1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
18#include <linux/jiffies.h>
19#include <linux/ktime.h>
20#include <linux/delay.h>
21#include <linux/kthread.h>
22#include <linux/irqreturn.h>
23
24#include <linux/mei.h>
25
26#include "mei_dev.h"
27#include "hw-txe.h"
28#include "client.h"
29#include "hbm.h"
30
31/**
32 * mei_txe_reg_read - Reads 32bit data from the txe device
33 *
34 * @base_addr: registers base address
35 * @offset: register offset
36 *
37 * Return: register value
38 */
39static inline u32 mei_txe_reg_read(void __iomem *base_addr,
40					unsigned long offset)
41{
42	return ioread32(base_addr + offset);
43}
44
45/**
46 * mei_txe_reg_write - Writes 32bit data to the txe device
47 *
48 * @base_addr: registers base address
49 * @offset: register offset
50 * @value: the value to write
51 */
52static inline void mei_txe_reg_write(void __iomem *base_addr,
53				unsigned long offset, u32 value)
54{
55	iowrite32(value, base_addr + offset);
56}
57
58/**
59 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
60 *
61 * @hw: the txe hardware structure
62 * @offset: register offset
63 *
64 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
65 *
66 * Return: register value
67 */
68static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
69				unsigned long offset)
70{
71	return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
72}
73
74/**
75 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
76 *
77 * @hw: the txe hardware structure
78 * @offset: register offset
79 *
80 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
81 *
82 * Return: register value
83 */
84static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
85				unsigned long offset)
86{
87	WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
88	return mei_txe_sec_reg_read_silent(hw, offset);
89}
90/**
91 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
92 *   doesn't check for aliveness
93 *
94 * @hw: the txe hardware structure
95 * @offset: register offset
96 * @value: value to write
97 *
98 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
99 */
100static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
101				unsigned long offset, u32 value)
102{
103	mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
104}
105
106/**
107 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
108 *
109 * @hw: the txe hardware structure
110 * @offset: register offset
111 * @value: value to write
112 *
113 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
114 */
115static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
116				unsigned long offset, u32 value)
117{
118	WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
119	mei_txe_sec_reg_write_silent(hw, offset, value);
120}
121/**
122 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
123 *
124 * @hw: the txe hardware structure
125 * @offset: offset from which to read the data
126 *
127 * Return: the byte read.
128 */
129static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
130				unsigned long offset)
131{
132	return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
133}
134
135/**
136 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
137 *
138 * @hw: the txe hardware structure
139 * @offset: offset from which to write the data
140 * @value: the byte to write
141 */
142static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
143				unsigned long offset, u32 value)
144{
145	mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
146}
147
148/**
149 * mei_txe_aliveness_set - request for aliveness change
150 *
151 * @dev: the device structure
152 * @req: requested aliveness value
153 *
154 * Request for aliveness change and returns true if the change is
155 *   really needed and false if aliveness is already
156 *   in the requested state
157 *
158 * Locking: called under "dev->device_lock" lock
159 *
160 * Return: true if request was send
161 */
162static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
163{
164
165	struct mei_txe_hw *hw = to_txe_hw(dev);
166	bool do_req = hw->aliveness != req;
167
168	dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
169				hw->aliveness, req);
170	if (do_req) {
171		dev->pg_event = MEI_PG_EVENT_WAIT;
172		mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
173	}
174	return do_req;
175}
176
177
178/**
179 * mei_txe_aliveness_req_get - get aliveness requested register value
180 *
181 * @dev: the device structure
182 *
183 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
