1/*
2 * Common Flash Interface support:
3 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/kernel.h>
26#include <linux/sched.h>
27#include <asm/io.h>
28#include <asm/byteorder.h>
29
30#include <linux/errno.h>
31#include <linux/slab.h>
32#include <linux/delay.h>
33#include <linux/interrupt.h>
34#include <linux/reboot.h>
35#include <linux/of.h>
36#include <linux/of_platform.h>
37#include <linux/mtd/map.h>
38#include <linux/mtd/mtd.h>
39#include <linux/mtd/cfi.h>
40#include <linux/mtd/xip.h>
41
42#define AMD_BOOTLOC_BUG
43#define FORCE_WORD_WRITE 0
44
45#define MAX_WORD_RETRIES 3
46
47#define SST49LF004B	        0x0060
48#define SST49LF040B	        0x0050
49#define SST49LF008A		0x005a
50#define AT49BV6416		0x00d6
51
52static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57static void cfi_amdstd_sync (struct mtd_info *);
58static int cfi_amdstd_suspend (struct mtd_info *);
59static void cfi_amdstd_resume (struct mtd_info *);
60static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62					 size_t *, struct otp_info *);
63static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64					 size_t *, struct otp_info *);
65static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67					 size_t *, u_char *);
68static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69					 size_t *, u_char *);
70static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71					  size_t *, u_char *);
72static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
73
74static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75				  size_t *retlen, const u_char *buf);
76
77static void cfi_amdstd_destroy(struct mtd_info *);
78
79struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
81
82static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84#include "fwh_lock.h"
85
86static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
88
89static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
92
93static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94	.probe		= NULL, /* Not usable directly */
95	.destroy	= cfi_amdstd_destroy,
96	.name		= "cfi_cmdset_0002",
97	.module		= THIS_MODULE
98};
99
100
101/* #define DEBUG_CFI_FEATURES */
102
103
104#ifdef DEBUG_CFI_FEATURES
105static void cfi_tell_features(struct cfi_pri_amdstd *extp)
106{
107	const char* erase_suspend[3] = {
108		"Not supported", "Read only", "Read/write"
109	};
110	const char* top_bottom[6] = {
111		"No WP", "8x8KiB sectors at top & bottom, no WP",
112		"Bottom boot", "Top boot",
113		"Uniform, Bottom WP", "Uniform, Top WP"
114	};
115
116	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
117	printk("  Address sensitive unlock: %s\n",
118	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
119
120	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122	else
123		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
124
125	if (extp->BlkProt == 0)
126		printk("  Block protection: Not supported\n");
127	else
128		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
129
130
131	printk("  Temporary block unprotect: %s\n",
132	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135	printk("  Burst mode: %s\n",
136	       extp->BurstMode ? "Supported" : "Not supported");
137	if (extp->PageMode == 0)
138		printk("  Page mode: Not supported\n");
139	else
140		printk("  Page mode: %d word page\n", extp->PageMode << 2);
141
142	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143	       extp->VppMin >> 4, extp->VppMin & 0xf);
144	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145	       extp->VppMax >> 4, extp->VppMax & 0xf);
146
147	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149	else
150		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
151}
152#endif
153
154#ifdef AMD_BOOTLOC_BUG
155/* Wheee. Bring me the head of someone at AMD. */
156static void fixup_amd_bootblock(struct mtd_info *mtd)
157{
158	struct map_info *map = mtd->priv;
159	struct cfi_private *cfi = map->fldrv_priv;
160	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161	__u8 major = extp->MajorVersion;
162	__u8 minor = extp->MinorVersion;
163
164	if (((major << 8) | minor) < 0x3131) {
165		/* CFI version 1.0 => don't trust bootloc */
166
167		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168			map->name, cfi->mfr, cfi->id);
169
170		/* AFAICS all 29LV400 with a bottom boot block have a device ID
171		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172		 * These were badly detected as they have the 0x80 bit set
173		 * so treat them as a special case.
174		 */
175		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
176
177			/* Macronix added CFI to their 2nd generation
178			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179			 * Fujitsu, Spansion, EON, ESI and older Macronix)
180			 * has CFI.
181			 *
182			 * Therefore also check the manufacturer.
183			 * This reduces the risk of false detection due to
184			 * the 8-bit device ID.
185			 */
186			(cfi->mfr == CFI_MFR_MACRONIX)) {
187			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188				" detected\n", map->name);
189			extp->TopBottom = 2;	/* bottom boot */
190		} else
191		if (cfi->id & 0x80) {
192			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193			extp->TopBottom = 3;	/* top boot */
194		} else {
195			extp->TopBottom = 2;	/* bottom boot */
196		}
197
198		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199			" deduced %s from Device ID\n", map->name, major, minor,
200			extp->TopBottom == 2 ? "bottom" : "top");
201	}
202}
203#endif
204
205static void fixup_use_write_buffers(struct mtd_info *mtd)
206{
207	struct map_info *map = mtd->priv;
208	struct cfi_private *cfi = map->fldrv_priv;
209	if (cfi->cfiq->BufWriteTimeoutTyp) {
210		pr_debug("Using buffer write method\n" );
211		mtd->_write = cfi_amdstd_write_buffers;
212	}
213}
214
215/* Atmel chips don't use the same PRI format as AMD chips */
216static void fixup_convert_atmel_pri(struct mtd_info *mtd)
217{
218	struct map_info *map = mtd->priv;
219	struct cfi_private *cfi = map->fldrv_priv;
220	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221	struct cfi_pri_atmel atmel_pri;
222
223	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
225
226	if (atmel_pri.Features & 0x02)
227		extp->EraseSuspend = 2;
228
229	/* Some chips got it backwards... */
230	if (cfi->id == AT49BV6416) {
231		if (atmel_pri.BottomBoot)
232			extp->TopBottom = 3;
233		else
234			extp->TopBottom = 2;
235	} else {
236		if (atmel_pri.BottomBoot)
237			extp->TopBottom = 2;
238		else
239			extp->TopBottom = 3;
240	}
241
242	/* burst write mode not supported */
243	cfi->cfiq->BufWriteTimeoutTyp = 0;
244	cfi->cfiq->BufWriteTimeoutMax = 0;
245}
246
247static void fixup_use_secsi(struct mtd_info *mtd)
248{
249	/* Setup for chips with a secsi area */
250	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
252}
253
254static void fixup_use_erase_chip(struct mtd_info *mtd)
255{
256	struct map_info *map = mtd->priv;
257	struct cfi_private *cfi = map->fldrv_priv;
258	if ((cfi->cfiq->NumEraseRegions == 1) &&
259		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260		mtd->_erase = cfi_amdstd_erase_chip;
261	}
262
263}
264
265/*
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267 * locked by default.
268 */
269static void fixup_use_atmel_lock(struct mtd_info *mtd)
270{
271	mtd->_lock = cfi_atmel_lock;
272	mtd->_unlock = cfi_atmel_unlock;
273	mtd->flags |= MTD_POWERUP_LOCK;
274}
275
276static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
277{
278	struct map_info *map = mtd->priv;
279	struct cfi_private *cfi = map->fldrv_priv;
280
281	/*
282	 * These flashes report two separate eraseblock regions based on the
283	 * sector_erase-size and block_erase-size, although they both operate on the
284	 * same memory. This is not allowed according to CFI, so we just pick the
285	 * sector_erase-size.
286	 */
287	cfi->cfiq->NumEraseRegions = 1;
288}
289
290static void fixup_sst39vf(struct mtd_info *mtd)
291{
292	struct map_info *map = mtd->priv;
293	struct cfi_private *cfi = map->fldrv_priv;
294
295	fixup_old_sst_eraseregion(mtd);
296
297	cfi->addr_unlock1 = 0x5555;
298	cfi->addr_unlock2 = 0x2AAA;
299}
300
301static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
302{
303	struct map_info *map = mtd->priv;
304	struct cfi_private *cfi = map->fldrv_priv;
305
306	fixup_old_sst_eraseregion(mtd);
307
308	cfi->addr_unlock1 = 0x555;
309	cfi->addr_unlock2 = 0x2AA;
310
311	cfi->sector_erase_cmd = CMD(0x50);
312}
313
314static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
315{
316	struct map_info *map = mtd->priv;
317	struct cfi_private *cfi = map->fldrv_priv;
318
319	fixup_sst39vf_rev_b(mtd);
320
321	/*
322	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323	 * it should report a size of 8KBytes (0x0020*256).
324	 */
325	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
327}
328
329static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
330{
331	struct map_info *map = mtd->priv;
332	struct cfi_private *cfi = map->fldrv_priv;
333
334	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
335		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
336		pr_warning("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", mtd->name);
337	}
338}
339
340static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
341{
342	struct map_info *map = mtd->priv;
343	struct cfi_private *cfi = map->fldrv_priv;
344
345	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
346		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
347		pr_warning("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", mtd->name);
348	}
349}
350
351static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
352{
353	struct map_info *map = mtd->priv;
354	struct cfi_private *cfi = map->fldrv_priv;
355
356	/*
357	 *  S29NS512P flash uses more than 8bits to report number of sectors,
358	 * which is not permitted by CFI.
359	 */
360	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
361	pr_warning("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", mtd->name);
362}
363
364/* Used to fix CFI-Tables of chips without Extended Query Tables */
365static struct cfi_fixup cfi_nopri_fixup_table[] = {
366	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
367	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
368	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
369	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
370	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
371	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
372	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
373	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
374	{ 0, 0, NULL }
375};
376
377static struct cfi_fixup cfi_fixup_table[] = {
378	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
379#ifdef AMD_BOOTLOC_BUG
380	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
381	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
382	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
383#endif
384	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
385	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
386	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
387	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
388	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
389	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
390	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
391	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
392	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
393	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
394	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
395	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
396	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
397	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
398	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
399#if !FORCE_WORD_WRITE
400	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
401#endif
402	{ 0, 0, NULL }
403};
404static struct cfi_fixup jedec_fixup_table[] = {
405	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
406	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
407	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
408	{ 0, 0, NULL }
409};
410
411static struct cfi_fixup fixup_table[] = {
412	/* The CFI vendor ids and the JEDEC vendor IDs appear
413	 * to be common.  It is like the devices id's are as
414	 * well.  This table is to pick all cases where
415	 * we know that is the case.
416	 */
417	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
418	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
419	{ 0, 0, NULL }
420};
421
422
423static void cfi_fixup_major_minor(struct cfi_private *cfi,
424				  struct cfi_pri_amdstd *extp)
425{
426	if (cfi->mfr == CFI_MFR_SAMSUNG) {
427		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
428		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
429			/*
430			 * Samsung K8P2815UQB and K8D6x16UxM chips
431			 * report major=0 / minor=0.
