	if (cmd != NAND_CMD_NONE) {
652		if (DoC_is_2000(doc))
653			doc2000_write_byte(mtd, cmd);
654		else
655			doc2001_write_byte(mtd, cmd);
656	}
657}
658
659static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
660{
661	struct nand_chip *this = mtd->priv;
662	struct doc_priv *doc = this->priv;
663	void __iomem *docptr = doc->virtadr;
664
665	/*
666	 * Must terminate write pipeline before sending any commands
667	 * to the device.
668	 */
669	if (command == NAND_CMD_PAGEPROG) {
670		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
671		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
672	}
673
674	/*
675	 * Write out the command to the device.
676	 */
677	if (command == NAND_CMD_SEQIN) {
678		int readcmd;
679
680		if (column >= mtd->writesize) {
681			/* OOB area */
682			column -= mtd->writesize;
683			readcmd = NAND_CMD_READOOB;
684		} else if (column < 256) {
685			/* First 256 bytes --> READ0 */
686			readcmd = NAND_CMD_READ0;
687		} else {
688			column -= 256;
689			readcmd = NAND_CMD_READ1;
690		}
691		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
692	}
693	WriteDOC(command, docptr, Mplus_FlashCmd);
694	WriteDOC(0, docptr, Mplus_WritePipeTerm);
695	WriteDOC(0, docptr, Mplus_WritePipeTerm);
696
697	if (column != -1 || page_addr != -1) {
698		/* Serially input address */
699		if (column != -1) {
700			/* Adjust columns for 16 bit buswidth */
701			if (this->options & NAND_BUSWIDTH_16 &&
702					!nand_opcode_8bits(command))
703				column >>= 1;
704			WriteDOC(column, docptr, Mplus_FlashAddress);
705		}
706		if (page_addr != -1) {
707			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
708			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
709			/* One more address cycle for higher density devices */
710			if (this->chipsize & 0x0c000000) {
711				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
712				printk("high density\n");
713			}
714		}
715		WriteDOC(0, docptr, Mplus_WritePipeTerm);
716		WriteDOC(0, docptr, Mplus_WritePipeTerm);
717		/* deassert ALE */
718		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
719		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
720			WriteDOC(0, docptr, Mplus_FlashControl);
721	}
722
723	/*
724	 * program and erase have their own busy handlers
725	 * status and sequential in needs no delay
726	 */
727	switch (command) {
728
729	case NAND_CMD_PAGEPROG:
730	case NAND_CMD_ERASE1:
731	case NAND_CMD_ERASE2:
732	case NAND_CMD_SEQIN:
733	case NAND_CMD_STATUS:
734		return;
735
736	case NAND_CMD_RESET:
737		if (this->dev_ready)
738			break;
739		udelay(this->chip_delay);
740		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
741		WriteDOC(0, docptr, Mplus_WritePipeTerm);
742		WriteDOC(0, docptr, Mplus_WritePipeTerm);
743		while (!(this->read_byte(mtd) & 0x40)) ;
744		return;
745
746		/* This applies to read commands */
747	default:
748		/*
749		 * If we don't have access to the busy pin, we apply the given
750		 * command delay
751		 */
752		if (!this->dev_ready) {
753			udelay(this->chip_delay);
754			return;
755		}
756	}
757
758	/* Apply this short delay always to ensure that we do wait tWB in
759	 * any case on any machine. */
760	ndelay(100);
761	/* wait until command is processed */
762	while (!this->dev_ready(mtd)) ;
763}
764
765static int doc200x_dev_ready(struct mtd_info *mtd)
766{
767	struct nand_chip *this = mtd->priv;
768	struct doc_priv *doc = this->priv;
769	void __iomem *docptr = doc->virtadr;
770
771	if (DoC_is_MillenniumPlus(doc)) {
772		/* 11.4.2 -- must NOP four times before checking FR/B# */
773		DoC_Delay(doc, 4);
774		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
775			if (debug)
776				printk("not ready\n");
777			return 0;
778		}
779		if (debug)
780			printk("was ready\n");
781		return 1;
782	} else {
783		/* 11.4.2 -- must NOP four times before checking FR/B# */
784		DoC_Delay(doc, 4);
785		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
786			if (debug)
787				printk("not ready\n");
788			return 0;
789		}
790		/* 11.4.2 -- Must NOP twice if it's ready */
791		DoC_Delay(doc, 2);
792		if (debug)
793			printk("was ready\n");
794		return 1;
795	}
796}
797
798static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
799{
800	/* This is our last resort if we couldn't find or create a BBT.  Just
801	   pretend all blocks are good. */
802	return 0;
803}
804
805static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
806{
807	struct nand_chip *this = mtd->priv;
808	struct doc_priv *doc = this->priv;
809	void __iomem *docptr = doc->virtadr;
810
811	/* Prime the ECC engine */
812	switch (mode) {
813	case NAND_ECC_READ:
814		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
815		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
