1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
18
19#include <linux/kthread.h>
20#include <linux/interrupt.h>
21
22#include "mei_dev.h"
23#include "hbm.h"
24
25#include "hw-me.h"
26#include "hw-me-regs.h"
27
28#include "mei-trace.h"
29
30/**
31 * mei_me_reg_read - Reads 32bit data from the mei device
32 *
33 * @hw: the me hardware structure
34 * @offset: offset from which to read the data
35 *
36 * Return: register value (u32)
37 */
38static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
39			       unsigned long offset)
40{
41	return ioread32(hw->mem_addr + offset);
42}
43
44
45/**
46 * mei_me_reg_write - Writes 32bit data to the mei device
47 *
48 * @hw: the me hardware structure
49 * @offset: offset from which to write the data
50 * @value: register value to write (u32)
51 */
52static inline void mei_me_reg_write(const struct mei_me_hw *hw,
53				 unsigned long offset, u32 value)
54{
55	iowrite32(value, hw->mem_addr + offset);
56}
57
58/**
59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
60 *  read window register
61 *
62 * @dev: the device structure
63 *
64 * Return: ME_CB_RW register value (u32)
65 */
66static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
67{
68	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
69}
70
71/**
72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
73 *
74 * @dev: the device structure
75 * @data: 32bit data to be written to the host circular buffer
76 */
77static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
78{
79	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
80}
81
82/**
83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
84 *
85 * @dev: the device structure
86 *
87 * Return: ME_CSR_HA register value (u32)
88 */
89static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
90{
91	u32 reg;
92
93	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
94	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
95
96	return reg;
97}
98
99/**
100 * mei_hcsr_read - Reads 32bit data from the host CSR
101 *
102 * @dev: the device structure
103 *
104 * Return: H_CSR register value (u32)
105 */
106static inline u32 mei_hcsr_read(const struct mei_device *dev)
107{
108	u32 reg;
109
110	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
111	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
112
113	return reg;
114}
115
116/**
117 * mei_hcsr_write - writes H_CSR register to the mei device
118 *
119 * @dev: the device structure
120 * @reg: new register value
121 */
122static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
123{
124	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
125	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
126}
127
128/**
129 * mei_hcsr_set - writes H_CSR register to the mei device,
130 * and ignores the H_IS bit for it is write-one-to-zero.
131 *
132 * @dev: the device structure
133 * @reg: new register value
134 */
135static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
136{
137	reg &= ~H_IS;
138	mei_hcsr_write(dev, reg);
139}
140
141/**
142 * mei_me_fw_status - read fw status register from pci config space
143 *
144 * @dev: mei device
145 * @fw_status: fw status register values
146 *
147 * Return: 0 on success, error otherwise
148 */
149static int mei_me_fw_status(struct mei_device *dev,
150			    struct mei_fw_status *fw_status)
151{
152	struct pci_dev *pdev = to_pci_dev(dev->dev);
153	struct mei_me_hw *hw = to_me_hw(dev);
154	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
155	int ret;
156	int i;
157
158	if (!fw_status)
159		return -EINVAL;
160
161	fw_status->count = fw_src->count;
162	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
163		ret = pci_read_config_dword(pdev,
164			fw_src->status[i], &fw_status->status[i]);
165		if (ret)
166			return ret;
167	}
168
169	return 0;
170}
171
172/**
173 * mei_me_hw_config - configure hw dependent settings
174 *
175 * @dev: mei device
176 */
177static void mei_me_hw_config(struct mei_device *dev)
178{
179	struct mei_me_hw *hw = to_me_hw(dev);
180	u32 hcsr = mei_hcsr_read(dev);
181	/* Doesn't change in runtime */
182	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
183
184	hw->pg_state = MEI_PG_OFF;
185}
186
187/**
188 * mei_me_pg_state  - translate internal pg state
189 *   to the mei power gating state
190 *
191 * @dev:  mei device
192 *
193 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
194 */
195static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
196{
197	struct mei_me_hw *hw = to_me_hw(dev);
198
199	return hw->pg_state;
200}
201
202/**
203 * mei_me_intr_clear - clear and stop interrupts
204 *
205 * @dev: the device structure
206 */
207static void mei_me_intr_clear(struct mei_device *dev)
208{
209	u32 hcsr = mei_hcsr_read(dev);
210
211	if ((hcsr & H_IS) == H_IS)
212		mei_hcsr_write(dev, hcsr);
213}
214/**
215 * mei_me_intr_enable - enables mei device interrupts
216 *
217 * @dev: the device structure
218 */
219static void mei_me_intr_enable(struct mei_device *dev)
220{
221	u32 hcsr = mei_hcsr_read(dev);
222
223	hcsr |= H_IE;
224	mei_hcsr_set(dev, hcsr);
225}
226
227/**
228 * mei_me_intr_disable - disables mei device interrupts
229 *
230 * @dev: the device structure
231 */
232static void mei_me_intr_disable(struct mei_device *dev)
233{
234	u32 hcsr = mei_hcsr_read(dev);
235
236	hcsr  &= ~H_IE;
237	mei_hcsr_set(dev, hcsr);
238}
239
240/**
241 * mei_me_hw_reset_release - release device from the reset
242 *
243 * @dev: the device structure
244 */
245static void mei_me_hw_reset_release(struct mei_device *dev)
246{
247	u32 hcsr = mei_hcsr_read(dev);
248
249	hcsr |= H_IG;
250	hcsr &= ~H_RST;
251	mei_hcsr_set(dev, hcsr);
252
253	/* complete this write before we set host ready on another CPU */
254	mmiowb();
255}
256/**
257 * mei_me_hw_reset - resets fw via mei csr register.
