1/*
2 *  FM Driver for Connectivity chip of Texas Instruments.
3 *
4 *  This sub-module of FM driver is common for FM RX and TX
5 *  functionality. This module is responsible for:
6 *  1) Forming group of Channel-8 commands to perform particular
7 *     functionality (eg., frequency set require more than
8 *     one Channel-8 command to be sent to the chip).
9 *  2) Sending each Channel-8 command to the chip and reading
10 *     response back over Shared Transport.
11 *  3) Managing TX and RX Queues and Tasklets.
12 *  4) Handling FM Interrupt packet and taking appropriate action.
13 *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
14 *     firmware files based on mode selection)
15 *
16 *  Copyright (C) 2011 Texas Instruments
17 *  Author: Raja Mani <raja_mani@ti.com>
18 *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
19 *
20 *  This program is free software; you can redistribute it and/or modify
21 *  it under the terms of the GNU General Public License version 2 as
22 *  published by the Free Software Foundation.
23 *
24 *  This program is distributed in the hope that it will be useful,
25 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
26 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27 *  GNU General Public License for more details.
28 *
29 *  You should have received a copy of the GNU General Public License
30 *  along with this program; if not, write to the Free Software
31 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/firmware.h>
37#include <linux/delay.h>
38#include "fmdrv.h"
39#include "fmdrv_v4l2.h"
40#include "fmdrv_common.h"
41#include <linux/ti_wilink_st.h>
42#include "fmdrv_rx.h"
43#include "fmdrv_tx.h"
44
45/* Region info */
46static struct region_info region_configs[] = {
47	/* Europe/US */
48	{
49	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50	 .bot_freq = 87500,	/* 87.5 MHz */
51	 .top_freq = 108000,	/* 108 MHz */
52	 .fm_band = 0,
53	 },
54	/* Japan */
55	{
56	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57	 .bot_freq = 76000,	/* 76 MHz */
58	 .top_freq = 90000,	/* 90 MHz */
59	 .fm_band = 1,
60	 },
61};
62
63/* Band selection */
64static u8 default_radio_region;	/* Europe/US */
65module_param(default_radio_region, byte, 0);
66MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67
68/* RDS buffer blocks */
69static u32 default_rds_buf = 300;
70module_param(default_rds_buf, uint, 0444);
71MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72
73/* Radio Nr */
74static u32 radio_nr = -1;
75module_param(radio_nr, int, 0444);
76MODULE_PARM_DESC(radio_nr, "Radio Nr");
77
78/* FM irq handlers forward declaration */
79static void fm_irq_send_flag_getcmd(struct fmdev *);
80static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81static void fm_irq_handle_hw_malfunction(struct fmdev *);
82static void fm_irq_handle_rds_start(struct fmdev *);
83static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85static void fm_irq_handle_rds_finish(struct fmdev *);
86static void fm_irq_handle_tune_op_ended(struct fmdev *);
87static void fm_irq_handle_power_enb(struct fmdev *);
88static void fm_irq_handle_low_rssi_start(struct fmdev *);
89static void fm_irq_afjump_set_pi(struct fmdev *);
90static void fm_irq_handle_set_pi_resp(struct fmdev *);
91static void fm_irq_afjump_set_pimask(struct fmdev *);
92static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93static void fm_irq_afjump_setfreq(struct fmdev *);
94static void fm_irq_handle_setfreq_resp(struct fmdev *);
95static void fm_irq_afjump_enableint(struct fmdev *);
96static void fm_irq_afjump_enableint_resp(struct fmdev *);
97static void fm_irq_start_afjump(struct fmdev *);
98static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99static void fm_irq_afjump_rd_freq(struct fmdev *);
100static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102static void fm_irq_send_intmsk_cmd(struct fmdev *);
103static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104
105/*
106 * When FM common module receives interrupt packet, following handlers
107 * will be executed one after another to service the interrupt(s)
108 */
109enum fmc_irq_handler_index {
110	FM_SEND_FLAG_GETCMD_IDX,
111	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112
113	/* HW malfunction irq handler */
114	FM_HW_MAL_FUNC_IDX,
115
116	/* RDS threshold reached irq handler */
117	FM_RDS_START_IDX,
118	FM_RDS_SEND_RDS_GETCMD_IDX,
119	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120	FM_RDS_FINISH_IDX,
121
122	/* Tune operation ended irq handler */
123	FM_HW_TUNE_OP_ENDED_IDX,
124
125	/* TX power enable irq handler */
126	FM_HW_POWER_ENB_IDX,
127
128	/* Low RSSI irq handler */
129	FM_LOW_RSSI_START_IDX,
130	FM_AF_JUMP_SETPI_IDX,
131	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132	FM_AF_JUMP_SETPI_MASK_IDX,
133	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134	FM_AF_JUMP_SET_AF_FREQ_IDX,
135	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136	FM_AF_JUMP_ENABLE_INT_IDX,
137	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138	FM_AF_JUMP_START_AFJUMP_IDX,
139	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140	FM_AF_JUMP_RD_FREQ_IDX,
141	FM_AF_JUMP_RD_FREQ_RESP_IDX,
142	FM_LOW_RSSI_FINISH_IDX,
143
144	/* Interrupt process post action */
145	FM_SEND_INTMSK_CMD_IDX,
146	FM_HANDLE_INTMSK_CMD_RESP_IDX,
147};
148
149/* FM interrupt handler table */
150static int_handler_prototype int_handler_table[] = {
151	fm_irq_send_flag_getcmd,
152	fm_irq_handle_flag_getcmd_resp,
153	fm_irq_handle_hw_malfunction,