816		break;
817	case NAND_ECC_WRITE:
818		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
819		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
820		break;
821	}
822}
823
824static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
825{
826	struct nand_chip *this = mtd->priv;
827	struct doc_priv *doc = this->priv;
828	void __iomem *docptr = doc->virtadr;
829
830	/* Prime the ECC engine */
831	switch (mode) {
832	case NAND_ECC_READ:
833		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
834		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
835		break;
836	case NAND_ECC_WRITE:
837		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
838		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
839		break;
840	}
841}
842
843/* This code is only called on write */
844static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
845{
846	struct nand_chip *this = mtd->priv;
847	struct doc_priv *doc = this->priv;
848	void __iomem *docptr = doc->virtadr;
849	int i;
850	int emptymatch = 1;
851
852	/* flush the pipeline */
853	if (DoC_is_2000(doc)) {
854		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
855		WriteDOC(0, docptr, 2k_CDSN_IO);
856		WriteDOC(0, docptr, 2k_CDSN_IO);
857		WriteDOC(0, docptr, 2k_CDSN_IO);
858		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
859	} else if (DoC_is_MillenniumPlus(doc)) {
860		WriteDOC(0, docptr, Mplus_NOP);
861		WriteDOC(0, docptr, Mplus_NOP);
862		WriteDOC(0, docptr, Mplus_NOP);
863	} else {
864		WriteDOC(0, docptr, NOP);
865		WriteDOC(0, docptr, NOP);
866		WriteDOC(0, docptr, NOP);
867	}
868
869	for (i = 0; i < 6; i++) {
870		if (DoC_is_MillenniumPlus(doc))
871			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
872		else
873			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
874		if (ecc_code[i] != empty_write_ecc[i])
875			emptymatch = 0;
876	}
877	if (DoC_is_MillenniumPlus(doc))
878		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
879	else
880		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
881#if 0
882	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
883	if (emptymatch) {
884		/* Note: this somewhat expensive test should not be triggered
885		   often.  It could be optimized away by examining the data in
886		   the writebuf routine, and remembering the result. */
887		for (i = 0; i < 512; i++) {
888			if (dat[i] == 0xff)
889				continue;
890			emptymatch = 0;
891			break;
892		}
893	}
894	/* If emptymatch still =1, we do have an all-0xff data buffer.
895	   Return all-0xff ecc value instead of the computed one, so
896	   it'll look just like a freshly-erased page. */
897	if (emptymatch)
898		memset(ecc_code, 0xff, 6);
899#endif
900	return 0;
901}
902
903static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
904				u_char *read_ecc, u_char *isnull)
905{
906	int i, ret = 0;
907	struct nand_chip *this = mtd->priv;
908	struct doc_priv *doc = this->priv;
909	void __iomem *docptr = doc->virtadr;
910	uint8_t calc_ecc[6];
911	volatile u_char dummy;
912	int emptymatch = 1;
913
914	/* flush the pipeline */
915	if (DoC_is_2000(doc)) {
916		dummy = ReadDOC(docptr, 2k_ECCStatus);
917		dummy = ReadDOC(docptr, 2k_ECCStatus);
918		dummy = ReadDOC(docptr, 2k_ECCStatus);
919	} else if (DoC_is_MillenniumPlus(doc)) {
920		dummy = ReadDOC(docptr, Mplus_ECCConf);
921		dummy = ReadDOC(docptr, Mplus_ECCConf);
922		dummy = ReadDOC(docptr, Mplus_ECCConf);
923	} else {
924		dummy = ReadDOC(docptr, ECCConf);
925		dummy = ReadDOC(docptr, ECCConf);
926		dummy = ReadDOC(docptr, ECCConf);
927	}
928
929	/* Error occurred ? */
930	if (dummy & 0x80) {
931		for (i = 0; i < 6; i++) {
932			if (DoC_is_MillenniumPlus(doc))
933				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
934			else
935				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
936			if (calc_ecc[i] != empty_read_syndrome[i])
937				emptymatch = 0;
938		}
939		/* If emptymatch=1, the read syndrome is consistent with an
940		   all-0xff data and stored ecc block.  Check the stored ecc. */
941		if (emptymatch) {
942			for (i = 0; i < 6; i++) {
943				if (read_ecc[i] == 0xff)
944					continue;
945				emptymatch = 0;
946				break;
947			}
948		}
949		/* If emptymatch still =1, check the data block. */
950		if (emptymatch) {
951			/* Note: this somewhat expensive test should not be triggered
952			   often.  It could be optimized away by examining the data in
953			   the readbuf routine, and remembering the result. */
954			for (i = 0; i < 512; i++) {
955				if (dat[i] == 0xff)
956					continue;
957				emptymatch = 0;
958				break;
959			}
960		}
961		/* If emptymatch still =1, this is almost certainly a freshly-
962		   erased block, in which case the ECC will not come out right.