432			 * K8D3x16UxC chips report major=3 / minor=3.
433			 */
434			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
435			       " Extended Query version to 1.%c\n",
436			       extp->MinorVersion);
437			extp->MajorVersion = '1';
438		}
439	}
440
441	/*
442	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
443	 */
444	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
445		extp->MajorVersion = '1';
446		extp->MinorVersion = '0';
447	}
448}
449
450static int is_m29ew(struct cfi_private *cfi)
451{
452	if (cfi->mfr == CFI_MFR_INTEL &&
453	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
454	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
455		return 1;
456	return 0;
457}
458
459/*
460 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
461 * Some revisions of the M29EW suffer from erase suspend hang ups. In
462 * particular, it can occur when the sequence
463 * Erase Confirm -> Suspend -> Program -> Resume
464 * causes a lockup due to internal timing issues. The consequence is that the
465 * erase cannot be resumed without inserting a dummy command after programming
466 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
467 * that writes an F0 command code before the RESUME command.
468 */
469static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
470					  unsigned long adr)
471{
472	struct cfi_private *cfi = map->fldrv_priv;
473	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
474	if (is_m29ew(cfi))
475		map_write(map, CMD(0xF0), adr);
476}
477
478/*
479 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
480 *
481 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
482 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
483 * command is issued after an ERASE RESUME operation without waiting for a
484 * minimum delay.  The result is that once the ERASE seems to be completed
485 * (no bits are toggling), the contents of the Flash memory block on which
486 * the erase was ongoing could be inconsistent with the expected values
487 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
488 * values), causing a consequent failure of the ERASE operation.
489 * The occurrence of this issue could be high, especially when file system
490 * operations on the Flash are intensive.  As a result, it is recommended
491 * that a patch be applied.  Intensive file system operations can cause many
492 * calls to the garbage routine to free Flash space (also by erasing physical
493 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
494 * commands can occur.  The problem disappears when a delay is inserted after
495 * the RESUME command by using the udelay() function available in Linux.
496 * The DELAY value must be tuned based on the customer's platform.
497 * The maximum value that fixes the problem in all cases is 500us.
498 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
499 * in most cases.
500 * We have chosen 500µs because this latency is acceptable.
501 */
502static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
503{
504	/*
505	 * Resolving the Delay After Resume Issue see Micron TN-13-07
506	 * Worst case delay must be 500µs but 30-50µs should be ok as well
507	 */
508	if (is_m29ew(cfi))
509		cfi_udelay(500);
510}
511
512struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
513{
514	struct cfi_private *cfi = map->fldrv_priv;
515	struct device_node __maybe_unused *np = map->device_node;
516	struct mtd_info *mtd;
517	int i;
518
519	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
520	if (!mtd)
521		return NULL;
522	mtd->priv = map;
523	mtd->type = MTD_NORFLASH;
524
525	/* Fill in the default mtd operations */
526	mtd->_erase   = cfi_amdstd_erase_varsize;
527	mtd->_write   = cfi_amdstd_write_words;
528	mtd->_read    = cfi_amdstd_read;
529	mtd->_sync    = cfi_amdstd_sync;
530	mtd->_suspend = cfi_amdstd_suspend;
531	mtd->_resume  = cfi_amdstd_resume;
532	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
533	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
534	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
535	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
536	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
537	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
538	mtd->flags   = MTD_CAP_NORFLASH;
539	mtd->name    = map->name;
540	mtd->writesize = 1;
541	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
542
543	pr_debug("MTD %s(): write buffer size %d\n", __func__,
544			mtd->writebufsize);
545
546	mtd->_panic_write = cfi_amdstd_panic_write;
547	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
548
549	if (cfi->cfi_mode==CFI_MODE_CFI){
550		unsigned char bootloc;
551		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
552		struct cfi_pri_amdstd *extp;
553
554		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
555		if (extp) {
556			/*
557			 * It's a real CFI chip, not one for which the probe
558			 * routine faked a CFI structure.
559			 */
560			cfi_fixup_major_minor(cfi, extp);
561
562			/*
563			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
564			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
565			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
566			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
567			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
568			 */
569			if (extp->MajorVersion != '1' ||
570			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
571				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
572				       "version %c.%c (%#02x/%#02x).\n",
573				       extp->MajorVersion, extp->MinorVersion,
574				       extp->MajorVersion, extp->MinorVersion);
575				kfree(extp);
576				kfree(mtd);
577				return NULL;
578			}
579
580			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
581			       extp->MajorVersion, extp->MinorVersion);
582
583			/* Install our own private info structure */
584			cfi->cmdset_priv = extp;
585
586			/* Apply cfi device specific fixups */
587			cfi_fixup(mtd, cfi_fixup_table);
588
589#ifdef DEBUG_CFI_FEATURES
590			/* Tell the user about it in lots of lovely detail */
591			cfi_tell_features(extp);
592#endif
593
594#ifdef CONFIG_OF
595			if (np && of_property_read_bool(
596				    np, "use-advanced-sector-protection")
597			    && extp->BlkProtUnprot == 8) {
598				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
599				mtd->_lock = cfi_ppb_lock;
600				mtd->_unlock = cfi_ppb_unlock;
601				mtd->_is_locked = cfi_ppb_is_locked;
602			}
603#endif
604
605			bootloc = extp->TopBottom;
606			if ((bootloc < 2) || (bootloc > 5)) {
607				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
608				       "bank location (%d). Assuming bottom.\n",
609				       map->name, bootloc);
610				bootloc = 2;
611			}
612
613			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
614				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
615
616				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
617					int j = (cfi->cfiq->NumEraseRegions-1)-i;
618					__u32 swap;
619
620					swap = cfi->cfiq->EraseRegionInfo[i];
621					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
622					cfi->cfiq->EraseRegionInfo[j] = swap;
623				}
624			}
625			/* Set the default CFI lock/unlock addresses */
626			cfi->addr_unlock1 = 0x555;
627			cfi->addr_unlock2 = 0x2aa;
628		}
629		cfi_fixup(mtd, cfi_nopri_fixup_table);
630
631		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
632			kfree(mtd);
633			return NULL;
634		}
635
636	} /* CFI mode */
637	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
638		/* Apply jedec specific fixups */
639		cfi_fixup(mtd, jedec_fixup_table);
640	}
641	/* Apply generic fixups */
642	cfi_fixup(mtd, fixup_table);
643
644	for (i=0; i< cfi->numchips; i++) {
645		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
646		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
647		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
648		/*
649		 * First calculate the timeout max according to timeout field
650		 * of struct cfi_ident that probed from chip's CFI aera, if
651		 * available. Specify a minimum of 2000us, in case the CFI data
652		 * is wrong.
653		 */
654		if (cfi->cfiq->BufWriteTimeoutTyp &&
655		    cfi->cfiq->BufWriteTimeoutMax)
656			cfi->chips[i].buffer_write_time_max =
657				1 << (cfi->cfiq->BufWriteTimeoutTyp +
658				      cfi->cfiq->BufWriteTimeoutMax);
659		else
660			cfi->chips[i].buffer_write_time_max = 0;
661
662		cfi->chips[i].buffer_write_time_max =
663			max(cfi->chips[i].buffer_write_time_max, 2000);
664
665		cfi->chips[i].ref_point_counter = 0;
666		init_waitqueue_head(&(cfi->chips[i].wq));
667	}
668
669	map->fldrv = &cfi_amdstd_chipdrv;
670
671	return cfi_amdstd_setup(mtd);
672}
673struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
674struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
675EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
676EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
677EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
678
679static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
680{
681	struct map_info *map = mtd->priv;
682	struct cfi_private *cfi = map->fldrv_priv;
683	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
684	unsigned long offset = 0;
685	int i,j;
686
687	printk(KERN_NOTICE "number of %s chips: %d\n",
688	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
689	/* Select the correct geometry setup */
690	mtd->size = devsize * cfi->numchips;
691
692	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
693	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
694				    * mtd->numeraseregions, GFP_KERNEL);
695	if (!mtd->eraseregions)
696		goto setup_err;
697
698	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
699		unsigned long ernum, ersize;
700		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
701		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
702
703		if (mtd->erasesize < ersize) {
704			mtd->erasesize = ersize;
705		}
706		for (j=0; j<cfi->numchips; j++) {
707			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
708			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
709			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
710		}
711		offset += (ersize * ernum);
712	}
713	if (offset != devsize) {
714		/* Argh */
715		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
716		goto setup_err;
717	}
718
719	__module_get(THIS_MODULE);
720	register_reboot_notifier(&mtd->reboot_notifier);
721	return mtd;
722
723 setup_err:
724	kfree(mtd->eraseregions);
725	kfree(mtd);
726	kfree(cfi->cmdset_priv);
727	kfree(cfi->cfiq);
728	return NULL;
729}
730
731/*
732 * Return true if the chip is ready.
733 *
734 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
735 * non-suspended sector) and is indicated by no toggle bits toggling.
736 *
737 * Note that anything more complicated than checking if no bits are toggling
738 * (including checking DQ5 for an error status) is tricky to get working
739 * correctly and is therefore not done	(particularly with interleaved chips
740 * as each chip must be checked independently of the others).
741 */
742static int __xipram chip_ready(struct map_info *map, unsigned long addr)
743{
744	map_word d, t;
745
746	d = map_read(map, addr);
747	t = map_read(map, addr);
748
749	return map_word_equal(map, d, t);
750}
751
752/*
753 * Return true if the chip is ready and has the correct value.
754 *
755 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
756 * non-suspended sector) and it is indicated by no bits toggling.
757 *
758 * Error are indicated by toggling bits or bits held with the wrong value,
759 * or with bits toggling.
760 *
761 * Note that anything more complicated than checking if no bits are toggling
762 * (including checking DQ5 for an error status) is tricky to get working
763 * correctly and is therefore not done	(particularly with interleaved chips
764 * as each chip must be checked independently of the others).
