1/*
2 * CARMA DATA-FPGA Access Driver
3 *
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12/*
13 * FPGA Memory Dump Format
14 *
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24 *
25 * Each correlation array consists of:
26 *
27 * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30 *
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
34 */
35
36/*
37 * Basic Description:
38 *
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
43 *
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
47 *
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
50 *
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
53 *
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
57 *
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
61 *
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
66 *
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
70 */
71
72/*
73 * Notes on the IRQ masking scheme:
74 *
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
79 *
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
84 *
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89 */
90
91#include <linux/of_address.h>
92#include <linux/of_irq.h>
93#include <linux/of_platform.h>
94#include <linux/dma-mapping.h>
95#include <linux/miscdevice.h>
96#include <linux/interrupt.h>
97#include <linux/dmaengine.h>
98#include <linux/seq_file.h>
99#include <linux/highmem.h>
100#include <linux/debugfs.h>
101#include <linux/vmalloc.h>
102#include <linux/kernel.h>
103#include <linux/module.h>
104#include <linux/poll.h>
105#include <linux/slab.h>
106#include <linux/kref.h>
107#include <linux/io.h>
108
109/* system controller registers */
110#define SYS_IRQ_SOURCE_CTL	0x24
111#define SYS_IRQ_OUTPUT_EN	0x28
112#define SYS_IRQ_OUTPUT_DATA	0x2C
113#define SYS_IRQ_INPUT_DATA	0x30
114#define SYS_FPGA_CONFIG_STATUS	0x44
115
116/* GPIO IRQ line assignment */
117#define IRQ_CORL_DONE		0x10
118
119/* FPGA registers */
120#define MMAP_REG_VERSION	0x00
121#define MMAP_REG_CORL_CONF1	0x08
122#define MMAP_REG_CORL_CONF2	0x0C
123#define MMAP_REG_STATUS		0x48
124
125#define SYS_FPGA_BLOCK		0xF0000000
126
127#define DATA_FPGA_START		0x400000
128#define DATA_FPGA_SIZE		0x80000
129
130static const char drv_name[] = "carma-fpga";
131
132#define NUM_FPGA	4
133
134#define MIN_DATA_BUFS	8
135#define MAX_DATA_BUFS	64
136
137struct fpga_info {
138	unsigned int num_lag_ram;
139	unsigned int blk_size;
140};
141
142struct data_buf {
143	struct list_head entry;
144	void *vaddr;
145	struct scatterlist *sglist;
146	int sglen;
147	int nr_pages;
148	size_t size;
149};
150
151struct fpga_device {
152	/* character device */
153	struct miscdevice miscdev;
154	struct device *dev;
155	struct mutex mutex;
156
157	/* reference count */
158	struct kref ref;
159
160	/* FPGA registers and information */
161	struct fpga_info info[NUM_FPGA];
162	void __iomem *regs;
163	int irq;
164
165	/* FPGA Physical Address/Size Information */
166	resource_size_t phys_addr;
167	size_t phys_size;
168
169	/* DMA structures */
170	struct sg_table corl_table;
171	unsigned int corl_nents;
172	struct dma_chan *chan;
173
174	/* Protection for all members below */
175	spinlock_t lock;
176
177	/* Device enable/disable flag */
178	bool enabled;
179
180	/* Correlation data buffers */
181	wait_queue_head_t wait;
182	struct list_head free;
183	struct list_head used;
184	struct data_buf *inflight;
185
186	/* Information about data buffers */
187	unsigned int num_dropped;
188	unsigned int num_buffers;
189	size_t bufsize;
190	struct dentry *dbg_entry;
191};
192
193struct fpga_reader {
194	struct fpga_device *priv;
195	struct data_buf *buf;
196	off_t buf_start;
197};
198
199static void fpga_device_release(struct kref *ref)
200{
201	struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
202
203	/* the last reader has exited, cleanup the last bits */
204	mutex_destroy(&priv->mutex);
205	kfree(priv);
206}
207
208/*
209 * Data Buffer Allocation Helpers
210 */
211
212static int carma_dma_init(struct data_buf *buf, int nr_pages)
213{
214	struct page *pg;
215	int i;
216
217	buf->vaddr = vmalloc_32(nr_pages << PAGE_SHIFT);
218	if (NULL == buf->vaddr) {
219		pr_debug("vmalloc_32(%d pages) failed\n", nr_pages);
220		return -ENOMEM;
221	}
222
223	pr_debug("vmalloc is at addr 0x%08lx, size=%d\n",
224				(unsigned long)buf->vaddr,
225				nr_pages << PAGE_SHIFT);
226
227	memset(buf->vaddr, 0, nr_pages << PAGE_SHIFT);
228	buf->nr_pages = nr_pages;
229
230	buf->sglist = vzalloc(buf->nr_pages * sizeof(*buf->sglist));
231	if (NULL == buf->sglist)
232		goto vzalloc_err;
233
234	sg_init_table(buf->sglist, buf->nr_pages);
235	for (i = 0; i < buf->nr_pages; i++) {
236		pg = vmalloc_to_page(buf->vaddr + i * PAGE_SIZE);
237		if (NULL == pg)
238			goto vmalloc_to_page_err;
239		sg_set_page(&buf->sglist[i], pg, PAGE_SIZE, 0);
240	}
241	return 0;
242
243vmalloc_to_page_err:
244	vfree(buf->sglist);
245	buf->sglist = NULL;
246vzalloc_err:
247	vfree(buf->vaddr);
248	buf->vaddr = NULL;
249	return -ENOMEM;
250}
251
252static int carma_dma_map(struct device *dev, struct data_buf *buf)
253{
254	buf->sglen = dma_map_sg(dev, buf->sglist,
255			buf->nr_pages, DMA_FROM_DEVICE);
256
257	if (0 == buf->sglen) {
258		pr_warn("%s: dma_map_sg failed\n", __func__);
259		return -ENOMEM;
260	}
261	return 0;
262}
263
264static int carma_dma_unmap(struct device *dev, struct data_buf *buf)
265{
266	if (!buf->sglen)
267		return 0;
268
269	dma_unmap_sg(dev, buf->sglist, buf->sglen, DMA_FROM_DEVICE);
270	buf->sglen = 0;
271	return 0;
272}
273
274/**
275 * data_free_buffer() - free a single data buffer and all allocated memory
276 * @buf: the buffer to free
277 *
278 * This will free all of the pages allocated to the given data buffer, and
279 * then free the structure itself
280 */
281static void data_free_buffer(struct data_buf *buf)
282{
283	/* It is ok to free a NULL buffer */
284	if (!buf)
285		return;
286
287	/* free all memory */
288	vfree(buf->sglist);
289	vfree(buf->vaddr);
290	kfree(buf);
291}
292
293/**
294 * data_alloc_buffer() - allocate and fill a data buffer with pages
295 * @bytes: the number of bytes required
296 *
297 * This allocates all space needed for a data buffer. It must be mapped before
298 * use in a DMA transaction using carma_dma_map().