963		   We'll suppress the error and tell the caller everything's
964		   OK.  Because it is. */
965		if (!emptymatch)
966			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
967		if (ret > 0)
968			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
969	}
970	if (DoC_is_MillenniumPlus(doc))
971		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
972	else
973		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
974	if (no_ecc_failures && mtd_is_eccerr(ret)) {
975		printk(KERN_ERR "suppressing ECC failure\n");
976		ret = 0;
977	}
978	return ret;
979}
980
981//u_char mydatabuf[528];
982
983/* The strange out-of-order .oobfree list below is a (possibly unneeded)
984 * attempt to retain compatibility.  It used to read:
985 * 	.oobfree = { {8, 8} }
986 * Since that leaves two bytes unusable, it was changed.  But the following
987 * scheme might affect existing jffs2 installs by moving the cleanmarker:
988 * 	.oobfree = { {6, 10} }
989 * jffs2 seems to handle the above gracefully, but the current scheme seems
990 * safer.  The only problem with it is that any code that parses oobfree must
991 * be able to handle out-of-order segments.
992 */
993static struct nand_ecclayout doc200x_oobinfo = {
994	.eccbytes = 6,
995	.eccpos = {0, 1, 2, 3, 4, 5},
996	.oobfree = {{8, 8}, {6, 2}}
997};
998
999/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1000   On successful return, buf will contain a copy of the media header for
1001   further processing.  id is the string to scan for, and will presumably be
1002   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1003   header.  The page #s of the found media headers are placed in mh0_page and
1004   mh1_page in the DOC private structure. */
1005static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1006{
1007	struct nand_chip *this = mtd->priv;
1008	struct doc_priv *doc = this->priv;
1009	unsigned offs;
1010	int ret;
1011	size_t retlen;
1012
1013	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1014		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1015		if (retlen != mtd->writesize)
1016			continue;
1017		if (ret) {
1018			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1019		}
1020		if (memcmp(buf, id, 6))
1021			continue;
1022		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1023		if (doc->mh0_page == -1) {
1024			doc->mh0_page = offs >> this->page_shift;
1025			if (!findmirror)
1026				return 1;
1027			continue;
1028		}
1029		doc->mh1_page = offs >> this->page_shift;
1030		return 2;
1031	}
1032	if (doc->mh0_page == -1) {
1033		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1034		return 0;
1035	}
1036	/* Only one mediaheader was found.  We want buf to contain a
1037	   mediaheader on return, so we'll have to re-read the one we found. */
1038	offs = doc->mh0_page << this->page_shift;
1039	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1040	if (retlen != mtd->writesize) {
1041		/* Insanity.  Give up. */
1042		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1043		return 0;
1044	}
1045	return 1;
1046}
1047
1048static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1049{
1050	struct nand_chip *this = mtd->priv;
1051	struct doc_priv *doc = this->priv;
1052	int ret = 0;
1053	u_char *buf;
1054	struct NFTLMediaHeader *mh;
1055	const unsigned psize = 1 << this->page_shift;
1056	int numparts = 0;
1057	unsigned blocks, maxblocks;
1058	int offs, numheaders;
1059
1060	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1061	if (!buf) {
1062		return 0;
1063	}
1064	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1065		goto out;
1066	mh = (struct NFTLMediaHeader *)buf;
1067
1068	le16_to_cpus(&mh->NumEraseUnits);
1069	le16_to_cpus(&mh->FirstPhysicalEUN);
1070	le32_to_cpus(&mh->FormattedSize);
1071
1072	printk(KERN_INFO "    DataOrgID        = %s\n"
1073			 "    NumEraseUnits    = %d\n"
1074			 "    FirstPhysicalEUN = %d\n"
1075			 "    FormattedSize    = %d\n"
1076			 "    UnitSizeFactor   = %d\n",
1077		mh->DataOrgID, mh->NumEraseUnits,
1078		mh->FirstPhysicalEUN, mh->FormattedSize,
1079		mh->UnitSizeFactor);
1080
1081	blocks = mtd->size >> this->phys_erase_shift;
1082	maxblocks = min(32768U, mtd->erasesize - psize);
1083
1084	if (mh->UnitSizeFactor == 0x00) {
1085		/* Auto-determine UnitSizeFactor.  The constraints are:
1086		   - There can be at most 32768 virtual blocks.
