1/*
2    Driver for STV0297 demodulator
3
4    Copyright (C) 2004 Andrew de Quincey <adq_dvb@lidskialf.net>
5    Copyright (C) 2003-2004 Dennis Noermann <dennis.noermann@noernet.de>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20*/
21
22#include <linux/init.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/string.h>
26#include <linux/delay.h>
27#include <linux/jiffies.h>
28#include <linux/slab.h>
29
30#include "dvb_frontend.h"
31#include "stv0297.h"
32
33struct stv0297_state {
34	struct i2c_adapter *i2c;
35	const struct stv0297_config *config;
36	struct dvb_frontend frontend;
37
38	unsigned long last_ber;
39	unsigned long base_freq;
40};
41
42#if 1
43#define dprintk(x...) printk(x)
44#else
45#define dprintk(x...)
46#endif
47
48#define STV0297_CLOCK_KHZ   28900
49
50
51static int stv0297_writereg(struct stv0297_state *state, u8 reg, u8 data)
52{
53	int ret;
54	u8 buf[] = { reg, data };
55	struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
56
57	ret = i2c_transfer(state->i2c, &msg, 1);
58
59	if (ret != 1)
60		dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
61			"ret == %i)\n", __func__, reg, data, ret);
62
63	return (ret != 1) ? -1 : 0;
64}
65
66static int stv0297_readreg(struct stv0297_state *state, u8 reg)
67{
68	int ret;
69	u8 b0[] = { reg };
70	u8 b1[] = { 0 };
71	struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
72				 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
73			       };
74
75	// this device needs a STOP between the register and data
76	if (state->config->stop_during_read) {
77		if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
78			dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
79			return -1;
80		}
81		if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
82			dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
83			return -1;
84		}
85	} else {
86		if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
87			dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
88			return -1;
89		}
90	}
91
92	return b1[0];
93}
94
95static int stv0297_writereg_mask(struct stv0297_state *state, u8 reg, u8 mask, u8 data)
96{
97	int val;
98
99	val = stv0297_readreg(state, reg);
100	val &= ~mask;
101	val |= (data & mask);
102	stv0297_writereg(state, reg, val);
103
104	return 0;
105}
106
107static int stv0297_readregs(struct stv0297_state *state, u8 reg1, u8 * b, u8 len)
108{
109	int ret;
110	struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf =
111				  &reg1,.len = 1},
112	{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b,.len = len}
113	};
114
115	// this device needs a STOP between the register and data
116	if (state->config->stop_during_read) {
117		if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
118			dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
119			return -1;
120		}
121		if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
122			dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
123			return -1;
124		}
125	} else {
126		if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
127			dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
128			return -1;
129		}
130	}
131
132	return 0;
133}
134
135static u32 stv0297_get_symbolrate(struct stv0297_state *state)
136{
137	u64 tmp;
138
139	tmp = stv0297_readreg(state, 0x55);
140	tmp |= stv0297_readreg(state, 0x56) << 8;
141	tmp |= stv0297_readreg(state, 0x57) << 16;
142	tmp |= stv0297_readreg(state, 0x58) << 24;
143
144	tmp *= STV0297_CLOCK_KHZ;
145	tmp >>= 32;
146
147	return (u32) tmp;
148}
149
150static void stv0297_set_symbolrate(struct stv0297_state *state, u32 srate)
151{
152	long tmp;
153
154	tmp = 131072L * srate;	/* 131072 = 2^17  */
155	tmp = tmp / (STV0297_CLOCK_KHZ / 4);	/* 1/4 = 2^-2 */
156	tmp = tmp * 8192L;	/* 8192 = 2^13 */
157