765 *
766 */
767static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
768{
769	map_word oldd, curd;
770
771	oldd = map_read(map, addr);
772	curd = map_read(map, addr);
773
774	return	map_word_equal(map, oldd, curd) &&
775		map_word_equal(map, curd, expected);
776}
777
778static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
779{
780	DECLARE_WAITQUEUE(wait, current);
781	struct cfi_private *cfi = map->fldrv_priv;
782	unsigned long timeo;
783	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
784
785 resettime:
786	timeo = jiffies + HZ;
787 retry:
788	switch (chip->state) {
789
790	case FL_STATUS:
791		for (;;) {
792			if (chip_ready(map, adr))
793				break;
794
795			if (time_after(jiffies, timeo)) {
796				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
797				return -EIO;
798			}
799			mutex_unlock(&chip->mutex);
800			cfi_udelay(1);
801			mutex_lock(&chip->mutex);
802			/* Someone else might have been playing with it. */
803			goto retry;
804		}
805
806	case FL_READY:
807	case FL_CFI_QUERY:
808	case FL_JEDEC_QUERY:
809		return 0;
810
811	case FL_ERASING:
812		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
813		    !(mode == FL_READY || mode == FL_POINT ||
814		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
815			goto sleep;
816
817		/* We could check to see if we're trying to access the sector
818		 * that is currently being erased. However, no user will try
819		 * anything like that so we just wait for the timeout. */
820
821		/* Erase suspend */
822		/* It's harmless to issue the Erase-Suspend and Erase-Resume
823		 * commands when the erase algorithm isn't in progress. */
824		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
825		chip->oldstate = FL_ERASING;
826		chip->state = FL_ERASE_SUSPENDING;
827		chip->erase_suspended = 1;
828		for (;;) {
829			if (chip_ready(map, adr))
830				break;
831
832			if (time_after(jiffies, timeo)) {
833				/* Should have suspended the erase by now.
834				 * Send an Erase-Resume command as either
835				 * there was an error (so leave the erase
836				 * routine to recover from it) or we trying to
837				 * use the erase-in-progress sector. */
838				put_chip(map, chip, adr);
839				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
840				return -EIO;
841			}
842
843			mutex_unlock(&chip->mutex);
844			cfi_udelay(1);
845			mutex_lock(&chip->mutex);
846			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
847			   So we can just loop here. */
848		}
849		chip->state = FL_READY;
850		return 0;
851
852	case FL_XIP_WHILE_ERASING:
853		if (mode != FL_READY && mode != FL_POINT &&
854		    (!cfip || !(cfip->EraseSuspend&2)))
855			goto sleep;
856		chip->oldstate = chip->state;
857		chip->state = FL_READY;
858		return 0;
859
860	case FL_SHUTDOWN:
861		/* The machine is rebooting */
862		return -EIO;
863
864	case FL_POINT:
865		/* Only if there's no operation suspended... */
866		if (mode == FL_READY && chip->oldstate == FL_READY)
867			return 0;
868
869	default:
870	sleep:
871		set_current_state(TASK_UNINTERRUPTIBLE);
872		add_wait_queue(&chip->wq, &wait);
873		mutex_unlock(&chip->mutex);
874		schedule();
875		remove_wait_queue(&chip->wq, &wait);
876		mutex_lock(&chip->mutex);
877		goto resettime;
878	}
879}
880
881
882static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
883{
884	struct cfi_private *cfi = map->fldrv_priv;
885
886	switch(chip->oldstate) {
887	case FL_ERASING:
888		cfi_fixup_m29ew_erase_suspend(map,
889			chip->in_progress_block_addr);
890		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
891		cfi_fixup_m29ew_delay_after_resume(cfi);
892		chip->oldstate = FL_READY;
893		chip->state = FL_ERASING;
894		break;
895
896	case FL_XIP_WHILE_ERASING:
897		chip->state = chip->oldstate;
898		chip->oldstate = FL_READY;
899		break;
900
901	case FL_READY:
902	case FL_STATUS:
903		break;
904	default:
905		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
906	}
907	wake_up(&chip->wq);
908}
909
910#ifdef CONFIG_MTD_XIP
911
912/*
913 * No interrupt what so ever can be serviced while the flash isn't in array
914 * mode.  This is ensured by the xip_disable() and xip_enable() functions
915 * enclosing any code path where the flash is known not to be in array mode.
916 * And within a XIP disabled code path, only functions marked with __xipram
917 * may be called and nothing else (it's a good thing to inspect generated
918 * assembly to make sure inline functions were actually inlined and that gcc
919 * didn't emit calls to its own support functions). Also configuring MTD CFI
920 * support to a single buswidth and a single interleave is also recommended.
921 */
922
923static void xip_disable(struct map_info *map, struct flchip *chip,
924			unsigned long adr)
925{
926	/* TODO: chips with no XIP use should ignore and return */
927	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
928	local_irq_disable();
929}
930
931static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
932				unsigned long adr)
933{
934	struct cfi_private *cfi = map->fldrv_priv;
935
936	if (chip->state != FL_POINT && chip->state != FL_READY) {
937		map_write(map, CMD(0xf0), adr);
938		chip->state = FL_READY;
939	}
940	(void) map_read(map, adr);
941	xip_iprefetch();
942	local_irq_enable();
943}
944
945/*
946 * When a delay is required for the flash operation to complete, the
947 * xip_udelay() function is polling for both the given timeout and pending
948 * (but still masked) hardware interrupts.  Whenever there is an interrupt
949 * pending then the flash erase operation is suspended, array mode restored
950 * and interrupts unmasked.  Task scheduling might also happen at that
951 * point.  The CPU eventually returns from the interrupt or the call to
952 * schedule() and the suspended flash operation is resumed for the remaining
953 * of the delay period.
954 *
955 * Warning: this function _will_ fool interrupt latency tracing tools.
956 */
957
958static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
959				unsigned long adr, int usec)
960{
961	struct cfi_private *cfi = map->fldrv_priv;
962	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
963	map_word status, OK = CMD(0x80);
964	unsigned long suspended, start = xip_currtime();
965	flstate_t oldstate;
966
967	do {
968		cpu_relax();
969		if (xip_irqpending() && extp &&
970		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
971		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
972			/*
973			 * Let's suspend the erase operation when supported.
974			 * Note that we currently don't try to suspend
975			 * interleaved chips if there is already another
976			 * operation suspended (imagine what happens
977			 * when one chip was already done with the current
978			 * operation while another chip suspended it, then
979			 * we resume the whole thing at once).  Yes, it
980			 * can happen!
981			 */
982			map_write(map, CMD(0xb0), adr);
983			usec -= xip_elapsed_since(start);
984			suspended = xip_currtime();
985			do {
986				if (xip_elapsed_since(suspended) > 100000) {
987					/*
988					 * The chip doesn't want to suspend
989					 * after waiting for 100 msecs.
990					 * This is a critical error but there
991					 * is not much we can do here.
992					 */
993					return;
994				}
995				status = map_read(map, adr);
996			} while (!map_word_andequal(map, status, OK, OK));
997
998			/* Suspend succeeded */
999			oldstate = chip->state;
1000			if (!map_word_bitsset(map, status, CMD(0x40)))
1001				break;
1002			chip->state = FL_XIP_WHILE_ERASING;
1003			chip->erase_suspended = 1;
1004			map_write(map, CMD(0xf0), adr);
1005			(void) map_read(map, adr);
1006			xip_iprefetch();
1007			local_irq_enable();
1008			mutex_unlock(&chip->mutex);
1009			xip_iprefetch();
1010			cond_resched();
1011
1012			/*
1013			 * We're back.  However someone else might have
1014			 * decided to go write to the chip if we are in
1015			 * a suspended erase state.  If so let's wait
1016			 * until it's done.
1017			 */
1018			mutex_lock(&chip->mutex);
1019			while (chip->state != FL_XIP_WHILE_ERASING) {
1020				DECLARE_WAITQUEUE(wait, current);
1021				set_current_state(TASK_UNINTERRUPTIBLE);
1022				add_wait_queue(&chip->wq, &wait);
1023				mutex_unlock(&chip->mutex);
1024				schedule();
1025				remove_wait_queue(&chip->wq, &wait);
1026				mutex_lock(&chip->mutex);
1027			}
1028			/* Disallow XIP again */
1029			local_irq_disable();
1030
1031			/* Correct Erase Suspend Hangups for M29EW */
1032			cfi_fixup_m29ew_erase_suspend(map, adr);
1033			/* Resume the write or erase operation */
1034			map_write(map, cfi->sector_erase_cmd, adr);
1035			chip->state = oldstate;
1036			start = xip_currtime();
1037		} else if (usec >= 1000000/HZ) {
1038			/*
1039			 * Try to save on CPU power when waiting delay
1040			 * is at least a system timer tick period.
1041			 * No need to be extremely accurate here.
1042			 */
1043			xip_cpu_idle();
1044		}
1045		status = map_read(map, adr);
1046	} while (!map_word_andequal(map, status, OK, OK)
1047		 && xip_elapsed_since(start) < usec);
1048}
1049
1050#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1051
1052/*
1053 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1054 * the flash is actively programming or erasing since we have to poll for
1055 * the operation to complete anyway.  We can't do that in a generic way with
1056 * a XIP setup so do it before the actual flash operation in this case
1057 * and stub it out from INVALIDATE_CACHE_UDELAY.
1058 */
1059#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1060	INVALIDATE_CACHED_RANGE(map, from, size)
1061
1062#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1063	UDELAY(map, chip, adr, usec)
1064
1065/*
1066 * Extra notes:
1067 *
1068 * Activating this XIP support changes the way the code works a bit.  For
1069 * example the code to suspend the current process when concurrent access
1070 * happens is never executed because xip_udelay() will always return with the
1071 * same chip state as it was entered with.  This is why there is no care for
1072 * the presence of add_wait_queue() or schedule() calls from within a couple
1073 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1074 * The queueing and scheduling are always happening within xip_udelay().
1075 *
1076 * Similarly, get_chip() and put_chip() just happen to always be executed
1077 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1078 * is in array mode, therefore never executing many cases therein and not
1079 * causing any problem with XIP.
1080 */
1081
1082#else
1083
1084#define xip_disable(map, chip, adr)
1085#define xip_enable(map, chip, adr)
1086#define XIP_INVAL_CACHED_RANGE(x...)
