1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/module.h>
51#include <linux/async.h>
52#include <linux/seq_file.h>
53#include <linux/cpu.h>
54#include <linux/slab.h>
55#include <linux/ratelimit.h>
56#include <linux/nodemask.h>
57#include <linux/flex_array.h>
58#include <trace/events/block.h>
59
60#include "md.h"
61#include "raid5.h"
62#include "raid0.h"
63#include "bitmap.h"
64
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72static struct workqueue_struct *raid5_wq;
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES		256
78#define STRIPE_SIZE		PAGE_SIZE
79#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81#define	IO_THRESHOLD		1
82#define BYPASS_THRESHOLD	1
83#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84#define HASH_MASK		(NR_HASH - 1)
85#define MAX_STRIPE_BATCH	8
86
87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88{
89	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90	return &conf->stripe_hashtbl[hash];
91}
92
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100	spin_lock_irq(conf->hash_locks + hash);
101	spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106	spin_unlock(&conf->device_lock);
107	spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112	int i;
113	local_irq_disable();
114	spin_lock(conf->hash_locks);
115	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117	spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122	int i;
123	spin_unlock(&conf->device_lock);
124	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125		spin_unlock(conf->hash_locks + i - 1);
126	local_irq_enable();
127}
128
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap.  There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
140	int sectors = bio_sectors(bio);
141	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142		return bio->bi_next;
143	else
144		return NULL;
145}
146
147/*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151static inline int raid5_bi_processed_stripes(struct bio *bio)
152{
153	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154	return (atomic_read(segments) >> 16) & 0xffff;
155}
156
157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158{
159	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160	return atomic_sub_return(1, segments) & 0xffff;
161}
162
163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164{
165	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166	atomic_inc(segments);
167}
168
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170	unsigned int cnt)
171{
172	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173	int old, new;
174
175	do {
176		old = atomic_read(segments);
177		new = (old & 0xffff) | (cnt << 16);
178	} while (atomic_cmpxchg(segments, old, new) != old);
179}
180
181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182{
183	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184	atomic_set(segments, cnt);
185}
186
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
190	if (sh->ddf_layout)
191		/* ddf always start from first device */
192		return 0;
193	/* md starts just after Q block */
194	if (sh->qd_idx == sh->disks - 1)
195		return 0;
196	else
197		return sh->qd_idx + 1;
198}
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201	disk++;
202	return (disk < raid_disks) ? disk : 0;
203}
204
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1.  This help does that mapping.
209 */
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211			     int *count, int syndrome_disks)
212{
213	int slot = *count;
214
215	if (sh->ddf_layout)
216		(*count)++;
217	if (idx == sh->pd_idx)
218		return syndrome_disks;
219	if (idx == sh->qd_idx)
220		return syndrome_disks + 1;
221	if (!sh->ddf_layout)
222		(*count)++;
223	return slot;
224}
225
226static void return_io(struct bio *return_bi)
227{
228	struct bio *bi = return_bi;
229	while (bi) {
230
231		return_bi = bi->bi_next;
232		bi->bi_next = NULL;
233		bi->bi_iter.bi_size = 0;
234		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235					 bi, 0);
236		bio_endio(bi, 0);
237		bi = return_bi;
238	}
239}
240
241static void print_raid5_conf (struct r5conf *conf);
242
243static int stripe_operations_active(struct stripe_head *sh)
244{
245	return sh->check_state || sh->reconstruct_state ||
246	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252	struct r5conf *conf = sh->raid_conf;
253	struct r5worker_group *group;
254	int thread_cnt;
255	int i, cpu = sh->cpu;
256
257	if (!cpu_online(cpu)) {
258		cpu = cpumask_any(cpu_online_mask);
259		sh->cpu = cpu;
260	}
261
262	if (list_empty(&sh->lru)) {
263		struct r5worker_group *group;
264		group = conf->worker_groups + cpu_to_group(cpu);
265		list_add_tail(&sh->lru, &group->handle_list);
266		group->stripes_cnt++;
267		sh->group = group;
268	}
269
270	if (conf->worker_cnt_per_group == 0) {
271		md_wakeup_thread(conf->mddev->thread);
272		return;
273	}
274
275	group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277	group->workers[0].working = true;
278	/* at least one worker should run to avoid race */
279	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282	/* wakeup more workers */
283	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284		if (group->workers[i].working == false) {
285			group->workers[i].working = true;
286			queue_work_on(sh->cpu, raid5_wq,
287				      &group->workers[i].work);
288			thread_cnt--;
289		}
290	}
291}
292
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294			      struct list_head *temp_inactive_list)
295{
296	BUG_ON(!list_empty(&sh->lru));
297	BUG_ON(atomic_read(&conf->active_stripes)==0);
298	if (test_bit(STRIPE_HANDLE, &sh->state)) {
299		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301			list_add_tail(&sh->lru, &conf->delayed_list);
302		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303			   sh->bm_seq - conf->seq_write > 0)
304			list_add_tail(&sh->lru, &conf->bitmap_list);
305		else {
306			clear_bit(STRIPE_DELAYED, &sh->state);
307			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308			if (conf->worker_cnt_per_group == 0) {
309				list_add_tail(&sh->lru, &conf->handle_list);
310			} else {
311				raid5_wakeup_stripe_thread(sh);
312				return;
313			}
314		}
315		md_wakeup_thread(conf->mddev->thread);
316	} else {
317		BUG_ON(stripe_operations_active(sh));
318		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319			if (atomic_dec_return(&conf->preread_active_stripes)
320			    < IO_THRESHOLD)
321				md_wakeup_thread(conf->mddev->thread);
322		atomic_dec(&conf->active_stripes);
323		if (!test_bit(STRIPE_EXPANDING, &sh->state))
324			list_add_tail(&sh->lru, temp_inactive_list);
325	}
326}
327
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329			     struct list_head *temp_inactive_list)
330{
331	if (atomic_dec_and_test(&sh->count))
332		do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343					 struct list_head *temp_inactive_list,
344					 int hash)
345{
346	int size;
347	bool do_wakeup = false;
348	unsigned long flags;
349
350	if (hash == NR_STRIPE_HASH_LOCKS) {
351		size = NR_STRIPE_HASH_LOCKS;
352		hash = NR_STRIPE_HASH_LOCKS - 1;
353	} else
354		size = 1;
355	while (size) {
356		struct list_head *list = &temp_inactive_list[size - 1];
357
358		/*
359		 * We don't hold any lock here yet, get_active_stripe() might
360		 * remove stripes from the list
361		 */
362		if (!list_empty_careful(list)) {
363			spin_lock_irqsave(conf->hash_locks + hash, flags);
364			if (list_empty(conf->inactive_list + hash) &&
365			    !list_empty(list))
366				atomic_dec(&conf->empty_inactive_list_nr);
367			list_splice_tail_init(list, conf->inactive_list + hash);
368			do_wakeup = true;
369			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370		}
371		size--;
372		hash--;
373	}
374
375	if (do_wakeup) {
376		wake_up(&conf->wait_for_stripe);
377		if (conf->retry_read_aligned)
378			md_wakeup_thread(conf->mddev->thread);
379	}
380}
381
382/* should hold conf->device_lock already */
383static int release_stripe_list(struct r5conf *conf,
384			       struct list_head *temp_inactive_list)
385{
386	struct stripe_head *sh;
387	int count = 0;
388	struct llist_node *head;
389
390	head = llist_del_all(&conf->released_stripes);
391	head = llist_reverse_order(head);
392	while (head) {
393		int hash;
394
395		sh = llist_entry(head, struct stripe_head, release_list);
396		head = llist_next(head);
397		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398		smp_mb();
399		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400		/*
401		 * Don't worry the bit is set here, because if the bit is set
402		 * again, the count is always > 1. This is true for
403		 * STRIPE_ON_UNPLUG_LIST bit too.
404		 */
405		hash = sh->hash_lock_index;
406		__release_stripe(conf, sh, &temp_inactive_list[hash]);
407		count++;
408	}
409
410	return count;
411}
412
413static void release_stripe(struct stripe_head *sh)
414{
415	struct r5conf *conf = sh->raid_conf;
416	unsigned long flags;
417	struct list_head list;
418	int hash;
419	bool wakeup;
420
421	/* Avoid release_list until the last reference.
422	 */
423	if (atomic_add_unless(&sh->count, -1, 1))
424		return;
425
426	if (unlikely(!conf->mddev->thread) ||
427		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428		goto slow_path;
429	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430	if (wakeup)
431		md_wakeup_thread(conf->mddev->thread);
432	return;
433slow_path:
434	local_irq_save(flags);
435	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437		INIT_LIST_HEAD(&list);
438		hash = sh->hash_lock_index;
439		do_release_stripe(conf, sh, &list);
440		spin_unlock(&conf->device_lock);
441		release_inactive_stripe_list(conf, &list, hash);
442	}
443	local_irq_restore(flags);
444}
445
446static inline void remove_hash(struct stripe_head *sh)
447{
448	pr_debug("remove_hash(), stripe %llu\n",
449		(unsigned long long)sh->sector);
450
451	hlist_del_init(&sh->hash);
452}
453
454static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455{
456	struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458	pr_debug("insert_hash(), stripe %llu\n",
459		(unsigned long long)sh->sector);
460
461	hlist_add_head(&sh->hash, hp);
462}
463
464/* find an idle stripe, make sure it is unhashed, and return it. */
465static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466{
467	struct stripe_head *sh = NULL;
468	struct list_head *first;
469
470	if (list_empty(conf->inactive_list + hash))
471		goto out;
472	first = (conf->inactive_list + hash)->next;
473	sh = list_entry(first, struct stripe_head, lru);
474	list_del_init(first);
475	remove_hash(sh);
476	atomic_inc(&conf->active_stripes);
477	BUG_ON(hash != sh->hash_lock_index);
478	if (list_empty(conf->inactive_list + hash))
479		atomic_inc(&conf->empty_inactive_list_nr);
480out:
481	return sh;
482}
483
484static void shrink_buffers(struct stripe_head *sh)
485{
486	struct page *p;
487	int i;
488	int num = sh->raid_conf->pool_size;
489
490	for (i = 0; i < num ; i++) {
491		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492		p = sh->dev[i].page;
493		if (!p)
494			continue;
495		sh->dev[i].page = NULL;
496		put_page(p);
497	}
498}
499
500static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501{
502	int i;
503	int num = sh->raid_conf->pool_size;
504
505	for (i = 0; i < num; i++) {
506		struct page *page;
507
508		if (!(page = alloc_page(gfp))) {
509			return 1;
510		}
511		sh->dev[i].page = page;
512		sh->dev[i].orig_page = page;
513	}
514	return 0;
515}
516
517static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519			    struct stripe_head *sh);
520
521static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522{
523	struct r5conf *conf = sh->raid_conf;
524	int i, seq;
525
526	BUG_ON(atomic_read(&sh->count) != 0);
527	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528	BUG_ON(stripe_operations_active(sh));
529	BUG_ON(sh->batch_head);
530
531	pr_debug("init_stripe called, stripe %llu\n",
532		(unsigned long long)sector);
533retry:
534	seq = read_seqcount_begin(&conf->gen_lock);
535	sh->generation = conf->generation - previous;
536	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537	sh->sector = sector;
538	stripe_set_idx(sector, conf, previous, sh);
539	sh->state = 0;
540
541	for (i = sh->disks; i--; ) {
542		struct r5dev *dev = &sh->dev[i];
543
544		if (dev->toread || dev->read || dev->towrite || dev->written ||
545		    test_bit(R5_LOCKED, &dev->flags)) {
546			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547			       (unsigned long long)sh->sector, i, dev->toread,
548			       dev->read, dev->towrite, dev->written,
549			       test_bit(R5_LOCKED, &dev->flags));
550			WARN_ON(1);
551		}
552		dev->flags = 0;
553		raid5_build_block(sh, i, previous);
554	}
555	if (read_seqcount_retry(&conf->gen_lock, seq))
556		goto retry;
557	sh->overwrite_disks = 0;
558	insert_hash(conf, sh);
559	sh->cpu = smp_processor_id();
560	set_bit(STRIPE_BATCH_READY, &sh->state);
561}
562
563static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564					 short generation)
565{
566	struct stripe_head *sh;
567
568	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570		if (sh->sector == sector && sh->generation == generation)
571			return sh;
572	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573	return NULL;
574}
575
576/*
577 * Need to check if array has failed when deciding whether to:
578 *  - start an array
579 *  - remove non-faulty devices
580 *  - add a spare
581 *  - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
589static int calc_degraded(struct r5conf *conf)
590{
591	int degraded, degraded2;
592	int i;
593
594	rcu_read_lock();
595	degraded = 0;
596	for (i = 0; i < conf->previous_raid_disks; i++) {
597		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598		if (rdev && test_bit(Faulty, &rdev->flags))
599			rdev = rcu_dereference(conf->disks[i].replacement);
600		if (!rdev || test_bit(Faulty, &rdev->flags))
601			degraded++;
602		else if (test_bit(In_sync, &rdev->flags))
603			;
604		else
605			/* not in-sync or faulty.
606			 * If the reshape increases the number of devices,
607			 * this is being recovered by the reshape, so
608			 * this 'previous' section is not in_sync.
609			 * If the number of devices is being reduced however,
610			 * the device can only be part of the array if
611			 * we are reverting a reshape, so this section will
612			 * be in-sync.
613			 */
614			if (conf->raid_disks >= conf->previous_raid_disks)
615				degraded++;
616	}
617	rcu_read_unlock();
618	if (conf->raid_disks == conf->previous_raid_disks)
619		return degraded;
620	rcu_read_lock();
621	degraded2 = 0;
622	for (i = 0; i < conf->raid_disks; i++) {
623		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624		if (rdev && test_bit(Faulty, &rdev->flags))
625			rdev = rcu_dereference(conf->disks[i].replacement);
626		if (!rdev || test_bit(Faulty, &rdev->flags))
627			degraded2++;
628		else if (test_bit(In_sync, &rdev->flags))
629			;
630		else
631			/* not in-sync or faulty.
632			 * If reshape increases the number of devices, this
633			 * section has already been recovered, else it
634			 * almost certainly hasn't.
635			 */
636			if (conf->raid_disks <= conf->previous_raid_disks)
637				degraded2++;
638	}
639	rcu_read_unlock();
640	if (degraded2 > degraded)
641		return degraded2;
642	return degraded;
643}
644
645static int has_failed(struct r5conf *conf)
646{
647	int degraded;
648
649	if (conf->mddev->reshape_position == MaxSector)
650		return conf->mddev->degraded > conf->max_degraded;
651
652	degraded = calc_degraded(conf);
653	if (degraded > conf->max_degraded)
654		return 1;
655	return 0;
656}
657
658static struct stripe_head *
659get_active_stripe(struct r5conf *conf, sector_t sector,
660		  int previous, int noblock, int noquiesce)
661{
662	struct stripe_head *sh;
663	int hash = stripe_hash_locks_hash(sector);
664
665	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667	spin_lock_irq(conf->hash_locks + hash);
668
669	do {
670		wait_event_lock_irq(conf->wait_for_stripe,
671				    conf->quiesce == 0 || noquiesce,
672				    *(conf->hash_locks + hash));
673		sh = __find_stripe(conf, sector, conf->generation - previous);
674		if (!sh) {
675			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676				sh = get_free_stripe(conf, hash);
677				if (!sh && llist_empty(&conf->released_stripes) &&
678				    !test_bit(R5_DID_ALLOC, &conf->cache_state))
679					set_bit(R5_ALLOC_MORE,
680						&conf->cache_state);
681			}
682			if (noblock && sh == NULL)
683				break;
684			if (!sh) {
685				set_bit(R5_INACTIVE_BLOCKED,
686					&conf->cache_state);
687				wait_event_lock_irq(
688					conf->wait_for_stripe,
689					!list_empty(conf->inactive_list + hash) &&
690					(atomic_read(&conf->active_stripes)
691					 < (conf->max_nr_stripes * 3 / 4)
692					 || !test_bit(R5_INACTIVE_BLOCKED,
693						      &conf->cache_state)),
694					*(conf->hash_locks + hash));
695				clear_bit(R5_INACTIVE_BLOCKED,
696					  &conf->cache_state);
697			} else {
698				init_stripe(sh, sector, previous);
699				atomic_inc(&sh->count);
700			}
701		} else if (!atomic_inc_not_zero(&sh->count)) {
702			spin_lock(&conf->device_lock);
703			if (!atomic_read(&sh->count)) {
704				if (!test_bit(STRIPE_HANDLE, &sh->state))
705					atomic_inc(&conf->active_stripes);
706				BUG_ON(list_empty(&sh->lru) &&
707				       !test_bit(STRIPE_EXPANDING, &sh->state));
708				list_del_init(&sh->lru);
709				if (sh->group) {
710					sh->group->stripes_cnt--;
711					sh->group = NULL;
712				}
713			}
714			atomic_inc(&sh->count);
715			spin_unlock(&conf->device_lock);
716		}
717	} while (sh == NULL);
718
719	spin_unlock_irq(conf->hash_locks + hash);
720	return sh;
721}
722
723static bool is_full_stripe_write(struct stripe_head *sh)
724{
725	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727}
728
729static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730{
731	local_irq_disable();
732	if (sh1 > sh2) {
733		spin_lock(&sh2->stripe_lock);
734		spin_lock_nested(&sh1->stripe_lock, 1);
735	} else {
736		spin_lock(&sh1->stripe_lock);
737		spin_lock_nested(&sh2->stripe_lock, 1);
738	}
739}
740
741static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742{
743	spin_unlock(&sh1->stripe_lock);
744	spin_unlock(&sh2->stripe_lock);
745	local_irq_enable();
746}
747
748/* Only freshly new full stripe normal write stripe can be added to a batch list */
749static bool stripe_can_batch(struct stripe_head *sh)
750{
751	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
753		is_full_stripe_write(sh);
754}
755
756/* we only do back search */
757static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
758{
759	struct stripe_head *head;
760	sector_t head_sector, tmp_sec;
761	int hash;
762	int dd_idx;
763
764	if (!stripe_can_batch(sh))
765		return;
766	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767	tmp_sec = sh->sector;
768	if (!sector_div(tmp_sec, conf->chunk_sectors))
769		return;
770	head_sector = sh->sector - STRIPE_SECTORS;
771
772	hash = stripe_hash_locks_hash(head_sector);
773	spin_lock_irq(conf->hash_locks + hash);
774	head = __find_stripe(conf, head_sector, conf->generation);
775	if (head && !atomic_inc_not_zero(&head->count)) {
776		spin_lock(&conf->device_lock);
777		if (!atomic_read(&head->count)) {
778			if (!test_bit(STRIPE_HANDLE, &head->state))
779				atomic_inc(&conf->active_stripes);
780			BUG_ON(list_empty(&head->lru) &&
781			       !test_bit(STRIPE_EXPANDING, &head->state));
782			list_del_init(&head->lru);
783			if (head->group) {
784				head->group->stripes_cnt--;
785				head->group = NULL;
786			}
787		}
788		atomic_inc(&head->count);
789		spin_unlock(&conf->device_lock);
790	}
791	spin_unlock_irq(conf->hash_locks + hash);
792
793	if (!head)
794		return;
795	if (!stripe_can_batch(head))
796		goto out;
797
798	lock_two_stripes(head, sh);
799	/* clear_batch_ready clear the flag */
800	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801		goto unlock_out;
802
803	if (sh->batch_head)
804		goto unlock_out;
805
806	dd_idx = 0;
807	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808		dd_idx++;
809	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810		goto unlock_out;
811
812	if (head->batch_head) {
813		spin_lock(&head->batch_head->batch_lock);
814		/* This batch list is already running */
815		if (!stripe_can_batch(head)) {
816			spin_unlock(&head->batch_head->batch_lock);
817			goto unlock_out;
818		}
819
820		/*
821		 * at this point, head's BATCH_READY could be cleared, but we
822		 * can still add the stripe to batch list
823		 */
824		list_add(&sh->batch_list, &head->batch_list);
825		spin_unlock(&head->batch_head->batch_lock);
826
827		sh->batch_head = head->batch_head;
828	} else {
829		head->batch_head = head;
830		sh->batch_head = head->batch_head;
831		spin_lock(&head->batch_lock);
832		list_add_tail(&sh->batch_list, &head->batch_list);
833		spin_unlock(&head->batch_lock);
834	}
835
836	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837		if (atomic_dec_return(&conf->preread_active_stripes)
838		    < IO_THRESHOLD)
839			md_wakeup_thread(conf->mddev->thread);
840
841	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842		int seq = sh->bm_seq;
843		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844		    sh->batch_head->bm_seq > seq)
845			seq = sh->batch_head->bm_seq;
846		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847		sh->batch_head->bm_seq = seq;
848	}
849
850	atomic_inc(&sh->count);
851unlock_out:
852	unlock_two_stripes(head, sh);
853out:
854	release_stripe(head);
855}
856
857/* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861{
862	sector_t progress = conf->reshape_progress;
863	/* Need a memory barrier to make sure we see the value
864	 * of conf->generation, or ->data_offset that was set before
865	 * reshape_progress was updated.