1087		   - There can be at most (virtual block size - page size)
1088		   virtual blocks (because MediaHeader+BBT must fit in 1).
1089		 */
1090		mh->UnitSizeFactor = 0xff;
1091		while (blocks > maxblocks) {
1092			blocks >>= 1;
1093			maxblocks = min(32768U, (maxblocks << 1) + psize);
1094			mh->UnitSizeFactor--;
1095		}
1096		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1097	}
1098
1099	/* NOTE: The lines below modify internal variables of the NAND and MTD
1100	   layers; variables with have already been configured by nand_scan.
1101	   Unfortunately, we didn't know before this point what these values
1102	   should be.  Thus, this code is somewhat dependent on the exact
1103	   implementation of the NAND layer.  */
1104	if (mh->UnitSizeFactor != 0xff) {
1105		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1106		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1107		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1108		blocks = mtd->size >> this->bbt_erase_shift;
1109		maxblocks = min(32768U, mtd->erasesize - psize);
1110	}
1111
1112	if (blocks > maxblocks) {
1113		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1114		goto out;
1115	}
1116
1117	/* Skip past the media headers. */
1118	offs = max(doc->mh0_page, doc->mh1_page);
1119	offs <<= this->page_shift;
1120	offs += mtd->erasesize;
1121
1122	if (show_firmware_partition == 1) {
1123		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1124		parts[0].offset = 0;
1125		parts[0].size = offs;
1126		numparts = 1;
1127	}
1128
1129	parts[numparts].name = " DiskOnChip BDTL partition";
1130	parts[numparts].offset = offs;
1131	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1132
1133	offs += parts[numparts].size;
1134	numparts++;
1135
1136	if (offs < mtd->size) {
1137		parts[numparts].name = " DiskOnChip Remainder partition";
1138		parts[numparts].offset = offs;
1139		parts[numparts].size = mtd->size - offs;
1140		numparts++;
1141	}
1142
1143	ret = numparts;
1144 out:
1145	kfree(buf);
1146	return ret;
1147}
1148
1149/* This is a stripped-down copy of the code in inftlmount.c */
1150static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1151{
1152	struct nand_chip *this = mtd->priv;
1153	struct doc_priv *doc = this->priv;
1154	int ret = 0;
1155	u_char *buf;
1156	struct INFTLMediaHeader *mh;
1157	struct INFTLPartition *ip;
1158	int numparts = 0;
1159	int blocks;
1160	int vshift, lastvunit = 0;
1161	int i;
1162	int end = mtd->size;
1163
1164	if (inftl_bbt_write)
1165		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1166
1167	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1168	if (!buf) {
1169		return 0;
1170	}
1171
1172	if (!find_media_headers(mtd, buf, "BNAND", 0))
1173		goto out;
1174	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1175	mh = (struct INFTLMediaHeader *)buf;
1176
1177	le32_to_cpus(&mh->NoOfBootImageBlocks);
1178	le32_to_cpus(&mh->NoOfBinaryPartitions);
1179	le32_to_cpus(&mh->NoOfBDTLPartitions);
1180	le32_to_cpus(&mh->BlockMultiplierBits);
1181	le32_to_cpus(&mh->FormatFlags);
1182	le32_to_cpus(&mh->PercentUsed);
1183
1184	printk(KERN_INFO "    bootRecordID          = %s\n"
1185			 "    NoOfBootImageBlocks   = %d\n"
1186			 "    NoOfBinaryPartitions  = %d\n"
1187			 "    NoOfBDTLPartitions    = %d\n"
1188			 "    BlockMultiplerBits    = %d\n"
1189			 "    FormatFlgs            = %d\n"
1190			 "    OsakVersion           = %d.%d.%d.%d\n"
1191			 "    PercentUsed           = %d\n",
1192		mh->bootRecordID, mh->NoOfBootImageBlocks,
1193		mh->NoOfBinaryPartitions,
1194		mh->NoOfBDTLPartitions,
1195		mh->BlockMultiplierBits, mh->FormatFlags,
1196		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1197		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1198		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1199		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1200		mh->PercentUsed);
1201
1202	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1203
1204	blocks = mtd->size >> vshift;
1205	if (blocks > 32768) {
1206		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1207		goto out;
1208	}
1209
