1/* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21/* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46#include <linux/blkdev.h> 47#include <linux/kthread.h> 48#include <linux/raid/pq.h> 49#include <linux/async_tx.h> 50#include <linux/module.h> 51#include <linux/async.h> 52#include <linux/seq_file.h> 53#include <linux/cpu.h> 54#include <linux/slab.h> 55#include <linux/ratelimit.h> 56#include <linux/nodemask.h> 57#include <linux/flex_array.h> 58#include <trace/events/block.h> 59 60#include "md.h" 61#include "raid5.h" 62#include "raid0.h" 63#include "bitmap.h" 64 65#define cpu_to_group(cpu) cpu_to_node(cpu) 66#define ANY_GROUP NUMA_NO_NODE 67 68static bool devices_handle_discard_safely = false; 69module_param(devices_handle_discard_safely, bool, 0644); 70MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72static struct workqueue_struct *raid5_wq; 73/* 74 * Stripe cache 75 */ 76 77#define NR_STRIPES 256 78#define STRIPE_SIZE PAGE_SIZE 79#define STRIPE_SHIFT (PAGE_SHIFT - 9) 80#define STRIPE_SECTORS (STRIPE_SIZE>>9) 81#define IO_THRESHOLD 1 82#define BYPASS_THRESHOLD 1 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84#define HASH_MASK (NR_HASH - 1) 85#define MAX_STRIPE_BATCH 8 86 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88{ 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91} 92 93static inline int stripe_hash_locks_hash(sector_t sect) 94{ 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96} 97 98static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99{ 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102} 103 104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105{ 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108} 109 110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111{ 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118} 119 120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121{ 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127} 128 129/* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139{ 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145} 146 147/* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151static inline int raid5_bi_processed_stripes(struct bio *bio) 152{ 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155} 156 157static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158{ 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161} 162 163static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164{ 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167} 168 169static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171{ 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179} 180 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182{ 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185} 186 187/* Find first data disk in a raid6 stripe */ 188static inline int raid6_d0(struct stripe_head *sh) 189{ 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198} 199static inline int raid6_next_disk(int disk, int raid_disks) 200{ 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203} 204 205/* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212{ 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224} 225 226static void return_io(struct bio *return_bi) 227{ 228 struct bio *bi = return_bi; 229 while (bi) { 230 231 return_bi = bi->bi_next; 232 bi->bi_next = NULL; 233 bi->bi_iter.bi_size = 0; 234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 235 bi, 0); 236 bio_endio(bi, 0); 237 bi = return_bi; 238 } 239} 240 241static void print_raid5_conf (struct r5conf *conf); 242 243static int stripe_operations_active(struct stripe_head *sh) 244{ 245 return sh->check_state || sh->reconstruct_state || 246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 247 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 248} 249 250static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 251{ 252 struct r5conf *conf = sh->raid_conf; 253 struct r5worker_group *group; 254 int thread_cnt; 255 int i, cpu = sh->cpu; 256 257 if (!cpu_online(cpu)) { 258 cpu = cpumask_any(cpu_online_mask); 259 sh->cpu = cpu; 260 } 261 262 if (list_empty(&sh->lru)) { 263 struct r5worker_group *group; 264 group = conf->worker_groups + cpu_to_group(cpu); 265 list_add_tail(&sh->lru, &group->handle_list); 266 group->stripes_cnt++; 267 sh->group = group; 268 } 269 270 if (conf->worker_cnt_per_group == 0) { 271 md_wakeup_thread(conf->mddev->thread); 272 return; 273 } 274 275 group = conf->worker_groups + cpu_to_group(sh->cpu); 276 277 group->workers[0].working = true; 278 /* at least one worker should run to avoid race */ 279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 280 281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 282 /* wakeup more workers */ 283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 284 if (group->workers[i].working == false) { 285 group->workers[i].working = true; 286 queue_work_on(sh->cpu, raid5_wq, 287 &group->workers[i].work); 288 thread_cnt--; 289 } 290 } 291} 292 293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 294 struct list_head *temp_inactive_list) 295{ 296 BUG_ON(!list_empty(&sh->lru)); 297 BUG_ON(atomic_read(&conf->active_stripes)==0); 298 if (test_bit(STRIPE_HANDLE, &sh->state)) { 299 if (test_bit(STRIPE_DELAYED, &sh->state) && 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 301 list_add_tail(&sh->lru, &conf->delayed_list); 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 303 sh->bm_seq - conf->seq_write > 0) 304 list_add_tail(&sh->lru, &conf->bitmap_list); 305 else { 306 clear_bit(STRIPE_DELAYED, &sh->state); 307 clear_bit(STRIPE_BIT_DELAY, &sh->state); 308 if (conf->worker_cnt_per_group == 0) { 309 list_add_tail(&sh->lru, &conf->handle_list); 310 } else { 311 raid5_wakeup_stripe_thread(sh); 312 return; 313 } 314 } 315 md_wakeup_thread(conf->mddev->thread); 316 } else { 317 BUG_ON(stripe_operations_active(sh)); 318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 319 if (atomic_dec_return(&conf->preread_active_stripes) 320 < IO_THRESHOLD) 321 md_wakeup_thread(conf->mddev->thread); 322 atomic_dec(&conf->active_stripes); 323 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 324 list_add_tail(&sh->lru, temp_inactive_list); 325 } 326} 327 328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 329 struct list_head *temp_inactive_list) 330{ 331 if (atomic_dec_and_test(&sh->count)) 332 do_release_stripe(conf, sh, temp_inactive_list); 333} 334 335/* 336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 337 * 338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 339 * given time. Adding stripes only takes device lock, while deleting stripes 340 * only takes hash lock. 341 */ 342static void release_inactive_stripe_list(struct r5conf *conf, 343 struct list_head *temp_inactive_list, 344 int hash) 345{ 346 int size; 347 bool do_wakeup = false; 348 unsigned long flags; 349 350 if (hash == NR_STRIPE_HASH_LOCKS) { 351 size = NR_STRIPE_HASH_LOCKS; 352 hash = NR_STRIPE_HASH_LOCKS - 1; 353 } else 354 size = 1; 355 while (size) { 356 struct list_head *list = &temp_inactive_list[size - 1]; 357 358 /* 359 * We don't hold any lock here yet, get_active_stripe() might 360 * remove stripes from the list 361 */ 362 if (!list_empty_careful(list)) { 363 spin_lock_irqsave(conf->hash_locks + hash, flags); 364 if (list_empty(conf->inactive_list + hash) && 365 !list_empty(list)) 366 atomic_dec(&conf->empty_inactive_list_nr); 367 list_splice_tail_init(list, conf->inactive_list + hash); 368 do_wakeup = true; 369 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 370 } 371 size--; 372 hash--; 373 } 374 375 if (do_wakeup) { 376 wake_up(&conf->wait_for_stripe); 377 if (conf->retry_read_aligned) 378 md_wakeup_thread(conf->mddev->thread); 379 } 380} 381 382/* should hold conf->device_lock already */ 383static int release_stripe_list(struct r5conf *conf, 384 struct list_head *temp_inactive_list) 385{ 386 struct stripe_head *sh; 387 int count = 0; 388 struct llist_node *head; 389 390 head = llist_del_all(&conf->released_stripes); 391 head = llist_reverse_order(head); 392 while (head) { 393 int hash; 394 395 sh = llist_entry(head, struct stripe_head, release_list); 396 head = llist_next(head); 397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 398 smp_mb(); 399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 400 /* 401 * Don't worry the bit is set here, because if the bit is set 402 * again, the count is always > 1. This is true for 403 * STRIPE_ON_UNPLUG_LIST bit too. 404 */ 405 hash = sh->hash_lock_index; 406 __release_stripe(conf, sh, &temp_inactive_list[hash]); 407 count++; 408 } 409 410 return count; 411} 412 413static void release_stripe(struct stripe_head *sh) 414{ 415 struct r5conf *conf = sh->raid_conf; 416 unsigned long flags; 417 struct list_head list; 418 int hash; 419 bool wakeup; 420 421 /* Avoid release_list until the last reference. 422 */ 423 if (atomic_add_unless(&sh->count, -1, 1)) 424 return; 425 426 if (unlikely(!conf->mddev->thread) || 427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 428 goto slow_path; 429 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 430 if (wakeup) 431 md_wakeup_thread(conf->mddev->thread); 432 return; 433slow_path: 434 local_irq_save(flags); 435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 437 INIT_LIST_HEAD(&list); 438 hash = sh->hash_lock_index; 439 do_release_stripe(conf, sh, &list); 440 spin_unlock(&conf->device_lock); 441 release_inactive_stripe_list(conf, &list, hash); 442 } 443 local_irq_restore(flags); 444} 445 446static inline void remove_hash(struct stripe_head *sh) 447{ 448 pr_debug("remove_hash(), stripe %llu\n", 449 (unsigned long long)sh->sector); 450 451 hlist_del_init(&sh->hash); 452} 453 454static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 455{ 456 struct hlist_head *hp = stripe_hash(conf, sh->sector); 457 458 pr_debug("insert_hash(), stripe %llu\n", 459 (unsigned long long)sh->sector); 460 461 hlist_add_head(&sh->hash, hp); 462} 463 464/* find an idle stripe, make sure it is unhashed, and return it. */ 465static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 466{ 467 struct stripe_head *sh = NULL; 468 struct list_head *first; 469 470 if (list_empty(conf->inactive_list + hash)) 471 goto out; 472 first = (conf->inactive_list + hash)->next; 473 sh = list_entry(first, struct stripe_head, lru); 474 list_del_init(first); 475 remove_hash(sh); 476 atomic_inc(&conf->active_stripes); 477 BUG_ON(hash != sh->hash_lock_index); 478 if (list_empty(conf->inactive_list + hash)) 479 atomic_inc(&conf->empty_inactive_list_nr); 480out: 481 return sh; 482} 483 484static void shrink_buffers(struct stripe_head *sh) 485{ 486 struct page *p; 487 int i; 488 int num = sh->raid_conf->pool_size; 489 490 for (i = 0; i < num ; i++) { 491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 492 p = sh->dev[i].page; 493 if (!p) 494 continue; 495 sh->dev[i].page = NULL; 496 put_page(p); 497 } 498} 499 500static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 501{ 502 int i; 503 int num = sh->raid_conf->pool_size; 504 505 for (i = 0; i < num; i++) { 506 struct page *page; 507 508 if (!(page = alloc_page(gfp))) { 509 return 1; 510 } 511 sh->dev[i].page = page; 512 sh->dev[i].orig_page = page; 513 } 514 return 0; 515} 516 517static void raid5_build_block(struct stripe_head *sh, int i, int previous); 518static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 519 struct stripe_head *sh); 520 521static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 522{ 523 struct r5conf *conf = sh->raid_conf; 524 int i, seq; 525 526 BUG_ON(atomic_read(&sh->count) != 0); 527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 528 BUG_ON(stripe_operations_active(sh)); 529 BUG_ON(sh->batch_head); 530 531 pr_debug("init_stripe called, stripe %llu\n", 532 (unsigned long long)sector); 533retry: 534 seq = read_seqcount_begin(&conf->gen_lock); 535 sh->generation = conf->generation - previous; 536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 537 sh->sector = sector; 538 stripe_set_idx(sector, conf, previous, sh); 539 sh->state = 0; 540 541 for (i = sh->disks; i--; ) { 542 struct r5dev *dev = &sh->dev[i]; 543 544 if (dev->toread || dev->read || dev->towrite || dev->written || 545 test_bit(R5_LOCKED, &dev->flags)) { 546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 547 (unsigned long long)sh->sector, i, dev->toread, 548 dev->read, dev->towrite, dev->written, 549 test_bit(R5_LOCKED, &dev->flags)); 550 WARN_ON(1); 551 } 552 dev->flags = 0; 553 raid5_build_block(sh, i, previous); 554 } 555 if (read_seqcount_retry(&conf->gen_lock, seq)) 556 goto retry; 557 sh->overwrite_disks = 0; 558 insert_hash(conf, sh); 559 sh->cpu = smp_processor_id(); 560 set_bit(STRIPE_BATCH_READY, &sh->state); 561} 562 563static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 564 short generation) 565{ 566 struct stripe_head *sh; 567 568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 570 if (sh->sector == sector && sh->generation == generation) 571 return sh; 572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 573 return NULL; 574} 575 576/* 577 * Need to check if array has failed when deciding whether to: 578 * - start an array 579 * - remove non-faulty devices 580 * - add a spare 581 * - allow a reshape 582 * This determination is simple when no reshape is happening. 583 * However if there is a reshape, we need to carefully check 584 * both the before and after sections. 585 * This is because some failed devices may only affect one 586 * of the two sections, and some non-in_sync devices may 587 * be insync in the section most affected by failed devices. 588 */ 589static int calc_degraded(struct r5conf *conf) 590{ 591 int degraded, degraded2; 592 int i; 593 594 rcu_read_lock(); 595 degraded = 0; 596 for (i = 0; i < conf->previous_raid_disks; i++) { 597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 598 if (rdev && test_bit(Faulty, &rdev->flags)) 599 rdev = rcu_dereference(conf->disks[i].replacement); 600 if (!rdev || test_bit(Faulty, &rdev->flags)) 601 degraded++; 602 else if (test_bit(In_sync, &rdev->flags)) 603 ; 604 else 605 /* not in-sync or faulty. 606 * If the reshape increases the number of devices, 607 * this is being recovered by the reshape, so 608 * this 'previous' section is not in_sync. 609 * If the number of devices is being reduced however, 610 * the device can only be part of the array if 611 * we are reverting a reshape, so this section will 612 * be in-sync. 613 */ 614 if (conf->raid_disks >= conf->previous_raid_disks) 615 degraded++; 616 } 617 rcu_read_unlock(); 618 if (conf->raid_disks == conf->previous_raid_disks) 619 return degraded; 620 rcu_read_lock(); 621 degraded2 = 0; 622 for (i = 0; i < conf->raid_disks; i++) { 623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 624 if (rdev && test_bit(Faulty, &rdev->flags)) 625 rdev = rcu_dereference(conf->disks[i].replacement); 626 if (!rdev || test_bit(Faulty, &rdev->flags)) 627 degraded2++; 628 else if (test_bit(In_sync, &rdev->flags)) 629 ; 630 else 631 /* not in-sync or faulty. 632 * If reshape increases the number of devices, this 633 * section has already been recovered, else it 634 * almost certainly hasn't. 635 */ 636 if (conf->raid_disks <= conf->previous_raid_disks) 637 degraded2++; 638 } 639 rcu_read_unlock(); 640 if (degraded2 > degraded) 641 return degraded2; 642 return degraded; 643} 644 645static int has_failed(struct r5conf *conf) 646{ 647 int degraded; 648 649 if (conf->mddev->reshape_position == MaxSector) 650 return conf->mddev->degraded > conf->max_degraded; 651 652 degraded = calc_degraded(conf); 653 if (degraded > conf->max_degraded) 654 return 1; 655 return 0; 656} 657 658static struct stripe_head * 659get_active_stripe(struct r5conf *conf, sector_t sector, 660 int previous, int noblock, int noquiesce) 661{ 662 struct stripe_head *sh; 663 int hash = stripe_hash_locks_hash(sector); 664 665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 666 667 spin_lock_irq(conf->hash_locks + hash); 668 669 do { 670 wait_event_lock_irq(conf->wait_for_stripe, 671 conf->quiesce == 0 || noquiesce, 672 *(conf->hash_locks + hash)); 673 sh = __find_stripe(conf, sector, conf->generation - previous); 674 if (!sh) { 675 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 676 sh = get_free_stripe(conf, hash); 677 if (!sh && llist_empty(&conf->released_stripes) && 678 !test_bit(R5_DID_ALLOC, &conf->cache_state)) 679 set_bit(R5_ALLOC_MORE, 680 &conf->cache_state); 681 } 682 if (noblock && sh == NULL) 683 break; 684 if (!sh) { 685 set_bit(R5_INACTIVE_BLOCKED, 686 &conf->cache_state); 687 wait_event_lock_irq( 688 conf->wait_for_stripe, 689 !list_empty(conf->inactive_list + hash) && 690 (atomic_read(&conf->active_stripes) 691 < (conf->max_nr_stripes * 3 / 4) 692 || !test_bit(R5_INACTIVE_BLOCKED, 693 &conf->cache_state)), 694 *(conf->hash_locks + hash)); 695 clear_bit(R5_INACTIVE_BLOCKED, 696 &conf->cache_state); 697 } else { 698 init_stripe(sh, sector, previous); 699 atomic_inc(&sh->count); 700 } 701 } else if (!atomic_inc_not_zero(&sh->count)) { 702 spin_lock(&conf->device_lock); 703 if (!atomic_read(&sh->count)) { 704 if (!test_bit(STRIPE_HANDLE, &sh->state)) 705 atomic_inc(&conf->active_stripes); 706 BUG_ON(list_empty(&sh->lru) && 707 !test_bit(STRIPE_EXPANDING, &sh->state)); 708 list_del_init(&sh->lru); 709 if (sh->group) { 710 sh->group->stripes_cnt--; 711 sh->group = NULL; 712 } 713 } 714 atomic_inc(&sh->count); 715 spin_unlock(&conf->device_lock); 716 } 717 } while (sh == NULL); 718 719 spin_unlock_irq(conf->hash_locks + hash); 720 return sh; 721} 722 723static bool is_full_stripe_write(struct stripe_head *sh) 724{ 725 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 726 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 727} 728 729static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 730{ 731 local_irq_disable(); 732 if (sh1 > sh2) { 733 spin_lock(&sh2->stripe_lock); 734 spin_lock_nested(&sh1->stripe_lock, 1); 735 } else { 736 spin_lock(&sh1->stripe_lock); 737 spin_lock_nested(&sh2->stripe_lock, 1); 738 } 739} 740 741static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 742{ 743 spin_unlock(&sh1->stripe_lock); 744 spin_unlock(&sh2->stripe_lock); 745 local_irq_enable(); 746} 747 748/* Only freshly new full stripe normal write stripe can be added to a batch list */ 749static bool stripe_can_batch(struct stripe_head *sh) 750{ 751 return test_bit(STRIPE_BATCH_READY, &sh->state) && 752 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 753 is_full_stripe_write(sh); 754} 755 756/* we only do back search */ 757static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 758{ 759 struct stripe_head *head; 760 sector_t head_sector, tmp_sec; 761 int hash; 762 int dd_idx; 763 764 if (!stripe_can_batch(sh)) 765 return; 766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 767 tmp_sec = sh->sector; 768 if (!sector_div(tmp_sec, conf->chunk_sectors)) 769 return; 770 head_sector = sh->sector - STRIPE_SECTORS; 771 772 hash = stripe_hash_locks_hash(head_sector); 773 spin_lock_irq(conf->hash_locks + hash); 774 head = __find_stripe(conf, head_sector, conf->generation); 775 if (head && !atomic_inc_not_zero(&head->count)) { 776 spin_lock(&conf->device_lock); 777 if (!atomic_read(&head->count)) { 778 if (!test_bit(STRIPE_HANDLE, &head->state)) 779 atomic_inc(&conf->active_stripes); 780 BUG_ON(list_empty(&head->lru) && 781 !test_bit(STRIPE_EXPANDING, &head->state)); 782 list_del_init(&head->lru); 783 if (head->group) { 784 head->group->stripes_cnt--; 785 head->group = NULL; 786 } 787 } 788 atomic_inc(&head->count); 789 spin_unlock(&conf->device_lock); 790 } 791 spin_unlock_irq(conf->hash_locks + hash); 792 793 if (!head) 794 return; 795 if (!stripe_can_batch(head)) 796 goto out; 797 798 lock_two_stripes(head, sh); 799 /* clear_batch_ready clear the flag */ 800 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 801 goto unlock_out; 802 803 if (sh->batch_head) 804 goto unlock_out; 805 806 dd_idx = 0; 807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 808 dd_idx++; 809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw) 810 goto unlock_out; 811 812 if (head->batch_head) { 813 spin_lock(&head->batch_head->batch_lock); 814 /* This batch list is already running */ 815 if (!stripe_can_batch(head)) { 816 spin_unlock(&head->batch_head->batch_lock); 817 goto unlock_out; 818 } 819 820 /* 821 * at this point, head's BATCH_READY could be cleared, but we 822 * can still add the stripe to batch list 823 */ 824 list_add(&sh->batch_list, &head->batch_list); 825 spin_unlock(&head->batch_head->batch_lock); 826 827 sh->batch_head = head->batch_head; 828 } else { 829 head->batch_head = head; 830 sh->batch_head = head->batch_head; 831 spin_lock(&head->batch_lock); 832 list_add_tail(&sh->batch_list, &head->batch_list); 833 spin_unlock(&head->batch_lock); 834 } 835 836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 837 if (atomic_dec_return(&conf->preread_active_stripes) 838 < IO_THRESHOLD) 839 md_wakeup_thread(conf->mddev->thread); 840 841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 842 int seq = sh->bm_seq; 843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 844 sh->batch_head->bm_seq > seq) 845 seq = sh->batch_head->bm_seq; 846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 847 sh->batch_head->bm_seq = seq; 848 } 849 850 atomic_inc(&sh->count); 851unlock_out: 852 unlock_two_stripes(head, sh); 853out: 854 release_stripe(head); 855} 856 857/* Determine if 'data_offset' or 'new_data_offset' should be used 858 * in this stripe_head. 859 */ 860static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 861{ 862 sector_t progress = conf->reshape_progress; 863 /* Need a memory barrier to make sure we see the value 864 * of conf->generation, or ->data_offset that was set before 865 * reshape_progress was updated. 866 */ 867 smp_rmb(); 868 if (progress == MaxSector) 869 return 0; 870 if (sh->generation == conf->generation - 1) 871 return 0; 872 /* We are in a reshape, and this is a new-generation stripe, 873 * so use new_data_offset. 874 */ 875 return 1; 876} 877 878static void 879raid5_end_read_request(struct bio *bi, int error); 880static void 881raid5_end_write_request(struct bio *bi, int error); 882 883static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 884{ 885 struct r5conf *conf = sh->raid_conf; 886 int i, disks = sh->disks; 887 struct stripe_head *head_sh = sh; 888 889 might_sleep(); 890 891 for (i = disks; i--; ) { 892 int rw; 893 int replace_only = 0; 894 struct bio *bi, *rbi; 895 struct md_rdev *rdev, *rrdev = NULL; 896 897 sh = head_sh; 898 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 899 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 900 rw = WRITE_FUA; 901 else 902 rw = WRITE; 903 if (test_bit(R5_Discard, &sh->dev[i].flags)) 904 rw |= REQ_DISCARD; 905 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 906 rw = READ; 907 else if (test_and_clear_bit(R5_WantReplace, 908 &sh->dev[i].flags)) { 909 rw = WRITE; 910 replace_only = 1; 911 } else 912 continue; 913 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 914 rw |= REQ_SYNC; 915 916again: 917 bi = &sh->dev[i].req; 918 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 919 920 rcu_read_lock(); 921 rrdev = rcu_dereference(conf->disks[i].replacement); 922 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 923 rdev = rcu_dereference(conf->disks[i].rdev); 924 if (!rdev) { 925 rdev = rrdev; 926 rrdev = NULL; 927 } 928 if (rw & WRITE) { 929 if (replace_only) 930 rdev = NULL; 931 if (rdev == rrdev) 932 /* We raced and saw duplicates */ 933 rrdev = NULL; 934 } else { 935 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 936 rdev = rrdev; 937 rrdev = NULL; 938 } 939 940 if (rdev && test_bit(Faulty, &rdev->flags)) 941 rdev = NULL; 942 if (rdev) 943 atomic_inc(&rdev->nr_pending); 944 if (rrdev && test_bit(Faulty, &rrdev->flags)) 945 rrdev = NULL; 946 if (rrdev) 947 atomic_inc(&rrdev->nr_pending); 948 rcu_read_unlock(); 949 950 /* We have already checked bad blocks for reads. Now 951 * need to check for writes. We never accept write errors 952 * on the replacement, so we don't to check rrdev. 953 */ 954 while ((rw & WRITE) && rdev && 955 test_bit(WriteErrorSeen, &rdev->flags)) { 956 sector_t first_bad; 957 int bad_sectors; 958 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 959 &first_bad, &bad_sectors); 960 if (!bad) 961 break; 962 963 if (bad < 0) { 964 set_bit(BlockedBadBlocks, &rdev->flags); 965 if (!conf->mddev->external && 966 conf->mddev->flags) { 967 /* It is very unlikely, but we might 968 * still need to write out the 969 * bad block log - better give it 970 * a chance*/ 971 md_check_recovery(conf->mddev); 972 } 973 /* 974 * Because md_wait_for_blocked_rdev 975 * will dec nr_pending, we must 976 * increment it first. 977 */ 978 atomic_inc(&rdev->nr_pending); 979 md_wait_for_blocked_rdev(rdev, conf->mddev); 980 } else { 981 /* Acknowledged bad block - skip the write */ 982 rdev_dec_pending(rdev, conf->mddev); 983 rdev = NULL; 984 } 985 } 986 987 if (rdev) { 988 if (s->syncing || s->expanding || s->expanded 989 || s->replacing) 990 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 991 992 set_bit(STRIPE_IO_STARTED, &sh->state); 993 994 bio_reset(bi); 995 bi->bi_bdev = rdev->bdev; 996 bi->bi_rw = rw; 997 bi->bi_end_io = (rw & WRITE) 998 ? raid5_end_write_request 999 : raid5_end_read_request; 1000 bi->bi_private = sh; 1001 1002 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 1003 __func__, (unsigned long long)sh->sector, 1004 bi->bi_rw, i); 1005 atomic_inc(&sh->count); 1006 if (sh != head_sh) 1007 atomic_inc(&head_sh->count); 1008 if (use_new_offset(conf, sh)) 1009 bi->bi_iter.bi_sector = (sh->sector 1010 + rdev->new_data_offset); 1011 else 1012 bi->bi_iter.bi_sector = (sh->sector 1013 + rdev->data_offset); 1014 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1015 bi->bi_rw |= REQ_NOMERGE; 1016 1017 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1018 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1019 sh->dev[i].vec.bv_page = sh->dev[i].page; 1020 bi->bi_vcnt = 1; 1021 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1022 bi->bi_io_vec[0].bv_offset = 0; 1023 bi->bi_iter.bi_size = STRIPE_SIZE; 1024 /* 1025 * If this is discard request, set bi_vcnt 0. We don't 1026 * want to confuse SCSI because SCSI will replace payload 1027 */ 1028 if (rw & REQ_DISCARD) 1029 bi->bi_vcnt = 0; 1030 if (rrdev) 1031 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1032 1033 if (conf->mddev->gendisk) 1034 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1035 bi, disk_devt(conf->mddev->gendisk), 1036 sh->dev[i].sector); 1037 generic_make_request(bi); 1038 } 1039 if (rrdev) { 1040 if (s->syncing || s->expanding || s->expanded 1041 || s->replacing) 1042 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1043 1044 set_bit(STRIPE_IO_STARTED, &sh->state); 1045 1046 bio_reset(rbi); 1047 rbi->bi_bdev = rrdev->bdev; 1048 rbi->bi_rw = rw; 1049 BUG_ON(!