866	 */
867	smp_rmb();
868	if (progress == MaxSector)
869		return 0;
870	if (sh->generation == conf->generation - 1)
871		return 0;
872	/* We are in a reshape, and this is a new-generation stripe,
873	 * so use new_data_offset.
874	 */
875	return 1;
876}
877
878static void
879raid5_end_read_request(struct bio *bi, int error);
880static void
881raid5_end_write_request(struct bio *bi, int error);
882
883static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884{
885	struct r5conf *conf = sh->raid_conf;
886	int i, disks = sh->disks;
887	struct stripe_head *head_sh = sh;
888
889	might_sleep();
890
891	for (i = disks; i--; ) {
892		int rw;
893		int replace_only = 0;
894		struct bio *bi, *rbi;
895		struct md_rdev *rdev, *rrdev = NULL;
896
897		sh = head_sh;
898		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
899			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
900				rw = WRITE_FUA;
901			else
902				rw = WRITE;
903			if (test_bit(R5_Discard, &sh->dev[i].flags))
904				rw |= REQ_DISCARD;
905		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906			rw = READ;
907		else if (test_and_clear_bit(R5_WantReplace,
908					    &sh->dev[i].flags)) {
909			rw = WRITE;
910			replace_only = 1;
911		} else
912			continue;
913		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914			rw |= REQ_SYNC;
915
916again:
917		bi = &sh->dev[i].req;
918		rbi = &sh->dev[i].rreq; /* For writing to replacement */
919
920		rcu_read_lock();
921		rrdev = rcu_dereference(conf->disks[i].replacement);
922		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923		rdev = rcu_dereference(conf->disks[i].rdev);
924		if (!rdev) {
925			rdev = rrdev;
926			rrdev = NULL;
927		}
928		if (rw & WRITE) {
929			if (replace_only)
930				rdev = NULL;
931			if (rdev == rrdev)
932				/* We raced and saw duplicates */
933				rrdev = NULL;
934		} else {
935			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936				rdev = rrdev;
937			rrdev = NULL;
938		}
939
940		if (rdev && test_bit(Faulty, &rdev->flags))
941			rdev = NULL;
942		if (rdev)
943			atomic_inc(&rdev->nr_pending);
944		if (rrdev && test_bit(Faulty, &rrdev->flags))
945			rrdev = NULL;
946		if (rrdev)
947			atomic_inc(&rrdev->nr_pending);
948		rcu_read_unlock();
949
950		/* We have already checked bad blocks for reads.  Now
951		 * need to check for writes.  We never accept write errors
952		 * on the replacement, so we don't to check rrdev.
953		 */
954		while ((rw & WRITE) && rdev &&
955		       test_bit(WriteErrorSeen, &rdev->flags)) {
956			sector_t first_bad;
957			int bad_sectors;
958			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959					      &first_bad, &bad_sectors);
960			if (!bad)
961				break;
962
963			if (bad < 0) {
964				set_bit(BlockedBadBlocks, &rdev->flags);
965				if (!conf->mddev->external &&
966				    conf->mddev->flags) {
967					/* It is very unlikely, but we might
968					 * still need to write out the
969					 * bad block log - better give it
970					 * a chance*/
971					md_check_recovery(conf->mddev);
972				}
973				/*
974				 * Because md_wait_for_blocked_rdev
975				 * will dec nr_pending, we must
976				 * increment it first.
977				 */
978				atomic_inc(&rdev->nr_pending);
979				md_wait_for_blocked_rdev(rdev, conf->mddev);
980			} else {
981				/* Acknowledged bad block - skip the write */
982				rdev_dec_pending(rdev, conf->mddev);
983				rdev = NULL;
984			}
985		}
986
987		if (rdev) {
988			if (s->syncing || s->expanding || s->expanded
989			    || s->replacing)
990				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991
992			set_bit(STRIPE_IO_STARTED, &sh->state);
993
994			bio_reset(bi);
995			bi->bi_bdev = rdev->bdev;
996			bi->bi_rw = rw;
997			bi->bi_end_io = (rw & WRITE)
998				? raid5_end_write_request
999				: raid5_end_read_request;
1000			bi->bi_private = sh;
1001
1002			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1003				__func__, (unsigned long long)sh->sector,
1004				bi->bi_rw, i);
1005			atomic_inc(&sh->count);
1006			if (sh != head_sh)
1007				atomic_inc(&head_sh->count);
1008			if (use_new_offset(conf, sh))
1009				bi->bi_iter.bi_sector = (sh->sector
1010						 + rdev->new_data_offset);
1011			else
1012				bi->bi_iter.bi_sector = (sh->sector
1013						 + rdev->data_offset);
1014			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1015				bi->bi_rw |= REQ_NOMERGE;
1016
1017			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1018				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1019			sh->dev[i].vec.bv_page = sh->dev[i].page;
1020			bi->bi_vcnt = 1;
1021			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1022			bi->bi_io_vec[0].bv_offset = 0;
1023			bi->bi_iter.bi_size = STRIPE_SIZE;
1024			/*
1025			 * If this is discard request, set bi_vcnt 0. We don't
1026			 * want to confuse SCSI because SCSI will replace payload
1027			 */
1028			if (rw & REQ_DISCARD)
1029				bi->bi_vcnt = 0;
1030			if (rrdev)
1031				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1032
1033			if (conf->mddev->gendisk)
1034				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1035						      bi, disk_devt(conf->mddev->gendisk),
1036						      sh->dev[i].sector);
1037			generic_make_request(bi);
1038		}
1039		if (rrdev) {
1040			if (s->syncing || s->expanding || s->expanded
1041			    || s->replacing)
1042				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1043
1044			set_bit(STRIPE_IO_STARTED, &sh->state);
1045
1046			bio_reset(rbi);
1047			rbi->bi_bdev = rrdev->bdev;
1048			rbi->bi_rw = rw;
1049			BUG_ON(!(rw & WRITE));
1050			rbi->bi_end_io = raid5_end_write_request;
1051			rbi->bi_private = sh;
1052
1053			pr_debug("%s: for %llu schedule op %ld on "
1054				 "replacement disc %d\n",
1055				__func__, (unsigned long long)sh->sector,
1056				rbi->bi_rw, i);
1057			atomic_inc(&sh->count);
1058			if (sh != head_sh)
1059				atomic_inc(&head_sh->count);
1060			if (use_new_offset(conf, sh))
1061				rbi->bi_iter.bi_sector = (sh->sector
1062						  + rrdev->new_data_offset);
1063			else
1064				rbi->bi_iter.bi_sector = (sh->sector
1065						  + rrdev->data_offset);
1066			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1067				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1068			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1069			rbi->bi_vcnt = 1;
1070			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1071			rbi->bi_io_vec[0].bv_offset = 0;
1072			rbi->bi_iter.bi_size = STRIPE_SIZE;
1073			/*
1074			 * If this is discard request, set bi_vcnt 0. We don't
1075			 * want to confuse SCSI because SCSI will replace payload
1076			 */
1077			if (rw & REQ_DISCARD)
1078				rbi->bi_vcnt = 0;
1079			if (conf->mddev->gendisk)
1080				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1081						      rbi, disk_devt(conf->mddev->gendisk),
1082						      sh->dev[i].sector);
1083			generic_make_request(rbi);
1084		}
1085		if (!rdev && !rrdev) {
1086			if (rw & WRITE)
1087				set_bit(STRIPE_DEGRADED, &sh->state);
1088			pr_debug("skip op %ld on disc %d for sector %llu\n",
1089				bi->bi_rw, i, (unsigned long long)sh->sector);
1090			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1091			set_bit(STRIPE_HANDLE, &sh->state);
1092		}
1093
1094		if (!head_sh->batch_head)
1095			continue;
1096		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1097				      batch_list);
1098		if (sh != head_sh)
1099			goto again;
1100	}
1101}
1102
1103static struct dma_async_tx_descriptor *
1104async_copy_data(int frombio, struct bio *bio, struct page **page,
1105	sector_t sector, struct dma_async_tx_descriptor *tx,
1106	struct stripe_head *sh)
1107{
1108	struct bio_vec bvl;
1109	struct bvec_iter iter;
1110	struct page *bio_page;
1111	int page_offset;
1112	struct async_submit_ctl submit;
1113	enum async_tx_flags flags = 0;
1114
1115	if (bio->bi_iter.bi_sector >= sector)
1116		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1117	else
1118		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1119
1120	if (frombio)
1121		flags |= ASYNC_TX_FENCE;
1122	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1123
1124	bio_for_each_segment(bvl, bio, iter) {
1125		int len = bvl.bv_len;
1126		int clen;
1127		int b_offset = 0;
1128
1129		if (page_offset < 0) {
1130			b_offset = -page_offset;
1131			page_offset += b_offset;
1132			len -= b_offset;
1133		}
1134
1135		if (len > 0 && page_offset + len > STRIPE_SIZE)
1136			clen = STRIPE_SIZE - page_offset;
1137		else
1138			clen = len;
1139
1140		if (clen > 0) {
1141			b_offset += bvl.bv_offset;
1142			bio_page = bvl.bv_page;
1143			if (frombio) {
1144				if (sh->raid_conf->skip_copy &&
1145				    b_offset == 0 && page_offset == 0 &&
1146				    clen == STRIPE_SIZE)
1147					*page = bio_page;
1148				else
1149					tx = async_memcpy(*page, bio_page, page_offset,
1150						  b_offset, clen, &submit);
1151			} else
1152				tx = async_memcpy(bio_page, *page, b_offset,
1153						  page_offset, clen, &submit);
1154		}
1155		/* chain the operations */
1156		submit.depend_tx = tx;
1157
1158		if (clen < len) /* hit end of page */
1159			break;
1160		page_offset +=  len;
1161	}
1162
1163	return tx;
1164}
1165
1166static void ops_complete_biofill(void *stripe_head_ref)
1167{
1168	struct stripe_head *sh = stripe_head_ref;
1169	struct bio *return_bi = NULL;
1170	int i;
1171
1172	pr_debug("%s: stripe %llu\n", __func__,
1173		(unsigned long long)sh->sector);
1174
1175	/* clear completed biofills */
1176	for (i = sh->disks; i--; ) {
1177		struct r5dev *dev = &sh->dev[i];
1178
1179		/* acknowledge completion of a biofill operation */
1180		/* and check if we need to reply to a read request,
1181		 * new R5_Wantfill requests are held off until
1182		 * !STRIPE_BIOFILL_RUN
1183		 */
1184		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1185			struct bio *rbi, *rbi2;
1186
1187			BUG_ON(!dev->read);
1188			rbi = dev->read;
1189			dev->read = NULL;
1190			while (rbi && rbi->bi_iter.bi_sector <
1191				dev->sector + STRIPE_SECTORS) {
1192				rbi2 = r5_next_bio(rbi, dev->sector);
1193				if (!raid5_dec_bi_active_stripes(rbi)) {
1194					rbi->bi_next = return_bi;
1195					return_bi = rbi;
1196				}
1197				rbi = rbi2;
1198			}
1199		}
1200	}
1201	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203	return_io(return_bi);
1204
1205	set_bit(STRIPE_HANDLE, &sh->state);
1206	release_stripe(sh);
1207}
1208
1209static void ops_run_biofill(struct stripe_head *sh)
1210{
1211	struct dma_async_tx_descriptor *tx = NULL;
1212	struct async_submit_ctl submit;
1213	int i;
1214
1215	BUG_ON(sh->batch_head);
1216	pr_debug("%s: stripe %llu\n", __func__,
1217		(unsigned long long)sh->sector);
1218
1219	for (i = sh->disks; i--; ) {
1220		struct r5dev *dev = &sh->dev[i];
1221		if (test_bit(R5_Wantfill, &dev->flags)) {
1222			struct bio *rbi;
1223			spin_lock_irq(&sh->stripe_lock);
1224			dev->read = rbi = dev->toread;
1225			dev->toread = NULL;
1226			spin_unlock_irq(&sh->stripe_lock);
1227			while (rbi && rbi->bi_iter.bi_sector <
1228				dev->sector + STRIPE_SECTORS) {
1229				tx = async_copy_data(0, rbi, &dev->page,
1230					dev->sector, tx, sh);
1231				rbi = r5_next_bio(rbi, dev->sector);
1232			}
1233		}
1234	}
1235
1236	atomic_inc(&sh->count);
1237	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238	async_trigger_callback(&submit);
1239}
1240
1241static void mark_target_uptodate(struct stripe_head *sh, int target)
1242{
1243	struct r5dev *tgt;
1244
1245	if (target < 0)
1246		return;
1247
1248	tgt = &sh->dev[target];
1249	set_bit(R5_UPTODATE, &tgt->flags);
1250	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251	clear_bit(R5_Wantcompute, &tgt->flags);
1252}
1253
1254static void ops_complete_compute(void *stripe_head_ref)
1255{
1256	struct stripe_head *sh = stripe_head_ref;
1257
1258	pr_debug("%s: stripe %llu\n", __func__,
1259		(unsigned long long)sh->sector);
1260
1261	/* mark the computed target(s) as uptodate */
1262	mark_target_uptodate(sh, sh->ops.target);
1263	mark_target_uptodate(sh, sh->ops.target2);
1264
1265	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266	if (sh->check_state == check_state_compute_run)
1267		sh->check_state = check_state_compute_result;
1268	set_bit(STRIPE_HANDLE, &sh->state);
1269	release_stripe(sh);
1270}
1271
1272/* return a pointer to the address conversion region of the scribble buffer */
1273static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274				 struct raid5_percpu *percpu, int i)
1275{
1276	void *addr;
1277
1278	addr = flex_array_get(percpu->scribble, i);
1279	return addr + sizeof(struct page *) * (sh->disks + 2);
1280}
1281
1282/* return a pointer to the address conversion region of the scribble buffer */
1283static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284{
1285	void *addr;
1286
1287	addr = flex_array_get(percpu->scribble, i);
1288	return addr;
1289}
1290
1291static struct dma_async_tx_descriptor *
1292ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293{
1294	int disks = sh->disks;
1295	struct page **xor_srcs = to_addr_page(percpu, 0);
1296	int target = sh->ops.target;
1297	struct r5dev *tgt = &sh->dev[target];
1298	struct page *xor_dest = tgt->page;
1299	int count = 0;
1300	struct dma_async_tx_descriptor *tx;
1301	struct async_submit_ctl submit;
1302	int i;
1303
1304	BUG_ON(sh->batch_head);
1305
1306	pr_debug("%s: stripe %llu block: %d\n",
1307		__func__, (unsigned long long)sh->sector, target);
1308	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310	for (i = disks; i--; )
1311		if (i != target)
1312			xor_srcs[count++] = sh->dev[i].page;
1313
1314	atomic_inc(&sh->count);
1315
1316	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318	if (unlikely(count == 1))
1319		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320	else
1321		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323	return tx;
1324}
1325
1326/* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1329 *
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1334 */
1335static int set_syndrome_sources(struct page **srcs,
1336				struct stripe_head *sh,
1337				int srctype)
1338{
1339	int disks = sh->disks;
1340	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341	int d0_idx = raid6_d0(sh);
1342	int count;
1343	int i;
1344
1345	for (i = 0; i < disks; i++)
1346		srcs[i] = NULL;
1347
1348	count = 0;
1349	i = d0_idx;
1350	do {
1351		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352		struct r5dev *dev = &sh->dev[i];
1353
1354		if (i == sh->qd_idx || i == sh->pd_idx ||
1355		    (srctype == SYNDROME_SRC_ALL) ||
1356		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357		     test_bit(R5_Wantdrain, &dev->flags)) ||
1358		    (srctype == SYNDROME_SRC_WRITTEN &&
1359		     dev->written))
1360			srcs[slot] = sh->dev[i].page;
1361		i = raid6_next_disk(i, disks);
1362	} while (i != d0_idx);
1363
1364	return syndrome_disks;
1365}
1366
1367static struct dma_async_tx_descriptor *
1368ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369{
1370	int disks = sh->disks;
1371	struct page **blocks = to_addr_page(percpu, 0);
1372	int target;
1373	int qd_idx = sh->qd_idx;
1374	struct dma_async_tx_descriptor *tx;
1375	struct async_submit_ctl submit;
1376	struct r5dev *tgt;
1377	struct page *dest;
1378	int i;
1379	int count;
1380
1381	BUG_ON(sh->batch_head);
1382	if (sh->ops.target < 0)
1383		target = sh->ops.target2;
1384	else if (sh->ops.target2 < 0)
1385		target = sh->ops.target;
1386	else
1387		/* we should only have one valid target */
1388		BUG();
1389	BUG_ON(target < 0);
1390	pr_debug("%s: stripe %llu block: %d\n",
1391		__func__, (unsigned long long)sh->sector, target);
1392
1393	tgt = &sh->dev[target];
1394	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395	dest = tgt->page;
1396
1397	atomic_inc(&sh->count);
1398
1399	if (target == qd_idx) {
1400		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401		blocks[count] = NULL; /* regenerating p is not necessary */
1402		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404				  ops_complete_compute, sh,
1405				  to_addr_conv(sh, percpu, 0));
1406		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407	} else {
1408		/* Compute any data- or p-drive using XOR */
1409		count = 0;
1410		for (i = disks; i-- ; ) {
1411			if (i == target || i == qd_idx)
1412				continue;
1413			blocks[count++] = sh->dev[i].page;
1414		}
1415
1416		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417				  NULL, ops_complete_compute, sh,
1418				  to_addr_conv(sh, percpu, 0));
1419		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420	}
1421
1422	return tx;
1423}
1424
1425static struct dma_async_tx_descriptor *
1426ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427{
1428	int i, count, disks = sh->disks;
1429	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430	int d0_idx = raid6_d0(sh);
1431	int faila = -1, failb = -1;
1432	int target = sh->ops.target;
1433	int target2 = sh->ops.target2;
1434	struct r5dev *tgt = &sh->dev[target];
1435	struct r5dev *tgt2 = &sh->dev[target2];
1436	struct dma_async_tx_descriptor *tx;
1437	struct page **blocks = to_addr_page(percpu, 0);
1438	struct async_submit_ctl submit;
1439
1440	BUG_ON(sh->batch_head);
1441	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442		 __func__, (unsigned long long)sh->sector, target, target2);
1443	BUG_ON(target < 0 || target2 < 0);
1444	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447	/* we need to open-code set_syndrome_sources to handle the
