1/* 2 * 3 * Intel Management Engine Interface (Intel MEI) Linux driver 4 * Copyright (c) 2003-2012, Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 */ 16 17#include <linux/pci.h> 18 19#include <linux/kthread.h> 20#include <linux/interrupt.h> 21 22#include "mei_dev.h" 23#include "hbm.h" 24 25#include "hw-me.h" 26#include "hw-me-regs.h" 27 28#include "mei-trace.h" 29 30/** 31 * mei_me_reg_read - Reads 32bit data from the mei device 32 * 33 * @hw: the me hardware structure 34 * @offset: offset from which to read the data 35 * 36 * Return: register value (u32) 37 */ 38static inline u32 mei_me_reg_read(const struct mei_me_hw *hw, 39 unsigned long offset) 40{ 41 return ioread32(hw->mem_addr + offset); 42} 43 44 45/** 46 * mei_me_reg_write - Writes 32bit data to the mei device 47 * 48 * @hw: the me hardware structure 49 * @offset: offset from which to write the data 50 * @value: register value to write (u32) 51 */ 52static inline void mei_me_reg_write(const struct mei_me_hw *hw, 53 unsigned long offset, u32 value) 54{ 55 iowrite32(value, hw->mem_addr + offset); 56} 57 58/** 59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer 60 * read window register 61 * 62 * @dev: the device structure 63 * 64 * Return: ME_CB_RW register value (u32) 65 */ 66static inline u32 mei_me_mecbrw_read(const struct mei_device *dev) 67{ 68 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW); 69} 70 71/** 72 * mei_me_hcbww_write - write 32bit data to the host circular buffer 73 * 74 * @dev: the device structure 75 * @data: 32bit data to be written to the host circular buffer 76 */ 77static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data) 78{ 79 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data); 80} 81 82/** 83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR 84 * 85 * @dev: the device structure 86 * 87 * Return: ME_CSR_HA register value (u32) 88 */ 89static inline u32 mei_me_mecsr_read(const struct mei_device *dev) 90{ 91 u32 reg; 92 93 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA); 94 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg); 95 96 return reg; 97} 98 99/** 100 * mei_hcsr_read - Reads 32bit data from the host CSR 101 * 102 * @dev: the device structure 103 * 104 * Return: H_CSR register value (u32) 105 */ 106static inline u32 mei_hcsr_read(const struct mei_device *dev) 107{ 108 u32 reg; 109 110 reg = mei_me_reg_read(to_me_hw(dev), H_CSR); 111 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg); 112 113 return reg; 114} 115 116/** 117 * mei_hcsr_write - writes H_CSR register to the mei device 118 * 119 * @dev: the device structure 120 * @reg: new register value 121 */ 122static inline void mei_hcsr_write(struct mei_device *dev, u32 reg) 123{ 124 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg); 125 mei_me_reg_write(to_me_hw(dev), H_CSR, reg); 126} 127 128/** 129 * mei_hcsr_set - writes H_CSR register to the mei device, 130 * and ignores the H_IS bit for it is write-one-to-zero. 131 * 132 * @dev: the device structure 133 * @reg: new register value 134 */ 135static inline void mei_hcsr_set(struct mei_device *dev, u32 reg) 136{ 137 reg &= ~H_IS; 138 mei_hcsr_write(dev, reg); 139} 140 141/** 142 * mei_me_fw_status - read fw status register from pci config space 143 * 144 * @dev: mei device 145 * @fw_status: fw status register values 146 * 147 * Return: 0 on success, error otherwise 148 */ 149static int mei_me_fw_status(struct mei_device *dev, 150 struct mei_fw_status *fw_status) 151{ 152 struct pci_dev *pdev = to_pci_dev(dev->dev); 153 struct mei_me_hw *hw = to_me_hw(dev); 154 const struct mei_fw_status *fw_src = &hw->cfg->fw_status; 155 int ret; 156 int i; 157 158 if (!fw_status) 159 return -EINVAL; 160 161 fw_status->count = fw_src->count; 162 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) { 163 ret = pci_read_config_dword(pdev, 164 fw_src->status[i], &fw_status->status[i]); 165 if (ret) 166 return ret; 167 } 168 169 return 0; 170} 171 172/** 173 * mei_me_hw_config - configure hw dependent settings 174 * 175 * @dev: mei device 176 */ 177static void mei_me_hw_config(struct mei_device *dev) 178{ 179 struct mei_me_hw *hw = to_me_hw(dev); 180 u32 hcsr = mei_hcsr_read(dev); 181 /* Doesn't change in runtime */ 182 dev->hbuf_depth = (hcsr & H_CBD) >> 24; 183 184 hw->pg_state = MEI_PG_OFF; 185} 186 187/** 188 * mei_me_pg_state - translate internal pg state 189 * to the mei power gating state 190 * 191 * @dev: mei device 192 * 193 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise 194 */ 195static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev) 196{ 197 struct mei_me_hw *hw = to_me_hw(dev); 198 199 return hw->pg_state; 200} 201 202/** 203 * mei_me_intr_clear - clear and stop interrupts 204 * 205 * @dev: the device structure 206 */ 207static void mei_me_intr_clear(struct mei_device *dev) 208{ 209 u32 hcsr = mei_hcsr_read(dev); 210 211 if ((hcsr & H_IS) == H_IS) 212 mei_hcsr_write(dev, hcsr); 213} 214/** 215 * mei_me_intr_enable - enables mei device interrupts 216 * 217 * @dev: the device structure 218 */ 219static void mei_me_intr_enable(struct mei_device *dev) 220{ 221 u32 hcsr = mei_hcsr_read(dev); 222 223 hcsr |= H_IE; 224 mei_hcsr_set(dev, hcsr); 225} 226 227/** 228 * mei_me_intr_disable - disables mei device interrupts 229 * 230 * @dev: the device structure 231 */ 232static void mei_me_intr_disable(struct mei_device *dev) 233{ 234 u32 hcsr = mei_hcsr_read(dev); 235 236 hcsr &= ~H_IE; 237 mei_hcsr_set(dev, hcsr); 238} 239 240/** 241 * mei_me_hw_reset_release - release device from the reset 242 * 243 * @dev: the device structure 244 */ 245static void mei_me_hw_reset_release(struct mei_device *dev) 246{ 247 u32 hcsr = mei_hcsr_read(dev); 248 249 hcsr |= H_IG; 250 hcsr &= ~H_RST; 251 mei_hcsr_set(dev, hcsr); 252 253 /* complete this write before we set host ready on another CPU */ 254 mmiowb(); 255} 256/** 257 * mei_me_hw_reset - resets fw via mei csr register. 258 * 259 * @dev: the device structure 260 * @intr_enable: if interrupt should be enabled after reset. 261 * 262 * Return: always 0 263 */ 264static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable) 265{ 266 u32 hcsr = mei_hcsr_read(dev); 267 268 /* H_RST may be found lit before reset is started, 269 * for example if preceding reset flow hasn't completed. 270 * In that case asserting H_RST will be ignored, therefore 271 * we need to clean H_RST bit to start a successful reset sequence. 272 */ 273 if ((hcsr & H_RST) == H_RST) { 274 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr); 275 hcsr &= ~H_RST; 276 mei_hcsr_set(dev, hcsr); 277 hcsr = mei_hcsr_read(dev); 278 } 279 280 hcsr |= H_RST | H_IG | H_IS; 281 282 if (intr_enable) 283 hcsr |= H_IE; 284 else 285 hcsr &= ~H_IE; 286 287 dev->recvd_hw_ready = false; 288 mei_hcsr_write(dev, hcsr); 289 290 /* 291 * Host reads the H_CSR once to ensure that the 292 * posted write to H_CSR completes. 