258 *
259 * @dev: the device structure
260 * @intr_enable: if interrupt should be enabled after reset.
261 *
262 * Return: always 0
263 */
264static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
265{
266	u32 hcsr = mei_hcsr_read(dev);
267
268	/* H_RST may be found lit before reset is started,
269	 * for example if preceding reset flow hasn't completed.
270	 * In that case asserting H_RST will be ignored, therefore
271	 * we need to clean H_RST bit to start a successful reset sequence.
272	 */
273	if ((hcsr & H_RST) == H_RST) {
274		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
275		hcsr &= ~H_RST;
276		mei_hcsr_set(dev, hcsr);
277		hcsr = mei_hcsr_read(dev);
278	}
279
280	hcsr |= H_RST | H_IG | H_IS;
281
282	if (intr_enable)
283		hcsr |= H_IE;
284	else
285		hcsr &= ~H_IE;
286
287	dev->recvd_hw_ready = false;
288	mei_hcsr_write(dev, hcsr);
289
290	/*
291	 * Host reads the H_CSR once to ensure that the
292	 * posted write to H_CSR completes.
293	 */
294	hcsr = mei_hcsr_read(dev);
295
296	if ((hcsr & H_RST) == 0)
297		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
298
299	if ((hcsr & H_RDY) == H_RDY)
300		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
301
302	if (intr_enable == false)
303		mei_me_hw_reset_release(dev);
304
305	return 0;
306}
307
308/**
309 * mei_me_host_set_ready - enable device
310 *
311 * @dev: mei device
312 */
313static void mei_me_host_set_ready(struct mei_device *dev)
314{
315	u32 hcsr = mei_hcsr_read(dev);
316
317	hcsr |= H_IE | H_IG | H_RDY;
318	mei_hcsr_set(dev, hcsr);
319}
320
321/**
322 * mei_me_host_is_ready - check whether the host has turned ready
323 *
324 * @dev: mei device
325 * Return: bool
326 */
327static bool mei_me_host_is_ready(struct mei_device *dev)
328{
329	u32 hcsr = mei_hcsr_read(dev);
330
331	return (hcsr & H_RDY) == H_RDY;
332}
333
334/**
335 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
336 *
337 * @dev: mei device
338 * Return: bool
339 */
340static bool mei_me_hw_is_ready(struct mei_device *dev)
341{
342	u32 mecsr = mei_me_mecsr_read(dev);
343
344	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
345}
346
347/**
348 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
349 *  or timeout is reached
350 *
351 * @dev: mei device
352 * Return: 0 on success, error otherwise
353 */
354static int mei_me_hw_ready_wait(struct mei_device *dev)
355{
356	mutex_unlock(&dev->device_lock);
357	wait_event_timeout(dev->wait_hw_ready,
358			dev->recvd_hw_ready,
359			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
360	mutex_lock(&dev->device_lock);
361	if (!dev->recvd_hw_ready) {
362		dev_err(dev->dev, "wait hw ready failed\n");
363		return -ETIME;
364	}
365
366	mei_me_hw_reset_release(dev);
367	dev->recvd_hw_ready = false;
368	return 0;
369}
370
371/**
372 * mei_me_hw_start - hw start routine
373 *
374 * @dev: mei device
375 * Return: 0 on success, error otherwise
376 */
377static int mei_me_hw_start(struct mei_device *dev)
378{
379	int ret = mei_me_hw_ready_wait(dev);
380
381	if (ret)
382		return ret;
383	dev_dbg(dev->dev, "hw is ready\n");
384
385	mei_me_host_set_ready(dev);
386	return ret;
387}
388
389
390/**
391 * mei_hbuf_filled_slots - gets number of device filled buffer slots
392 *
393 * @dev: the device structure
394 *
395 * Return: number of filled slots
396 */
397static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
398{
399	u32 hcsr;
400	char read_ptr, write_ptr;
401
402	hcsr = mei_hcsr_read(dev);
403
404	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
405	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
406
407	return (unsigned char) (write_ptr - read_ptr);
408}
409
410/**
411 * mei_me_hbuf_is_empty - checks if host buffer is empty.