1448	 * slot number conversion for 'faila' and 'failb'
1449	 */
1450	for (i = 0; i < disks ; i++)
1451		blocks[i] = NULL;
1452	count = 0;
1453	i = d0_idx;
1454	do {
1455		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457		blocks[slot] = sh->dev[i].page;
1458
1459		if (i == target)
1460			faila = slot;
1461		if (i == target2)
1462			failb = slot;
1463		i = raid6_next_disk(i, disks);
1464	} while (i != d0_idx);
1465
1466	BUG_ON(faila == failb);
1467	if (failb < faila)
1468		swap(faila, failb);
1469	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470		 __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472	atomic_inc(&sh->count);
1473
1474	if (failb == syndrome_disks+1) {
1475		/* Q disk is one of the missing disks */
1476		if (faila == syndrome_disks) {
1477			/* Missing P+Q, just recompute */
1478			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479					  ops_complete_compute, sh,
1480					  to_addr_conv(sh, percpu, 0));
1481			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482						  STRIPE_SIZE, &submit);
1483		} else {
1484			struct page *dest;
1485			int data_target;
1486			int qd_idx = sh->qd_idx;
1487
1488			/* Missing D+Q: recompute D from P, then recompute Q */
1489			if (target == qd_idx)
1490				data_target = target2;
1491			else
1492				data_target = target;
1493
1494			count = 0;
1495			for (i = disks; i-- ; ) {
1496				if (i == data_target || i == qd_idx)
1497					continue;
1498				blocks[count++] = sh->dev[i].page;
1499			}
1500			dest = sh->dev[data_target].page;
1501			init_async_submit(&submit,
1502					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503					  NULL, NULL, NULL,
1504					  to_addr_conv(sh, percpu, 0));
1505			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506				       &submit);
1507
1508			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510					  ops_complete_compute, sh,
1511					  to_addr_conv(sh, percpu, 0));
1512			return async_gen_syndrome(blocks, 0, count+2,
1513						  STRIPE_SIZE, &submit);
1514		}
1515	} else {
1516		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517				  ops_complete_compute, sh,
1518				  to_addr_conv(sh, percpu, 0));
1519		if (failb == syndrome_disks) {
1520			/* We're missing D+P. */
1521			return async_raid6_datap_recov(syndrome_disks+2,
1522						       STRIPE_SIZE, faila,
1523						       blocks, &submit);
1524		} else {
1525			/* We're missing D+D. */
1526			return async_raid6_2data_recov(syndrome_disks+2,
1527						       STRIPE_SIZE, faila, failb,
1528						       blocks, &submit);
1529		}
1530	}
1531}
1532
1533static void ops_complete_prexor(void *stripe_head_ref)
1534{
1535	struct stripe_head *sh = stripe_head_ref;
1536
1537	pr_debug("%s: stripe %llu\n", __func__,
1538		(unsigned long long)sh->sector);
1539}
1540
1541static struct dma_async_tx_descriptor *
1542ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543		struct dma_async_tx_descriptor *tx)
1544{
1545	int disks = sh->disks;
1546	struct page **xor_srcs = to_addr_page(percpu, 0);
1547	int count = 0, pd_idx = sh->pd_idx, i;
1548	struct async_submit_ctl submit;
1549
1550	/* existing parity data subtracted */
1551	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553	BUG_ON(sh->batch_head);
1554	pr_debug("%s: stripe %llu\n", __func__,
1555		(unsigned long long)sh->sector);
1556
1557	for (i = disks; i--; ) {
1558		struct r5dev *dev = &sh->dev[i];
1559		/* Only process blocks that are known to be uptodate */
1560		if (test_bit(R5_Wantdrain, &dev->flags))
1561			xor_srcs[count++] = dev->page;
1562	}
1563
1564	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568	return tx;
1569}
1570
1571static struct dma_async_tx_descriptor *
1572ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573		struct dma_async_tx_descriptor *tx)
1574{
1575	struct page **blocks = to_addr_page(percpu, 0);
1576	int count;
1577	struct async_submit_ctl submit;
1578
1579	pr_debug("%s: stripe %llu\n", __func__,
1580		(unsigned long long)sh->sector);
1581
1582	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587
1588	return tx;
1589}
1590
1591static struct dma_async_tx_descriptor *
1592ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593{
1594	int disks = sh->disks;
1595	int i;
1596	struct stripe_head *head_sh = sh;
1597
1598	pr_debug("%s: stripe %llu\n", __func__,
1599		(unsigned long long)sh->sector);
1600
1601	for (i = disks; i--; ) {
1602		struct r5dev *dev;
1603		struct bio *chosen;
1604
1605		sh = head_sh;
1606		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607			struct bio *wbi;
1608
1609again:
1610			dev = &sh->dev[i];
1611			spin_lock_irq(&sh->stripe_lock);
1612			chosen = dev->towrite;
1613			dev->towrite = NULL;
1614			sh->overwrite_disks = 0;
1615			BUG_ON(dev->written);
1616			wbi = dev->written = chosen;
1617			spin_unlock_irq(&sh->stripe_lock);
1618			WARN_ON(dev->page != dev->orig_page);
1619
1620			while (wbi && wbi->bi_iter.bi_sector <
1621				dev->sector + STRIPE_SECTORS) {
1622				if (wbi->bi_rw & REQ_FUA)
1623					set_bit(R5_WantFUA, &dev->flags);
1624				if (wbi->bi_rw & REQ_SYNC)
1625					set_bit(R5_SyncIO, &dev->flags);
1626				if (wbi->bi_rw & REQ_DISCARD)
1627					set_bit(R5_Discard, &dev->flags);
1628				else {
1629					tx = async_copy_data(1, wbi, &dev->page,
1630						dev->sector, tx, sh);
1631					if (dev->page != dev->orig_page) {
1632						set_bit(R5_SkipCopy, &dev->flags);
1633						clear_bit(R5_UPTODATE, &dev->flags);
1634						clear_bit(R5_OVERWRITE, &dev->flags);
1635					}
1636				}
1637				wbi = r5_next_bio(wbi, dev->sector);
1638			}
1639
1640			if (head_sh->batch_head) {
1641				sh = list_first_entry(&sh->batch_list,
1642						      struct stripe_head,
1643						      batch_list);
1644				if (sh == head_sh)
1645					continue;
1646				goto again;
1647			}
1648		}
1649	}
1650
1651	return tx;
1652}
1653
1654static void ops_complete_reconstruct(void *stripe_head_ref)
1655{
1656	struct stripe_head *sh = stripe_head_ref;
1657	int disks = sh->disks;
1658	int pd_idx = sh->pd_idx;
1659	int qd_idx = sh->qd_idx;
1660	int i;
1661	bool fua = false, sync = false, discard = false;
1662
1663	pr_debug("%s: stripe %llu\n", __func__,
1664		(unsigned long long)sh->sector);
1665
1666	for (i = disks; i--; ) {
1667		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670	}
1671
1672	for (i = disks; i--; ) {
1673		struct r5dev *dev = &sh->dev[i];
1674
1675		if (dev->written || i == pd_idx || i == qd_idx) {
1676			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677				set_bit(R5_UPTODATE, &dev->flags);
1678			if (fua)
1679				set_bit(R5_WantFUA, &dev->flags);
1680			if (sync)
1681				set_bit(R5_SyncIO, &dev->flags);
1682		}
1683	}
1684
1685	if (sh->reconstruct_state == reconstruct_state_drain_run)
1686		sh->reconstruct_state = reconstruct_state_drain_result;
1687	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689	else {
1690		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691		sh->reconstruct_state = reconstruct_state_result;
1692	}
1693
1694	set_bit(STRIPE_HANDLE, &sh->state);
1695	release_stripe(sh);
1696}
1697
1698static void
1699ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700		     struct dma_async_tx_descriptor *tx)
1701{
1702	int disks = sh->disks;
1703	struct page **xor_srcs;
1704	struct async_submit_ctl submit;
1705	int count, pd_idx = sh->pd_idx, i;
1706	struct page *xor_dest;
1707	int prexor = 0;
1708	unsigned long flags;
1709	int j = 0;
1710	struct stripe_head *head_sh = sh;
1711	int last_stripe;
1712
1713	pr_debug("%s: stripe %llu\n", __func__,
1714		(unsigned long long)sh->sector);
1715
1716	for (i = 0; i < sh->disks; i++) {
1717		if (pd_idx == i)
1718			continue;
1719		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720			break;
1721	}
1722	if (i >= sh->disks) {
1723		atomic_inc(&sh->count);
1724		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725		ops_complete_reconstruct(sh);
1726		return;
1727	}
1728again:
1729	count = 0;
1730	xor_srcs = to_addr_page(percpu, j);
1731	/* check if prexor is active which means only process blocks
1732	 * that are part of a read-modify-write (written)
1733	 */
1734	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735		prexor = 1;
1736		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737		for (i = disks; i--; ) {
1738			struct r5dev *dev = &sh->dev[i];
1739			if (head_sh->dev[i].written)
1740				xor_srcs[count++] = dev->page;
1741		}
1742	} else {
1743		xor_dest = sh->dev[pd_idx].page;
1744		for (i = disks; i--; ) {
1745			struct r5dev *dev = &sh->dev[i];
1746			if (i != pd_idx)
1747				xor_srcs[count++] = dev->page;
1748		}
1749	}
1750
1751	/* 1/ if we prexor'd then the dest is reused as a source
1752	 * 2/ if we did not prexor then we are redoing the parity
1753	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754	 * for the synchronous xor case
1755	 */
1756	last_stripe = !head_sh->batch_head ||
1757		list_first_entry(&sh->batch_list,
1758				 struct stripe_head, batch_list) == head_sh;
1759	if (last_stripe) {
1760		flags = ASYNC_TX_ACK |
1761			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763		atomic_inc(&head_sh->count);
1764		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765				  to_addr_conv(sh, percpu, j));
1766	} else {
1767		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768		init_async_submit(&submit, flags, tx, NULL, NULL,
1769				  to_addr_conv(sh, percpu, j));
1770	}
1771
1772	if (unlikely(count == 1))
1773		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774	else
1775		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776	if (!last_stripe) {
1777		j++;
1778		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779				      batch_list);
1780		goto again;
1781	}
1782}
1783
1784static void
1785ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786		     struct dma_async_tx_descriptor *tx)
1787{
1788	struct async_submit_ctl submit;
1789	struct page **blocks;
1790	int count, i, j = 0;
1791	struct stripe_head *head_sh = sh;
1792	int last_stripe;
1793	int synflags;
1794	unsigned long txflags;
1795
1796	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798	for (i = 0; i < sh->disks; i++) {
1799		if (sh->pd_idx == i || sh->qd_idx == i)
1800			continue;
1801		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802			break;
1803	}
1804	if (i >= sh->disks) {
1805		atomic_inc(&sh->count);
1806		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808		ops_complete_reconstruct(sh);
1809		return;
1810	}
1811
1812again:
1813	blocks = to_addr_page(percpu, j);
1814
1815	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816		synflags = SYNDROME_SRC_WRITTEN;
1817		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818	} else {
1819		synflags = SYNDROME_SRC_ALL;
1820		txflags = ASYNC_TX_ACK;
1821	}
1822
1823	count = set_syndrome_sources(blocks, sh, synflags);
1824	last_stripe = !head_sh->batch_head ||
1825		list_first_entry(&sh->batch_list,
1826				 struct stripe_head, batch_list) == head_sh;
1827
1828	if (last_stripe) {
1829		atomic_inc(&head_sh->count);
1830		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831				  head_sh, to_addr_conv(sh, percpu, j));
1832	} else
1833		init_async_submit(&submit, 0, tx, NULL, NULL,
1834				  to_addr_conv(sh, percpu, j));
1835	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836	if (!last_stripe) {
1837		j++;
1838		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839				      batch_list);
1840		goto again;
1841	}
1842}
1843
1844static void ops_complete_check(void *stripe_head_ref)
1845{
1846	struct stripe_head *sh = stripe_head_ref;
1847
1848	pr_debug("%s: stripe %llu\n", __func__,
1849		(unsigned long long)sh->sector);
1850
1851	sh->check_state = check_state_check_result;
1852	set_bit(STRIPE_HANDLE, &sh->state);
1853	release_stripe(sh);
1854}
1855
1856static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857{
1858	int disks = sh->disks;
1859	int pd_idx = sh->pd_idx;
1860	int qd_idx = sh->qd_idx;
1861	struct page *xor_dest;
1862	struct page **xor_srcs = to_addr_page(percpu, 0);
1863	struct dma_async_tx_descriptor *tx;
1864	struct async_submit_ctl submit;
1865	int count;
1866	int i;
1867
1868	pr_debug("%s: stripe %llu\n", __func__,
1869		(unsigned long long)sh->sector);
1870
1871	BUG_ON(sh->batch_head);
1872	count = 0;
1873	xor_dest = sh->dev[pd_idx].page;
1874	xor_srcs[count++] = xor_dest;
1875	for (i = disks; i--; ) {
1876		if (i == pd_idx || i == qd_idx)
1877			continue;
1878		xor_srcs[count++] = sh->dev[i].page;
1879	}
1880
1881	init_async_submit(&submit, 0, NULL, NULL, NULL,
1882			  to_addr_conv(sh, percpu, 0));
1883	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884			   &sh->ops.zero_sum_result, &submit);
1885
1886	atomic_inc(&sh->count);
1887	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888	tx = async_trigger_callback(&submit);
1889}
1890
1891static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892{
1893	struct page **srcs = to_addr_page(percpu, 0);
1894	struct async_submit_ctl submit;
1895	int count;
1896
1897	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898		(unsigned long long)sh->sector, checkp);
1899
1900	BUG_ON(sh->batch_head);
1901	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902	if (!checkp)
1903		srcs[count] = NULL;
1904
1905	atomic_inc(&sh->count);
1906	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907			  sh, to_addr_conv(sh, percpu, 0));
1908	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910}
1911
1912static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913{
1914	int overlap_clear = 0, i, disks = sh->disks;
1915	struct dma_async_tx_descriptor *tx = NULL;
1916	struct r5conf *conf = sh->raid_conf;
1917	int level = conf->level;
1918	struct raid5_percpu *percpu;
1919	unsigned long cpu;
1920
1921	cpu = get_cpu();
1922	percpu = per_cpu_ptr(conf->percpu, cpu);
1923	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924		ops_run_biofill(sh);
1925		overlap_clear++;
1926	}
1927
1928	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929		if (level < 6)
1930			tx = ops_run_compute5(sh, percpu);
1931		else {
1932			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933				tx = ops_run_compute6_1(sh, percpu);
1934			else
1935				tx = ops_run_compute6_2(sh, percpu);
1936		}
1937		/* terminate the chain if reconstruct is not set to be run */
1938		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939			async_tx_ack(tx);
1940	}
1941
1942	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943		if (level < 6)
1944			tx = ops_run_prexor5(sh, percpu, tx);
1945		else
1946			tx = ops_run_prexor6(sh, percpu, tx);
1947	}
1948
1949	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950		tx = ops_run_biodrain(sh, tx);
1951		overlap_clear++;
1952	}
1953
1954	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955		if (level < 6)
1956			ops_run_reconstruct5(sh, percpu, tx);
1957		else
1958			ops_run_reconstruct6(sh, percpu, tx);
1959	}
1960
1961	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962		if (sh->check_state == check_state_run)
1963			ops_run_check_p(sh, percpu);
1964		else if (sh->check_state == check_state_run_q)
1965			ops_run_check_pq(sh, percpu, 0);
1966		else if (sh->check_state == check_state_run_pq)
1967			ops_run_check_pq(sh, percpu, 1);
1968		else
1969			BUG();
1970	}
1971
1972	if (overlap_clear && !sh->batch_head)
1973		for (i = disks; i--; ) {
1974			struct r5dev *dev = &sh->dev[i];
1975			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976				wake_up(&sh->raid_conf->wait_for_overlap);
1977		}
1978	put_cpu();
1979}
1980
1981static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982{
1983	struct stripe_head *sh;
1984
1985	sh = kmem_cache_zalloc(sc, gfp);
1986	if (sh) {
1987		spin_lock_init(&sh->stripe_lock);
1988		spin_lock_init(&sh->batch_lock);
1989		INIT_LIST_HEAD(&sh->batch_list);
1990		INIT_LIST_HEAD(&sh->lru);
1991		atomic_set(&sh->count, 1);
1992	}
1993	return sh;
1994}
1995static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996{
1997	struct stripe_head *sh;
1998
1999	sh = alloc_stripe(conf->slab_cache, gfp);
2000	if (!sh)
2001		return 0;
2002
2003	sh->raid_conf = conf;
2004
2005	if (grow_buffers(sh, gfp)) {
2006		shrink_buffers(sh);
2007		kmem_cache_free(conf->slab_cache, sh);
2008		return 0;
2009	}
2010	sh->hash_lock_index =
2011		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012	/* we just created an active stripe so... */
2013	atomic_inc(&conf->active_stripes);
2014
2015	release_stripe(sh);
2016	conf->max_nr_stripes++;
2017	return 1;
2018}
2019
2020static int grow_stripes(struct r5conf *conf, int num)
2021{
2022	struct kmem_cache *sc;
2023	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025	if (conf->mddev->gendisk)
2026		sprintf(conf->cache_name[0],
2027			"raid%d-%s", conf->level, mdname(conf->mddev));
2028	else
2029		sprintf(conf->cache_name[0],
2030			"raid%d-%p", conf->level, conf->mddev);
2031	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033	conf->active_name = 0;
2034	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036			       0, 0, NULL);
2037	if (!sc)
2038		return 1;
2039	conf->slab_cache = sc;
2040	conf->pool_size = devs;
2041	while (num--)
2042		if (!grow_one_stripe(conf, GFP_KERNEL))
2043			return 1;
2044
2045	return 0;
2046}
2047
2048/**
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2051 *
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 *    (dma_map_page()) or page (page_address()) address.