293 */ 294 hcsr = mei_hcsr_read(dev); 295 296 if ((hcsr & H_RST) == 0) 297 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr); 298 299 if ((hcsr & H_RDY) == H_RDY) 300 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr); 301 302 if (intr_enable == false) 303 mei_me_hw_reset_release(dev); 304 305 return 0; 306} 307 308/** 309 * mei_me_host_set_ready - enable device 310 * 311 * @dev: mei device 312 */ 313static void mei_me_host_set_ready(struct mei_device *dev) 314{ 315 u32 hcsr = mei_hcsr_read(dev); 316 317 hcsr |= H_IE | H_IG | H_RDY; 318 mei_hcsr_set(dev, hcsr); 319} 320 321/** 322 * mei_me_host_is_ready - check whether the host has turned ready 323 * 324 * @dev: mei device 325 * Return: bool 326 */ 327static bool mei_me_host_is_ready(struct mei_device *dev) 328{ 329 u32 hcsr = mei_hcsr_read(dev); 330 331 return (hcsr & H_RDY) == H_RDY; 332} 333 334/** 335 * mei_me_hw_is_ready - check whether the me(hw) has turned ready 336 * 337 * @dev: mei device 338 * Return: bool 339 */ 340static bool mei_me_hw_is_ready(struct mei_device *dev) 341{ 342 u32 mecsr = mei_me_mecsr_read(dev); 343 344 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA; 345} 346 347/** 348 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready 349 * or timeout is reached 350 * 351 * @dev: mei device 352 * Return: 0 on success, error otherwise 353 */ 354static int mei_me_hw_ready_wait(struct mei_device *dev) 355{ 356 mutex_unlock(&dev->device_lock); 357 wait_event_timeout(dev->wait_hw_ready, 358 dev->recvd_hw_ready, 359 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT)); 360 mutex_lock(&dev->device_lock); 361 if (!dev->recvd_hw_ready) { 362 dev_err(dev->dev, "wait hw ready failed\n"); 363 return -ETIME; 364 } 365 366 mei_me_hw_reset_release(dev); 367 dev->recvd_hw_ready = false; 368 return 0; 369} 370 371/** 372 * mei_me_hw_start - hw start routine 373 * 374 * @dev: mei device 375 * Return: 0 on success, error otherwise 376 */ 377static int mei_me_hw_start(struct mei_device *dev) 378{ 379 int ret = mei_me_hw_ready_wait(dev); 380 381 if (ret) 382 return ret; 383 dev_dbg(dev->dev, "hw is ready\n"); 384 385 mei_me_host_set_ready(dev); 386 return ret; 387} 388 389 390/** 391 * mei_hbuf_filled_slots - gets number of device filled buffer slots 392 * 393 * @dev: the device structure 394 * 395 * Return: number of filled slots 396 */ 397static unsigned char mei_hbuf_filled_slots(struct mei_device *dev) 398{ 399 u32 hcsr; 400 char read_ptr, write_ptr; 401 402 hcsr = mei_hcsr_read(dev); 403 404 read_ptr = (char) ((hcsr & H_CBRP) >> 8); 405 write_ptr = (char) ((hcsr & H_CBWP) >> 16); 406 407 return (unsigned char) (write_ptr - read_ptr); 408} 409 410/** 411 * mei_me_hbuf_is_empty - checks if host buffer is empty. 412 * 413 * @dev: the device structure 414 * 415 * Return: true if empty, false - otherwise. 416 */ 417static bool mei_me_hbuf_is_empty(struct mei_device *dev) 418{ 419 return mei_hbuf_filled_slots(dev) == 0; 420} 421 422/** 423 * mei_me_hbuf_empty_slots - counts write empty slots. 424 * 425 * @dev: the device structure 426 * 427 * Return: -EOVERFLOW if overflow, otherwise empty slots count 428 */ 429static int mei_me_hbuf_empty_slots(struct mei_device *dev) 430{ 431 unsigned char filled_slots, empty_slots; 432 433 filled_slots = mei_hbuf_filled_slots(dev); 434 empty_slots = dev->hbuf_depth - filled_slots; 435 436 /* check for overflow */ 437 if (filled_slots > dev->hbuf_depth) 438 return -EOVERFLOW; 439 440 return empty_slots; 441} 442 443/** 444 * mei_me_hbuf_max_len - returns size of hw buffer. 445 * 446 * @dev: the device structure 447 * 448 * Return: size of hw buffer in bytes 449 */ 450static size_t mei_me_hbuf_max_len(const struct mei_device *dev) 451{ 452 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr); 453} 454 455 456/** 457 * mei_me_write_message - writes a message to mei device. 