154	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155	fm_irq_send_rdsdata_getcmd,
156	fm_irq_handle_rdsdata_getcmd_resp,
157	fm_irq_handle_rds_finish,
158	fm_irq_handle_tune_op_ended,
159	fm_irq_handle_power_enb, /* TX power enable irq handler */
160	fm_irq_handle_low_rssi_start,
161	fm_irq_afjump_set_pi,
162	fm_irq_handle_set_pi_resp,
163	fm_irq_afjump_set_pimask,
164	fm_irq_handle_set_pimask_resp,
165	fm_irq_afjump_setfreq,
166	fm_irq_handle_setfreq_resp,
167	fm_irq_afjump_enableint,
168	fm_irq_afjump_enableint_resp,
169	fm_irq_start_afjump,
170	fm_irq_handle_start_afjump_resp,
171	fm_irq_afjump_rd_freq,
172	fm_irq_afjump_rd_freq_resp,
173	fm_irq_handle_low_rssi_finish,
174	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175	fm_irq_handle_intmsk_cmd_resp
176};
177
178static long (*g_st_write) (struct sk_buff *skb);
179static struct completion wait_for_fmdrv_reg_comp;
180
181static inline void fm_irq_call(struct fmdev *fmdev)
182{
183	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184}
185
186/* Continue next function in interrupt handler table */
187static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188{
189	fmdev->irq_info.stage = stage;
190	fm_irq_call(fmdev);
191}
192
193static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194{
195	fmdev->irq_info.stage = stage;
196	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197}
198
199#ifdef FM_DUMP_TXRX_PKT
200 /* To dump outgoing FM Channel-8 packets */
201inline void dump_tx_skb_data(struct sk_buff *skb)
202{
203	int len, len_org;
204	u8 index;
205	struct fm_cmd_msg_hdr *cmd_hdr;
206
207	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210	       cmd_hdr->len, cmd_hdr->op,
211	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212
213	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214	if (len_org > 0) {
215		printk("\n   data(%d): ", cmd_hdr->dlen);
216		len = min(len_org, 14);
217		for (index = 0; index < len; index++)
218			printk("%x ",
219			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220		printk("%s", (len_org > 14) ? ".." : "");
221	}
222	printk("\n");
223}
224
225 /* To dump incoming FM Channel-8 packets */
226inline void dump_rx_skb_data(struct sk_buff *skb)
227{
228	int len, len_org;
229	u8 index;
230	struct fm_event_msg_hdr *evt_hdr;
231
232	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234	    "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235	    evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236	    (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237
238	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239	if (len_org > 0) {
240		printk("\n   data(%d): ", evt_hdr->dlen);
241		len = min(len_org, 14);
242		for (index = 0; index < len; index++)
243			printk("%x ",
244			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245		printk("%s", (len_org > 14) ? ".." : "");
246	}
247	printk("\n");
248}
249#endif
250
251void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252{
253	fmdev->rx.region = region_configs[region_to_set];
254}
255
256/*
257 * FM common sub-module will schedule this tasklet whenever it receives
258 * FM packet from ST driver.
259 */
260static void recv_tasklet(unsigned long arg)
261{
262	struct fmdev *fmdev;
263	struct fm_irq *irq_info;
264	struct fm_event_msg_hdr *evt_hdr;
265	struct sk_buff *skb;
266	u8 num_fm_hci_cmds;
267	unsigned long flags;
268
269	fmdev = (struct fmdev *)arg;
270	irq_info = &fmdev->irq_info;
271	/* Process all packets in the RX queue */
272	while ((skb = skb_dequeue(&fmdev->rx_q))) {
273		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274			fmerr("skb(%p) has only %d bytes, "
275				"at least need %zu bytes to decode\n", skb,
276				skb->len, sizeof(struct fm_event_msg_hdr));
277			kfree_skb(skb);
278			continue;
279		}
280
281		evt_hdr = (void *)skb->data;
282		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283
284		/* FM interrupt packet? */
285		if (evt_hdr->op == FM_INTERRUPT) {
286			/* FM interrupt handler started already? */
287			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289				if (irq_info->stage != 0) {
290					fmerr("Inval stage resetting to zero\n");
291					irq_info->stage = 0;
292				}
293
294				/*
295				 * Execute first function in interrupt handler
296				 * table.
297				 */
298				irq_info->handlers[irq_info->stage](fmdev);
299			} else {
300				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301			}
302			kfree_skb(skb);
303		}
304		/* Anyone waiting for this with completion handler? */
305		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306
307			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308			fmdev->resp_skb = skb;
309			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310			complete(fmdev->resp_comp);
311
312			fmdev->resp_comp = NULL;
313			atomic_set(&fmdev->tx_cnt, 1);
314		}
315		/* Is this for interrupt handler? */
316		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317			if (fmdev->resp_skb != NULL)
318				fmerr("Response SKB ptr not NULL\n");
319
320			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321			fmdev->resp_skb = skb;
322			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323
324			/* Execute interrupt handler where state index points */
325			irq_info->handlers[irq_info->stage](fmdev);
326
327			kfree_skb(skb);
328			atomic_set(&fmdev->tx_cnt, 1);
329		} else {
330			fmerr("Nobody claimed SKB(%p),purging\n", skb);
331		}
332
333		/*
334		 * Check flow control field. If Num_FM_HCI_Commands field is
335		 * not zero, schedule FM TX tasklet.