1087
1088#define UDELAY(map, chip, adr, usec)  \
1089do {  \
1090	mutex_unlock(&chip->mutex);  \
1091	cfi_udelay(usec);  \
1092	mutex_lock(&chip->mutex);  \
1093} while (0)
1094
1095#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1096do {  \
1097	mutex_unlock(&chip->mutex);  \
1098	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1099	cfi_udelay(usec);  \
1100	mutex_lock(&chip->mutex);  \
1101} while (0)
1102
1103#endif
1104
1105static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1106{
1107	unsigned long cmd_addr;
1108	struct cfi_private *cfi = map->fldrv_priv;
1109	int ret;
1110
1111	adr += chip->start;
1112
1113	/* Ensure cmd read/writes are aligned. */
1114	cmd_addr = adr & ~(map_bankwidth(map)-1);
1115
1116	mutex_lock(&chip->mutex);
1117	ret = get_chip(map, chip, cmd_addr, FL_READY);
1118	if (ret) {
1119		mutex_unlock(&chip->mutex);
1120		return ret;
1121	}
1122
1123	if (chip->state != FL_POINT && chip->state != FL_READY) {
1124		map_write(map, CMD(0xf0), cmd_addr);
1125		chip->state = FL_READY;
1126	}
1127
1128	map_copy_from(map, buf, adr, len);
1129
1130	put_chip(map, chip, cmd_addr);
1131
1132	mutex_unlock(&chip->mutex);
1133	return 0;
1134}
1135
1136
1137static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1138{
1139	struct map_info *map = mtd->priv;
1140	struct cfi_private *cfi = map->fldrv_priv;
1141	unsigned long ofs;
1142	int chipnum;
1143	int ret = 0;
1144
1145	/* ofs: offset within the first chip that the first read should start */
1146	chipnum = (from >> cfi->chipshift);
1147	ofs = from - (chipnum <<  cfi->chipshift);
1148
1149	while (len) {
1150		unsigned long thislen;
1151
1152		if (chipnum >= cfi->numchips)
1153			break;
1154
1155		if ((len + ofs -1) >> cfi->chipshift)
1156			thislen = (1<<cfi->chipshift) - ofs;
1157		else
1158			thislen = len;
1159
1160		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1161		if (ret)
1162			break;
1163
1164		*retlen += thislen;
1165		len -= thislen;
1166		buf += thislen;
1167
1168		ofs = 0;
1169		chipnum++;
1170	}
1171	return ret;
1172}
1173
1174typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1175			loff_t adr, size_t len, u_char *buf, size_t grouplen);
1176
1177static inline void otp_enter(struct map_info *map, struct flchip *chip,
1178			     loff_t adr, size_t len)
1179{
1180	struct cfi_private *cfi = map->fldrv_priv;
1181
1182	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1183			 cfi->device_type, NULL);
1184	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1185			 cfi->device_type, NULL);
1186	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1187			 cfi->device_type, NULL);
1188
1189	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1190}
1191
1192static inline void otp_exit(struct map_info *map, struct flchip *chip,
1193			    loff_t adr, size_t len)
1194{
1195	struct cfi_private *cfi = map->fldrv_priv;
1196
1197	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1198			 cfi->device_type, NULL);
1199	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1200			 cfi->device_type, NULL);
1201	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1202			 cfi->device_type, NULL);
1203	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1204			 cfi->device_type, NULL);
1205
1206	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1207}
1208
1209static inline int do_read_secsi_onechip(struct map_info *map,
1210					struct flchip *chip, loff_t adr,
1211					size_t len, u_char *buf,
1212					size_t grouplen)
1213{
1214	DECLARE_WAITQUEUE(wait, current);
1215	unsigned long timeo = jiffies + HZ;
1216
1217 retry:
1218	mutex_lock(&chip->mutex);
1219
1220	if (chip->state != FL_READY){
1221		set_current_state(TASK_UNINTERRUPTIBLE);
1222		add_wait_queue(&chip->wq, &wait);
1223
1224		mutex_unlock(&chip->mutex);
1225
1226		schedule();
1227		remove_wait_queue(&chip->wq, &wait);
1228		timeo = jiffies + HZ;
1229
1230		goto retry;
1231	}
1232
1233	adr += chip->start;
1234
1235	chip->state = FL_READY;
1236
1237	otp_enter(map, chip, adr, len);
1238	map_copy_from(map, buf, adr, len);
1239	otp_exit(map, chip, adr, len);
1240
1241	wake_up(&chip->wq);
1242	mutex_unlock(&chip->mutex);
1243
1244	return 0;
1245}
1246
1247static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1248{
1249	struct map_info *map = mtd->priv;
1250	struct cfi_private *cfi = map->fldrv_priv;
1251	unsigned long ofs;
1252	int chipnum;
1253	int ret = 0;
1254
1255	/* ofs: offset within the first chip that the first read should start */
1256	/* 8 secsi bytes per chip */
1257	chipnum=from>>3;
1258	ofs=from & 7;
1259
1260	while (len) {
1261		unsigned long thislen;
1262
1263		if (chipnum >= cfi->numchips)
1264			break;
1265
1266		if ((len + ofs -1) >> 3)
1267			thislen = (1<<3) - ofs;
1268		else
1269			thislen = len;
1270
1271		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1272					    thislen, buf, 0);
1273		if (ret)
1274			break;
1275
1276		*retlen += thislen;
1277		len -= thislen;
1278		buf += thislen;
1279
1280		ofs = 0;
1281		chipnum++;
1282	}
1283	return ret;
1284}
1285
1286static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1287				     unsigned long adr, map_word datum,
1288				     int mode);
1289
1290static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1291			size_t len, u_char *buf, size_t grouplen)
1292{
1293	int ret;
1294	while (len) {
1295		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1296		int gap = adr - bus_ofs;
1297		int n = min_t(int, len, map_bankwidth(map) - gap);
1298		map_word datum;
1299
1300		if (n != map_bankwidth(map)) {
1301			/* partial write of a word, load old contents */
1302			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1303			datum = map_read(map, bus_ofs);
1304			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1305		}
1306
1307		datum = map_word_load_partial(map, datum, buf, gap, n);
1308		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1309		if (ret)
1310			return ret;
1311
1312		adr += n;
1313		buf += n;
1314		len -= n;
1315	}
1316
1317	return 0;
1318}
1319
1320static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1321		       size_t len, u_char *buf, size_t grouplen)
1322{
1323	struct cfi_private *cfi = map->fldrv_priv;
1324	uint8_t lockreg;
1325	unsigned long timeo;
1326	int ret;
1327
1328	/* make sure area matches group boundaries */
1329	if ((adr != 0) || (len != grouplen))
1330		return -EINVAL;
1331
1332	mutex_lock(&chip->mutex);
1333	ret = get_chip(map, chip, chip->start, FL_LOCKING);
1334	if (ret) {
1335		mutex_unlock(&chip->mutex);
1336		return ret;
1337	}
1338	chip->state = FL_LOCKING;
1339
1340	/* Enter lock register command */
1341	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1342			 cfi->device_type, NULL);
1343	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1344			 cfi->device_type, NULL);
1345	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1346			 cfi->device_type, NULL);
1347
1348	/* read lock register */
1349	lockreg = cfi_read_query(map, 0);
1350
1351	/* set bit 0 to protect extended memory block */
1352	lockreg &= ~0x01;
1353
1354	/* set bit 0 to protect extended memory block */
1355	/* write lock register */
1356	map_write(map, CMD(0xA0), chip->start);
1357	map_write(map, CMD(lockreg), chip->start);
1358
1359	/* wait for chip to become ready */
1360	timeo = jiffies + msecs_to_jiffies(2);
1361	for (;;) {
1362		if (chip_ready(map, adr))
1363			break;
1364
1365		if (time_after(jiffies, timeo)) {
1366			pr_err("Waiting for chip to be ready timed out.\n");
1367			ret = -EIO;
1368			break;
1369		}
1370		UDELAY(map, chip, 0, 1);
1371	}
1372
1373	/* exit protection commands */
1374	map_write(map, CMD(0x90), chip->start);
1375	map_write(map, CMD(0x00), chip->start);
1376
1377	chip->state = FL_READY;
1378	put_chip(map, chip, chip->start);
1379	mutex_unlock(&chip->mutex);
1380
1381	return ret;
1382}
1383
1384static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1385			       size_t *retlen, u_char *buf,
1386			       otp_op_t action, int user_regs)
1387{
1388	struct map_info *map = mtd->priv;
1389	struct cfi_private *cfi = map->fldrv_priv;
1390	int ofs_factor = cfi->interleave * cfi->device_type;
1391	unsigned long base;
1392	int chipnum;
1393	struct flchip *chip;
1394	uint8_t otp, lockreg;
1395	int ret;
1396
1397	size_t user_size, factory_size, otpsize;
1398	loff_t user_offset, factory_offset, otpoffset;
1399	int user_locked = 0, otplocked;
1400
1401	*retlen = 0;
1402
1403	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1404		chip = &cfi->chips[chipnum];
1405		factory_size = 0;
1406		user_size = 0;
1407
1408		/* Micron M29EW family */
1409		if (is_m29ew(cfi)) {
1410			base = chip->start;
1411
1412			/* check whether secsi area is factory locked
1413			   or user lockable */
1414			mutex_lock(&chip->mutex);
1415			ret = get_chip(map, chip, base, FL_CFI_QUERY);
1416			if (ret) {
1417				mutex_unlock(&chip->mutex);
1418				return ret;
1419			}
1420			cfi_qry_mode_on(base, map, cfi);
1421			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1422			cfi_qry_mode_off(base, map, cfi);
1423			put_chip(map, chip, base);
1424			mutex_unlock(&chip->mutex);
1425
1426			if (otp & 0x80) {
1427				/* factory locked */
1428				factory_offset = 0;
1429				factory_size = 0x100;
1430			} else {
1431				/* customer lockable */
1432				user_offset = 0;
1433				user_size = 0x100;
1434
1435				mutex_lock(&chip->mutex);
1436				ret = get_chip(map, chip, base, FL_LOCKING);
1437				if (ret) {
1438					mutex_unlock(&chip->mutex);
1439					return ret;
1440				}
1441
1442				/* Enter lock register command */
1443				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1444						 chip->start, map, cfi,
1445						 cfi->device_type, NULL);
1446				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1447						 chip->start, map, cfi,
1448						 cfi->device_type, NULL);
1449				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1450						 chip->start, map, cfi,
1451						 cfi->device_type, NULL);
1452				/* read lock register */
1453				lockreg = cfi_read_query(map, 0);
1454				/* exit protection commands */
1455				map_write(map, CMD(0x90), chip->start);
1456				map_write(map, CMD(0x00), chip->start);
1457				put_chip(map, chip, chip->start);
1458				mutex_unlock(&chip->mutex);
1459
1460				user_locked = ((lockreg & 0x01) == 0x00);
1461			}
1462		}
1463
1464		otpsize = user_regs ? user_size : factory_size;
1465		if (!otpsize)
1466			continue;
1467		otpoffset = user_regs ? user_offset : factory_offset;
1468		otplocked = user_regs ? user_locked : 1;
1469
1470		if (!action) {
1471			/* return otpinfo */
1472			struct otp_info *otpinfo;
1473			len -= sizeof(*otpinfo);
1474			if (len <= 0)
1475				return -ENOSPC;
1476			otpinfo = (struct otp_info *)buf;
1477			otpinfo->start = from;
1478			otpinfo->length = otpsize;
1479			otpinfo->locked = otplocked;
1480			buf += sizeof(*otpinfo);
1481			*retlen += sizeof(*otpinfo);
1482			from += otpsize;
1483		} else if ((from < otpsize) && (len > 0)) {
1484			size_t size;
1485			size = (len < otpsize - from) ? len : otpsize - from;
1486			ret = action(map, chip, otpoffset + from, size, buf,
1487				     otpsize);
1488			if (ret < 0)
1489				return ret;
1490
1491			buf += size;
1492			len -= size;
1493			*retlen += size;
1494			from = 0;
1495		} else {
1496			from -= otpsize;
1497		}
1498	}
1499	return 0;
1500}
1501
1502static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1503					 size_t *retlen, struct otp_info *buf)
1504{
1505	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1506				   NULL, 0);
1507}
1508
1509static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1510					 size_t *retlen, struct otp_info *buf)
1511{
1512	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1513				   NULL, 1);
1514}
1515
1516static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1517					 size_t len, size_t *retlen,
1518					 u_char *buf)
1519{
1520	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1521				   buf, do_read_secsi_onechip, 0);
1522}
1523
1524static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1525					 size_t len, size_t *retlen,
1526					 u_char *buf)
1527{
1528	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1529				   buf, do_read_secsi_onechip, 1);
1530}
1531
1532static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1533					  size_t len, size_t *retlen,
1534					  u_char *buf)
1535{
1536	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1537				   do_otp_write, 1);
1538}
1539
1540static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1541					 size_t len)
1542{
1543	size_t retlen;
1544	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1545				   do_otp_lock, 1);
1546}
1547
1548static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1549				     unsigned long adr, map_word datum,
1550				     int mode)
1551{
1552	struct cfi_private *cfi = map->fldrv_priv;
1553	unsigned long timeo = jiffies + HZ;
1554	/*
1555	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1556	 * have a max write time of a few hundreds usec). However, we should
1557	 * use the maximum timeout value given by the chip at probe time
1558	 * instead.  Unfortunately, struct flchip does have a field for
1559	 * maximum timeout, only for typical which can be far too short
1560	 * depending of the conditions.	 The ' + 1' is to avoid having a
1561	 * timeout of 0 jiffies if HZ is smaller than 1000.