184 * from HICR_HOST_ALIVENESS_REQ register value
185 *
186 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
187 */
188static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
189{
190	struct mei_txe_hw *hw = to_txe_hw(dev);
191	u32 reg;
192
193	reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
194	return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
195}
196
197/**
198 * mei_txe_aliveness_get - get aliveness response register value
199 *
200 * @dev: the device structure
201 *
202 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
203 *         register
204 */
205static u32 mei_txe_aliveness_get(struct mei_device *dev)
206{
207	struct mei_txe_hw *hw = to_txe_hw(dev);
208	u32 reg;
209
210	reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
211	return reg & HICR_HOST_ALIVENESS_RESP_ACK;
212}
213
214/**
215 * mei_txe_aliveness_poll - waits for aliveness to settle
216 *
217 * @dev: the device structure
218 * @expected: expected aliveness value
219 *
220 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
221 *
222 * Return: 0 if the expected value was received, -ETIME otherwise
223 */
224static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
225{
226	struct mei_txe_hw *hw = to_txe_hw(dev);
227	ktime_t stop, start;
228
229	start = ktime_get();
230	stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
231	do {
232		hw->aliveness = mei_txe_aliveness_get(dev);
233		if (hw->aliveness == expected) {
234			dev->pg_event = MEI_PG_EVENT_IDLE;
235			dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
236				ktime_to_us(ktime_sub(ktime_get(), start)));
237			return 0;
238		}
239		usleep_range(20, 50);
240	} while (ktime_before(ktime_get(), stop));
241
242	dev->pg_event = MEI_PG_EVENT_IDLE;
243	dev_err(dev->dev, "aliveness timed out\n");
244	return -ETIME;
245}
246
247/**
248 * mei_txe_aliveness_wait - waits for aliveness to settle
249 *
250 * @dev: the device structure
251 * @expected: expected aliveness value
252 *
253 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
254 *
255 * Return: 0 on success and < 0 otherwise
256 */
257static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
258{
259	struct mei_txe_hw *hw = to_txe_hw(dev);
260	const unsigned long timeout =
261			msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
262	long err;
263	int ret;
264
265	hw->aliveness = mei_txe_aliveness_get(dev);
266	if (hw->aliveness == expected)
267		return 0;
268
269	mutex_unlock(&dev->device_lock);
270	err = wait_event_timeout(hw->wait_aliveness_resp,
271			dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
272	mutex_lock(&dev->device_lock);
273
274	hw->aliveness = mei_txe_aliveness_get(dev);
275	ret = hw->aliveness == expected ? 0 : -ETIME;
276
277	if (ret)
278		dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
279			err, hw->aliveness, dev->pg_event);
280	else
281		dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
282			jiffies_to_msecs(timeout - err),
283			hw->aliveness, dev->pg_event);
284
285	dev->pg_event = MEI_PG_EVENT_IDLE;
286	return ret;
287}
288
289/**
290 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
291 *
292 * @dev: the device structure
293 * @req: requested aliveness value
294 *
295 * Return: 0 on success and < 0 otherwise
296 */
297int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
298{
299	if (mei_txe_aliveness_set(dev, req))
300		return mei_txe_aliveness_wait(dev, req);
301	return 0;
302}
303
304/**
305 * mei_txe_pg_in_transition - is device now in pg transition
306 *
307 * @dev: the device structure
308 *
309 * Return: true if in pg transition, false otherwise
310 */
311static bool mei_txe_pg_in_transition(struct mei_device *dev)
312{
313	return dev->pg_event == MEI_PG_EVENT_WAIT;
314}
315
316/**
317 * mei_txe_pg_is_enabled - detect if PG is supported by HW
318 *
319 * @dev: the device structure
320 *
321 * Return: true is pg supported, false otherwise
322 */
323static bool mei_txe_pg_is_enabled(struct mei_device *dev)
324{
325	return true;
326}
327
328/**
329 * mei_txe_pg_state  - translate aliveness register value
330 *   to the mei power gating state
331 *
332 * @dev: the device structure
333 *
334 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
335 */
336static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
337{
338	struct mei_txe_hw *hw = to_txe_hw(dev);
339
340	return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
341}
342
343/**
344 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
345 *