1210	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1211	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1212		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1213		goto out;
1214	}
1215
1216	/* Scan the partitions */
1217	for (i = 0; (i < 4); i++) {
1218		ip = &(mh->Partitions[i]);
1219		le32_to_cpus(&ip->virtualUnits);
1220		le32_to_cpus(&ip->firstUnit);
1221		le32_to_cpus(&ip->lastUnit);
1222		le32_to_cpus(&ip->flags);
1223		le32_to_cpus(&ip->spareUnits);
1224		le32_to_cpus(&ip->Reserved0);
1225
1226		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1227			"        virtualUnits    = %d\n"
1228			"        firstUnit       = %d\n"
1229			"        lastUnit        = %d\n"
1230			"        flags           = 0x%x\n"
1231			"        spareUnits      = %d\n",
1232			i, ip->virtualUnits, ip->firstUnit,
1233			ip->lastUnit, ip->flags,
1234			ip->spareUnits);
1235
1236		if ((show_firmware_partition == 1) &&
1237		    (i == 0) && (ip->firstUnit > 0)) {
1238			parts[0].name = " DiskOnChip IPL / Media Header partition";
1239			parts[0].offset = 0;
1240			parts[0].size = mtd->erasesize * ip->firstUnit;
1241			numparts = 1;
1242		}
1243
1244		if (ip->flags & INFTL_BINARY)
1245			parts[numparts].name = " DiskOnChip BDK partition";
1246		else
1247			parts[numparts].name = " DiskOnChip BDTL partition";
1248		parts[numparts].offset = ip->firstUnit << vshift;
1249		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1250		numparts++;
1251		if (ip->lastUnit > lastvunit)
1252			lastvunit = ip->lastUnit;
1253		if (ip->flags & INFTL_LAST)
1254			break;
1255	}
1256	lastvunit++;
1257	if ((lastvunit << vshift) < end) {
1258		parts[numparts].name = " DiskOnChip Remainder partition";
1259		parts[numparts].offset = lastvunit << vshift;
1260		parts[numparts].size = end - parts[numparts].offset;
1261		numparts++;
1262	}
1263	ret = numparts;
1264 out:
1265	kfree(buf);
1266	return ret;
1267}
1268
1269static int __init nftl_scan_bbt(struct mtd_info *mtd)
1270{
1271	int ret, numparts;
1272	struct nand_chip *this = mtd->priv;
1273	struct doc_priv *doc = this->priv;
1274	struct mtd_partition parts[2];
1275
1276	memset((char *)parts, 0, sizeof(parts));
1277	/* On NFTL, we have to find the media headers before we can read the
1278	   BBTs, since they're stored in the media header eraseblocks. */
1279	numparts = nftl_partscan(mtd, parts);
1280	if (!numparts)
1281		return -EIO;
1282	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1283				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1284				NAND_BBT_VERSION;
1285	this->bbt_td->veroffs = 7;
1286	this->bbt_td->pages[0] = doc->mh0_page + 1;
1287	if (doc->mh1_page != -1) {
1288		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1289					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1290					NAND_BBT_VERSION;
1291		this->bbt_md->veroffs = 7;
1292		this->bbt_md->pages[0] = doc->mh1_page + 1;
1293	} else {
1294		this->bbt_md = NULL;
1295	}
1296
1297	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1298	   At least as nand_bbt.c is currently written. */
1299	if ((ret = nand_scan_bbt(mtd, NULL)))
1300		return ret;
1301	mtd_device_register(mtd, NULL, 0);
1302	if (!no_autopart)
1303		mtd_device_register(mtd, parts, numparts);
1304	return 0;
1305}
1306
1307static int __init inftl_scan_bbt(struct mtd_info *mtd)
1308{
1309	int ret, numparts;
1310	struct nand_chip *this = mtd->priv;
1311	struct doc_priv *doc = this->priv;
1312	struct mtd_partition parts[5];
1313
1314	if (this->numchips > doc->chips_per_floor) {
1315		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1316		return -EIO;
1317	}
1318
1319	if (DoC_is_MillenniumPlus(doc)) {
1320		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1321		if (inftl_bbt_write)
1322			this->bbt_td->options |= NAND_BBT_WRITE;
1323		this->bbt_td->pages[0] = 2;
1324		this->bbt_md = NULL;
1325	} else {
1326		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1327		if (inftl_bbt_write)
1328			this->bbt_td->options |= NAND_BBT_WRITE;
1329		this->bbt_td->offs = 8;
1330		this->bbt_td->len = 8;
1331		this->bbt_td->veroffs = 7;
1332		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1333		this->bbt_td->reserved_block_code = 0x01;
1334		this->bbt_td->pattern = "MSYS_BBT";
1335