158	stv0297_writereg(state, 0x55, (unsigned char) (tmp & 0xFF));
159	stv0297_writereg(state, 0x56, (unsigned char) (tmp >> 8));
160	stv0297_writereg(state, 0x57, (unsigned char) (tmp >> 16));
161	stv0297_writereg(state, 0x58, (unsigned char) (tmp >> 24));
162}
163
164static void stv0297_set_sweeprate(struct stv0297_state *state, short fshift, long symrate)
165{
166	long tmp;
167
168	tmp = (long) fshift *262144L;	/* 262144 = 2*18 */
169	tmp /= symrate;
170	tmp *= 1024;		/* 1024 = 2*10   */
171
172	// adjust
173	if (tmp >= 0) {
174		tmp += 500000;
175	} else {
176		tmp -= 500000;
177	}
178	tmp /= 1000000;
179
180	stv0297_writereg(state, 0x60, tmp & 0xFF);
181	stv0297_writereg_mask(state, 0x69, 0xF0, (tmp >> 4) & 0xf0);
182}
183
184static void stv0297_set_carrieroffset(struct stv0297_state *state, long offset)
185{
186	long tmp;
187
188	/* symrate is hardcoded to 10000 */
189	tmp = offset * 26844L;	/* (2**28)/10000 */
190	if (tmp < 0)
191		tmp += 0x10000000;
192	tmp &= 0x0FFFFFFF;
193
194	stv0297_writereg(state, 0x66, (unsigned char) (tmp & 0xFF));
195	stv0297_writereg(state, 0x67, (unsigned char) (tmp >> 8));
196	stv0297_writereg(state, 0x68, (unsigned char) (tmp >> 16));
197	stv0297_writereg_mask(state, 0x69, 0x0F, (tmp >> 24) & 0x0f);
198}
199
200/*
201static long stv0297_get_carrieroffset(struct stv0297_state *state)
202{
203	s64 tmp;
204
205	stv0297_writereg(state, 0x6B, 0x00);
206
207	tmp = stv0297_readreg(state, 0x66);
208	tmp |= (stv0297_readreg(state, 0x67) << 8);
209	tmp |= (stv0297_readreg(state, 0x68) << 16);
210	tmp |= (stv0297_readreg(state, 0x69) & 0x0F) << 24;
211
212	tmp *= stv0297_get_symbolrate(state);
213	tmp >>= 28;
214
215	return (s32) tmp;
216}
217*/
218
219static void stv0297_set_initialdemodfreq(struct stv0297_state *state, long freq)
220{
221	s32 tmp;
222
223	if (freq > 10000)
224		freq -= STV0297_CLOCK_KHZ;
225
226	tmp = (STV0297_CLOCK_KHZ * 1000) / (1 << 16);
227	tmp = (freq * 1000) / tmp;
228	if (tmp > 0xffff)
229		tmp = 0xffff;
230
231	stv0297_writereg_mask(state, 0x25, 0x80, 0x80);
232	stv0297_writereg(state, 0x21, tmp >> 8);
233	stv0297_writereg(state, 0x20, tmp);
234}
235
236static int stv0297_set_qam(struct stv0297_state *state, fe_modulation_t modulation)
237{
238	int val = 0;
239
240	switch (modulation) {
241	case QAM_16:
242		val = 0;
243		break;
244
245	case QAM_32:
246		val = 1;
247		break;
248
249	case QAM_64:
250		val = 4;
251		break;
252
253	case QAM_128:
254		val = 2;
255		break;
256
257	case QAM_256:
258		val = 3;
259		break;
260
261	default:
262		return -EINVAL;
263	}
264
265	stv0297_writereg_mask(state, 0x00, 0x70, val << 4);
266
267	return 0;
268}
269
270static int stv0297_set_inversion(struct stv0297_state *state, fe_spectral_inversion_t inversion)
271{
272	int val = 0;
273
274	switch (inversion) {
275	case INVERSION_OFF:
276		val = 0;
277		break;
278
279	case INVERSION_ON:
280		val = 1;
281		break;
282
283	default:
284		return -EINVAL;
285	}
286
287	stv0297_writereg_mask(state, 0x83, 0x08, val << 3);
288
289	return 0;
290}
291
292static int stv0297_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
293{
294	struct stv0297_state *state = fe->demodulator_priv;
295
296	if (enable) {
297		stv0297_writereg(state, 0x87, 0x78);
298		stv0297_writereg(state, 0x86, 0xc8);
299	}
300
301	return 0;
302}
303
304static int stv0297_init(struct dvb_frontend *fe)
305{
306	struct stv0297_state *state = fe->demodulator_priv;
307	int i;
308
309	/* load init table */
310	for (i=0; !(state->config->inittab[i] == 0xff && state->config->inittab[i+1] == 0xff); i+=2)
311		stv0297_writereg(state, state->config->inittab[i], state->config->inittab[i+1]);
312	msleep(200);
313
314	state->last_ber = 0;
315
316	return 0;
317}
318
319static int stv0297_sleep(struct dvb_frontend *fe)