346 * @dev: the device structure
347 */
348static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
349{
350	struct mei_txe_hw *hw = to_txe_hw(dev);
351	u32 hintmsk;
352	/* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
353	hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
354	hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
355	mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
356}
357
358/**
359 * mei_txe_input_doorbell_set - sets bit 0 in
360 *    SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
361 *
362 * @hw: the txe hardware structure
363 */
364static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
365{
366	/* Clear the interrupt cause */
367	clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
368	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
369}
370
371/**
372 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
373 *
374 * @hw: the txe hardware structure
375 */
376static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
377{
378	mei_txe_br_reg_write(hw,
379			SICR_SEC_IPC_OUTPUT_STATUS_REG,
380			SEC_IPC_OUTPUT_STATUS_RDY);
381}
382
383/**
384 * mei_txe_is_input_ready - check if TXE is ready for receiving data
385 *
386 * @dev: the device structure
387 *
388 * Return: true if INPUT STATUS READY bit is set
389 */
390static bool mei_txe_is_input_ready(struct mei_device *dev)
391{
392	struct mei_txe_hw *hw = to_txe_hw(dev);
393	u32 status;
394
395	status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
396	return !!(SEC_IPC_INPUT_STATUS_RDY & status);
397}
398
399/**
400 * mei_txe_intr_clear - clear all interrupts
401 *
402 * @dev: the device structure
403 */
404static inline void mei_txe_intr_clear(struct mei_device *dev)
405{
406	struct mei_txe_hw *hw = to_txe_hw(dev);
407
408	mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
409		SEC_IPC_HOST_INT_STATUS_PENDING);
410	mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
411	mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
412}
413
414/**
415 * mei_txe_intr_disable - disable all interrupts
416 *
417 * @dev: the device structure
418 */
419static void mei_txe_intr_disable(struct mei_device *dev)
420{
421	struct mei_txe_hw *hw = to_txe_hw(dev);
422
423	mei_txe_br_reg_write(hw, HHIER_REG, 0);
424	mei_txe_br_reg_write(hw, HIER_REG, 0);
425}
426/**
427 * mei_txe_intr_enable - enable all interrupts
428 *
429 * @dev: the device structure
430 */
431static void mei_txe_intr_enable(struct mei_device *dev)
432{
433	struct mei_txe_hw *hw = to_txe_hw(dev);
434
435	mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
436	mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
437}
438
439/**
440 * mei_txe_pending_interrupts - check if there are pending interrupts
441 *	only Aliveness, Input ready, and output doorbell are of relevance
442 *
443 * @dev: the device structure
444 *
445 * Checks if there are pending interrupts
446 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
447 *
448 * Return: true if there are pending interrupts
449 */
450static bool mei_txe_pending_interrupts(struct mei_device *dev)
451{
452
453	struct mei_txe_hw *hw = to_txe_hw(dev);
454	bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
455				      TXE_INTR_ALIVENESS |
456				      TXE_INTR_IN_READY  |
457				      TXE_INTR_OUT_DB));
458
459	if (ret) {
460		dev_dbg(dev->dev,
461			"Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
462			!!(hw->intr_cause & TXE_INTR_IN_READY),
463			!!(hw->intr_cause & TXE_INTR_READINESS),
464			!!(hw->intr_cause & TXE_INTR_ALIVENESS),
465			!!(hw->intr_cause & TXE_INTR_OUT_DB));
466	}
467	return ret;
468}
469
470/**
471 * mei_txe_input_payload_write - write a dword to the host buffer
472 *	at offset idx
473 *
474 * @dev: the device structure
475 * @idx: index in the host buffer
476 * @value: value
477 */
478static void mei_txe_input_payload_write(struct mei_device *dev,
479			unsigned long idx, u32 value)
480{
481	struct mei_txe_hw *hw = to_txe_hw(dev);
482
483	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
484			(idx * sizeof(u32)), value);
485}
486
487/**
488 * mei_txe_out_data_read - read dword from the device buffer
489 *	at offset idx
490 *
491 * @dev: the device structure
492 * @idx: index in the device buffer
493 *
494 * Return: register value at index
495 */
496static u32 mei_txe_out_data_read(const struct mei_device *dev,
497					unsigned long idx)
498{
499	struct mei_txe_hw *hw = to_txe_hw(dev);
500
501	return mei_txe_br_reg_read(hw,