1336		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1337		if (inftl_bbt_write)
1338			this->bbt_md->options |= NAND_BBT_WRITE;
1339		this->bbt_md->offs = 8;
1340		this->bbt_md->len = 8;
1341		this->bbt_md->veroffs = 7;
1342		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1343		this->bbt_md->reserved_block_code = 0x01;
1344		this->bbt_md->pattern = "TBB_SYSM";
1345	}
1346
1347	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1348	   At least as nand_bbt.c is currently written. */
1349	if ((ret = nand_scan_bbt(mtd, NULL)))
1350		return ret;
1351	memset((char *)parts, 0, sizeof(parts));
1352	numparts = inftl_partscan(mtd, parts);
1353	/* At least for now, require the INFTL Media Header.  We could probably
1354	   do without it for non-INFTL use, since all it gives us is
1355	   autopartitioning, but I want to give it more thought. */
1356	if (!numparts)
1357		return -EIO;
1358	mtd_device_register(mtd, NULL, 0);
1359	if (!no_autopart)
1360		mtd_device_register(mtd, parts, numparts);
1361	return 0;
1362}
1363
1364static inline int __init doc2000_init(struct mtd_info *mtd)
1365{
1366	struct nand_chip *this = mtd->priv;
1367	struct doc_priv *doc = this->priv;
1368
1369	this->read_byte = doc2000_read_byte;
1370	this->write_buf = doc2000_writebuf;
1371	this->read_buf = doc2000_readbuf;
1372	this->scan_bbt = nftl_scan_bbt;
1373
1374	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1375	doc2000_count_chips(mtd);
1376	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1377	return (4 * doc->chips_per_floor);
1378}
1379
1380static inline int __init doc2001_init(struct mtd_info *mtd)
1381{
1382	struct nand_chip *this = mtd->priv;
1383	struct doc_priv *doc = this->priv;
1384
1385	this->read_byte = doc2001_read_byte;
1386	this->write_buf = doc2001_writebuf;
1387	this->read_buf = doc2001_readbuf;
1388
1389	ReadDOC(doc->virtadr, ChipID);
1390	ReadDOC(doc->virtadr, ChipID);
1391	ReadDOC(doc->virtadr, ChipID);
1392	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1393		/* It's not a Millennium; it's one of the newer
1394		   DiskOnChip 2000 units with a similar ASIC.
1395		   Treat it like a Millennium, except that it
1396		   can have multiple chips. */
1397		doc2000_count_chips(mtd);
1398		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1399		this->scan_bbt = inftl_scan_bbt;
1400		return (4 * doc->chips_per_floor);
1401	} else {
1402		/* Bog-standard Millennium */
1403		doc->chips_per_floor = 1;
1404		mtd->name = "DiskOnChip Millennium";
1405		this->scan_bbt = nftl_scan_bbt;
1406		return 1;
1407	}
1408}
1409
1410static inline int __init doc2001plus_init(struct mtd_info *mtd)
1411{
1412	struct nand_chip *this = mtd->priv;
1413	struct doc_priv *doc = this->priv;
1414
1415	this->read_byte = doc2001plus_read_byte;
1416	this->write_buf = doc2001plus_writebuf;
1417	this->read_buf = doc2001plus_readbuf;
1418	this->scan_bbt = inftl_scan_bbt;
1419	this->cmd_ctrl = NULL;
1420	this->select_chip = doc2001plus_select_chip;
1421	this->cmdfunc = doc2001plus_command;
1422	this->ecc.hwctl = doc2001plus_enable_hwecc;
1423
1424	doc->chips_per_floor = 1;
1425	mtd->name = "DiskOnChip Millennium Plus";
1426
1427	return 1;
1428}
1429
1430static int __init doc_probe(unsigned long physadr)
1431{
1432	unsigned char ChipID;
1433	struct mtd_info *mtd;
1434	struct nand_chip *nand;
1435	struct doc_priv *doc;
1436	void __iomem *virtadr;
1437	unsigned char save_control;
1438	unsigned char tmp, tmpb, tmpc;
1439	int reg, len, numchips;
1440	int ret = 0;
1441
1442	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1443		return -EBUSY;
1444	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1445	if (!virtadr) {
1446		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1447		ret = -EIO;
1448		goto error_ioremap;
1449	}
1450
1451	/* It's not possible to cleanly detect the DiskOnChip - the
1452	 * bootup procedure will put the device into reset mode, and
1453	 * it's not possible to talk to it without actually writing
1454	 * to the DOCControl register. So we store the current contents
1455	 * of the DOCControl register's location, in case we later decide
1456	 * that it's not a DiskOnChip, and want to put it back how we
1457	 * found it.