336		 */
337		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338			if (!skb_queue_empty(&fmdev->tx_q))
339				tasklet_schedule(&fmdev->tx_task);
340	}
341}
342
343/* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344static void send_tasklet(unsigned long arg)
345{
346	struct fmdev *fmdev;
347	struct sk_buff *skb;
348	int len;
349
350	fmdev = (struct fmdev *)arg;
351
352	if (!atomic_read(&fmdev->tx_cnt))
353		return;
354
355	/* Check, is there any timeout happened to last transmitted packet */
356	if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357		fmerr("TX timeout occurred\n");
358		atomic_set(&fmdev->tx_cnt, 1);
359	}
360
361	/* Send queued FM TX packets */
362	skb = skb_dequeue(&fmdev->tx_q);
363	if (!skb)
364		return;
365
366	atomic_dec(&fmdev->tx_cnt);
367	fmdev->pre_op = fm_cb(skb)->fm_op;
368
369	if (fmdev->resp_comp != NULL)
370		fmerr("Response completion handler is not NULL\n");
371
372	fmdev->resp_comp = fm_cb(skb)->completion;
373
374	/* Write FM packet to ST driver */
375	len = g_st_write(skb);
376	if (len < 0) {
377		kfree_skb(skb);
378		fmdev->resp_comp = NULL;
379		fmerr("TX tasklet failed to send skb(%p)\n", skb);
380		atomic_set(&fmdev->tx_cnt, 1);
381	} else {
382		fmdev->last_tx_jiffies = jiffies;
383	}
384}
385
386/*
387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388 * transmission
389 */
390static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
391		int payload_len, struct completion *wait_completion)
392{
393	struct sk_buff *skb;
394	struct fm_cmd_msg_hdr *hdr;
395	int size;
396
397	if (fm_op >= FM_INTERRUPT) {
398		fmerr("Invalid fm opcode - %d\n", fm_op);
399		return -EINVAL;
400	}
401	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402		fmerr("Payload data is NULL during fw download\n");
403		return -EINVAL;
404	}
405	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406		size =
407		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408	else
409		size = payload_len;
410
411	skb = alloc_skb(size, GFP_ATOMIC);
412	if (!skb) {
413		fmerr("No memory to create new SKB\n");
414		return -ENOMEM;
415	}
416	/*
417	 * Don't fill FM header info for the commands which come from
418	 * FM firmware file.
419	 */
420	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422		/* Fill command header info */
423		hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
425
426		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428
429		/* FM opcode */
430		hdr->op = fm_op;
431
432		/* read/write type */
433		hdr->rd_wr = type;
434		hdr->dlen = payload_len;
435		fm_cb(skb)->fm_op = fm_op;
436
437		/*
438		 * If firmware download has finished and the command is
439		 * not a read command then payload is != NULL - a write
440		 * command with u16 payload - convert to be16
441		 */
442		if (payload != NULL)
443			*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
444
445	} else if (payload != NULL) {
446		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447	}
448	if (payload != NULL)
449		memcpy(skb_put(skb, payload_len), payload, payload_len);
450
451	fm_cb(skb)->completion = wait_completion;
452	skb_queue_tail(&fmdev->tx_q, skb);
453	tasklet_schedule(&fmdev->tx_task);
454
455	return 0;
456}
457
458/* Sends FM Channel-8 command to the chip and waits for the response */
459int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460		unsigned int payload_len, void *response, int *response_len)
461{
462	struct sk_buff *skb;
463	struct fm_event_msg_hdr *evt_hdr;
464	unsigned long flags;
465	int ret;
466
467	init_completion(&fmdev->maintask_comp);
468	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469			    &fmdev->maintask_comp);
470	if (ret)
471		return ret;
472
473	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
474					 FM_DRV_TX_TIMEOUT)) {
475		fmerr("Timeout(%d sec),didn't get reg"
476			   "completion signal from RX tasklet\n",
477			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478		return -ETIMEDOUT;
479	}
480	if (!fmdev->resp_skb) {
481		fmerr("Response SKB is missing\n");
482		return -EFAULT;
483	}
484	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485	skb = fmdev->resp_skb;
486	fmdev->resp_skb = NULL;
487	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488
489	evt_hdr = (void *)skb->data;
490	if (evt_hdr->status != 0) {
491		fmerr("Received event pkt status(%d) is not zero\n",
492			   evt_hdr->status);
493		kfree_skb(skb);
494		return -EIO;
495	}
496	/* Send response data to caller */
497	if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498		/* Skip header info and copy only response data */
499		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500		memcpy(response, skb->data, evt_hdr->dlen);
501		*response_len = evt_hdr->dlen;
502	} else if (response_len != NULL && evt_hdr->dlen == 0) {
503		*response_len = 0;
504	}
505	kfree_skb(skb);
506
507	return 0;
508}
509
510/* --- Helper functions used in FM interrupt handlers ---*/
511static inline int check_cmdresp_status(struct fmdev *fmdev,
512		struct sk_buff **skb)
513{
514	struct fm_event_msg_hdr *fm_evt_hdr;
515	unsigned long flags;
516
517	del_timer(&fmdev->irq_info.timer);
518
519	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520	*skb = fmdev->resp_skb;
521	fmdev->resp_skb = NULL;
522	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
523
524	fm_evt_hdr = (void *)(*skb)->data;
525	if (fm_evt_hdr->status != 0) {
526		fmerr("irq: opcode %x response status is not zero "
527				"Initiating irq recovery process\n",
528				fm_evt_hdr->op);
529
530		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531		return -1;
532	}
533
534	return 0;
535}
536
537static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
538{
539	struct sk_buff *skb;
540
541	if (!check_cmdresp_status(fmdev, &skb))
542		fm_irq_call_stage(fmdev, stage);
543}
544
545/*
546 * Interrupt process timeout handler.
547 * One of the irq handler did not get proper response from the chip. So take
548 * recovery action here. FM interrupts are disabled in the beginning of
549 * interrupt process. Therefore reset stage index to re-enable default
550 * interrupts. So that next interrupt will be processed as usual.