502		BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
503}
504
505/* Readiness */
506
507/**
508 * mei_txe_readiness_set_host_rdy - set host readiness bit
509 *
510 * @dev: the device structure
511 */
512static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
513{
514	struct mei_txe_hw *hw = to_txe_hw(dev);
515
516	mei_txe_br_reg_write(hw,
517		SICR_HOST_IPC_READINESS_REQ_REG,
518		SICR_HOST_IPC_READINESS_HOST_RDY);
519}
520
521/**
522 * mei_txe_readiness_clear - clear host readiness bit
523 *
524 * @dev: the device structure
525 */
526static void mei_txe_readiness_clear(struct mei_device *dev)
527{
528	struct mei_txe_hw *hw = to_txe_hw(dev);
529
530	mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
531				SICR_HOST_IPC_READINESS_RDY_CLR);
532}
533/**
534 * mei_txe_readiness_get - Reads and returns
535 *	the HICR_SEC_IPC_READINESS register value
536 *
537 * @dev: the device structure
538 *
539 * Return: the HICR_SEC_IPC_READINESS register value
540 */
541static u32 mei_txe_readiness_get(struct mei_device *dev)
542{
543	struct mei_txe_hw *hw = to_txe_hw(dev);
544
545	return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
546}
547
548
549/**
550 * mei_txe_readiness_is_sec_rdy - check readiness
551 *  for HICR_SEC_IPC_READINESS_SEC_RDY
552 *
553 * @readiness: cached readiness state
554 *
555 * Return: true if readiness bit is set
556 */
557static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
558{
559	return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
560}
561
562/**
563 * mei_txe_hw_is_ready - check if the hw is ready
564 *
565 * @dev: the device structure
566 *
567 * Return: true if sec is ready
568 */
569static bool mei_txe_hw_is_ready(struct mei_device *dev)
570{
571	u32 readiness =  mei_txe_readiness_get(dev);
572
573	return mei_txe_readiness_is_sec_rdy(readiness);
574}
575
576/**
577 * mei_txe_host_is_ready - check if the host is ready
578 *
579 * @dev: the device structure
580 *
581 * Return: true if host is ready
582 */
583static inline bool mei_txe_host_is_ready(struct mei_device *dev)
584{
585	struct mei_txe_hw *hw = to_txe_hw(dev);
586	u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
587
588	return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
589}
590
591/**
592 * mei_txe_readiness_wait - wait till readiness settles
593 *
594 * @dev: the device structure
595 *
596 * Return: 0 on success and -ETIME on timeout
597 */
598static int mei_txe_readiness_wait(struct mei_device *dev)
599{
600	if (mei_txe_hw_is_ready(dev))
601		return 0;
602
603	mutex_unlock(&dev->device_lock);
604	wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
605			msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
606	mutex_lock(&dev->device_lock);
607	if (!dev->recvd_hw_ready) {
608		dev_err(dev->dev, "wait for readiness failed\n");
609		return -ETIME;
610	}
611
612	dev->recvd_hw_ready = false;
613	return 0;
614}
615
616static const struct mei_fw_status mei_txe_fw_sts = {
617	.count = 2,
618	.status[0] = PCI_CFG_TXE_FW_STS0,
619	.status[1] = PCI_CFG_TXE_FW_STS1
620};
621
622/**
623 * mei_txe_fw_status - read fw status register from pci config space
624 *
625 * @dev: mei device
626 * @fw_status: fw status register values
627 *
628 * Return: 0 on success, error otherwise
629 */
630static int mei_txe_fw_status(struct mei_device *dev,
631			     struct mei_fw_status *fw_status)
632{
633	const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
634	struct pci_dev *pdev = to_pci_dev(dev->dev);
635	int ret;
636	int i;
637
638	if (!fw_status)
639		return -EINVAL;
640
641	fw_status->count = fw_src->count;
642	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
643		ret = pci_read_config_dword(pdev,
644			fw_src->status[i], &fw_status->status[i]);
645		if (ret)
646			return ret;
647	}
648
649	return 0;
650}
651
652/**
653 *  mei_txe_hw_config - configure hardware at the start of the devices
654 *
655 * @dev: the device structure
656 *
657 * Configure hardware at the start of the device should be done only
658 *   once at the device probe time
659 */
660static void mei_txe_hw_config(struct mei_device *dev)
661{
662
663	struct mei_txe_hw *hw = to_txe_hw(dev);
664
665	/* Doesn't change in runtime */
666	dev->hbuf_depth = PAYLOAD_SIZE / 4;
667
668	hw->aliveness = mei_txe_aliveness_get(dev);
669	hw->readiness = mei_txe_readiness_get(dev);
670
671	dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
672		hw->aliveness, hw->readiness);
673}
674
675
676/**
677 * mei_txe_write - writes a message to device.