1458	 */
1459	save_control = ReadDOC(virtadr, DOCControl);
1460
1461	/* Reset the DiskOnChip ASIC */
1462	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1463	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1464
1465	/* Enable the DiskOnChip ASIC */
1466	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1467	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1468
1469	ChipID = ReadDOC(virtadr, ChipID);
1470
1471	switch (ChipID) {
1472	case DOC_ChipID_Doc2k:
1473		reg = DoC_2k_ECCStatus;
1474		break;
1475	case DOC_ChipID_DocMil:
1476		reg = DoC_ECCConf;
1477		break;
1478	case DOC_ChipID_DocMilPlus16:
1479	case DOC_ChipID_DocMilPlus32:
1480	case 0:
1481		/* Possible Millennium Plus, need to do more checks */
1482		/* Possibly release from power down mode */
1483		for (tmp = 0; (tmp < 4); tmp++)
1484			ReadDOC(virtadr, Mplus_Power);
1485
1486		/* Reset the Millennium Plus ASIC */
1487		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1488		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490
1491		mdelay(1);
1492		/* Enable the Millennium Plus ASIC */
1493		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1494		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1495		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1496		mdelay(1);
1497
1498		ChipID = ReadDOC(virtadr, ChipID);
1499
1500		switch (ChipID) {
1501		case DOC_ChipID_DocMilPlus16:
1502			reg = DoC_Mplus_Toggle;
1503			break;
1504		case DOC_ChipID_DocMilPlus32:
1505			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1506		default:
1507			ret = -ENODEV;
1508			goto notfound;
1509		}
1510		break;
1511
1512	default:
1513		ret = -ENODEV;
1514		goto notfound;
1515	}
1516	/* Check the TOGGLE bit in the ECC register */
1517	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1518	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1519	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1520	if ((tmp == tmpb) || (tmp != tmpc)) {
1521		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1522		ret = -ENODEV;
1523		goto notfound;
1524	}
1525
1526	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1527		unsigned char oldval;
1528		unsigned char newval;
1529		nand = mtd->priv;
1530		doc = nand->priv;
1531		/* Use the alias resolution register to determine if this is
1532		   in fact the same DOC aliased to a new address.  If writes
1533		   to one chip's alias resolution register change the value on
1534		   the other chip, they're the same chip. */
1535		if (ChipID == DOC_ChipID_DocMilPlus16) {
1536			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1537			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1538		} else {
1539			oldval = ReadDOC(doc->virtadr, AliasResolution);
1540			newval = ReadDOC(virtadr, AliasResolution);
1541		}
1542		if (oldval != newval)
1543			continue;
1544		if (ChipID == DOC_ChipID_DocMilPlus16) {
1545			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1546			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1547			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1548		} else {
1549			WriteDOC(~newval, virtadr, AliasResolution);
1550			oldval = ReadDOC(doc->virtadr, AliasResolution);
1551			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1552		}
1553		newval = ~newval;
1554		if (oldval == newval) {
1555			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1556			goto notfound;
1557		}
1558	}
1559
1560	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1561
1562	len = sizeof(struct mtd_info) +
1563	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1564	mtd = kzalloc(len, GFP_KERNEL);
1565	if (!mtd) {
1566		ret = -ENOMEM;
1567		goto fail;
1568	}
1569
1570	nand			= (struct nand_chip *) (mtd + 1);
1571	doc			= (struct doc_priv *) (nand + 1);
1572	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1573	nand->bbt_md		= nand->bbt_td + 1;
1574
1575	mtd->priv		= nand;
1576	mtd->owner		= THIS_MODULE;
1577
1578	nand->priv		= doc;