2056 *
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2060 */
2061static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062{
2063	struct flex_array *ret;
2064	size_t len;
2065
2066	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067	ret = flex_array_alloc(len, cnt, flags);
2068	if (!ret)
2069		return NULL;
2070	/* always prealloc all elements, so no locking is required */
2071	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072		flex_array_free(ret);
2073		return NULL;
2074	}
2075	return ret;
2076}
2077
2078static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079{
2080	unsigned long cpu;
2081	int err = 0;
2082
2083	/*
2084	 * Never shrink. And mddev_suspend() could deadlock if this is called
2085	 * from raid5d. In that case, scribble_disks and scribble_sectors
2086	 * should equal to new_disks and new_sectors
2087	 */
2088	if (conf->scribble_disks >= new_disks &&
2089	    conf->scribble_sectors >= new_sectors)
2090		return 0;
2091	mddev_suspend(conf->mddev);
2092	get_online_cpus();
2093	for_each_present_cpu(cpu) {
2094		struct raid5_percpu *percpu;
2095		struct flex_array *scribble;
2096
2097		percpu = per_cpu_ptr(conf->percpu, cpu);
2098		scribble = scribble_alloc(new_disks,
2099					  new_sectors / STRIPE_SECTORS,
2100					  GFP_NOIO);
2101
2102		if (scribble) {
2103			flex_array_free(percpu->scribble);
2104			percpu->scribble = scribble;
2105		} else {
2106			err = -ENOMEM;
2107			break;
2108		}
2109	}
2110	put_online_cpus();
2111	mddev_resume(conf->mddev);
2112	if (!err) {
2113		conf->scribble_disks = new_disks;
2114		conf->scribble_sectors = new_sectors;
2115	}
2116	return err;
2117}
2118
2119static int resize_stripes(struct r5conf *conf, int newsize)
2120{
2121	/* Make all the stripes able to hold 'newsize' devices.
2122	 * New slots in each stripe get 'page' set to a new page.
2123	 *
2124	 * This happens in stages:
2125	 * 1/ create a new kmem_cache and allocate the required number of
2126	 *    stripe_heads.
2127	 * 2/ gather all the old stripe_heads and transfer the pages across
2128	 *    to the new stripe_heads.  This will have the side effect of
2129	 *    freezing the array as once all stripe_heads have been collected,
2130	 *    no IO will be possible.  Old stripe heads are freed once their
2131	 *    pages have been transferred over, and the old kmem_cache is
2132	 *    freed when all stripes are done.
2133	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2134	 *    we simple return a failre status - no need to clean anything up.
2135	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136	 *    If this fails, we don't bother trying the shrink the
2137	 *    stripe_heads down again, we just leave them as they are.
2138	 *    As each stripe_head is processed the new one is released into
2139	 *    active service.
2140	 *
2141	 * Once step2 is started, we cannot afford to wait for a write,
2142	 * so we use GFP_NOIO allocations.
2143	 */
2144	struct stripe_head *osh, *nsh;
2145	LIST_HEAD(newstripes);
2146	struct disk_info *ndisks;
2147	int err;
2148	struct kmem_cache *sc;
2149	int i;
2150	int hash, cnt;
2151
2152	if (newsize <= conf->pool_size)
2153		return 0; /* never bother to shrink */
2154
2155	err = md_allow_write(conf->mddev);
2156	if (err)
2157		return err;
2158
2159	/* Step 1 */
2160	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162			       0, 0, NULL);
2163	if (!sc)
2164		return -ENOMEM;
2165
2166	/* Need to ensure auto-resizing doesn't interfere */
2167	mutex_lock(&conf->cache_size_mutex);
2168
2169	for (i = conf->max_nr_stripes; i; i--) {
2170		nsh = alloc_stripe(sc, GFP_KERNEL);
2171		if (!nsh)
2172			break;
2173
2174		nsh->raid_conf = conf;
2175		list_add(&nsh->lru, &newstripes);
2176	}
2177	if (i) {
2178		/* didn't get enough, give up */
2179		while (!list_empty(&newstripes)) {
2180			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181			list_del(&nsh->lru);
2182			kmem_cache_free(sc, nsh);
2183		}
2184		kmem_cache_destroy(sc);
2185		mutex_unlock(&conf->cache_size_mutex);
2186		return -ENOMEM;
2187	}
2188	/* Step 2 - Must use GFP_NOIO now.
2189	 * OK, we have enough stripes, start collecting inactive
2190	 * stripes and copying them over
2191	 */
2192	hash = 0;
2193	cnt = 0;
2194	list_for_each_entry(nsh, &newstripes, lru) {
2195		lock_device_hash_lock(conf, hash);
2196		wait_event_cmd(conf->wait_for_stripe,
2197				    !list_empty(conf->inactive_list + hash),
2198				    unlock_device_hash_lock(conf, hash),
2199				    lock_device_hash_lock(conf, hash));
2200		osh = get_free_stripe(conf, hash);
2201		unlock_device_hash_lock(conf, hash);
2202
2203		for(i=0; i<conf->pool_size; i++) {
2204			nsh->dev[i].page = osh->dev[i].page;
2205			nsh->dev[i].orig_page = osh->dev[i].page;
2206		}
2207		nsh->hash_lock_index = hash;
2208		kmem_cache_free(conf->slab_cache, osh);
2209		cnt++;
2210		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212			hash++;
2213			cnt = 0;
2214		}
2215	}
2216	kmem_cache_destroy(conf->slab_cache);
2217
2218	/* Step 3.
2219	 * At this point, we are holding all the stripes so the array
2220	 * is completely stalled, so now is a good time to resize
2221	 * conf->disks and the scribble region
2222	 */
2223	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224	if (ndisks) {
2225		for (i=0; i<conf->raid_disks; i++)
2226			ndisks[i] = conf->disks[i];
2227		kfree(conf->disks);
2228		conf->disks = ndisks;
2229	} else
2230		err = -ENOMEM;
2231
2232	mutex_unlock(&conf->cache_size_mutex);
2233	/* Step 4, return new stripes to service */
2234	while(!list_empty(&newstripes)) {
2235		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236		list_del_init(&nsh->lru);
2237
2238		for (i=conf->raid_disks; i < newsize; i++)
2239			if (nsh->dev[i].page == NULL) {
2240				struct page *p = alloc_page(GFP_NOIO);
2241				nsh->dev[i].page = p;
2242				nsh->dev[i].orig_page = p;
2243				if (!p)
2244					err = -ENOMEM;
2245			}
2246		release_stripe(nsh);
2247	}
2248	/* critical section pass, GFP_NOIO no longer needed */
2249
2250	conf->slab_cache = sc;
2251	conf->active_name = 1-conf->active_name;
2252	if (!err)
2253		conf->pool_size = newsize;
2254	return err;
2255}
2256
2257static int drop_one_stripe(struct r5conf *conf)
2258{
2259	struct stripe_head *sh;
2260	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261
2262	spin_lock_irq(conf->hash_locks + hash);
2263	sh = get_free_stripe(conf, hash);
2264	spin_unlock_irq(conf->hash_locks + hash);
2265	if (!sh)
2266		return 0;
2267	BUG_ON(atomic_read(&sh->count));
2268	shrink_buffers(sh);
2269	kmem_cache_free(conf->slab_cache, sh);
2270	atomic_dec(&conf->active_stripes);
2271	conf->max_nr_stripes--;
2272	return 1;
2273}
2274
2275static void shrink_stripes(struct r5conf *conf)
2276{
2277	while (conf->max_nr_stripes &&
2278	       drop_one_stripe(conf))
2279		;
2280
2281	if (conf->slab_cache)
2282		kmem_cache_destroy(conf->slab_cache);
2283	conf->slab_cache = NULL;
2284}
2285
2286static void raid5_end_read_request(struct bio * bi, int error)
2287{
2288	struct stripe_head *sh = bi->bi_private;
2289	struct r5conf *conf = sh->raid_conf;
2290	int disks = sh->disks, i;
2291	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2292	char b[BDEVNAME_SIZE];
2293	struct md_rdev *rdev = NULL;
2294	sector_t s;
2295
2296	for (i=0 ; i<disks; i++)
2297		if (bi == &sh->dev[i].req)
2298			break;
2299
2300	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2301		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2302		uptodate);
2303	if (i == disks) {
2304		BUG();
2305		return;
2306	}
2307	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2308		/* If replacement finished while this request was outstanding,
2309		 * 'replacement' might be NULL already.
2310		 * In that case it moved down to 'rdev'.
2311		 * rdev is not removed until all requests are finished.
2312		 */
2313		rdev = conf->disks[i].replacement;
2314	if (!rdev)
2315		rdev = conf->disks[i].rdev;
2316
2317	if (use_new_offset(conf, sh))
2318		s = sh->sector + rdev->new_data_offset;
2319	else
2320		s = sh->sector + rdev->data_offset;
2321	if (uptodate) {
2322		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2323		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2324			/* Note that this cannot happen on a
2325			 * replacement device.  We just fail those on
2326			 * any error
2327			 */
2328			printk_ratelimited(
2329				KERN_INFO
2330				"md/raid:%s: read error corrected"
2331				" (%lu sectors at %llu on %s)\n",
2332				mdname(conf->mddev), STRIPE_SECTORS,
2333				(unsigned long long)s,
2334				bdevname(rdev->bdev, b));
2335			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2336			clear_bit(R5_ReadError, &sh->dev[i].flags);
2337			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2338		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2339			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2340
2341		if (atomic_read(&rdev->read_errors))
2342			atomic_set(&rdev->read_errors, 0);
2343	} else {
2344		const char *bdn = bdevname(rdev->bdev, b);
2345		int retry = 0;
2346		int set_bad = 0;
2347
2348		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2349		atomic_inc(&rdev->read_errors);
2350		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2351			printk_ratelimited(
2352				KERN_WARNING
2353				"md/raid:%s: read error on replacement device "
2354				"(sector %llu on %s).\n",
2355				mdname(conf->mddev),
2356				(unsigned long long)s,
2357				bdn);
2358		else if (conf->mddev->degraded >= conf->max_degraded) {
2359			set_bad = 1;
2360			printk_ratelimited(
2361				KERN_WARNING
2362				"md/raid:%s: read error not correctable "
2363				"(sector %llu on %s).\n",
2364				mdname(conf->mddev),
2365				(unsigned long long)s,
2366				bdn);
2367		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2368			/* Oh, no!!! */
2369			set_bad = 1;
2370			printk_ratelimited(
2371				KERN_WARNING
2372				"md/raid:%s: read error NOT corrected!! "
2373				"(sector %llu on %s).\n",
2374				mdname(conf->mddev),
2375				(unsigned long long)s,
2376				bdn);
2377		} else if (atomic_read(&rdev->read_errors)
2378			 > conf->max_nr_stripes)
2379			printk(KERN_WARNING
2380			       "md/raid:%s: Too many read errors, failing device %s.\n",
2381			       mdname(conf->mddev), bdn);
2382		else
2383			retry = 1;
2384		if (set_bad && test_bit(In_sync, &rdev->flags)
2385		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2386			retry = 1;
2387		if (retry)
2388			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2389				set_bit(R5_ReadError, &sh->dev[i].flags);
2390				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391			} else
2392				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2393		else {
2394			clear_bit(R5_ReadError, &sh->dev[i].flags);
2395			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2396			if (!(set_bad
2397			      && test_bit(In_sync, &rdev->flags)
2398			      && rdev_set_badblocks(
2399				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2400				md_error(conf->mddev, rdev);
2401		}
2402	}
2403	rdev_dec_pending(rdev, conf->mddev);
2404	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2405	set_bit(STRIPE_HANDLE, &sh->state);
2406	release_stripe(sh);
2407}
2408
2409static void raid5_end_write_request(struct bio *bi, int error)
2410{
2411	struct stripe_head *sh = bi->bi_private;
2412	struct r5conf *conf = sh->raid_conf;
2413	int disks = sh->disks, i;
2414	struct md_rdev *uninitialized_var(rdev);
2415	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2416	sector_t first_bad;
2417	int bad_sectors;
2418	int replacement = 0;
2419
2420	for (i = 0 ; i < disks; i++) {
2421		if (bi == &sh->dev[i].req) {
2422			rdev = conf->disks[i].rdev;
2423			break;
2424		}
2425		if (bi == &sh->dev[i].rreq) {
2426			rdev = conf->disks[i].replacement;
2427			if (rdev)
2428				replacement = 1;
2429			else
2430				/* rdev was removed and 'replacement'
2431				 * replaced it.  rdev is not removed
2432				 * until all requests are finished.
2433				 */
2434				rdev = conf->disks[i].rdev;
2435			break;
2436		}
2437	}
2438	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2439		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2440		uptodate);
2441	if (i == disks) {
2442		BUG();
2443		return;
2444	}
2445
2446	if (replacement) {
2447		if (!uptodate)
2448			md_error(conf->mddev, rdev);
2449		else if (is_badblock(rdev, sh->sector,
2450				     STRIPE_SECTORS,
2451				     &first_bad, &bad_sectors))
2452			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2453	} else {
2454		if (!uptodate) {
2455			set_bit(STRIPE_DEGRADED, &sh->state);
2456			set_bit(WriteErrorSeen, &rdev->flags);
2457			set_bit(R5_WriteError, &sh->dev[i].flags);
2458			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2459				set_bit(MD_RECOVERY_NEEDED,
2460					&rdev->mddev->recovery);
2461		} else if (is_badblock(rdev, sh->sector,
2462				       STRIPE_SECTORS,
2463				       &first_bad, &bad_sectors)) {
2464			set_bit(R5_MadeGood, &sh->dev[i].flags);
2465			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2466				/* That was a successful write so make
2467				 * sure it looks like we already did
2468				 * a re-write.
2469				 */
2470				set_bit(R5_ReWrite, &sh->dev[i].flags);
2471		}
2472	}
2473	rdev_dec_pending(rdev, conf->mddev);
2474
2475	if (sh->batch_head && !uptodate && !replacement)
2476		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2477
2478	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2479		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2480	set_bit(STRIPE_HANDLE, &sh->state);
2481	release_stripe(sh);
2482
2483	if (sh->batch_head && sh != sh->batch_head)
2484		release_stripe(sh->batch_head);
2485}
2486
2487static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2488
2489static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2490{
2491	struct r5dev *dev = &sh->dev[i];
2492
2493	bio_init(&dev->req);
2494	dev->req.bi_io_vec = &dev->vec;
2495	dev->req.bi_max_vecs = 1;
2496	dev->req.bi_private = sh;
2497
2498	bio_init(&dev->rreq);
2499	dev->rreq.bi_io_vec = &dev->rvec;
2500	dev->rreq.bi_max_vecs = 1;
2501	dev->rreq.bi_private = sh;
2502
2503	dev->flags = 0;
2504	dev->sector = compute_blocknr(sh, i, previous);
2505}
2506
2507static void error(struct mddev *mddev, struct md_rdev *rdev)
2508{
2509	char b[BDEVNAME_SIZE];
2510	struct r5conf *conf = mddev->private;
2511	unsigned long flags;
2512	pr_debug("raid456: error called\n");
2513
2514	spin_lock_irqsave(&conf->device_lock, flags);
2515	clear_bit(In_sync, &rdev->flags);
2516	mddev->degraded = calc_degraded(conf);
2517	spin_unlock_irqrestore(&conf->device_lock, flags);
2518	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2519
2520	set_bit(Blocked, &rdev->flags);
2521	set_bit(Faulty, &rdev->flags);
2522	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2523	printk(KERN_ALERT
2524	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2525	       "md/raid:%s: Operation continuing on %d devices.\n",
2526	       mdname(mddev),
2527	       bdevname(rdev->bdev, b),
2528	       mdname(mddev),
2529	       conf->raid_disks - mddev->degraded);
2530}
2531
2532/*
2533 * Input: a 'big' sector number,
2534 * Output: index of the data and parity disk, and the sector # in them.