551 */
552static void int_timeout_handler(unsigned long data)
553{
554	struct fmdev *fmdev;
555	struct fm_irq *fmirq;
556
557	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558	fmdev = (struct fmdev *)data;
559	fmirq = &fmdev->irq_info;
560	fmirq->retry++;
561
562	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563		/* Stop recovery action (interrupt reenable process) and
564		 * reset stage index & retry count values */
565		fmirq->stage = 0;
566		fmirq->retry = 0;
567		fmerr("Recovery action failed during"
568				"irq processing, max retry reached\n");
569		return;
570	}
571	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
572}
573
574/* --------- FM interrupt handlers ------------*/
575static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
576{
577	u16 flag;
578
579	/* Send FLAG_GET command , to know the source of interrupt */
580	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
582}
583
584static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
585{
586	struct sk_buff *skb;
587	struct fm_event_msg_hdr *fm_evt_hdr;
588
589	if (check_cmdresp_status(fmdev, &skb))
590		return;
591
592	fm_evt_hdr = (void *)skb->data;
593
594	/* Skip header info and copy only response data */
595	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
597
598	fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
599	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
600
601	/* Continue next function in interrupt handler table */
602	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
603}
604
605static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
606{
607	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608		fmerr("irq: HW MAL int received - do nothing\n");
609
610	/* Continue next function in interrupt handler table */
611	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
612}
613
614static void fm_irq_handle_rds_start(struct fmdev *fmdev)
615{
616	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617		fmdbg("irq: rds threshold reached\n");
618		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619	} else {
620		/* Continue next function in interrupt handler table */
621		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
622	}
623
624	fm_irq_call(fmdev);
625}
626
627static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
628{
629	/* Send the command to read RDS data from the chip */
630	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
631			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
632		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
633}
634
635/* Keeps track of current RX channel AF (Alternate Frequency) */
636static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
637{
638	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639	u8 reg_idx = fmdev->rx.region.fm_band;
640	u8 index;
641	u32 freq;
642
643	/* First AF indicates the number of AF follows. Reset the list */
644	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646		fmdev->rx.stat_info.afcache_size = 0;
647		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648		return;
649	}
650
651	if (af < FM_RDS_MIN_AF)
652		return;
653	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654		return;
655	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656		return;
657
658	freq = fmdev->rx.region.bot_freq + (af * 100);
659	if (freq == fmdev->rx.freq) {
660		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661				fmdev->rx.freq, freq);
662		return;
663	}
664	/* Do check in AF cache */
665	for (index = 0; index < stat_info->afcache_size; index++) {
666		if (stat_info->af_cache[index] == freq)
667			break;
668	}
669	/* Reached the limit of the list - ignore the next AF */
670	if (index == stat_info->af_list_max) {
671		fmdbg("AF cache is full\n");
672		return;
673	}
674	/*
675	 * If we reached the end of the list then this AF is not
676	 * in the list - add it.
677	 */
678	if (index == stat_info->afcache_size) {
679		fmdbg("Storing AF %d to cache index %d\n", freq, index);
680		stat_info->af_cache[index] = freq;
681		stat_info->afcache_size++;
682	}
683}
684
685/*
686 * Converts RDS buffer data from big endian format
687 * to little endian format.
688 */
689static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690		struct fm_rdsdata_format *rds_format)
691{
692	u8 byte1;
693	u8 index = 0;
694	u8 *rds_buff;
695
696	/*
697	 * Since in Orca the 2 RDS Data bytes are in little endian and
698	 * in Dolphin they are in big endian, the parsing of the RDS data
699	 * is chip dependent
700	 */
701	if (fmdev->asci_id != 0x6350) {
702		rds_buff = &rds_format->data.groupdatabuff.buff[0];
703		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
704			byte1 = rds_buff[index];
705			rds_buff[index] = rds_buff[index + 1];
706			rds_buff[index + 1] = byte1;
707			index += 2;
708		}
709	}
710}
711
712static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
713{
714	struct sk_buff *skb;
715	struct fm_rdsdata_format rds_fmt;
716	struct fm_rds *rds = &fmdev->rx.rds;
717	unsigned long group_idx, flags;
718	u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
719	u8 type, blk_idx;
720	u16 cur_picode;
721	u32 rds_len;
722
723	if (check_cmdresp_status(fmdev, &skb))
724		return;
725
726	/* Skip header info */
727	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728	rds_data = skb->data;
729	rds_len = skb->len;
730
731	/* Parse the RDS data */
732	while (rds_len >= FM_RDS_BLK_SIZE) {
733		meta_data = rds_data[2];
734		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735		type = (meta_data & 0x07);
736
737		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739		fmdbg("Block index:%d(%s)\n", blk_idx,
740			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
741
742		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743			break;
744
745		if (blk_idx > FM_RDS_BLK_IDX_D) {
746			fmdbg("Block sequence mismatch\n");
747			rds->last_blk_idx = -1;
748			break;
749		}
750
751		/* Skip checkword (control) byte and copy only data byte */
752		memcpy(&rds_fmt.data.groupdatabuff.
753				buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754				rds_data, (FM_RDS_BLK_SIZE - 1));
755
756		rds->last_blk_idx = blk_idx;
757
758		/* If completed a whole group then handle it */
759		if (blk_idx == FM_RDS_BLK_IDX_D) {
760			fmdbg("Good block received\n");
761			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
762
763			/*
764			 * Extract PI code and store in local cache.
765			 * We need this during AF switch processing.
766			 */
767			cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
768			if (fmdev->rx.stat_info.picode != cur_picode)
769				fmdev->rx.stat_info.picode = cur_picode;
770
771			fmdbg("picode:%d\n", cur_picode);
772
773			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775					(group_idx % 2) ? "B" : "A");
776
777			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
781			}
782		}
783		rds_len -= FM_RDS_BLK_SIZE;
784		rds_data += FM_RDS_BLK_SIZE;
785	}
786
787	/* Copy raw rds data to internal rds buffer */
788	rds_data = skb->data;
789	rds_len = skb->len;
790
791	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792	while (rds_len > 0) {
793		/*
794		 * Fill RDS buffer as per V4L2 specification.