678 *
679 * @dev: the device structure
680 * @header: header of message
681 * @buf: message buffer will be written
682 *
683 * Return: 0 if success, <0 - otherwise.
684 */
685
686static int mei_txe_write(struct mei_device *dev,
687		struct mei_msg_hdr *header, unsigned char *buf)
688{
689	struct mei_txe_hw *hw = to_txe_hw(dev);
690	unsigned long rem;
691	unsigned long length;
692	int slots = dev->hbuf_depth;
693	u32 *reg_buf = (u32 *)buf;
694	u32 dw_cnt;
695	int i;
696
697	if (WARN_ON(!header || !buf))
698		return -EINVAL;
699
700	length = header->length;
701
702	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
703
704	dw_cnt = mei_data2slots(length);
705	if (dw_cnt > slots)
706		return -EMSGSIZE;
707
708	if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
709		return -EAGAIN;
710
711	/* Enable Input Ready Interrupt. */
712	mei_txe_input_ready_interrupt_enable(dev);
713
714	if (!mei_txe_is_input_ready(dev)) {
715		char fw_sts_str[MEI_FW_STATUS_STR_SZ];
716
717		mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
718		dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
719		return -EAGAIN;
720	}
721
722	mei_txe_input_payload_write(dev, 0, *((u32 *)header));
723
724	for (i = 0; i < length / 4; i++)
725		mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
726
727	rem = length & 0x3;
728	if (rem > 0) {
729		u32 reg = 0;
730
731		memcpy(&reg, &buf[length - rem], rem);
732		mei_txe_input_payload_write(dev, i + 1, reg);
733	}
734
735	/* after each write the whole buffer is consumed */
736	hw->slots = 0;
737
738	/* Set Input-Doorbell */
739	mei_txe_input_doorbell_set(hw);
740
741	return 0;
742}
743
744/**
745 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
746 *
747 * @dev: the device structure
748 *
749 * Return: the PAYLOAD_SIZE - 4
750 */
751static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
752{
753	return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
754}
755
756/**
757 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
758 *
759 * @dev: the device structure
760 *
761 * Return: always hbuf_depth
762 */
763static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
764{
765	struct mei_txe_hw *hw = to_txe_hw(dev);
766
767	return hw->slots;
768}
769
770/**
771 * mei_txe_count_full_read_slots - mimics the me device circular buffer
772 *
773 * @dev: the device structure
774 *
775 * Return: always buffer size in dwords count
776 */
777static int mei_txe_count_full_read_slots(struct mei_device *dev)
778{
779	/* read buffers has static size */
780	return  PAYLOAD_SIZE / 4;
781}
782
783/**
784 * mei_txe_read_hdr - read message header which is always in 4 first bytes
785 *
786 * @dev: the device structure
787 *
788 * Return: mei message header
789 */
790
791static u32 mei_txe_read_hdr(const struct mei_device *dev)
792{
793	return mei_txe_out_data_read(dev, 0);
794}
795/**
796 * mei_txe_read - reads a message from the txe device.
797 *
798 * @dev: the device structure
799 * @buf: message buffer will be written
800 * @len: message size will be read
801 *
802 * Return: -EINVAL on error wrong argument and 0 on success
803 */
804static int mei_txe_read(struct mei_device *dev,
805		unsigned char *buf, unsigned long len)
806{
807
808	struct mei_txe_hw *hw = to_txe_hw(dev);
809	u32 *reg_buf, reg;
810	u32 rem;
811	u32 i;
812
813	if (WARN_ON(!buf || !len))
814		return -EINVAL;
815
816	reg_buf = (u32 *)buf;
817	rem = len & 0x3;
818
819	dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
820		len, mei_txe_out_data_read(dev, 0));
821
822	for (i = 0; i < len / 4; i++) {
823		/* skip header: index starts from 1 */
824		reg = mei_txe_out_data_read(dev, i + 1);
825		dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
826		*reg_buf++ = reg;
827	}
828
829	if (rem) {
830		reg = mei_txe_out_data_read(dev, i + 1);
831		memcpy(reg_buf, &reg, rem);
832	}
833
834	mei_txe_output_ready_set(hw);
835	return 0;
836}
837
838/**
839 * mei_txe_hw_reset - resets host and fw.