299 *
300 * Returns NULL on failure
301 */
302static struct data_buf *data_alloc_buffer(const size_t bytes)
303{
304	unsigned int nr_pages;
305	struct data_buf *buf;
306	int ret;
307
308	/* calculate the number of pages necessary */
309	nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
310
311	/* allocate the buffer structure */
312	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
313	if (!buf)
314		goto out_return;
315
316	/* initialize internal fields */
317	INIT_LIST_HEAD(&buf->entry);
318	buf->size = bytes;
319
320	/* allocate the buffer */
321	ret = carma_dma_init(buf, nr_pages);
322	if (ret)
323		goto out_free_buf;
324
325	return buf;
326
327out_free_buf:
328	kfree(buf);
329out_return:
330	return NULL;
331}
332
333/**
334 * data_free_buffers() - free all allocated buffers
335 * @priv: the driver's private data structure
336 *
337 * Free all buffers allocated by the driver (except those currently in the
338 * process of being read by userspace).
339 *
340 * LOCKING: must hold dev->mutex
341 * CONTEXT: user
342 */
343static void data_free_buffers(struct fpga_device *priv)
344{
345	struct data_buf *buf, *tmp;
346
347	/* the device should be stopped, no DMA in progress */
348	BUG_ON(priv->inflight != NULL);
349
350	list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
351		list_del_init(&buf->entry);
352		carma_dma_unmap(priv->dev, buf);
353		data_free_buffer(buf);
354	}
355
356	list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
357		list_del_init(&buf->entry);
358		carma_dma_unmap(priv->dev, buf);
359		data_free_buffer(buf);
360	}
361
362	priv->num_buffers = 0;
363	priv->bufsize = 0;
364}
365
366/**
367 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
368 * @priv: the driver's private data structure
369 *
370 * Allocate enough buffers for a whole second worth of data
371 *
372 * This routine will attempt to degrade nicely by succeeding even if a full
373 * second worth of data buffers could not be allocated, as long as a minimum
374 * number were allocated. In this case, it will print a message to the kernel
375 * log.
376 *
377 * The device must not be modifying any lists when this is called.
378 *
379 * CONTEXT: user
380 * LOCKING: must hold dev->mutex
381 *
382 * Returns 0 on success, -ERRNO otherwise
383 */
384static int data_alloc_buffers(struct fpga_device *priv)
385{
386	struct data_buf *buf;
387	int i, ret;
388
389	for (i = 0; i < MAX_DATA_BUFS; i++) {
390
391		/* allocate a buffer */
392		buf = data_alloc_buffer(priv->bufsize);
393		if (!buf)
394			break;
395
396		/* map it for DMA */
397		ret = carma_dma_map(priv->dev, buf);
398		if (ret) {
399			data_free_buffer(buf);
400			break;
401		}
402
403		/* add it to the list of free buffers */
404		list_add_tail(&buf->entry, &priv->free);
405		priv->num_buffers++;
406	}
407
408	/* Make sure we allocated the minimum required number of buffers */
409	if (priv->num_buffers < MIN_DATA_BUFS) {
410		dev_err(priv->dev, "Unable to allocate enough data buffers\n");
411		data_free_buffers(priv);
412		return -ENOMEM;
413	}
414
415	/* Warn if we are running in a degraded state, but do not fail */
416	if (priv->num_buffers < MAX_DATA_BUFS) {
417		dev_warn(priv->dev,
418			 "Unable to allocate %d buffers, using %d buffers instead\n",
419			 MAX_DATA_BUFS, i);
420	}
421
422	return 0;
423}
424
425/*
426 * DMA Operations Helpers
427 */
428
429/**
430 * fpga_start_addr() - get the physical address a DATA-FPGA
431 * @priv: the driver's private data structure
432 * @fpga: the DATA-FPGA number (zero based)
433 */
434static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
435{
436	return priv->phys_addr + 0x400000 + (0x80000 * fpga);
437}
438
439/**
440 * fpga_block_addr() - get the physical address of a correlation data block
441 * @priv: the driver's private data structure
442 * @fpga: the DATA-FPGA number (zero based)
443 * @blknum: the correlation block number (zero based)
444 */
445static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
446				  unsigned int blknum)
447{
448	return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
449}
450
451#define REG_BLOCK_SIZE	(32 * 4)
452
453/**
454 * data_setup_corl_table() - create the scatterlist for correlation dumps
455 * @priv: the driver's private data structure
456 *
457 * Create the scatterlist for transferring a correlation dump from the
458 * DATA FPGAs. This structure will be reused for each buffer than needs
459 * to be filled with correlation data.