1562	 */
1563	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1564	int ret = 0;
1565	map_word oldd;
1566	int retry_cnt = 0;
1567
1568	adr += chip->start;
1569
1570	mutex_lock(&chip->mutex);
1571	ret = get_chip(map, chip, adr, mode);
1572	if (ret) {
1573		mutex_unlock(&chip->mutex);
1574		return ret;
1575	}
1576
1577	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1578	       __func__, adr, datum.x[0] );
1579
1580	if (mode == FL_OTP_WRITE)
1581		otp_enter(map, chip, adr, map_bankwidth(map));
1582
1583	/*
1584	 * Check for a NOP for the case when the datum to write is already
1585	 * present - it saves time and works around buggy chips that corrupt
1586	 * data at other locations when 0xff is written to a location that
1587	 * already contains 0xff.
1588	 */
1589	oldd = map_read(map, adr);
1590	if (map_word_equal(map, oldd, datum)) {
1591		pr_debug("MTD %s(): NOP\n",
1592		       __func__);
1593		goto op_done;
1594	}
1595
1596	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1597	ENABLE_VPP(map);
1598	xip_disable(map, chip, adr);
1599
1600 retry:
1601	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1602	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1603	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604	map_write(map, datum, adr);
1605	chip->state = mode;
1606
1607	INVALIDATE_CACHE_UDELAY(map, chip,
1608				adr, map_bankwidth(map),
1609				chip->word_write_time);
1610
1611	/* See comment above for timeout value. */
1612	timeo = jiffies + uWriteTimeout;
1613	for (;;) {
1614		if (chip->state != mode) {
1615			/* Someone's suspended the write. Sleep */
1616			DECLARE_WAITQUEUE(wait, current);
1617
1618			set_current_state(TASK_UNINTERRUPTIBLE);
1619			add_wait_queue(&chip->wq, &wait);
1620			mutex_unlock(&chip->mutex);
1621			schedule();
1622			remove_wait_queue(&chip->wq, &wait);
1623			timeo = jiffies + (HZ / 2); /* FIXME */
1624			mutex_lock(&chip->mutex);
1625			continue;
1626		}
1627
1628		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1629			xip_enable(map, chip, adr);
1630			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1631			xip_disable(map, chip, adr);
1632			break;
1633		}
1634
1635		if (chip_ready(map, adr))
1636			break;
1637
1638		/* Latency issues. Drop the lock, wait a while and retry */
1639		UDELAY(map, chip, adr, 1);
1640	}
1641	/* Did we succeed? */
1642	if (!chip_good(map, adr, datum)) {
1643		/* reset on all failures. */
1644		map_write( map, CMD(0xF0), chip->start );
1645		/* FIXME - should have reset delay before continuing */
1646
1647		if (++retry_cnt <= MAX_WORD_RETRIES)
1648			goto retry;
1649
1650		ret = -EIO;
1651	}
1652	xip_enable(map, chip, adr);
1653 op_done:
1654	if (mode == FL_OTP_WRITE)
1655		otp_exit(map, chip, adr, map_bankwidth(map));
1656	chip->state = FL_READY;
1657	DISABLE_VPP(map);
1658	put_chip(map, chip, adr);
1659	mutex_unlock(&chip->mutex);
1660
1661	return ret;
1662}
1663
1664
1665static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1666				  size_t *retlen, const u_char *buf)
1667{
1668	struct map_info *map = mtd->priv;
1669	struct cfi_private *cfi = map->fldrv_priv;
1670	int ret = 0;
1671	int chipnum;
1672	unsigned long ofs, chipstart;
1673	DECLARE_WAITQUEUE(wait, current);
1674
1675	chipnum = to >> cfi->chipshift;
1676	ofs = to  - (chipnum << cfi->chipshift);
1677	chipstart = cfi->chips[chipnum].start;
1678
1679	/* If it's not bus-aligned, do the first byte write */
1680	if (ofs & (map_bankwidth(map)-1)) {
1681		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1682		int i = ofs - bus_ofs;
1683		int n = 0;
1684		map_word tmp_buf;
1685
1686 retry:
1687		mutex_lock(&cfi->chips[chipnum].mutex);
1688
1689		if (cfi->chips[chipnum].state != FL_READY) {
1690			set_current_state(TASK_UNINTERRUPTIBLE);
1691			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1692
1693			mutex_unlock(&cfi->chips[chipnum].mutex);
1694
1695			schedule();
1696			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1697			goto retry;
1698		}
1699
1700		/* Load 'tmp_buf' with old contents of flash */
1701		tmp_buf = map_read(map, bus_ofs+chipstart);
1702
1703		mutex_unlock(&cfi->chips[chipnum].mutex);
1704
1705		/* Number of bytes to copy from buffer */
1706		n = min_t(int, len, map_bankwidth(map)-i);
1707
1708		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1709
1710		ret = do_write_oneword(map, &cfi->chips[chipnum],
1711				       bus_ofs, tmp_buf, FL_WRITING);
1712		if (ret)
1713			return ret;
1714
1715		ofs += n;
1716		buf += n;
1717		(*retlen) += n;
1718		len -= n;
1719
1720		if (ofs >> cfi->chipshift) {
1721			chipnum ++;
1722			ofs = 0;
1723			if (chipnum == cfi->numchips)
1724				return 0;
1725		}
1726	}
1727
1728	/* We are now aligned, write as much as possible */
1729	while(len >= map_bankwidth(map)) {
1730		map_word datum;
1731
1732		datum = map_word_load(map, buf);
1733
1734		ret = do_write_oneword(map, &cfi->chips[chipnum],
1735				       ofs, datum, FL_WRITING);
1736		if (ret)
1737			return ret;
1738
1739		ofs += map_bankwidth(map);
1740		buf += map_bankwidth(map);
1741		(*retlen) += map_bankwidth(map);
1742		len -= map_bankwidth(map);
1743
1744		if (ofs >> cfi->chipshift) {
1745			chipnum ++;
1746			ofs = 0;
1747			if (chipnum == cfi->numchips)
1748				return 0;
1749			chipstart = cfi->chips[chipnum].start;
1750		}
1751	}
1752
1753	/* Write the trailing bytes if any */
1754	if (len & (map_bankwidth(map)-1)) {
1755		map_word tmp_buf;
1756
1757 retry1:
1758		mutex_lock(&cfi->chips[chipnum].mutex);
1759
1760		if (cfi->chips[chipnum].state != FL_READY) {
1761			set_current_state(TASK_UNINTERRUPTIBLE);
1762			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1763
1764			mutex_unlock(&cfi->chips[chipnum].mutex);
1765
1766			schedule();
1767			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1768			goto retry1;
1769		}
1770
1771		tmp_buf = map_read(map, ofs + chipstart);
1772
1773		mutex_unlock(&cfi->chips[chipnum].mutex);
1774
1775		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1776
1777		ret = do_write_oneword(map, &cfi->chips[chipnum],
1778				       ofs, tmp_buf, FL_WRITING);
1779		if (ret)
1780			return ret;
1781
1782		(*retlen) += len;
1783	}
1784
1785	return 0;
1786}
1787
1788
1789/*
1790 * FIXME: interleaved mode not tested, and probably not supported!
1791 */
1792static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1793				    unsigned long adr, const u_char *buf,
1794				    int len)
1795{
1796	struct cfi_private *cfi = map->fldrv_priv;
1797	unsigned long timeo = jiffies + HZ;
1798	/*
1799	 * Timeout is calculated according to CFI data, if available.
1800	 * See more comments in cfi_cmdset_0002().