840 *
841 * @dev: the device structure
842 * @intr_enable: if interrupt should be enabled after reset.
843 *
844 * Return: 0 on success and < 0 in case of error
845 */
846static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
847{
848	struct mei_txe_hw *hw = to_txe_hw(dev);
849
850	u32 aliveness_req;
851	/*
852	 * read input doorbell to ensure consistency between  Bridge and SeC
853	 * return value might be garbage return
854	 */
855	(void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
856
857	aliveness_req = mei_txe_aliveness_req_get(dev);
858	hw->aliveness = mei_txe_aliveness_get(dev);
859
860	/* Disable interrupts in this stage we will poll */
861	mei_txe_intr_disable(dev);
862
863	/*
864	 * If Aliveness Request and Aliveness Response are not equal then
865	 * wait for them to be equal
866	 * Since we might have interrupts disabled - poll for it
867	 */
868	if (aliveness_req != hw->aliveness)
869		if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
870			dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
871			return -EIO;
872		}
873
874	/*
875	 * If Aliveness Request and Aliveness Response are set then clear them
876	 */
877	if (aliveness_req) {
878		mei_txe_aliveness_set(dev, 0);
879		if (mei_txe_aliveness_poll(dev, 0) < 0) {
880			dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
881			return -EIO;
882		}
883	}
884
885	/*
886	 * Set readiness RDY_CLR bit
887	 */
888	mei_txe_readiness_clear(dev);
889
890	return 0;
891}
892
893/**
894 * mei_txe_hw_start - start the hardware after reset
895 *
896 * @dev: the device structure
897 *
898 * Return: 0 on success an error code otherwise
899 */
900static int mei_txe_hw_start(struct mei_device *dev)
901{
902	struct mei_txe_hw *hw = to_txe_hw(dev);
903	int ret;
904
905	u32 hisr;
906
907	/* bring back interrupts */
908	mei_txe_intr_enable(dev);
909
910	ret = mei_txe_readiness_wait(dev);
911	if (ret < 0) {
912		dev_err(dev->dev, "waiting for readiness failed\n");
913		return ret;
914	}
915
916	/*
917	 * If HISR.INT2_STS interrupt status bit is set then clear it.
918	 */
919	hisr = mei_txe_br_reg_read(hw, HISR_REG);
920	if (hisr & HISR_INT_2_STS)
921		mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
922
923	/* Clear the interrupt cause of OutputDoorbell */
924	clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
925
926	ret = mei_txe_aliveness_set_sync(dev, 1);
927	if (ret < 0) {
928		dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
929		return ret;
930	}
931
932	/* enable input ready interrupts:
933	 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
934	 */
935	mei_txe_input_ready_interrupt_enable(dev);
936
937
938	/*  Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
939	mei_txe_output_ready_set(hw);
940
941	/* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
942	 */
943	mei_txe_readiness_set_host_rdy(dev);
944
945	return 0;
946}
947
948/**
949 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
950 *  single bit mask and acknowledge the interrupts
951 *
952 * @dev: the device structure
953 * @do_ack: acknowledge interrupts
954 *
955 * Return: true if found interrupts to process.