1579	nand->select_chip	= doc200x_select_chip;
1580	nand->cmd_ctrl		= doc200x_hwcontrol;
1581	nand->dev_ready		= doc200x_dev_ready;
1582	nand->waitfunc		= doc200x_wait;
1583	nand->block_bad		= doc200x_block_bad;
1584	nand->ecc.hwctl		= doc200x_enable_hwecc;
1585	nand->ecc.calculate	= doc200x_calculate_ecc;
1586	nand->ecc.correct	= doc200x_correct_data;
1587
1588	nand->ecc.layout	= &doc200x_oobinfo;
1589	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1590	nand->ecc.size		= 512;
1591	nand->ecc.bytes		= 6;
1592	nand->ecc.strength	= 2;
1593	nand->bbt_options	= NAND_BBT_USE_FLASH;
1594
1595	doc->physadr		= physadr;
1596	doc->virtadr		= virtadr;
1597	doc->ChipID		= ChipID;
1598	doc->curfloor		= -1;
1599	doc->curchip		= -1;
1600	doc->mh0_page		= -1;
1601	doc->mh1_page		= -1;
1602	doc->nextdoc		= doclist;
1603
1604	if (ChipID == DOC_ChipID_Doc2k)
1605		numchips = doc2000_init(mtd);
1606	else if (ChipID == DOC_ChipID_DocMilPlus16)
1607		numchips = doc2001plus_init(mtd);
1608	else
1609		numchips = doc2001_init(mtd);
1610
1611	if ((ret = nand_scan(mtd, numchips))) {
1612		/* DBB note: i believe nand_release is necessary here, as
1613		   buffers may have been allocated in nand_base.  Check with
1614		   Thomas. FIX ME! */
1615		/* nand_release will call mtd_device_unregister, but we
1616		   haven't yet added it.  This is handled without incident by
1617		   mtd_device_unregister, as far as I can tell. */
1618		nand_release(mtd);
1619		kfree(mtd);
1620		goto fail;
1621	}
1622
1623	/* Success! */
1624	doclist = mtd;
1625	return 0;
1626
1627 notfound:
1628	/* Put back the contents of the DOCControl register, in case it's not
1629	   actually a DiskOnChip.  */
1630	WriteDOC(save_control, virtadr, DOCControl);
1631 fail:
1632	iounmap(virtadr);
1633
1634error_ioremap:
1635	release_mem_region(physadr, DOC_IOREMAP_LEN);
1636
1637	return ret;
1638}
1639
1640static void release_nanddoc(void)
1641{
1642	struct mtd_info *mtd, *nextmtd;
1643	struct nand_chip *nand;
1644	struct doc_priv *doc;
1645
1646	for (mtd = doclist; mtd; mtd = nextmtd) {
1647		nand = mtd->priv;
1648		doc = nand->priv;
1649
1650		nextmtd = doc->nextdoc;
1651		nand_release(mtd);
1652		iounmap(doc->virtadr);
1653		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1654		kfree(mtd);
1655	}
1656}
1657
1658static int __init init_nanddoc(void)
1659{
1660	int i, ret = 0;
1661
1662	/* We could create the decoder on demand, if memory is a concern.
1663	 * This way we have it handy, if an error happens
1664	 *
1665	 * Symbolsize is 10 (bits)
1666	 * Primitve polynomial is x^10+x^3+1
1667	 * first consecutive root is 510
1668	 * primitve element to generate roots = 1
1669	 * generator polinomial degree = 4
1670	 */
1671	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1672	if (!rs_decoder) {
1673		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1674		return -ENOMEM;
1675	}
1676
1677	if (doc_config_location) {
1678		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1679		ret = doc_probe(doc_config_location);
1680		if (ret < 0)
1681			goto outerr;
1682	} else {
1683		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1684			doc_probe(doc_locations[i]);
1685		}
1686	}
1687	/* No banner message any more. Print a message if no DiskOnChip
1688	   found, so the user knows we at least tried. */
1689	if (!doclist) {
1690		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1691		ret = -ENODEV;
1692		goto outerr;
1693	}
1694	return 0;
1695 outerr:
1696	free_rs(rs_decoder);
1697	return ret;
1698}
1699
1700static void __exit cleanup_nanddoc(void)
1701{
1702	/* Cleanup the nand/DoC resources */
1703	release_nanddoc();
1704
1705	/* Free the reed solomon resources */
1706	if (rs_decoder) {
1707		free_rs(rs_decoder);
1708	}
1709}
1710
1711module_init(init_nanddoc);
1712module_exit(cleanup_nanddoc);
1713
1714MODULE_LICENSE("GPL");
1715MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1716MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1717