320{
321	struct stv0297_state *state = fe->demodulator_priv;
322
323	stv0297_writereg_mask(state, 0x80, 1, 1);
324
325	return 0;
326}
327
328static int stv0297_read_status(struct dvb_frontend *fe, fe_status_t * status)
329{
330	struct stv0297_state *state = fe->demodulator_priv;
331
332	u8 sync = stv0297_readreg(state, 0xDF);
333
334	*status = 0;
335	if (sync & 0x80)
336		*status |=
337			FE_HAS_SYNC | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_LOCK;
338	return 0;
339}
340
341static int stv0297_read_ber(struct dvb_frontend *fe, u32 * ber)
342{
343	struct stv0297_state *state = fe->demodulator_priv;
344	u8 BER[3];
345
346	stv0297_readregs(state, 0xA0, BER, 3);
347	if (!(BER[0] & 0x80)) {
348		state->last_ber = BER[2] << 8 | BER[1];
349		stv0297_writereg_mask(state, 0xA0, 0x80, 0x80);
350	}
351
352	*ber = state->last_ber;
353
354	return 0;
355}
356
357
358static int stv0297_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
359{
360	struct stv0297_state *state = fe->demodulator_priv;
361	u8 STRENGTH[3];
362	u16 tmp;
363
364	stv0297_readregs(state, 0x41, STRENGTH, 3);
365	tmp = (STRENGTH[1] & 0x03) << 8 | STRENGTH[0];
366	if (STRENGTH[2] & 0x20) {
367		if (tmp < 0x200)
368			tmp = 0;
369		else
370			tmp = tmp - 0x200;
371	} else {
372		if (tmp > 0x1ff)
373			tmp = 0;
374		else
375			tmp = 0x1ff - tmp;
376	}
377	*strength = (tmp << 7) | (tmp >> 2);
378	return 0;
379}
380
381static int stv0297_read_snr(struct dvb_frontend *fe, u16 * snr)
382{
383	struct stv0297_state *state = fe->demodulator_priv;
384	u8 SNR[2];
385
386	stv0297_readregs(state, 0x07, SNR, 2);
387	*snr = SNR[1] << 8 | SNR[0];
388
389	return 0;
390}
391
392static int stv0297_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
393{
394	struct stv0297_state *state = fe->demodulator_priv;
395
396	stv0297_writereg_mask(state, 0xDF, 0x03, 0x03); /* freeze the counters */
397
398	*ucblocks = (stv0297_readreg(state, 0xD5) << 8)
399		| stv0297_readreg(state, 0xD4);
400
401	stv0297_writereg_mask(state, 0xDF, 0x03, 0x02); /* clear the counters */
402	stv0297_writereg_mask(state, 0xDF, 0x03, 0x01); /* re-enable the counters */
403
404	return 0;
405}
406
407static int stv0297_set_frontend(struct dvb_frontend *fe)
408{
409	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
410	struct stv0297_state *state = fe->demodulator_priv;
411	int u_threshold;
412	int initial_u;
413	int blind_u;
414	int delay;
415	int sweeprate;
416	int carrieroffset;
417	unsigned long timeout;
418	fe_spectral_inversion_t inversion;
419
420	switch (p->modulation) {
421	case QAM_16:
422	case QAM_32:
423	case QAM_64:
424		delay = 100;
425		sweeprate = 1000;
426		break;
427
428	case QAM_128:
429	case QAM_256:
430		delay = 200;
431		sweeprate = 500;
432		break;
433
434	default:
435		return -EINVAL;
436	}
437
438	// determine inversion dependent parameters
439	inversion = p->inversion;
440	if (state->config->invert)
441		inversion = (inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
442	carrieroffset = -330;
443	switch (inversion) {
444	case INVERSION_OFF:
445		break;
446
447	case INVERSION_ON:
448		sweeprate = -sweeprate;
449		carrieroffset = -carrieroffset;
450		break;
451
452	default:
453		return -EINVAL;
454	}
455
456	stv0297_init(fe);
457	if (fe->ops.tuner_ops.set_params) {
458		fe->ops.tuner_ops.set_params(fe);
459		if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
460	}
461
462	/* clear software interrupts */
463	stv0297_writereg(state, 0x82, 0x0);
464
465	/* set initial demodulation frequency */
466	stv0297_set_initialdemodfreq(state, 7250);
467
468	/* setup AGC */
469	stv0297_writereg_mask(state, 0x43, 0x10, 0x00);
470	stv0297_writereg(state, 0x41, 0x00);
471	stv0297_writereg_mask(state, 0x42, 0x03, 0x01);