2535 */
2536static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2537				     int previous, int *dd_idx,
2538				     struct stripe_head *sh)
2539{
2540	sector_t stripe, stripe2;
2541	sector_t chunk_number;
2542	unsigned int chunk_offset;
2543	int pd_idx, qd_idx;
2544	int ddf_layout = 0;
2545	sector_t new_sector;
2546	int algorithm = previous ? conf->prev_algo
2547				 : conf->algorithm;
2548	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2549					 : conf->chunk_sectors;
2550	int raid_disks = previous ? conf->previous_raid_disks
2551				  : conf->raid_disks;
2552	int data_disks = raid_disks - conf->max_degraded;
2553
2554	/* First compute the information on this sector */
2555
2556	/*
2557	 * Compute the chunk number and the sector offset inside the chunk
2558	 */
2559	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2560	chunk_number = r_sector;
2561
2562	/*
2563	 * Compute the stripe number
2564	 */
2565	stripe = chunk_number;
2566	*dd_idx = sector_div(stripe, data_disks);
2567	stripe2 = stripe;
2568	/*
2569	 * Select the parity disk based on the user selected algorithm.
2570	 */
2571	pd_idx = qd_idx = -1;
2572	switch(conf->level) {
2573	case 4:
2574		pd_idx = data_disks;
2575		break;
2576	case 5:
2577		switch (algorithm) {
2578		case ALGORITHM_LEFT_ASYMMETRIC:
2579			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2580			if (*dd_idx >= pd_idx)
2581				(*dd_idx)++;
2582			break;
2583		case ALGORITHM_RIGHT_ASYMMETRIC:
2584			pd_idx = sector_div(stripe2, raid_disks);
2585			if (*dd_idx >= pd_idx)
2586				(*dd_idx)++;
2587			break;
2588		case ALGORITHM_LEFT_SYMMETRIC:
2589			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2590			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591			break;
2592		case ALGORITHM_RIGHT_SYMMETRIC:
2593			pd_idx = sector_div(stripe2, raid_disks);
2594			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2595			break;
2596		case ALGORITHM_PARITY_0:
2597			pd_idx = 0;
2598			(*dd_idx)++;
2599			break;
2600		case ALGORITHM_PARITY_N:
2601			pd_idx = data_disks;
2602			break;
2603		default:
2604			BUG();
2605		}
2606		break;
2607	case 6:
2608
2609		switch (algorithm) {
2610		case ALGORITHM_LEFT_ASYMMETRIC:
2611			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2612			qd_idx = pd_idx + 1;
2613			if (pd_idx == raid_disks-1) {
2614				(*dd_idx)++;	/* Q D D D P */
2615				qd_idx = 0;
2616			} else if (*dd_idx >= pd_idx)
2617				(*dd_idx) += 2; /* D D P Q D */
2618			break;
2619		case ALGORITHM_RIGHT_ASYMMETRIC:
2620			pd_idx = sector_div(stripe2, raid_disks);
2621			qd_idx = pd_idx + 1;
2622			if (pd_idx == raid_disks-1) {
2623				(*dd_idx)++;	/* Q D D D P */
2624				qd_idx = 0;
2625			} else if (*dd_idx >= pd_idx)
2626				(*dd_idx) += 2; /* D D P Q D */
2627			break;
2628		case ALGORITHM_LEFT_SYMMETRIC:
2629			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2630			qd_idx = (pd_idx + 1) % raid_disks;
2631			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2632			break;
2633		case ALGORITHM_RIGHT_SYMMETRIC:
2634			pd_idx = sector_div(stripe2, raid_disks);
2635			qd_idx = (pd_idx + 1) % raid_disks;
2636			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2637			break;
2638
2639		case ALGORITHM_PARITY_0:
2640			pd_idx = 0;
2641			qd_idx = 1;
2642			(*dd_idx) += 2;
2643			break;
2644		case ALGORITHM_PARITY_N:
2645			pd_idx = data_disks;
2646			qd_idx = data_disks + 1;
2647			break;
2648
2649		case ALGORITHM_ROTATING_ZERO_RESTART:
2650			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2651			 * of blocks for computing Q is different.
2652			 */
2653			pd_idx = sector_div(stripe2, raid_disks);
2654			qd_idx = pd_idx + 1;
2655			if (pd_idx == raid_disks-1) {
2656				(*dd_idx)++;	/* Q D D D P */
2657				qd_idx = 0;
2658			} else if (*dd_idx >= pd_idx)
2659				(*dd_idx) += 2; /* D D P Q D */
2660			ddf_layout = 1;
2661			break;
2662
2663		case ALGORITHM_ROTATING_N_RESTART:
2664			/* Same a left_asymmetric, by first stripe is
2665			 * D D D P Q  rather than
2666			 * Q D D D P
2667			 */
2668			stripe2 += 1;
2669			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2670			qd_idx = pd_idx + 1;
2671			if (pd_idx == raid_disks-1) {
2672				(*dd_idx)++;	/* Q D D D P */
2673				qd_idx = 0;
2674			} else if (*dd_idx >= pd_idx)
2675				(*dd_idx) += 2; /* D D P Q D */
2676			ddf_layout = 1;
2677			break;
2678
2679		case ALGORITHM_ROTATING_N_CONTINUE:
2680			/* Same as left_symmetric but Q is before P */
2681			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2682			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2683			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2684			ddf_layout = 1;
2685			break;
2686
2687		case ALGORITHM_LEFT_ASYMMETRIC_6:
2688			/* RAID5 left_asymmetric, with Q on last device */
2689			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2690			if (*dd_idx >= pd_idx)
2691				(*dd_idx)++;
2692			qd_idx = raid_disks - 1;
2693			break;
2694
2695		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2696			pd_idx = sector_div(stripe2, raid_disks-1);
2697			if (*dd_idx >= pd_idx)
2698				(*dd_idx)++;
2699			qd_idx = raid_disks - 1;
2700			break;
2701
2702		case ALGORITHM_LEFT_SYMMETRIC_6:
2703			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2704			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2705			qd_idx = raid_disks - 1;
2706			break;
2707
2708		case ALGORITHM_RIGHT_SYMMETRIC_6:
2709			pd_idx = sector_div(stripe2, raid_disks-1);
2710			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2711			qd_idx = raid_disks - 1;
2712			break;
2713
2714		case ALGORITHM_PARITY_0_6:
2715			pd_idx = 0;
2716			(*dd_idx)++;
2717			qd_idx = raid_disks - 1;
2718			break;
2719
2720		default:
2721			BUG();
2722		}
2723		break;
2724	}
2725
2726	if (sh) {
2727		sh->pd_idx = pd_idx;
2728		sh->qd_idx = qd_idx;
2729		sh->ddf_layout = ddf_layout;
2730	}
2731	/*
2732	 * Finally, compute the new sector number
2733	 */
2734	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2735	return new_sector;
2736}
2737
2738static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2739{
2740	struct r5conf *conf = sh->raid_conf;
2741	int raid_disks = sh->disks;
2742	int data_disks = raid_disks - conf->max_degraded;
2743	sector_t new_sector = sh->sector, check;
2744	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2745					 : conf->chunk_sectors;
2746	int algorithm = previous ? conf->prev_algo
2747				 : conf->algorithm;
2748	sector_t stripe;
2749	int chunk_offset;
2750	sector_t chunk_number;
2751	int dummy1, dd_idx = i;
2752	sector_t r_sector;
2753	struct stripe_head sh2;
2754
2755	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2756	stripe = new_sector;
2757
2758	if (i == sh->pd_idx)
2759		return 0;
2760	switch(conf->level) {
2761	case 4: break;
2762	case 5:
2763		switch (algorithm) {
2764		case ALGORITHM_LEFT_ASYMMETRIC:
2765		case ALGORITHM_RIGHT_ASYMMETRIC:
2766			if (i > sh->pd_idx)
2767				i--;
2768			break;
2769		case ALGORITHM_LEFT_SYMMETRIC:
2770		case ALGORITHM_RIGHT_SYMMETRIC:
2771			if (i < sh->pd_idx)
2772				i += raid_disks;
2773			i -= (sh->pd_idx + 1);
2774			break;
2775		case ALGORITHM_PARITY_0:
2776			i -= 1;
2777			break;
2778		case ALGORITHM_PARITY_N:
2779			break;
2780		default:
2781			BUG();
2782		}
2783		break;
2784	case 6:
2785		if (i == sh->qd_idx)
2786			return 0; /* It is the Q disk */
2787		switch (algorithm) {
2788		case ALGORITHM_LEFT_ASYMMETRIC:
2789		case ALGORITHM_RIGHT_ASYMMETRIC:
2790		case ALGORITHM_ROTATING_ZERO_RESTART:
2791		case ALGORITHM_ROTATING_N_RESTART:
2792			if (sh->pd_idx == raid_disks-1)
2793				i--;	/* Q D D D P */
2794			else if (i > sh->pd_idx)
2795				i -= 2; /* D D P Q D */
2796			break;
2797		case ALGORITHM_LEFT_SYMMETRIC:
2798		case ALGORITHM_RIGHT_SYMMETRIC:
2799			if (sh->pd_idx == raid_disks-1)
2800				i--; /* Q D D D P */
2801			else {
2802				/* D D P Q D */
2803				if (i < sh->pd_idx)
2804					i += raid_disks;
2805				i -= (sh->pd_idx + 2);
2806			}
2807			break;
2808		case ALGORITHM_PARITY_0:
2809			i -= 2;
2810			break;
2811		case ALGORITHM_PARITY_N:
2812			break;
2813		case ALGORITHM_ROTATING_N_CONTINUE:
2814			/* Like left_symmetric, but P is before Q */
2815			if (sh->pd_idx == 0)
2816				i--;	/* P D D D Q */
2817			else {
2818				/* D D Q P D */
2819				if (i < sh->pd_idx)
2820					i += raid_disks;
2821				i -= (sh->pd_idx + 1);
2822			}
2823			break;
2824		case ALGORITHM_LEFT_ASYMMETRIC_6:
2825		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2826			if (i > sh->pd_idx)
2827				i--;
2828			break;
2829		case ALGORITHM_LEFT_SYMMETRIC_6:
2830		case ALGORITHM_RIGHT_SYMMETRIC_6:
2831			if (i < sh->pd_idx)
2832				i += data_disks + 1;
2833			i -= (sh->pd_idx + 1);
2834			break;
2835		case ALGORITHM_PARITY_0_6:
2836			i -= 1;
2837			break;
2838		default:
2839			BUG();
2840		}
2841		break;
2842	}
2843
2844	chunk_number = stripe * data_disks + i;
2845	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2846
2847	check = raid5_compute_sector(conf, r_sector,
2848				     previous, &dummy1, &sh2);
2849	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2850		|| sh2.qd_idx != sh->qd_idx) {
2851		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2852		       mdname(conf->mddev));
2853		return 0;
2854	}
2855	return r_sector;
2856}
2857
2858static void
2859schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2860			 int rcw, int expand)
2861{
2862	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2863	struct r5conf *conf = sh->raid_conf;
2864	int level = conf->level;
2865
2866	if (rcw) {
2867
2868		for (i = disks; i--; ) {
2869			struct r5dev *dev = &sh->dev[i];
2870
2871			if (dev->towrite) {
2872				set_bit(R5_LOCKED, &dev->flags);
2873				set_bit(R5_Wantdrain, &dev->flags);
2874				if (!expand)
2875					clear_bit(R5_UPTODATE, &dev->flags);
2876				s->locked++;
2877			}
2878		}
2879		/* if we are not expanding this is a proper write request, and
2880		 * there will be bios with new data to be drained into the
2881		 * stripe cache
2882		 */
2883		if (!expand) {
2884			if (!s->locked)
2885				/* False alarm, nothing to do */
2886				return;
2887			sh->reconstruct_state = reconstruct_state_drain_run;
2888			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2889		} else
2890			sh->reconstruct_state = reconstruct_state_run;
2891
2892		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2893
2894		if (s->locked + conf->max_degraded == disks)
2895			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2896				atomic_inc(&conf->pending_full_writes);
2897	} else {
2898		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2899			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2900		BUG_ON(level == 6 &&
2901			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2902			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2903
2904		for (i = disks; i--; ) {
2905			struct r5dev *dev = &sh->dev[i];
2906			if (i == pd_idx || i == qd_idx)
2907				continue;
2908
2909			if (dev->towrite &&
2910			    (test_bit(R5_UPTODATE, &dev->flags) ||
2911			     test_bit(R5_Wantcompute, &dev->flags))) {
2912				set_bit(R5_Wantdrain, &dev->flags);
2913				set_bit(R5_LOCKED, &dev->flags);
2914				clear_bit(R5_UPTODATE, &dev->flags);
2915				s->locked++;
2916			}
2917		}
2918		if (!s->locked)
2919			/* False alarm - nothing to do */
2920			return;
2921		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2922		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2923		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2924		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2925	}
2926
2927	/* keep the parity disk(s) locked while asynchronous operations
2928	 * are in flight
2929	 */
2930	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2931	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2932	s->locked++;
2933
2934	if (level == 6) {
2935		int qd_idx = sh->qd_idx;
2936		struct r5dev *dev = &sh->dev[qd_idx];
2937
2938		set_bit(R5_LOCKED, &dev->flags);
2939		clear_bit(R5_UPTODATE, &dev->flags);
2940		s->locked++;
2941	}
2942
2943	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2944		__func__, (unsigned long long)sh->sector,
2945		s->locked, s->ops_request);
2946}
2947
2948/*
2949 * Each stripe/dev can have one or more bion attached.
2950 * toread/towrite point to the first in a chain.
2951 * The bi_next chain must be in order.
2952 */
2953static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2954			  int forwrite, int previous)
2955{
2956	struct bio **bip;
2957	struct r5conf *conf = sh->raid_conf;
2958	int firstwrite=0;
2959
2960	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2961		(unsigned long long)bi->bi_iter.bi_sector,
2962		(unsigned long long)sh->sector);
2963
2964	/*
2965	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2966	 * reference count to avoid race. The reference count should already be
2967	 * increased before this function is called (for example, in
2968	 * make_request()), so other bio sharing this stripe will not free the
2969	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2970	 * protect it.
2971	 */
2972	spin_lock_irq(&sh->stripe_lock);
2973	/* Don't allow new IO added to stripes in batch list */
2974	if (sh->batch_head)
2975		goto overlap;
2976	if (forwrite) {
2977		bip = &sh->dev[dd_idx].towrite;
2978		if (*bip == NULL)
2979			firstwrite = 1;
2980	} else
2981		bip = &sh->dev[dd_idx].toread;
2982	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2983		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2984			goto overlap;
2985		bip = & (*bip)->bi_next;
2986	}
2987	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2988		goto overlap;
2989
2990	if (!forwrite || previous)
2991		clear_bit(STRIPE_BATCH_READY, &sh->state);
2992
2993	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2994	if (*bip)
2995		bi->bi_next = *bip;
2996	*bip = bi;
2997	raid5_inc_bi_active_stripes(bi);
2998
2999	if (forwrite) {
3000		/* check if page is covered */
3001		sector_t sector = sh->dev[dd_idx].sector;
3002		for (bi=sh->dev[dd_idx].towrite;
3003		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3004			     bi && bi->bi_iter.bi_sector <= sector;
3005		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3006			if (bio_end_sector(bi) >= sector)
3007				sector = bio_end_sector(bi);
3008		}
3009		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3010			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3011				sh->overwrite_disks++;
3012	}
3013
3014	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3015		(unsigned long long)(*bip)->bi_iter.bi_sector,
3016		(unsigned long long)sh->sector, dd_idx);
3017
3018	if (conf->mddev->bitmap && firstwrite) {
3019		/* Cannot hold spinlock over bitmap_startwrite,
3020		 * but must ensure this isn't added to a batch until
3021		 * we have added to the bitmap and set bm_seq.
3022		 * So set STRIPE_BITMAP_PENDING to prevent
3023		 * batching.
3024		 * If multiple add_stripe_bio() calls race here they
3025		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3026		 * to complete "bitmap_startwrite" gets to set
3027		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3028		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3029		 * any more.