(rw & WRITE)); 1050 rbi->bi_end_io = raid5_end_write_request; 1051 rbi->bi_private = sh; 1052 1053 pr_debug("%s: for %llu schedule op %ld on " 1054 "replacement disc %d\n", 1055 __func__, (unsigned long long)sh->sector, 1056 rbi->bi_rw, i); 1057 atomic_inc(&sh->count); 1058 if (sh != head_sh) 1059 atomic_inc(&head_sh->count); 1060 if (use_new_offset(conf, sh)) 1061 rbi->bi_iter.bi_sector = (sh->sector 1062 + rrdev->new_data_offset); 1063 else 1064 rbi->bi_iter.bi_sector = (sh->sector 1065 + rrdev->data_offset); 1066 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1067 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1068 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1069 rbi->bi_vcnt = 1; 1070 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1071 rbi->bi_io_vec[0].bv_offset = 0; 1072 rbi->bi_iter.bi_size = STRIPE_SIZE; 1073 /* 1074 * If this is discard request, set bi_vcnt 0. We don't 1075 * want to confuse SCSI because SCSI will replace payload 1076 */ 1077 if (rw & REQ_DISCARD) 1078 rbi->bi_vcnt = 0; 1079 if (conf->mddev->gendisk) 1080 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1081 rbi, disk_devt(conf->mddev->gendisk), 1082 sh->dev[i].sector); 1083 generic_make_request(rbi); 1084 } 1085 if (!rdev && !rrdev) { 1086 if (rw & WRITE) 1087 set_bit(STRIPE_DEGRADED, &sh->state); 1088 pr_debug("skip op %ld on disc %d for sector %llu\n", 1089 bi->bi_rw, i, (unsigned long long)sh->sector); 1090 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1091 set_bit(STRIPE_HANDLE, &sh->state); 1092 } 1093 1094 if (!head_sh->batch_head) 1095 continue; 1096 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1097 batch_list); 1098 if (sh != head_sh) 1099 goto again; 1100 } 1101} 1102 1103static struct dma_async_tx_descriptor * 1104async_copy_data(int frombio, struct bio *bio, struct page **page, 1105 sector_t sector, struct dma_async_tx_descriptor *tx, 1106 struct stripe_head *sh) 1107{ 1108 struct bio_vec bvl; 1109 struct bvec_iter iter; 1110 struct page *bio_page; 1111 int page_offset; 1112 struct async_submit_ctl submit; 1113 enum async_tx_flags flags = 0; 1114 1115 if (bio->bi_iter.bi_sector >= sector) 1116 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1117 else 1118 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1119 1120 if (frombio) 1121 flags |= ASYNC_TX_FENCE; 1122 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1123 1124 bio_for_each_segment(bvl, bio, iter) { 1125 int len = bvl.bv_len; 1126 int clen; 1127 int b_offset = 0; 1128 1129 if (page_offset < 0) { 1130 b_offset = -page_offset; 1131 page_offset += b_offset; 1132 len -= b_offset; 1133 } 1134 1135 if (len > 0 && page_offset + len > STRIPE_SIZE) 1136 clen = STRIPE_SIZE - page_offset; 1137 else 1138 clen = len; 1139 1140 if (clen > 0) { 1141 b_offset += bvl.bv_offset; 1142 bio_page = bvl.bv_page; 1143 if (frombio) { 1144 if (sh->raid_conf->skip_copy && 1145 b_offset == 0 && page_offset == 0 && 1146 clen == STRIPE_SIZE) 1147 *page = bio_page; 1148 else 1149 tx = async_memcpy(*page, bio_page, page_offset, 1150 b_offset, clen, &submit); 1151 } else 1152 tx = async_memcpy(bio_page, *page, b_offset, 1153 page_offset, clen, &submit); 1154 } 1155 /* chain the operations */ 1156 submit.depend_tx = tx; 1157 1158 if (clen < len) /* hit end of page */ 1159 break; 1160 page_offset += len; 1161 } 1162 1163 return tx; 1164} 1165 1166static void ops_complete_biofill(void *stripe_head_ref) 1167{ 1168 struct stripe_head *sh = stripe_head_ref; 1169 struct bio *return_bi = NULL; 1170 int i; 1171 1172 pr_debug("%s: stripe %llu\n", __func__, 1173 (unsigned long long)sh->sector); 1174 1175 /* clear completed biofills */ 1176 for (i = sh->disks; i--; ) { 1177 struct r5dev *dev = &sh->dev[i]; 1178 1179 /* acknowledge completion of a biofill operation */ 1180 /* and check if we need to reply to a read request, 1181 * new R5_Wantfill requests are held off until 1182 * !STRIPE_BIOFILL_RUN 1183 */ 1184 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1185 struct bio *rbi, *rbi2; 1186 1187 BUG_ON(!dev->read); 1188 rbi = dev->read; 1189 dev->read = NULL; 1190 while (rbi && rbi->bi_iter.bi_sector < 1191 dev->sector + STRIPE_SECTORS) { 1192 rbi2 = r5_next_bio(rbi, dev->sector); 1193 if (!raid5_dec_bi_active_stripes(rbi)) { 1194 rbi->bi_next = return_bi; 1195 return_bi = rbi; 1196 } 1197 rbi = rbi2; 1198 } 1199 } 1200 } 1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1202 1203 return_io(return_bi); 1204 1205 set_bit(STRIPE_HANDLE, &sh->state); 1206 release_stripe(sh); 1207} 1208 1209static void ops_run_biofill(struct stripe_head *sh) 1210{ 1211 struct dma_async_tx_descriptor *tx = NULL; 1212 struct async_submit_ctl submit; 1213 int i; 1214 1215 BUG_ON(sh->batch_head); 1216 pr_debug("%s: stripe %llu\n", __func__, 1217 (unsigned long long)sh->sector); 1218 1219 for (i = sh->disks; i--; ) { 1220 struct r5dev *dev = &sh->dev[i]; 1221 if (test_bit(R5_Wantfill, &dev->flags)) { 1222 struct bio *rbi; 1223 spin_lock_irq(&sh->stripe_lock); 1224 dev->read = rbi = dev->toread; 1225 dev->toread = NULL; 1226 spin_unlock_irq(&sh->stripe_lock); 1227 while (rbi && rbi->bi_iter.bi_sector < 1228 dev->sector + STRIPE_SECTORS) { 1229 tx = async_copy_data(0, rbi, &dev->page, 1230 dev->sector, tx, sh); 1231 rbi = r5_next_bio(rbi, dev->sector); 1232 } 1233 } 1234 } 1235 1236 atomic_inc(&sh->count); 1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1238 async_trigger_callback(&submit); 1239} 1240 1241static void mark_target_uptodate(struct stripe_head *sh, int target) 1242{ 1243 struct r5dev *tgt; 1244 1245 if (target < 0) 1246 return; 1247 1248 tgt = &sh->dev[target]; 1249 set_bit(R5_UPTODATE, &tgt->flags); 1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1251 clear_bit(R5_Wantcompute, &tgt->flags); 1252} 1253 1254static void ops_complete_compute(void *stripe_head_ref) 1255{ 1256 struct stripe_head *sh = stripe_head_ref; 1257 1258 pr_debug("%s: stripe %llu\n", __func__, 1259 (unsigned long long)sh->sector); 1260 1261 /* mark the computed target(s) as uptodate */ 1262 mark_target_uptodate(sh, sh->ops.target); 1263 mark_target_uptodate(sh, sh->ops.target2); 1264 1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1266 if (sh->check_state == check_state_compute_run) 1267 sh->check_state = check_state_compute_result; 1268 set_bit(STRIPE_HANDLE, &sh->state); 1269 release_stripe(sh); 1270} 1271 1272/* return a pointer to the address conversion region of the scribble buffer */ 1273static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1274 struct raid5_percpu *percpu, int i) 1275{ 1276 void *addr; 1277 1278 addr = flex_array_get(percpu->scribble, i); 1279 return addr + sizeof(struct page *) * (sh->disks + 2); 1280} 1281 1282/* return a pointer to the address conversion region of the scribble buffer */ 1283static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1284{ 1285 void *addr; 1286 1287 addr = flex_array_get(percpu->scribble, i); 1288 return addr; 1289} 1290 1291static struct dma_async_tx_descriptor * 1292ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1293{ 1294 int disks = sh->disks; 1295 struct page **xor_srcs = to_addr_page(percpu, 0); 1296 int target = sh->ops.target; 1297 struct r5dev *tgt = &sh->dev[target]; 1298 struct page *xor_dest = tgt->page; 1299 int count = 0; 1300 struct dma_async_tx_descriptor *tx; 1301 struct async_submit_ctl submit; 1302 int i; 1303 1304 BUG_ON(sh->batch_head); 1305 1306 pr_debug("%s: stripe %llu block: %d\n", 1307 __func__, (unsigned long long)sh->sector, target); 1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1309 1310 for (i = disks; i--; ) 1311 if (i != target) 1312 xor_srcs[count++] = sh->dev[i].page; 1313 1314 atomic_inc(&sh->count); 1315 1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1318 if (unlikely(count == 1)) 1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1320 else 1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1322 1323 return tx; 1324} 1325 1326/* set_syndrome_sources - populate source buffers for gen_syndrome 1327 * @srcs - (struct page *) array of size sh->disks 1328 * @sh - stripe_head to parse 1329 * 1330 * Populates srcs in proper layout order for the stripe and returns the 1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1332 * destination buffer is recorded in srcs[count] and the Q destination 1333 * is recorded in srcs[count+1]]. 1334 */ 1335static int set_syndrome_sources(struct page **srcs, 1336 struct stripe_head *sh, 1337 int srctype) 1338{ 1339 int disks = sh->disks; 1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1341 int d0_idx = raid6_d0(sh); 1342 int count; 1343 int i; 1344 1345 for (i = 0; i < disks; i++) 1346 srcs[i] = NULL; 1347 1348 count = 0; 1349 i = d0_idx; 1350 do { 1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1352 struct r5dev *dev = &sh->dev[i]; 1353 1354 if (i == sh->qd_idx || i == sh->pd_idx || 1355 (srctype == SYNDROME_SRC_ALL) || 1356 (srctype == SYNDROME_SRC_WANT_DRAIN && 1357 test_bit(R5_Wantdrain, &dev->flags)) || 1358 (srctype == SYNDROME_SRC_WRITTEN && 1359 dev->written)) 1360 srcs[slot] = sh->dev[i].page; 1361 i = raid6_next_disk(i, disks); 1362 } while (i != d0_idx); 1363 1364 return syndrome_disks; 1365} 1366 1367static struct dma_async_tx_descriptor * 1368ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1369{ 1370 int disks = sh->disks; 1371 struct page **blocks = to_addr_page(percpu, 0); 1372 int target; 1373 int qd_idx = sh->qd_idx; 1374 struct dma_async_tx_descriptor *tx; 1375 struct async_submit_ctl submit; 1376 struct r5dev *tgt; 1377 struct page *dest; 1378 int i; 1379 int count; 1380 1381 BUG_ON(sh->batch_head); 1382 if (sh->ops.target < 0) 1383 target = sh->ops.target2; 1384 else if (sh->ops.target2 < 0) 1385 target = sh->ops.target; 1386 else 1387 /* we should only have one valid target */ 1388 BUG(); 1389 BUG_ON(target < 0); 1390 pr_debug("%s: stripe %llu block: %d\n", 1391 __func__, (unsigned long long)sh->sector, target); 1392 1393 tgt = &sh->dev[target]; 1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1395 dest = tgt->page; 1396 1397 atomic_inc(&sh->count); 1398 1399 if (target == qd_idx) { 1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1401 blocks[count] = NULL; /* regenerating p is not necessary */ 1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1404 ops_complete_compute, sh, 1405 to_addr_conv(sh, percpu, 0)); 1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1407 } else { 1408 /* Compute any data- or p-drive using XOR */ 1409 count = 0; 1410 for (i = disks; i-- ; ) { 1411 if (i == target || i == qd_idx) 1412 continue; 1413 blocks[count++] = sh->dev[i].page; 1414 } 1415 1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1417 NULL, ops_complete_compute, sh, 1418 to_addr_conv(sh, percpu, 0)); 1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1420 } 1421 1422 return tx; 1423} 1424 1425static struct dma_async_tx_descriptor * 1426ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1427{ 1428 int i, count, disks = sh->disks; 1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1430 int d0_idx = raid6_d0(sh); 1431 int faila = -1, failb = -1; 1432 int target = sh->ops.target; 1433 int target2 = sh->ops.target2; 1434 struct r5dev *tgt = &sh->dev[target]; 1435 struct r5dev *tgt2 = &sh->dev[target2]; 1436 struct dma_async_tx_descriptor *tx; 1437 struct page **blocks = to_addr_page(percpu, 0); 1438 struct async_submit_ctl submit; 1439 1440 BUG_ON(sh->batch_head); 1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1442 __func__, (unsigned long long)sh->sector, target, target2); 1443 BUG_ON(target < 0 || target2 < 0); 1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1446 1447 /* we need to open-code set_syndrome_sources to handle the 1448 * slot number conversion for 'faila' and 'failb' 1449 */ 1450 for (i = 0; i < disks ; i++) 1451 blocks[i] = NULL; 1452 count = 0; 1453 i = d0_idx; 1454 do { 1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1456 1457 blocks[slot] = sh->dev[i].page; 1458 1459 if (i == target) 1460 faila = slot; 1461 if (i == target2) 1462 failb = slot; 1463 i = raid6_next_disk(i, disks); 1464 } while (i != d0_idx); 1465 1466 BUG_ON(faila == failb); 1467 if (failb < faila) 1468 swap(faila, failb); 1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1470 __func__, (unsigned long long)sh->sector, faila, failb); 1471 1472 atomic_inc(&sh->count); 1473 1474 if (failb == syndrome_disks+1) { 1475 /* Q disk is one of the missing disks */ 1476 if (faila == syndrome_disks) { 1477 /* Missing P+Q, just recompute */ 1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1479 ops_complete_compute, sh, 1480 to_addr_conv(sh, percpu, 0)); 1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1482 STRIPE_SIZE, &submit); 1483 } else { 1484 struct page *dest; 1485 int data_target; 1486 int qd_idx = sh->qd_idx; 1487 1488 /* Missing D+Q: recompute D from P, then recompute Q */ 1489 if (target == qd_idx) 1490 data_target = target2; 1491 else 1492 data_target = target; 1493 1494 count = 0; 1495 for (i = disks; i-- ; ) { 1496 if (i == data_target || i == qd_idx) 1497 continue; 1498 blocks[count++] = sh->dev[i].page; 1499 } 1500 dest = sh->dev[data_target].page; 1501 init_async_submit(&submit, 1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1503 NULL, NULL, NULL, 1504 to_addr_conv(sh, percpu, 0)); 1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1506 &submit); 1507 1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1510 ops_complete_compute, sh, 1511 to_addr_conv(sh, percpu, 0)); 1512 return async_gen_syndrome(blocks, 0, count+2, 1513 STRIPE_SIZE, &submit); 1514 } 1515 } else { 1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1517 ops_complete_compute, sh, 1518 to_addr_conv(sh, percpu, 0)); 1519 if (failb == syndrome_disks) { 1520 /* We're missing D+P. */ 1521 return async_raid6_datap_recov(syndrome_disks+2, 1522 STRIPE_SIZE, faila, 1523 blocks, &submit); 1524 } else { 1525 /* We're missing D+D. */ 1526 return async_raid6_2data_recov(syndrome_disks+2, 1527 STRIPE_SIZE, faila, failb, 1528 blocks, &submit); 1529 } 1530 } 1531} 1532 1533static void ops_complete_prexor(void *stripe_head_ref) 1534{ 1535 struct stripe_head *sh = stripe_head_ref; 1536 1537 pr_debug("%s: stripe %llu\n", __func__, 1538 (unsigned long long)sh->sector); 1539} 1540 1541static struct dma_async_tx_descriptor * 1542ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1543 struct dma_async_tx_descriptor *tx) 1544{ 1545 int disks = sh->disks; 1546 struct page **xor_srcs = to_addr_page(percpu, 0); 1547 int count = 0, pd_idx = sh->pd_idx, i; 1548 struct async_submit_ctl submit; 1549 1550 /* existing parity data subtracted */ 1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1552 1553 BUG_ON(sh->batch_head); 1554 pr_debug("%s: stripe %llu\n", __func__, 1555 (unsigned long long)sh->sector); 1556 1557 for (i = disks; i--; ) { 1558 struct r5dev *dev = &sh->dev[i]; 1559 /* Only process blocks that are known to be uptodate */ 1560 if (test_bit(R5_Wantdrain, &dev->flags)) 1561 xor_srcs[count++] = dev->page; 1562 } 1563 1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1567 1568 return tx; 1569} 1570 1571static struct dma_async_tx_descriptor * 1572ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1573 struct dma_async_tx_descriptor *tx) 1574{ 1575 struct page **blocks = to_addr_page(percpu, 0); 1576 int count; 1577 struct async_submit_ctl submit; 1578 1579 pr_debug("%s: stripe %llu\n", __func__, 1580 (unsigned long long)sh->sector); 1581 1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1583 1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1587 1588 return tx; 1589} 1590 1591static struct dma_async_tx_descriptor * 1592ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1593{ 1594 int disks = sh->disks; 1595 int i; 1596 struct stripe_head *head_sh = sh; 1597 1598 pr_debug("%s: stripe %llu\n", __func__, 1599 (unsigned long long)sh->sector); 1600 1601 for (i = disks; i--; ) { 1602 struct r5dev *dev; 1603 struct bio *chosen; 1604 1605 sh = head_sh; 1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1607 struct bio *wbi; 1608 1609again: 1610 dev = &sh->dev[i]; 1611 spin_lock_irq(&sh->stripe_lock); 1612 chosen = dev->towrite; 1613 dev->towrite = NULL; 1614 sh->overwrite_disks = 0; 1615 BUG_ON(dev->written); 1616 wbi = dev->written = chosen; 1617 spin_unlock_irq(&sh->stripe_lock); 1618 WARN_ON(dev->page != dev->orig_page); 1619 1620 while (wbi && wbi->bi_iter.bi_sector < 1621 dev->sector + STRIPE_SECTORS) { 1622 if (wbi->bi_rw & REQ_FUA) 1623 set_bit(R5_WantFUA, &dev->flags); 1624 if (wbi->bi_rw & REQ_SYNC) 1625 set_bit(R5_SyncIO, &dev->flags); 1626 if (wbi->bi_rw & REQ_DISCARD) 1627 set_bit(R5_Discard, &dev->flags); 1628 else { 1629 tx = async_copy_data(1, wbi, &dev->page, 1630 dev->sector, tx, sh); 1631 if (dev->page != dev->orig_page) { 1632 set_bit(R5_SkipCopy, &dev->flags); 1633 clear_bit(R5_UPTODATE, &dev->flags); 1634 clear_bit(R5_OVERWRITE, &dev->flags); 1635 } 1636 } 1637 wbi = r5_next_bio(wbi, dev->sector); 1638 } 1639 1640 if (head_sh->batch_head) { 1641 sh = list_first_entry(&sh->batch_list, 1642 struct stripe_head, 1643 batch_list); 1644 if (sh == head_sh) 1645 continue; 1646 goto again; 1647 } 1648 } 1649 } 1650 1651 return tx; 1652} 1653 1654static void ops_complete_reconstruct(void *stripe_head_ref) 1655{ 1656 struct stripe_head *sh = stripe_head_ref; 1657 int disks = sh->disks; 1658 int pd_idx = sh->pd_idx; 1659 int qd_idx = sh->qd_idx; 1660 int i; 1661 bool fua = false, sync = false, discard = false; 1662 1663 pr_debug("%s: stripe %llu\n", __func__, 1664 (unsigned long long)sh->sector); 1665 1666 for (i = disks; i--; ) { 1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1670 } 1671 1672 for (i = disks; i--; ) { 1673 struct r5dev *dev = &sh->dev[i]; 1674 1675 if (dev->written || i == pd_idx || i == qd_idx) { 1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1677 set_bit(R5_UPTODATE, &dev->flags); 1678 if (fua) 1679 set_bit(R5_WantFUA, &dev->flags); 1680 if (sync) 1681 set_bit(R5_SyncIO, &dev->flags); 1682 } 1683 } 1684 1685 if (sh->reconstruct_state == reconstruct_state_drain_run) 1686 sh->reconstruct_state = reconstruct_state_drain_result; 1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1689 else { 1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1691 sh->reconstruct_state = reconstruct_state_result; 1692 } 1693 1694 set_bit(STRIPE_HANDLE, &sh->state); 1695 release_stripe(sh); 1696} 1697 1698static void 1699ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1700 struct dma_async_tx_descriptor *tx) 1701{ 1702 int disks = sh->disks; 1703 struct page **xor_srcs; 1704 struct async_submit_ctl submit; 1705 int count, pd_idx = sh->pd_idx, i; 1706 struct page *xor_dest; 1707 int prexor = 0; 1708 unsigned long flags; 1709 int j = 0; 1710 struct stripe_head *head_sh = sh; 1711 int last_stripe; 1712 1713 pr_debug("%s: stripe %llu\n", __func__, 1714 (unsigned long long)sh->sector); 1715 1716 for (i = 0; i < sh->disks; i++) { 1717 if (pd_idx == i) 1718 continue; 1719 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1720 break; 1721 } 1722 if (i >= sh->disks) { 1723 atomic_inc(&sh->count); 1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1725 ops_complete_reconstruct(sh); 1726 return; 1727 } 1728again: 1729 count = 0; 1730 xor_srcs = to_addr_page(percpu, j); 1731 /* check if prexor is active which means only process blocks 1732 * that are part of a read-modify-write (written) 1733 */ 1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1735 prexor = 1; 1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1737 for (i = disks; i--; ) { 1738 struct r5dev *dev = &sh->dev[i]; 1739 if (head_sh->dev[i].written) 1740 xor_srcs[count++] = dev->page; 1741 } 1742 } else { 1743 xor_dest = sh->dev[pd_idx].page; 1744 for (i = disks; i--; ) { 1745 struct r5dev *dev = &sh->dev[i]; 1746 if (i != pd_idx) 1747 xor_srcs[count++] = dev->page; 1748 } 1749 } 1750 1751 /* 1/ if we prexor'd then the dest is reused as a source 1752 * 2/ if we did not prexor then we are redoing the parity 1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1754 * for the synchronous xor case 1755 */ 1756 last_stripe = !head_sh->batch_head || 1757 list_first_entry(&sh->batch_list, 1758 struct stripe_head, batch_list) == head_sh; 1759 if (last_stripe) { 1760 flags = ASYNC_TX_ACK | 1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1762 1763 atomic_inc(&head_sh->count); 1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1765 to_addr_conv(sh, percpu, j)); 1766 } else { 1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1768 init_async_submit(&submit, flags, tx, NULL, NULL, 1769 to_addr_conv(sh, percpu, j)); 1770 } 1771 1772 if (unlikely(count == 1)) 1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1774 else 1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1776 if (!last_stripe) { 1777 j++; 1778 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1779 batch_list); 1780 goto again; 1781 } 1782} 1783 1784static void 1785ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1786 struct dma_async_tx_descriptor *tx) 1787{ 1788 struct async_submit_ctl submit; 1789 struct page **blocks; 1790 int count, i, j = 0; 1791 struct stripe_head *head_sh = sh; 1792 int last_stripe; 1793 int synflags; 1794 unsigned long txflags; 1795 1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1797 1798 for (i = 0; i < sh->disks; i++) { 1799 if (sh->pd_idx == i || sh->qd_idx == i) 1800 continue; 1801 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1802 break; 1803 } 1804 if (i >= sh->disks) { 1805 atomic_inc(&sh->count); 1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1808 ops_complete_reconstruct(sh); 1809 return; 1810 } 1811 1812again: 1813 blocks = to_addr_page(percpu, j); 1814 1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1816 synflags = SYNDROME_SRC_WRITTEN; 1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1818 } else { 1819 synflags = SYNDROME_SRC_ALL; 1820 txflags = ASYNC_TX_ACK; 1821 } 1822 1823 count = set_syndrome_sources(blocks, sh, synflags); 1824 last_stripe = !head_sh->batch_head || 1825 list_first_entry(&sh->batch_list, 1826 struct stripe_head, batch_list) == head_sh; 1827 1828 if (last_stripe) { 1829 atomic_inc(&head_sh->count); 1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1831 head_sh, to_addr_conv(sh, percpu, j)); 1832 } else 1833 init_async_submit(&submit, 0, tx, NULL, NULL, 1834 to_addr_conv(sh, percpu, j)); 1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1836 if (!last_stripe) { 1837 j++; 1838 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1839 batch_list); 1840 goto again; 1841 } 1842} 1843 1844static void ops_complete_check(void *stripe_head_ref) 1845{ 1846 struct stripe_head *sh = stripe_head_ref; 1847 1848 pr_debug("%s: stripe %llu\n", __func__, 1849 (unsigned long long)sh->sector); 1850 1851 sh->check_state = check_state_check_result; 1852 set_bit(STRIPE_HANDLE, &sh->state); 1853 release_stripe(sh); 1854} 1855 1856static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1857{ 1858 int disks = sh->disks; 1859 int pd_idx = sh->pd_idx; 1860 int qd_idx = sh->qd_idx; 1861 struct page *xor_dest; 1862 struct page **xor_srcs = to_addr_page(percpu, 0); 1863 struct dma_async_tx_descriptor *tx; 1864 struct async_submit_ctl submit; 1865 int count; 1866 int i; 1867 1868 pr_debug("%s: stripe %llu\n", __func__, 1869 (unsigned long long)sh->sector); 1870 1871 BUG_ON(sh->batch_head); 1872 count = 0; 1873 xor_dest = sh->dev[pd_idx].page; 1874 xor_srcs[count++] = xor_dest; 1875 for (i = disks; i--; ) { 1876 if (i == pd_idx || i == qd_idx) 1877 continue; 1878 xor_srcs[count++] = sh->dev[i].page; 1879 } 1880 1881 init_async_submit(&submit, 0, NULL, NULL, NULL, 1882 to_addr_conv(sh, percpu, 0)); 1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1884 &sh->ops.zero_sum_result, &submit); 1885 1886 atomic_inc(&sh->count); 1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1888 tx = async_trigger_callback(&submit); 1889} 1890 1891static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1892{ 1893 struct page **srcs = to_addr_page(percpu, 0); 1894 struct async_submit_ctl submit; 1895 int count; 1896 1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1898 (unsigned long long)sh->sector, checkp); 1899 1900 BUG_ON(sh->batch_head); 1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1902 if (!checkp) 1903 srcs[count] = NULL; 1904 1905 atomic_inc(&sh->count); 1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1907 sh, to_addr_conv(sh, percpu, 0)); 1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1910} 1911 1912static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1913{ 1914 int overlap_clear = 0, i, disks = sh->disks; 1915 struct dma_async_tx_descriptor *tx = NULL; 1916 struct r5conf *conf = sh->raid_conf; 1917 int level = conf->level; 1918 struct raid5_percpu *percpu; 1919 unsigned long cpu; 1920 1921 cpu = get_cpu(); 1922 percpu = per_cpu_ptr(conf->percpu, cpu); 1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1924 ops_run_biofill(sh); 1925 overlap_clear++; 1926 } 1927 1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1929 if (level < 6) 1930 tx = ops_run_compute5(sh, percpu); 1931 else { 1932 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1933 tx = ops_run_compute6_1(sh, percpu); 1934 else 1935 tx = ops_run_compute6_2(sh, percpu); 1936 } 1937 /* terminate the chain if reconstruct is not set to be run */ 1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1939 async_tx_ack(tx); 1940 } 1941 1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1943 if (level < 6) 1944 tx = ops_run_prexor5(sh, percpu, tx); 1945 else 1946 tx = ops_run_prexor6(sh, percpu, tx); 1947 } 1948 1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1950 tx = ops_run_biodrain(sh, tx); 1951 overlap_clear++; 1952 } 1953 1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1955 if (level < 6) 1956 ops_run_reconstruct5(sh, percpu, tx); 1957 else 1958 ops_run_reconstruct6(sh, percpu, tx); 1959 } 1960 1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1962 if (sh->check_state == check_state_run) 1963 ops_run_check_p(sh, percpu); 1964 else if (sh->check_state == check_state_run_q) 1965 ops_run_check_pq(sh, percpu, 0); 1966 else if (sh->check_state == check_state_run_pq) 1967 ops_run_check_pq(sh, percpu, 1); 1968 else 1969 BUG(); 1970 } 1971 1972 if (overlap_clear && !sh->batch_head) 1973 for (i = disks; i--; ) { 1974 struct r5dev *dev = &sh->dev[i]; 1975 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1976 wake_up(&sh->raid_conf->wait_for_overlap); 1977 } 1978 put_cpu(); 1979} 1980 1981static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp) 1982{ 1983 struct stripe_head *sh; 1984 1985 sh = kmem_cache_zalloc(sc, gfp); 1986 if (sh) { 1987 spin_lock_init(&sh->stripe_lock); 1988 spin_lock_init(&sh->batch_lock); 1989 INIT_LIST_HEAD(&sh->batch_list); 1990 INIT_LIST_HEAD(&sh->lru); 1991 atomic_set(&sh->count, 1); 1992 } 1993 return sh; 1994} 1995static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 1996{ 1997 struct stripe_head *sh; 1998 1999 sh = alloc_stripe(conf->slab_cache, gfp); 2000 if (!sh) 2001 return 0; 2002 2003 sh->raid_conf = conf; 2004 2005 if (grow_buffers(sh, gfp)) { 2006 shrink_buffers(sh); 2007 kmem_cache_free(conf->slab_cache, sh); 2008 return 0; 2009 } 2010 sh->hash_lock_index = 2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2012 /* we just created an active stripe so... */ 2013 atomic_inc(&conf->active_stripes); 2014 2015 release_stripe(sh); 2016 conf->max_nr_stripes++; 2017 return 1; 2018} 2019 2020static int grow_stripes(struct r5conf *conf, int num) 2021{ 2022 struct kmem_cache *sc; 2023 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2024 2025 if (conf->mddev->gendisk) 2026 sprintf(conf->cache_name[0], 2027 "raid%d-%s", conf->level, mdname(conf->mddev)); 2028 else 2029 sprintf(conf->cache_name[0], 2030 "raid%d-%p", conf->level, conf->mddev); 2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2032 2033 conf->active_name = 0; 2034 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2036 0, 0, NULL); 2037 if (!sc) 2038 return 1; 2039 conf->slab_cache = sc; 2040 conf->pool_size = devs; 2041 while (num--) 2042 if (!grow_one_stripe(conf, GFP_KERNEL)) 2043 return 1; 2044 2045 return 0; 2046} 2047 2048/** 2049 * scribble_len - return the required size of the scribble region 2050 * @num - total number of disks in the array 2051 * 2052 * The size must be enough to contain: 2053 * 1/ a struct page pointer for each device in the array +2 2054 * 2/ room to convert each entry in (1) to its corresponding dma 2055 * (dma_map_page()) or page (page_address()) address. 2056 * 2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2058 * calculate over all devices (not just the data blocks), using zeros in place 2059 * of the P and Q blocks. 2060 */ 2061static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2062{ 2063 struct flex_array *ret; 2064 size_t len; 2065 2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2067 ret = flex_array_alloc(len, cnt, flags); 2068 if (!ret) 2069 return NULL; 2070 /* always prealloc all elements, so no locking is required */ 2071 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2072 flex_array_free(ret); 2073 return NULL; 2074 } 2075 return ret; 2076} 2077 2078static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2079{ 2080 unsigned long cpu; 2081 int err = 0; 2082 2083 /* 2084 * Never shrink. And mddev_suspend() could deadlock if this is called 2085 * from raid5d. In that case, scribble_disks and scribble_sectors 2086 * should equal to new_disks and new_sectors 2087 */ 2088 if (conf->scribble_disks >= new_disks && 2089 conf->scribble_sectors >= new_sectors) 2090 return 0; 2091 mddev_suspend(conf->mddev); 2092 get_online_cpus(); 2093 for_each_present_cpu(cpu) { 2094 struct raid5_percpu *percpu; 2095 struct flex_array *scribble; 2096 2097 percpu = per_cpu_ptr(conf->percpu, cpu); 2098 scribble = scribble_alloc(new_disks, 2099 new_sectors / STRIPE_SECTORS, 2100 GFP_NOIO); 2101 2102 if (scribble) { 2103 flex_array_free(percpu->scribble); 2104 percpu->scribble = scribble; 2105 } else { 2106 err = -ENOMEM; 2107 break; 2108 } 2109 } 2110 put_online_cpus(); 2111 mddev_resume(conf->mddev); 2112 if (!err) { 2113 conf->scribble_disks = new_disks; 2114 conf->scribble_sectors = new_sectors; 2115 } 2116 return err; 2117} 2118 2119static int resize_stripes(struct r5conf *conf, int newsize) 2120{ 2121 /* Make all the stripes able to hold 'newsize' devices. 2122 * New slots in each stripe get 'page' set to a new page. 2123 * 2124 * This happens in stages: 2125 * 1/ create a new kmem_cache and allocate the required number of 2126 * stripe_heads. 2127 * 2/ gather all the old stripe_heads and transfer the pages across 2128 * to the new stripe_heads. This will have the side effect of 2129 * freezing the array as once all stripe_heads have been collected, 2130 * no IO will be possible. Old stripe heads are freed once their 2131 * pages have been transferred over, and the old kmem_cache is 2132 * freed when all stripes are done. 2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2134 * we simple return a failre status - no need to clean anything up. 2135 * 4/ allocate new pages for the new slots in the new stripe_heads. 2136 * If this fails, we don't bother trying the shrink the 2137 * stripe_heads down again, we just leave them as they are. 2138 * As each stripe_head is processed the new one is released into 2139 * active service. 2140 * 2141 * Once step2 is started, we cannot afford to wait for a write, 2142 * so we use GFP_NOIO allocations. 