795		 * Store control byte
796		 */
797		type = (rds_data[2] & 0x07);
798		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799		tmpbuf[2] = blk_idx;	/* Offset name */
800		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
801
802		/* Store data byte */
803		tmpbuf[0] = rds_data[0];
804		tmpbuf[1] = rds_data[1];
805
806		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
808
809		/* Check for overflow & start over */
810		if (rds->wr_idx == rds->rd_idx) {
811			fmdbg("RDS buffer overflow\n");
812			rds->wr_idx = 0;
813			rds->rd_idx = 0;
814			break;
815		}
816		rds_len -= FM_RDS_BLK_SIZE;
817		rds_data += FM_RDS_BLK_SIZE;
818	}
819	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
820
821	/* Wakeup read queue */
822	if (rds->wr_idx != rds->rd_idx)
823		wake_up_interruptible(&rds->read_queue);
824
825	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
826}
827
828static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
829{
830	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
831}
832
833static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
834{
835	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836	    irq_info.mask) {
837		fmdbg("irq: tune ended/bandlimit reached\n");
838		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
839			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840		} else {
841			complete(&fmdev->maintask_comp);
842			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843		}
844	} else
845		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
846
847	fm_irq_call(fmdev);
848}
849
850static void fm_irq_handle_power_enb(struct fmdev *fmdev)
851{
852	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853		fmdbg("irq: Power Enabled/Disabled\n");
854		complete(&fmdev->maintask_comp);
855	}
856
857	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
858}
859
860static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
861{
862	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865	    (fmdev->rx.stat_info.afcache_size != 0)) {
866		fmdbg("irq: rssi level has fallen below threshold level\n");
867
868		/* Disable further low RSSI interrupts */
869		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
870
871		fmdev->rx.afjump_idx = 0;
872		fmdev->rx.freq_before_jump = fmdev->rx.freq;
873		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874	} else {
875		/* Continue next function in interrupt handler table */
876		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
877	}
878
879	fm_irq_call(fmdev);
880}
881
882static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
883{
884	u16 payload;
885
886	/* Set PI code - must be updated if the AF list is not empty */
887	payload = fmdev->rx.stat_info.picode;
888	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
890}
891
892static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
893{
894	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
895}
896
897/*
898 * Set PI mask.
899 * 0xFFFF = Enable PI code matching
900 * 0x0000 = Disable PI code matching
901 */
902static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
903{
904	u16 payload;
905
906	payload = 0x0000;
907	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
909}
910
911static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
912{
913	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
914}
915
916static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
917{
918	u16 frq_index;
919	u16 payload;
920
921	fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
924
925	payload = frq_index;
926	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
928}
929
930static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
931{
932	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
933}
934
935static void fm_irq_afjump_enableint(struct fmdev *fmdev)
936{
937	u16 payload;
938
939	/* Enable FR (tuning operation ended) interrupt */
940	payload = FM_FR_EVENT;
941	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
943}
944
945static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
946{
947	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
948}
949
950static void fm_irq_start_afjump(struct fmdev *fmdev)
951{
952	u16 payload;
953
954	payload = FM_TUNER_AF_JUMP_MODE;
955	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956			sizeof(payload), NULL))
957		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
958}
959
960static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
961{
962	struct sk_buff *skb;
963
964	if (check_cmdresp_status(fmdev, &skb))
965		return;
966
967	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
968	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
969	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
970}
971
972static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
973{
974	u16 payload;
975
976	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
978}
979
980static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
981{
982	struct sk_buff *skb;
983	u16 read_freq;
984	u32 curr_freq, jumped_freq;
985
986	if (check_cmdresp_status(fmdev, &skb))
987		return;
988
989	/* Skip header info and copy only response data */
990	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991	memcpy(&read_freq, skb->data, sizeof(read_freq));
992	read_freq = be16_to_cpu((__force __be16)read_freq);
993	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
994
995	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
996
997	/* If the frequency was changed the jump succeeded */
998	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000		fmdev->rx.freq = curr_freq;
1001		fm_rx_reset_rds_cache(fmdev);
1002
1003		/* AF feature is on, enable low level RSSI interrupt */
1004		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005			fmdev->irq_info.mask |= FM_LEV_EVENT;
1006
1007		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008	} else {		/* jump to the next freq in the AF list */
1009		fmdev->rx.afjump_idx++;
1010
1011		/* If we reached the end of the list - stop searching */
1012		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013			fmdbg("AF switch processing failed\n");
1014			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015		} else {	/* AF List is not over - try next one */
1016
1017			fmdbg("Trying next freq in AF cache\n");
1018			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1019		}
1020	}
1021	fm_irq_call(fmdev);
1022}
1023
1024static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1025{
1026	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1027}
1028
1029static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1030{
1031	u16 payload;
1032
1033	/* Re-enable FM interrupts */
1034	payload = fmdev->irq_info.mask;
1035
1036	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037			sizeof(payload), NULL))
1038		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1039}
1040
1041static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1042{
1043	struct sk_buff *skb;
1044
1045	if (check_cmdresp_status(fmdev, &skb))
1046		return;
1047	/*
1048	 * This is last function in interrupt table to be executed.
1049	 * So, reset stage index to 0.