3030		 */
3031		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3032		spin_unlock_irq(&sh->stripe_lock);
3033		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3034				  STRIPE_SECTORS, 0);
3035		spin_lock_irq(&sh->stripe_lock);
3036		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3037		if (!sh->batch_head) {
3038			sh->bm_seq = conf->seq_flush+1;
3039			set_bit(STRIPE_BIT_DELAY, &sh->state);
3040		}
3041	}
3042	spin_unlock_irq(&sh->stripe_lock);
3043
3044	if (stripe_can_batch(sh))
3045		stripe_add_to_batch_list(conf, sh);
3046	return 1;
3047
3048 overlap:
3049	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3050	spin_unlock_irq(&sh->stripe_lock);
3051	return 0;
3052}
3053
3054static void end_reshape(struct r5conf *conf);
3055
3056static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3057			    struct stripe_head *sh)
3058{
3059	int sectors_per_chunk =
3060		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3061	int dd_idx;
3062	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3063	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3064
3065	raid5_compute_sector(conf,
3066			     stripe * (disks - conf->max_degraded)
3067			     *sectors_per_chunk + chunk_offset,
3068			     previous,
3069			     &dd_idx, sh);
3070}
3071
3072static void
3073handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3074				struct stripe_head_state *s, int disks,
3075				struct bio **return_bi)
3076{
3077	int i;
3078	BUG_ON(sh->batch_head);
3079	for (i = disks; i--; ) {
3080		struct bio *bi;
3081		int bitmap_end = 0;
3082
3083		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3084			struct md_rdev *rdev;
3085			rcu_read_lock();
3086			rdev = rcu_dereference(conf->disks[i].rdev);
3087			if (rdev && test_bit(In_sync, &rdev->flags))
3088				atomic_inc(&rdev->nr_pending);
3089			else
3090				rdev = NULL;
3091			rcu_read_unlock();
3092			if (rdev) {
3093				if (!rdev_set_badblocks(
3094					    rdev,
3095					    sh->sector,
3096					    STRIPE_SECTORS, 0))
3097					md_error(conf->mddev, rdev);
3098				rdev_dec_pending(rdev, conf->mddev);
3099			}
3100		}
3101		spin_lock_irq(&sh->stripe_lock);
3102		/* fail all writes first */
3103		bi = sh->dev[i].towrite;
3104		sh->dev[i].towrite = NULL;
3105		sh->overwrite_disks = 0;
3106		spin_unlock_irq(&sh->stripe_lock);
3107		if (bi)
3108			bitmap_end = 1;
3109
3110		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3111			wake_up(&conf->wait_for_overlap);
3112
3113		while (bi && bi->bi_iter.bi_sector <
3114			sh->dev[i].sector + STRIPE_SECTORS) {
3115			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3116			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3117			if (!raid5_dec_bi_active_stripes(bi)) {
3118				md_write_end(conf->mddev);
3119				bi->bi_next = *return_bi;
3120				*return_bi = bi;
3121			}
3122			bi = nextbi;
3123		}
3124		if (bitmap_end)
3125			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3126				STRIPE_SECTORS, 0, 0);
3127		bitmap_end = 0;
3128		/* and fail all 'written' */
3129		bi = sh->dev[i].written;
3130		sh->dev[i].written = NULL;
3131		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3132			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3133			sh->dev[i].page = sh->dev[i].orig_page;
3134		}
3135
3136		if (bi) bitmap_end = 1;
3137		while (bi && bi->bi_iter.bi_sector <
3138		       sh->dev[i].sector + STRIPE_SECTORS) {
3139			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3140			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3141			if (!raid5_dec_bi_active_stripes(bi)) {
3142				md_write_end(conf->mddev);
3143				bi->bi_next = *return_bi;
3144				*return_bi = bi;
3145			}
3146			bi = bi2;
3147		}
3148
3149		/* fail any reads if this device is non-operational and
3150		 * the data has not reached the cache yet.
3151		 */
3152		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3153		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3154		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3155			spin_lock_irq(&sh->stripe_lock);
3156			bi = sh->dev[i].toread;
3157			sh->dev[i].toread = NULL;
3158			spin_unlock_irq(&sh->stripe_lock);
3159			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3160				wake_up(&conf->wait_for_overlap);
3161			while (bi && bi->bi_iter.bi_sector <
3162			       sh->dev[i].sector + STRIPE_SECTORS) {
3163				struct bio *nextbi =
3164					r5_next_bio(bi, sh->dev[i].sector);
3165				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3166				if (!raid5_dec_bi_active_stripes(bi)) {
3167					bi->bi_next = *return_bi;
3168					*return_bi = bi;
3169				}
3170				bi = nextbi;
3171			}
3172		}
3173		if (bitmap_end)
3174			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3175					STRIPE_SECTORS, 0, 0);
3176		/* If we were in the middle of a write the parity block might
3177		 * still be locked - so just clear all R5_LOCKED flags
3178		 */
3179		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3180	}
3181
3182	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3183		if (atomic_dec_and_test(&conf->pending_full_writes))
3184			md_wakeup_thread(conf->mddev->thread);
3185}
3186
3187static void
3188handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3189		   struct stripe_head_state *s)
3190{
3191	int abort = 0;
3192	int i;
3193
3194	BUG_ON(sh->batch_head);
3195	clear_bit(STRIPE_SYNCING, &sh->state);
3196	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3197		wake_up(&conf->wait_for_overlap);
3198	s->syncing = 0;
3199	s->replacing = 0;
3200	/* There is nothing more to do for sync/check/repair.
3201	 * Don't even need to abort as that is handled elsewhere
3202	 * if needed, and not always wanted e.g. if there is a known
3203	 * bad block here.
3204	 * For recover/replace we need to record a bad block on all
3205	 * non-sync devices, or abort the recovery
3206	 */
3207	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3208		/* During recovery devices cannot be removed, so
3209		 * locking and refcounting of rdevs is not needed
3210		 */
3211		for (i = 0; i < conf->raid_disks; i++) {
3212			struct md_rdev *rdev = conf->disks[i].rdev;
3213			if (rdev
3214			    && !test_bit(Faulty, &rdev->flags)
3215			    && !test_bit(In_sync, &rdev->flags)
3216			    && !rdev_set_badblocks(rdev, sh->sector,
3217						   STRIPE_SECTORS, 0))
3218				abort = 1;
3219			rdev = conf->disks[i].replacement;
3220			if (rdev
3221			    && !test_bit(Faulty, &rdev->flags)
3222			    && !test_bit(In_sync, &rdev->flags)
3223			    && !rdev_set_badblocks(rdev, sh->sector,
3224						   STRIPE_SECTORS, 0))
3225				abort = 1;
3226		}
3227		if (abort)
3228			conf->recovery_disabled =
3229				conf->mddev->recovery_disabled;
3230	}
3231	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3232}
3233
3234static int want_replace(struct stripe_head *sh, int disk_idx)
3235{
3236	struct md_rdev *rdev;
3237	int rv = 0;
3238	/* Doing recovery so rcu locking not required */
3239	rdev = sh->raid_conf->disks[disk_idx].replacement;
3240	if (rdev
3241	    && !test_bit(Faulty, &rdev->flags)
3242	    && !test_bit(In_sync, &rdev->flags)
3243	    && (rdev->recovery_offset <= sh->sector
3244		|| rdev->mddev->recovery_cp <= sh->sector))
3245		rv = 1;
3246
3247	return rv;
3248}
3249
3250/* fetch_block - checks the given member device to see if its data needs
3251 * to be read or computed to satisfy a request.
3252 *
3253 * Returns 1 when no more member devices need to be checked, otherwise returns
3254 * 0 to tell the loop in handle_stripe_fill to continue
3255 */
3256
3257static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3258			   int disk_idx, int disks)
3259{
3260	struct r5dev *dev = &sh->dev[disk_idx];
3261	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3262				  &sh->dev[s->failed_num[1]] };
3263	int i;
3264
3265
3266	if (test_bit(R5_LOCKED, &dev->flags) ||
3267	    test_bit(R5_UPTODATE, &dev->flags))
3268		/* No point reading this as we already have it or have
3269		 * decided to get it.
3270		 */
3271		return 0;
3272
3273	if (dev->toread ||
3274	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3275		/* We need this block to directly satisfy a request */
3276		return 1;
3277
3278	if (s->syncing || s->expanding ||
3279	    (s->replacing && want_replace(sh, disk_idx)))
3280		/* When syncing, or expanding we read everything.
3281		 * When replacing, we need the replaced block.
3282		 */
3283		return 1;
3284
3285	if ((s->failed >= 1 && fdev[0]->toread) ||
3286	    (s->failed >= 2 && fdev[1]->toread))
3287		/* If we want to read from a failed device, then
3288		 * we need to actually read every other device.
3289		 */
3290		return 1;
3291
3292	/* Sometimes neither read-modify-write nor reconstruct-write
3293	 * cycles can work.  In those cases we read every block we
3294	 * can.  Then the parity-update is certain to have enough to
3295	 * work with.
3296	 * This can only be a problem when we need to write something,
3297	 * and some device has failed.  If either of those tests
3298	 * fail we need look no further.
3299	 */
3300	if (!s->failed || !s->to_write)
3301		return 0;
3302
3303	if (test_bit(R5_Insync, &dev->flags) &&
3304	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3305		/* Pre-reads at not permitted until after short delay
3306		 * to gather multiple requests.  However if this
3307		 * device is no Insync, the block could only be be computed
3308		 * and there is no need to delay that.
3309		 */
3310		return 0;
3311
3312	for (i = 0; i < s->failed; i++) {
3313		if (fdev[i]->towrite &&
3314		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3315		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3316			/* If we have a partial write to a failed
3317			 * device, then we will need to reconstruct
3318			 * the content of that device, so all other
3319			 * devices must be read.
3320			 */
3321			return 1;
3322	}
3323
3324	/* If we are forced to do a reconstruct-write, either because
3325	 * the current RAID6 implementation only supports that, or
3326	 * or because parity cannot be trusted and we are currently
3327	 * recovering it, there is extra need to be careful.
3328	 * If one of the devices that we would need to read, because
3329	 * it is not being overwritten (and maybe not written at all)
3330	 * is missing/faulty, then we need to read everything we can.
3331	 */
3332	if (sh->raid_conf->level != 6 &&
3333	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3334		/* reconstruct-write isn't being forced */
3335		return 0;
3336	for (i = 0; i < s->failed; i++) {
3337		if (s->failed_num[i] != sh->pd_idx &&
3338		    s->failed_num[i] != sh->qd_idx &&
3339		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3340		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3341			return 1;
3342	}
3343
3344	return 0;
3345}
3346
3347static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3348		       int disk_idx, int disks)
3349{
3350	struct r5dev *dev = &sh->dev[disk_idx];
3351
3352	/* is the data in this block needed, and can we get it? */
3353	if (need_this_block(sh, s, disk_idx, disks)) {
3354		/* we would like to get this block, possibly by computing it,
3355		 * otherwise read it if the backing disk is insync
3356		 */
3357		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3358		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3359		BUG_ON(sh->batch_head);
3360		if ((s->uptodate == disks - 1) &&
3361		    (s->failed && (disk_idx == s->failed_num[0] ||
3362				   disk_idx == s->failed_num[1]))) {
3363			/* have disk failed, and we're requested to fetch it;
3364			 * do compute it
3365			 */
3366			pr_debug("Computing stripe %llu block %d\n",
3367			       (unsigned long long)sh->sector, disk_idx);
3368			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3369			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3370			set_bit(R5_Wantcompute, &dev->flags);
3371			sh->ops.target = disk_idx;
3372			sh->ops.target2 = -1; /* no 2nd target */
3373			s->req_compute = 1;
3374			/* Careful: from this point on 'uptodate' is in the eye
3375			 * of raid_run_ops which services 'compute' operations
3376			 * before writes. R5_Wantcompute flags a block that will
3377			 * be R5_UPTODATE by the time it is needed for a
3378			 * subsequent operation.
3379			 */
3380			s->uptodate++;
3381			return 1;
3382		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3383			/* Computing 2-failure is *very* expensive; only
3384			 * do it if failed >= 2
3385			 */
3386			int other;
3387			for (other = disks; other--; ) {
3388				if (other == disk_idx)
3389					continue;
3390				if (!test_bit(R5_UPTODATE,
3391				      &sh->dev[other].flags))
3392					break;
3393			}
3394			BUG_ON(other < 0);
3395			pr_debug("Computing stripe %llu blocks %d,%d\n",
3396			       (unsigned long long)sh->sector,
3397			       disk_idx, other);
3398			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3399			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3400			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3401			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3402			sh->ops.target = disk_idx;
3403			sh->ops.target2 = other;
3404			s->uptodate += 2;
3405			s->req_compute = 1;
3406			return 1;
3407		} else if (test_bit(R5_Insync, &dev->flags)) {
3408			set_bit(R5_LOCKED, &dev->flags);
3409			set_bit(R5_Wantread, &dev->flags);
3410			s->locked++;
3411			pr_debug("Reading block %d (sync=%d)\n",
3412				disk_idx, s->syncing);
3413		}
3414	}
3415
3416	return 0;
3417}
3418
3419/**
3420 * handle_stripe_fill - read or compute data to satisfy pending requests.
3421 */
3422static void handle_stripe_fill(struct stripe_head *sh,
3423			       struct stripe_head_state *s,
3424			       int disks)
3425{
3426	int i;
3427
3428	/* look for blocks to read/compute, skip this if a compute
3429	 * is already in flight, or if the stripe contents are in the
3430	 * midst of changing due to a write
3431	 */
3432	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3433	    !sh->reconstruct_state)
3434		for (i = disks; i--; )
3435			if (fetch_block(sh, s, i, disks))
3436				break;
3437	set_bit(STRIPE_HANDLE, &sh->state);
3438}
3439
3440static void break_stripe_batch_list(struct stripe_head *head_sh,
3441				    unsigned long handle_flags);
3442/* handle_stripe_clean_event
3443 * any written block on an uptodate or failed drive can be returned.
3444 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3445 * never LOCKED, so we don't need to test 'failed' directly.
3446 */
3447static void handle_stripe_clean_event(struct r5conf *conf,
3448	struct stripe_head *sh, int disks, struct bio **return_bi)
3449{
3450	int i;
3451	struct r5dev *dev;
3452	int discard_pending = 0;
3453	struct stripe_head *head_sh = sh;
3454	bool do_endio = false;
3455
3456	for (i = disks; i--; )
3457		if (sh->dev[i].written) {
3458			dev = &sh->dev[i];
3459			if (!test_bit(R5_LOCKED, &dev->flags) &&
3460			    (test_bit(R5_UPTODATE, &dev->flags) ||
3461			     test_bit(R5_Discard, &dev->flags) ||
3462			     test_bit(R5_SkipCopy, &dev->flags))) {
3463				/* We can return any write requests */
3464				struct bio *wbi, *wbi2;
3465				pr_debug("Return write for disc %d\n", i);
3466				if (test_and_clear_bit(R5_Discard, &dev->flags))
3467					clear_bit(R5_UPTODATE, &dev->flags);
3468				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3469					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3470				}
3471				do_endio = true;
3472
3473returnbi:
3474				dev->page = dev->orig_page;
3475				wbi = dev->written;
3476				dev->written = NULL;
3477				while (wbi && wbi->bi_iter.bi_sector <
3478					dev->sector + STRIPE_SECTORS) {
3479					wbi2 = r5_next_bio(wbi, dev->sector);
3480					if (!raid5_dec_bi_active_stripes(wbi)) {
3481						md_write_end(conf->mddev);
3482						wbi->bi_next = *return_bi;
3483						*return_bi = wbi;
3484					}
3485					wbi = wbi2;
3486				}
3487				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3488						STRIPE_SECTORS,
3489					 !test_bit(STRIPE_DEGRADED, &sh->state),
3490						0);
3491				if (head_sh->batch_head) {
3492					sh = list_first_entry(&sh->batch_list,
3493							      struct stripe_head,
3494							      batch_list);
3495					if (sh != head_sh) {
3496						dev = &sh->dev[i];
3497						goto returnbi;
3498					}
3499				}
3500				sh = head_sh;
3501				dev = &sh->dev[i];
3502			} else if (test_bit(R5_Discard, &dev->flags))
3503				discard_pending = 1;
3504			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3505			WARN_ON(dev->page != dev->orig_page);
3506		}
3507	if (!discard_pending &&
3508	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3509		int hash;
3510		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3511		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3512		if (sh->qd_idx >= 0) {
3513			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3514			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3515		}
3516		/* now that discard is done we can proceed with any sync */
3517		clear_bit(STRIPE_DISCARD, &sh->state);
3518		/*
3519		 * SCSI discard will change some bio fields and the stripe has
3520		 * no updated data, so remove it from hash list and the stripe
3521		 * will be reinitialized
3522		 */
3523unhash:
3524		hash = sh->hash_lock_index;
3525		spin_lock_irq(conf->hash_locks + hash);
3526		remove_hash(sh);
3527		spin_unlock_irq(conf->hash_locks + hash);
3528		if (head_sh->batch_head) {
3529			sh = list_first_entry(&sh->batch_list,
3530					      struct stripe_head, batch_list);
3531			if (sh != head_sh)
3532					goto unhash;
3533		}
3534		sh = head_sh;
3535
3536		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3537			set_bit(STRIPE_HANDLE, &sh->state);
3538
3539	}
3540
3541	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3542		if (atomic_dec_and_test(&conf->pending_full_writes))
3543			md_wakeup_thread(conf->mddev->thread);
3544
3545	if (head_sh->batch_head && do_endio)
3546		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3547}
3548
3549static void handle_stripe_dirtying(struct r5conf *conf,
3550				   struct stripe_head *sh,
3551				   struct stripe_head_state *s,
3552				   int disks)
3553{
3554	int rmw = 0, rcw = 0, i;
3555	sector_t recovery_cp = conf->mddev->recovery_cp;
3556
3557	/* Check whether resync is now happening or should start.
3558	 * If yes, then the array is dirty (after unclean shutdown or
3559	 * initial creation), so parity in some stripes might be inconsistent.
3560	 * In this case, we need to always do reconstruct-write, to ensure
3561	 * that in case of drive failure or read-error correction, we
3562	 * generate correct data from the parity.