956 */
957static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
958{
959	struct mei_txe_hw *hw = to_txe_hw(dev);
960	u32 hisr;
961	u32 hhisr;
962	u32 ipc_isr;
963	u32 aliveness;
964	bool generated;
965
966	/* read interrupt registers */
967	hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
968	generated = (hhisr & IPC_HHIER_MSK);
969	if (!generated)
970		goto out;
971
972	hisr = mei_txe_br_reg_read(hw, HISR_REG);
973
974	aliveness = mei_txe_aliveness_get(dev);
975	if (hhisr & IPC_HHIER_SEC && aliveness)
976		ipc_isr = mei_txe_sec_reg_read_silent(hw,
977				SEC_IPC_HOST_INT_STATUS_REG);
978	else
979		ipc_isr = 0;
980
981	generated = generated ||
982		(hisr & HISR_INT_STS_MSK) ||
983		(ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
984
985	if (generated && do_ack) {
986		/* Save the interrupt causes */
987		hw->intr_cause |= hisr & HISR_INT_STS_MSK;
988		if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
989			hw->intr_cause |= TXE_INTR_IN_READY;
990
991
992		mei_txe_intr_disable(dev);
993		/* Clear the interrupts in hierarchy:
994		 * IPC and Bridge, than the High Level */
995		mei_txe_sec_reg_write_silent(hw,
996			SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
997		mei_txe_br_reg_write(hw, HISR_REG, hisr);
998		mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
999	}
1000
1001out:
1002	return generated;
1003}
1004
1005/**
1006 * mei_txe_irq_quick_handler - The ISR of the MEI device
1007 *
1008 * @irq: The irq number
1009 * @dev_id: pointer to the device structure
1010 *
1011 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1012 *         IRQ_NONE otherwise
1013 */
1014irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1015{
1016	struct mei_device *dev = dev_id;
1017
1018	if (mei_txe_check_and_ack_intrs(dev, true))
1019		return IRQ_WAKE_THREAD;
1020	return IRQ_NONE;
1021}
1022
1023
1024/**
1025 * mei_txe_irq_thread_handler - txe interrupt thread
1026 *
1027 * @irq: The irq number
1028 * @dev_id: pointer to the device structure
1029 *
1030 * Return: IRQ_HANDLED
1031 */
1032irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1033{
1034	struct mei_device *dev = (struct mei_device *) dev_id;
1035	struct mei_txe_hw *hw = to_txe_hw(dev);
1036	struct mei_cl_cb complete_list;
1037	s32 slots;
1038	int rets = 0;
1039
1040	dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1041		mei_txe_br_reg_read(hw, HHISR_REG),
1042		mei_txe_br_reg_read(hw, HISR_REG),
1043		mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1044
1045
1046	/* initialize our complete list */
1047	mutex_lock(&dev->device_lock);
1048	mei_io_list_init(&complete_list);
1049
1050	if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1051		mei_txe_check_and_ack_intrs(dev, true);
1052
1053	/* show irq events */
1054	mei_txe_pending_interrupts(dev);
1055
1056	hw->aliveness = mei_txe_aliveness_get(dev);
1057	hw->readiness = mei_txe_readiness_get(dev);
1058
1059	/* Readiness:
1060	 * Detection of TXE driver going through reset
1061	 * or TXE driver resetting the HECI interface.
1062	 */
1063	if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1064		dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1065
1066		/* Check if SeC is going through reset */
1067		if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1068			dev_dbg(dev->dev, "we need to start the dev.\n");
1069			dev->recvd_hw_ready = true;
1070		} else {
1071			dev->recvd_hw_ready = false;
1072			if (dev->dev_state != MEI_DEV_RESETTING) {
1073
1074				dev_warn(dev->dev, "FW not ready: resetting.\n");
1075				schedule_work(&dev->reset_work);
1076				goto end;
1077
1078			}
1079		}
1080		wake_up(&dev->wait_hw_ready);
1081	}
1082
1083	/************************************************************/
1084	/* Check interrupt cause:
1085	 * Aliveness: Detection of SeC acknowledge of host request that
1086	 * it remain alive or host cancellation of that request.