1050	 */
1051	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1052
1053	/* Start processing any pending interrupt */
1054	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1055		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056	else
1057		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1058}
1059
1060/* Returns availability of RDS data in internel buffer */
1061int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062				struct poll_table_struct *pts)
1063{
1064	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066		return 0;
1067
1068	return -EAGAIN;
1069}
1070
1071/* Copies RDS data from internal buffer to user buffer */
1072int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073		u8 __user *buf, size_t count)
1074{
1075	u32 block_count;
1076	u8 tmpbuf[FM_RDS_BLK_SIZE];
1077	unsigned long flags;
1078	int ret;
1079
1080	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1081		if (file->f_flags & O_NONBLOCK)
1082			return -EWOULDBLOCK;
1083
1084		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1085				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1086		if (ret)
1087			return -EINTR;
1088	}
1089
1090	/* Calculate block count from byte count */
1091	count /= FM_RDS_BLK_SIZE;
1092	block_count = 0;
1093	ret = 0;
1094
1095	while (block_count < count) {
1096		spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1097
1098		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1099			spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1100			break;
1101		}
1102		memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1103					FM_RDS_BLK_SIZE);
1104		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106			fmdev->rx.rds.rd_idx = 0;
1107
1108		spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1109
1110		if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1111			break;
1112
1113		block_count++;
1114		buf += FM_RDS_BLK_SIZE;
1115		ret += FM_RDS_BLK_SIZE;
1116	}
1117	return ret;
1118}
1119
1120int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1121{
1122	switch (fmdev->curr_fmmode) {
1123	case FM_MODE_RX:
1124		return fm_rx_set_freq(fmdev, freq_to_set);
1125
1126	case FM_MODE_TX:
1127		return fm_tx_set_freq(fmdev, freq_to_set);
1128
1129	default:
1130		return -EINVAL;
1131	}
1132}
1133
1134int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1135{
1136	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1137		fmerr("RX frequency is not set\n");
1138		return -EPERM;
1139	}
1140	if (cur_tuned_frq == NULL) {
1141		fmerr("Invalid memory\n");
1142		return -ENOMEM;
1143	}
1144
1145	switch (fmdev->curr_fmmode) {
1146	case FM_MODE_RX:
1147		*cur_tuned_frq = fmdev->rx.freq;
1148		return 0;
1149
1150	case FM_MODE_TX:
1151		*cur_tuned_frq = 0;	/* TODO : Change this later */
1152		return 0;
1153
1154	default:
1155		return -EINVAL;
1156	}
1157
1158}
1159
1160int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1161{
1162	switch (fmdev->curr_fmmode) {
1163	case FM_MODE_RX:
1164		return fm_rx_set_region(fmdev, region_to_set);
1165
1166	case FM_MODE_TX:
1167		return fm_tx_set_region(fmdev, region_to_set);
1168
1169	default:
1170		return -EINVAL;
1171	}
1172}
1173
1174int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1175{
1176	switch (fmdev->curr_fmmode) {
1177	case FM_MODE_RX:
1178		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1179
1180	case FM_MODE_TX:
1181		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1182
1183	default:
1184		return -EINVAL;
1185	}
1186}
1187
1188int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1189{
1190	switch (fmdev->curr_fmmode) {
1191	case FM_MODE_RX:
1192		return fm_rx_set_stereo_mono(fmdev, mode);
1193
1194	case FM_MODE_TX:
1195		return fm_tx_set_stereo_mono(fmdev, mode);
1196
1197	default:
1198		return -EINVAL;
1199	}
1200}
1201
1202int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1203{
1204	switch (fmdev->curr_fmmode) {
1205	case FM_MODE_RX:
1206		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1207
1208	case FM_MODE_TX:
1209		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1210
1211	default:
1212		return -EINVAL;
1213	}
1214}
1215
1216/* Sends power off command to the chip */
1217static int fm_power_down(struct fmdev *fmdev)
1218{
1219	u16 payload;
1220	int ret;
1221
1222	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1223		fmerr("FM core is not ready\n");
1224		return -EPERM;
1225	}
1226	if (fmdev->curr_fmmode == FM_MODE_OFF) {
1227		fmdbg("FM chip is already in OFF state\n");
1228		return 0;
1229	}
1230
1231	payload = 0x0;
1232	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1233		sizeof(payload), NULL, NULL);
1234	if (ret < 0)
1235		return ret;
1236
1237	return fmc_release(fmdev);
1238}
1239
1240/* Reads init command from FM firmware file and loads to the chip */
1241static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1242{
1243	const struct firmware *fw_entry;
1244	struct bts_header *fw_header;
1245	struct bts_action *action;
1246	struct bts_action_delay *delay;
1247	u8 *fw_data;
1248	int ret, fw_len, cmd_cnt;
1249
1250	cmd_cnt = 0;
1251	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1252
1253	ret = request_firmware(&fw_entry, fw_name,
1254				&fmdev->radio_dev->dev);
1255	if (ret < 0) {
1256		fmerr("Unable to read firmware(%s) content\n", fw_name);
1257		return ret;
1258	}
1259	fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1260
1261	fw_data = (void *)fw_entry->data;
1262	fw_len = fw_entry->size;
1263
1264	fw_header = (struct bts_header *)fw_data;
1265	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1266		fmerr("%s not a legal TI firmware file\n", fw_name);
1267		ret = -EINVAL;
1268		goto rel_fw;
1269	}
1270	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1271
1272	/* Skip file header info , we already verified it */
1273	fw_data += sizeof(struct bts_header);
1274	fw_len -= sizeof(struct bts_header);
1275
1276	while (fw_data && fw_len > 0) {
1277		action = (struct bts_action *)fw_data;
1278
1279		switch (action->type) {
1280		case ACTION_SEND_COMMAND:	/* Send */
1281			if (fmc_send_cmd(fmdev, 0, 0, action->data,
1282						action->size, NULL, NULL))
1283				goto rel_fw;
1284
1285			cmd_cnt++;
1286			break;
1287
1288		case ACTION_DELAY:	/* Delay */
1289			delay = (struct bts_action_delay *)action->data;
1290			mdelay(delay->msec);
1291			break;
1292		}
1293
1294		fw_data += (sizeof(struct bts_action) + (action->size));
1295		fw_len -= (sizeof(struct bts_action) + (action->size));
1296	}
1297	fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1298rel_fw:
1299	release_firmware(fw_entry);
1300	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1301
1302	return ret;
1303}
1304
1305/* Loads default RX configuration to the chip */
1306static int load_default_rx_configuration(struct fmdev *fmdev)
1307{
1308	int ret;
1309
1310	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1311	if (ret < 0)
1312		return ret;
1313
1314	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1315}
1316
1317/* Does FM power on sequence */
1318static int fm_power_up(struct fmdev *fmdev, u8 mode)
1319{
1320	u16 payload;
1321	__be16 asic_id, asic_ver;
1322	int resp_len, ret;
1323	u8 fw_name[50];
1324
1325	if (mode >= FM_MODE_ENTRY_MAX) {
1326		fmerr("Invalid firmware download option\n");
1327		return -EINVAL;
1328	}
1329
1330	/*
1331	 * Initialize FM common module. FM GPIO toggling is
1332	 * taken care in Shared Transport driver.