2143 */ 2144 struct stripe_head *osh, *nsh; 2145 LIST_HEAD(newstripes); 2146 struct disk_info *ndisks; 2147 int err; 2148 struct kmem_cache *sc; 2149 int i; 2150 int hash, cnt; 2151 2152 if (newsize <= conf->pool_size) 2153 return 0; /* never bother to shrink */ 2154 2155 err = md_allow_write(conf->mddev); 2156 if (err) 2157 return err; 2158 2159 /* Step 1 */ 2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2162 0, 0, NULL); 2163 if (!sc) 2164 return -ENOMEM; 2165 2166 /* Need to ensure auto-resizing doesn't interfere */ 2167 mutex_lock(&conf->cache_size_mutex); 2168 2169 for (i = conf->max_nr_stripes; i; i--) { 2170 nsh = alloc_stripe(sc, GFP_KERNEL); 2171 if (!nsh) 2172 break; 2173 2174 nsh->raid_conf = conf; 2175 list_add(&nsh->lru, &newstripes); 2176 } 2177 if (i) { 2178 /* didn't get enough, give up */ 2179 while (!list_empty(&newstripes)) { 2180 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2181 list_del(&nsh->lru); 2182 kmem_cache_free(sc, nsh); 2183 } 2184 kmem_cache_destroy(sc); 2185 mutex_unlock(&conf->cache_size_mutex); 2186 return -ENOMEM; 2187 } 2188 /* Step 2 - Must use GFP_NOIO now. 2189 * OK, we have enough stripes, start collecting inactive 2190 * stripes and copying them over 2191 */ 2192 hash = 0; 2193 cnt = 0; 2194 list_for_each_entry(nsh, &newstripes, lru) { 2195 lock_device_hash_lock(conf, hash); 2196 wait_event_cmd(conf->wait_for_stripe, 2197 !list_empty(conf->inactive_list + hash), 2198 unlock_device_hash_lock(conf, hash), 2199 lock_device_hash_lock(conf, hash)); 2200 osh = get_free_stripe(conf, hash); 2201 unlock_device_hash_lock(conf, hash); 2202 2203 for(i=0; i<conf->pool_size; i++) { 2204 nsh->dev[i].page = osh->dev[i].page; 2205 nsh->dev[i].orig_page = osh->dev[i].page; 2206 } 2207 nsh->hash_lock_index = hash; 2208 kmem_cache_free(conf->slab_cache, osh); 2209 cnt++; 2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2212 hash++; 2213 cnt = 0; 2214 } 2215 } 2216 kmem_cache_destroy(conf->slab_cache); 2217 2218 /* Step 3. 2219 * At this point, we are holding all the stripes so the array 2220 * is completely stalled, so now is a good time to resize 2221 * conf->disks and the scribble region 2222 */ 2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2224 if (ndisks) { 2225 for (i=0; i<conf->raid_disks; i++) 2226 ndisks[i] = conf->disks[i]; 2227 kfree(conf->disks); 2228 conf->disks = ndisks; 2229 } else 2230 err = -ENOMEM; 2231 2232 mutex_unlock(&conf->cache_size_mutex); 2233 /* Step 4, return new stripes to service */ 2234 while(!list_empty(&newstripes)) { 2235 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2236 list_del_init(&nsh->lru); 2237 2238 for (i=conf->raid_disks; i < newsize; i++) 2239 if (nsh->dev[i].page == NULL) { 2240 struct page *p = alloc_page(GFP_NOIO); 2241 nsh->dev[i].page = p; 2242 nsh->dev[i].orig_page = p; 2243 if (!p) 2244 err = -ENOMEM; 2245 } 2246 release_stripe(nsh); 2247 } 2248 /* critical section pass, GFP_NOIO no longer needed */ 2249 2250 conf->slab_cache = sc; 2251 conf->active_name = 1-conf->active_name; 2252 if (!err) 2253 conf->pool_size = newsize; 2254 return err; 2255} 2256 2257static int drop_one_stripe(struct r5conf *conf) 2258{ 2259 struct stripe_head *sh; 2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2261 2262 spin_lock_irq(conf->hash_locks + hash); 2263 sh = get_free_stripe(conf, hash); 2264 spin_unlock_irq(conf->hash_locks + hash); 2265 if (!sh) 2266 return 0; 2267 BUG_ON(atomic_read(&sh->count)); 2268 shrink_buffers(sh); 2269 kmem_cache_free(conf->slab_cache, sh); 2270 atomic_dec(&conf->active_stripes); 2271 conf->max_nr_stripes--; 2272 return 1; 2273} 2274 2275static void shrink_stripes(struct r5conf *conf) 2276{ 2277 while (conf->max_nr_stripes && 2278 drop_one_stripe(conf)) 2279 ; 2280 2281 if (conf->slab_cache) 2282 kmem_cache_destroy(conf->slab_cache); 2283 conf->slab_cache = NULL; 2284} 2285 2286static void raid5_end_read_request(struct bio * bi, int error) 2287{ 2288 struct stripe_head *sh = bi->bi_private; 2289 struct r5conf *conf = sh->raid_conf; 2290 int disks = sh->disks, i; 2291 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2292 char b[BDEVNAME_SIZE]; 2293 struct md_rdev *rdev = NULL; 2294 sector_t s; 2295 2296 for (i=0 ; i<disks; i++) 2297 if (bi == &sh->dev[i].req) 2298 break; 2299 2300 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 2301 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2302 uptodate); 2303 if (i == disks) { 2304 BUG(); 2305 return; 2306 } 2307 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2308 /* If replacement finished while this request was outstanding, 2309 * 'replacement' might be NULL already. 2310 * In that case it moved down to 'rdev'. 2311 * rdev is not removed until all requests are finished. 2312 */ 2313 rdev = conf->disks[i].replacement; 2314 if (!rdev) 2315 rdev = conf->disks[i].rdev; 2316 2317 if (use_new_offset(conf, sh)) 2318 s = sh->sector + rdev->new_data_offset; 2319 else 2320 s = sh->sector + rdev->data_offset; 2321 if (uptodate) { 2322 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2323 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2324 /* Note that this cannot happen on a 2325 * replacement device. We just fail those on 2326 * any error 2327 */ 2328 printk_ratelimited( 2329 KERN_INFO 2330 "md/raid:%s: read error corrected" 2331 " (%lu sectors at %llu on %s)\n", 2332 mdname(conf->mddev), STRIPE_SECTORS, 2333 (unsigned long long)s, 2334 bdevname(rdev->bdev, b)); 2335 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2336 clear_bit(R5_ReadError, &sh->dev[i].flags); 2337 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2338 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2339 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2340 2341 if (atomic_read(&rdev->read_errors)) 2342 atomic_set(&rdev->read_errors, 0); 2343 } else { 2344 const char *bdn = bdevname(rdev->bdev, b); 2345 int retry = 0; 2346 int set_bad = 0; 2347 2348 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2349 atomic_inc(&rdev->read_errors); 2350 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2351 printk_ratelimited( 2352 KERN_WARNING 2353 "md/raid:%s: read error on replacement device " 2354 "(sector %llu on %s).\n", 2355 mdname(conf->mddev), 2356 (unsigned long long)s, 2357 bdn); 2358 else if (conf->mddev->degraded >= conf->max_degraded) { 2359 set_bad = 1; 2360 printk_ratelimited( 2361 KERN_WARNING 2362 "md/raid:%s: read error not correctable " 2363 "(sector %llu on %s).\n", 2364 mdname(conf->mddev), 2365 (unsigned long long)s, 2366 bdn); 2367 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2368 /* Oh, no!!! */ 2369 set_bad = 1; 2370 printk_ratelimited( 2371 KERN_WARNING 2372 "md/raid:%s: read error NOT corrected!! " 2373 "(sector %llu on %s).\n", 2374 mdname(conf->mddev), 2375 (unsigned long long)s, 2376 bdn); 2377 } else if (atomic_read(&rdev->read_errors) 2378 > conf->max_nr_stripes) 2379 printk(KERN_WARNING 2380 "md/raid:%s: Too many read errors, failing device %s.\n", 2381 mdname(conf->mddev), bdn); 2382 else 2383 retry = 1; 2384 if (set_bad && test_bit(In_sync, &rdev->flags) 2385 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2386 retry = 1; 2387 if (retry) 2388 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2389 set_bit(R5_ReadError, &sh->dev[i].flags); 2390 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2391 } else 2392 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2393 else { 2394 clear_bit(R5_ReadError, &sh->dev[i].flags); 2395 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2396 if (!(set_bad 2397 && test_bit(In_sync, &rdev->flags) 2398 && rdev_set_badblocks( 2399 rdev, sh->sector, STRIPE_SECTORS, 0))) 2400 md_error(conf->mddev, rdev); 2401 } 2402 } 2403 rdev_dec_pending(rdev, conf->mddev); 2404 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2405 set_bit(STRIPE_HANDLE, &sh->state); 2406 release_stripe(sh); 2407} 2408 2409static void raid5_end_write_request(struct bio *bi, int error) 2410{ 2411 struct stripe_head *sh = bi->bi_private; 2412 struct r5conf *conf = sh->raid_conf; 2413 int disks = sh->disks, i; 2414 struct md_rdev *uninitialized_var(rdev); 2415 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2416 sector_t first_bad; 2417 int bad_sectors; 2418 int replacement = 0; 2419 2420 for (i = 0 ; i < disks; i++) { 2421 if (bi == &sh->dev[i].req) { 2422 rdev = conf->disks[i].rdev; 2423 break; 2424 } 2425 if (bi == &sh->dev[i].rreq) { 2426 rdev = conf->disks[i].replacement; 2427 if (rdev) 2428 replacement = 1; 2429 else 2430 /* rdev was removed and 'replacement' 2431 * replaced it. rdev is not removed 2432 * until all requests are finished. 2433 */ 2434 rdev = conf->disks[i].rdev; 2435 break; 2436 } 2437 } 2438 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 2439 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2440 uptodate); 2441 if (i == disks) { 2442 BUG(); 2443 return; 2444 } 2445 2446 if (replacement) { 2447 if (!uptodate) 2448 md_error(conf->mddev, rdev); 2449 else if (is_badblock(rdev, sh->sector, 2450 STRIPE_SECTORS, 2451 &first_bad, &bad_sectors)) 2452 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2453 } else { 2454 if (!uptodate) { 2455 set_bit(STRIPE_DEGRADED, &sh->state); 2456 set_bit(WriteErrorSeen, &rdev->flags); 2457 set_bit(R5_WriteError, &sh->dev[i].flags); 2458 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2459 set_bit(MD_RECOVERY_NEEDED, 2460 &rdev->mddev->recovery); 2461 } else if (is_badblock(rdev, sh->sector, 2462 STRIPE_SECTORS, 2463 &first_bad, &bad_sectors)) { 2464 set_bit(R5_MadeGood, &sh->dev[i].flags); 2465 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2466 /* That was a successful write so make 2467 * sure it looks like we already did 2468 * a re-write. 2469 */ 2470 set_bit(R5_ReWrite, &sh->dev[i].flags); 2471 } 2472 } 2473 rdev_dec_pending(rdev, conf->mddev); 2474 2475 if (sh->batch_head && !uptodate && !replacement) 2476 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2477 2478 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2479 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2480 set_bit(STRIPE_HANDLE, &sh->state); 2481 release_stripe(sh); 2482 2483 if (sh->batch_head && sh != sh->batch_head) 2484 release_stripe(sh->batch_head); 2485} 2486 2487static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 2488 2489static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2490{ 2491 struct r5dev *dev = &sh->dev[i]; 2492 2493 bio_init(&dev->req); 2494 dev->req.bi_io_vec = &dev->vec; 2495 dev->req.bi_max_vecs = 1; 2496 dev->req.bi_private = sh; 2497 2498 bio_init(&dev->rreq); 2499 dev->rreq.bi_io_vec = &dev->rvec; 2500 dev->rreq.bi_max_vecs = 1; 2501 dev->rreq.bi_private = sh; 2502 2503 dev->flags = 0; 2504 dev->sector = compute_blocknr(sh, i, previous); 2505} 2506 2507static void error(struct mddev *mddev, struct md_rdev *rdev) 2508{ 2509 char b[BDEVNAME_SIZE]; 2510 struct r5conf *conf = mddev->private; 2511 unsigned long flags; 2512 pr_debug("raid456: error called\n"); 2513 2514 spin_lock_irqsave(&conf->device_lock, flags); 2515 clear_bit(In_sync, &rdev->flags); 2516 mddev->degraded = calc_degraded(conf); 2517 spin_unlock_irqrestore(&conf->device_lock, flags); 2518 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2519 2520 set_bit(Blocked, &rdev->flags); 2521 set_bit(Faulty, &rdev->flags); 2522 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2523 printk(KERN_ALERT 2524 "md/raid:%s: Disk failure on %s, disabling device.\n" 2525 "md/raid:%s: Operation continuing on %d devices.\n", 2526 mdname(mddev), 2527 bdevname(rdev->bdev, b), 2528 mdname(mddev), 2529 conf->raid_disks - mddev->degraded); 2530} 2531 2532/* 2533 * Input: a 'big' sector number, 2534 * Output: index of the data and parity disk, and the sector # in them. 2535 */ 2536static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2537 int previous, int *dd_idx, 2538 struct stripe_head *sh) 2539{ 2540 sector_t stripe, stripe2; 2541 sector_t chunk_number; 2542 unsigned int chunk_offset; 2543 int pd_idx, qd_idx; 2544 int ddf_layout = 0; 2545 sector_t new_sector; 2546 int algorithm = previous ? conf->prev_algo 2547 : conf->algorithm; 2548 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2549 : conf->chunk_sectors; 2550 int raid_disks = previous ? conf->previous_raid_disks 2551 : conf->raid_disks; 2552 int data_disks = raid_disks - conf->max_degraded; 2553 2554 /* First compute the information on this sector */ 2555 2556 /* 2557 * Compute the chunk number and the sector offset inside the chunk 2558 */ 2559 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2560 chunk_number = r_sector; 2561 2562 /* 2563 * Compute the stripe number 2564 */ 2565 stripe = chunk_number; 2566 *dd_idx = sector_div(stripe, data_disks); 2567 stripe2 = stripe; 2568 /* 2569 * Select the parity disk based on the user selected algorithm. 2570 */ 2571 pd_idx = qd_idx = -1; 2572 switch(conf->level) { 2573 case 4: 2574 pd_idx = data_disks; 2575 break; 2576 case 5: 2577 switch (algorithm) { 2578 case ALGORITHM_LEFT_ASYMMETRIC: 2579 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2580 if (*dd_idx >= pd_idx) 2581 (*dd_idx)++; 2582 break; 2583 case ALGORITHM_RIGHT_ASYMMETRIC: 2584 pd_idx = sector_div(stripe2, raid_disks); 2585 if (*dd_idx >= pd_idx) 2586 (*dd_idx)++; 2587 break; 2588 case ALGORITHM_LEFT_SYMMETRIC: 2589 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2591 break; 2592 case ALGORITHM_RIGHT_SYMMETRIC: 2593 pd_idx = sector_div(stripe2, raid_disks); 2594 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2595 break; 2596 case ALGORITHM_PARITY_0: 2597 pd_idx = 0; 2598 (*dd_idx)++; 2599 break; 2600 case ALGORITHM_PARITY_N: 2601 pd_idx = data_disks; 2602 break; 2603 default: 2604 BUG(); 2605 } 2606 break; 2607 case 6: 2608 2609 switch (algorithm) { 2610 case ALGORITHM_LEFT_ASYMMETRIC: 2611 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2612 qd_idx = pd_idx + 1; 2613 if (pd_idx == raid_disks-1) { 2614 (*dd_idx)++; /* Q D D D P */ 2615 qd_idx = 0; 2616 } else if (*dd_idx >= pd_idx) 2617 (*dd_idx) += 2; /* D D P Q D */ 2618 break; 2619 case ALGORITHM_RIGHT_ASYMMETRIC: 2620 pd_idx = sector_div(stripe2, raid_disks); 2621 qd_idx = pd_idx + 1; 2622 if (pd_idx == raid_disks-1) { 2623 (*dd_idx)++; /* Q D D D P */ 2624 qd_idx = 0; 2625 } else if (*dd_idx >= pd_idx) 2626 (*dd_idx) += 2; /* D D P Q D */ 2627 break; 2628 case ALGORITHM_LEFT_SYMMETRIC: 2629 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2630 qd_idx = (pd_idx + 1) % raid_disks; 2631 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2632 break; 2633 case ALGORITHM_RIGHT_SYMMETRIC: 2634 pd_idx = sector_div(stripe2, raid_disks); 2635 qd_idx = (pd_idx + 1) % raid_disks; 2636 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2637 break; 2638 2639 case ALGORITHM_PARITY_0: 2640 pd_idx = 0; 2641 qd_idx = 1; 2642 (*dd_idx) += 2; 2643 break; 2644 case ALGORITHM_PARITY_N: 2645 pd_idx = data_disks; 2646 qd_idx = data_disks + 1; 2647 break; 2648 2649 case ALGORITHM_ROTATING_ZERO_RESTART: 2650 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2651 * of blocks for computing Q is different. 2652 */ 2653 pd_idx = sector_div(stripe2, raid_disks); 2654 qd_idx = pd_idx + 1; 2655 if (pd_idx == raid_disks-1) { 2656 (*dd_idx)++; /* Q D D D P */ 2657 qd_idx = 0; 2658 } else if (*dd_idx >= pd_idx) 2659 (*dd_idx) += 2; /* D D P Q D */ 2660 ddf_layout = 1; 2661 break; 2662 2663 case ALGORITHM_ROTATING_N_RESTART: 2664 /* Same a left_asymmetric, by first stripe is 2665 * D D D P Q rather than 2666 * Q D D D P 2667 */ 2668 stripe2 += 1; 2669 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2670 qd_idx = pd_idx + 1; 2671 if (pd_idx == raid_disks-1) { 2672 (*dd_idx)++; /* Q D D D P */ 2673 qd_idx = 0; 2674 } else if (*dd_idx >= pd_idx) 2675 (*dd_idx) += 2; /* D D P Q D */ 2676 ddf_layout = 1; 2677 break; 2678 2679 case ALGORITHM_ROTATING_N_CONTINUE: 2680 /* Same as left_symmetric but Q is before P */ 2681 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2682 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2683 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2684 ddf_layout = 1; 2685 break; 2686 2687 case ALGORITHM_LEFT_ASYMMETRIC_6: 2688 /* RAID5 left_asymmetric, with Q on last device */ 2689 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2690 if (*dd_idx >= pd_idx) 2691 (*dd_idx)++; 2692 qd_idx = raid_disks - 1; 2693 break; 2694 2695 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2696 pd_idx = sector_div(stripe2, raid_disks-1); 2697 if (*dd_idx >= pd_idx) 2698 (*dd_idx)++; 2699 qd_idx = raid_disks - 1; 2700 break; 2701 2702 case ALGORITHM_LEFT_SYMMETRIC_6: 2703 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2704 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2705 qd_idx = raid_disks - 1; 2706 break; 2707 2708 case ALGORITHM_RIGHT_SYMMETRIC_6: 2709 pd_idx = sector_div(stripe2, raid_disks-1); 2710 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2711 qd_idx = raid_disks - 1; 2712 break; 2713 2714 case ALGORITHM_PARITY_0_6: 2715 pd_idx = 0; 2716 (*dd_idx)++; 2717 qd_idx = raid_disks - 1; 2718 break; 2719 2720 default: 2721 BUG(); 2722 } 2723 break; 2724 } 2725 2726 if (sh) { 2727 sh->pd_idx = pd_idx; 2728 sh->qd_idx = qd_idx; 2729 sh->ddf_layout = ddf_layout; 2730 } 2731 /* 2732 * Finally, compute the new sector number 2733 */ 2734 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2735 return new_sector; 2736} 2737 2738static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2739{ 2740 struct r5conf *conf = sh->raid_conf; 2741 int raid_disks = sh->disks; 2742 int data_disks = raid_disks - conf->max_degraded; 2743 sector_t new_sector = sh->sector, check; 2744 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2745 : conf->chunk_sectors; 2746 int algorithm = previous ? conf->prev_algo 2747 : conf->algorithm; 2748 sector_t stripe; 2749 int chunk_offset; 2750 sector_t chunk_number; 2751 int dummy1, dd_idx = i; 2752 sector_t r_sector; 2753 struct stripe_head sh2; 2754 2755 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2756 stripe = new_sector; 2757 2758 if (i == sh->pd_idx) 2759 return 0; 2760 switch(conf->level) { 2761 case 4: break; 2762 case 5: 2763 switch (algorithm) { 2764 case ALGORITHM_LEFT_ASYMMETRIC: 2765 case ALGORITHM_RIGHT_ASYMMETRIC: 2766 if (i > sh->pd_idx) 2767 i--; 2768 break; 2769 case ALGORITHM_LEFT_SYMMETRIC: 2770 case ALGORITHM_RIGHT_SYMMETRIC: 2771 if (i < sh->pd_idx) 2772 i += raid_disks; 2773 i -= (sh->pd_idx + 1); 2774 break; 2775 case ALGORITHM_PARITY_0: 2776 i -= 1; 2777 break; 2778 case ALGORITHM_PARITY_N: 2779 break; 2780 default: 2781 BUG(); 2782 } 2783 break; 2784 case 6: 2785 if (i == sh->qd_idx) 2786 return 0; /* It is the Q disk */ 2787 switch (algorithm) { 2788 case ALGORITHM_LEFT_ASYMMETRIC: 2789 case ALGORITHM_RIGHT_ASYMMETRIC: 2790 case ALGORITHM_ROTATING_ZERO_RESTART: 2791 case ALGORITHM_ROTATING_N_RESTART: 2792 if (sh->pd_idx == raid_disks-1) 2793 i--; /* Q D D D P */ 2794 else if (i > sh->pd_idx) 2795 i -= 2; /* D D P Q D */ 2796 break; 2797 case ALGORITHM_LEFT_SYMMETRIC: 2798 case ALGORITHM_RIGHT_SYMMETRIC: 2799 if (sh->pd_idx == raid_disks-1) 2800 i--; /* Q D D D P */ 2801 else { 2802 /* D D P Q D */ 2803 if (i < sh->pd_idx) 2804 i += raid_disks; 2805 i -= (sh->pd_idx + 2); 2806 } 2807 break; 2808 case ALGORITHM_PARITY_0: 2809 i -= 2; 2810 break; 2811 case ALGORITHM_PARITY_N: 2812 break; 2813 case ALGORITHM_ROTATING_N_CONTINUE: 2814 /* Like left_symmetric, but P is before Q */ 2815 if (sh->pd_idx == 0) 2816 i--; /* P D D D Q */ 2817 else { 2818 /* D D Q P D */ 2819 if (i < sh->pd_idx) 2820 i += raid_disks; 2821 i -= (sh->pd_idx + 1); 2822 } 2823 break; 2824 case ALGORITHM_LEFT_ASYMMETRIC_6: 2825 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2826 if (i > sh->pd_idx) 2827 i--; 2828 break; 2829 case ALGORITHM_LEFT_SYMMETRIC_6: 2830 case ALGORITHM_RIGHT_SYMMETRIC_6: 2831 if (i < sh->pd_idx) 2832 i += data_disks + 1; 2833 i -= (sh->pd_idx + 1); 2834 break; 2835 case ALGORITHM_PARITY_0_6: 2836 i -= 1; 2837 break; 2838 default: 2839 BUG(); 2840 } 2841 break; 2842 } 2843 2844 chunk_number = stripe * data_disks + i; 2845 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2846 2847 check = raid5_compute_sector(conf, r_sector, 2848 previous, &dummy1, &sh2); 2849 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2850 || sh2.qd_idx != sh->qd_idx) { 2851 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2852 mdname(conf->mddev)); 2853 return 0; 2854 } 2855 return r_sector; 2856} 2857 2858static void 2859schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2860 int rcw, int expand) 2861{ 2862 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2863 struct r5conf *conf = sh->raid_conf; 2864 int level = conf->level; 2865 2866 if (rcw) { 2867 2868 for (i = disks; i--; ) { 2869 struct r5dev *dev = &sh->dev[i]; 2870 2871 if (dev->towrite) { 2872 set_bit(R5_LOCKED, &dev->flags); 2873 set_bit(R5_Wantdrain, &dev->flags); 2874 if (!expand) 2875 clear_bit(R5_UPTODATE, &dev->flags); 2876 s->locked++; 2877 } 2878 } 2879 /* if we are not expanding this is a proper write request, and 2880 * there will be bios with new data to be drained into the 2881 * stripe cache 2882 */ 2883 if (!expand) { 2884 if (!s->locked) 2885 /* False alarm, nothing to do */ 2886 return; 2887 sh->reconstruct_state = reconstruct_state_drain_run; 2888 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2889 } else 2890 sh->reconstruct_state = reconstruct_state_run; 2891 2892 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2893 2894 if (s->locked + conf->max_degraded == disks) 2895 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2896 atomic_inc(&conf->pending_full_writes); 2897 } else { 2898 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2899 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2900 BUG_ON(level == 6 && 2901 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2902 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2903 2904 for (i = disks; i--; ) { 2905 struct r5dev *dev = &sh->dev[i]; 2906 if (i == pd_idx || i == qd_idx) 2907 continue; 2908 2909 if (dev->towrite && 2910 (test_bit(R5_UPTODATE, &dev->flags) || 2911 test_bit(R5_Wantcompute, &dev->flags))) { 2912 set_bit(R5_Wantdrain, &dev->flags); 2913 set_bit(R5_LOCKED, &dev->flags); 2914 clear_bit(R5_UPTODATE, &dev->flags); 2915 s->locked++; 2916 } 2917 } 2918 if (!s->locked) 2919 /* False alarm - nothing to do */ 2920 return; 2921 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2922 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2923 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2924 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2925 } 2926 2927 /* keep the parity disk(s) locked while asynchronous operations 2928 * are in flight 2929 */ 2930 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2931 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2932 s->locked++; 2933 2934 if (level == 6) { 2935 int qd_idx = sh->qd_idx; 2936 struct r5dev *dev = &sh->dev[qd_idx]; 2937 2938 set_bit(R5_LOCKED, &dev->flags); 2939 clear_bit(R5_UPTODATE, &dev->flags); 2940 s->locked++; 2941 } 2942 2943 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2944 __func__, (unsigned long long)sh->sector, 2945 s->locked, s->ops_request); 2946} 2947 2948/* 2949 * Each stripe/dev can have one or more bion attached. 2950 * toread/towrite point to the first in a chain. 2951 * The bi_next chain must be in order. 2952 */ 2953static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2954 int forwrite, int previous) 2955{ 2956 struct bio **bip; 2957 struct r5conf *conf = sh->raid_conf; 2958 int firstwrite=0; 2959 2960 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2961 (unsigned long long)bi->bi_iter.bi_sector, 2962 (unsigned long long)sh->sector); 2963 2964 /* 2965 * If several bio share a stripe. The bio bi_phys_segments acts as a 2966 * reference count to avoid race. The reference count should already be 2967 * increased before this function is called (for example, in 2968 * make_request()), so other bio sharing this stripe will not free the 2969 * stripe. If a stripe is owned by one stripe, the stripe lock will 2970 * protect it. 2971 */ 2972 spin_lock_irq(&sh->stripe_lock); 2973 /* Don't allow new IO added to stripes in batch list */ 2974 if (sh->batch_head) 2975 goto overlap; 2976 if (forwrite) { 2977 bip = &sh->dev[dd_idx].towrite; 2978 if (*bip == NULL) 2979 firstwrite = 1; 2980 } else 2981 bip = &sh->dev[dd_idx].toread; 2982 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2983 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2984 goto overlap; 2985 bip = & (*bip)->bi_next; 2986 } 2987 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2988 goto overlap; 2989 2990 if (!forwrite || previous) 2991 clear_bit(STRIPE_BATCH_READY, &sh->state); 2992 2993 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2994 if (*bip) 2995 bi->bi_next = *bip; 2996 *bip = bi; 2997 raid5_inc_bi_active_stripes(bi); 2998 2999 if (forwrite) { 3000 /* check if page is covered */ 3001 sector_t sector = sh->dev[dd_idx].sector; 3002 for (bi=sh->dev[dd_idx].towrite; 3003 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3004 bi && bi->bi_iter.bi_sector <= sector; 3005 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3006 if (bio_end_sector(bi) >= sector) 3007 sector = bio_end_sector(bi); 3008 } 3009 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3010 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3011 sh->overwrite_disks++; 3012 } 3013 3014 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3015 (unsigned long long)(*bip)->bi_iter.bi_sector, 3016 (unsigned long long)sh->sector, dd_idx); 3017 3018 if (conf->mddev->bitmap && firstwrite) { 3019 /* Cannot hold spinlock over bitmap_startwrite, 3020 * but must ensure this isn't added to a batch until 3021 * we have added to the bitmap and set bm_seq. 3022 * So set STRIPE_BITMAP_PENDING to prevent 3023 * batching. 3024 * If multiple add_stripe_bio() calls race here they 3025 * much all set STRIPE_BITMAP_PENDING. So only the first one 3026 * to complete "bitmap_startwrite" gets to set 3027 * STRIPE_BIT_DELAY. This is important as once a stripe 3028 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3029 * any more. 3030 */ 3031 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3032 spin_unlock_irq(&sh->stripe_lock); 3033 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3034 STRIPE_SECTORS, 0); 3035 spin_lock_irq(&sh->stripe_lock); 3036 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3037 if (!sh->batch_head) { 3038 sh->bm_seq = conf->seq_flush+1; 3039 set_bit(STRIPE_BIT_DELAY, &sh->state); 3040 } 3041 } 3042 spin_unlock_irq(&sh->stripe_lock); 3043 3044 if (stripe_can_batch(sh)) 3045 stripe_add_to_batch_list(conf, sh); 3046 return 1; 3047 3048 overlap: 3049 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3050 spin_unlock_irq(&sh->stripe_lock); 3051 return 0; 3052} 3053 3054static void end_reshape(struct r5conf *conf); 3055 3056static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3057 struct stripe_head *sh) 3058{ 3059 int sectors_per_chunk = 3060 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3061 int dd_idx; 3062 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3063 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3064 3065 raid5_compute_sector(conf, 3066 stripe * (disks - conf->max_degraded) 3067 *sectors_per_chunk + chunk_offset, 3068 previous, 3069 &dd_idx, sh); 3070} 3071 3072static void 3073handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3074 struct stripe_head_state *s, int disks, 3075 struct bio **return_bi) 3076{ 3077 int i; 3078 BUG_ON(sh->batch_head); 3079 for (i = disks; i--; ) { 3080 struct bio *bi; 3081 int bitmap_end = 0; 3082 3083 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3084 struct md_rdev *rdev; 3085 rcu_read_lock(); 3086 rdev = rcu_dereference(conf->disks[i].rdev); 3087 if (rdev && test_bit(In_sync, &rdev->flags)) 3088 atomic_inc(&rdev->nr_pending); 3089 else 3090 rdev = NULL; 3091 rcu_read_unlock(); 3092 if (rdev) { 3093 if (!rdev_set_badblocks( 3094 rdev, 3095 sh->sector, 3096 STRIPE_SECTORS, 0)) 3097 md_error(conf->mddev, rdev); 3098 rdev_dec_pending(rdev, conf->mddev); 3099 } 3100 } 3101 spin_lock_irq(&sh->stripe_lock); 3102 /* fail all writes first */ 3103 bi = sh->dev[i].towrite; 3104 sh->dev[i].towrite = NULL; 3105 sh->overwrite_disks = 0; 3106 spin_unlock_irq(&sh->stripe_lock); 3107 if (bi) 3108 bitmap_end = 1; 3109 3110 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3111 wake_up(&conf->wait_for_overlap); 3112 3113 while (bi && bi->bi_iter.bi_sector < 3114 sh->dev[i].sector + STRIPE_SECTORS) { 3115 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3116 clear_bit(BIO_UPTODATE, &bi->bi_flags); 3117 if (!raid5_dec_bi_active_stripes(bi)) { 3118 md_write_end(conf->mddev); 3119 bi->bi_next = *return_bi; 3120 *return_bi = bi; 3121 } 3122 bi = nextbi; 3123 } 3124 if (bitmap_end) 3125 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3126 STRIPE_SECTORS, 0, 0); 3127 bitmap_end = 0; 3128 /* and fail all 'written' */ 3129 bi = sh->dev[i].written; 3130 sh->dev[i].written = NULL; 3131 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3132 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3133 sh->dev[i].page = sh->dev[i].orig_page; 3134 } 3135 3136 if (bi) bitmap_end = 1; 3137 while (bi && bi->bi_iter.bi_sector < 3138 sh->dev[i].sector + STRIPE_SECTORS) { 3139 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3140 clear_bit(BIO_UPTODATE, &bi->bi_flags); 3141 if (!raid5_dec_bi_active_stripes(bi)) { 3142 md_write_end(conf->mddev); 3143 bi->bi_next = *return_bi; 3144 *return_bi = bi; 3145 } 3146 bi = bi2; 3147 } 3148 3149 /* fail any reads if this device is non-operational and 3150 * the data has not reached the cache yet. 3151 */ 3152 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3153 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3154 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3155 spin_lock_irq(&sh->stripe_lock); 3156 bi = sh->dev[i].toread; 3157 sh->dev[i].toread = NULL; 3158 spin_unlock_irq(&sh->stripe_lock); 3159 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3160 wake_up(&conf->wait_for_overlap); 3161 while (bi && bi->bi_iter.bi_sector < 3162 sh->dev[i].sector + STRIPE_SECTORS) { 3163 struct bio *nextbi = 3164 r5_next_bio(bi, sh->dev[i].sector); 3165 clear_bit(BIO_UPTODATE, &bi->bi_flags); 3166 if (!raid5_dec_bi_active_stripes(bi)) { 3167 bi->bi_next = *return_bi; 3168 *return_bi = bi; 3169 } 3170 bi = nextbi; 3171 } 3172 } 3173 if (bitmap_end) 3174 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3175 STRIPE_SECTORS, 0, 0); 3176 /* If we were in the middle of a write the parity block might 3177 * still be locked - so just clear all R5_LOCKED flags 3178 */ 3179 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3180 } 3181 3182 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3183 if (atomic_dec_and_test(&conf->pending_full_writes)) 3184 md_wakeup_thread(conf->mddev->thread); 3185} 3186 3187static void 3188handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3189 struct stripe_head_state *s) 3190{ 3191 int abort = 0; 3192 int i; 3193 3194 BUG_ON(sh->batch_head); 3195 clear_bit(STRIPE_SYNCING, &sh->state); 3196 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3197 wake_up(&conf->wait_for_overlap); 3198 s->syncing = 0; 3199 s->replacing = 0; 3200 /* There is nothing more to do for sync/check/repair. 