412 *
413 * @dev: the device structure
414 *
415 * Return: true if empty, false - otherwise.
416 */
417static bool mei_me_hbuf_is_empty(struct mei_device *dev)
418{
419	return mei_hbuf_filled_slots(dev) == 0;
420}
421
422/**
423 * mei_me_hbuf_empty_slots - counts write empty slots.
424 *
425 * @dev: the device structure
426 *
427 * Return: -EOVERFLOW if overflow, otherwise empty slots count
428 */
429static int mei_me_hbuf_empty_slots(struct mei_device *dev)
430{
431	unsigned char filled_slots, empty_slots;
432
433	filled_slots = mei_hbuf_filled_slots(dev);
434	empty_slots = dev->hbuf_depth - filled_slots;
435
436	/* check for overflow */
437	if (filled_slots > dev->hbuf_depth)
438		return -EOVERFLOW;
439
440	return empty_slots;
441}
442
443/**
444 * mei_me_hbuf_max_len - returns size of hw buffer.
445 *
446 * @dev: the device structure
447 *
448 * Return: size of hw buffer in bytes
449 */
450static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
451{
452	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
453}
454
455
456/**
457 * mei_me_write_message - writes a message to mei device.
458 *
459 * @dev: the device structure
460 * @header: mei HECI header of message
461 * @buf: message payload will be written
462 *
463 * Return: -EIO if write has failed
464 */
465static int mei_me_write_message(struct mei_device *dev,
466			struct mei_msg_hdr *header,
467			unsigned char *buf)
468{
469	unsigned long rem;
470	unsigned long length = header->length;
471	u32 *reg_buf = (u32 *)buf;
472	u32 hcsr;
473	u32 dw_cnt;
474	int i;
475	int empty_slots;
476
477	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
478
479	empty_slots = mei_hbuf_empty_slots(dev);
480	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
481
482	dw_cnt = mei_data2slots(length);
483	if (empty_slots < 0 || dw_cnt > empty_slots)
484		return -EMSGSIZE;
485
486	mei_me_hcbww_write(dev, *((u32 *) header));
487
488	for (i = 0; i < length / 4; i++)
489		mei_me_hcbww_write(dev, reg_buf[i]);
490
491	rem = length & 0x3;
492	if (rem > 0) {
493		u32 reg = 0;
494
495		memcpy(&reg, &buf[length - rem], rem);
496		mei_me_hcbww_write(dev, reg);
497	}
498
499	hcsr = mei_hcsr_read(dev) | H_IG;
500	mei_hcsr_set(dev, hcsr);
501	if (!mei_me_hw_is_ready(dev))
502		return -EIO;
503
504	return 0;
505}
506
507/**
508 * mei_me_count_full_read_slots - counts read full slots.
509 *
510 * @dev: the device structure
511 *
512 * Return: -EOVERFLOW if overflow, otherwise filled slots count
513 */
514static int mei_me_count_full_read_slots(struct mei_device *dev)
515{
516	u32 me_csr;
517	char read_ptr, write_ptr;
518	unsigned char buffer_depth, filled_slots;
519
520	me_csr = mei_me_mecsr_read(dev);
521	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
522	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
523	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
524	filled_slots = (unsigned char) (write_ptr - read_ptr);
525
526	/* check for overflow */
527	if (filled_slots > buffer_depth)
528		return -EOVERFLOW;
529
530	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
531	return (int)filled_slots;
532}
533
534/**
535 * mei_me_read_slots - reads a message from mei device.