1801	 */
1802	unsigned long uWriteTimeout =
1803				usecs_to_jiffies(chip->buffer_write_time_max);
1804	int ret = -EIO;
1805	unsigned long cmd_adr;
1806	int z, words;
1807	map_word datum;
1808
1809	adr += chip->start;
1810	cmd_adr = adr;
1811
1812	mutex_lock(&chip->mutex);
1813	ret = get_chip(map, chip, adr, FL_WRITING);
1814	if (ret) {
1815		mutex_unlock(&chip->mutex);
1816		return ret;
1817	}
1818
1819	datum = map_word_load(map, buf);
1820
1821	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1822	       __func__, adr, datum.x[0] );
1823
1824	XIP_INVAL_CACHED_RANGE(map, adr, len);
1825	ENABLE_VPP(map);
1826	xip_disable(map, chip, cmd_adr);
1827
1828	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1829	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1830
1831	/* Write Buffer Load */
1832	map_write(map, CMD(0x25), cmd_adr);
1833
1834	chip->state = FL_WRITING_TO_BUFFER;
1835
1836	/* Write length of data to come */
1837	words = len / map_bankwidth(map);
1838	map_write(map, CMD(words - 1), cmd_adr);
1839	/* Write data */
1840	z = 0;
1841	while(z < words * map_bankwidth(map)) {
1842		datum = map_word_load(map, buf);
1843		map_write(map, datum, adr + z);
1844
1845		z += map_bankwidth(map);
1846		buf += map_bankwidth(map);
1847	}
1848	z -= map_bankwidth(map);
1849
1850	adr += z;
1851
1852	/* Write Buffer Program Confirm: GO GO GO */
1853	map_write(map, CMD(0x29), cmd_adr);
1854	chip->state = FL_WRITING;
1855
1856	INVALIDATE_CACHE_UDELAY(map, chip,
1857				adr, map_bankwidth(map),
1858				chip->word_write_time);
1859
1860	timeo = jiffies + uWriteTimeout;
1861
1862	for (;;) {
1863		if (chip->state != FL_WRITING) {
1864			/* Someone's suspended the write. Sleep */
1865			DECLARE_WAITQUEUE(wait, current);
1866
1867			set_current_state(TASK_UNINTERRUPTIBLE);
1868			add_wait_queue(&chip->wq, &wait);
1869			mutex_unlock(&chip->mutex);
1870			schedule();
1871			remove_wait_queue(&chip->wq, &wait);
1872			timeo = jiffies + (HZ / 2); /* FIXME */
1873			mutex_lock(&chip->mutex);
1874			continue;
1875		}
1876
1877		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1878			break;
1879
1880		if (chip_ready(map, adr)) {
1881			xip_enable(map, chip, adr);
1882			goto op_done;
1883		}
1884
1885		/* Latency issues. Drop the lock, wait a while and retry */
1886		UDELAY(map, chip, adr, 1);
1887	}
1888
1889	/*
1890	 * Recovery from write-buffer programming failures requires
1891	 * the write-to-buffer-reset sequence.  Since the last part
1892	 * of the sequence also works as a normal reset, we can run
1893	 * the same commands regardless of why we are here.
1894	 * See e.g.
1895	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1896	 */
1897	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1898			 cfi->device_type, NULL);
1899	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1900			 cfi->device_type, NULL);
1901	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1902			 cfi->device_type, NULL);
1903	xip_enable(map, chip, adr);
1904	/* FIXME - should have reset delay before continuing */
1905
1906	printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1907	       __func__, adr);
1908
1909	ret = -EIO;
1910 op_done:
1911	chip->state = FL_READY;
1912	DISABLE_VPP(map);
1913	put_chip(map, chip, adr);
1914	mutex_unlock(&chip->mutex);
1915
1916	return ret;
1917}
1918
1919
1920static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1921				    size_t *retlen, const u_char *buf)
1922{
1923	struct map_info *map = mtd->priv;
1924	struct cfi_private *cfi = map->fldrv_priv;
1925	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1926	int ret = 0;
1927	int chipnum;
1928	unsigned long ofs;
1929
1930	chipnum = to >> cfi->chipshift;
1931	ofs = to  - (chipnum << cfi->chipshift);
1932
1933	/* If it's not bus-aligned, do the first word write */
1934	if (ofs & (map_bankwidth(map)-1)) {
1935		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1936		if (local_len > len)
1937			local_len = len;
1938		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1939					     local_len, retlen, buf);
1940		if (ret)
1941			return ret;
1942		ofs += local_len;
1943		buf += local_len;
1944		len -= local_len;
1945
1946		if (ofs >> cfi->chipshift) {
1947			chipnum ++;
1948			ofs = 0;
1949			if (chipnum == cfi->numchips)
1950				return 0;
1951		}
1952	}
1953
1954	/* Write buffer is worth it only if more than one word to write... */
1955	while (len >= map_bankwidth(map) * 2) {
1956		/* We must not cross write block boundaries */
1957		int size = wbufsize - (ofs & (wbufsize-1));
1958
1959		if (size > len)
1960			size = len;
1961		if (size % map_bankwidth(map))
1962			size -= size % map_bankwidth(map);
1963
1964		ret = do_write_buffer(map, &cfi->chips[chipnum],
1965				      ofs, buf, size);
1966		if (ret)
1967			return ret;
1968
1969		ofs += size;
1970		buf += size;
1971		(*retlen) += size;
1972		len -= size;
1973
1974		if (ofs >> cfi->chipshift) {
1975			chipnum ++;
1976			ofs = 0;
1977			if (chipnum == cfi->numchips)
1978				return 0;
1979		}
1980	}
1981
1982	if (len) {
1983		size_t retlen_dregs = 0;
1984
1985		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1986					     len, &retlen_dregs, buf);
1987
1988		*retlen += retlen_dregs;
1989		return ret;
1990	}
1991
1992	return 0;
1993}
1994
1995/*
1996 * Wait for the flash chip to become ready to write data
1997 *
1998 * This is only called during the panic_write() path. When panic_write()
1999 * is called, the kernel is in the process of a panic, and will soon be
2000 * dead. Therefore we don't take any locks, and attempt to get access
2001 * to the chip as soon as possible.
2002 */
2003static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2004				 unsigned long adr)
2005{
2006	struct cfi_private *cfi = map->fldrv_priv;
2007	int retries = 10;
2008	int i;
2009
2010	/*
2011	 * If the driver thinks the chip is idle, and no toggle bits
2012	 * are changing, then the chip is actually idle for sure.
2013	 */
2014	if (chip->state == FL_READY && chip_ready(map, adr))
2015		return 0;
2016
2017	/*
2018	 * Try several times to reset the chip and then wait for it
2019	 * to become idle. The upper limit of a few milliseconds of
2020	 * delay isn't a big problem: the kernel is dying anyway. It
2021	 * is more important to save the messages.
2022	 */
2023	while (retries > 0) {
2024		const unsigned long timeo = (HZ / 1000) + 1;
2025
2026		/* send the reset command */
2027		map_write(map, CMD(0xF0), chip->start);
2028
2029		/* wait for the chip to become ready */
2030		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2031			if (chip_ready(map, adr))
2032				return 0;
2033
2034			udelay(1);
2035		}
2036
2037		retries--;
2038	}
2039
2040	/* the chip never became ready */
2041	return -EBUSY;
2042}
2043
2044/*
2045 * Write out one word of data to a single flash chip during a kernel panic
2046 *
2047 * This is only called during the panic_write() path. When panic_write()
2048 * is called, the kernel is in the process of a panic, and will soon be
2049 * dead. Therefore we don't take any locks, and attempt to get access
2050 * to the chip as soon as possible.
2051 *
2052 * The implementation of this routine is intentionally similar to
2053 * do_write_oneword(), in order to ease code maintenance.
2054 */
2055static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2056				  unsigned long adr, map_word datum)
2057{
2058	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2059	struct cfi_private *cfi = map->fldrv_priv;
2060	int retry_cnt = 0;
2061	map_word oldd;
2062	int ret = 0;
2063	int i;
2064
2065	adr += chip->start;
2066
2067	ret = cfi_amdstd_panic_wait(map, chip, adr);
2068	if (ret)
2069		return ret;
2070
2071	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2072			__func__, adr, datum.x[0]);
2073
2074	/*
2075	 * Check for a NOP for the case when the datum to write is already
2076	 * present - it saves time and works around buggy chips that corrupt
2077	 * data at other locations when 0xff is written to a location that
2078	 * already contains 0xff.
2079	 */
2080	oldd = map_read(map, adr);
2081	if (map_word_equal(map, oldd, datum)) {
2082		pr_debug("MTD %s(): NOP\n", __func__);
2083		goto op_done;
2084	}
2085
2086	ENABLE_VPP(map);
2087
2088retry:
2089	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2090	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2091	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2092	map_write(map, datum, adr);
2093
2094	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2095		if (chip_ready(map, adr))
2096			break;
2097
2098		udelay(1);
2099	}
2100
2101	if (!chip_good(map, adr, datum)) {
2102		/* reset on all failures. */
2103		map_write(map, CMD(0xF0), chip->start);
2104		/* FIXME - should have reset delay before continuing */
2105
2106		if (++retry_cnt <= MAX_WORD_RETRIES)
2107			goto retry;
2108
2109		ret = -EIO;
2110	}
2111
2112op_done:
2113	DISABLE_VPP(map);
2114	return ret;
2115}
2116
2117/*
2118 * Write out some data during a kernel panic
2119 *
2120 * This is used by the mtdoops driver to save the dying messages from a
2121 * kernel which has panic'd.
2122 *
2123 * This routine ignores all of the locking used throughout the rest of the
2124 * driver, in order to ensure that the data gets written out no matter what
2125 * state this driver (and the flash chip itself) was in when the kernel crashed.
2126 *
2127 * The implementation of this routine is intentionally similar to
2128 * cfi_amdstd_write_words(), in order to ease code maintenance.
2129 */
2130static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2131				  size_t *retlen, const u_char *buf)
2132{
2133	struct map_info *map = mtd->priv;
2134	struct cfi_private *cfi = map->fldrv_priv;
2135	unsigned long ofs, chipstart;
2136	int ret = 0;
2137	int chipnum;
2138
2139	chipnum = to >> cfi->chipshift;
2140	ofs = to - (chipnum << cfi->chipshift);
2141	chipstart = cfi->chips[chipnum].start;
2142
2143	/* If it's not bus aligned, do the first byte write */
2144	if (ofs & (map_bankwidth(map) - 1)) {
2145		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2146		int i = ofs - bus_ofs;
2147		int n = 0;
2148		map_word tmp_buf;
2149
2150		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2151		if (ret)
2152			return ret;
2153
2154		/* Load 'tmp_buf' with old contents of flash */
2155		tmp_buf = map_read(map, bus_ofs + chipstart);
2156
2157		/* Number of bytes to copy from buffer */
2158		n = min_t(int, len, map_bankwidth(map) - i);
2159
2160		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2161
2162		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2163					     bus_ofs, tmp_buf);
2164		if (ret)
2165			return ret;
2166
2167		ofs += n;
2168		buf += n;
2169		(*retlen) += n;
2170		len -= n;
2171
2172		if (ofs >> cfi->chipshift) {
2173			chipnum++;
2174			ofs = 0;
2175			if (chipnum == cfi->numchips)
2176				return 0;
2177		}
2178	}
2179
2180	/* We are now aligned, write as much as possible */
2181	while (len >= map_bankwidth(map)) {
2182		map_word datum;
2183
2184		datum = map_word_load(map, buf);
2185
2186		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2187					     ofs, datum);
2188		if (ret)
2189			return ret;
2190
2191		ofs += map_bankwidth(map);
2192		buf += map_bankwidth(map);
2193		(*retlen) += map_bankwidth(map);
2194		len -= map_bankwidth(map);
2195
2196		if (ofs >> cfi->chipshift) {
2197			chipnum++;
2198			ofs = 0;
2199			if (chipnum == cfi->numchips)
2200				return 0;
2201
2202			chipstart = cfi->chips[chipnum].start;
2203		}
2204	}
2205
2206	/* Write the trailing bytes if any */
2207	if (len & (map_bankwidth(map) - 1)) {
2208		map_word tmp_buf;
2209
2210		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2211		if (ret)
2212			return ret;
2213
2214		tmp_buf = map_read(map, ofs + chipstart);
2215
2216		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2217
2218		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2219					     ofs, tmp_buf);
2220		if (ret)
2221			return ret;
2222
2223		(*retlen) += len;
2224	}
2225
2226	return 0;
2227}
2228
2229
2230/*
2231 * Handle devices with one erase region, that only implement
2232 * the chip erase command.