3201 * Don't even need to abort as that is handled elsewhere 3202 * if needed, and not always wanted e.g. if there is a known 3203 * bad block here. 3204 * For recover/replace we need to record a bad block on all 3205 * non-sync devices, or abort the recovery 3206 */ 3207 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3208 /* During recovery devices cannot be removed, so 3209 * locking and refcounting of rdevs is not needed 3210 */ 3211 for (i = 0; i < conf->raid_disks; i++) { 3212 struct md_rdev *rdev = conf->disks[i].rdev; 3213 if (rdev 3214 && !test_bit(Faulty, &rdev->flags) 3215 && !test_bit(In_sync, &rdev->flags) 3216 && !rdev_set_badblocks(rdev, sh->sector, 3217 STRIPE_SECTORS, 0)) 3218 abort = 1; 3219 rdev = conf->disks[i].replacement; 3220 if (rdev 3221 && !test_bit(Faulty, &rdev->flags) 3222 && !test_bit(In_sync, &rdev->flags) 3223 && !rdev_set_badblocks(rdev, sh->sector, 3224 STRIPE_SECTORS, 0)) 3225 abort = 1; 3226 } 3227 if (abort) 3228 conf->recovery_disabled = 3229 conf->mddev->recovery_disabled; 3230 } 3231 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3232} 3233 3234static int want_replace(struct stripe_head *sh, int disk_idx) 3235{ 3236 struct md_rdev *rdev; 3237 int rv = 0; 3238 /* Doing recovery so rcu locking not required */ 3239 rdev = sh->raid_conf->disks[disk_idx].replacement; 3240 if (rdev 3241 && !test_bit(Faulty, &rdev->flags) 3242 && !test_bit(In_sync, &rdev->flags) 3243 && (rdev->recovery_offset <= sh->sector 3244 || rdev->mddev->recovery_cp <= sh->sector)) 3245 rv = 1; 3246 3247 return rv; 3248} 3249 3250/* fetch_block - checks the given member device to see if its data needs 3251 * to be read or computed to satisfy a request. 3252 * 3253 * Returns 1 when no more member devices need to be checked, otherwise returns 3254 * 0 to tell the loop in handle_stripe_fill to continue 3255 */ 3256 3257static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3258 int disk_idx, int disks) 3259{ 3260 struct r5dev *dev = &sh->dev[disk_idx]; 3261 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3262 &sh->dev[s->failed_num[1]] }; 3263 int i; 3264 3265 3266 if (test_bit(R5_LOCKED, &dev->flags) || 3267 test_bit(R5_UPTODATE, &dev->flags)) 3268 /* No point reading this as we already have it or have 3269 * decided to get it. 3270 */ 3271 return 0; 3272 3273 if (dev->toread || 3274 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3275 /* We need this block to directly satisfy a request */ 3276 return 1; 3277 3278 if (s->syncing || s->expanding || 3279 (s->replacing && want_replace(sh, disk_idx))) 3280 /* When syncing, or expanding we read everything. 3281 * When replacing, we need the replaced block. 3282 */ 3283 return 1; 3284 3285 if ((s->failed >= 1 && fdev[0]->toread) || 3286 (s->failed >= 2 && fdev[1]->toread)) 3287 /* If we want to read from a failed device, then 3288 * we need to actually read every other device. 3289 */ 3290 return 1; 3291 3292 /* Sometimes neither read-modify-write nor reconstruct-write 3293 * cycles can work. In those cases we read every block we 3294 * can. Then the parity-update is certain to have enough to 3295 * work with. 3296 * This can only be a problem when we need to write something, 3297 * and some device has failed. If either of those tests 3298 * fail we need look no further. 3299 */ 3300 if (!s->failed || !s->to_write) 3301 return 0; 3302 3303 if (test_bit(R5_Insync, &dev->flags) && 3304 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3305 /* Pre-reads at not permitted until after short delay 3306 * to gather multiple requests. However if this 3307 * device is no Insync, the block could only be be computed 3308 * and there is no need to delay that. 3309 */ 3310 return 0; 3311 3312 for (i = 0; i < s->failed; i++) { 3313 if (fdev[i]->towrite && 3314 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3315 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3316 /* If we have a partial write to a failed 3317 * device, then we will need to reconstruct 3318 * the content of that device, so all other 3319 * devices must be read. 3320 */ 3321 return 1; 3322 } 3323 3324 /* If we are forced to do a reconstruct-write, either because 3325 * the current RAID6 implementation only supports that, or 3326 * or because parity cannot be trusted and we are currently 3327 * recovering it, there is extra need to be careful. 3328 * If one of the devices that we would need to read, because 3329 * it is not being overwritten (and maybe not written at all) 3330 * is missing/faulty, then we need to read everything we can. 3331 */ 3332 if (sh->raid_conf->level != 6 && 3333 sh->sector < sh->raid_conf->mddev->recovery_cp) 3334 /* reconstruct-write isn't being forced */ 3335 return 0; 3336 for (i = 0; i < s->failed; i++) { 3337 if (s->failed_num[i] != sh->pd_idx && 3338 s->failed_num[i] != sh->qd_idx && 3339 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3340 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3341 return 1; 3342 } 3343 3344 return 0; 3345} 3346 3347static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3348 int disk_idx, int disks) 3349{ 3350 struct r5dev *dev = &sh->dev[disk_idx]; 3351 3352 /* is the data in this block needed, and can we get it? */ 3353 if (need_this_block(sh, s, disk_idx, disks)) { 3354 /* we would like to get this block, possibly by computing it, 3355 * otherwise read it if the backing disk is insync 3356 */ 3357 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3358 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3359 BUG_ON(sh->batch_head); 3360 if ((s->uptodate == disks - 1) && 3361 (s->failed && (disk_idx == s->failed_num[0] || 3362 disk_idx == s->failed_num[1]))) { 3363 /* have disk failed, and we're requested to fetch it; 3364 * do compute it 3365 */ 3366 pr_debug("Computing stripe %llu block %d\n", 3367 (unsigned long long)sh->sector, disk_idx); 3368 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3369 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3370 set_bit(R5_Wantcompute, &dev->flags); 3371 sh->ops.target = disk_idx; 3372 sh->ops.target2 = -1; /* no 2nd target */ 3373 s->req_compute = 1; 3374 /* Careful: from this point on 'uptodate' is in the eye 3375 * of raid_run_ops which services 'compute' operations 3376 * before writes. R5_Wantcompute flags a block that will 3377 * be R5_UPTODATE by the time it is needed for a 3378 * subsequent operation. 3379 */ 3380 s->uptodate++; 3381 return 1; 3382 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3383 /* Computing 2-failure is *very* expensive; only 3384 * do it if failed >= 2 3385 */ 3386 int other; 3387 for (other = disks; other--; ) { 3388 if (other == disk_idx) 3389 continue; 3390 if (!test_bit(R5_UPTODATE, 3391 &sh->dev[other].flags)) 3392 break; 3393 } 3394 BUG_ON(other < 0); 3395 pr_debug("Computing stripe %llu blocks %d,%d\n", 3396 (unsigned long long)sh->sector, 3397 disk_idx, other); 3398 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3399 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3400 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3401 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3402 sh->ops.target = disk_idx; 3403 sh->ops.target2 = other; 3404 s->uptodate += 2; 3405 s->req_compute = 1; 3406 return 1; 3407 } else if (test_bit(R5_Insync, &dev->flags)) { 3408 set_bit(R5_LOCKED, &dev->flags); 3409 set_bit(R5_Wantread, &dev->flags); 3410 s->locked++; 3411 pr_debug("Reading block %d (sync=%d)\n", 3412 disk_idx, s->syncing); 3413 } 3414 } 3415 3416 return 0; 3417} 3418 3419/** 3420 * handle_stripe_fill - read or compute data to satisfy pending requests. 3421 */ 3422static void handle_stripe_fill(struct stripe_head *sh, 3423 struct stripe_head_state *s, 3424 int disks) 3425{ 3426 int i; 3427 3428 /* look for blocks to read/compute, skip this if a compute 3429 * is already in flight, or if the stripe contents are in the 3430 * midst of changing due to a write 3431 */ 3432 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3433 !sh->reconstruct_state) 3434 for (i = disks; i--; ) 3435 if (fetch_block(sh, s, i, disks)) 3436 break; 3437 set_bit(STRIPE_HANDLE, &sh->state); 3438} 3439 3440static void break_stripe_batch_list(struct stripe_head *head_sh, 3441 unsigned long handle_flags); 3442/* handle_stripe_clean_event 3443 * any written block on an uptodate or failed drive can be returned. 3444 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3445 * never LOCKED, so we don't need to test 'failed' directly. 3446 */ 3447static void handle_stripe_clean_event(struct r5conf *conf, 3448 struct stripe_head *sh, int disks, struct bio **return_bi) 3449{ 3450 int i; 3451 struct r5dev *dev; 3452 int discard_pending = 0; 3453 struct stripe_head *head_sh = sh; 3454 bool do_endio = false; 3455 3456 for (i = disks; i--; ) 3457 if (sh->dev[i].written) { 3458 dev = &sh->dev[i]; 3459 if (!test_bit(R5_LOCKED, &dev->flags) && 3460 (test_bit(R5_UPTODATE, &dev->flags) || 3461 test_bit(R5_Discard, &dev->flags) || 3462 test_bit(R5_SkipCopy, &dev->flags))) { 3463 /* We can return any write requests */ 3464 struct bio *wbi, *wbi2; 3465 pr_debug("Return write for disc %d\n", i); 3466 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3467 clear_bit(R5_UPTODATE, &dev->flags); 3468 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3469 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3470 } 3471 do_endio = true; 3472 3473returnbi: 3474 dev->page = dev->orig_page; 3475 wbi = dev->written; 3476 dev->written = NULL; 3477 while (wbi && wbi->bi_iter.bi_sector < 3478 dev->sector + STRIPE_SECTORS) { 3479 wbi2 = r5_next_bio(wbi, dev->sector); 3480 if (!raid5_dec_bi_active_stripes(wbi)) { 3481 md_write_end(conf->mddev); 3482 wbi->bi_next = *return_bi; 3483 *return_bi = wbi; 3484 } 3485 wbi = wbi2; 3486 } 3487 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3488 STRIPE_SECTORS, 3489 !test_bit(STRIPE_DEGRADED, &sh->state), 3490 0); 3491 if (head_sh->batch_head) { 3492 sh = list_first_entry(&sh->batch_list, 3493 struct stripe_head, 3494 batch_list); 3495 if (sh != head_sh) { 3496 dev = &sh->dev[i]; 3497 goto returnbi; 3498 } 3499 } 3500 sh = head_sh; 3501 dev = &sh->dev[i]; 3502 } else if (test_bit(R5_Discard, &dev->flags)) 3503 discard_pending = 1; 3504 WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); 3505 WARN_ON(dev->page != dev->orig_page); 3506 } 3507 if (!discard_pending && 3508 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3509 int hash; 3510 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3511 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3512 if (sh->qd_idx >= 0) { 3513 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3514 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3515 } 3516 /* now that discard is done we can proceed with any sync */ 3517 clear_bit(STRIPE_DISCARD, &sh->state); 3518 /* 3519 * SCSI discard will change some bio fields and the stripe has 3520 * no updated data, so remove it from hash list and the stripe 3521 * will be reinitialized 3522 */ 3523unhash: 3524 hash = sh->hash_lock_index; 3525 spin_lock_irq(conf->hash_locks + hash); 3526 remove_hash(sh); 3527 spin_unlock_irq(conf->hash_locks + hash); 3528 if (head_sh->batch_head) { 3529 sh = list_first_entry(&sh->batch_list, 3530 struct stripe_head, batch_list); 3531 if (sh != head_sh) 3532 goto unhash; 3533 } 3534 sh = head_sh; 3535 3536 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3537 set_bit(STRIPE_HANDLE, &sh->state); 3538 3539 } 3540 3541 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3542 if (atomic_dec_and_test(&conf->pending_full_writes)) 3543 md_wakeup_thread(conf->mddev->thread); 3544 3545 if (head_sh->batch_head && do_endio) 3546 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3547} 3548 3549static void handle_stripe_dirtying(struct r5conf *conf, 3550 struct stripe_head *sh, 3551 struct stripe_head_state *s, 3552 int disks) 3553{ 3554 int rmw = 0, rcw = 0, i; 3555 sector_t recovery_cp = conf->mddev->recovery_cp; 3556 3557 /* Check whether resync is now happening or should start. 3558 * If yes, then the array is dirty (after unclean shutdown or 3559 * initial creation), so parity in some stripes might be inconsistent. 3560 * In this case, we need to always do reconstruct-write, to ensure 3561 * that in case of drive failure or read-error correction, we 3562 * generate correct data from the parity. 3563 */ 3564 if (conf->rmw_level == PARITY_DISABLE_RMW || 3565 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3566 s->failed == 0)) { 3567 /* Calculate the real rcw later - for now make it 3568 * look like rcw is cheaper 3569 */ 3570 rcw = 1; rmw = 2; 3571 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3572 conf->rmw_level, (unsigned long long)recovery_cp, 3573 (unsigned long long)sh->sector); 3574 } else for (i = disks; i--; ) { 3575 /* would I have to read this buffer for read_modify_write */ 3576 struct r5dev *dev = &sh->dev[i]; 3577 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3578 !test_bit(R5_LOCKED, &dev->flags) && 3579 !(test_bit(R5_UPTODATE, &dev->flags) || 3580 test_bit(R5_Wantcompute, &dev->flags))) { 3581 if (test_bit(R5_Insync, &dev->flags)) 3582 rmw++; 3583 else 3584 rmw += 2*disks; /* cannot read it */ 3585 } 3586 /* Would I have to read this buffer for reconstruct_write */ 3587 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3588 i != sh->pd_idx && i != sh->qd_idx && 3589 !test_bit(R5_LOCKED, &dev->flags) && 3590 !(test_bit(R5_UPTODATE, &dev->flags) || 3591 test_bit(R5_Wantcompute, &dev->flags))) { 3592 if (test_bit(R5_Insync, &dev->flags)) 3593 rcw++; 3594 else 3595 rcw += 2*disks; 3596 } 3597 } 3598 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3599 (unsigned long long)sh->sector, rmw, rcw); 3600 set_bit(STRIPE_HANDLE, &sh->state); 3601 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) { 3602 /* prefer read-modify-write, but need to get some data */ 3603 if (conf->mddev->queue) 3604 blk_add_trace_msg(conf->mddev->queue, 3605 "raid5 rmw %llu %d", 3606 (unsigned long long)sh->sector, rmw); 3607 for (i = disks; i--; ) { 3608 struct r5dev *dev = &sh->dev[i]; 3609 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3610 !test_bit(R5_LOCKED, &dev->flags) && 3611 !(test_bit(R5_UPTODATE, &dev->flags) || 3612 test_bit(R5_Wantcompute, &dev->flags)) && 3613 test_bit(R5_Insync, &dev->flags)) { 3614 if (test_bit(STRIPE_PREREAD_ACTIVE, 3615 &sh->state)) { 3616 pr_debug("Read_old block %d for r-m-w\n", 3617 i); 3618 set_bit(R5_LOCKED, &dev->flags); 3619 set_bit(R5_Wantread, &dev->flags); 3620 s->locked++; 3621 } else { 3622 set_bit(STRIPE_DELAYED, &sh->state); 3623 set_bit(STRIPE_HANDLE, &sh->state); 3624 } 3625 } 3626 } 3627 } 3628 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) { 3629 /* want reconstruct write, but need to get some data */ 3630 int qread =0; 3631 rcw = 0; 3632 for (i = disks; i--; ) { 3633 struct r5dev *dev = &sh->dev[i]; 3634 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3635 i != sh->pd_idx && i != sh->qd_idx && 3636 !test_bit(R5_LOCKED, &dev->flags) && 3637 !(test_bit(R5_UPTODATE, &dev->flags) || 3638 test_bit(R5_Wantcompute, &dev->flags))) { 3639 rcw++; 3640 if (test_bit(R5_Insync, &dev->flags) && 3641 test_bit(STRIPE_PREREAD_ACTIVE, 3642 &sh->state)) { 3643 pr_debug("Read_old block " 3644 "%d for Reconstruct\n", i); 3645 set_bit(R5_LOCKED, &dev->flags); 3646 set_bit(R5_Wantread, &dev->flags); 3647 s->locked++; 3648 qread++; 3649 } else { 3650 set_bit(STRIPE_DELAYED, &sh->state); 3651 set_bit(STRIPE_HANDLE, &sh->state); 3652 } 3653 } 3654 } 3655 if (rcw && conf->mddev->queue) 3656 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3657 (unsigned long long)sh->sector, 3658 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3659 } 3660 3661 if (rcw > disks && rmw > disks && 3662 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3663 set_bit(STRIPE_DELAYED, &sh->state); 3664 3665 /* now if nothing is locked, and if we have enough data, 3666 * we can start a write request 3667 */ 3668 /* since handle_stripe can be called at any time we need to handle the 3669 * case where a compute block operation has been submitted and then a 3670 * subsequent call wants to start a write request. raid_run_ops only 3671 * handles the case where compute block and reconstruct are requested 3672 * simultaneously. If this is not the case then new writes need to be 3673 * held off until the compute completes. 3674 */ 3675 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3676 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3677 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3678 schedule_reconstruction(sh, s, rcw == 0, 0); 3679} 3680 3681static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3682 struct stripe_head_state *s, int disks) 3683{ 3684 struct r5dev *dev = NULL; 3685 3686 BUG_ON(sh->batch_head); 3687 set_bit(STRIPE_HANDLE, &sh->state); 3688 3689 switch (sh->check_state) { 3690 case check_state_idle: 3691 /* start a new check operation if there are no failures */ 3692 if (s->failed == 0) { 3693 BUG_ON(s->uptodate != disks); 3694 sh->check_state = check_state_run; 3695 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3696 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3697 s->uptodate--; 3698 break; 3699 } 3700 dev = &sh->dev[s->failed_num[0]]; 3701 /* fall through */ 3702 case check_state_compute_result: 3703 sh->check_state = check_state_idle; 3704 if (!dev) 3705 dev = &sh->dev[sh->pd_idx]; 3706 3707 /* check that a write has not made the stripe insync */ 3708 if (test_bit(STRIPE_INSYNC, &sh->state)) 3709 break; 3710 3711 /* either failed parity check, or recovery is happening */ 3712 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3713 BUG_ON(s->uptodate != disks); 3714 3715 set_bit(R5_LOCKED, &dev->flags); 3716 s->locked++; 3717 set_bit(R5_Wantwrite, &dev->flags); 3718 3719 clear_bit(STRIPE_DEGRADED, &sh->state); 3720 set_bit(STRIPE_INSYNC, &sh->state); 3721 break; 3722 case check_state_run: 3723 break; /* we will be called again upon completion */ 3724 case check_state_check_result: 3725 sh->check_state = check_state_idle; 3726 3727 /* if a failure occurred during the check operation, leave 3728 * STRIPE_INSYNC not set and let the stripe be handled again 3729 */ 3730 if (s->failed) 3731 break; 3732 3733 /* handle a successful check operation, if parity is correct 3734 * we are done. Otherwise update the mismatch count and repair 3735 * parity if !MD_RECOVERY_CHECK 3736 */ 3737 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3738 /* parity is correct (on disc, 3739 * not in buffer any more) 3740 */ 3741 set_bit(STRIPE_INSYNC, &sh->state); 3742 else { 3743 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3744 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3745 /* don't try to repair!! */ 3746 set_bit(STRIPE_INSYNC, &sh->state); 3747 else { 3748 sh->check_state = check_state_compute_run; 3749 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3750 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3751 set_bit(R5_Wantcompute, 3752 &sh->dev[sh->pd_idx].flags); 3753 sh->ops.target = sh->pd_idx; 3754 sh->ops.target2 = -1; 3755 s->uptodate++; 3756 } 3757 } 3758 break; 3759 case check_state_compute_run: 3760 break; 3761 default: 3762 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3763 __func__, sh->check_state, 3764 (unsigned long long) sh->sector); 3765 BUG(); 3766 } 3767} 3768 3769static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3770 struct stripe_head_state *s, 3771 int disks) 3772{ 3773 int pd_idx = sh->pd_idx; 3774 int qd_idx = sh->qd_idx; 3775 struct r5dev *dev; 3776 3777 BUG_ON(sh->batch_head); 3778 set_bit(STRIPE_HANDLE, &sh->state); 3779 3780 BUG_ON(s->failed > 2); 3781 3782 /* Want to check and possibly repair P and Q. 3783 * However there could be one 'failed' device, in which 3784 * case we can only check one of them, possibly using the 3785 * other to generate missing data 3786 */ 3787 3788 switch (sh->check_state) { 3789 case check_state_idle: 3790 /* start a new check operation if there are < 2 failures */ 3791 if (s->failed == s->q_failed) { 3792 /* The only possible failed device holds Q, so it 3793 * makes sense to check P (If anything else were failed, 3794 * we would have used P to recreate it). 3795 */ 3796 sh->check_state = check_state_run; 3797 } 3798 if (!s->q_failed && s->failed < 2) { 3799 /* Q is not failed, and we didn't use it to generate 3800 * anything, so it makes sense to check it 3801 */ 3802 if (sh->check_state == check_state_run) 3803 sh->check_state = check_state_run_pq; 3804 else 3805 sh->check_state = check_state_run_q; 3806 } 3807 3808 /* discard potentially stale zero_sum_result */ 3809 sh->ops.zero_sum_result = 0; 3810 3811 if (sh->check_state == check_state_run) { 3812 /* async_xor_zero_sum destroys the contents of P */ 3813 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3814 s->uptodate--; 3815 } 3816 if (sh->check_state >= check_state_run && 3817 sh->check_state <= check_state_run_pq) { 3818 /* async_syndrome_zero_sum preserves P and Q, so 3819 * no need to mark them !uptodate here 3820 */ 3821 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3822 break; 3823 } 3824 3825 /* we have 2-disk failure */ 3826 BUG_ON(s->failed != 2); 3827 /* fall through */ 3828 case check_state_compute_result: 3829 sh->check_state = check_state_idle; 3830 3831 /* check that a write has not made the stripe insync */ 3832 if (test_bit(STRIPE_INSYNC, &sh->state)) 3833 break; 3834 3835 /* now write out any block on a failed drive, 3836 * or P or Q if they were recomputed 3837 */ 3838 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3839 if (s->failed == 2) { 3840 dev = &sh->dev[s->failed_num[1]]; 3841 s->locked++; 3842 set_bit(R5_LOCKED, &dev->flags); 3843 set_bit(R5_Wantwrite, &dev->flags); 3844 } 3845 if (s->failed >= 1) { 3846 dev = &sh->dev[s->failed_num[0]]; 3847 s->locked++; 3848 set_bit(R5_LOCKED, &dev->flags); 3849 set_bit(R5_Wantwrite, &dev->flags); 3850 } 3851 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3852 dev = &sh->dev[pd_idx]; 3853 s->locked++; 3854 set_bit(R5_LOCKED, &dev->flags); 3855 set_bit(R5_Wantwrite, &dev->flags); 3856 } 3857 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3858 dev = &sh->dev[qd_idx]; 3859 s->locked++; 3860 set_bit(R5_LOCKED, &dev->flags); 3861 set_bit(R5_Wantwrite, &dev->flags); 3862 } 3863 clear_bit(STRIPE_DEGRADED, &sh->state); 3864 3865 set_bit(STRIPE_INSYNC, &sh->state); 3866 break; 3867 case check_state_run: 3868 case check_state_run_q: 3869 case check_state_run_pq: 3870 break; /* we will be called again upon completion */ 3871 case check_state_check_result: 3872 sh->check_state = check_state_idle; 3873 3874 /* handle a successful check operation, if parity is correct 3875 * we are done. Otherwise update the mismatch count and repair 3876 * parity if !MD_RECOVERY_CHECK 3877 */ 3878 if (sh->ops.zero_sum_result == 0) { 3879 /* both parities are correct */ 3880 if (!s->failed) 3881 set_bit(STRIPE_INSYNC, &sh->state); 3882 else { 3883 /* in contrast to the raid5 case we can validate 3884 * parity, but still have a failure to write 3885 * back 3886 */ 3887 sh->check_state = check_state_compute_result; 3888 /* Returning at this point means that we may go 3889 * off and bring p and/or q uptodate again so 3890 * we make sure to check zero_sum_result again 3891 * to verify if p or q need writeback 3892 */ 3893 } 3894 } else { 3895 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3896 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3897 /* don't try to repair!! */ 3898 set_bit(STRIPE_INSYNC, &sh->state); 3899 else { 3900 int *target = &sh->ops.target; 3901 3902 sh->ops.target = -1; 3903 sh->ops.target2 = -1; 3904 sh->check_state = check_state_compute_run; 3905 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3906 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3907 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3908 set_bit(R5_Wantcompute, 3909 &sh->dev[pd_idx].flags); 3910 *target = pd_idx; 3911 target = &sh->ops.target2; 3912 s->uptodate++; 3913 } 3914 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3915 set_bit(R5_Wantcompute, 3916 &sh->dev[qd_idx].flags); 3917 *target = qd_idx; 3918 s->uptodate++; 3919 } 3920 } 3921 } 3922 break; 3923 case check_state_compute_run: 3924 break; 3925 default: 3926 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3927 __func__, sh->check_state, 3928 (unsigned long long) sh->sector); 3929 BUG(); 3930 } 3931} 3932 3933static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3934{ 3935 int i; 3936 3937 /* We have read all the blocks in this stripe and now we need to 3938 * copy some of them into a target stripe for expand. 3939 */ 3940 struct dma_async_tx_descriptor *tx = NULL; 3941 BUG_ON(sh->batch_head); 3942 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3943 for (i = 0; i < sh->disks; i++) 3944 if (i != sh->pd_idx && i != sh->qd_idx) { 3945 int dd_idx, j; 3946 struct stripe_head *sh2; 3947 struct async_submit_ctl submit; 3948 3949 sector_t bn = compute_blocknr(sh, i, 1); 3950 sector_t s = raid5_compute_sector(conf, bn, 0, 3951 &dd_idx, NULL); 3952 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3953 if (sh2 == NULL) 3954 /* so far only the early blocks of this stripe 3955 * have been requested. When later blocks 3956 * get requested, we will try again 3957 */ 3958 continue; 3959 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3960 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3961 /* must have already done this block */ 3962 release_stripe(sh2); 3963 continue; 3964 } 3965 3966 /* place all the copies on one channel */ 3967 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3968 tx = async_memcpy(sh2->dev[dd_idx].page, 3969 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3970 &submit); 3971 3972 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3973 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3974 for (j = 0; j < conf->raid_disks; j++) 3975 if (j != sh2->pd_idx && 3976 j != sh2->qd_idx && 3977 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3978 break; 3979 if (j == conf->raid_disks) { 3980 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3981 set_bit(STRIPE_HANDLE, &sh2->state); 3982 } 3983 release_stripe(sh2); 3984 3985 } 3986 /* done submitting copies, wait for them to complete */ 3987 async_tx_quiesce(&tx); 3988} 3989 3990/* 3991 * handle_stripe - do things to a stripe. 3992 * 3993 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3994 * state of various bits to see what needs to be done. 3995 * Possible results: 3996 * return some read requests which now have data 3997 * return some write requests which are safely on storage 3998 * schedule a read on some buffers 3999 * schedule a write of some buffers 4000 * return confirmation of parity correctness 4001 * 4002 */ 4003 4004static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4005{ 4006 struct r5conf *conf = sh->raid_conf; 4007 int disks = sh->disks; 4008 struct r5dev *dev; 4009 int i; 4010 int do_recovery = 0; 4011 4012 memset(s, 0, sizeof(*s)); 4013 4014 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4015 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4016 s->failed_num[0] = -1; 4017 s->failed_num[1] = -1; 4018 4019 /* Now to look around and see what can be done */ 4020 rcu_read_lock(); 4021 for (i=disks; i--; ) { 4022 struct md_rdev *rdev; 4023 sector_t first_bad; 4024 int bad_sectors; 4025 int is_bad = 0; 4026 4027 dev = &sh->dev[i]; 4028 4029 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4030 i, dev->flags, 4031 dev->toread, dev->towrite, dev->written); 4032 /* maybe we can reply to a read 4033 * 4034 * new wantfill requests are only permitted while 4035 * ops_complete_biofill is guaranteed to be inactive 4036 */ 4037 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4038 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4039 set_bit(R5_Wantfill, &dev->flags); 4040 4041 /* now count some things */ 4042 if (test_bit(R5_LOCKED, &dev->flags)) 4043 s->locked++; 4044 if (test_bit(R5_UPTODATE, &dev->flags)) 4045 s->uptodate++; 4046 if (test_bit(R5_Wantcompute, &dev->flags)) { 4047 s->compute++; 4048 BUG_ON(s->compute > 2); 4049 } 4050 4051 if (test_bit(R5_Wantfill, &dev->flags)) 4052 s->to_fill++; 4053 else if (dev->toread) 4054 s->to_read++; 4055 if (dev->towrite) { 4056 s->to_write++; 4057 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4058 s->non_overwrite++; 4059 } 4060 if (dev->written) 4061 s->written++; 4062 /* Prefer to use the replacement for reads, but only 4063 * if it is recovered enough and has no bad blocks. 