536 *
537 * @dev: the device structure
538 * @buffer: message buffer will be written
539 * @buffer_length: message size will be read
540 *
541 * Return: always 0
542 */
543static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
544		    unsigned long buffer_length)
545{
546	u32 *reg_buf = (u32 *)buffer;
547	u32 hcsr;
548
549	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
550		*reg_buf++ = mei_me_mecbrw_read(dev);
551
552	if (buffer_length > 0) {
553		u32 reg = mei_me_mecbrw_read(dev);
554
555		memcpy(reg_buf, &reg, buffer_length);
556	}
557
558	hcsr = mei_hcsr_read(dev) | H_IG;
559	mei_hcsr_set(dev, hcsr);
560	return 0;
561}
562
563/**
564 * mei_me_pg_set - write pg enter register
565 *
566 * @dev: the device structure
567 */
568static void mei_me_pg_set(struct mei_device *dev)
569{
570	struct mei_me_hw *hw = to_me_hw(dev);
571	u32 reg;
572
573	reg = mei_me_reg_read(hw, H_HPG_CSR);
574	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
575
576	reg |= H_HPG_CSR_PGI;
577
578	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
579	mei_me_reg_write(hw, H_HPG_CSR, reg);
580}
581
582/**
583 * mei_me_pg_unset - write pg exit register
584 *
585 * @dev: the device structure
586 */
587static void mei_me_pg_unset(struct mei_device *dev)
588{
589	struct mei_me_hw *hw = to_me_hw(dev);
590	u32 reg;
591
592	reg = mei_me_reg_read(hw, H_HPG_CSR);
593	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
594
595	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
596
597	reg |= H_HPG_CSR_PGIHEXR;
598
599	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
600	mei_me_reg_write(hw, H_HPG_CSR, reg);
601}
602
603/**
604 * mei_me_pg_enter_sync - perform pg entry procedure
605 *
606 * @dev: the device structure
607 *
608 * Return: 0 on success an error code otherwise
609 */
610int mei_me_pg_enter_sync(struct mei_device *dev)
611{
612	struct mei_me_hw *hw = to_me_hw(dev);
613	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
614	int ret;
615
616	dev->pg_event = MEI_PG_EVENT_WAIT;
617
618	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
619	if (ret)
620		return ret;
621
622	mutex_unlock(&dev->device_lock);
623	wait_event_timeout(dev->wait_pg,
624		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
625	mutex_lock(&dev->device_lock);
626
627	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
628		mei_me_pg_set(dev);
629		ret = 0;
630	} else {
631		ret = -ETIME;
632	}
633
634	dev->pg_event = MEI_PG_EVENT_IDLE;
635	hw->pg_state = MEI_PG_ON;
636
637	return ret;
638}
639
640/**
641 * mei_me_pg_exit_sync - perform pg exit procedure
642 *
643 * @dev: the device structure
644 *
645 * Return: 0 on success an error code otherwise
646 */
647int mei_me_pg_exit_sync(struct mei_device *dev)
648{
649	struct mei_me_hw *hw = to_me_hw(dev);
650	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
651	int ret;
652
653	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
654		goto reply;
655
656	dev->pg_event = MEI_PG_EVENT_WAIT;
657
658	mei_me_pg_unset(dev);
659
660	mutex_unlock(&dev->device_lock);
661	wait_event_timeout(dev->wait_pg,
662		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
663	mutex_lock(&dev->device_lock);
664
665reply:
666	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
667		ret = -ETIME;
668		goto out;
669	}
670
671	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
672	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
673	if (ret)
674		return ret;
675
676	mutex_unlock(&dev->device_lock);
677	wait_event_timeout(dev->wait_pg,
678		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
679	mutex_lock(&dev->device_lock);
680
681	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
682		ret = 0;
683	else
684		ret = -ETIME;
685
686out:
687	dev->pg_event = MEI_PG_EVENT_IDLE;
688	hw->pg_state = MEI_PG_OFF;
689
690	return ret;