460 *
461 * Returns 0 on success, -ERRNO otherwise
462 */
463static int data_setup_corl_table(struct fpga_device *priv)
464{
465	struct sg_table *table = &priv->corl_table;
466	struct scatterlist *sg;
467	struct fpga_info *info;
468	int i, j, ret;
469
470	/* Calculate the number of entries needed */
471	priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
472	for (i = 0; i < NUM_FPGA; i++)
473		priv->corl_nents += priv->info[i].num_lag_ram;
474
475	/* Allocate the scatterlist table */
476	ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
477	if (ret) {
478		dev_err(priv->dev, "unable to allocate DMA table\n");
479		return ret;
480	}
481
482	/* Add the DATA FPGA registers to the scatterlist */
483	sg = table->sgl;
484	for (i = 0; i < NUM_FPGA; i++) {
485		sg_dma_address(sg) = fpga_start_addr(priv, i);
486		sg_dma_len(sg) = REG_BLOCK_SIZE;
487		sg = sg_next(sg);
488	}
489
490	/* Add the SYS-FPGA registers to the scatterlist */
491	sg_dma_address(sg) = SYS_FPGA_BLOCK;
492	sg_dma_len(sg) = REG_BLOCK_SIZE;
493	sg = sg_next(sg);
494
495	/* Add the FPGA correlation data blocks to the scatterlist */
496	for (i = 0; i < NUM_FPGA; i++) {
497		info = &priv->info[i];
498		for (j = 0; j < info->num_lag_ram; j++) {
499			sg_dma_address(sg) = fpga_block_addr(priv, i, j);
500			sg_dma_len(sg) = info->blk_size;
501			sg = sg_next(sg);
502		}
503	}
504
505	/*
506	 * All physical addresses and lengths are present in the structure
507	 * now. It can be reused for every FPGA DATA interrupt
508	 */
509	return 0;
510}
511
512/*
513 * FPGA Register Access Helpers
514 */
515
516static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
517			   unsigned int reg, u32 val)
518{
519	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
520	iowrite32be(val, priv->regs + fpga_start + reg);
521}
522
523static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
524			 unsigned int reg)
525{
526	const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
527	return ioread32be(priv->regs + fpga_start + reg);
528}
529
530/**
531 * data_calculate_bufsize() - calculate the data buffer size required
532 * @priv: the driver's private data structure
533 *
534 * Calculate the total buffer size needed to hold a single block
535 * of correlation data
536 *
537 * CONTEXT: user
538 *
539 * Returns 0 on success, -ERRNO otherwise
540 */
541static int data_calculate_bufsize(struct fpga_device *priv)
542{
543	u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
544	u32 conf1, conf2, version;
545	u32 num_lag_ram, blk_size;
546	int i;
547
548	/* Each buffer starts with the 5 FPGA register areas */
549	priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
550
551	/* Read and store the configuration data for each FPGA */
552	for (i = 0; i < NUM_FPGA; i++) {
553		version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
554		conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
555		conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
556
557		/* minor version 2 and later */
558		if ((version & 0x000000FF) >= 2) {
559			num_corl = (conf1 & 0x000000F0) >> 4;
560			num_pack = (conf1 & 0x00000F00) >> 8;
561			num_lags = (conf1 & 0x00FFF000) >> 12;
562			num_meta = (conf1 & 0x7F000000) >> 24;
563			num_qcnt = (conf2 & 0x00000FFF) >> 0;
564		} else {
565			num_corl = (conf1 & 0x000000F0) >> 4;
566			num_pack = 1; /* implied */
567			num_lags = (conf1 & 0x000FFF00) >> 8;
568			num_meta = (conf1 & 0x7FF00000) >> 20;
569			num_qcnt = (conf2 & 0x00000FFF) >> 0;
570		}
571
572		num_lag_ram = (num_corl + num_pack - 1) / num_pack;
573		blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
574
575		priv->info[i].num_lag_ram = num_lag_ram;
576		priv->info[i].blk_size = blk_size;
577		priv->bufsize += num_lag_ram * blk_size;
578
579		dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
580		dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
581		dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
582		dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
583		dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
584		dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
585	}
586
587	dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
588	return 0;
589}
590
591/*
592 * Interrupt Handling
593 */
594
595/**
596 * data_disable_interrupts() - stop the device from generating interrupts
597 * @priv: the driver's private data structure
598 *
599 * Hide interrupts by switching to GPIO interrupt source
600 *
601 * LOCKING: must hold dev->lock
602 */
603static void data_disable_interrupts(struct fpga_device *priv)
604{
605	/* hide the interrupt by switching the IRQ driver to GPIO */
606	iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
607}
608
609/**
610 * data_enable_interrupts() - allow the device to generate interrupts
611 * @priv: the driver's private data structure
612 *
613 * Unhide interrupts by switching to the FPGA interrupt source. At the
614 * same time, clear the DATA-FPGA status registers.