472	stv0297_writereg_mask(state, 0x36, 0x60, 0x00);
473	stv0297_writereg_mask(state, 0x36, 0x18, 0x00);
474	stv0297_writereg_mask(state, 0x71, 0x80, 0x80);
475	stv0297_writereg(state, 0x72, 0x00);
476	stv0297_writereg(state, 0x73, 0x00);
477	stv0297_writereg_mask(state, 0x74, 0x0F, 0x00);
478	stv0297_writereg_mask(state, 0x43, 0x08, 0x00);
479	stv0297_writereg_mask(state, 0x71, 0x80, 0x00);
480
481	/* setup STL */
482	stv0297_writereg_mask(state, 0x5a, 0x20, 0x20);
483	stv0297_writereg_mask(state, 0x5b, 0x02, 0x02);
484	stv0297_writereg_mask(state, 0x5b, 0x02, 0x00);
485	stv0297_writereg_mask(state, 0x5b, 0x01, 0x00);
486	stv0297_writereg_mask(state, 0x5a, 0x40, 0x40);
487
488	/* disable frequency sweep */
489	stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
490
491	/* reset deinterleaver */
492	stv0297_writereg_mask(state, 0x81, 0x01, 0x01);
493	stv0297_writereg_mask(state, 0x81, 0x01, 0x00);
494
495	/* ??? */
496	stv0297_writereg_mask(state, 0x83, 0x20, 0x20);
497	stv0297_writereg_mask(state, 0x83, 0x20, 0x00);
498
499	/* reset equaliser */
500	u_threshold = stv0297_readreg(state, 0x00) & 0xf;
501	initial_u = stv0297_readreg(state, 0x01) >> 4;
502	blind_u = stv0297_readreg(state, 0x01) & 0xf;
503	stv0297_writereg_mask(state, 0x84, 0x01, 0x01);
504	stv0297_writereg_mask(state, 0x84, 0x01, 0x00);
505	stv0297_writereg_mask(state, 0x00, 0x0f, u_threshold);
506	stv0297_writereg_mask(state, 0x01, 0xf0, initial_u << 4);
507	stv0297_writereg_mask(state, 0x01, 0x0f, blind_u);
508
509	/* data comes from internal A/D */
510	stv0297_writereg_mask(state, 0x87, 0x80, 0x00);
511
512	/* clear phase registers */
513	stv0297_writereg(state, 0x63, 0x00);
514	stv0297_writereg(state, 0x64, 0x00);
515	stv0297_writereg(state, 0x65, 0x00);
516	stv0297_writereg(state, 0x66, 0x00);
517	stv0297_writereg(state, 0x67, 0x00);
518	stv0297_writereg(state, 0x68, 0x00);
519	stv0297_writereg_mask(state, 0x69, 0x0f, 0x00);
520
521	/* set parameters */
522	stv0297_set_qam(state, p->modulation);
523	stv0297_set_symbolrate(state, p->symbol_rate / 1000);
524	stv0297_set_sweeprate(state, sweeprate, p->symbol_rate / 1000);
525	stv0297_set_carrieroffset(state, carrieroffset);
526	stv0297_set_inversion(state, inversion);
527
528	/* kick off lock */
529	/* Disable corner detection for higher QAMs */
530	if (p->modulation == QAM_128 ||
531		p->modulation == QAM_256)
532		stv0297_writereg_mask(state, 0x88, 0x08, 0x00);
533	else
534		stv0297_writereg_mask(state, 0x88, 0x08, 0x08);
535
536	stv0297_writereg_mask(state, 0x5a, 0x20, 0x00);
537	stv0297_writereg_mask(state, 0x6a, 0x01, 0x01);
538	stv0297_writereg_mask(state, 0x43, 0x40, 0x40);
539	stv0297_writereg_mask(state, 0x5b, 0x30, 0x00);
540	stv0297_writereg_mask(state, 0x03, 0x0c, 0x0c);
541	stv0297_writereg_mask(state, 0x03, 0x03, 0x03);
542	stv0297_writereg_mask(state, 0x43, 0x10, 0x10);
543
544	/* wait for WGAGC lock */
545	timeout = jiffies + msecs_to_jiffies(2000);
546	while (time_before(jiffies, timeout)) {
547		msleep(10);
548		if (stv0297_readreg(state, 0x43) & 0x08)
549			break;
550	}
551	if (time_after(jiffies, timeout)) {
552		goto timeout;
553	}
554	msleep(20);
555
556	/* wait for equaliser partial convergence */
557	timeout = jiffies + msecs_to_jiffies(500);
558	while (time_before(jiffies, timeout)) {
559		msleep(10);
560
561		if (stv0297_readreg(state, 0x82) & 0x04) {
562			break;
563		}
564	}
565	if (time_after(jiffies, timeout)) {
566		goto timeout;
567	}
568
569	/* wait for equaliser full convergence */
570	timeout = jiffies + msecs_to_jiffies(delay);
571	while (time_before(jiffies, timeout)) {
572		msleep(10);
573
574		if (stv0297_readreg(state, 0x82) & 0x08) {
575			break;
576		}
577	}
578	if (time_after(jiffies, timeout)) {
579		goto timeout;
580	}
581
582	/* disable sweep */