691}
692
693/**
694 * mei_me_pg_in_transition - is device now in pg transition
695 *
696 * @dev: the device structure
697 *
698 * Return: true if in pg transition, false otherwise
699 */
700static bool mei_me_pg_in_transition(struct mei_device *dev)
701{
702	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
703	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
704}
705
706/**
707 * mei_me_pg_is_enabled - detect if PG is supported by HW
708 *
709 * @dev: the device structure
710 *
711 * Return: true is pg supported, false otherwise
712 */
713static bool mei_me_pg_is_enabled(struct mei_device *dev)
714{
715	u32 reg = mei_me_mecsr_read(dev);
716
717	if ((reg & ME_PGIC_HRA) == 0)
718		goto notsupported;
719
720	if (!dev->hbm_f_pg_supported)
721		goto notsupported;
722
723	return true;
724
725notsupported:
726	dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
727		!!(reg & ME_PGIC_HRA),
728		dev->version.major_version,
729		dev->version.minor_version,
730		HBM_MAJOR_VERSION_PGI,
731		HBM_MINOR_VERSION_PGI);
732
733	return false;
734}
735
736/**
737 * mei_me_pg_intr - perform pg processing in interrupt thread handler
738 *
739 * @dev: the device structure
740 */
741static void mei_me_pg_intr(struct mei_device *dev)
742{
743	struct mei_me_hw *hw = to_me_hw(dev);
744
745	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
746		return;
747
748	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
749	hw->pg_state = MEI_PG_OFF;
750	if (waitqueue_active(&dev->wait_pg))
751		wake_up(&dev->wait_pg);
752}
753
754/**
755 * mei_me_irq_quick_handler - The ISR of the MEI device
756 *
757 * @irq: The irq number
758 * @dev_id: pointer to the device structure
759 *
760 * Return: irqreturn_t
761 */
762
763irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
764{
765	struct mei_device *dev = (struct mei_device *) dev_id;
766	u32 hcsr = mei_hcsr_read(dev);
767
768	if ((hcsr & H_IS) != H_IS)
769		return IRQ_NONE;
770
771	/* clear H_IS bit in H_CSR */
772	mei_hcsr_write(dev, hcsr);
773
774	return IRQ_WAKE_THREAD;
775}
776
777/**
778 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
779 * processing.
780 *
781 * @irq: The irq number
782 * @dev_id: pointer to the device structure
783 *
784 * Return: irqreturn_t
785 *
786 */
787irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
788{
789	struct mei_device *dev = (struct mei_device *) dev_id;
790	struct mei_cl_cb complete_list;
791	s32 slots;
792	int rets = 0;
793
794	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
795	/* initialize our complete list */
796	mutex_lock(&dev->device_lock);
797	mei_io_list_init(&complete_list);
798
799	/* Ack the interrupt here
800	 * In case of MSI we don't go through the quick handler */
801	if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
802		mei_clear_interrupts(dev);
803
804	/* check if ME wants a reset */
805	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
806		dev_warn(dev->dev, "FW not ready: resetting.\n");
807		schedule_work(&dev->reset_work);
808		goto end;
809	}
810
811	mei_me_pg_intr(dev);
812
813	/*  check if we need to start the dev */
814	if (!mei_host_is_ready(dev)) {
815		if (mei_hw_is_ready(dev)) {
816			dev_dbg(dev->dev, "we need to start the dev.\n");
817			dev->recvd_hw_ready = true;
818			wake_up(&dev->wait_hw_ready);
819		} else {
820			dev_dbg(dev->dev, "Spurious Interrupt\n");
821		}
822		goto end;
823	}
824	/* check slots available for reading */
825	slots = mei_count_full_read_slots(dev);
826	while (slots > 0) {
827		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
828		rets = mei_irq_read_handler(dev, &complete_list, &slots);
829		/* There is a race between ME write and interrupt delivery:
830		 * Not all data is always available immediately after the
831		 * interrupt, so try to read again on the next interrupt.