458 * 459 * @dev: the device structure 460 * @header: mei HECI header of message 461 * @buf: message payload will be written 462 * 463 * Return: -EIO if write has failed 464 */ 465static int mei_me_write_message(struct mei_device *dev, 466 struct mei_msg_hdr *header, 467 unsigned char *buf) 468{ 469 unsigned long rem; 470 unsigned long length = header->length; 471 u32 *reg_buf = (u32 *)buf; 472 u32 hcsr; 473 u32 dw_cnt; 474 int i; 475 int empty_slots; 476 477 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header)); 478 479 empty_slots = mei_hbuf_empty_slots(dev); 480 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots); 481 482 dw_cnt = mei_data2slots(length); 483 if (empty_slots < 0 || dw_cnt > empty_slots) 484 return -EMSGSIZE; 485 486 mei_me_hcbww_write(dev, *((u32 *) header)); 487 488 for (i = 0; i < length / 4; i++) 489 mei_me_hcbww_write(dev, reg_buf[i]); 490 491 rem = length & 0x3; 492 if (rem > 0) { 493 u32 reg = 0; 494 495 memcpy(®, &buf[length - rem], rem); 496 mei_me_hcbww_write(dev, reg); 497 } 498 499 hcsr = mei_hcsr_read(dev) | H_IG; 500 mei_hcsr_set(dev, hcsr); 501 if (!mei_me_hw_is_ready(dev)) 502 return -EIO; 503 504 return 0; 505} 506 507/** 508 * mei_me_count_full_read_slots - counts read full slots. 509 * 510 * @dev: the device structure 511 * 512 * Return: -EOVERFLOW if overflow, otherwise filled slots count 513 */ 514static int mei_me_count_full_read_slots(struct mei_device *dev) 515{ 516 u32 me_csr; 517 char read_ptr, write_ptr; 518 unsigned char buffer_depth, filled_slots; 519 520 me_csr = mei_me_mecsr_read(dev); 521 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24); 522 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8); 523 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16); 524 filled_slots = (unsigned char) (write_ptr - read_ptr); 525 526 /* check for overflow */ 527 if (filled_slots > buffer_depth) 528 return -EOVERFLOW; 529 530 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots); 531 return (int)filled_slots; 532} 533 534/** 535 * mei_me_read_slots - reads a message from mei device. 536 * 537 * @dev: the device structure 538 * @buffer: message buffer will be written 539 * @buffer_length: message size will be read 540 * 541 * Return: always 0 542 */ 543static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer, 544 unsigned long buffer_length) 545{ 546 u32 *reg_buf = (u32 *)buffer; 547 u32 hcsr; 548 549 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32)) 550 *reg_buf++ = mei_me_mecbrw_read(dev); 551 552 if (buffer_length > 0) { 553 u32 reg = mei_me_mecbrw_read(dev); 554 555 memcpy(reg_buf, ®, buffer_length); 556 } 557 558 hcsr = mei_hcsr_read(dev) | H_IG; 559 mei_hcsr_set(dev, hcsr); 560 return 0; 561} 562 563/** 564 * mei_me_pg_set - write pg enter register 565 * 566 * @dev: the device structure 567 */ 568static void mei_me_pg_set(struct mei_device *dev) 569{ 570 struct mei_me_hw *hw = to_me_hw(dev); 571 u32 reg; 572 573 reg = mei_me_reg_read(hw, H_HPG_CSR); 574 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 575 576 reg |= H_HPG_CSR_PGI; 577 578 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 579 mei_me_reg_write(hw, H_HPG_CSR, reg); 580} 581 582/** 583 * mei_me_pg_unset - write pg exit register 584 * 585 * @dev: the device structure 586 */ 587static void mei_me_pg_unset(struct mei_device *dev) 588{ 589 struct mei_me_hw *hw = to_me_hw(dev); 590 u32 reg; 591 592 reg = mei_me_reg_read(hw, H_HPG_CSR); 