583	stv0297_writereg_mask(state, 0x6a, 1, 0);
584	stv0297_writereg_mask(state, 0x88, 8, 0);
585
586	/* wait for main lock */
587	timeout = jiffies + msecs_to_jiffies(20);
588	while (time_before(jiffies, timeout)) {
589		msleep(10);
590
591		if (stv0297_readreg(state, 0xDF) & 0x80) {
592			break;
593		}
594	}
595	if (time_after(jiffies, timeout)) {
596		goto timeout;
597	}
598	msleep(100);
599
600	/* is it still locked after that delay? */
601	if (!(stv0297_readreg(state, 0xDF) & 0x80)) {
602		goto timeout;
603	}
604
605	/* success!! */
606	stv0297_writereg_mask(state, 0x5a, 0x40, 0x00);
607	state->base_freq = p->frequency;
608	return 0;
609
610timeout:
611	stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
612	return 0;
613}
614
615static int stv0297_get_frontend(struct dvb_frontend *fe)
616{
617	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
618	struct stv0297_state *state = fe->demodulator_priv;
619	int reg_00, reg_83;
620
621	reg_00 = stv0297_readreg(state, 0x00);
622	reg_83 = stv0297_readreg(state, 0x83);
623
624	p->frequency = state->base_freq;
625	p->inversion = (reg_83 & 0x08) ? INVERSION_ON : INVERSION_OFF;
626	if (state->config->invert)
627		p->inversion = (p->inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
628	p->symbol_rate = stv0297_get_symbolrate(state) * 1000;
629	p->fec_inner = FEC_NONE;
630
631	switch ((reg_00 >> 4) & 0x7) {
632	case 0:
633		p->modulation = QAM_16;
634		break;
635	case 1:
636		p->modulation = QAM_32;
637		break;
638	case 2:
639		p->modulation = QAM_128;
640		break;
641	case 3:
642		p->modulation = QAM_256;
643		break;
644	case 4:
645		p->modulation = QAM_64;
646		break;
647	}
648
649	return 0;
650}
651
652static void stv0297_release(struct dvb_frontend *fe)
653{
654	struct stv0297_state *state = fe->demodulator_priv;
655	kfree(state);
656}
657
658static struct dvb_frontend_ops stv0297_ops;
659
660struct dvb_frontend *stv0297_attach(const struct stv0297_config *config,
661				    struct i2c_adapter *i2c)
662{
663	struct stv0297_state *state = NULL;
664
665	/* allocate memory for the internal state */
666	state = kzalloc(sizeof(struct stv0297_state), GFP_KERNEL);
667	if (state == NULL)
668		goto error;
669
670	/* setup the state */
671	state->config = config;
672	state->i2c = i2c;
673	state->last_ber = 0;
674	state->base_freq = 0;
675
676	/* check if the demod is there */
677	if ((stv0297_readreg(state, 0x80) & 0x70) != 0x20)
678		goto error;
679
680	/* create dvb_frontend */
681	memcpy(&state->frontend.ops, &stv0297_ops, sizeof(struct dvb_frontend_ops));
682	state->frontend.demodulator_priv = state;
683	return &state->frontend;
684
685error:
686	kfree(state);
687	return NULL;
688}
689
690static struct dvb_frontend_ops stv0297_ops = {
691	.delsys = { SYS_DVBC_ANNEX_A },
692	.info = {
693		 .name = "ST STV0297 DVB-C",
694		 .frequency_min = 47000000,
695		 .frequency_max = 862000000,
696		 .frequency_stepsize = 62500,
697		 .symbol_rate_min = 870000,
698		 .symbol_rate_max = 11700000,
699		 .caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
700		 FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO},
701
702	.release = stv0297_release,
703
704	.init = stv0297_init,
705	.sleep = stv0297_sleep,
706	.i2c_gate_ctrl = stv0297_i2c_gate_ctrl,
707
708	.set_frontend = stv0297_set_frontend,
709	.get_frontend = stv0297_get_frontend,
710
711	.read_status = stv0297_read_status,
712	.read_ber = stv0297_read_ber,
713	.read_signal_strength = stv0297_read_signal_strength,
714	.read_snr = stv0297_read_snr,
715	.read_ucblocks = stv0297_read_ucblocks,
716};
717
718MODULE_DESCRIPTION("ST STV0297 DVB-C Demodulator driver");
719MODULE_AUTHOR("Dennis Noermann and Andrew de Quincey");
720MODULE_LICENSE("GPL");
721
722EXPORT_SYMBOL(stv0297_attach);
723