832		 */
833		if (rets == -ENODATA)
834			break;
835
836		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
837			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
838						rets);
839			schedule_work(&dev->reset_work);
840			goto end;
841		}
842	}
843
844	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
845
846	/*
847	 * During PG handshake only allowed write is the replay to the
848	 * PG exit message, so block calling write function
849	 * if the pg event is in PG handshake
850	 */
851	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
852	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
853		rets = mei_irq_write_handler(dev, &complete_list);
854		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
855	}
856
857	mei_irq_compl_handler(dev, &complete_list);
858
859end:
860	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
861	mutex_unlock(&dev->device_lock);
862	return IRQ_HANDLED;
863}
864
865static const struct mei_hw_ops mei_me_hw_ops = {
866
867	.fw_status = mei_me_fw_status,
868	.pg_state  = mei_me_pg_state,
869
870	.host_is_ready = mei_me_host_is_ready,
871
872	.hw_is_ready = mei_me_hw_is_ready,
873	.hw_reset = mei_me_hw_reset,
874	.hw_config = mei_me_hw_config,
875	.hw_start = mei_me_hw_start,
876
877	.pg_in_transition = mei_me_pg_in_transition,
878	.pg_is_enabled = mei_me_pg_is_enabled,
879
880	.intr_clear = mei_me_intr_clear,
881	.intr_enable = mei_me_intr_enable,
882	.intr_disable = mei_me_intr_disable,
883
884	.hbuf_free_slots = mei_me_hbuf_empty_slots,
885	.hbuf_is_ready = mei_me_hbuf_is_empty,
886	.hbuf_max_len = mei_me_hbuf_max_len,
887
888	.write = mei_me_write_message,
889
890	.rdbuf_full_slots = mei_me_count_full_read_slots,
891	.read_hdr = mei_me_mecbrw_read,
892	.read = mei_me_read_slots
893};
894
895static bool mei_me_fw_type_nm(struct pci_dev *pdev)
896{
897	u32 reg;
898
899	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
900	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
901	return (reg & 0x600) == 0x200;
902}
903
904#define MEI_CFG_FW_NM                           \
905	.quirk_probe = mei_me_fw_type_nm
906
907static bool mei_me_fw_type_sps(struct pci_dev *pdev)
908{
909	u32 reg;
910	/* Read ME FW Status check for SPS Firmware */
911	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
912	/* if bits [19:16] = 15, running SPS Firmware */
913	return (reg & 0xf0000) == 0xf0000;
914}
915
916#define MEI_CFG_FW_SPS                           \
917	.quirk_probe = mei_me_fw_type_sps
918
919
920#define MEI_CFG_LEGACY_HFS                      \
921	.fw_status.count = 0
922
923#define MEI_CFG_ICH_HFS                        \
924	.fw_status.count = 1,                   \
925	.fw_status.status[0] = PCI_CFG_HFS_1
926
927#define MEI_CFG_PCH_HFS                         \
928	.fw_status.count = 2,                   \
929	.fw_status.status[0] = PCI_CFG_HFS_1,   \
930	.fw_status.status[1] = PCI_CFG_HFS_2
931
932#define MEI_CFG_PCH8_HFS                        \
933	.fw_status.count = 6,                   \
934	.fw_status.status[0] = PCI_CFG_HFS_1,   \
935	.fw_status.status[1] = PCI_CFG_HFS_2,   \
936	.fw_status.status[2] = PCI_CFG_HFS_3,   \
937	.fw_status.status[3] = PCI_CFG_HFS_4,   \
938	.fw_status.status[4] = PCI_CFG_HFS_5,   \
939	.fw_status.status[5] = PCI_CFG_HFS_6
940
941/* ICH Legacy devices */
942const struct mei_cfg mei_me_legacy_cfg = {
943	MEI_CFG_LEGACY_HFS,
944};
945
946/* ICH devices */
947const struct mei_cfg mei_me_ich_cfg = {
948	MEI_CFG_ICH_HFS,
949};
950
951/* PCH devices */
952const struct mei_cfg mei_me_pch_cfg = {
953	MEI_CFG_PCH_HFS,
954};
955
956
957/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
958const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
959	MEI_CFG_PCH_HFS,
960	MEI_CFG_FW_NM,
961};
962
963/* PCH8 Lynx Point and newer devices */
964const struct mei_cfg mei_me_pch8_cfg = {
965	MEI_CFG_PCH8_HFS,
966};
967
968/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
969const struct mei_cfg mei_me_pch8_sps_cfg = {
970	MEI_CFG_PCH8_HFS,
971	MEI_CFG_FW_SPS,
972};
973
974/**
975 * mei_me_dev_init - allocates and initializes the mei device structure
976 *
977 * @pdev: The pci device structure
978 * @cfg: per device generation config
979 *
980 * Return: The mei_device_device pointer on success, NULL on failure.
981 */
982struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
983				   const struct mei_cfg *cfg)
984{
985	struct mei_device *dev;
986	struct mei_me_hw *hw;
987
988	dev = kzalloc(sizeof(struct mei_device) +
989			 sizeof(struct mei_me_hw), GFP_KERNEL);
990	if (!dev)
991		return NULL;
992	hw = to_me_hw(dev);
993
994	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
995	hw->cfg = cfg;
996	return dev;
997}
998
999