593 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 594 595 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n"); 596 597 reg |= H_HPG_CSR_PGIHEXR; 598 599 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 600 mei_me_reg_write(hw, H_HPG_CSR, reg); 601} 602 603/** 604 * mei_me_pg_enter_sync - perform pg entry procedure 605 * 606 * @dev: the device structure 607 * 608 * Return: 0 on success an error code otherwise 609 */ 610int mei_me_pg_enter_sync(struct mei_device *dev) 611{ 612 struct mei_me_hw *hw = to_me_hw(dev); 613 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); 614 int ret; 615 616 dev->pg_event = MEI_PG_EVENT_WAIT; 617 618 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD); 619 if (ret) 620 return ret; 621 622 mutex_unlock(&dev->device_lock); 623 wait_event_timeout(dev->wait_pg, 624 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); 625 mutex_lock(&dev->device_lock); 626 627 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) { 628 mei_me_pg_set(dev); 629 ret = 0; 630 } else { 631 ret = -ETIME; 632 } 633 634 dev->pg_event = MEI_PG_EVENT_IDLE; 635 hw->pg_state = MEI_PG_ON; 636 637 return ret; 638} 639 640/** 641 * mei_me_pg_exit_sync - perform pg exit procedure 642 * 643 * @dev: the device structure 644 * 645 * Return: 0 on success an error code otherwise 646 */ 647int mei_me_pg_exit_sync(struct mei_device *dev) 648{ 649 struct mei_me_hw *hw = to_me_hw(dev); 650 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); 651 int ret; 652 653 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) 654 goto reply; 655 656 dev->pg_event = MEI_PG_EVENT_WAIT; 657 658 mei_me_pg_unset(dev); 659 660 mutex_unlock(&dev->device_lock); 661 wait_event_timeout(dev->wait_pg, 662 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); 663 mutex_lock(&dev->device_lock); 664 665reply: 666 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) { 667 ret = -ETIME; 668 goto out; 669 } 670 671 dev->pg_event = MEI_PG_EVENT_INTR_WAIT; 672 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD); 673 if (ret) 674 return ret; 675 676 mutex_unlock(&dev->device_lock); 677 wait_event_timeout(dev->wait_pg, 678 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout); 679 mutex_lock(&dev->device_lock); 680 681 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED) 682 ret = 0; 683 else 684 ret = -ETIME; 685 686out: 687 dev->pg_event = MEI_PG_EVENT_IDLE; 688 hw->pg_state = MEI_PG_OFF; 689 690 return ret; 691} 692 693/** 694 * mei_me_pg_in_transition - is device now in pg transition 695 * 696 * @dev: the device structure 697 * 698 * Return: true if in pg transition, false otherwise 699 */ 700static bool mei_me_pg_in_transition(struct mei_device *dev) 701{ 702 return dev->pg_event >= MEI_PG_EVENT_WAIT && 703 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT; 704} 705 706/** 707 * mei_me_pg_is_enabled - detect if PG is supported by HW 708 * 709 * @dev: the device structure 710 * 711 * Return: true is pg supported, false otherwise 712 */ 713static bool mei_me_pg_is_enabled(struct mei_device *dev) 714{ 715 u32 reg = mei_me_mecsr_read(dev); 716 717 if ((reg & ME_PGIC_HRA) == 0) 718 goto notsupported; 719 720 if (!dev->hbm_f_pg_supported) 721 goto notsupported; 722 723 return true; 724 725notsupported: 726 dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n", 727 !!