3563	 */
3564	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3565	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3566	     s->failed == 0)) {
3567		/* Calculate the real rcw later - for now make it
3568		 * look like rcw is cheaper
3569		 */
3570		rcw = 1; rmw = 2;
3571		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3572			 conf->rmw_level, (unsigned long long)recovery_cp,
3573			 (unsigned long long)sh->sector);
3574	} else for (i = disks; i--; ) {
3575		/* would I have to read this buffer for read_modify_write */
3576		struct r5dev *dev = &sh->dev[i];
3577		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3578		    !test_bit(R5_LOCKED, &dev->flags) &&
3579		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3580		      test_bit(R5_Wantcompute, &dev->flags))) {
3581			if (test_bit(R5_Insync, &dev->flags))
3582				rmw++;
3583			else
3584				rmw += 2*disks;  /* cannot read it */
3585		}
3586		/* Would I have to read this buffer for reconstruct_write */
3587		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3588		    i != sh->pd_idx && i != sh->qd_idx &&
3589		    !test_bit(R5_LOCKED, &dev->flags) &&
3590		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3591		    test_bit(R5_Wantcompute, &dev->flags))) {
3592			if (test_bit(R5_Insync, &dev->flags))
3593				rcw++;
3594			else
3595				rcw += 2*disks;
3596		}
3597	}
3598	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3599		(unsigned long long)sh->sector, rmw, rcw);
3600	set_bit(STRIPE_HANDLE, &sh->state);
3601	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3602		/* prefer read-modify-write, but need to get some data */
3603		if (conf->mddev->queue)
3604			blk_add_trace_msg(conf->mddev->queue,
3605					  "raid5 rmw %llu %d",
3606					  (unsigned long long)sh->sector, rmw);
3607		for (i = disks; i--; ) {
3608			struct r5dev *dev = &sh->dev[i];
3609			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3610			    !test_bit(R5_LOCKED, &dev->flags) &&
3611			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3612			    test_bit(R5_Wantcompute, &dev->flags)) &&
3613			    test_bit(R5_Insync, &dev->flags)) {
3614				if (test_bit(STRIPE_PREREAD_ACTIVE,
3615					     &sh->state)) {
3616					pr_debug("Read_old block %d for r-m-w\n",
3617						 i);
3618					set_bit(R5_LOCKED, &dev->flags);
3619					set_bit(R5_Wantread, &dev->flags);
3620					s->locked++;
3621				} else {
3622					set_bit(STRIPE_DELAYED, &sh->state);
3623					set_bit(STRIPE_HANDLE, &sh->state);
3624				}
3625			}
3626		}
3627	}
3628	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3629		/* want reconstruct write, but need to get some data */
3630		int qread =0;
3631		rcw = 0;
3632		for (i = disks; i--; ) {
3633			struct r5dev *dev = &sh->dev[i];
3634			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3635			    i != sh->pd_idx && i != sh->qd_idx &&
3636			    !test_bit(R5_LOCKED, &dev->flags) &&
3637			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3638			      test_bit(R5_Wantcompute, &dev->flags))) {
3639				rcw++;
3640				if (test_bit(R5_Insync, &dev->flags) &&
3641				    test_bit(STRIPE_PREREAD_ACTIVE,
3642					     &sh->state)) {
3643					pr_debug("Read_old block "
3644						"%d for Reconstruct\n", i);
3645					set_bit(R5_LOCKED, &dev->flags);
3646					set_bit(R5_Wantread, &dev->flags);
3647					s->locked++;
3648					qread++;
3649				} else {
3650					set_bit(STRIPE_DELAYED, &sh->state);
3651					set_bit(STRIPE_HANDLE, &sh->state);
3652				}
3653			}
3654		}
3655		if (rcw && conf->mddev->queue)
3656			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3657					  (unsigned long long)sh->sector,
3658					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3659	}
3660
3661	if (rcw > disks && rmw > disks &&
3662	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3663		set_bit(STRIPE_DELAYED, &sh->state);
3664
3665	/* now if nothing is locked, and if we have enough data,
3666	 * we can start a write request
3667	 */
3668	/* since handle_stripe can be called at any time we need to handle the
3669	 * case where a compute block operation has been submitted and then a
3670	 * subsequent call wants to start a write request.  raid_run_ops only
3671	 * handles the case where compute block and reconstruct are requested
3672	 * simultaneously.  If this is not the case then new writes need to be
3673	 * held off until the compute completes.
3674	 */
3675	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3676	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3677	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3678		schedule_reconstruction(sh, s, rcw == 0, 0);
3679}
3680
3681static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3682				struct stripe_head_state *s, int disks)
3683{
3684	struct r5dev *dev = NULL;
3685
3686	BUG_ON(sh->batch_head);
3687	set_bit(STRIPE_HANDLE, &sh->state);
3688
3689	switch (sh->check_state) {
3690	case check_state_idle:
3691		/* start a new check operation if there are no failures */
3692		if (s->failed == 0) {
3693			BUG_ON(s->uptodate != disks);
3694			sh->check_state = check_state_run;
3695			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3696			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3697			s->uptodate--;
3698			break;
3699		}
3700		dev = &sh->dev[s->failed_num[0]];
3701		/* fall through */
3702	case check_state_compute_result:
3703		sh->check_state = check_state_idle;
3704		if (!dev)
3705			dev = &sh->dev[sh->pd_idx];
3706
3707		/* check that a write has not made the stripe insync */
3708		if (test_bit(STRIPE_INSYNC, &sh->state))
3709			break;
3710
3711		/* either failed parity check, or recovery is happening */
3712		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3713		BUG_ON(s->uptodate != disks);
3714
3715		set_bit(R5_LOCKED, &dev->flags);
3716		s->locked++;
3717		set_bit(R5_Wantwrite, &dev->flags);
3718
3719		clear_bit(STRIPE_DEGRADED, &sh->state);
3720		set_bit(STRIPE_INSYNC, &sh->state);
3721		break;
3722	case check_state_run:
3723		break; /* we will be called again upon completion */
3724	case check_state_check_result:
3725		sh->check_state = check_state_idle;
3726
3727		/* if a failure occurred during the check operation, leave
3728		 * STRIPE_INSYNC not set and let the stripe be handled again
3729		 */
3730		if (s->failed)
3731			break;
3732
3733		/* handle a successful check operation, if parity is correct
3734		 * we are done.  Otherwise update the mismatch count and repair
3735		 * parity if !MD_RECOVERY_CHECK
3736		 */
3737		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3738			/* parity is correct (on disc,
3739			 * not in buffer any more)
3740			 */
3741			set_bit(STRIPE_INSYNC, &sh->state);
3742		else {
3743			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3744			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3745				/* don't try to repair!! */
3746				set_bit(STRIPE_INSYNC, &sh->state);
3747			else {
3748				sh->check_state = check_state_compute_run;
3749				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3750				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3751				set_bit(R5_Wantcompute,
3752					&sh->dev[sh->pd_idx].flags);
3753				sh->ops.target = sh->pd_idx;
3754				sh->ops.target2 = -1;
3755				s->uptodate++;
3756			}
3757		}
3758		break;
3759	case check_state_compute_run:
3760		break;
3761	default:
3762		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3763		       __func__, sh->check_state,
3764		       (unsigned long long) sh->sector);
3765		BUG();
3766	}
3767}
3768
3769static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3770				  struct stripe_head_state *s,
3771				  int disks)
3772{
3773	int pd_idx = sh->pd_idx;
3774	int qd_idx = sh->qd_idx;
3775	struct r5dev *dev;
3776
3777	BUG_ON(sh->batch_head);
3778	set_bit(STRIPE_HANDLE, &sh->state);
3779
3780	BUG_ON(s->failed > 2);
3781
3782	/* Want to check and possibly repair P and Q.
3783	 * However there could be one 'failed' device, in which
3784	 * case we can only check one of them, possibly using the
3785	 * other to generate missing data
3786	 */
3787
3788	switch (sh->check_state) {
3789	case check_state_idle:
3790		/* start a new check operation if there are < 2 failures */
3791		if (s->failed == s->q_failed) {
3792			/* The only possible failed device holds Q, so it
3793			 * makes sense to check P (If anything else were failed,
3794			 * we would have used P to recreate it).
3795			 */
3796			sh->check_state = check_state_run;
3797		}
3798		if (!s->q_failed && s->failed < 2) {
3799			/* Q is not failed, and we didn't use it to generate
3800			 * anything, so it makes sense to check it
3801			 */
3802			if (sh->check_state == check_state_run)
3803				sh->check_state = check_state_run_pq;
3804			else
3805				sh->check_state = check_state_run_q;
3806		}
3807
3808		/* discard potentially stale zero_sum_result */
3809		sh->ops.zero_sum_result = 0;
3810
3811		if (sh->check_state == check_state_run) {
3812			/* async_xor_zero_sum destroys the contents of P */
3813			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3814			s->uptodate--;
3815		}
3816		if (sh->check_state >= check_state_run &&
3817		    sh->check_state <= check_state_run_pq) {
3818			/* async_syndrome_zero_sum preserves P and Q, so
3819			 * no need to mark them !uptodate here
3820			 */
3821			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3822			break;
3823		}
3824
3825		/* we have 2-disk failure */
3826		BUG_ON(s->failed != 2);
3827		/* fall through */
3828	case check_state_compute_result:
3829		sh->check_state = check_state_idle;
3830
3831		/* check that a write has not made the stripe insync */
3832		if (test_bit(STRIPE_INSYNC, &sh->state))
3833			break;
3834
3835		/* now write out any block on a failed drive,
3836		 * or P or Q if they were recomputed
3837		 */
3838		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3839		if (s->failed == 2) {
3840			dev = &sh->dev[s->failed_num[1]];
3841			s->locked++;
3842			set_bit(R5_LOCKED, &dev->flags);
3843			set_bit(R5_Wantwrite, &dev->flags);
3844		}
3845		if (s->failed >= 1) {
3846			dev = &sh->dev[s->failed_num[0]];
3847			s->locked++;
3848			set_bit(R5_LOCKED, &dev->flags);
3849			set_bit(R5_Wantwrite, &dev->flags);
3850		}
3851		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3852			dev = &sh->dev[pd_idx];
3853			s->locked++;
3854			set_bit(R5_LOCKED, &dev->flags);
3855			set_bit(R5_Wantwrite, &dev->flags);
3856		}
3857		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3858			dev = &sh->dev[qd_idx];
3859			s->locked++;
3860			set_bit(R5_LOCKED, &dev->flags);
3861			set_bit(R5_Wantwrite, &dev->flags);
3862		}
3863		clear_bit(STRIPE_DEGRADED, &sh->state);
3864
3865		set_bit(STRIPE_INSYNC, &sh->state);
3866		break;
3867	case check_state_run:
3868	case check_state_run_q:
3869	case check_state_run_pq:
3870		break; /* we will be called again upon completion */
3871	case check_state_check_result:
3872		sh->check_state = check_state_idle;
3873
3874		/* handle a successful check operation, if parity is correct
3875		 * we are done.  Otherwise update the mismatch count and repair
3876		 * parity if !MD_RECOVERY_CHECK
3877		 */
3878		if (sh->ops.zero_sum_result == 0) {
3879			/* both parities are correct */
3880			if (!s->failed)
3881				set_bit(STRIPE_INSYNC, &sh->state);
3882			else {
3883				/* in contrast to the raid5 case we can validate
3884				 * parity, but still have a failure to write
3885				 * back
3886				 */
3887				sh->check_state = check_state_compute_result;
3888				/* Returning at this point means that we may go
3889				 * off and bring p and/or q uptodate again so
3890				 * we make sure to check zero_sum_result again
3891				 * to verify if p or q need writeback
3892				 */
3893			}
3894		} else {
3895			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3896			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3897				/* don't try to repair!! */
3898				set_bit(STRIPE_INSYNC, &sh->state);
3899			else {
3900				int *target = &sh->ops.target;
3901
3902				sh->ops.target = -1;
3903				sh->ops.target2 = -1;
3904				sh->check_state = check_state_compute_run;
3905				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3906				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3907				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3908					set_bit(R5_Wantcompute,
3909						&sh->dev[pd_idx].flags);
3910					*target = pd_idx;
3911					target = &sh->ops.target2;
3912					s->uptodate++;
3913				}
3914				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3915					set_bit(R5_Wantcompute,
3916						&sh->dev[qd_idx].flags);
3917					*target = qd_idx;
3918					s->uptodate++;
3919				}
3920			}
3921		}
3922		break;
3923	case check_state_compute_run:
3924		break;
3925	default:
3926		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3927		       __func__, sh->check_state,
3928		       (unsigned long long) sh->sector);
3929		BUG();
3930	}
3931}
3932
3933static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3934{
3935	int i;
3936
3937	/* We have read all the blocks in this stripe and now we need to
3938	 * copy some of them into a target stripe for expand.
3939	 */
3940	struct dma_async_tx_descriptor *tx = NULL;
3941	BUG_ON(sh->batch_head);
3942	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3943	for (i = 0; i < sh->disks; i++)
3944		if (i != sh->pd_idx && i != sh->qd_idx) {
3945			int dd_idx, j;
3946			struct stripe_head *sh2;
3947			struct async_submit_ctl submit;
3948
3949			sector_t bn = compute_blocknr(sh, i, 1);
3950			sector_t s = raid5_compute_sector(conf, bn, 0,
3951							  &dd_idx, NULL);
3952			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3953			if (sh2 == NULL)
3954				/* so far only the early blocks of this stripe
3955				 * have been requested.  When later blocks
3956				 * get requested, we will try again
3957				 */
3958				continue;
3959			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3960			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3961				/* must have already done this block */
3962				release_stripe(sh2);
3963				continue;
3964			}
3965
3966			/* place all the copies on one channel */
3967			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3968			tx = async_memcpy(sh2->dev[dd_idx].page,
3969					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3970					  &submit);
3971
3972			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3973			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3974			for (j = 0; j < conf->raid_disks; j++)
3975				if (j != sh2->pd_idx &&
3976				    j != sh2->qd_idx &&
3977				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3978					break;
3979			if (j == conf->raid_disks) {
3980				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3981				set_bit(STRIPE_HANDLE, &sh2->state);
3982			}
3983			release_stripe(sh2);
3984
3985		}
3986	/* done submitting copies, wait for them to complete */
3987	async_tx_quiesce(&tx);
3988}
3989
3990/*
3991 * handle_stripe - do things to a stripe.
3992 *
3993 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3994 * state of various bits to see what needs to be done.
3995 * Possible results:
3996 *    return some read requests which now have data
3997 *    return some write requests which are safely on storage
3998 *    schedule a read on some buffers
3999 *    schedule a write of some buffers
4000 *    return confirmation of parity correctness
4001 *
4002 */
4003
4004static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4005{
4006	struct r5conf *conf = sh->raid_conf;
4007	int disks = sh->disks;
4008	struct r5dev *dev;
4009	int i;
4010	int do_recovery = 0;
4011
4012	memset(s, 0, sizeof(*s));
4013
4014	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4015	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4016	s->failed_num[0] = -1;
4017	s->failed_num[1] = -1;
4018
4019	/* Now to look around and see what can be done */
4020	rcu_read_lock();
4021	for (i=disks; i--; ) {
4022		struct md_rdev *rdev;
4023		sector_t first_bad;
4024		int bad_sectors;
4025		int is_bad = 0;
4026
4027		dev = &sh->dev[i];
4028
4029		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4030			 i, dev->flags,
4031			 dev->toread, dev->towrite, dev->written);
4032		/* maybe we can reply to a read
4033		 *
4034		 * new wantfill requests are only permitted while
4035		 * ops_complete_biofill is guaranteed to be inactive
4036		 */
4037		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4038		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4039			set_bit(R5_Wantfill, &dev->flags);
4040
4041		/* now count some things */
4042		if (test_bit(R5_LOCKED, &dev->flags))
4043			s->locked++;
4044		if (test_bit(R5_UPTODATE, &dev->flags))
4045			s->uptodate++;
4046		if (test_bit(R5_Wantcompute, &dev->flags)) {
4047			s->compute++;
4048			BUG_ON(s->compute > 2);
4049		}
4050
4051		if (test_bit(R5_Wantfill, &dev->flags))
4052			s->to_fill++;
4053		else if (dev->toread)
4054			s->to_read++;
4055		if (dev->towrite) {
4056			s->to_write++;
4057			if (!test_bit(R5_OVERWRITE, &dev->flags))
4058				s->non_overwrite++;
4059		}
4060		if (dev->written)
4061			s->written++;
4062		/* Prefer to use the replacement for reads, but only
4063		 * if it is recovered enough and has no bad blocks.
4064		 */
4065		rdev = rcu_dereference(conf->disks[i].replacement);
4066		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4067		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4068		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4069				 &first_bad, &bad_sectors))
4070			set_bit(R5_ReadRepl, &dev->flags);
4071		else {
4072			if (rdev)
4073				set_bit(R5_NeedReplace, &dev->flags);
4074			rdev = rcu_dereference(conf->disks[i].rdev);
4075			clear_bit(R5_ReadRepl, &dev->flags);
4076		}
4077		if (rdev && test_bit(Faulty, &rdev->flags))
4078			rdev = NULL;
4079		if (rdev) {
4080			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4081					     &first_bad, &bad_sectors);
4082			if (s->blocked_rdev == NULL
4083			    && (test_bit(Blocked, &rdev->flags)
4084				|| is_bad < 0)) {
4085				if (is_bad < 0)
4086					set_bit(BlockedBadBlocks,
4087						&rdev->flags);
4088				s->blocked_rdev = rdev;
4089				atomic_inc(&rdev->nr_pending);
4090			}
4091		}
4092		clear_bit(R5_Insync, &dev->flags);
4093		if (!rdev)
4094			/* Not in-sync */;
4095		else if (is_bad) {
4096			/* also not in-sync */
4097			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4098			    test_bit(R5_UPTODATE, &dev->flags)) {
4099				/* treat as in-sync, but with a read error
4100				 * which we can now try to correct
4101				 */
4102				set_bit(R5_Insync, &dev->flags);
4103				set_bit(R5_ReadError, &dev->flags);
4104			}
4105		} else if (test_bit(In_sync, &rdev->flags))
4106			set_bit(R5_Insync, &dev->flags);
4107		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4108			/* in sync if before recovery_offset */
4109			set_bit(R5_Insync, &dev->flags);
4110		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4111			 test_bit(R5_Expanded, &dev->flags))
4112			/* If we've reshaped into here, we assume it is Insync.
4113			 * We will shortly update recovery_offset to make
4114			 * it official.
4115			 */
4116			set_bit(R5_Insync, &dev->flags);
4117
4118		if (test_bit(R5_WriteError, &dev->flags)) {
4119			/* This flag does not apply to '.replacement'
4120			 * only to .rdev, so make sure to check that*/
4121			struct md_rdev *rdev2 = rcu_dereference(
4122				conf->disks[i].rdev);
4123			if (rdev2 == rdev)
4124				clear_bit(R5_Insync, &dev->flags);
4125			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4126				s->handle_bad_blocks = 1;
4127				atomic_inc(&rdev2->nr_pending);
4128			} else
4129				clear_bit(R5_WriteError, &dev->flags);
4130		}
4131		if (test_bit(R5_MadeGood, &dev->flags)) {
4132			/* This flag does not apply to '.replacement'
4133			 * only to .rdev, so make sure to check that*/
4134			struct md_rdev *rdev2 = rcu_dereference(
4135				conf->disks[i].rdev);
4136			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4137				s->handle_bad_blocks = 1;
4138				atomic_inc(&rdev2->nr_pending);
4139			} else
4140				clear_bit(R5_MadeGood, &dev->flags);
4141		}
4142		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4143			struct md_rdev *rdev2 = rcu_dereference(
4144				conf->disks[i].replacement);
4145			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146				s->handle_bad_blocks = 1;
4147				atomic_inc(&rdev2->nr_pending);
4148			} else
4149				clear_bit(R5_MadeGoodRepl, &dev->flags);
4150		}
4151		if (!test_bit(R5_Insync, &dev->flags)) {
4152			/* The ReadError flag will just be confusing now */
4153			clear_bit(R5_ReadError, &dev->flags);
4154			clear_bit(R5_ReWrite, &dev->flags);
4155		}
4156		if (test_bit(R5_ReadError, &dev->flags))
4157			clear_bit(R5_Insync, &dev->flags);
4158		if (!test_bit(R5_Insync, &dev->flags)) {
4159			if (s->failed < 2)
4160				s->failed_num[s->failed] = i;
4161			s->failed++;
4162			if (rdev && !test_bit(Faulty, &rdev->flags))
4163				do_recovery = 1;
4164		}
4165	}
4166	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4167		/* If there is a failed device being replaced,
4168		 *     we must be recovering.