1333	 */
1334	ret = fmc_prepare(fmdev);
1335	if (ret < 0) {
1336		fmerr("Unable to prepare FM Common\n");
1337		return ret;
1338	}
1339
1340	payload = FM_ENABLE;
1341	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1342			sizeof(payload), NULL, NULL))
1343		goto rel;
1344
1345	/* Allow the chip to settle down in Channel-8 mode */
1346	msleep(20);
1347
1348	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1349			sizeof(asic_id), &asic_id, &resp_len))
1350		goto rel;
1351
1352	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1353			sizeof(asic_ver), &asic_ver, &resp_len))
1354		goto rel;
1355
1356	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1357		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1358
1359	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1360		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1361
1362	ret = fm_download_firmware(fmdev, fw_name);
1363	if (ret < 0) {
1364		fmdbg("Failed to download firmware file %s\n", fw_name);
1365		goto rel;
1366	}
1367	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1368			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1369			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1370
1371	ret = fm_download_firmware(fmdev, fw_name);
1372	if (ret < 0) {
1373		fmdbg("Failed to download firmware file %s\n", fw_name);
1374		goto rel;
1375	} else
1376		return ret;
1377rel:
1378	return fmc_release(fmdev);
1379}
1380
1381/* Set FM Modes(TX, RX, OFF) */
1382int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1383{
1384	int ret = 0;
1385
1386	if (fm_mode >= FM_MODE_ENTRY_MAX) {
1387		fmerr("Invalid FM mode\n");
1388		return -EINVAL;
1389	}
1390	if (fmdev->curr_fmmode == fm_mode) {
1391		fmdbg("Already fm is in mode(%d)\n", fm_mode);
1392		return ret;
1393	}
1394
1395	switch (fm_mode) {
1396	case FM_MODE_OFF:	/* OFF Mode */
1397		ret = fm_power_down(fmdev);
1398		if (ret < 0) {
1399			fmerr("Failed to set OFF mode\n");
1400			return ret;
1401		}
1402		break;
1403
1404	case FM_MODE_TX:	/* TX Mode */
1405	case FM_MODE_RX:	/* RX Mode */
1406		/* Power down before switching to TX or RX mode */
1407		if (fmdev->curr_fmmode != FM_MODE_OFF) {
1408			ret = fm_power_down(fmdev);
1409			if (ret < 0) {
1410				fmerr("Failed to set OFF mode\n");
1411				return ret;
1412			}
1413			msleep(30);
1414		}
1415		ret = fm_power_up(fmdev, fm_mode);
1416		if (ret < 0) {
1417			fmerr("Failed to load firmware\n");
1418			return ret;
1419		}
1420	}
1421	fmdev->curr_fmmode = fm_mode;
1422
1423	/* Set default configuration */
1424	if (fmdev->curr_fmmode == FM_MODE_RX) {
1425		fmdbg("Loading default rx configuration..\n");
1426		ret = load_default_rx_configuration(fmdev);
1427		if (ret < 0)
1428			fmerr("Failed to load default values\n");
1429	}
1430
1431	return ret;
1432}
1433
1434/* Returns current FM mode (TX, RX, OFF) */
1435int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1436{
1437	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1438		fmerr("FM core is not ready\n");
1439		return -EPERM;
1440	}
1441	if (fmmode == NULL) {
1442		fmerr("Invalid memory\n");
1443		return -ENOMEM;
1444	}
1445
1446	*fmmode = fmdev->curr_fmmode;
1447	return 0;
1448}
1449
1450/* Called by ST layer when FM packet is available */
1451static long fm_st_receive(void *arg, struct sk_buff *skb)
1452{
1453	struct fmdev *fmdev;
1454
1455	fmdev = (struct fmdev *)arg;
1456
1457	if (skb == NULL) {
1458		fmerr("Invalid SKB received from ST\n");
1459		return -EFAULT;
1460	}
1461
1462	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1463		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1464		return -EINVAL;
1465	}
1466
1467	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1468	skb_queue_tail(&fmdev->rx_q, skb);
1469	tasklet_schedule(&fmdev->rx_task);
1470
1471	return 0;
1472}
1473
1474/*
1475 * Called by ST layer to indicate protocol registration completion
1476 * status.
1477 */
1478static void fm_st_reg_comp_cb(void *arg, char data)
1479{
1480	struct fmdev *fmdev;
1481
1482	fmdev = (struct fmdev *)arg;
1483	fmdev->streg_cbdata = data;
1484	complete(&wait_for_fmdrv_reg_comp);
1485}
1486
1487/*
1488 * This function will be called from FM V4L2 open function.
1489 * Register with ST driver and initialize driver data.