2233 */
2234static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2235{
2236	struct cfi_private *cfi = map->fldrv_priv;
2237	unsigned long timeo = jiffies + HZ;
2238	unsigned long int adr;
2239	DECLARE_WAITQUEUE(wait, current);
2240	int ret = 0;
2241
2242	adr = cfi->addr_unlock1;
2243
2244	mutex_lock(&chip->mutex);
2245	ret = get_chip(map, chip, adr, FL_WRITING);
2246	if (ret) {
2247		mutex_unlock(&chip->mutex);
2248		return ret;
2249	}
2250
2251	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2252	       __func__, chip->start );
2253
2254	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2255	ENABLE_VPP(map);
2256	xip_disable(map, chip, adr);
2257
2258	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2259	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2260	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2261	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2262	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2263	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2264
2265	chip->state = FL_ERASING;
2266	chip->erase_suspended = 0;
2267	chip->in_progress_block_addr = adr;
2268
2269	INVALIDATE_CACHE_UDELAY(map, chip,
2270				adr, map->size,
2271				chip->erase_time*500);
2272
2273	timeo = jiffies + (HZ*20);
2274
2275	for (;;) {
2276		if (chip->state != FL_ERASING) {
2277			/* Someone's suspended the erase. Sleep */
2278			set_current_state(TASK_UNINTERRUPTIBLE);
2279			add_wait_queue(&chip->wq, &wait);
2280			mutex_unlock(&chip->mutex);
2281			schedule();
2282			remove_wait_queue(&chip->wq, &wait);
2283			mutex_lock(&chip->mutex);
2284			continue;
2285		}
2286		if (chip->erase_suspended) {
2287			/* This erase was suspended and resumed.
2288			   Adjust the timeout */
2289			timeo = jiffies + (HZ*20); /* FIXME */
2290			chip->erase_suspended = 0;
2291		}
2292
2293		if (chip_ready(map, adr))
2294			break;
2295
2296		if (time_after(jiffies, timeo)) {
2297			printk(KERN_WARNING "MTD %s(): software timeout\n",
2298				__func__ );
2299			break;
2300		}
2301
2302		/* Latency issues. Drop the lock, wait a while and retry */
2303		UDELAY(map, chip, adr, 1000000/HZ);
2304	}
2305	/* Did we succeed? */
2306	if (!chip_good(map, adr, map_word_ff(map))) {
2307		/* reset on all failures. */
2308		map_write( map, CMD(0xF0), chip->start );
2309		/* FIXME - should have reset delay before continuing */
2310
2311		ret = -EIO;
2312	}
2313
2314	chip->state = FL_READY;
2315	xip_enable(map, chip, adr);
2316	DISABLE_VPP(map);
2317	put_chip(map, chip, adr);
2318	mutex_unlock(&chip->mutex);
2319
2320	return ret;
2321}
2322
2323
2324static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2325{
2326	struct cfi_private *cfi = map->fldrv_priv;
2327	unsigned long timeo = jiffies + HZ;
2328	DECLARE_WAITQUEUE(wait, current);
2329	int ret = 0;
2330
2331	adr += chip->start;
2332
2333	mutex_lock(&chip->mutex);
2334	ret = get_chip(map, chip, adr, FL_ERASING);
2335	if (ret) {
2336		mutex_unlock(&chip->mutex);
2337		return ret;
2338	}
2339
2340	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2341	       __func__, adr );
2342
2343	XIP_INVAL_CACHED_RANGE(map, adr, len);
2344	ENABLE_VPP(map);
2345	xip_disable(map, chip, adr);
2346
2347	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2348	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2349	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2350	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2351	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2352	map_write(map, cfi->sector_erase_cmd, adr);
2353
2354	chip->state = FL_ERASING;
2355	chip->erase_suspended = 0;
2356	chip->in_progress_block_addr = adr;
2357
2358	INVALIDATE_CACHE_UDELAY(map, chip,
2359				adr, len,
2360				chip->erase_time*500);
2361
2362	timeo = jiffies + (HZ*20);
2363
2364	for (;;) {
2365		if (chip->state != FL_ERASING) {
2366			/* Someone's suspended the erase. Sleep */
2367			set_current_state(TASK_UNINTERRUPTIBLE);
2368			add_wait_queue(&chip->wq, &wait);
2369			mutex_unlock(&chip->mutex);
2370			schedule();
2371			remove_wait_queue(&chip->wq, &wait);
2372			mutex_lock(&chip->mutex);
2373			continue;
2374		}
2375		if (chip->erase_suspended) {
2376			/* This erase was suspended and resumed.
2377			   Adjust the timeout */
2378			timeo = jiffies + (HZ*20); /* FIXME */
2379			chip->erase_suspended = 0;
2380		}
2381
2382		if (chip_ready(map, adr)) {
2383			xip_enable(map, chip, adr);
2384			break;
2385		}
2386
2387		if (time_after(jiffies, timeo)) {
2388			xip_enable(map, chip, adr);
2389			printk(KERN_WARNING "MTD %s(): software timeout\n",
2390				__func__ );
2391			break;
2392		}
2393
2394		/* Latency issues. Drop the lock, wait a while and retry */
2395		UDELAY(map, chip, adr, 1000000/HZ);
2396	}
2397	/* Did we succeed? */
2398	if (!chip_good(map, adr, map_word_ff(map))) {
2399		/* reset on all failures. */
2400		map_write( map, CMD(0xF0), chip->start );
2401		/* FIXME - should have reset delay before continuing */
2402
2403		ret = -EIO;
2404	}
2405
2406	chip->state = FL_READY;
2407	DISABLE_VPP(map);
2408	put_chip(map, chip, adr);
2409	mutex_unlock(&chip->mutex);
2410	return ret;
2411}
2412
2413
2414static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2415{
2416	unsigned long ofs, len;
2417	int ret;
2418
2419	ofs = instr->addr;
2420	len = instr->len;
2421
2422	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2423	if (ret)
2424		return ret;
2425
2426	instr->state = MTD_ERASE_DONE;
2427	mtd_erase_callback(instr);
2428
2429	return 0;
2430}
2431
2432
2433static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2434{
2435	struct map_info *map = mtd->priv;
2436	struct cfi_private *cfi = map->fldrv_priv;
2437	int ret = 0;
2438
2439	if (instr->addr != 0)
2440		return -EINVAL;
2441
2442	if (instr->len != mtd->size)
2443		return -EINVAL;
2444
2445	ret = do_erase_chip(map, &cfi->chips[0]);
2446	if (ret)
2447		return ret;
2448
2449	instr->state = MTD_ERASE_DONE;
2450	mtd_erase_callback(instr);
2451
2452	return 0;
2453}
2454
2455static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2456			 unsigned long adr, int len, void *thunk)
2457{
2458	struct cfi_private *cfi = map->fldrv_priv;
2459	int ret;
2460
2461	mutex_lock(&chip->mutex);
2462	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2463	if (ret)
2464		goto out_unlock;
2465	chip->state = FL_LOCKING;
2466
2467	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2468
2469	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2470			 cfi->device_type, NULL);
2471	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2472			 cfi->device_type, NULL);
2473	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2474			 cfi->device_type, NULL);
2475	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2476			 cfi->device_type, NULL);
2477	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2478			 cfi->device_type, NULL);
2479	map_write(map, CMD(0x40), chip->start + adr);
2480
2481	chip->state = FL_READY;
2482	put_chip(map, chip, adr + chip->start);
2483	ret = 0;
2484
2485out_unlock:
2486	mutex_unlock(&chip->mutex);
2487	return ret;
2488}
2489
2490static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2491			   unsigned long adr, int len, void *thunk)
2492{
2493	struct cfi_private *cfi = map->fldrv_priv;
2494	int ret;
2495
2496	mutex_lock(&chip->mutex);
2497	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2498	if (ret)
2499		goto out_unlock;
2500	chip->state = FL_UNLOCKING;
2501
2502	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2503
2504	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2505			 cfi->device_type, NULL);
2506	map_write(map, CMD(0x70), adr);
2507
2508	chip->state = FL_READY;
2509	put_chip(map, chip, adr + chip->start);
2510	ret = 0;
2511
2512out_unlock:
2513	mutex_unlock(&chip->mutex);
2514	return ret;
2515}
2516
2517static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2518{
2519	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2520}
2521
2522static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2523{
2524	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2525}
2526
2527/*
2528 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2529 */
2530
2531struct ppb_lock {
2532	struct flchip *chip;
2533	loff_t offset;
2534	int locked;
2535};
2536
2537#define MAX_SECTORS			512
2538
2539#define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
2540#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
2541#define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
2542
2543static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2544					struct flchip *chip,
2545					unsigned long adr, int len, void *thunk)
2546{
2547	struct cfi_private *cfi = map->fldrv_priv;
2548	unsigned long timeo;
2549	int ret;
2550
2551	mutex_lock(&chip->mutex);
2552	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2553	if (ret) {
2554		mutex_unlock(&chip->mutex);
2555		return ret;
2556	}
2557
2558	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2559
2560	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2561			 cfi->device_type, NULL);
2562	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2563			 cfi->device_type, NULL);
2564	/* PPB entry command */
2565	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2566			 cfi->device_type, NULL);
2567
2568	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2569		chip->state = FL_LOCKING;
2570		map_write(map, CMD(0xA0), chip->start + adr);
2571		map_write(map, CMD(0x00), chip->start + adr);
2572	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2573		/*
2574		 * Unlocking of one specific sector is not supported, so we
2575		 * have to unlock all sectors of this device instead
2576		 */
2577		chip->state = FL_UNLOCKING;
2578		map_write(map, CMD(0x80), chip->start);
2579		map_write(map, CMD(0x30), chip->start);
2580	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2581		chip->state = FL_JEDEC_QUERY;
2582		/* Return locked status: 0->locked, 1->unlocked */
2583		ret = !cfi_read_query(map, adr);
2584	} else
2585		BUG();
2586
2587	/*
2588	 * Wait for some time as unlocking of all sectors takes quite long
2589	 */
2590	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
2591	for (;;) {
2592		if (chip_ready(map, adr))
2593			break;
2594
2595		if (time_after(jiffies, timeo)) {
2596			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2597			ret = -EIO;
2598			break;
2599		}
2600
2601		UDELAY(map, chip, adr, 1);
2602	}
2603
2604	/* Exit BC commands */
2605	map_write(map, CMD(0x90), chip->start);
2606	map_write(map, CMD(0x00), chip->start);
2607
2608	chip->state = FL_READY;
2609	put_chip(map, chip, adr + chip->start);
2610	mutex_unlock(&chip->mutex);
2611
2612	return ret;
2613}
2614
2615static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2616				       uint64_t len)
2617{
2618	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2619				DO_XXLOCK_ONEBLOCK_LOCK);
2620}
2621
2622static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2623					 uint64_t len)
2624{
2625	struct mtd_erase_region_info *regions = mtd->eraseregions;
2626	struct map_info *map = mtd->priv;
2627	struct cfi_private *cfi = map->fldrv_priv;
2628	struct ppb_lock *sect;
2629	unsigned long adr;
2630	loff_t offset;
2631	uint64_t length;
2632	int chipnum;
2633	int i;
2634	int sectors;
2635	int ret;
2636
2637	/*
2638	 * PPB unlocking always unlocks all sectors of the flash chip.