1087	 */
1088
1089	if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1090		/* Clear the interrupt cause */
1091		dev_dbg(dev->dev,
1092			"Aliveness Interrupt: Status: %d\n", hw->aliveness);
1093		dev->pg_event = MEI_PG_EVENT_RECEIVED;
1094		if (waitqueue_active(&hw->wait_aliveness_resp))
1095			wake_up(&hw->wait_aliveness_resp);
1096	}
1097
1098
1099	/* Output Doorbell:
1100	 * Detection of SeC having sent output to host
1101	 */
1102	slots = mei_count_full_read_slots(dev);
1103	if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1104		/* Read from TXE */
1105		rets = mei_irq_read_handler(dev, &complete_list, &slots);
1106		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1107			dev_err(dev->dev,
1108				"mei_irq_read_handler ret = %d.\n", rets);
1109
1110			schedule_work(&dev->reset_work);
1111			goto end;
1112		}
1113	}
1114	/* Input Ready: Detection if host can write to SeC */
1115	if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1116		dev->hbuf_is_ready = true;
1117		hw->slots = dev->hbuf_depth;
1118	}
1119
1120	if (hw->aliveness && dev->hbuf_is_ready) {
1121		/* get the real register value */
1122		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1123		rets = mei_irq_write_handler(dev, &complete_list);
1124		if (rets && rets != -EMSGSIZE)
1125			dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1126				rets);
1127		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1128	}
1129
1130	mei_irq_compl_handler(dev, &complete_list);
1131
1132end:
1133	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1134
1135	mutex_unlock(&dev->device_lock);
1136
1137	mei_enable_interrupts(dev);
1138	return IRQ_HANDLED;
1139}
1140
1141static const struct mei_hw_ops mei_txe_hw_ops = {
1142
1143	.host_is_ready = mei_txe_host_is_ready,
1144
1145	.fw_status = mei_txe_fw_status,
1146	.pg_state = mei_txe_pg_state,
1147
1148	.hw_is_ready = mei_txe_hw_is_ready,
1149	.hw_reset = mei_txe_hw_reset,
1150	.hw_config = mei_txe_hw_config,
1151	.hw_start = mei_txe_hw_start,
1152
1153	.pg_in_transition = mei_txe_pg_in_transition,
1154	.pg_is_enabled = mei_txe_pg_is_enabled,
1155
1156	.intr_clear = mei_txe_intr_clear,
1157	.intr_enable = mei_txe_intr_enable,
1158	.intr_disable = mei_txe_intr_disable,
1159
1160	.hbuf_free_slots = mei_txe_hbuf_empty_slots,
1161	.hbuf_is_ready = mei_txe_is_input_ready,
1162	.hbuf_max_len = mei_txe_hbuf_max_len,
1163
1164	.write = mei_txe_write,
1165
1166	.rdbuf_full_slots = mei_txe_count_full_read_slots,
1167	.read_hdr = mei_txe_read_hdr,
1168
1169	.read = mei_txe_read,
1170
1171};
1172
1173/**
1174 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1175 *
1176 * @pdev: pci device
1177 *
1178 * Return: struct mei_device * on success or NULL
1179 */
1180struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1181{
1182	struct mei_device *dev;
1183	struct mei_txe_hw *hw;
1184
1185	dev = kzalloc(sizeof(struct mei_device) +
1186			 sizeof(struct mei_txe_hw), GFP_KERNEL);
1187	if (!dev)
1188		return NULL;
1189
1190	mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1191
1192	hw = to_txe_hw(dev);
1193
1194	init_waitqueue_head(&hw->wait_aliveness_resp);
1195
1196	return dev;
1197}
1198
1199/**
1200 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1201 *
1202 * @dev:   the device structure
1203 * @addr:  physical address start of the range
1204 * @range: physical range size
1205 *
1206 * Return: 0 on success an error code otherwise
1207 */
1208int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1209{
1210	struct mei_txe_hw *hw = to_txe_hw(dev);
1211
1212	u32 lo32 = lower_32_bits(addr);
1213	u32 hi32 = upper_32_bits(addr);
1214	u32 ctrl;
1215
1216	/* SATT is limited to 36 Bits */
1217	if (hi32 & ~0xF)
1218		return -EINVAL;
1219
1220	/* SATT has to be 16Byte aligned */
1221	if (lo32 & 0xF)
1222		return -EINVAL;
1223
1224	/* SATT range has to be 4Bytes aligned */
1225	if (range & 0x4)
1226		return -EINVAL;
1227
1228	/* SATT is limited to 32 MB range*/
1229	if (range > SATT_RANGE_MAX)
1230		return -EINVAL;
1231
1232	ctrl = SATT2_CTRL_VALID_MSK;
1233	ctrl |= hi32  << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1234
1235	mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1236	mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1237	mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1238	dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1239		range, lo32, ctrl);
1240
1241	return 0;
1242}
1243