615 *
616 * LOCKING: must hold dev->lock
617 */
618static void data_enable_interrupts(struct fpga_device *priv)
619{
620	/* clear the actual FPGA corl_done interrupt */
621	fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
622	fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
623	fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
624	fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
625
626	/* flush the writes */
627	fpga_read_reg(priv, 0, MMAP_REG_STATUS);
628	fpga_read_reg(priv, 1, MMAP_REG_STATUS);
629	fpga_read_reg(priv, 2, MMAP_REG_STATUS);
630	fpga_read_reg(priv, 3, MMAP_REG_STATUS);
631
632	/* switch back to the external interrupt source */
633	iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
634}
635
636/**
637 * data_dma_cb() - DMAEngine callback for DMA completion
638 * @data: the driver's private data structure
639 *
640 * Complete a DMA transfer from the DATA-FPGA's
641 *
642 * This is called via the DMA callback mechanism, and will handle moving the
643 * completed DMA transaction to the used list, and then wake any processes
644 * waiting for new data
645 *
646 * CONTEXT: any, softirq expected
647 */
648static void data_dma_cb(void *data)
649{
650	struct fpga_device *priv = data;
651	unsigned long flags;
652
653	spin_lock_irqsave(&priv->lock, flags);
654
655	/* If there is no inflight buffer, we've got a bug */
656	BUG_ON(priv->inflight == NULL);
657
658	/* Move the inflight buffer onto the used list */
659	list_move_tail(&priv->inflight->entry, &priv->used);
660	priv->inflight = NULL;
661
662	/*
663	 * If data dumping is still enabled, then clear the FPGA
664	 * status registers and re-enable FPGA interrupts
665	 */
666	if (priv->enabled)
667		data_enable_interrupts(priv);
668
669	spin_unlock_irqrestore(&priv->lock, flags);
670
671	/*
672	 * We've changed both the inflight and used lists, so we need
673	 * to wake up any processes that are blocking for those events
674	 */
675	wake_up(&priv->wait);
676}
677
678/**
679 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
680 * @priv: the driver's private data structure
681 * @buf: the data buffer
682 *
683 * Prepare and submit the necessary DMA transactions to fill a correlation
684 * data buffer.
685 *
686 * LOCKING: must hold dev->lock
687 * CONTEXT: hardirq only
688 *
689 * Returns 0 on success, -ERRNO otherwise
690 */
691static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
692{
693	struct scatterlist *dst_sg, *src_sg;
694	unsigned int dst_nents, src_nents;
695	struct dma_chan *chan = priv->chan;
696	struct dma_async_tx_descriptor *tx;
697	dma_cookie_t cookie;
698	dma_addr_t dst, src;
699	unsigned long dma_flags = 0;
700
701	dst_sg = buf->sglist;
702	dst_nents = buf->sglen;
703
704	src_sg = priv->corl_table.sgl;
705	src_nents = priv->corl_nents;
706
707	/*
708	 * All buffers passed to this function should be ready and mapped
709	 * for DMA already. Therefore, we don't need to do anything except
710	 * submit it to the Freescale DMA Engine for processing
711	 */
712
713	/* setup the scatterlist to scatterlist transfer */
714	tx = chan->device->device_prep_dma_sg(chan,
715					      dst_sg, dst_nents,
716					      src_sg, src_nents,
717					      0);
718	if (!tx) {
719		dev_err(priv->dev, "unable to prep scatterlist DMA\n");
720		return -ENOMEM;
721	}
722
723	/* submit the transaction to the DMA controller */
724	cookie = tx->tx_submit(tx);
725	if (dma_submit_error(cookie)) {
726		dev_err(priv->dev, "unable to submit scatterlist DMA\n");
727		return -ENOMEM;
728	}
729
730	/* Prepare the re-read of the SYS-FPGA block */
731	dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
732	src = SYS_FPGA_BLOCK;
733	tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
734						  REG_BLOCK_SIZE,
735						  dma_flags);
736	if (!tx) {
737		dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
738		return -ENOMEM;
739	}
740
741	/* Setup the callback */
742	tx->callback = data_dma_cb;
743	tx->callback_param = priv;
744
745	/* submit the transaction to the DMA controller */
746	cookie = tx->tx_submit(tx);
747	if (dma_submit_error(cookie)) {
748		dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
749		return -ENOMEM;
750	}
751
752	return 0;
753}
754
755#define CORL_DONE	0x1
756#define CORL_ERR	0x2
757
758static irqreturn_t data_irq(int irq, void *dev_id)
759{
760	struct fpga_device *priv = dev_id;
761	bool submitted = false;
762	struct data_buf *buf;
763	u32 status;
764	int i;
765
766	/* detect spurious interrupts via FPGA status */
767	for (i = 0; i < 4; i++) {
768		status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
769		if (!(status & (CORL_DONE | CORL_ERR))) {
770			dev_err(priv->dev, "spurious irq detected (FPGA)\n");
771			return IRQ_NONE;
772		}
773	}
774
775	/* detect spurious interrupts via raw IRQ pin readback */
776	status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
777	if (status & IRQ_CORL_DONE) {
778		dev_err(priv->dev, "spurious irq detected (IRQ)\n");
779		return IRQ_NONE;
780	}
781
782	spin_lock(&priv->lock);
783
784	/*
785	 * This is an error case that should never happen.
786	 *
787	 * If this driver has a bug and manages to re-enable interrupts while
788	 * a DMA is in progress, then we will hit this statement and should
789	 * start paying attention immediately.