2639	 * We need to re-lock all previously locked sectors. So lets
2640	 * first check the locking status of all sectors and save
2641	 * it for future use.
2642	 */
2643	sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
2644	if (!sect)
2645		return -ENOMEM;
2646
2647	/*
2648	 * This code to walk all sectors is a slightly modified version
2649	 * of the cfi_varsize_frob() code.
2650	 */
2651	i = 0;
2652	chipnum = 0;
2653	adr = 0;
2654	sectors = 0;
2655	offset = 0;
2656	length = mtd->size;
2657
2658	while (length) {
2659		int size = regions[i].erasesize;
2660
2661		/*
2662		 * Only test sectors that shall not be unlocked. The other
2663		 * sectors shall be unlocked, so lets keep their locking
2664		 * status at "unlocked" (locked=0) for the final re-locking.
2665		 */
2666		if ((adr < ofs) || (adr >= (ofs + len))) {
2667			sect[sectors].chip = &cfi->chips[chipnum];
2668			sect[sectors].offset = offset;
2669			sect[sectors].locked = do_ppb_xxlock(
2670				map, &cfi->chips[chipnum], adr, 0,
2671				DO_XXLOCK_ONEBLOCK_GETLOCK);
2672		}
2673
2674		adr += size;
2675		offset += size;
2676		length -= size;
2677
2678		if (offset == regions[i].offset + size * regions[i].numblocks)
2679			i++;
2680
2681		if (adr >> cfi->chipshift) {
2682			adr = 0;
2683			chipnum++;
2684
2685			if (chipnum >= cfi->numchips)
2686				break;
2687		}
2688
2689		sectors++;
2690		if (sectors >= MAX_SECTORS) {
2691			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2692			       MAX_SECTORS);
2693			kfree(sect);
2694			return -EINVAL;
2695		}
2696	}
2697
2698	/* Now unlock the whole chip */
2699	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2700			       DO_XXLOCK_ONEBLOCK_UNLOCK);
2701	if (ret) {
2702		kfree(sect);
2703		return ret;
2704	}
2705
2706	/*
2707	 * PPB unlocking always unlocks all sectors of the flash chip.
2708	 * We need to re-lock all previously locked sectors.
2709	 */
2710	for (i = 0; i < sectors; i++) {
2711		if (sect[i].locked)
2712			do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
2713				      DO_XXLOCK_ONEBLOCK_LOCK);
2714	}
2715
2716	kfree(sect);
2717	return ret;
2718}
2719
2720static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2721					    uint64_t len)
2722{
2723	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2724				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2725}
2726
2727static void cfi_amdstd_sync (struct mtd_info *mtd)
2728{
2729	struct map_info *map = mtd->priv;
2730	struct cfi_private *cfi = map->fldrv_priv;
2731	int i;
2732	struct flchip *chip;
2733	int ret = 0;
2734	DECLARE_WAITQUEUE(wait, current);
2735
2736	for (i=0; !ret && i<cfi->numchips; i++) {
2737		chip = &cfi->chips[i];
2738
2739	retry:
2740		mutex_lock(&chip->mutex);
2741
2742		switch(chip->state) {
2743		case FL_READY:
2744		case FL_STATUS:
2745		case FL_CFI_QUERY:
2746		case FL_JEDEC_QUERY:
2747			chip->oldstate = chip->state;
2748			chip->state = FL_SYNCING;
2749			/* No need to wake_up() on this state change -
2750			 * as the whole point is that nobody can do anything
2751			 * with the chip now anyway.
2752			 */
2753		case FL_SYNCING:
2754			mutex_unlock(&chip->mutex);
2755			break;
2756
2757		default:
2758			/* Not an idle state */
2759			set_current_state(TASK_UNINTERRUPTIBLE);
2760			add_wait_queue(&chip->wq, &wait);
2761
2762			mutex_unlock(&chip->mutex);
2763
2764			schedule();
2765
2766			remove_wait_queue(&chip->wq, &wait);
2767
2768			goto retry;
2769		}
2770	}
2771
2772	/* Unlock the chips again */
2773
2774	for (i--; i >=0; i--) {
2775		chip = &cfi->chips[i];
2776
2777		mutex_lock(&chip->mutex);
2778
2779		if (chip->state == FL_SYNCING) {
2780			chip->state = chip->oldstate;
2781			wake_up(&chip->wq);
2782		}
2783		mutex_unlock(&chip->mutex);
2784	}
2785}
2786
2787
2788static int cfi_amdstd_suspend(struct mtd_info *mtd)
2789{
2790	struct map_info *map = mtd->priv;
2791	struct cfi_private *cfi = map->fldrv_priv;
2792	int i;
2793	struct flchip *chip;
2794	int ret = 0;
2795
2796	for (i=0; !ret && i<cfi->numchips; i++) {
2797		chip = &cfi->chips[i];
2798
2799		mutex_lock(&chip->mutex);
2800
2801		switch(chip->state) {
2802		case FL_READY:
2803		case FL_STATUS:
2804		case FL_CFI_QUERY:
2805		case FL_JEDEC_QUERY:
2806			chip->oldstate = chip->state;
2807			chip->state = FL_PM_SUSPENDED;
2808			/* No need to wake_up() on this state change -
2809			 * as the whole point is that nobody can do anything
2810			 * with the chip now anyway.
2811			 */
2812		case FL_PM_SUSPENDED:
2813			break;
2814
2815		default:
2816			ret = -EAGAIN;
2817			break;
2818		}
2819		mutex_unlock(&chip->mutex);
2820	}
2821
2822	/* Unlock the chips again */
2823
2824	if (ret) {
2825		for (i--; i >=0; i--) {
2826			chip = &cfi->chips[i];
2827
2828			mutex_lock(&chip->mutex);
2829
2830			if (chip->state == FL_PM_SUSPENDED) {
2831				chip->state = chip->oldstate;
2832				wake_up(&chip->wq);
2833			}
2834			mutex_unlock(&chip->mutex);
2835		}
2836	}
2837
2838	return ret;
2839}
2840
2841
2842static void cfi_amdstd_resume(struct mtd_info *mtd)
2843{
2844	struct map_info *map = mtd->priv;
2845	struct cfi_private *cfi = map->fldrv_priv;
2846	int i;
2847	struct flchip *chip;
2848
2849	for (i=0; i<cfi->numchips; i++) {
2850
2851		chip = &cfi->chips[i];
2852
2853		mutex_lock(&chip->mutex);
2854
2855		if (chip->state == FL_PM_SUSPENDED) {
2856			chip->state = FL_READY;
2857			map_write(map, CMD(0xF0), chip->start);
2858			wake_up(&chip->wq);
2859		}
2860		else
2861			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2862
2863		mutex_unlock(&chip->mutex);
2864	}
2865}
2866
2867
2868/*
2869 * Ensure that the flash device is put back into read array mode before
2870 * unloading the driver or rebooting.  On some systems, rebooting while
2871 * the flash is in query/program/erase mode will prevent the CPU from
2872 * fetching the bootloader code, requiring a hard reset or power cycle.
2873 */
2874static int cfi_amdstd_reset(struct mtd_info *mtd)
2875{
2876	struct map_info *map = mtd->priv;
2877	struct cfi_private *cfi = map->fldrv_priv;
2878	int i, ret;
2879	struct flchip *chip;
2880
2881	for (i = 0; i < cfi->numchips; i++) {
2882
2883		chip = &cfi->chips[i];
2884
2885		mutex_lock(&chip->mutex);
2886
2887		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2888		if (!ret) {
2889			map_write(map, CMD(0xF0), chip->start);
2890			chip->state = FL_SHUTDOWN;
2891			put_chip(map, chip, chip->start);
2892		}
2893
2894		mutex_unlock(&chip->mutex);
2895	}
2896
2897	return 0;
2898}
2899
2900
2901static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2902			       void *v)
2903{
2904	struct mtd_info *mtd;
2905
2906	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2907	cfi_amdstd_reset(mtd);
2908	return NOTIFY_DONE;
2909}
2910
2911
2912static void cfi_amdstd_destroy(struct mtd_info *mtd)
2913{
2914	struct map_info *map = mtd->priv;
2915	struct cfi_private *cfi = map->fldrv_priv;
2916
2917	cfi_amdstd_reset(mtd);
2918	unregister_reboot_notifier(&mtd->reboot_notifier);
2919	kfree(cfi->cmdset_priv);
2920	kfree(cfi->cfiq);
2921	kfree(cfi);
2922	kfree(mtd->eraseregions);
2923}
2924
2925MODULE_LICENSE("GPL");
2926MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2927MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2928MODULE_ALIAS("cfi_cmdset_0006");
2929MODULE_ALIAS("cfi_cmdset_0701");
2930