1490 */
1491int fmc_prepare(struct fmdev *fmdev)
1492{
1493	static struct st_proto_s fm_st_proto;
1494	int ret;
1495
1496	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1497		fmdbg("FM Core is already up\n");
1498		return 0;
1499	}
1500
1501	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1502	fm_st_proto.recv = fm_st_receive;
1503	fm_st_proto.match_packet = NULL;
1504	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1505	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1506	fm_st_proto.priv_data = fmdev;
1507	fm_st_proto.chnl_id = 0x08;
1508	fm_st_proto.max_frame_size = 0xff;
1509	fm_st_proto.hdr_len = 1;
1510	fm_st_proto.offset_len_in_hdr = 0;
1511	fm_st_proto.len_size = 1;
1512	fm_st_proto.reserve = 1;
1513
1514	ret = st_register(&fm_st_proto);
1515	if (ret == -EINPROGRESS) {
1516		init_completion(&wait_for_fmdrv_reg_comp);
1517		fmdev->streg_cbdata = -EINPROGRESS;
1518		fmdbg("%s waiting for ST reg completion signal\n", __func__);
1519
1520		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1521						 FM_ST_REG_TIMEOUT)) {
1522			fmerr("Timeout(%d sec), didn't get reg "
1523					"completion signal from ST\n",
1524					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1525			return -ETIMEDOUT;
1526		}
1527		if (fmdev->streg_cbdata != 0) {
1528			fmerr("ST reg comp CB called with error "
1529					"status %d\n", fmdev->streg_cbdata);
1530			return -EAGAIN;
1531		}
1532
1533		ret = 0;
1534	} else if (ret == -1) {
1535		fmerr("st_register failed %d\n", ret);
1536		return -EAGAIN;
1537	}
1538
1539	if (fm_st_proto.write != NULL) {
1540		g_st_write = fm_st_proto.write;
1541	} else {
1542		fmerr("Failed to get ST write func pointer\n");
1543		ret = st_unregister(&fm_st_proto);
1544		if (ret < 0)
1545			fmerr("st_unregister failed %d\n", ret);
1546		return -EAGAIN;
1547	}
1548
1549	spin_lock_init(&fmdev->rds_buff_lock);
1550	spin_lock_init(&fmdev->resp_skb_lock);
1551
1552	/* Initialize TX queue and TX tasklet */
1553	skb_queue_head_init(&fmdev->tx_q);
1554	tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1555
1556	/* Initialize RX Queue and RX tasklet */
1557	skb_queue_head_init(&fmdev->rx_q);
1558	tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1559
1560	fmdev->irq_info.stage = 0;
1561	atomic_set(&fmdev->tx_cnt, 1);
1562	fmdev->resp_comp = NULL;
1563
1564	init_timer(&fmdev->irq_info.timer);
1565	fmdev->irq_info.timer.function = &int_timeout_handler;
1566	fmdev->irq_info.timer.data = (unsigned long)fmdev;
1567	/*TODO: add FM_STIC_EVENT later */
1568	fmdev->irq_info.mask = FM_MAL_EVENT;
1569
1570	/* Region info */
1571	fmdev->rx.region = region_configs[default_radio_region];
1572
1573	fmdev->rx.mute_mode = FM_MUTE_OFF;
1574	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1575	fmdev->rx.rds.flag = FM_RDS_DISABLE;
1576	fmdev->rx.freq = FM_UNDEFINED_FREQ;
1577	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1578	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1579	fmdev->irq_info.retry = 0;
1580
1581	fm_rx_reset_rds_cache(fmdev);
1582	init_waitqueue_head(&fmdev->rx.rds.read_queue);
1583
1584	fm_rx_reset_station_info(fmdev);
1585	set_bit(FM_CORE_READY, &fmdev->flag);
1586
1587	return ret;
1588}
1589
1590/*
1591 * This function will be called from FM V4L2 release function.
1592 * Unregister from ST driver.
1593 */
1594int fmc_release(struct fmdev *fmdev)
1595{
1596	static struct st_proto_s fm_st_proto;
1597	int ret;
1598
1599	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1600		fmdbg("FM Core is already down\n");
1601		return 0;
1602	}
1603	/* Service pending read */
1604	wake_up_interruptible(&fmdev->rx.rds.read_queue);
1605
1606	tasklet_kill(&fmdev->tx_task);
1607	tasklet_kill(&fmdev->rx_task);
1608
1609	skb_queue_purge(&fmdev->tx_q);
1610	skb_queue_purge(&fmdev->rx_q);
1611
1612	fmdev->resp_comp = NULL;
1613	fmdev->rx.freq = 0;
1614
1615	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1616	fm_st_proto.chnl_id = 0x08;
1617
1618	ret = st_unregister(&fm_st_proto);
1619
1620	if (ret < 0)
1621		fmerr("Failed to de-register FM from ST %d\n", ret);
1622	else
1623		fmdbg("Successfully unregistered from ST\n");
1624
1625	clear_bit(FM_CORE_READY, &fmdev->flag);
1626	return ret;
1627}
1628
1629/*
1630 * Module init function. Ask FM V4L module to register video device.
1631 * Allocate memory for FM driver context and RX RDS buffer.
1632 */
1633static int __init fm_drv_init(void)
1634{
1635	struct fmdev *fmdev = NULL;
1636	int ret = -ENOMEM;
1637
1638	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1639
1640	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1641	if (NULL == fmdev) {
1642		fmerr("Can't allocate operation structure memory\n");
1643		return ret;
1644	}
1645	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1646	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1647	if (NULL == fmdev->rx.rds.buff) {
1648		fmerr("Can't allocate rds ring buffer\n");
1649		goto rel_dev;
1650	}
1651
1652	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1653	if (ret < 0)
1654		goto rel_rdsbuf;
1655
1656	fmdev->irq_info.handlers = int_handler_table;
1657	fmdev->curr_fmmode = FM_MODE_OFF;
1658	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1659	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1660	return ret;
1661
1662rel_rdsbuf:
1663	kfree(fmdev->rx.rds.buff);
1664rel_dev:
1665	kfree(fmdev);
1666
1667	return ret;
1668}
1669
1670/* Module exit function. Ask FM V4L module to unregister video device */
1671static void __exit fm_drv_exit(void)
1672{
1673	struct fmdev *fmdev = NULL;
1674
1675	fmdev = fm_v4l2_deinit_video_device();
1676	if (fmdev != NULL) {
1677		kfree(fmdev->rx.rds.buff);
1678		kfree(fmdev);
1679	}
1680}
1681
1682module_init(fm_drv_init);
1683module_exit(fm_drv_exit);
1684
1685/* ------------- Module Info ------------- */
1686MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1687MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1688MODULE_VERSION(FM_DRV_VERSION);
1689MODULE_LICENSE("GPL");
1690