790	 */
791	BUG_ON(priv->inflight != NULL);
792
793	/* hide the interrupt by switching the IRQ driver to GPIO */
794	data_disable_interrupts(priv);
795
796	/* If there are no free buffers, drop this data */
797	if (list_empty(&priv->free)) {
798		priv->num_dropped++;
799		goto out;
800	}
801
802	buf = list_first_entry(&priv->free, struct data_buf, entry);
803	list_del_init(&buf->entry);
804	BUG_ON(buf->size != priv->bufsize);
805
806	/* Submit a DMA transfer to get the correlation data */
807	if (data_submit_dma(priv, buf)) {
808		dev_err(priv->dev, "Unable to setup DMA transfer\n");
809		list_move_tail(&buf->entry, &priv->free);
810		goto out;
811	}
812
813	/* Save the buffer for the DMA callback */
814	priv->inflight = buf;
815	submitted = true;
816
817	/* Start the DMA Engine */
818	dma_async_issue_pending(priv->chan);
819
820out:
821	/* If no DMA was submitted, re-enable interrupts */
822	if (!submitted)
823		data_enable_interrupts(priv);
824
825	spin_unlock(&priv->lock);
826	return IRQ_HANDLED;
827}
828
829/*
830 * Realtime Device Enable Helpers
831 */
832
833/**
834 * data_device_enable() - enable the device for buffered dumping
835 * @priv: the driver's private data structure
836 *
837 * Enable the device for buffered dumping. Allocates buffers and hooks up
838 * the interrupt handler. When this finishes, data will come pouring in.
839 *
840 * LOCKING: must hold dev->mutex
841 * CONTEXT: user context only
842 *
843 * Returns 0 on success, -ERRNO otherwise
844 */
845static int data_device_enable(struct fpga_device *priv)
846{
847	bool enabled;
848	u32 val;
849	int ret;
850
851	/* multiple enables are safe: they do nothing */
852	spin_lock_irq(&priv->lock);
853	enabled = priv->enabled;
854	spin_unlock_irq(&priv->lock);
855	if (enabled)
856		return 0;
857
858	/* check that the FPGAs are programmed */
859	val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
860	if (!(val & (1 << 18))) {
861		dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
862		return -ENODATA;
863	}
864
865	/* read the FPGAs to calculate the buffer size */
866	ret = data_calculate_bufsize(priv);
867	if (ret) {
868		dev_err(priv->dev, "unable to calculate buffer size\n");
869		goto out_error;
870	}
871
872	/* allocate the correlation data buffers */
873	ret = data_alloc_buffers(priv);
874	if (ret) {
875		dev_err(priv->dev, "unable to allocate buffers\n");
876		goto out_error;
877	}
878
879	/* setup the source scatterlist for dumping correlation data */
880	ret = data_setup_corl_table(priv);
881	if (ret) {
882		dev_err(priv->dev, "unable to setup correlation DMA table\n");
883		goto out_error;
884	}
885
886	/* prevent the FPGAs from generating interrupts */
887	data_disable_interrupts(priv);
888
889	/* hookup the irq handler */
890	ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
891	if (ret) {
892		dev_err(priv->dev, "unable to request IRQ handler\n");
893		goto out_error;
894	}
895
896	/* allow the DMA callback to re-enable FPGA interrupts */
897	spin_lock_irq(&priv->lock);
898	priv->enabled = true;
899	spin_unlock_irq(&priv->lock);
900
901	/* allow the FPGAs to generate interrupts */
902	data_enable_interrupts(priv);
903	return 0;
904
905out_error:
906	sg_free_table(&priv->corl_table);
907	priv->corl_nents = 0;
908
909	data_free_buffers(priv);
910	return ret;
911}
912
913/**
914 * data_device_disable() - disable the device for buffered dumping
915 * @priv: the driver's private data structure
916 *
917 * Disable the device for buffered dumping. Stops new DMA transactions from
918 * being generated, waits for all outstanding DMA to complete, and then frees
919 * all buffers.