4064 */ 4065 rdev = rcu_dereference(conf->disks[i].replacement); 4066 if (rdev && !test_bit(Faulty, &rdev->flags) && 4067 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4068 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4069 &first_bad, &bad_sectors)) 4070 set_bit(R5_ReadRepl, &dev->flags); 4071 else { 4072 if (rdev) 4073 set_bit(R5_NeedReplace, &dev->flags); 4074 rdev = rcu_dereference(conf->disks[i].rdev); 4075 clear_bit(R5_ReadRepl, &dev->flags); 4076 } 4077 if (rdev && test_bit(Faulty, &rdev->flags)) 4078 rdev = NULL; 4079 if (rdev) { 4080 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4081 &first_bad, &bad_sectors); 4082 if (s->blocked_rdev == NULL 4083 && (test_bit(Blocked, &rdev->flags) 4084 || is_bad < 0)) { 4085 if (is_bad < 0) 4086 set_bit(BlockedBadBlocks, 4087 &rdev->flags); 4088 s->blocked_rdev = rdev; 4089 atomic_inc(&rdev->nr_pending); 4090 } 4091 } 4092 clear_bit(R5_Insync, &dev->flags); 4093 if (!rdev) 4094 /* Not in-sync */; 4095 else if (is_bad) { 4096 /* also not in-sync */ 4097 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4098 test_bit(R5_UPTODATE, &dev->flags)) { 4099 /* treat as in-sync, but with a read error 4100 * which we can now try to correct 4101 */ 4102 set_bit(R5_Insync, &dev->flags); 4103 set_bit(R5_ReadError, &dev->flags); 4104 } 4105 } else if (test_bit(In_sync, &rdev->flags)) 4106 set_bit(R5_Insync, &dev->flags); 4107 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4108 /* in sync if before recovery_offset */ 4109 set_bit(R5_Insync, &dev->flags); 4110 else if (test_bit(R5_UPTODATE, &dev->flags) && 4111 test_bit(R5_Expanded, &dev->flags)) 4112 /* If we've reshaped into here, we assume it is Insync. 4113 * We will shortly update recovery_offset to make 4114 * it official. 4115 */ 4116 set_bit(R5_Insync, &dev->flags); 4117 4118 if (test_bit(R5_WriteError, &dev->flags)) { 4119 /* This flag does not apply to '.replacement' 4120 * only to .rdev, so make sure to check that*/ 4121 struct md_rdev *rdev2 = rcu_dereference( 4122 conf->disks[i].rdev); 4123 if (rdev2 == rdev) 4124 clear_bit(R5_Insync, &dev->flags); 4125 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4126 s->handle_bad_blocks = 1; 4127 atomic_inc(&rdev2->nr_pending); 4128 } else 4129 clear_bit(R5_WriteError, &dev->flags); 4130 } 4131 if (test_bit(R5_MadeGood, &dev->flags)) { 4132 /* This flag does not apply to '.replacement' 4133 * only to .rdev, so make sure to check that*/ 4134 struct md_rdev *rdev2 = rcu_dereference( 4135 conf->disks[i].rdev); 4136 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4137 s->handle_bad_blocks = 1; 4138 atomic_inc(&rdev2->nr_pending); 4139 } else 4140 clear_bit(R5_MadeGood, &dev->flags); 4141 } 4142 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4143 struct md_rdev *rdev2 = rcu_dereference( 4144 conf->disks[i].replacement); 4145 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4146 s->handle_bad_blocks = 1; 4147 atomic_inc(&rdev2->nr_pending); 4148 } else 4149 clear_bit(R5_MadeGoodRepl, &dev->flags); 4150 } 4151 if (!test_bit(R5_Insync, &dev->flags)) { 4152 /* The ReadError flag will just be confusing now */ 4153 clear_bit(R5_ReadError, &dev->flags); 4154 clear_bit(R5_ReWrite, &dev->flags); 4155 } 4156 if (test_bit(R5_ReadError, &dev->flags)) 4157 clear_bit(R5_Insync, &dev->flags); 4158 if (!test_bit(R5_Insync, &dev->flags)) { 4159 if (s->failed < 2) 4160 s->failed_num[s->failed] = i; 4161 s->failed++; 4162 if (rdev && !test_bit(Faulty, &rdev->flags)) 4163 do_recovery = 1; 4164 } 4165 } 4166 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4167 /* If there is a failed device being replaced, 4168 * we must be recovering. 4169 * else if we are after recovery_cp, we must be syncing 4170 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4171 * else we can only be replacing 4172 * sync and recovery both need to read all devices, and so 4173 * use the same flag. 4174 */ 4175 if (do_recovery || 4176 sh->sector >= conf->mddev->recovery_cp || 4177 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4178 s->syncing = 1; 4179 else 4180 s->replacing = 1; 4181 } 4182 rcu_read_unlock(); 4183} 4184 4185static int clear_batch_ready(struct stripe_head *sh) 4186{ 4187 /* Return '1' if this is a member of batch, or 4188 * '0' if it is a lone stripe or a head which can now be 4189 * handled. 4190 */ 4191 struct stripe_head *tmp; 4192 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4193 return (sh->batch_head && sh->batch_head != sh); 4194 spin_lock(&sh->stripe_lock); 4195 if (!sh->batch_head) { 4196 spin_unlock(&sh->stripe_lock); 4197 return 0; 4198 } 4199 4200 /* 4201 * this stripe could be added to a batch list before we check 4202 * BATCH_READY, skips it 4203 */ 4204 if (sh->batch_head != sh) { 4205 spin_unlock(&sh->stripe_lock); 4206 return 1; 4207 } 4208 spin_lock(&sh->batch_lock); 4209 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4210 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4211 spin_unlock(&sh->batch_lock); 4212 spin_unlock(&sh->stripe_lock); 4213 4214 /* 4215 * BATCH_READY is cleared, no new stripes can be added. 4216 * batch_list can be accessed without lock 4217 */ 4218 return 0; 4219} 4220 4221static void break_stripe_batch_list(struct stripe_head *head_sh, 4222 unsigned long handle_flags) 4223{ 4224 struct stripe_head *sh, *next; 4225 int i; 4226 int do_wakeup = 0; 4227 4228 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4229 4230 list_del_init(&sh->batch_list); 4231 4232 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4233 (1 << STRIPE_SYNCING) | 4234 (1 << STRIPE_REPLACED) | 4235 (1 << STRIPE_DELAYED) | 4236 (1 << STRIPE_BIT_DELAY) | 4237 (1 << STRIPE_FULL_WRITE) | 4238 (1 << STRIPE_BIOFILL_RUN) | 4239 (1 << STRIPE_COMPUTE_RUN) | 4240 (1 << STRIPE_OPS_REQ_PENDING) | 4241 (1 << STRIPE_DISCARD) | 4242 (1 << STRIPE_BATCH_READY) | 4243 (1 << STRIPE_BATCH_ERR) | 4244 (1 << STRIPE_BITMAP_PENDING))); 4245 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4246 (1 << STRIPE_REPLACED))); 4247 4248 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4249 (1 << STRIPE_PREREAD_ACTIVE) | 4250 (1 << STRIPE_DEGRADED)), 4251 head_sh->state & (1 << STRIPE_INSYNC)); 4252 4253 sh->check_state = head_sh->check_state; 4254 sh->reconstruct_state = head_sh->reconstruct_state; 4255 for (i = 0; i < sh->disks; i++) { 4256 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4257 do_wakeup = 1; 4258 sh->dev[i].flags = head_sh->dev[i].flags & 4259 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4260 } 4261 spin_lock_irq(&sh->stripe_lock); 4262 sh->batch_head = NULL; 4263 spin_unlock_irq(&sh->stripe_lock); 4264 if (handle_flags == 0 || 4265 sh->state & handle_flags) 4266 set_bit(STRIPE_HANDLE, &sh->state); 4267 release_stripe(sh); 4268 } 4269 spin_lock_irq(&head_sh->stripe_lock); 4270 head_sh->batch_head = NULL; 4271 spin_unlock_irq(&head_sh->stripe_lock); 4272 for (i = 0; i < head_sh->disks; i++) 4273 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4274 do_wakeup = 1; 4275 if (head_sh->state & handle_flags) 4276 set_bit(STRIPE_HANDLE, &head_sh->state); 4277 4278 if (do_wakeup) 4279 wake_up(&head_sh->raid_conf->wait_for_overlap); 4280} 4281 4282static void handle_stripe(struct stripe_head *sh) 4283{ 4284 struct stripe_head_state s; 4285 struct r5conf *conf = sh->raid_conf; 4286 int i; 4287 int prexor; 4288 int disks = sh->disks; 4289 struct r5dev *pdev, *qdev; 4290 4291 clear_bit(STRIPE_HANDLE, &sh->state); 4292 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4293 /* already being handled, ensure it gets handled 4294 * again when current action finishes */ 4295 set_bit(STRIPE_HANDLE, &sh->state); 4296 return; 4297 } 4298 4299 if (clear_batch_ready(sh) ) { 4300 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4301 return; 4302 } 4303 4304 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4305 break_stripe_batch_list(sh, 0); 4306 4307 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4308 spin_lock(&sh->stripe_lock); 4309 /* Cannot process 'sync' concurrently with 'discard' */ 4310 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4311 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4312 set_bit(STRIPE_SYNCING, &sh->state); 4313 clear_bit(STRIPE_INSYNC, &sh->state); 4314 clear_bit(STRIPE_REPLACED, &sh->state); 4315 } 4316 spin_unlock(&sh->stripe_lock); 4317 } 4318 clear_bit(STRIPE_DELAYED, &sh->state); 4319 4320 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4321 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4322 (unsigned long long)sh->sector, sh->state, 4323 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4324 sh->check_state, sh->reconstruct_state); 4325 4326 analyse_stripe(sh, &s); 4327 4328 if (s.handle_bad_blocks) { 4329 set_bit(STRIPE_HANDLE, &sh->state); 4330 goto finish; 4331 } 4332 4333 if (unlikely(s.blocked_rdev)) { 4334 if (s.syncing || s.expanding || s.expanded || 4335 s.replacing || s.to_write || s.written) { 4336 set_bit(STRIPE_HANDLE, &sh->state); 4337 goto finish; 4338 } 4339 /* There is nothing for the blocked_rdev to block */ 4340 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4341 s.blocked_rdev = NULL; 4342 } 4343 4344 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4345 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4346 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4347 } 4348 4349 pr_debug("locked=%d uptodate=%d to_read=%d" 4350 " to_write=%d failed=%d failed_num=%d,%d\n", 4351 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4352 s.failed_num[0], s.failed_num[1]); 4353 /* check if the array has lost more than max_degraded devices and, 4354 * if so, some requests might need to be failed. 4355 */ 4356 if (s.failed > conf->max_degraded) { 4357 sh->check_state = 0; 4358 sh->reconstruct_state = 0; 4359 break_stripe_batch_list(sh, 0); 4360 if (s.to_read+s.to_write+s.written) 4361 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4362 if (s.syncing + s.replacing) 4363 handle_failed_sync(conf, sh, &s); 4364 } 4365 4366 /* Now we check to see if any write operations have recently 4367 * completed 4368 */ 4369 prexor = 0; 4370 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4371 prexor = 1; 4372 if (sh->reconstruct_state == reconstruct_state_drain_result || 4373 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4374 sh->reconstruct_state = reconstruct_state_idle; 4375 4376 /* All the 'written' buffers and the parity block are ready to 4377 * be written back to disk 4378 */ 4379 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4380 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4381 BUG_ON(sh->qd_idx >= 0 && 4382 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4383 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4384 for (i = disks; i--; ) { 4385 struct r5dev *dev = &sh->dev[i]; 4386 if (test_bit(R5_LOCKED, &dev->flags) && 4387 (i == sh->pd_idx || i == sh->qd_idx || 4388 dev->written)) { 4389 pr_debug("Writing block %d\n", i); 4390 set_bit(R5_Wantwrite, &dev->flags); 4391 if (prexor) 4392 continue; 4393 if (s.failed > 1) 4394 continue; 4395 if (!test_bit(R5_Insync, &dev->flags) || 4396 ((i == sh->pd_idx || i == sh->qd_idx) && 4397 s.failed == 0)) 4398 set_bit(STRIPE_INSYNC, &sh->state); 4399 } 4400 } 4401 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4402 s.dec_preread_active = 1; 4403 } 4404 4405 /* 4406 * might be able to return some write requests if the parity blocks 4407 * are safe, or on a failed drive 4408 */ 4409 pdev = &sh->dev[sh->pd_idx]; 4410 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4411 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4412 qdev = &sh->dev[sh->qd_idx]; 4413 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4414 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4415 || conf->level < 6; 4416 4417 if (s.written && 4418 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4419 && !test_bit(R5_LOCKED, &pdev->flags) 4420 && (test_bit(R5_UPTODATE, &pdev->flags) || 4421 test_bit(R5_Discard, &pdev->flags))))) && 4422 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4423 && !test_bit(R5_LOCKED, &qdev->flags) 4424 && (test_bit(R5_UPTODATE, &qdev->flags) || 4425 test_bit(R5_Discard, &qdev->flags)))))) 4426 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4427 4428 /* Now we might consider reading some blocks, either to check/generate 4429 * parity, or to satisfy requests 4430 * or to load a block that is being partially written. 4431 */ 4432 if (s.to_read || s.non_overwrite 4433 || (conf->level == 6 && s.to_write && s.failed) 4434 || (s.syncing && (s.uptodate + s.compute < disks)) 4435 || s.replacing 4436 || s.expanding) 4437 handle_stripe_fill(sh, &s, disks); 4438 4439 /* Now to consider new write requests and what else, if anything 4440 * should be read. We do not handle new writes when: 4441 * 1/ A 'write' operation (copy+xor) is already in flight. 4442 * 2/ A 'check' operation is in flight, as it may clobber the parity 4443 * block. 4444 */ 4445 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4446 handle_stripe_dirtying(conf, sh, &s, disks); 4447 4448 /* maybe we need to check and possibly fix the parity for this stripe 4449 * Any reads will already have been scheduled, so we just see if enough 4450 * data is available. The parity check is held off while parity 4451 * dependent operations are in flight. 4452 */ 4453 if (sh->check_state || 4454 (s.syncing && s.locked == 0 && 4455 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4456 !test_bit(STRIPE_INSYNC, &sh->state))) { 4457 if (conf->level == 6) 4458 handle_parity_checks6(conf, sh, &s, disks); 4459 else 4460 handle_parity_checks5(conf, sh, &s, disks); 4461 } 4462 4463 if ((s.replacing || s.syncing) && s.locked == 0 4464 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4465 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4466 /* Write out to replacement devices where possible */ 4467 for (i = 0; i < conf->raid_disks; i++) 4468 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4469 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4470 set_bit(R5_WantReplace, &sh->dev[i].flags); 4471 set_bit(R5_LOCKED, &sh->dev[i].flags); 4472 s.locked++; 4473 } 4474 if (s.replacing) 4475 set_bit(STRIPE_INSYNC, &sh->state); 4476 set_bit(STRIPE_REPLACED, &sh->state); 4477 } 4478 if ((s.syncing || s.replacing) && s.locked == 0 && 4479 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4480 test_bit(STRIPE_INSYNC, &sh->state)) { 4481 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4482 clear_bit(STRIPE_SYNCING, &sh->state); 4483 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4484 wake_up(&conf->wait_for_overlap); 4485 } 4486 4487 /* If the failed drives are just a ReadError, then we might need 4488 * to progress the repair/check process 4489 */ 4490 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4491 for (i = 0; i < s.failed; i++) { 4492 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4493 if (test_bit(R5_ReadError, &dev->flags) 4494 && !test_bit(R5_LOCKED, &dev->flags) 4495 && test_bit(R5_UPTODATE, &dev->flags) 4496 ) { 4497 if (!test_bit(R5_ReWrite, &dev->flags)) { 4498 set_bit(R5_Wantwrite, &dev->flags); 4499 set_bit(R5_ReWrite, &dev->flags); 4500 set_bit(R5_LOCKED, &dev->flags); 4501 s.locked++; 4502 } else { 4503 /* let's read it back */ 4504 set_bit(R5_Wantread, &dev->flags); 4505 set_bit(R5_LOCKED, &dev->flags); 4506 s.locked++; 4507 } 4508 } 4509 } 4510 4511 /* Finish reconstruct operations initiated by the expansion process */ 4512 if (sh->reconstruct_state == reconstruct_state_result) { 4513 struct stripe_head *sh_src 4514 = get_active_stripe(conf, sh->sector, 1, 1, 1); 4515 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4516 /* sh cannot be written until sh_src has been read. 4517 * so arrange for sh to be delayed a little 4518 */ 4519 set_bit(STRIPE_DELAYED, &sh->state); 4520 set_bit(STRIPE_HANDLE, &sh->state); 4521 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4522 &sh_src->state)) 4523 atomic_inc(&conf->preread_active_stripes); 4524 release_stripe(sh_src); 4525 goto finish; 4526 } 4527 if (sh_src) 4528 release_stripe(sh_src); 4529 4530 sh->reconstruct_state = reconstruct_state_idle; 4531 clear_bit(STRIPE_EXPANDING, &sh->state); 4532 for (i = conf->raid_disks; i--; ) { 4533 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4534 set_bit(R5_LOCKED, &sh->dev[i].flags); 4535 s.locked++; 4536 } 4537 } 4538 4539 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4540 !sh->reconstruct_state) { 4541 /* Need to write out all blocks after computing parity */ 4542 sh->disks = conf->raid_disks; 4543 stripe_set_idx(sh->sector, conf, 0, sh); 4544 schedule_reconstruction(sh, &s, 1, 1); 4545 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4546 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4547 atomic_dec(&conf->reshape_stripes); 4548 wake_up(&conf->wait_for_overlap); 4549 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4550 } 4551 4552 if (s.expanding && s.locked == 0 && 4553 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4554 handle_stripe_expansion(conf, sh); 4555 4556finish: 4557 /* wait for this device to become unblocked */ 4558 if (unlikely(s.blocked_rdev)) { 4559 if (conf->mddev->external) 4560 md_wait_for_blocked_rdev(s.blocked_rdev, 4561 conf->mddev); 4562 else 4563 /* Internal metadata will immediately 4564 * be written by raid5d, so we don't 4565 * need to wait here. 4566 */ 4567 rdev_dec_pending(s.blocked_rdev, 4568 conf->mddev); 4569 } 4570 4571 if (s.handle_bad_blocks) 4572 for (i = disks; i--; ) { 4573 struct md_rdev *rdev; 4574 struct r5dev *dev = &sh->dev[i]; 4575 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4576 /* We own a safe reference to the rdev */ 4577 rdev = conf->disks[i].rdev; 4578 if (!rdev_set_badblocks(rdev, sh->sector, 4579 STRIPE_SECTORS, 0)) 4580 md_error(conf->mddev, rdev); 4581 rdev_dec_pending(rdev, conf->mddev); 4582 } 4583 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4584 rdev = conf->disks[i].rdev; 4585 rdev_clear_badblocks(rdev, sh->sector, 4586 STRIPE_SECTORS, 0); 4587 rdev_dec_pending(rdev, conf->mddev); 4588 } 4589 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4590 rdev = conf->disks[i].replacement; 4591 if (!rdev) 4592 /* rdev have been moved down */ 4593 rdev = conf->disks[i].rdev; 4594 rdev_clear_badblocks(rdev, sh->sector, 4595 STRIPE_SECTORS, 0); 4596 rdev_dec_pending(rdev, conf->mddev); 4597 } 4598 } 4599 4600 if (s.ops_request) 4601 raid_run_ops(sh, s.ops_request); 4602 4603 ops_run_io(sh, &s); 4604 4605 if (s.dec_preread_active) { 4606 /* We delay this until after ops_run_io so that if make_request 4607 * is waiting on a flush, it won't continue until the writes 4608 * have actually been submitted. 4609 */ 4610 atomic_dec(&conf->preread_active_stripes); 4611 if (atomic_read(&conf->preread_active_stripes) < 4612 IO_THRESHOLD) 4613 md_wakeup_thread(conf->mddev->thread); 4614 } 4615 4616 return_io(s.return_bi); 4617 4618 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4619} 4620 4621static void raid5_activate_delayed(struct r5conf *conf) 4622{ 4623 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4624 while (!list_empty(&conf->delayed_list)) { 4625 struct list_head *l = conf->delayed_list.next; 4626 struct stripe_head *sh; 4627 sh = list_entry(l, struct stripe_head, lru); 4628 list_del_init(l); 4629 clear_bit(STRIPE_DELAYED, &sh->state); 4630 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4631 atomic_inc(&conf->preread_active_stripes); 4632 list_add_tail(&sh->lru, &conf->hold_list); 4633 raid5_wakeup_stripe_thread(sh); 4634 } 4635 } 4636} 4637 4638static void activate_bit_delay(struct r5conf *conf, 4639 struct list_head *temp_inactive_list) 4640{ 4641 /* device_lock is held */ 4642 struct list_head head; 4643 list_add(&head, &conf->bitmap_list); 4644 list_del_init(&conf->bitmap_list); 4645 while (!list_empty(&head)) { 4646 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4647 int hash; 4648 list_del_init(&sh->lru); 4649 atomic_inc(&sh->count); 4650 hash = sh->hash_lock_index; 4651 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4652 } 4653} 4654 4655static int raid5_congested(struct mddev *mddev, int bits) 4656{ 4657 struct r5conf *conf = mddev->private; 4658 4659 /* No difference between reads and writes. Just check 4660 * how busy the stripe_cache is 4661 */ 4662 4663 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4664 return 1; 4665 if (conf->quiesce) 4666 return 1; 4667 if (atomic_read(&conf->empty_inactive_list_nr)) 4668 return 1; 4669 4670 return 0; 4671} 4672 4673/* We want read requests to align with chunks where possible, 4674 * but write requests don't need to. 4675 */ 4676static int raid5_mergeable_bvec(struct mddev *mddev, 4677 struct bvec_merge_data *bvm, 4678 struct bio_vec *biovec) 4679{ 4680 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 4681 int max; 4682 unsigned int chunk_sectors = mddev->chunk_sectors; 4683 unsigned int bio_sectors = bvm->bi_size >> 9; 4684 4685 /* 4686 * always allow writes to be mergeable, read as well if array 4687 * is degraded as we'll go through stripe cache anyway. 4688 */ 4689 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded) 4690 return biovec->bv_len; 4691 4692 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4693 chunk_sectors = mddev->new_chunk_sectors; 4694 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 4695 if (max < 0) max = 0; 4696 if (max <= biovec->bv_len && bio_sectors == 0) 4697 return biovec->bv_len; 4698 else 4699 return max; 4700} 4701 4702static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4703{ 4704 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4705 unsigned int chunk_sectors = mddev->chunk_sectors; 4706 unsigned int bio_sectors = bio_sectors(bio); 4707 4708 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4709 chunk_sectors = mddev->new_chunk_sectors; 4710 return chunk_sectors >= 4711 ((sector & (chunk_sectors - 1)) + bio_sectors); 4712} 4713 4714/* 4715 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4716 * later sampled by raid5d. 4717 */ 4718static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4719{ 4720 unsigned long flags; 4721 4722 spin_lock_irqsave(&conf->device_lock, flags); 4723 4724 bi->bi_next = conf->retry_read_aligned_list; 4725 conf->retry_read_aligned_list = bi; 4726 4727 spin_unlock_irqrestore(&conf->device_lock, flags); 4728 md_wakeup_thread(conf->mddev->thread); 4729} 4730 4731static struct bio *remove_bio_from_retry(struct r5conf *conf) 4732{ 4733 struct bio *bi; 4734 4735 bi = conf->retry_read_aligned; 4736 if (bi) { 4737 conf->retry_read_aligned = NULL; 4738 return bi; 4739 } 4740 bi = conf->retry_read_aligned_list; 4741 if(bi) { 4742 conf->retry_read_aligned_list = bi->bi_next; 4743 bi->bi_next = NULL; 4744 /* 4745 * this sets the active strip count to 1 and the processed 4746 * strip count to zero (upper 8 bits) 4747 */ 4748 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4749 } 4750 4751 return bi; 4752} 4753 4754/* 4755 * The "raid5_align_endio" should check if the read succeeded and if it 4756 * did, call bio_endio on the original bio (having bio_put the new bio 4757 * first). 4758 * If the read failed.. 4759 */ 4760static void raid5_align_endio(struct bio *bi, int error) 4761{ 4762 struct bio* raid_bi = bi->bi_private; 4763 struct mddev *mddev; 4764 struct r5conf *conf; 4765 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 4766 struct md_rdev *rdev; 4767 4768 bio_put(bi); 4769 4770 rdev = (void*)raid_bi->bi_next; 4771 raid_bi->bi_next = NULL; 4772 mddev = rdev->mddev; 4773 conf = mddev->private; 4774 4775 rdev_dec_pending(rdev, conf->mddev); 4776 4777 if (!error && uptodate) { 4778 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4779 raid_bi, 0); 4780 bio_endio(raid_bi, 0); 4781 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4782 wake_up(&conf->wait_for_stripe); 4783 return; 4784 } 4785 4786 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4787 4788 add_bio_to_retry(raid_bi, conf); 4789} 4790 4791static int bio_fits_rdev(struct bio *bi) 4792{ 4793 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 4794 4795 if (bio_sectors(bi) > queue_max_sectors(q)) 4796 return 0; 4797 blk_recount_segments(q, bi); 4798 if (bi->bi_phys_segments > queue_max_segments(q)) 4799 return 0; 4800 4801 if (q->merge_bvec_fn) 4802 /* it's too hard to apply the merge_bvec_fn at this stage, 4803 * just just give up 4804 */ 4805 return 0; 4806 4807 return 1; 4808} 4809 4810static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 4811{ 4812 struct r5conf *conf = mddev->private; 4813 int dd_idx; 4814 struct bio* align_bi; 4815 struct md_rdev *rdev; 4816 sector_t end_sector; 4817 4818 if (!in_chunk_boundary(mddev, raid_bio)) { 4819 pr_debug("chunk_aligned_read : non aligned\n"); 4820 return 0; 4821 } 4822 /* 4823 * use bio_clone_mddev to make a copy of the bio 4824 */ 4825 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4826 if (!align_bi) 4827 return 0; 4828 /* 4829 * set bi_end_io to a new function, and set bi_private to the 4830 * original bio. 4831 */ 4832 align_bi->bi_end_io = raid5_align_endio; 4833 align_bi->bi_private = raid_bio; 4834 /* 4835 * compute position 4836 */ 4837 align_bi->bi_iter.bi_sector = 4838 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4839 0, &dd_idx, NULL); 4840 4841 end_sector = bio_end_sector(align_bi); 4842 rcu_read_lock(); 4843 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4844 if (!rdev || test_bit(Faulty, &rdev->flags) || 4845 rdev->recovery_offset < end_sector) { 4846 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4847 if (rdev && 4848 (test_bit(Faulty, &rdev->flags) || 4849 !