(reg & ME_PGIC_HRA), 728 dev->version.major_version, 729 dev->version.minor_version, 730 HBM_MAJOR_VERSION_PGI, 731 HBM_MINOR_VERSION_PGI); 732 733 return false; 734} 735 736/** 737 * mei_me_pg_intr - perform pg processing in interrupt thread handler 738 * 739 * @dev: the device structure 740 */ 741static void mei_me_pg_intr(struct mei_device *dev) 742{ 743 struct mei_me_hw *hw = to_me_hw(dev); 744 745 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT) 746 return; 747 748 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED; 749 hw->pg_state = MEI_PG_OFF; 750 if (waitqueue_active(&dev->wait_pg)) 751 wake_up(&dev->wait_pg); 752} 753 754/** 755 * mei_me_irq_quick_handler - The ISR of the MEI device 756 * 757 * @irq: The irq number 758 * @dev_id: pointer to the device structure 759 * 760 * Return: irqreturn_t 761 */ 762 763irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id) 764{ 765 struct mei_device *dev = (struct mei_device *) dev_id; 766 u32 hcsr = mei_hcsr_read(dev); 767 768 if ((hcsr & H_IS) != H_IS) 769 return IRQ_NONE; 770 771 /* clear H_IS bit in H_CSR */ 772 mei_hcsr_write(dev, hcsr); 773 774 return IRQ_WAKE_THREAD; 775} 776 777/** 778 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt 779 * processing. 780 * 781 * @irq: The irq number 782 * @dev_id: pointer to the device structure 783 * 784 * Return: irqreturn_t 785 * 786 */ 787irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id) 788{ 789 struct mei_device *dev = (struct mei_device *) dev_id; 790 struct mei_cl_cb complete_list; 791 s32 slots; 792 int rets = 0; 793 794 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n"); 795 /* initialize our complete list */ 796 mutex_lock(&dev->device_lock); 797 mei_io_list_init(&complete_list); 798 799 /* Ack the interrupt here 800 * In case of MSI we don't go through the quick handler */ 801 if (pci_dev_msi_enabled(to_pci_dev(dev->dev))) 802 mei_clear_interrupts(dev); 803 804 /* check if ME wants a reset */ 805 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) { 806 dev_warn(dev->dev, "FW not ready: resetting.\n"); 807 schedule_work(&dev->reset_work); 808 goto end; 809 } 810 811 mei_me_pg_intr(dev); 812 813 /* check if we need to start the dev */ 814 if (!mei_host_is_ready(dev)) { 815 if (mei_hw_is_ready(dev)) { 816 dev_dbg(dev->dev, "we need to start the dev.\n"); 817 dev->recvd_hw_ready = true; 818 wake_up(&dev->wait_hw_ready); 819 } else { 820 dev_dbg(dev->dev, "Spurious Interrupt\n"); 821 } 822 goto end; 823 } 824 /* check slots available for reading */ 825 slots = mei_count_full_read_slots(dev); 826 while (slots > 0) { 827 dev_dbg(dev->dev, "slots to read = %08x\n", slots); 828 rets = mei_irq_read_handler(dev, &complete_list, &slots); 829 /* There is a race between ME write and interrupt delivery: 830 * Not all data is always available immediately after the 831 * interrupt, so try to read again on the next interrupt. 832 */ 833 if (rets == -ENODATA) 834 break; 835 836 if (rets && dev->dev_state != MEI_DEV_RESETTING) { 837 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n", 838 rets); 839 schedule_work(&dev->reset_work); 840 goto end; 841 } 842 } 843 844 dev->hbuf_is_ready = mei_hbuf_is_ready(dev); 845 846 /* 847 * During PG handshake only allowed write is the replay to the 848 * PG exit message, so block calling write function 849 * if the pg event is in PG handshake 850 */ 851 if (dev->pg_event != MEI_PG_EVENT_WAIT && 852 dev->pg_event != MEI_PG_EVENT_RECEIVED) { 853 rets = mei_irq_write_handler(dev, &complete_list); 854 dev->hbuf_is_ready = mei_hbuf_is_ready(dev); 855 } 856 857 mei_irq_compl_handler(dev, &complete_list); 858 859end: 860 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets); 861 mutex_unlock(&dev->device_lock); 862 return IRQ_HANDLED; 