920 *
921 * LOCKING: must hold dev->mutex
922 * CONTEXT: user only
923 *
924 * Returns 0 on success, -ERRNO otherwise
925 */
926static int data_device_disable(struct fpga_device *priv)
927{
928	spin_lock_irq(&priv->lock);
929
930	/* allow multiple disable */
931	if (!priv->enabled) {
932		spin_unlock_irq(&priv->lock);
933		return 0;
934	}
935
936	/*
937	 * Mark the device disabled
938	 *
939	 * This stops DMA callbacks from re-enabling interrupts
940	 */
941	priv->enabled = false;
942
943	/* prevent the FPGAs from generating interrupts */
944	data_disable_interrupts(priv);
945
946	/* wait until all ongoing DMA has finished */
947	while (priv->inflight != NULL) {
948		spin_unlock_irq(&priv->lock);
949		wait_event(priv->wait, priv->inflight == NULL);
950		spin_lock_irq(&priv->lock);
951	}
952
953	spin_unlock_irq(&priv->lock);
954
955	/* unhook the irq handler */
956	free_irq(priv->irq, priv);
957
958	/* free the correlation table */
959	sg_free_table(&priv->corl_table);
960	priv->corl_nents = 0;
961
962	/* free all buffers: the free and used lists are not being changed */
963	data_free_buffers(priv);
964	return 0;
965}
966
967/*
968 * DEBUGFS Interface
969 */
970#ifdef CONFIG_DEBUG_FS
971
972/*
973 * Count the number of entries in the given list
974 */
975static unsigned int list_num_entries(struct list_head *list)
976{
977	struct list_head *entry;
978	unsigned int ret = 0;
979
980	list_for_each(entry, list)
981		ret++;
982
983	return ret;
984}
985
986static int data_debug_show(struct seq_file *f, void *offset)
987{
988	struct fpga_device *priv = f->private;
989
990	spin_lock_irq(&priv->lock);
991
992	seq_printf(f, "enabled: %d\n", priv->enabled);
993	seq_printf(f, "bufsize: %d\n", priv->bufsize);
994	seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
995	seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
996	seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
997	seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
998	seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
999
1000	spin_unlock_irq(&priv->lock);
1001	return 0;
1002}
1003
1004static int data_debug_open(struct inode *inode, struct file *file)
1005{
1006	return single_open(file, data_debug_show, inode->i_private);
1007}
1008
1009static const struct file_operations data_debug_fops = {
1010	.owner		= THIS_MODULE,
1011	.open		= data_debug_open,
1012	.read		= seq_read,
1013	.llseek		= seq_lseek,
1014	.release	= single_release,
1015};
1016
1017static int data_debugfs_init(struct fpga_device *priv)
1018{
1019	priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
1020					      &data_debug_fops);
1021	return PTR_ERR_OR_ZERO(priv->dbg_entry);
1022}
1023
1024static void data_debugfs_exit(struct fpga_device *priv)
1025{
1026	debugfs_remove(priv->dbg_entry);
1027}
1028
1029#else
1030
1031static inline int data_debugfs_init(struct fpga_device *priv)
1032{
1033	return 0;
1034}
1035
1036static inline void data_debugfs_exit(struct fpga_device *priv)
1037{
1038}
1039
1040#endif	/* CONFIG_DEBUG_FS */
1041
1042/*
1043 * SYSFS Attributes
1044 */
1045
1046static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
1047			    char *buf)
1048{
1049	struct fpga_device *priv = dev_get_drvdata(dev);
1050	int ret;
1051
1052	spin_lock_irq(&priv->lock);
1053	ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
1054	spin_unlock_irq(&priv->lock);
1055
1056	return ret;
1057}
1058
1059static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
1060			   const char *buf, size_t count)
1061{
1062	struct fpga_device *priv = dev_get_drvdata(dev);
1063	unsigned long enable;
1064	int ret;
1065
1066	ret = kstrtoul(buf, 0, &enable);
1067	if (ret) {
1068		dev_err(priv->dev, "unable to parse enable input\n");
1069		return ret;
1070	}
1071
1072	/* protect against concurrent enable/disable */
1073	ret = mutex_lock_interruptible(&priv->mutex);
1074	if (ret)
1075		return ret;
1076
1077	if (enable)
1078		ret = data_device_enable(priv);
1079	else
1080		ret = data_device_disable(priv);
1081
1082	if (ret) {
1083		dev_err(priv->dev, "device %s failed\n",
1084			enable ? "enable" : "disable");
1085		count = ret;
1086		goto out_unlock;
1087	}
1088
1089out_unlock:
1090	mutex_unlock(&priv->mutex);
1091	return count;
1092}
1093
1094static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1095
1096static struct attribute *data_sysfs_attrs[] = {
1097	&dev_attr_enable.attr,
1098	NULL,
1099};
1100
1101static const struct attribute_group rt_sysfs_attr_group = {
1102	.attrs = data_sysfs_attrs,
1103};
1104
1105/*
1106 * FPGA Realtime Data Character Device
1107 */
1108
1109static int data_open(struct inode *inode, struct file *filp)
1110{
1111	/*
1112	 * The miscdevice layer puts our struct miscdevice into the
1113	 * filp->private_data field. We use this to find our private
1114	 * data and then overwrite it with our own private structure.
1115	 */
1116	struct fpga_device *priv = container_of(filp->private_data,
1117						struct fpga_device, miscdev);
1118	struct fpga_reader *reader;
1119	int ret;
1120
1121	/* allocate private data */
1122	reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1123	if (!reader)
1124		return -ENOMEM;
1125
1126	reader->priv = priv;
1127	reader->buf = NULL;
1128
1129	filp->private_data = reader;
1130	ret = nonseekable_open(inode, filp);
1131	if (ret) {
1132		dev_err(priv->dev, "nonseekable-open failed\n");