(test_bit(In_sync, &rdev->flags) || 4850 rdev->recovery_offset >= end_sector))) 4851 rdev = NULL; 4852 } 4853 if (rdev) { 4854 sector_t first_bad; 4855 int bad_sectors; 4856 4857 atomic_inc(&rdev->nr_pending); 4858 rcu_read_unlock(); 4859 raid_bio->bi_next = (void*)rdev; 4860 align_bi->bi_bdev = rdev->bdev; 4861 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags); 4862 4863 if (!bio_fits_rdev(align_bi) || 4864 is_badblock(rdev, align_bi->bi_iter.bi_sector, 4865 bio_sectors(align_bi), 4866 &first_bad, &bad_sectors)) { 4867 /* too big in some way, or has a known bad block */ 4868 bio_put(align_bi); 4869 rdev_dec_pending(rdev, mddev); 4870 return 0; 4871 } 4872 4873 /* No reshape active, so we can trust rdev->data_offset */ 4874 align_bi->bi_iter.bi_sector += rdev->data_offset; 4875 4876 spin_lock_irq(&conf->device_lock); 4877 wait_event_lock_irq(conf->wait_for_stripe, 4878 conf->quiesce == 0, 4879 conf->device_lock); 4880 atomic_inc(&conf->active_aligned_reads); 4881 spin_unlock_irq(&conf->device_lock); 4882 4883 if (mddev->gendisk) 4884 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4885 align_bi, disk_devt(mddev->gendisk), 4886 raid_bio->bi_iter.bi_sector); 4887 generic_make_request(align_bi); 4888 return 1; 4889 } else { 4890 rcu_read_unlock(); 4891 bio_put(align_bi); 4892 return 0; 4893 } 4894} 4895 4896/* __get_priority_stripe - get the next stripe to process 4897 * 4898 * Full stripe writes are allowed to pass preread active stripes up until 4899 * the bypass_threshold is exceeded. In general the bypass_count 4900 * increments when the handle_list is handled before the hold_list; however, it 4901 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4902 * stripe with in flight i/o. The bypass_count will be reset when the 4903 * head of the hold_list has changed, i.e. the head was promoted to the 4904 * handle_list. 4905 */ 4906static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4907{ 4908 struct stripe_head *sh = NULL, *tmp; 4909 struct list_head *handle_list = NULL; 4910 struct r5worker_group *wg = NULL; 4911 4912 if (conf->worker_cnt_per_group == 0) { 4913 handle_list = &conf->handle_list; 4914 } else if (group != ANY_GROUP) { 4915 handle_list = &conf->worker_groups[group].handle_list; 4916 wg = &conf->worker_groups[group]; 4917 } else { 4918 int i; 4919 for (i = 0; i < conf->group_cnt; i++) { 4920 handle_list = &conf->worker_groups[i].handle_list; 4921 wg = &conf->worker_groups[i]; 4922 if (!list_empty(handle_list)) 4923 break; 4924 } 4925 } 4926 4927 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4928 __func__, 4929 list_empty(handle_list) ? "empty" : "busy", 4930 list_empty(&conf->hold_list) ? "empty" : "busy", 4931 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4932 4933 if (!list_empty(handle_list)) { 4934 sh = list_entry(handle_list->next, typeof(*sh), lru); 4935 4936 if (list_empty(&conf->hold_list)) 4937 conf->bypass_count = 0; 4938 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4939 if (conf->hold_list.next == conf->last_hold) 4940 conf->bypass_count++; 4941 else { 4942 conf->last_hold = conf->hold_list.next; 4943 conf->bypass_count -= conf->bypass_threshold; 4944 if (conf->bypass_count < 0) 4945 conf->bypass_count = 0; 4946 } 4947 } 4948 } else if (!list_empty(&conf->hold_list) && 4949 ((conf->bypass_threshold && 4950 conf->bypass_count > conf->bypass_threshold) || 4951 atomic_read(&conf->pending_full_writes) == 0)) { 4952 4953 list_for_each_entry(tmp, &conf->hold_list, lru) { 4954 if (conf->worker_cnt_per_group == 0 || 4955 group == ANY_GROUP || 4956 !cpu_online(tmp->cpu) || 4957 cpu_to_group(tmp->cpu) == group) { 4958 sh = tmp; 4959 break; 4960 } 4961 } 4962 4963 if (sh) { 4964 conf->bypass_count -= conf->bypass_threshold; 4965 if (conf->bypass_count < 0) 4966 conf->bypass_count = 0; 4967 } 4968 wg = NULL; 4969 } 4970 4971 if (!sh) 4972 return NULL; 4973 4974 if (wg) { 4975 wg->stripes_cnt--; 4976 sh->group = NULL; 4977 } 4978 list_del_init(&sh->lru); 4979 BUG_ON(atomic_inc_return(&sh->count) != 1); 4980 return sh; 4981} 4982 4983struct raid5_plug_cb { 4984 struct blk_plug_cb cb; 4985 struct list_head list; 4986 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4987}; 4988 4989static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4990{ 4991 struct raid5_plug_cb *cb = container_of( 4992 blk_cb, struct raid5_plug_cb, cb); 4993 struct stripe_head *sh; 4994 struct mddev *mddev = cb->cb.data; 4995 struct r5conf *conf = mddev->private; 4996 int cnt = 0; 4997 int hash; 4998 4999 if (cb->list.next && !list_empty(&cb->list)) { 5000 spin_lock_irq(&conf->device_lock); 5001 while (!list_empty(&cb->list)) { 5002 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5003 list_del_init(&sh->lru); 5004 /* 5005 * avoid race release_stripe_plug() sees 5006 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5007 * is still in our list 5008 */ 5009 smp_mb__before_atomic(); 5010 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5011 /* 5012 * STRIPE_ON_RELEASE_LIST could be set here. In that 5013 * case, the count is always > 1 here 5014 */ 5015 hash = sh->hash_lock_index; 5016 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5017 cnt++; 5018 } 5019 spin_unlock_irq(&conf->device_lock); 5020 } 5021 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5022 NR_STRIPE_HASH_LOCKS); 5023 if (mddev->queue) 5024 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5025 kfree(cb); 5026} 5027 5028static void release_stripe_plug(struct mddev *mddev, 5029 struct stripe_head *sh) 5030{ 5031 struct blk_plug_cb *blk_cb = blk_check_plugged( 5032 raid5_unplug, mddev, 5033 sizeof(struct raid5_plug_cb)); 5034 struct raid5_plug_cb *cb; 5035 5036 if (!blk_cb) { 5037 release_stripe(sh); 5038 return; 5039 } 5040 5041 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5042 5043 if (cb->list.next == NULL) { 5044 int i; 5045 INIT_LIST_HEAD(&cb->list); 5046 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5047 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5048 } 5049 5050 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5051 list_add_tail(&sh->lru, &cb->list); 5052 else 5053 release_stripe(sh); 5054} 5055 5056static void make_discard_request(struct mddev *mddev, struct bio *bi) 5057{ 5058 struct r5conf *conf = mddev->private; 5059 sector_t logical_sector, last_sector; 5060 struct stripe_head *sh; 5061 int remaining; 5062 int stripe_sectors; 5063 5064 if (mddev->reshape_position != MaxSector) 5065 /* Skip discard while reshape is happening */ 5066 return; 5067 5068 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5069 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5070 5071 bi->bi_next = NULL; 5072 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5073 5074 stripe_sectors = conf->chunk_sectors * 5075 (conf->raid_disks - conf->max_degraded); 5076 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5077 stripe_sectors); 5078 sector_div(last_sector, stripe_sectors); 5079 5080 logical_sector *= conf->chunk_sectors; 5081 last_sector *= conf->chunk_sectors; 5082 5083 for (; logical_sector < last_sector; 5084 logical_sector += STRIPE_SECTORS) { 5085 DEFINE_WAIT(w); 5086 int d; 5087 again: 5088 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 5089 prepare_to_wait(&conf->wait_for_overlap, &w, 5090 TASK_UNINTERRUPTIBLE); 5091 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5092 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5093 release_stripe(sh); 5094 schedule(); 5095 goto again; 5096 } 5097 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5098 spin_lock_irq(&sh->stripe_lock); 5099 for (d = 0; d < conf->raid_disks; d++) { 5100 if (d == sh->pd_idx || d == sh->qd_idx) 5101 continue; 5102 if (sh->dev[d].towrite || sh->dev[d].toread) { 5103 set_bit(R5_Overlap, &sh->dev[d].flags); 5104 spin_unlock_irq(&sh->stripe_lock); 5105 release_stripe(sh); 5106 schedule(); 5107 goto again; 5108 } 5109 } 5110 set_bit(STRIPE_DISCARD, &sh->state); 5111 finish_wait(&conf->wait_for_overlap, &w); 5112 sh->overwrite_disks = 0; 5113 for (d = 0; d < conf->raid_disks; d++) { 5114 if (d == sh->pd_idx || d == sh->qd_idx) 5115 continue; 5116 sh->dev[d].towrite = bi; 5117 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5118 raid5_inc_bi_active_stripes(bi); 5119 sh->overwrite_disks++; 5120 } 5121 spin_unlock_irq(&sh->stripe_lock); 5122 if (conf->mddev->bitmap) { 5123 for (d = 0; 5124 d < conf->raid_disks - conf->max_degraded; 5125 d++) 5126 bitmap_startwrite(mddev->bitmap, 5127 sh->sector, 5128 STRIPE_SECTORS, 5129 0); 5130 sh->bm_seq = conf->seq_flush + 1; 5131 set_bit(STRIPE_BIT_DELAY, &sh->state); 5132 } 5133 5134 set_bit(STRIPE_HANDLE, &sh->state); 5135 clear_bit(STRIPE_DELAYED, &sh->state); 5136 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5137 atomic_inc(&conf->preread_active_stripes); 5138 release_stripe_plug(mddev, sh); 5139 } 5140 5141 remaining = raid5_dec_bi_active_stripes(bi); 5142 if (remaining == 0) { 5143 md_write_end(mddev); 5144 bio_endio(bi, 0); 5145 } 5146} 5147 5148static void make_request(struct mddev *mddev, struct bio * bi) 5149{ 5150 struct r5conf *conf = mddev->private; 5151 int dd_idx; 5152 sector_t new_sector; 5153 sector_t logical_sector, last_sector; 5154 struct stripe_head *sh; 5155 const int rw = bio_data_dir(bi); 5156 int remaining; 5157 DEFINE_WAIT(w); 5158 bool do_prepare; 5159 5160 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 5161 md_flush_request(mddev, bi); 5162 return; 5163 } 5164 5165 md_write_start(mddev, bi); 5166 5167 /* 5168 * If array is degraded, better not do chunk aligned read because 5169 * later we might have to read it again in order to reconstruct 5170 * data on failed drives. 5171 */ 5172 if (rw == READ && mddev->degraded == 0 && 5173 mddev->reshape_position == MaxSector && 5174 chunk_aligned_read(mddev,bi)) 5175 return; 5176 5177 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 5178 make_discard_request(mddev, bi); 5179 return; 5180 } 5181 5182 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5183 last_sector = bio_end_sector(bi); 5184 bi->bi_next = NULL; 5185 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5186 5187 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5188 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5189 int previous; 5190 int seq; 5191 5192 do_prepare = false; 5193 retry: 5194 seq = read_seqcount_begin(&conf->gen_lock); 5195 previous = 0; 5196 if (do_prepare) 5197 prepare_to_wait(&conf->wait_for_overlap, &w, 5198 TASK_UNINTERRUPTIBLE); 5199 if (unlikely(conf->reshape_progress != MaxSector)) { 5200 /* spinlock is needed as reshape_progress may be 5201 * 64bit on a 32bit platform, and so it might be 5202 * possible to see a half-updated value 5203 * Of course reshape_progress could change after 5204 * the lock is dropped, so once we get a reference 5205 * to the stripe that we think it is, we will have 5206 * to check again. 5207 */ 5208 spin_lock_irq(&conf->device_lock); 5209 if (mddev->reshape_backwards 5210 ? logical_sector < conf->reshape_progress 5211 : logical_sector >= conf->reshape_progress) { 5212 previous = 1; 5213 } else { 5214 if (mddev->reshape_backwards 5215 ? logical_sector < conf->reshape_safe 5216 : logical_sector >= conf->reshape_safe) { 5217 spin_unlock_irq(&conf->device_lock); 5218 schedule(); 5219 do_prepare = true; 5220 goto retry; 5221 } 5222 } 5223 spin_unlock_irq(&conf->device_lock); 5224 } 5225 5226 new_sector = raid5_compute_sector(conf, logical_sector, 5227 previous, 5228 &dd_idx, NULL); 5229 pr_debug("raid456: make_request, sector %llu logical %llu\n", 5230 (unsigned long long)new_sector, 5231 (unsigned long long)logical_sector); 5232 5233 sh = get_active_stripe(conf, new_sector, previous, 5234 (bi->bi_rw&RWA_MASK), 0); 5235 if (sh) { 5236 if (unlikely(previous)) { 5237 /* expansion might have moved on while waiting for a 5238 * stripe, so we must do the range check again. 5239 * Expansion could still move past after this 5240 * test, but as we are holding a reference to 5241 * 'sh', we know that if that happens, 5242 * STRIPE_EXPANDING will get set and the expansion 5243 * won't proceed until we finish with the stripe. 5244 */ 5245 int must_retry = 0; 5246 spin_lock_irq(&conf->device_lock); 5247 if (mddev->reshape_backwards 5248 ? logical_sector >= conf->reshape_progress 5249 : logical_sector < conf->reshape_progress) 5250 /* mismatch, need to try again */ 5251 must_retry = 1; 5252 spin_unlock_irq(&conf->device_lock); 5253 if (must_retry) { 5254 release_stripe(sh); 5255 schedule(); 5256 do_prepare = true; 5257 goto retry; 5258 } 5259 } 5260 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5261 /* Might have got the wrong stripe_head 5262 * by accident 5263 */ 5264 release_stripe(sh); 5265 goto retry; 5266 } 5267 5268 if (rw == WRITE && 5269 logical_sector >= mddev->suspend_lo && 5270 logical_sector < mddev->suspend_hi) { 5271 release_stripe(sh); 5272 /* As the suspend_* range is controlled by 5273 * userspace, we want an interruptible 5274 * wait. 5275 */ 5276 flush_signals(current); 5277 prepare_to_wait(&conf->wait_for_overlap, 5278 &w, TASK_INTERRUPTIBLE); 5279 if (logical_sector >= mddev->suspend_lo && 5280 logical_sector < mddev->suspend_hi) { 5281 schedule(); 5282 do_prepare = true; 5283 } 5284 goto retry; 5285 } 5286 5287 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5288 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5289 /* Stripe is busy expanding or 5290 * add failed due to overlap. Flush everything 5291 * and wait a while 5292 */ 5293 md_wakeup_thread(mddev->thread); 5294 release_stripe(sh); 5295 schedule(); 5296 do_prepare = true; 5297 goto retry; 5298 } 5299 set_bit(STRIPE_HANDLE, &sh->state); 5300 clear_bit(STRIPE_DELAYED, &sh->state); 5301 if ((!sh->batch_head || sh == sh->batch_head) && 5302 (bi->bi_rw & REQ_SYNC) && 5303 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5304 atomic_inc(&conf->preread_active_stripes); 5305 release_stripe_plug(mddev, sh); 5306 } else { 5307 /* cannot get stripe for read-ahead, just give-up */ 5308 clear_bit(BIO_UPTODATE, &bi->bi_flags); 5309 break; 5310 } 5311 } 5312 finish_wait(&conf->wait_for_overlap, &w); 5313 5314 remaining = raid5_dec_bi_active_stripes(bi); 5315 if (remaining == 0) { 5316 5317 if ( rw == WRITE ) 5318 md_write_end(mddev); 5319 5320 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5321 bi, 0); 5322 bio_endio(bi, 0); 5323 } 5324} 5325 5326static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5327 5328static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5329{ 5330 /* reshaping is quite different to recovery/resync so it is 5331 * handled quite separately ... here. 5332 * 5333 * On each call to sync_request, we gather one chunk worth of 5334 * destination stripes and flag them as expanding. 5335 * Then we find all the source stripes and request reads. 5336 * As the reads complete, handle_stripe will copy the data 5337 * into the destination stripe and release that stripe. 5338 */ 5339 struct r5conf *conf = mddev->private; 5340 struct stripe_head *sh; 5341 sector_t first_sector, last_sector; 5342 int raid_disks = conf->previous_raid_disks; 5343 int data_disks = raid_disks - conf->max_degraded; 5344 int new_data_disks = conf->raid_disks - conf->max_degraded; 5345 int i; 5346 int dd_idx; 5347 sector_t writepos, readpos, safepos; 5348 sector_t stripe_addr; 5349 int reshape_sectors; 5350 struct list_head stripes; 5351 5352 if (sector_nr == 0) { 5353 /* If restarting in the middle, skip the initial sectors */ 5354 if (mddev->reshape_backwards && 5355 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5356 sector_nr = raid5_size(mddev, 0, 0) 5357 - conf->reshape_progress; 5358 } else if (!mddev->reshape_backwards && 5359 conf->reshape_progress > 0) 5360 sector_nr = conf->reshape_progress; 5361 sector_div(sector_nr, new_data_disks); 5362 if (sector_nr) { 5363 mddev->curr_resync_completed = sector_nr; 5364 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5365 *skipped = 1; 5366 return sector_nr; 5367 } 5368 } 5369 5370 /* We need to process a full chunk at a time. 5371 * If old and new chunk sizes differ, we need to process the 5372 * largest of these 5373 */ 5374 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 5375 reshape_sectors = mddev->new_chunk_sectors; 5376 else 5377 reshape_sectors = mddev->chunk_sectors; 5378 5379 /* We update the metadata at least every 10 seconds, or when 5380 * the data about to be copied would over-write the source of 5381 * the data at the front of the range. i.e. one new_stripe 5382 * along from reshape_progress new_maps to after where 5383 * reshape_safe old_maps to 5384 */ 5385 writepos = conf->reshape_progress; 5386 sector_div(writepos, new_data_disks); 5387 readpos = conf->reshape_progress; 5388 sector_div(readpos, data_disks); 5389 safepos = conf->reshape_safe; 5390 sector_div(safepos, data_disks); 5391 if (mddev->reshape_backwards) { 5392 writepos -= min_t(sector_t, reshape_sectors, writepos); 5393 readpos += reshape_sectors; 5394 safepos += reshape_sectors; 5395 } else { 5396 writepos += reshape_sectors; 5397 readpos -= min_t(sector_t, reshape_sectors, readpos); 5398 safepos -= min_t(sector_t, reshape_sectors, safepos); 5399 } 5400 5401 /* Having calculated the 'writepos' possibly use it 5402 * to set 'stripe_addr' which is where we will write to. 5403 */ 5404 if (mddev->reshape_backwards) { 5405 BUG_ON(conf->reshape_progress == 0); 5406 stripe_addr = writepos; 5407 BUG_ON((mddev->dev_sectors & 5408 ~((sector_t)reshape_sectors - 1)) 5409 - reshape_sectors - stripe_addr 5410 != sector_nr); 5411 } else { 5412 BUG_ON(writepos != sector_nr + reshape_sectors); 5413 stripe_addr = sector_nr; 5414 } 5415 5416 /* 'writepos' is the most advanced device address we might write. 5417 * 'readpos' is the least advanced device address we might read. 5418 * 'safepos' is the least address recorded in the metadata as having 5419 * been reshaped. 5420 * If there is a min_offset_diff, these are adjusted either by 5421 * increasing the safepos/readpos if diff is negative, or 5422 * increasing writepos if diff is positive. 5423 * If 'readpos' is then behind 'writepos', there is no way that we can 5424 * ensure safety in the face of a crash - that must be done by userspace 5425 * making a backup of the data. So in that case there is no particular 5426 * rush to update metadata. 5427 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5428 * update the metadata to advance 'safepos' to match 'readpos' so that 5429 * we can be safe in the event of a crash. 5430 * So we insist on updating metadata if safepos is behind writepos and 5431 * readpos is beyond writepos. 5432 * In any case, update the metadata every 10 seconds. 5433 * Maybe that number should be configurable, but I'm not sure it is 5434 * worth it.... maybe it could be a multiple of safemode_delay??? 5435 */ 5436 if (conf->min_offset_diff < 0) { 5437 safepos += -conf->min_offset_diff; 5438 readpos += -conf->min_offset_diff; 5439 } else 5440 writepos += conf->min_offset_diff; 5441 5442 if ((mddev->reshape_backwards 5443 ? (safepos > writepos && readpos < writepos) 5444 : (safepos < writepos && readpos > writepos)) || 5445 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5446 /* Cannot proceed until we've updated the superblock... */ 5447 wait_event(conf->wait_for_overlap, 5448 atomic_read(&conf->reshape_stripes)==0 5449 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5450 if (atomic_read(&conf->reshape_stripes) != 0) 5451 return 0; 5452 mddev->reshape_position = conf->reshape_progress; 5453 mddev->curr_resync_completed = sector_nr; 5454 conf->reshape_checkpoint = jiffies; 5455 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5456 md_wakeup_thread(mddev->thread); 5457 wait_event(mddev->sb_wait, mddev->flags == 0 || 5458 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5459 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5460 return 0; 5461 spin_lock_irq(&conf->device_lock); 5462 conf->reshape_safe = mddev->reshape_position; 5463 spin_unlock_irq(&conf->device_lock); 5464 wake_up(&conf->wait_for_overlap); 5465 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5466 } 5467 5468 INIT_LIST_HEAD(&stripes); 5469 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5470 int j; 5471 int skipped_disk = 0; 5472 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5473 set_bit(STRIPE_EXPANDING, &sh->state); 5474 atomic_inc(&conf->reshape_stripes); 5475 /* If any of this stripe is beyond the end of the old 5476 * array, then we need to zero those blocks 5477 */ 5478 for (j=sh->disks; j--;) { 5479 sector_t s; 5480 if (j == sh->pd_idx) 5481 continue; 5482 if (conf->level == 6 && 5483 j == sh->qd_idx) 5484 continue; 5485 s = compute_blocknr(sh, j, 0); 5486 if (s < raid5_size(mddev, 0, 0)) { 5487 skipped_disk = 1; 5488 continue; 5489 } 5490 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5491 set_bit(R5_Expanded, &sh->dev[j].flags); 5492 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5493 } 5494 if (!skipped_disk) { 5495 set_bit(STRIPE_EXPAND_READY, &sh->state); 5496 set_bit(STRIPE_HANDLE, &sh->state); 5497 } 5498 list_add(&sh->lru, &stripes); 5499 } 5500 spin_lock_irq(&conf->device_lock); 5501 if (mddev->reshape_backwards) 5502 conf->reshape_progress -= reshape_sectors * new_data_disks; 5503 else 5504 conf->reshape_progress += reshape_sectors * new_data_disks; 5505 spin_unlock_irq(&conf->device_lock); 5506 /* Ok, those stripe are ready. We can start scheduling 5507 * reads on the source stripes. 5508 * The source stripes are determined by mapping the first and last 5509 * block on the destination stripes. 5510 */ 5511 first_sector = 5512 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5513 1, &dd_idx, NULL); 5514 last_sector = 5515 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5516 * new_data_disks - 1), 5517 1, &dd_idx, NULL); 5518 if (last_sector >= mddev->dev_sectors) 5519 last_sector = mddev->dev_sectors - 1; 5520 while (first_sector <= last_sector) { 5521 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 5522 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5523 set_bit(STRIPE_HANDLE, &sh->state); 5524 release_stripe(sh); 5525 first_sector += STRIPE_SECTORS; 5526 } 5527 /* Now that the sources are clearly marked, we can release 5528 * the destination stripes 5529 */ 5530 while (!list_empty(&stripes)) { 5531 sh = list_entry(stripes.next, struct stripe_head, lru); 5532 list_del_init(&sh->lru); 5533 release_stripe(sh); 5534 } 5535 /* If this takes us to the resync_max point where we have to pause, 5536 * then we need to write out the superblock. 5537 */ 5538 sector_nr += reshape_sectors; 5539 if ((sector_nr - mddev->curr_resync_completed) * 2 5540 >= mddev->resync_max - mddev->curr_resync_completed) { 5541 /* Cannot proceed until we've updated the superblock... */ 5542 wait_event(conf->wait_for_overlap, 5543 atomic_read(&conf->reshape_stripes) == 0 5544 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5545 if (atomic_read(&conf->reshape_stripes) != 0) 5546 goto ret; 5547 mddev->reshape_position = conf->reshape_progress; 5548 mddev->curr_resync_completed = sector_nr; 5549 conf->reshape_checkpoint = jiffies; 5550 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5551 md_wakeup_thread(mddev->thread); 5552 wait_event(mddev->sb_wait, 5553 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5554 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5555 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5556 goto ret; 5557 spin_lock_irq(&conf->device_lock); 5558 conf->reshape_safe = mddev->reshape_position; 5559 spin_unlock_irq(&conf->device_lock); 5560 wake_up(&conf->wait_for_overlap); 5561 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5562 } 5563ret: 5564 return reshape_sectors; 5565} 5566 5567static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5568{ 5569 struct r5conf *conf = mddev->private; 5570 struct stripe_head *sh; 5571 sector_t max_sector = mddev->dev_sectors; 5572 sector_t sync_blocks; 5573 int still_degraded = 0; 5574 int i; 5575 5576 if (sector_nr >= max_sector) { 5577 /* just being told to finish up .. nothing much to do */ 5578 5579 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5580 end_reshape(conf); 5581 return 0; 5582 } 5583 5584 if (mddev->curr_resync < max_sector) /* aborted */ 5585 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5586 &sync_blocks, 1); 5587 else /* completed sync */ 5588 conf->fullsync = 0; 5589 bitmap_close_sync(mddev->bitmap); 5590 5591 return 0; 5592 } 5593 5594 /* Allow raid5_quiesce to complete */ 5595 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5596 5597 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5598 return reshape_request(mddev, sector_nr, skipped); 5599 5600 /* No need to check resync_max as we never do more than one 5601 * stripe, and as resync_max will always be on a chunk boundary, 5602 * if the check in md_do_sync didn't fire, there is no chance 5603 * of overstepping resync_max here 5604 */ 5605 5606 /* if there is too many failed drives and we are trying 5607 * to resync, then assert that we are finished, because there is 5608 * nothing we can do. 5609 */ 5610 if (mddev->degraded >= conf->max_degraded && 5611 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5612 sector_t rv = mddev->dev_sectors - sector_nr; 5613 *skipped = 1; 5614 return rv; 5615 } 5616 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5617 !conf->fullsync && 5618 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5619 sync_blocks >= STRIPE_SECTORS) { 5620 /* we can skip this block, and probably more */ 5621 sync_blocks /= STRIPE_SECTORS; 5622 *skipped = 1; 5623 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5624 } 5625 5626 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 5627 5628 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 5629 if (sh == NULL) { 5630 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 5631 /* make sure we don't swamp the stripe cache if someone else 5632 * is trying to get access 5633 */ 5634 schedule_timeout_uninterruptible(1); 5635 } 5636 /* Need to check if array will still be degraded after recovery/resync 5637 * Note in case of > 1 drive failures it's possible we're rebuilding 5638 * one drive while leaving another faulty drive in array. 5639 */ 5640 rcu_read_lock(); 5641 for (i = 0; i < conf->raid_disks; i++) { 5642 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5643 5644 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5645 still_degraded = 1; 5646 } 5647 rcu_read_unlock(); 5648 5649 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5650 5651 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5652 set_bit(STRIPE_HANDLE, &sh->state); 5653 5654 release_stripe(sh); 5655 5656 return STRIPE_SECTORS; 5657} 5658 5659static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5660{ 5661 /* We may not be able to submit a whole bio at once as there 5662 * may not be enough stripe_heads available. 5663 * We cannot pre-allocate enough stripe_heads as we may need 5664 * more than exist in the cache (if we allow ever large chunks). 5665 * So we do one stripe head at a time and record in 5666 * ->bi_hw_segments how many have been done. 5667 * 5668 * We *know* that this entire raid_bio is in one chunk, so 5669 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5670 */ 5671 struct stripe_head *sh; 5672 int dd_idx; 5673 sector_t sector, logical_sector, last_sector; 5674 int scnt = 0; 5675 int remaining; 5676 int handled = 0; 5677 5678 logical_sector = raid_bio->bi_iter.bi_sector & 5679 ~((sector_t)STRIPE_SECTORS-1); 5680 sector = raid5_compute_sector(conf, logical_sector, 5681 0, &dd_idx, NULL); 5682 last_sector = bio_end_sector(raid_bio); 5683 5684 for (; logical_sector < last_sector; 5685 logical_sector += STRIPE_SECTORS, 5686 sector += STRIPE_SECTORS, 5687 scnt++) { 5688 5689 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5690 /* already done this stripe */ 5691 continue; 5692 5693 sh = get_active_stripe(conf, sector, 0, 1, 1); 5694 5695 if (!sh) { 5696 /* failed to get a stripe - must wait */ 5697 raid5_set_bi_processed_stripes(raid_bio, scnt); 5698 conf->retry_read_aligned = raid_bio; 5699 return handled; 5700 } 5701 5702 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5703 release_stripe(sh); 5704 raid5_set_bi_processed_stripes(raid_bio, scnt); 5705 conf->retry_read_aligned = raid_bio; 5706 return handled; 5707 } 5708 5709 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5710 handle_stripe(sh); 5711 release_stripe(sh); 5712 handled++; 5713 } 5714 remaining = raid5_dec_bi_active_stripes(raid_bio); 5715 if (remaining == 0) { 5716 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5717 raid_bio, 0); 5718 bio_endio(raid_bio, 0); 5719 } 5720 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5721 wake_up(&conf->wait_for_stripe); 5722 return handled; 5723} 5724 5725static int handle_active_stripes(struct r5conf *conf, int group, 5726 struct r5worker *worker, 5727 struct list_head *temp_inactive_list) 5728{ 5729 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5730 int i, batch_size = 0, hash; 5731 bool release_inactive = false; 5732 5733 while (batch_size < MAX_STRIPE_BATCH && 5734 (sh = __get_priority_stripe(conf, group)) != NULL) 5735 batch[batch_size++] = sh; 5736 5737 if (batch_size == 0) { 5738 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5739 if (!list_empty(temp_inactive_list + i)) 5740 break; 5741 if (i == NR_STRIPE_HASH_LOCKS) 5742 return batch_size; 5743 release_inactive = true; 5744 } 5745 spin_unlock_irq(&conf->device_lock); 5746 5747 release_inactive_stripe_list(conf, temp_inactive_list, 5748 NR_STRIPE_HASH_LOCKS); 5749 5750 if (release_inactive) { 5751 spin_lock_irq(&conf->device_lock); 5752 return 0; 5753 } 5754 5755 for (i = 0; i < batch_size; i++) 5756 handle_stripe(batch[i]); 5757 5758 cond_resched(); 5759 5760 spin_lock_irq(&conf->device_lock); 5761 for (i = 0; i < batch_size; i++) { 5762 hash = batch[i]->hash_lock_index; 5763 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5764 } 5765 return batch_size; 5766} 5767 5768static void raid5_do_work(struct work_struct *work) 5769{ 5770 struct r5worker *worker = container_of(work, struct r5worker, work); 5771 struct r5worker_group *group = worker->group; 5772 struct r5conf *conf = group->conf; 5773 int group_id = group - conf->worker_groups; 5774 int handled; 5775 struct blk_plug plug; 5776 5777 pr_debug("+++ raid5worker active\n"); 5778 5779 blk_start_plug(&plug); 5780 handled = 0; 5781 spin_lock_irq(&conf->device_lock); 5782 while (1) { 5783 int batch_size, released; 5784 5785 released = release_stripe_list(conf, worker->temp_inactive_list); 5786 5787 batch_size = handle_active_stripes(conf, group_id, worker, 5788 worker->temp_inactive_list); 5789 worker->working = false; 5790 if (!batch_size && !released) 5791 break; 5792 handled += batch_size; 5793 } 5794 pr_debug("%d stripes handled\n", handled); 5795 5796 spin_unlock_irq(&conf->device_lock); 5797 blk_finish_plug(&plug); 5798 5799 pr_debug("--- raid5worker inactive\n"); 5800} 5801 5802/* 5803 * This is our raid5 kernel thread. 5804 * 5805 * We scan the hash table for stripes which can be handled now. 5806 * During the scan, completed stripes are saved for us by the interrupt 5807 * handler, so that they will not have to wait for our next wakeup. 