863} 864 865static const struct mei_hw_ops mei_me_hw_ops = { 866 867 .fw_status = mei_me_fw_status, 868 .pg_state = mei_me_pg_state, 869 870 .host_is_ready = mei_me_host_is_ready, 871 872 .hw_is_ready = mei_me_hw_is_ready, 873 .hw_reset = mei_me_hw_reset, 874 .hw_config = mei_me_hw_config, 875 .hw_start = mei_me_hw_start, 876 877 .pg_in_transition = mei_me_pg_in_transition, 878 .pg_is_enabled = mei_me_pg_is_enabled, 879 880 .intr_clear = mei_me_intr_clear, 881 .intr_enable = mei_me_intr_enable, 882 .intr_disable = mei_me_intr_disable, 883 884 .hbuf_free_slots = mei_me_hbuf_empty_slots, 885 .hbuf_is_ready = mei_me_hbuf_is_empty, 886 .hbuf_max_len = mei_me_hbuf_max_len, 887 888 .write = mei_me_write_message, 889 890 .rdbuf_full_slots = mei_me_count_full_read_slots, 891 .read_hdr = mei_me_mecbrw_read, 892 .read = mei_me_read_slots 893}; 894 895static bool mei_me_fw_type_nm(struct pci_dev *pdev) 896{ 897 u32 reg; 898 899 pci_read_config_dword(pdev, PCI_CFG_HFS_2, ®); 900 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */ 901 return (reg & 0x600) == 0x200; 902} 903 904#define MEI_CFG_FW_NM \ 905 .quirk_probe = mei_me_fw_type_nm 906 907static bool mei_me_fw_type_sps(struct pci_dev *pdev) 908{ 909 u32 reg; 910 /* Read ME FW Status check for SPS Firmware */ 911 pci_read_config_dword(pdev, PCI_CFG_HFS_1, ®); 912 /* if bits [19:16] = 15, running SPS Firmware */ 913 return (reg & 0xf0000) == 0xf0000; 914} 915 916#define MEI_CFG_FW_SPS \ 917 .quirk_probe = mei_me_fw_type_sps 918 919 920#define MEI_CFG_LEGACY_HFS \ 921 .fw_status.count = 0 922 923#define MEI_CFG_ICH_HFS \ 924 .fw_status.count = 1, \ 925 .fw_status.status[0] = PCI_CFG_HFS_1 926 927#define MEI_CFG_PCH_HFS \ 928 .fw_status.count = 2, \ 929 .fw_status.status[0] = PCI_CFG_HFS_1, \ 930 .fw_status.status[1] = PCI_CFG_HFS_2 931 932#define MEI_CFG_PCH8_HFS \ 933 .fw_status.count = 6, \ 934 .fw_status.status[0] = PCI_CFG_HFS_1, \ 935 .fw_status.status[1] = PCI_CFG_HFS_2, \ 936 .fw_status.status[2] = PCI_CFG_HFS_3, \ 937 .fw_status.status[3] = PCI_CFG_HFS_4, \ 938 .fw_status.status[4] = PCI_CFG_HFS_5, \ 939 .fw_status.status[5] = PCI_CFG_HFS_6 940 941/* ICH Legacy devices */ 942const struct mei_cfg mei_me_legacy_cfg = { 943 MEI_CFG_LEGACY_HFS, 944}; 945 946/* ICH devices */ 947const struct mei_cfg mei_me_ich_cfg = { 948 MEI_CFG_ICH_HFS, 949}; 950 951/* PCH devices */ 952const struct mei_cfg mei_me_pch_cfg = { 953 MEI_CFG_PCH_HFS, 954}; 955 956 957/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */ 958const struct mei_cfg mei_me_pch_cpt_pbg_cfg = { 959 MEI_CFG_PCH_HFS, 960 MEI_CFG_FW_NM, 961}; 962 963/* PCH8 Lynx Point and newer devices */ 964const struct mei_cfg mei_me_pch8_cfg = { 965 MEI_CFG_PCH8_HFS, 966}; 967 968/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */ 969const struct mei_cfg mei_me_pch8_sps_cfg = { 970 MEI_CFG_PCH8_HFS, 971 MEI_CFG_FW_SPS, 972}; 973 974/** 975 * mei_me_dev_init - allocates and initializes the mei device structure 976 * 977 * @pdev: The pci device structure 978 * @cfg: per device generation config 979 * 980 * Return: The mei_device_device pointer on success, NULL on failure. 981 */ 982struct mei_device *mei_me_dev_init(struct pci_dev *pdev, 983 const struct mei_cfg *cfg) 984{ 985 struct mei_device *dev; 986 struct mei_me_hw *hw; 987 988 dev = kzalloc(sizeof(struct mei_device) + 989 sizeof(struct mei_me_hw), GFP_KERNEL); 990 if (!dev) 991 return NULL; 992 hw = to_me_hw(dev); 993 994 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops); 995 hw->cfg = cfg; 996 return dev; 997} 998 999