1133		kfree(reader);
1134		return ret;
1135	}
1136
1137	/*
1138	 * success, increase the reference count of the private data structure
1139	 * so that it doesn't disappear if the device is unbound
1140	 */
1141	kref_get(&priv->ref);
1142	return 0;
1143}
1144
1145static int data_release(struct inode *inode, struct file *filp)
1146{
1147	struct fpga_reader *reader = filp->private_data;
1148	struct fpga_device *priv = reader->priv;
1149
1150	/* free the per-reader structure */
1151	data_free_buffer(reader->buf);
1152	kfree(reader);
1153	filp->private_data = NULL;
1154
1155	/* decrement our reference count to the private data */
1156	kref_put(&priv->ref, fpga_device_release);
1157	return 0;
1158}
1159
1160static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1161			 loff_t *f_pos)
1162{
1163	struct fpga_reader *reader = filp->private_data;
1164	struct fpga_device *priv = reader->priv;
1165	struct list_head *used = &priv->used;
1166	bool drop_buffer = false;
1167	struct data_buf *dbuf;
1168	size_t avail;
1169	void *data;
1170	int ret;
1171
1172	/* check if we already have a partial buffer */
1173	if (reader->buf) {
1174		dbuf = reader->buf;
1175		goto have_buffer;
1176	}
1177
1178	spin_lock_irq(&priv->lock);
1179
1180	/* Block until there is at least one buffer on the used list */
1181	while (list_empty(used)) {
1182		spin_unlock_irq(&priv->lock);
1183
1184		if (filp->f_flags & O_NONBLOCK)
1185			return -EAGAIN;
1186
1187		ret = wait_event_interruptible(priv->wait, !list_empty(used));
1188		if (ret)
1189			return ret;
1190
1191		spin_lock_irq(&priv->lock);
1192	}
1193
1194	/* Grab the first buffer off of the used list */
1195	dbuf = list_first_entry(used, struct data_buf, entry);
1196	list_del_init(&dbuf->entry);
1197
1198	spin_unlock_irq(&priv->lock);
1199
1200	/* Buffers are always mapped: unmap it */
1201	carma_dma_unmap(priv->dev, dbuf);
1202
1203	/* save the buffer for later */
1204	reader->buf = dbuf;
1205	reader->buf_start = 0;
1206
1207have_buffer:
1208	/* Get the number of bytes available */
1209	avail = dbuf->size - reader->buf_start;
1210	data = dbuf->vaddr + reader->buf_start;
1211
1212	/* Get the number of bytes we can transfer */
1213	count = min(count, avail);
1214
1215	/* Copy the data to the userspace buffer */
1216	if (copy_to_user(ubuf, data, count))
1217		return -EFAULT;
1218
1219	/* Update the amount of available space */
1220	avail -= count;
1221
1222	/*
1223	 * If there is still some data available, save the buffer for the
1224	 * next userspace call to read() and return
1225	 */
1226	if (avail > 0) {
1227		reader->buf_start += count;
1228		reader->buf = dbuf;
1229		return count;
1230	}
1231
1232	/*
1233	 * Get the buffer ready to be reused for DMA
1234	 *
1235	 * If it fails, we pretend that the read never happed and return
1236	 * -EFAULT to userspace. The read will be retried.
1237	 */
1238	ret = carma_dma_map(priv->dev, dbuf);
1239	if (ret) {
1240		dev_err(priv->dev, "unable to remap buffer for DMA\n");
1241		return -EFAULT;
1242	}
1243
1244	/* Lock against concurrent enable/disable */
1245	spin_lock_irq(&priv->lock);
1246
1247	/* the reader is finished with this buffer */
1248	reader->buf = NULL;
1249
1250	/*
1251	 * One of two things has happened, the device is disabled, or the
1252	 * device has been reconfigured underneath us. In either case, we
1253	 * should just throw away the buffer.
1254	 *
1255	 * Lockdep complains if this is done under the spinlock, so we
1256	 * handle it during the unlock path.
1257	 */
1258	if (!priv->enabled || dbuf->size != priv->bufsize) {
1259		drop_buffer = true;
1260		goto out_unlock;
1261	}
1262
1263	/* The buffer is safe to reuse, so add it back to the free list */
1264	list_add_tail(&dbuf->entry, &priv->free);
1265
1266out_unlock:
1267	spin_unlock_irq(&priv->lock);
1268
1269	if (drop_buffer) {
1270		carma_dma_unmap(priv->dev, dbuf);
1271		data_free_buffer(dbuf);
1272	}
1273
1274	return count;
1275}
1276
1277static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1278{
1279	struct fpga_reader *reader = filp->private_data;
1280	struct fpga_device *priv = reader->priv;
1281	unsigned int mask = 0;
1282
1283	poll_wait(filp, &priv->wait, tbl);
1284
1285	if (!list_empty(&priv->used))
1286		mask |= POLLIN | POLLRDNORM;
1287
1288	return mask;
1289}
1290
1291static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1292{
1293	struct fpga_reader *reader = filp->private_data;
1294	struct fpga_device *priv = reader->priv;
1295	unsigned long offset, vsize, psize, addr;
1296
1297	/* VMA properties */
1298	offset = vma->vm_pgoff << PAGE_SHIFT;
1299	vsize = vma->vm_end - vma->vm_start;
1300	psize = priv->phys_size - offset;
1301	addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1302
1303	/* Check against the FPGA region's physical memory size */
1304	if (vsize > psize) {
1305		dev_err(priv->dev, "requested mmap mapping too large\n");
1306		return -EINVAL;
1307	}
1308
1309	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1310
1311	return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1312				  vma->vm_page_prot);
1313}
1314
1315static const struct file_operations data_fops = {
1316	.owner		= THIS_MODULE,
1317	.open		= data_open,
1318	.release	= data_release,
1319	.read		= data_read,
1320	.poll		= data_poll,
1321	.mmap		= data_mmap,
1322	.llseek		= no_llseek,