5808 */ 5809static void raid5d(struct md_thread *thread) 5810{ 5811 struct mddev *mddev = thread->mddev; 5812 struct r5conf *conf = mddev->private; 5813 int handled; 5814 struct blk_plug plug; 5815 5816 pr_debug("+++ raid5d active\n"); 5817 5818 md_check_recovery(mddev); 5819 5820 blk_start_plug(&plug); 5821 handled = 0; 5822 spin_lock_irq(&conf->device_lock); 5823 while (1) { 5824 struct bio *bio; 5825 int batch_size, released; 5826 5827 released = release_stripe_list(conf, conf->temp_inactive_list); 5828 if (released) 5829 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5830 5831 if ( 5832 !list_empty(&conf->bitmap_list)) { 5833 /* Now is a good time to flush some bitmap updates */ 5834 conf->seq_flush++; 5835 spin_unlock_irq(&conf->device_lock); 5836 bitmap_unplug(mddev->bitmap); 5837 spin_lock_irq(&conf->device_lock); 5838 conf->seq_write = conf->seq_flush; 5839 activate_bit_delay(conf, conf->temp_inactive_list); 5840 } 5841 raid5_activate_delayed(conf); 5842 5843 while ((bio = remove_bio_from_retry(conf))) { 5844 int ok; 5845 spin_unlock_irq(&conf->device_lock); 5846 ok = retry_aligned_read(conf, bio); 5847 spin_lock_irq(&conf->device_lock); 5848 if (!ok) 5849 break; 5850 handled++; 5851 } 5852 5853 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5854 conf->temp_inactive_list); 5855 if (!batch_size && !released) 5856 break; 5857 handled += batch_size; 5858 5859 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5860 spin_unlock_irq(&conf->device_lock); 5861 md_check_recovery(mddev); 5862 spin_lock_irq(&conf->device_lock); 5863 } 5864 } 5865 pr_debug("%d stripes handled\n", handled); 5866 5867 spin_unlock_irq(&conf->device_lock); 5868 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5869 mutex_trylock(&conf->cache_size_mutex)) { 5870 grow_one_stripe(conf, __GFP_NOWARN); 5871 /* Set flag even if allocation failed. This helps 5872 * slow down allocation requests when mem is short 5873 */ 5874 set_bit(R5_DID_ALLOC, &conf->cache_state); 5875 mutex_unlock(&conf->cache_size_mutex); 5876 } 5877 5878 async_tx_issue_pending_all(); 5879 blk_finish_plug(&plug); 5880 5881 pr_debug("--- raid5d inactive\n"); 5882} 5883 5884static ssize_t 5885raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5886{ 5887 struct r5conf *conf; 5888 int ret = 0; 5889 spin_lock(&mddev->lock); 5890 conf = mddev->private; 5891 if (conf) 5892 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5893 spin_unlock(&mddev->lock); 5894 return ret; 5895} 5896 5897int 5898raid5_set_cache_size(struct mddev *mddev, int size) 5899{ 5900 struct r5conf *conf = mddev->private; 5901 int err; 5902 5903 if (size <= 16 || size > 32768) 5904 return -EINVAL; 5905 5906 conf->min_nr_stripes = size; 5907 mutex_lock(&conf->cache_size_mutex); 5908 while (size < conf->max_nr_stripes && 5909 drop_one_stripe(conf)) 5910 ; 5911 mutex_unlock(&conf->cache_size_mutex); 5912 5913 5914 err = md_allow_write(mddev); 5915 if (err) 5916 return err; 5917 5918 mutex_lock(&conf->cache_size_mutex); 5919 while (size > conf->max_nr_stripes) 5920 if (!grow_one_stripe(conf, GFP_KERNEL)) 5921 break; 5922 mutex_unlock(&conf->cache_size_mutex); 5923 5924 return 0; 5925} 5926EXPORT_SYMBOL(raid5_set_cache_size); 5927 5928static ssize_t 5929raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5930{ 5931 struct r5conf *conf; 5932 unsigned long new; 5933 int err; 5934 5935 if (len >= PAGE_SIZE) 5936 return -EINVAL; 5937 if (kstrtoul(page, 10, &new)) 5938 return -EINVAL; 5939 err = mddev_lock(mddev); 5940 if (err) 5941 return err; 5942 conf = mddev->private; 5943 if (!conf) 5944 err = -ENODEV; 5945 else 5946 err = raid5_set_cache_size(mddev, new); 5947 mddev_unlock(mddev); 5948 5949 return err ?: len; 5950} 5951 5952static struct md_sysfs_entry 5953raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5954 raid5_show_stripe_cache_size, 5955 raid5_store_stripe_cache_size); 5956 5957static ssize_t 5958raid5_show_rmw_level(struct mddev *mddev, char *page) 5959{ 5960 struct r5conf *conf = mddev->private; 5961 if (conf) 5962 return sprintf(page, "%d\n", conf->rmw_level); 5963 else 5964 return 0; 5965} 5966 5967static ssize_t 5968raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 5969{ 5970 struct r5conf *conf = mddev->private; 5971 unsigned long new; 5972 5973 if (!conf) 5974 return -ENODEV; 5975 5976 if (len >= PAGE_SIZE) 5977 return -EINVAL; 5978 5979 if (kstrtoul(page, 10, &new)) 5980 return -EINVAL; 5981 5982 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 5983 return -EINVAL; 5984 5985 if (new != PARITY_DISABLE_RMW && 5986 new != PARITY_ENABLE_RMW && 5987 new != PARITY_PREFER_RMW) 5988 return -EINVAL; 5989 5990 conf->rmw_level = new; 5991 return len; 5992} 5993 5994static struct md_sysfs_entry 5995raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 5996 raid5_show_rmw_level, 5997 raid5_store_rmw_level); 5998 5999 6000static ssize_t 6001raid5_show_preread_threshold(struct mddev *mddev, char *page) 6002{ 6003 struct r5conf *conf; 6004 int ret = 0; 6005 spin_lock(&mddev->lock); 6006 conf = mddev->private; 6007 if (conf) 6008 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6009 spin_unlock(&mddev->lock); 6010 return ret; 6011} 6012 6013static ssize_t 6014raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6015{ 6016 struct r5conf *conf; 6017 unsigned long new; 6018 int err; 6019 6020 if (len >= PAGE_SIZE) 6021 return -EINVAL; 6022 if (kstrtoul(page, 10, &new)) 6023 return -EINVAL; 6024 6025 err = mddev_lock(mddev); 6026 if (err) 6027 return err; 6028 conf = mddev->private; 6029 if (!conf) 6030 err = -ENODEV; 6031 else if (new > conf->min_nr_stripes) 6032 err = -EINVAL; 6033 else 6034 conf->bypass_threshold = new; 6035 mddev_unlock(mddev); 6036 return err ?: len; 6037} 6038 6039static struct md_sysfs_entry 6040raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6041 S_IRUGO | S_IWUSR, 6042 raid5_show_preread_threshold, 6043 raid5_store_preread_threshold); 6044 6045static ssize_t 6046raid5_show_skip_copy(struct mddev *mddev, char *page) 6047{ 6048 struct r5conf *conf; 6049 int ret = 0; 6050 spin_lock(&mddev->lock); 6051 conf = mddev->private; 6052 if (conf) 6053 ret = sprintf(page, "%d\n", conf->skip_copy); 6054 spin_unlock(&mddev->lock); 6055 return ret; 6056} 6057 6058static ssize_t 6059raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6060{ 6061 struct r5conf *conf; 6062 unsigned long new; 6063 int err; 6064 6065 if (len >= PAGE_SIZE) 6066 return -EINVAL; 6067 if (kstrtoul(page, 10, &new)) 6068 return -EINVAL; 6069 new = !!new; 6070 6071 err = mddev_lock(mddev); 6072 if (err) 6073 return err; 6074 conf = mddev->private; 6075 if (!conf) 6076 err = -ENODEV; 6077 else if (new != conf->skip_copy) { 6078 mddev_suspend(mddev); 6079 conf->skip_copy = new; 6080 if (new) 6081 mddev->queue->backing_dev_info.capabilities |= 6082 BDI_CAP_STABLE_WRITES; 6083 else 6084 mddev->queue->backing_dev_info.capabilities &= 6085 ~BDI_CAP_STABLE_WRITES; 6086 mddev_resume(mddev); 6087 } 6088 mddev_unlock(mddev); 6089 return err ?: len; 6090} 6091 6092static struct md_sysfs_entry 6093raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6094 raid5_show_skip_copy, 6095 raid5_store_skip_copy); 6096 6097static ssize_t 6098stripe_cache_active_show(struct mddev *mddev, char *page) 6099{ 6100 struct r5conf *conf = mddev->private; 6101 if (conf) 6102 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6103 else 6104 return 0; 6105} 6106 6107static struct md_sysfs_entry 6108raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6109 6110static ssize_t 6111raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6112{ 6113 struct r5conf *conf; 6114 int ret = 0; 6115 spin_lock(&mddev->lock); 6116 conf = mddev->private; 6117 if (conf) 6118 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6119 spin_unlock(&mddev->lock); 6120 return ret; 6121} 6122 6123static int alloc_thread_groups(struct r5conf *conf, int cnt, 6124 int *group_cnt, 6125 int *worker_cnt_per_group, 6126 struct r5worker_group **worker_groups); 6127static ssize_t 6128raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6129{ 6130 struct r5conf *conf; 6131 unsigned long new; 6132 int err; 6133 struct r5worker_group *new_groups, *old_groups; 6134 int group_cnt, worker_cnt_per_group; 6135 6136 if (len >= PAGE_SIZE) 6137 return -EINVAL; 6138 if (kstrtoul(page, 10, &new)) 6139 return -EINVAL; 6140 6141 err = mddev_lock(mddev); 6142 if (err) 6143 return err; 6144 conf = mddev->private; 6145 if (!conf) 6146 err = -ENODEV; 6147 else if (new != conf->worker_cnt_per_group) { 6148 mddev_suspend(mddev); 6149 6150 old_groups = conf->worker_groups; 6151 if (old_groups) 6152 flush_workqueue(raid5_wq); 6153 6154 err = alloc_thread_groups(conf, new, 6155 &group_cnt, &worker_cnt_per_group, 6156 &new_groups); 6157 if (!err) { 6158 spin_lock_irq(&conf->device_lock); 6159 conf->group_cnt = group_cnt; 6160 conf->worker_cnt_per_group = worker_cnt_per_group; 6161 conf->worker_groups = new_groups; 6162 spin_unlock_irq(&conf->device_lock); 6163 6164 if (old_groups) 6165 kfree(old_groups[0].workers); 6166 kfree(old_groups); 6167 } 6168 mddev_resume(mddev); 6169 } 6170 mddev_unlock(mddev); 6171 6172 return err ?: len; 6173} 6174 6175static struct md_sysfs_entry 6176raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6177 raid5_show_group_thread_cnt, 6178 raid5_store_group_thread_cnt); 6179 6180static struct attribute *raid5_attrs[] = { 6181 &raid5_stripecache_size.attr, 6182 &raid5_stripecache_active.attr, 6183 &raid5_preread_bypass_threshold.attr, 6184 &raid5_group_thread_cnt.attr, 6185 &raid5_skip_copy.attr, 6186 &raid5_rmw_level.attr, 6187 NULL, 6188}; 6189static struct attribute_group raid5_attrs_group = { 6190 .name = NULL, 6191 .attrs = raid5_attrs, 6192}; 6193 6194static int alloc_thread_groups(struct r5conf *conf, int cnt, 6195 int *group_cnt, 6196 int *worker_cnt_per_group, 6197 struct r5worker_group **worker_groups) 6198{ 6199 int i, j, k; 6200 ssize_t size; 6201 struct r5worker *workers; 6202 6203 *worker_cnt_per_group = cnt; 6204 if (cnt == 0) { 6205 *group_cnt = 0; 6206 *worker_groups = NULL; 6207 return 0; 6208 } 6209 *group_cnt = num_possible_nodes(); 6210 size = sizeof(struct r5worker) * cnt; 6211 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6212 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6213 *group_cnt, GFP_NOIO); 6214 if (!*worker_groups || !workers) { 6215 kfree(workers); 6216 kfree(*worker_groups); 6217 return -ENOMEM; 6218 } 6219 6220 for (i = 0; i < *group_cnt; i++) { 6221 struct r5worker_group *group; 6222 6223 group = &(*worker_groups)[i]; 6224 INIT_LIST_HEAD(&group->handle_list); 6225 group->conf = conf; 6226 group->workers = workers + i * cnt; 6227 6228 for (j = 0; j < cnt; j++) { 6229 struct r5worker *worker = group->workers + j; 6230 worker->group = group; 6231 INIT_WORK(&worker->work, raid5_do_work); 6232 6233 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6234 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6235 } 6236 } 6237 6238 return 0; 6239} 6240 6241static void free_thread_groups(struct r5conf *conf) 6242{ 6243 if (conf->worker_groups) 6244 kfree(conf->worker_groups[0].workers); 6245 kfree(conf->worker_groups); 6246 conf->worker_groups = NULL; 6247} 6248 6249static sector_t 6250raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6251{ 6252 struct r5conf *conf = mddev->private; 6253 6254 if (!sectors) 6255 sectors = mddev->dev_sectors; 6256 if (!raid_disks) 6257 /* size is defined by the smallest of previous and new size */ 6258 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6259 6260 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 6261 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 6262 return sectors * (raid_disks - conf->max_degraded); 6263} 6264 6265static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6266{ 6267 safe_put_page(percpu->spare_page); 6268 if (percpu->scribble) 6269 flex_array_free(percpu->scribble); 6270 percpu->spare_page = NULL; 6271 percpu->scribble = NULL; 6272} 6273 6274static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6275{ 6276 if (conf->level == 6 && !percpu->spare_page) 6277 percpu->spare_page = alloc_page(GFP_KERNEL); 6278 if (!percpu->scribble) 6279 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6280 conf->previous_raid_disks), 6281 max(conf->chunk_sectors, 6282 conf->prev_chunk_sectors) 6283 / STRIPE_SECTORS, 6284 GFP_KERNEL); 6285 6286 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6287 free_scratch_buffer(conf, percpu); 6288 return -ENOMEM; 6289 } 6290 6291 return 0; 6292} 6293 6294static void raid5_free_percpu(struct r5conf *conf) 6295{ 6296 unsigned long cpu; 6297 6298 if (!conf->percpu) 6299 return; 6300 6301#ifdef CONFIG_HOTPLUG_CPU 6302 unregister_cpu_notifier(&conf->cpu_notify); 6303#endif 6304 6305 get_online_cpus(); 6306 for_each_possible_cpu(cpu) 6307 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6308 put_online_cpus(); 6309 6310 free_percpu(conf->percpu); 6311} 6312 6313static void free_conf(struct r5conf *conf) 6314{ 6315 if (conf->shrinker.seeks) 6316 unregister_shrinker(&conf->shrinker); 6317 free_thread_groups(conf); 6318 shrink_stripes(conf); 6319 raid5_free_percpu(conf); 6320 kfree(conf->disks); 6321 kfree(conf->stripe_hashtbl); 6322 kfree(conf); 6323} 6324 6325#ifdef CONFIG_HOTPLUG_CPU 6326static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6327 void *hcpu) 6328{ 6329 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6330 long cpu = (long)hcpu; 6331 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6332 6333 switch (action) { 6334 case CPU_UP_PREPARE: 6335 case CPU_UP_PREPARE_FROZEN: 6336 if (alloc_scratch_buffer(conf, percpu)) { 6337 pr_err("%s: failed memory allocation for cpu%ld\n", 6338 __func__, cpu); 6339 return notifier_from_errno(-ENOMEM); 6340 } 6341 break; 6342 case CPU_DEAD: 6343 case CPU_DEAD_FROZEN: 6344 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6345 break; 6346 default: 6347 break; 6348 } 6349 return NOTIFY_OK; 6350} 6351#endif 6352 6353static int raid5_alloc_percpu(struct r5conf *conf) 6354{ 6355 unsigned long cpu; 6356 int err = 0; 6357 6358 conf->percpu = alloc_percpu(struct raid5_percpu); 6359 if (!conf->percpu) 6360 return -ENOMEM; 6361 6362#ifdef CONFIG_HOTPLUG_CPU 6363 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6364 conf->cpu_notify.priority = 0; 6365 err = register_cpu_notifier(&conf->cpu_notify); 6366 if (err) 6367 return err; 6368#endif 6369 6370 get_online_cpus(); 6371 for_each_present_cpu(cpu) { 6372 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6373 if (err) { 6374 pr_err("%s: failed memory allocation for cpu%ld\n", 6375 __func__, cpu); 6376 break; 6377 } 6378 } 6379 put_online_cpus(); 6380 6381 if (!err) { 6382 conf->scribble_disks = max(conf->raid_disks, 6383 conf->previous_raid_disks); 6384 conf->scribble_sectors = max(conf->chunk_sectors, 6385 conf->prev_chunk_sectors); 6386 } 6387 return err; 6388} 6389 6390static unsigned long raid5_cache_scan(struct shrinker *shrink, 6391 struct shrink_control *sc) 6392{ 6393 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6394 unsigned long ret = SHRINK_STOP; 6395 6396 if (mutex_trylock(&conf->cache_size_mutex)) { 6397 ret= 0; 6398 while (ret < sc->nr_to_scan && 6399 conf->max_nr_stripes > conf->min_nr_stripes) { 6400 if (drop_one_stripe(conf) == 0) { 6401 ret = SHRINK_STOP; 6402 break; 6403 } 6404 ret++; 6405 } 6406 mutex_unlock(&conf->cache_size_mutex); 6407 } 6408 return ret; 6409} 6410 6411static unsigned long raid5_cache_count(struct shrinker *shrink, 6412 struct shrink_control *sc) 6413{ 6414 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6415 6416 if (conf->max_nr_stripes < conf->min_nr_stripes) 6417 /* unlikely, but not impossible */ 6418 return 0; 6419 return conf->max_nr_stripes - conf->min_nr_stripes; 6420} 6421 6422static struct r5conf *setup_conf(struct mddev *mddev) 6423{ 6424 struct r5conf *conf; 6425 int raid_disk, memory, max_disks; 6426 struct md_rdev *rdev; 6427 struct disk_info *disk; 6428 char pers_name[6]; 6429 int i; 6430 int group_cnt, worker_cnt_per_group; 6431 struct r5worker_group *new_group; 6432 6433 if (mddev->new_level != 5 6434 && mddev->new_level != 4 6435 && mddev->new_level != 6) { 6436 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6437 mdname(mddev), mddev->new_level); 6438 return ERR_PTR(-EIO); 6439 } 6440 if ((mddev->new_level == 5 6441 && !algorithm_valid_raid5(mddev->new_layout)) || 6442 (mddev->new_level == 6 6443 && !algorithm_valid_raid6(mddev->new_layout))) { 6444 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6445 mdname(mddev), mddev->new_layout); 6446 return ERR_PTR(-EIO); 6447 } 6448 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6449 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6450 mdname(mddev), mddev->raid_disks); 6451 return ERR_PTR(-EINVAL); 6452 } 6453 6454 if (!mddev->new_chunk_sectors || 6455 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6456 !is_power_of_2(mddev->new_chunk_sectors)) { 6457 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6458 mdname(mddev), mddev->new_chunk_sectors << 9); 6459 return ERR_PTR(-EINVAL); 6460 } 6461 6462 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6463 if (conf == NULL) 6464 goto abort; 6465 /* Don't enable multi-threading by default*/ 6466 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6467 &new_group)) { 6468 conf->group_cnt = group_cnt; 6469 conf->worker_cnt_per_group = worker_cnt_per_group; 6470 conf->worker_groups = new_group; 6471 } else 6472 goto abort; 6473 spin_lock_init(&conf->device_lock); 6474 seqcount_init(&conf->gen_lock); 6475 mutex_init(&conf->cache_size_mutex); 6476 init_waitqueue_head(&conf->wait_for_stripe); 6477 init_waitqueue_head(&conf->wait_for_overlap); 6478 INIT_LIST_HEAD(&conf->handle_list); 6479 INIT_LIST_HEAD(&conf->hold_list); 6480 INIT_LIST_HEAD(&conf->delayed_list); 6481 INIT_LIST_HEAD(&conf->bitmap_list); 6482 init_llist_head(&conf->released_stripes); 6483 atomic_set(&conf->active_stripes, 0); 6484 atomic_set(&conf->preread_active_stripes, 0); 6485 atomic_set(&conf->active_aligned_reads, 0); 6486 conf->bypass_threshold = BYPASS_THRESHOLD; 6487 conf->recovery_disabled = mddev->recovery_disabled - 1; 6488 6489 conf->raid_disks = mddev->raid_disks; 6490 if (mddev->reshape_position == MaxSector) 6491 conf->previous_raid_disks = mddev->raid_disks; 6492 else 6493 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6494 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6495 6496 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6497 GFP_KERNEL); 6498 if (!conf->disks) 6499 goto abort; 6500 6501 conf->mddev = mddev; 6502 6503 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6504 goto abort; 6505 6506 /* We init hash_locks[0] separately to that it can be used 6507 * as the reference lock in the spin_lock_nest_lock() call 6508 * in lock_all_device_hash_locks_irq in order to convince 6509 * lockdep that we know what we are doing. 6510 */ 6511 spin_lock_init(conf->hash_locks); 6512 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6513 spin_lock_init(conf->hash_locks + i); 6514 6515 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6516 INIT_LIST_HEAD(conf->inactive_list + i); 6517 6518 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6519 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6520 6521 conf->level = mddev->new_level; 6522 conf->chunk_sectors = mddev->new_chunk_sectors; 6523 if (raid5_alloc_percpu(conf) != 0) 6524 goto abort; 6525 6526 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6527 6528 rdev_for_each(rdev, mddev) { 6529 raid_disk = rdev->raid_disk; 6530 if (raid_disk >= max_disks 6531 || raid_disk < 0) 6532 continue; 6533 disk = conf->disks + raid_disk; 6534 6535 if (test_bit(Replacement, &rdev->flags)) { 6536 if (disk->replacement) 6537 goto abort; 6538 disk->replacement = rdev; 6539 } else { 6540 if (disk->rdev) 6541 goto abort; 6542 disk->rdev = rdev; 6543 } 6544 6545 if (test_bit(In_sync, &rdev->flags)) { 6546 char b[BDEVNAME_SIZE]; 6547 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6548 " disk %d\n", 6549 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6550 } else if (rdev->saved_raid_disk != raid_disk) 6551 /* Cannot rely on bitmap to complete recovery */ 6552 conf->fullsync = 1; 6553 } 6554 6555 conf->level = mddev->new_level; 6556 if (conf->level == 6) { 6557 conf->max_degraded = 2; 6558 if (raid6_call.xor_syndrome) 6559 conf->rmw_level = PARITY_ENABLE_RMW; 6560 else 6561 conf->rmw_level = PARITY_DISABLE_RMW; 6562 } else { 6563 conf->max_degraded = 1; 6564 conf->rmw_level = PARITY_ENABLE_RMW; 6565 } 6566 conf->algorithm = mddev->new_layout; 6567 conf->reshape_progress = mddev->reshape_position; 6568 if (conf->reshape_progress != MaxSector) { 6569 conf->prev_chunk_sectors = mddev->chunk_sectors; 6570 conf->prev_algo = mddev->layout; 6571 } 6572 6573 conf->min_nr_stripes = NR_STRIPES; 6574 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6575 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6576 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6577 if (grow_stripes(conf, conf->min_nr_stripes)) { 6578 printk(KERN_ERR 6579 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6580 mdname(mddev), memory); 6581 goto abort; 6582 } else 6583 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6584 mdname(mddev), memory); 6585 /* 6586 * Losing a stripe head costs more than the time to refill it, 6587 * it reduces the queue depth and so can hurt throughput. 6588 * So set it rather large, scaled by number of devices. 6589 */ 6590 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6591 conf->shrinker.scan_objects = raid5_cache_scan; 6592 conf->shrinker.count_objects = raid5_cache_count; 6593 conf->shrinker.batch = 128; 6594 conf->shrinker.flags = 0; 6595 register_shrinker(&conf->shrinker); 6596 6597 sprintf(pers_name, "raid%d", mddev->new_level); 6598 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6599 if (!conf->thread) { 6600 printk(KERN_ERR 6601 "md/raid:%s: couldn't allocate thread.\n", 6602 mdname(mddev)); 6603 goto abort; 6604 } 6605 6606 return conf; 6607 6608 abort: 6609 if (conf) { 6610 free_conf(conf); 6611 return ERR_PTR(-EIO); 6612 } else 6613 return ERR_PTR(-ENOMEM); 6614} 6615 6616static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6617{ 6618 switch (algo) { 6619 case ALGORITHM_PARITY_0: 6620 if (raid_disk < max_degraded) 6621 return 1; 6622 break; 6623 case ALGORITHM_PARITY_N: 6624 if (raid_disk >= raid_disks - max_degraded) 6625 return 1; 6626 break; 6627 case ALGORITHM_PARITY_0_6: 6628 if (raid_disk == 0 || 6629 raid_disk == raid_disks - 1) 6630 return 1; 6631 break; 6632 case ALGORITHM_LEFT_ASYMMETRIC_6: 6633 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6634 case ALGORITHM_LEFT_SYMMETRIC_6: 6635 case ALGORITHM_RIGHT_SYMMETRIC_6: 6636 if (raid_disk == raid_disks - 1) 6637 return 1; 6638 } 6639 return 0; 6640} 6641 6642static int run(struct mddev *mddev) 6643{ 6644 struct r5conf *conf; 6645 int working_disks = 0; 6646 int dirty_parity_disks = 0; 6647 struct md_rdev *rdev; 6648 sector_t reshape_offset = 0; 6649 int i; 6650 long long min_offset_diff = 0; 6651 int first = 1; 6652 6653 if (mddev->recovery_cp != MaxSector) 6654 printk(KERN_NOTICE "md/raid:%s: not clean" 6655 " -- starting background reconstruction\n", 6656 mdname(mddev)); 6657 6658 rdev_for_each(rdev, mddev) { 6659 long long diff; 6660 if (rdev->raid_disk < 0) 6661 continue; 6662 diff = (rdev->new_data_offset - rdev->data_offset); 6663 if (first) { 6664 min_offset_diff = diff; 6665 first = 0; 6666 } else if (mddev->reshape_backwards && 6667 diff < min_offset_diff) 6668 min_offset_diff = diff; 6669 else if (!mddev->reshape_backwards && 6670 diff > min_offset_diff) 6671 min_offset_diff = diff; 6672 } 6673 6674 if (mddev->reshape_position != MaxSector) { 6675 /* Check that we can continue the reshape. 6676 * Difficulties arise if the stripe we would write to 6677 * next is at or after the stripe we would read from next. 6678 * For a reshape that changes the number of devices, this 6679 * is only possible for a very short time, and mdadm makes 6680 * sure that time appears to have past before assembling 6681 * the array. So we fail if that time hasn't passed. 6682 * For a reshape that keeps the number of devices the same 6683 * mdadm must be monitoring the reshape can keeping the 6684 * critical areas read-only and backed up. It will start 6685 * the array in read-only mode, so we check for that. 6686 */ 6687 sector_t here_new, here_old; 6688 int old_disks; 6689 int max_degraded = (mddev->level == 6 ? 2 : 1); 6690 6691 if (mddev->new_level != mddev->level) { 6692 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6693 "required - aborting.\n", 6694 mdname(mddev)); 6695 return -EINVAL; 6696 } 6697 old_disks = mddev->raid_disks - mddev->delta_disks; 6698 /* reshape_position must be on a new-stripe boundary, and one 6699 * further up in new geometry must map after here in old 6700 * geometry. 6701 */ 6702 here_new = mddev->reshape_position; 6703 if (sector_div(here_new, mddev->new_chunk_sectors * 6704 (mddev->raid_disks - max_degraded))) { 6705 printk(KERN_ERR "md/raid:%s: reshape_position not " 6706 "on a stripe boundary\n", mdname(mddev)); 6707 return -EINVAL; 6708 } 6709 reshape_offset = here_new * mddev->new_chunk_sectors; 6710 /* here_new is the stripe we will write to */ 6711 here_old = mddev->reshape_position; 6712 sector_div(here_old, mddev->chunk_sectors * 6713 (old_disks-max_degraded)); 6714 /* here_old is the first stripe that we might need to read 6715 * from */ 6716 if (mddev->delta_disks == 0) { 6717 if ((here_new * mddev->new_chunk_sectors != 6718 here_old * mddev->chunk_sectors)) { 6719 printk(KERN_ERR "md/raid:%s: reshape position is" 6720 " confused - aborting\n", mdname(mddev)); 6721 return -EINVAL; 6722 } 6723 /* We cannot be sure it is safe to start an in-place 6724 * reshape. It is only safe if user-space is monitoring 6725 * and taking constant backups. 6726 * mdadm always starts a situation like this in 6727 * readonly mode so it can take control before 6728 * allowing any writes. So just check for that. 6729 */ 6730 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6731 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6732 /* not really in-place - so OK */; 6733 else if (mddev->ro == 0) { 6734 printk(KERN_ERR "md/raid:%s: in-place reshape " 6735 "must be started in read-only mode " 6736 "- aborting\n", 6737 mdname(mddev)); 6738 return -EINVAL; 6739 } 6740 } else if (mddev->reshape_backwards 6741 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 6742 here_old * mddev->chunk_sectors) 6743 : (here_new * mddev->new_chunk_sectors >= 6744 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 6745 /* Reading from the same stripe as writing to - bad */ 6746 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6747 "auto-recovery - aborting.\n", 6748 mdname(mddev)); 6749 return -EINVAL; 6750 } 6751 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6752 mdname(mddev)); 6753 /* OK, we should be able to continue; */ 6754 } else { 6755 BUG_ON(mddev->level != mddev->new_level); 6756 BUG_ON(mddev->layout != mddev->new_layout); 6757 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6758 BUG_ON(mddev->delta_disks != 0); 6759 } 6760 6761 if (mddev->private == NULL) 6762 conf = setup_conf(mddev); 6763 else 6764 conf = mddev->private; 6765 6766 if (IS_ERR(conf)) 6767 return PTR_ERR(conf); 6768 6769 conf->min_offset_diff = min_offset_diff; 6770 mddev->thread = conf->thread; 6771 conf->thread = NULL; 6772 mddev->private = conf; 6773 6774 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6775 i++) { 6776 rdev = conf->disks[i].rdev; 6777 if (!rdev && conf->disks[i].replacement) { 6778 /* The replacement is all we have yet */ 6779 rdev = conf->disks[i].replacement; 6780 conf->disks[i].replacement = NULL; 6781 clear_bit(Replacement, &rdev->flags); 6782 conf->disks[i].rdev = rdev; 6783 } 6784 if (!rdev) 6785 continue; 6786 if (conf->disks[i].replacement && 6787 conf->reshape_progress != MaxSector) { 6788 /* replacements and reshape simply do not mix. */ 6789 printk(KERN_ERR "md: cannot handle concurrent " 6790 "replacement and reshape.\n"); 6791 goto abort; 6792 } 6793 if (test_bit(In_sync, &rdev->flags)) { 6794 working_disks++; 6795 continue; 6796 } 6797 /* This disc is not fully in-sync. However if it 6798 * just stored parity (beyond the recovery_offset), 6799 * when we don't need to be concerned about the 6800 * array being dirty. 6801 * When reshape goes 'backwards', we never have 6802 * partially completed devices, so we only need 6803 * to worry about reshape going forwards. 6804 */ 6805 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6806 if (mddev->major_version == 0 && 6807 mddev->minor_version > 90) 6808 rdev->recovery_offset = reshape_offset; 6809 6810 if (rdev->recovery_offset < reshape_offset) { 6811 /* We need to check old and new layout */ 6812 if (!only_parity(rdev->raid_disk, 6813 conf->algorithm, 6814 conf->raid_disks, 6815 conf->max_degraded)) 6816 continue; 6817 } 6818 if (!only_parity(rdev->raid_disk, 6819 conf->prev_algo, 6820 conf->previous_raid_disks, 6821 conf->max_degraded)) 6822 continue; 6823 dirty_parity_disks++; 6824 } 6825 6826 /* 6827 * 0 for a fully functional array, 1 or 2 for a degraded array. 6828 */ 6829 mddev->degraded = calc_degraded(conf); 6830 6831 if (has_failed(conf)) { 6832 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6833 " (%d/%d failed)\n", 6834 mdname(mddev), mddev->degraded, conf->raid_disks); 6835 goto abort; 6836 } 6837 6838 /* device size must be a multiple of chunk size */ 6839 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6840 mddev->resync_max_sectors = mddev->dev_sectors; 6841 6842 if (mddev->degraded > dirty_parity_disks && 6843 mddev->recovery_cp != MaxSector) { 6844 if (mddev->ok_start_degraded) 6845 printk(KERN_WARNING 6846 "md/raid:%s: starting dirty degraded array" 6847 " - data corruption possible.\n", 6848 mdname(mddev)); 6849 else { 6850 printk(KERN_ERR 6851 "md/raid:%s: cannot start dirty degraded array.\n", 6852 mdname(mddev)); 6853 goto abort; 6854 } 6855 } 6856 6857 if (mddev->degraded == 0) 6858 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6859 " devices, algorithm %d\n", mdname(mddev), conf->level, 6860 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6861 mddev->new_layout); 6862 else 6863 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6864 " out of %d devices, algorithm %d\n", 6865 mdname(mddev), conf->level, 6866 mddev->raid_disks - mddev->degraded, 6867 mddev->raid_disks, mddev->new_layout); 6868 6869 print_raid5_conf(conf); 6870 6871 if (conf->reshape_progress != MaxSector) { 6872 conf->reshape_safe = conf->reshape_progress; 6873 atomic_set(&conf->reshape_stripes, 0); 6874 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6875 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6876 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6877 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6878 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6879 "reshape"); 6880 } 6881 6882 /* Ok, everything is just fine now */ 6883 if (mddev->to_remove == &raid5_attrs_group) 6884 mddev->to_remove = NULL; 6885 else if (mddev->kobj.sd && 6886 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6887 printk(KERN_WARNING 6888 "raid5: failed to create sysfs attributes for %s\n", 6889 mdname(mddev)); 6890 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6891 6892 if (mddev->queue) { 6893 int chunk_size; 6894 bool discard_supported = true; 6895 /* read-ahead size must cover two whole stripes, which 6896 * is 2 * (datadisks) * chunksize where 'n' is the 6897 * number of raid devices 6898 */ 6899 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6900 int stripe = data_disks * 6901 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6902 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6903 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6904 6905 chunk_size = mddev->chunk_sectors << 9; 6906 blk_queue_io_min(mddev->queue, chunk_size); 6907 blk_queue_io_opt(mddev->queue, chunk_size * 6908 (conf->raid_disks - conf->max_degraded)); 6909 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6910 /* 6911 * We can only discard a whole stripe. It doesn't make sense to 6912 * discard data disk but write parity disk 6913 */ 6914 stripe = stripe * PAGE_SIZE; 6915 /* Round up to power of 2, as discard handling 6916 * currently assumes that */ 6917 while ((stripe-1) & stripe) 6918 stripe = (stripe | (stripe-1)) + 1; 6919 mddev->queue->limits.discard_alignment = stripe; 6920 mddev->queue->limits.discard_granularity = stripe; 6921 /* 6922 * unaligned part of discard request will be ignored, so can't 6923 * guarantee discard_zeroes_data 6924 */ 6925 mddev->queue->limits.discard_zeroes_data = 0; 6926 6927 blk_queue_max_write_same_sectors(mddev->queue, 0); 6928 6929 rdev_for_each(rdev, mddev) { 6930 disk_stack_limits(mddev->gendisk, rdev->bdev, 6931 rdev->data_offset << 9); 6932 disk_stack_limits(mddev->gendisk, rdev->bdev, 6933 rdev->new_data_offset << 9); 6934 /* 6935 * discard_zeroes_data is required, otherwise data 6936 * could be lost. Consider a scenario: discard a stripe 6937 * (the stripe could be inconsistent if 6938 * discard_zeroes_data is 0); write one disk of the 6939 * stripe (the stripe could be inconsistent again 6940 * depending on which disks are used to calculate 6941 * parity); the disk is broken; The stripe data of this 6942 * disk is lost. 6943 */ 6944 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 6945 !bdev_get_queue(rdev->bdev)-> 6946 limits.discard_zeroes_data) 6947 discard_supported = false; 6948 /* Unfortunately, discard_zeroes_data is not currently 6949 * a guarantee - just a hint. So we only allow DISCARD 6950 * if the sysadmin has confirmed that only safe devices 6951 * are in use by setting a module parameter. 