1323};
1324
1325/*
1326 * OpenFirmware Device Subsystem
1327 */
1328
1329static bool dma_filter(struct dma_chan *chan, void *data)
1330{
1331	/*
1332	 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1333	 *
1334	 * This probably won't survive an unload/load cycle of the Freescale
1335	 * DMAEngine driver, but that won't be a problem
1336	 */
1337	if (chan->chan_id == 0 && chan->device->dev_id == 0)
1338		return false;
1339
1340	return true;
1341}
1342
1343static int data_of_probe(struct platform_device *op)
1344{
1345	struct device_node *of_node = op->dev.of_node;
1346	struct device *this_device;
1347	struct fpga_device *priv;
1348	struct resource res;
1349	dma_cap_mask_t mask;
1350	int ret;
1351
1352	/* Allocate private data */
1353	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1354	if (!priv) {
1355		dev_err(&op->dev, "Unable to allocate device private data\n");
1356		ret = -ENOMEM;
1357		goto out_return;
1358	}
1359
1360	platform_set_drvdata(op, priv);
1361	priv->dev = &op->dev;
1362	kref_init(&priv->ref);
1363	mutex_init(&priv->mutex);
1364
1365	dev_set_drvdata(priv->dev, priv);
1366	spin_lock_init(&priv->lock);
1367	INIT_LIST_HEAD(&priv->free);
1368	INIT_LIST_HEAD(&priv->used);
1369	init_waitqueue_head(&priv->wait);
1370
1371	/* Setup the misc device */
1372	priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1373	priv->miscdev.name = drv_name;
1374	priv->miscdev.fops = &data_fops;
1375
1376	/* Get the physical address of the FPGA registers */
1377	ret = of_address_to_resource(of_node, 0, &res);
1378	if (ret) {
1379		dev_err(&op->dev, "Unable to find FPGA physical address\n");
1380		ret = -ENODEV;
1381		goto out_free_priv;
1382	}
1383
1384	priv->phys_addr = res.start;
1385	priv->phys_size = resource_size(&res);
1386
1387	/* ioremap the registers for use */
1388	priv->regs = of_iomap(of_node, 0);
1389	if (!priv->regs) {
1390		dev_err(&op->dev, "Unable to ioremap registers\n");
1391		ret = -ENOMEM;
1392		goto out_free_priv;
1393	}
1394
1395	dma_cap_zero(mask);
1396	dma_cap_set(DMA_MEMCPY, mask);
1397	dma_cap_set(DMA_INTERRUPT, mask);
1398	dma_cap_set(DMA_SLAVE, mask);
1399	dma_cap_set(DMA_SG, mask);
1400
1401	/* Request a DMA channel */
1402	priv->chan = dma_request_channel(mask, dma_filter, NULL);
1403	if (!priv->chan) {
1404		dev_err(&op->dev, "Unable to request DMA channel\n");
1405		ret = -ENODEV;
1406		goto out_unmap_regs;
1407	}
1408
1409	/* Find the correct IRQ number */
1410	priv->irq = irq_of_parse_and_map(of_node, 0);
1411	if (priv->irq == NO_IRQ) {
1412		dev_err(&op->dev, "Unable to find IRQ line\n");
1413		ret = -ENODEV;
1414		goto out_release_dma;
1415	}
1416
1417	/* Drive the GPIO for FPGA IRQ high (no interrupt) */
1418	iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1419
1420	/* Register the miscdevice */
1421	ret = misc_register(&priv->miscdev);
1422	if (ret) {
1423		dev_err(&op->dev, "Unable to register miscdevice\n");
1424		goto out_irq_dispose_mapping;
1425	}
1426
1427	/* Create the debugfs files */
1428	ret = data_debugfs_init(priv);
1429	if (ret) {
1430		dev_err(&op->dev, "Unable to create debugfs files\n");
1431		goto out_misc_deregister;
1432	}
1433
1434	/* Create the sysfs files */
1435	this_device = priv->miscdev.this_device;
1436	dev_set_drvdata(this_device, priv);
1437	ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1438	if (ret) {
1439		dev_err(&op->dev, "Unable to create sysfs files\n");
1440		goto out_data_debugfs_exit;
1441	}
1442
1443	dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1444	return 0;
1445
1446out_data_debugfs_exit:
1447	data_debugfs_exit(priv);
1448out_misc_deregister:
1449	misc_deregister(&priv->miscdev);
1450out_irq_dispose_mapping:
1451	irq_dispose_mapping(priv->irq);
1452out_release_dma:
1453	dma_release_channel(priv->chan);
1454out_unmap_regs:
1455	iounmap(priv->regs);
1456out_free_priv:
1457	kref_put(&priv->ref, fpga_device_release);
1458out_return:
1459	return ret;
1460}
1461
1462static int data_of_remove(struct platform_device *op)
1463{
1464	struct fpga_device *priv = platform_get_drvdata(op);
1465	struct device *this_device = priv->miscdev.this_device;
1466
1467	/* remove all sysfs files, now the device cannot be re-enabled */
1468	sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1469
1470	/* remove all debugfs files */
1471	data_debugfs_exit(priv);
1472
1473	/* disable the device from generating data */
1474	data_device_disable(priv);
1475
1476	/* remove the character device to stop new readers from appearing */
1477	misc_deregister(&priv->miscdev);
1478
1479	/* cleanup everything not needed by readers */
1480	irq_dispose_mapping(priv->irq);
1481	dma_release_channel(priv->chan);
1482	iounmap(priv->regs);
1483
1484	/* release our reference */
1485	kref_put(&priv->ref, fpga_device_release);
1486	return 0;
1487}
1488
1489static const struct of_device_id data_of_match[] = {
1490	{ .compatible = "carma,carma-fpga", },
1491	{},
1492};
1493
1494static struct platform_driver data_of_driver = {
1495	.probe		= data_of_probe,
1496	.remove		= data_of_remove,
1497	.driver		= {
1498		.name		= drv_name,
1499		.of_match_table	= data_of_match,
1500	},
1501};
1502
1503module_platform_driver(data_of_driver);
1504
1505MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1506MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1507MODULE_LICENSE("GPL");
1508