6952 */ 6953 if (!devices_handle_discard_safely) { 6954 if (discard_supported) { 6955 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 6956 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 6957 } 6958 discard_supported = false; 6959 } 6960 } 6961 6962 if (discard_supported && 6963 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 6964 mddev->queue->limits.discard_granularity >= stripe) 6965 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 6966 mddev->queue); 6967 else 6968 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 6969 mddev->queue); 6970 } 6971 6972 return 0; 6973abort: 6974 md_unregister_thread(&mddev->thread); 6975 print_raid5_conf(conf); 6976 free_conf(conf); 6977 mddev->private = NULL; 6978 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 6979 return -EIO; 6980} 6981 6982static void raid5_free(struct mddev *mddev, void *priv) 6983{ 6984 struct r5conf *conf = priv; 6985 6986 free_conf(conf); 6987 mddev->to_remove = &raid5_attrs_group; 6988} 6989 6990static void status(struct seq_file *seq, struct mddev *mddev) 6991{ 6992 struct r5conf *conf = mddev->private; 6993 int i; 6994 6995 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 6996 mddev->chunk_sectors / 2, mddev->layout); 6997 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 6998 for (i = 0; i < conf->raid_disks; i++) 6999 seq_printf (seq, "%s", 7000 conf->disks[i].rdev && 7001 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 7002 seq_printf (seq, "]"); 7003} 7004 7005static void print_raid5_conf (struct r5conf *conf) 7006{ 7007 int i; 7008 struct disk_info *tmp; 7009 7010 printk(KERN_DEBUG "RAID conf printout:\n"); 7011 if (!conf) { 7012 printk("(conf==NULL)\n"); 7013 return; 7014 } 7015 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7016 conf->raid_disks, 7017 conf->raid_disks - conf->mddev->degraded); 7018 7019 for (i = 0; i < conf->raid_disks; i++) { 7020 char b[BDEVNAME_SIZE]; 7021 tmp = conf->disks + i; 7022 if (tmp->rdev) 7023 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7024 i, !test_bit(Faulty, &tmp->rdev->flags), 7025 bdevname(tmp->rdev->bdev, b)); 7026 } 7027} 7028 7029static int raid5_spare_active(struct mddev *mddev) 7030{ 7031 int i; 7032 struct r5conf *conf = mddev->private; 7033 struct disk_info *tmp; 7034 int count = 0; 7035 unsigned long flags; 7036 7037 for (i = 0; i < conf->raid_disks; i++) { 7038 tmp = conf->disks + i; 7039 if (tmp->replacement 7040 && tmp->replacement->recovery_offset == MaxSector 7041 && !test_bit(Faulty, &tmp->replacement->flags) 7042 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7043 /* Replacement has just become active. */ 7044 if (!tmp->rdev 7045 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7046 count++; 7047 if (tmp->rdev) { 7048 /* Replaced device not technically faulty, 7049 * but we need to be sure it gets removed 7050 * and never re-added. 7051 */ 7052 set_bit(Faulty, &tmp->rdev->flags); 7053 sysfs_notify_dirent_safe( 7054 tmp->rdev->sysfs_state); 7055 } 7056 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7057 } else if (tmp->rdev 7058 && tmp->rdev->recovery_offset == MaxSector 7059 && !test_bit(Faulty, &tmp->rdev->flags) 7060 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7061 count++; 7062 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7063 } 7064 } 7065 spin_lock_irqsave(&conf->device_lock, flags); 7066 mddev->degraded = calc_degraded(conf); 7067 spin_unlock_irqrestore(&conf->device_lock, flags); 7068 print_raid5_conf(conf); 7069 return count; 7070} 7071 7072static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7073{ 7074 struct r5conf *conf = mddev->private; 7075 int err = 0; 7076 int number = rdev->raid_disk; 7077 struct md_rdev **rdevp; 7078 struct disk_info *p = conf->disks + number; 7079 7080 print_raid5_conf(conf); 7081 if (rdev == p->rdev) 7082 rdevp = &p->rdev; 7083 else if (rdev == p->replacement) 7084 rdevp = &p->replacement; 7085 else 7086 return 0; 7087 7088 if (number >= conf->raid_disks && 7089 conf->reshape_progress == MaxSector) 7090 clear_bit(In_sync, &rdev->flags); 7091 7092 if (test_bit(In_sync, &rdev->flags) || 7093 atomic_read(&rdev->nr_pending)) { 7094 err = -EBUSY; 7095 goto abort; 7096 } 7097 /* Only remove non-faulty devices if recovery 7098 * isn't possible. 7099 */ 7100 if (!test_bit(Faulty, &rdev->flags) && 7101 mddev->recovery_disabled != conf->recovery_disabled && 7102 !has_failed(conf) && 7103 (!p->replacement || p->replacement == rdev) && 7104 number < conf->raid_disks) { 7105 err = -EBUSY; 7106 goto abort; 7107 } 7108 *rdevp = NULL; 7109 synchronize_rcu(); 7110 if (atomic_read(&rdev->nr_pending)) { 7111 /* lost the race, try later */ 7112 err = -EBUSY; 7113 *rdevp = rdev; 7114 } else if (p->replacement) { 7115 /* We must have just cleared 'rdev' */ 7116 p->rdev = p->replacement; 7117 clear_bit(Replacement, &p->replacement->flags); 7118 smp_mb(); /* Make sure other CPUs may see both as identical 7119 * but will never see neither - if they are careful 7120 */ 7121 p->replacement = NULL; 7122 clear_bit(WantReplacement, &rdev->flags); 7123 } else 7124 /* We might have just removed the Replacement as faulty- 7125 * clear the bit just in case 7126 */ 7127 clear_bit(WantReplacement, &rdev->flags); 7128abort: 7129 7130 print_raid5_conf(conf); 7131 return err; 7132} 7133 7134static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7135{ 7136 struct r5conf *conf = mddev->private; 7137 int err = -EEXIST; 7138 int disk; 7139 struct disk_info *p; 7140 int first = 0; 7141 int last = conf->raid_disks - 1; 7142 7143 if (mddev->recovery_disabled == conf->recovery_disabled) 7144 return -EBUSY; 7145 7146 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7147 /* no point adding a device */ 7148 return -EINVAL; 7149 7150 if (rdev->raid_disk >= 0) 7151 first = last = rdev->raid_disk; 7152 7153 /* 7154 * find the disk ... but prefer rdev->saved_raid_disk 7155 * if possible. 7156 */ 7157 if (rdev->saved_raid_disk >= 0 && 7158 rdev->saved_raid_disk >= first && 7159 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7160 first = rdev->saved_raid_disk; 7161 7162 for (disk = first; disk <= last; disk++) { 7163 p = conf->disks + disk; 7164 if (p->rdev == NULL) { 7165 clear_bit(In_sync, &rdev->flags); 7166 rdev->raid_disk = disk; 7167 err = 0; 7168 if (rdev->saved_raid_disk != disk) 7169 conf->fullsync = 1; 7170 rcu_assign_pointer(p->rdev, rdev); 7171 goto out; 7172 } 7173 } 7174 for (disk = first; disk <= last; disk++) { 7175 p = conf->disks + disk; 7176 if (test_bit(WantReplacement, &p->rdev->flags) && 7177 p->replacement == NULL) { 7178 clear_bit(In_sync, &rdev->flags); 7179 set_bit(Replacement, &rdev->flags); 7180 rdev->raid_disk = disk; 7181 err = 0; 7182 conf->fullsync = 1; 7183 rcu_assign_pointer(p->replacement, rdev); 7184 break; 7185 } 7186 } 7187out: 7188 print_raid5_conf(conf); 7189 return err; 7190} 7191 7192static int raid5_resize(struct mddev *mddev, sector_t sectors) 7193{ 7194 /* no resync is happening, and there is enough space 7195 * on all devices, so we can resize. 7196 * We need to make sure resync covers any new space. 7197 * If the array is shrinking we should possibly wait until 7198 * any io in the removed space completes, but it hardly seems 7199 * worth it. 7200 */ 7201 sector_t newsize; 7202 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7203 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7204 if (mddev->external_size && 7205 mddev->array_sectors > newsize) 7206 return -EINVAL; 7207 if (mddev->bitmap) { 7208 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7209 if (ret) 7210 return ret; 7211 } 7212 md_set_array_sectors(mddev, newsize); 7213 set_capacity(mddev->gendisk, mddev->array_sectors); 7214 revalidate_disk(mddev->gendisk); 7215 if (sectors > mddev->dev_sectors && 7216 mddev->recovery_cp > mddev->dev_sectors) { 7217 mddev->recovery_cp = mddev->dev_sectors; 7218 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7219 } 7220 mddev->dev_sectors = sectors; 7221 mddev->resync_max_sectors = sectors; 7222 return 0; 7223} 7224 7225static int check_stripe_cache(struct mddev *mddev) 7226{ 7227 /* Can only proceed if there are plenty of stripe_heads. 7228 * We need a minimum of one full stripe,, and for sensible progress 7229 * it is best to have about 4 times that. 7230 * If we require 4 times, then the default 256 4K stripe_heads will 7231 * allow for chunk sizes up to 256K, which is probably OK. 7232 * If the chunk size is greater, user-space should request more 7233 * stripe_heads first. 7234 */ 7235 struct r5conf *conf = mddev->private; 7236 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7237 > conf->min_nr_stripes || 7238 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7239 > conf->min_nr_stripes) { 7240 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7241 mdname(mddev), 7242 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7243 / STRIPE_SIZE)*4); 7244 return 0; 7245 } 7246 return 1; 7247} 7248 7249static int check_reshape(struct mddev *mddev) 7250{ 7251 struct r5conf *conf = mddev->private; 7252 7253 if (mddev->delta_disks == 0 && 7254 mddev->new_layout == mddev->layout && 7255 mddev->new_chunk_sectors == mddev->chunk_sectors) 7256 return 0; /* nothing to do */ 7257 if (has_failed(conf)) 7258 return -EINVAL; 7259 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7260 /* We might be able to shrink, but the devices must 7261 * be made bigger first. 7262 * For raid6, 4 is the minimum size. 7263 * Otherwise 2 is the minimum 7264 */ 7265 int min = 2; 7266 if (mddev->level == 6) 7267 min = 4; 7268 if (mddev->raid_disks + mddev->delta_disks < min) 7269 return -EINVAL; 7270 } 7271 7272 if (!check_stripe_cache(mddev)) 7273 return -ENOSPC; 7274 7275 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7276 mddev->delta_disks > 0) 7277 if (resize_chunks(conf, 7278 conf->previous_raid_disks 7279 + max(0, mddev->delta_disks), 7280 max(mddev->new_chunk_sectors, 7281 mddev->chunk_sectors) 7282 ) < 0) 7283 return -ENOMEM; 7284 return resize_stripes(conf, (conf->previous_raid_disks 7285 + mddev->delta_disks)); 7286} 7287 7288static int raid5_start_reshape(struct mddev *mddev) 7289{ 7290 struct r5conf *conf = mddev->private; 7291 struct md_rdev *rdev; 7292 int spares = 0; 7293 unsigned long flags; 7294 7295 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7296 return -EBUSY; 7297 7298 if (!check_stripe_cache(mddev)) 7299 return -ENOSPC; 7300 7301 if (has_failed(conf)) 7302 return -EINVAL; 7303 7304 rdev_for_each(rdev, mddev) { 7305 if (!test_bit(In_sync, &rdev->flags) 7306 && !test_bit(Faulty, &rdev->flags)) 7307 spares++; 7308 } 7309 7310 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7311 /* Not enough devices even to make a degraded array 7312 * of that size 7313 */ 7314 return -EINVAL; 7315 7316 /* Refuse to reduce size of the array. Any reductions in 7317 * array size must be through explicit setting of array_size 7318 * attribute. 7319 */ 7320 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7321 < mddev->array_sectors) { 7322 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7323 "before number of disks\n", mdname(mddev)); 7324 return -EINVAL; 7325 } 7326 7327 atomic_set(&conf->reshape_stripes, 0); 7328 spin_lock_irq(&conf->device_lock); 7329 write_seqcount_begin(&conf->gen_lock); 7330 conf->previous_raid_disks = conf->raid_disks; 7331 conf->raid_disks += mddev->delta_disks; 7332 conf->prev_chunk_sectors = conf->chunk_sectors; 7333 conf->chunk_sectors = mddev->new_chunk_sectors; 7334 conf->prev_algo = conf->algorithm; 7335 conf->algorithm = mddev->new_layout; 7336 conf->generation++; 7337 /* Code that selects data_offset needs to see the generation update 7338 * if reshape_progress has been set - so a memory barrier needed. 7339 */ 7340 smp_mb(); 7341 if (mddev->reshape_backwards) 7342 conf->reshape_progress = raid5_size(mddev, 0, 0); 7343 else 7344 conf->reshape_progress = 0; 7345 conf->reshape_safe = conf->reshape_progress; 7346 write_seqcount_end(&conf->gen_lock); 7347 spin_unlock_irq(&conf->device_lock); 7348 7349 /* Now make sure any requests that proceeded on the assumption 7350 * the reshape wasn't running - like Discard or Read - have 7351 * completed. 7352 */ 7353 mddev_suspend(mddev); 7354 mddev_resume(mddev); 7355 7356 /* Add some new drives, as many as will fit. 7357 * We know there are enough to make the newly sized array work. 7358 * Don't add devices if we are reducing the number of 7359 * devices in the array. This is because it is not possible 7360 * to correctly record the "partially reconstructed" state of 7361 * such devices during the reshape and confusion could result. 7362 */ 7363 if (mddev->delta_disks >= 0) { 7364 rdev_for_each(rdev, mddev) 7365 if (rdev->raid_disk < 0 && 7366 !test_bit(Faulty, &rdev->flags)) { 7367 if (raid5_add_disk(mddev, rdev) == 0) { 7368 if (rdev->raid_disk 7369 >= conf->previous_raid_disks) 7370 set_bit(In_sync, &rdev->flags); 7371 else 7372 rdev->recovery_offset = 0; 7373 7374 if (sysfs_link_rdev(mddev, rdev)) 7375 /* Failure here is OK */; 7376 } 7377 } else if (rdev->raid_disk >= conf->previous_raid_disks 7378 && !test_bit(Faulty, &rdev->flags)) { 7379 /* This is a spare that was manually added */ 7380 set_bit(In_sync, &rdev->flags); 7381 } 7382 7383 /* When a reshape changes the number of devices, 7384 * ->degraded is measured against the larger of the 7385 * pre and post number of devices. 7386 */ 7387 spin_lock_irqsave(&conf->device_lock, flags); 7388 mddev->degraded = calc_degraded(conf); 7389 spin_unlock_irqrestore(&conf->device_lock, flags); 7390 } 7391 mddev->raid_disks = conf->raid_disks; 7392 mddev->reshape_position = conf->reshape_progress; 7393 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7394 7395 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7396 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7397 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7398 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7399 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7400 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7401 "reshape"); 7402 if (!mddev->sync_thread) { 7403 mddev->recovery = 0; 7404 spin_lock_irq(&conf->device_lock); 7405 write_seqcount_begin(&conf->gen_lock); 7406 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7407 mddev->new_chunk_sectors = 7408 conf->chunk_sectors = conf->prev_chunk_sectors; 7409 mddev->new_layout = conf->algorithm = conf->prev_algo; 7410 rdev_for_each(rdev, mddev) 7411 rdev->new_data_offset = rdev->data_offset; 7412 smp_wmb(); 7413 conf->generation --; 7414 conf->reshape_progress = MaxSector; 7415 mddev->reshape_position = MaxSector; 7416 write_seqcount_end(&conf->gen_lock); 7417 spin_unlock_irq(&conf->device_lock); 7418 return -EAGAIN; 7419 } 7420 conf->reshape_checkpoint = jiffies; 7421 md_wakeup_thread(mddev->sync_thread); 7422 md_new_event(mddev); 7423 return 0; 7424} 7425 7426/* This is called from the reshape thread and should make any 7427 * changes needed in 'conf' 7428 */ 7429static void end_reshape(struct r5conf *conf) 7430{ 7431 7432 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7433 struct md_rdev *rdev; 7434 7435 spin_lock_irq(&conf->device_lock); 7436 conf->previous_raid_disks = conf->raid_disks; 7437 rdev_for_each(rdev, conf->mddev) 7438 rdev->data_offset = rdev->new_data_offset; 7439 smp_wmb(); 7440 conf->reshape_progress = MaxSector; 7441 spin_unlock_irq(&conf->device_lock); 7442 wake_up(&conf->wait_for_overlap); 7443 7444 /* read-ahead size must cover two whole stripes, which is 7445 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7446 */ 7447 if (conf->mddev->queue) { 7448 int data_disks = conf->raid_disks - conf->max_degraded; 7449 int stripe = data_disks * ((conf->chunk_sectors << 9) 7450 / PAGE_SIZE); 7451 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7452 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7453 } 7454 } 7455} 7456 7457/* This is called from the raid5d thread with mddev_lock held. 7458 * It makes config changes to the device. 7459 */ 7460static void raid5_finish_reshape(struct mddev *mddev) 7461{ 7462 struct r5conf *conf = mddev->private; 7463 7464 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7465 7466 if (mddev->delta_disks > 0) { 7467 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7468 set_capacity(mddev->gendisk, mddev->array_sectors); 7469 revalidate_disk(mddev->gendisk); 7470 } else { 7471 int d; 7472 spin_lock_irq(&conf->device_lock); 7473 mddev->degraded = calc_degraded(conf); 7474 spin_unlock_irq(&conf->device_lock); 7475 for (d = conf->raid_disks ; 7476 d < conf->raid_disks - mddev->delta_disks; 7477 d++) { 7478 struct md_rdev *rdev = conf->disks[d].rdev; 7479 if (rdev) 7480 clear_bit(In_sync, &rdev->flags); 7481 rdev = conf->disks[d].replacement; 7482 if (rdev) 7483 clear_bit(In_sync, &rdev->flags); 7484 } 7485 } 7486 mddev->layout = conf->algorithm; 7487 mddev->chunk_sectors = conf->chunk_sectors; 7488 mddev->reshape_position = MaxSector; 7489 mddev->delta_disks = 0; 7490 mddev->reshape_backwards = 0; 7491 } 7492} 7493 7494static void raid5_quiesce(struct mddev *mddev, int state) 7495{ 7496 struct r5conf *conf = mddev->private; 7497 7498 switch(state) { 7499 case 2: /* resume for a suspend */ 7500 wake_up(&conf->wait_for_overlap); 7501 break; 7502 7503 case 1: /* stop all writes */ 7504 lock_all_device_hash_locks_irq(conf); 7505 /* '2' tells resync/reshape to pause so that all 7506 * active stripes can drain 7507 */ 7508 conf->quiesce = 2; 7509 wait_event_cmd(conf->wait_for_stripe, 7510 atomic_read(&conf->active_stripes) == 0 && 7511 atomic_read(&conf->active_aligned_reads) == 0, 7512 unlock_all_device_hash_locks_irq(conf), 7513 lock_all_device_hash_locks_irq(conf)); 7514 conf->quiesce = 1; 7515 unlock_all_device_hash_locks_irq(conf); 7516 /* allow reshape to continue */ 7517 wake_up(&conf->wait_for_overlap); 7518 break; 7519 7520 case 0: /* re-enable writes */ 7521 lock_all_device_hash_locks_irq(conf); 7522 conf->quiesce = 0; 7523 wake_up(&conf->wait_for_stripe); 7524 wake_up(&conf->wait_for_overlap); 7525 unlock_all_device_hash_locks_irq(conf); 7526 break; 7527 } 7528} 7529 7530static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7531{ 7532 struct r0conf *raid0_conf = mddev->private; 7533 sector_t sectors; 7534 7535 /* for raid0 takeover only one zone is supported */ 7536 if (raid0_conf->nr_strip_zones > 1) { 7537 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7538 mdname(mddev)); 7539 return ERR_PTR(-EINVAL); 7540 } 7541 7542 sectors = raid0_conf->strip_zone[0].zone_end; 7543 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7544 mddev->dev_sectors = sectors; 7545 mddev->new_level = level; 7546 mddev->new_layout = ALGORITHM_PARITY_N; 7547 mddev->new_chunk_sectors = mddev->chunk_sectors; 7548 mddev->raid_disks += 1; 7549 mddev->delta_disks = 1; 7550 /* make sure it will be not marked as dirty */ 7551 mddev->recovery_cp = MaxSector; 7552 7553 return setup_conf(mddev); 7554} 7555 7556static void *raid5_takeover_raid1(struct mddev *mddev) 7557{ 7558 int chunksect; 7559 7560 if (mddev->raid_disks != 2 || 7561 mddev->degraded > 1) 7562 return ERR_PTR(-EINVAL); 7563 7564 /* Should check if there are write-behind devices? */ 7565 7566 chunksect = 64*2; /* 64K by default */ 7567 7568 /* The array must be an exact multiple of chunksize */ 7569 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7570 chunksect >>= 1; 7571 7572 if ((chunksect<<9) < STRIPE_SIZE) 7573 /* array size does not allow a suitable chunk size */ 7574 return ERR_PTR(-EINVAL); 7575 7576 mddev->new_level = 5; 7577 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7578 mddev->new_chunk_sectors = chunksect; 7579 7580 return setup_conf(mddev); 7581} 7582 7583static void *raid5_takeover_raid6(struct mddev *mddev) 7584{ 7585 int new_layout; 7586 7587 switch (mddev->layout) { 7588 case ALGORITHM_LEFT_ASYMMETRIC_6: 7589 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7590 break; 7591 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7592 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7593 break; 7594 case ALGORITHM_LEFT_SYMMETRIC_6: 7595 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7596 break; 7597 case ALGORITHM_RIGHT_SYMMETRIC_6: 7598 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7599 break; 7600 case ALGORITHM_PARITY_0_6: 7601 new_layout = ALGORITHM_PARITY_0; 7602 break; 7603 case ALGORITHM_PARITY_N: 7604 new_layout = ALGORITHM_PARITY_N; 7605 break; 7606 default: 7607 return ERR_PTR(-EINVAL); 7608 } 7609 mddev->new_level = 5; 7610 mddev->new_layout = new_layout; 7611 mddev->delta_disks = -1; 7612 mddev->raid_disks -= 1; 7613 return setup_conf(mddev); 7614} 7615 7616static int raid5_check_reshape(struct mddev *mddev) 7617{ 7618 /* For a 2-drive array, the layout and chunk size can be changed 7619 * immediately as not restriping is needed. 7620 * For larger arrays we record the new value - after validation 7621 * to be used by a reshape pass. 7622 */ 7623 struct r5conf *conf = mddev->private; 7624 int new_chunk = mddev->new_chunk_sectors; 7625 7626 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7627 return -EINVAL; 7628 if (new_chunk > 0) { 7629 if (!is_power_of_2(new_chunk)) 7630 return -EINVAL; 7631 if (new_chunk < (PAGE_SIZE>>9)) 7632 return -EINVAL; 7633 if (mddev->array_sectors & (new_chunk-1)) 7634 /* not factor of array size */ 7635 return -EINVAL; 7636 } 7637 7638 /* They look valid */ 7639 7640 if (mddev->raid_disks == 2) { 7641 /* can make the change immediately */ 7642 if (mddev->new_layout >= 0) { 7643 conf->algorithm = mddev->new_layout; 7644 mddev->layout = mddev->new_layout; 7645 } 7646 if (new_chunk > 0) { 7647 conf->chunk_sectors = new_chunk ; 7648 mddev->chunk_sectors = new_chunk; 7649 } 7650 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7651 md_wakeup_thread(mddev->thread); 7652 } 7653 return check_reshape(mddev); 7654} 7655 7656static int raid6_check_reshape(struct mddev *mddev) 7657{ 7658 int new_chunk = mddev->new_chunk_sectors; 7659 7660 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7661 return -EINVAL; 7662 if (new_chunk > 0) { 7663 if (!is_power_of_2(new_chunk)) 7664 return -EINVAL; 7665 if (new_chunk < (PAGE_SIZE >> 9)) 7666 return -EINVAL; 7667 if (mddev->array_sectors & (new_chunk-1)) 7668 /* not factor of array size */ 7669 return -EINVAL; 7670 } 7671 7672 /* They look valid */ 7673 return check_reshape(mddev); 7674} 7675 7676static void *raid5_takeover(struct mddev *mddev) 7677{ 7678 /* raid5 can take over: 7679 * raid0 - if there is only one strip zone - make it a raid4 layout 7680 * raid1 - if there are two drives. We need to know the chunk size 7681 * raid4 - trivial - just use a raid4 layout. 7682 * raid6 - Providing it is a *_6 layout 7683 */ 7684 if (mddev->level == 0) 7685 return raid45_takeover_raid0(mddev, 5); 7686 if (mddev->level == 1) 7687 return raid5_takeover_raid1(mddev); 7688 if (mddev->level == 4) { 7689 mddev->new_layout = ALGORITHM_PARITY_N; 7690 mddev->new_level = 5; 7691 return setup_conf(mddev); 7692 } 7693 if (mddev->level == 6) 7694 return raid5_takeover_raid6(mddev); 7695 7696 return ERR_PTR(-EINVAL); 7697} 7698 7699static void *raid4_takeover(struct mddev *mddev) 7700{ 7701 /* raid4 can take over: 7702 * raid0 - if there is only one strip zone 7703 * raid5 - if layout is right 7704 */ 7705 if (mddev->level == 0) 7706 return raid45_takeover_raid0(mddev, 4); 7707 if (mddev->level == 5 && 7708 mddev->layout == ALGORITHM_PARITY_N) { 7709 mddev->new_layout = 0; 7710 mddev->new_level = 4; 7711 return setup_conf(mddev); 7712 } 7713 return ERR_PTR(-EINVAL); 7714} 7715 7716static struct md_personality raid5_personality; 7717 7718static void *raid6_takeover(struct mddev *mddev) 7719{ 7720 /* Currently can only take over a raid5. We map the 7721 * personality to an equivalent raid6 personality 7722 * with the Q block at the end. 7723 */ 7724 int new_layout; 7725 7726 if (mddev->pers != &raid5_personality) 7727 return ERR_PTR(-EINVAL); 7728 if (mddev->degraded > 1) 7729 return ERR_PTR(-EINVAL); 7730 if (mddev->raid_disks > 253) 7731 return ERR_PTR(-EINVAL); 7732 if (mddev->raid_disks < 3) 7733 return ERR_PTR(-EINVAL); 7734 7735 switch (mddev->layout) { 7736 case ALGORITHM_LEFT_ASYMMETRIC: 7737 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7738 break; 7739 case ALGORITHM_RIGHT_ASYMMETRIC: 7740 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7741 break; 7742 case ALGORITHM_LEFT_SYMMETRIC: 7743 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7744 break; 7745 case ALGORITHM_RIGHT_SYMMETRIC: 7746 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7747 break; 7748 case ALGORITHM_PARITY_0: 7749 new_layout = ALGORITHM_PARITY_0_6; 7750 break; 7751 case ALGORITHM_PARITY_N: 7752 new_layout = ALGORITHM_PARITY_N; 7753 break; 7754 default: 7755 return ERR_PTR(-EINVAL); 7756 } 7757 mddev->new_level = 6; 7758 mddev->new_layout = new_layout; 7759 mddev->delta_disks = 1; 7760 mddev->raid_disks += 1; 7761 return setup_conf(mddev); 7762} 7763 7764static struct md_personality raid6_personality = 7765{ 7766 .name = "raid6", 7767 .level = 6, 7768 .owner = THIS_MODULE, 7769 .make_request = make_request, 7770 .run = run, 7771 .free = raid5_free, 7772 .status = status, 7773 .error_handler = error, 7774 .hot_add_disk = raid5_add_disk, 7775 .hot_remove_disk= raid5_remove_disk, 7776 .spare_active = raid5_spare_active, 7777 .sync_request = sync_request, 7778 .resize = raid5_resize, 7779 .size = raid5_size, 7780 .check_reshape = raid6_check_reshape, 7781 .start_reshape = raid5_start_reshape, 7782 .finish_reshape = raid5_finish_reshape, 7783 .quiesce = raid5_quiesce, 7784 .takeover = raid6_takeover, 7785 .congested = raid5_congested, 7786 .mergeable_bvec = raid5_mergeable_bvec, 7787}; 7788static struct md_personality raid5_personality = 7789{ 7790 .name = "raid5", 7791 .level = 5, 7792 .owner = THIS_MODULE, 7793 .make_request = make_request, 7794 .run = run, 7795 .free = raid5_free, 7796 .status = status, 7797 .error_handler = error, 7798 .hot_add_disk = raid5_add_disk, 7799 .hot_remove_disk= raid5_remove_disk, 7800 .spare_active = raid5_spare_active, 7801 .sync_request = sync_request, 7802 .resize = raid5_resize, 7803 .size = raid5_size, 7804 .check_reshape = raid5_check_reshape, 7805 .start_reshape = raid5_start_reshape, 7806 .finish_reshape = raid5_finish_reshape, 7807 .quiesce = raid5_quiesce, 7808 .takeover = raid5_takeover, 7809 .congested = raid5_congested, 7810 .mergeable_bvec = raid5_mergeable_bvec, 7811}; 7812 7813static struct md_personality raid4_personality = 7814{ 7815 .name = "raid4", 7816 .level = 4, 7817 .owner = THIS_MODULE, 7818 .make_request = make_request, 7819 .run = run, 7820 .free = raid5_free, 7821 .status = status, 7822 .error_handler = error, 7823 .hot_add_disk = raid5_add_disk, 7824 .hot_remove_disk= raid5_remove_disk, 7825 .spare_active = raid5_spare_active, 7826 .sync_request = sync_request, 7827 .resize = raid5_resize, 7828 .size = raid5_size, 7829 .check_reshape = raid5_check_reshape, 7830 .start_reshape = raid5_start_reshape, 7831 .finish_reshape = raid5_finish_reshape, 7832 .quiesce = raid5_quiesce, 7833 .takeover = raid4_takeover, 7834 .congested = raid5_congested, 7835 .mergeable_bvec = raid5_mergeable_bvec, 7836}; 7837 7838static int __init raid5_init(void) 7839{ 7840 raid5_wq = alloc_workqueue("raid5wq", 7841 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7842 if (!raid5_wq) 7843 return -ENOMEM; 7844 register_md_personality(&raid6_personality); 7845 register_md_personality(&raid5_personality); 7846 register_md_personality(&raid4_personality); 7847 return 0; 7848} 7849 7850static void raid5_exit(void) 7851{ 7852 unregister_md_personality(&raid6_personality); 7853 unregister_md_personality(&raid5_personality); 7854 unregister_md_personality(&raid4_personality); 7855 destroy_workqueue(raid5_wq); 7856} 7857 7858module_init(raid5_init); 7859module_exit(raid5_exit); 7860MODULE_LICENSE("GPL"); 7861MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7862MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7863MODULE_ALIAS("md-raid5"); 7864MODULE_ALIAS("md-raid4"); 7865MODULE_ALIAS("md-level-5"); 7866MODULE_ALIAS("md-level-4"); 7867MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7868MODULE_ALIAS("md-raid6"); 7869MODULE_ALIAS("md-level-6"); 7870 7871/* This used to be two separate modules, they were: */ 7872MODULE_ALIAS("raid5"); 7873MODULE_ALIAS("raid6"); 7874