4169		 * else if we are after recovery_cp, we must be syncing
4170		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4171		 * else we can only be replacing
4172		 * sync and recovery both need to read all devices, and so
4173		 * use the same flag.
4174		 */
4175		if (do_recovery ||
4176		    sh->sector >= conf->mddev->recovery_cp ||
4177		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4178			s->syncing = 1;
4179		else
4180			s->replacing = 1;
4181	}
4182	rcu_read_unlock();
4183}
4184
4185static int clear_batch_ready(struct stripe_head *sh)
4186{
4187	/* Return '1' if this is a member of batch, or
4188	 * '0' if it is a lone stripe or a head which can now be
4189	 * handled.
4190	 */
4191	struct stripe_head *tmp;
4192	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4193		return (sh->batch_head && sh->batch_head != sh);
4194	spin_lock(&sh->stripe_lock);
4195	if (!sh->batch_head) {
4196		spin_unlock(&sh->stripe_lock);
4197		return 0;
4198	}
4199
4200	/*
4201	 * this stripe could be added to a batch list before we check
4202	 * BATCH_READY, skips it
4203	 */
4204	if (sh->batch_head != sh) {
4205		spin_unlock(&sh->stripe_lock);
4206		return 1;
4207	}
4208	spin_lock(&sh->batch_lock);
4209	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4210		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4211	spin_unlock(&sh->batch_lock);
4212	spin_unlock(&sh->stripe_lock);
4213
4214	/*
4215	 * BATCH_READY is cleared, no new stripes can be added.
4216	 * batch_list can be accessed without lock
4217	 */
4218	return 0;
4219}
4220
4221static void break_stripe_batch_list(struct stripe_head *head_sh,
4222				    unsigned long handle_flags)
4223{
4224	struct stripe_head *sh, *next;
4225	int i;
4226	int do_wakeup = 0;
4227
4228	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4229
4230		list_del_init(&sh->batch_list);
4231
4232		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4233					  (1 << STRIPE_SYNCING) |
4234					  (1 << STRIPE_REPLACED) |
4235					  (1 << STRIPE_DELAYED) |
4236					  (1 << STRIPE_BIT_DELAY) |
4237					  (1 << STRIPE_FULL_WRITE) |
4238					  (1 << STRIPE_BIOFILL_RUN) |
4239					  (1 << STRIPE_COMPUTE_RUN)  |
4240					  (1 << STRIPE_OPS_REQ_PENDING) |
4241					  (1 << STRIPE_DISCARD) |
4242					  (1 << STRIPE_BATCH_READY) |
4243					  (1 << STRIPE_BATCH_ERR) |
4244					  (1 << STRIPE_BITMAP_PENDING)));
4245		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4246					      (1 << STRIPE_REPLACED)));
4247
4248		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4249					    (1 << STRIPE_PREREAD_ACTIVE) |
4250					    (1 << STRIPE_DEGRADED)),
4251			      head_sh->state & (1 << STRIPE_INSYNC));
4252
4253		sh->check_state = head_sh->check_state;
4254		sh->reconstruct_state = head_sh->reconstruct_state;
4255		for (i = 0; i < sh->disks; i++) {
4256			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4257				do_wakeup = 1;
4258			sh->dev[i].flags = head_sh->dev[i].flags &
4259				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4260		}
4261		spin_lock_irq(&sh->stripe_lock);
4262		sh->batch_head = NULL;
4263		spin_unlock_irq(&sh->stripe_lock);
4264		if (handle_flags == 0 ||
4265		    sh->state & handle_flags)
4266			set_bit(STRIPE_HANDLE, &sh->state);
4267		release_stripe(sh);
4268	}
4269	spin_lock_irq(&head_sh->stripe_lock);
4270	head_sh->batch_head = NULL;
4271	spin_unlock_irq(&head_sh->stripe_lock);
4272	for (i = 0; i < head_sh->disks; i++)
4273		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4274			do_wakeup = 1;
4275	if (head_sh->state & handle_flags)
4276		set_bit(STRIPE_HANDLE, &head_sh->state);
4277
4278	if (do_wakeup)
4279		wake_up(&head_sh->raid_conf->wait_for_overlap);
4280}
4281
4282static void handle_stripe(struct stripe_head *sh)
4283{
4284	struct stripe_head_state s;
4285	struct r5conf *conf = sh->raid_conf;
4286	int i;
4287	int prexor;
4288	int disks = sh->disks;
4289	struct r5dev *pdev, *qdev;
4290
4291	clear_bit(STRIPE_HANDLE, &sh->state);
4292	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4293		/* already being handled, ensure it gets handled
4294		 * again when current action finishes */
4295		set_bit(STRIPE_HANDLE, &sh->state);
4296		return;
4297	}
4298
4299	if (clear_batch_ready(sh) ) {
4300		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4301		return;
4302	}
4303
4304	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4305		break_stripe_batch_list(sh, 0);
4306
4307	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4308		spin_lock(&sh->stripe_lock);
4309		/* Cannot process 'sync' concurrently with 'discard' */
4310		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4311		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4312			set_bit(STRIPE_SYNCING, &sh->state);
4313			clear_bit(STRIPE_INSYNC, &sh->state);
4314			clear_bit(STRIPE_REPLACED, &sh->state);
4315		}
4316		spin_unlock(&sh->stripe_lock);
4317	}
4318	clear_bit(STRIPE_DELAYED, &sh->state);
4319
4320	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4321		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4322	       (unsigned long long)sh->sector, sh->state,
4323	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4324	       sh->check_state, sh->reconstruct_state);
4325
4326	analyse_stripe(sh, &s);
4327
4328	if (s.handle_bad_blocks) {
4329		set_bit(STRIPE_HANDLE, &sh->state);
4330		goto finish;
4331	}
4332
4333	if (unlikely(s.blocked_rdev)) {
4334		if (s.syncing || s.expanding || s.expanded ||
4335		    s.replacing || s.to_write || s.written) {
4336			set_bit(STRIPE_HANDLE, &sh->state);
4337			goto finish;
4338		}
4339		/* There is nothing for the blocked_rdev to block */
4340		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4341		s.blocked_rdev = NULL;
4342	}
4343
4344	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4345		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4346		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4347	}
4348
4349	pr_debug("locked=%d uptodate=%d to_read=%d"
4350	       " to_write=%d failed=%d failed_num=%d,%d\n",
4351	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4352	       s.failed_num[0], s.failed_num[1]);
4353	/* check if the array has lost more than max_degraded devices and,
4354	 * if so, some requests might need to be failed.
4355	 */
4356	if (s.failed > conf->max_degraded) {
4357		sh->check_state = 0;
4358		sh->reconstruct_state = 0;
4359		break_stripe_batch_list(sh, 0);
4360		if (s.to_read+s.to_write+s.written)
4361			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4362		if (s.syncing + s.replacing)
4363			handle_failed_sync(conf, sh, &s);
4364	}
4365
4366	/* Now we check to see if any write operations have recently
4367	 * completed
4368	 */
4369	prexor = 0;
4370	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4371		prexor = 1;
4372	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4373	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4374		sh->reconstruct_state = reconstruct_state_idle;
4375
4376		/* All the 'written' buffers and the parity block are ready to
4377		 * be written back to disk
4378		 */
4379		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4380		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4381		BUG_ON(sh->qd_idx >= 0 &&
4382		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4383		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4384		for (i = disks; i--; ) {
4385			struct r5dev *dev = &sh->dev[i];
4386			if (test_bit(R5_LOCKED, &dev->flags) &&
4387				(i == sh->pd_idx || i == sh->qd_idx ||
4388				 dev->written)) {
4389				pr_debug("Writing block %d\n", i);
4390				set_bit(R5_Wantwrite, &dev->flags);
4391				if (prexor)
4392					continue;
4393				if (s.failed > 1)
4394					continue;
4395				if (!test_bit(R5_Insync, &dev->flags) ||
4396				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4397				     s.failed == 0))
4398					set_bit(STRIPE_INSYNC, &sh->state);
4399			}
4400		}
4401		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4402			s.dec_preread_active = 1;
4403	}
4404
4405	/*
4406	 * might be able to return some write requests if the parity blocks
4407	 * are safe, or on a failed drive
4408	 */
4409	pdev = &sh->dev[sh->pd_idx];
4410	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4411		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4412	qdev = &sh->dev[sh->qd_idx];
4413	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4414		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4415		|| conf->level < 6;
4416
4417	if (s.written &&
4418	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4419			     && !test_bit(R5_LOCKED, &pdev->flags)
4420			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4421				 test_bit(R5_Discard, &pdev->flags))))) &&
4422	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4423			     && !test_bit(R5_LOCKED, &qdev->flags)
4424			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4425				 test_bit(R5_Discard, &qdev->flags))))))
4426		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4427
4428	/* Now we might consider reading some blocks, either to check/generate
4429	 * parity, or to satisfy requests
4430	 * or to load a block that is being partially written.
4431	 */
4432	if (s.to_read || s.non_overwrite
4433	    || (conf->level == 6 && s.to_write && s.failed)
4434	    || (s.syncing && (s.uptodate + s.compute < disks))
4435	    || s.replacing
4436	    || s.expanding)
4437		handle_stripe_fill(sh, &s, disks);
4438
4439	/* Now to consider new write requests and what else, if anything
4440	 * should be read.  We do not handle new writes when:
4441	 * 1/ A 'write' operation (copy+xor) is already in flight.
4442	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4443	 *    block.
4444	 */
4445	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4446		handle_stripe_dirtying(conf, sh, &s, disks);
4447
4448	/* maybe we need to check and possibly fix the parity for this stripe
4449	 * Any reads will already have been scheduled, so we just see if enough
4450	 * data is available.  The parity check is held off while parity
4451	 * dependent operations are in flight.
4452	 */
4453	if (sh->check_state ||
4454	    (s.syncing && s.locked == 0 &&
4455	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4456	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4457		if (conf->level == 6)
4458			handle_parity_checks6(conf, sh, &s, disks);
4459		else
4460			handle_parity_checks5(conf, sh, &s, disks);
4461	}
4462
4463	if ((s.replacing || s.syncing) && s.locked == 0
4464	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4465	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4466		/* Write out to replacement devices where possible */
4467		for (i = 0; i < conf->raid_disks; i++)
4468			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4469				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4470				set_bit(R5_WantReplace, &sh->dev[i].flags);
4471				set_bit(R5_LOCKED, &sh->dev[i].flags);
4472				s.locked++;
4473			}
4474		if (s.replacing)
4475			set_bit(STRIPE_INSYNC, &sh->state);
4476		set_bit(STRIPE_REPLACED, &sh->state);
4477	}
4478	if ((s.syncing || s.replacing) && s.locked == 0 &&
4479	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4480	    test_bit(STRIPE_INSYNC, &sh->state)) {
4481		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4482		clear_bit(STRIPE_SYNCING, &sh->state);
4483		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4484			wake_up(&conf->wait_for_overlap);
4485	}
4486
4487	/* If the failed drives are just a ReadError, then we might need
4488	 * to progress the repair/check process
4489	 */
4490	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4491		for (i = 0; i < s.failed; i++) {
4492			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4493			if (test_bit(R5_ReadError, &dev->flags)
4494			    && !test_bit(R5_LOCKED, &dev->flags)
4495			    && test_bit(R5_UPTODATE, &dev->flags)
4496				) {
4497				if (!test_bit(R5_ReWrite, &dev->flags)) {
4498					set_bit(R5_Wantwrite, &dev->flags);
4499					set_bit(R5_ReWrite, &dev->flags);
4500					set_bit(R5_LOCKED, &dev->flags);
4501					s.locked++;
4502				} else {
4503					/* let's read it back */
4504					set_bit(R5_Wantread, &dev->flags);
4505					set_bit(R5_LOCKED, &dev->flags);
4506					s.locked++;
4507				}
4508			}
4509		}
4510
4511	/* Finish reconstruct operations initiated by the expansion process */
4512	if (sh->reconstruct_state == reconstruct_state_result) {
4513		struct stripe_head *sh_src
4514			= get_active_stripe(conf, sh->sector, 1, 1, 1);
4515		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4516			/* sh cannot be written until sh_src has been read.
4517			 * so arrange for sh to be delayed a little
4518			 */
4519			set_bit(STRIPE_DELAYED, &sh->state);
4520			set_bit(STRIPE_HANDLE, &sh->state);
4521			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4522					      &sh_src->state))
4523				atomic_inc(&conf->preread_active_stripes);
4524			release_stripe(sh_src);
4525			goto finish;
4526		}
4527		if (sh_src)
4528			release_stripe(sh_src);
4529
4530		sh->reconstruct_state = reconstruct_state_idle;
4531		clear_bit(STRIPE_EXPANDING, &sh->state);
4532		for (i = conf->raid_disks; i--; ) {
4533			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4534			set_bit(R5_LOCKED, &sh->dev[i].flags);
4535			s.locked++;
4536		}
4537	}
4538
4539	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4540	    !sh->reconstruct_state) {
4541		/* Need to write out all blocks after computing parity */
4542		sh->disks = conf->raid_disks;
4543		stripe_set_idx(sh->sector, conf, 0, sh);
4544		schedule_reconstruction(sh, &s, 1, 1);
4545	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4546		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4547		atomic_dec(&conf->reshape_stripes);
4548		wake_up(&conf->wait_for_overlap);
4549		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4550	}
4551
4552	if (s.expanding && s.locked == 0 &&
4553	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4554		handle_stripe_expansion(conf, sh);
4555
4556finish:
4557	/* wait for this device to become unblocked */
4558	if (unlikely(s.blocked_rdev)) {
4559		if (conf->mddev->external)
4560			md_wait_for_blocked_rdev(s.blocked_rdev,
4561						 conf->mddev);
4562		else
4563			/* Internal metadata will immediately
4564			 * be written by raid5d, so we don't
4565			 * need to wait here.
4566			 */
4567			rdev_dec_pending(s.blocked_rdev,
4568					 conf->mddev);
4569	}
4570
4571	if (s.handle_bad_blocks)
4572		for (i = disks; i--; ) {
4573			struct md_rdev *rdev;
4574			struct r5dev *dev = &sh->dev[i];
4575			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4576				/* We own a safe reference to the rdev */
4577				rdev = conf->disks[i].rdev;
4578				if (!rdev_set_badblocks(rdev, sh->sector,
4579							STRIPE_SECTORS, 0))
4580					md_error(conf->mddev, rdev);
4581				rdev_dec_pending(rdev, conf->mddev);
4582			}
4583			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4584				rdev = conf->disks[i].rdev;
4585				rdev_clear_badblocks(rdev, sh->sector,
4586						     STRIPE_SECTORS, 0);
4587				rdev_dec_pending(rdev, conf->mddev);
4588			}
4589			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4590				rdev = conf->disks[i].replacement;
4591				if (!rdev)
4592					/* rdev have been moved down */
4593					rdev = conf->disks[i].rdev;
4594				rdev_clear_badblocks(rdev, sh->sector,
4595						     STRIPE_SECTORS, 0);
4596				rdev_dec_pending(rdev, conf->mddev);
4597			}
4598		}
4599
4600	if (s.ops_request)
4601		raid_run_ops(sh, s.ops_request);
4602
4603	ops_run_io(sh, &s);
4604
4605	if (s.dec_preread_active) {
4606		/* We delay this until after ops_run_io so that if make_request
4607		 * is waiting on a flush, it won't continue until the writes
4608		 * have actually been submitted.
4609		 */
4610		atomic_dec(&conf->preread_active_stripes);
4611		if (atomic_read(&conf->preread_active_stripes) <
4612		    IO_THRESHOLD)
4613			md_wakeup_thread(conf->mddev->thread);
4614	}
4615
4616	return_io(s.return_bi);
4617
4618	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4619}
4620
4621static void raid5_activate_delayed(struct r5conf *conf)
4622{
4623	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4624		while (!list_empty(&conf->delayed_list)) {
4625			struct list_head *l = conf->delayed_list.next;
4626			struct stripe_head *sh;
4627			sh = list_entry(l, struct stripe_head, lru);
4628			list_del_init(l);
4629			clear_bit(STRIPE_DELAYED, &sh->state);
4630			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4631				atomic_inc(&conf->preread_active_stripes);
4632			list_add_tail(&sh->lru, &conf->hold_list);
4633			raid5_wakeup_stripe_thread(sh);
4634		}
4635	}
4636}
4637
4638static void activate_bit_delay(struct r5conf *conf,
4639	struct list_head *temp_inactive_list)
4640{
4641	/* device_lock is held */
4642	struct list_head head;
4643	list_add(&head, &conf->bitmap_list);
4644	list_del_init(&conf->bitmap_list);
4645	while (!list_empty(&head)) {
4646		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4647		int hash;
4648		list_del_init(&sh->lru);
4649		atomic_inc(&sh->count);
4650		hash = sh->hash_lock_index;
4651		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4652	}
4653}
4654
4655static int raid5_congested(struct mddev *mddev, int bits)
4656{
4657	struct r5conf *conf = mddev->private;
4658
4659	/* No difference between reads and writes.  Just check
4660	 * how busy the stripe_cache is
4661	 */
4662
4663	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4664		return 1;
4665	if (conf->quiesce)
4666		return 1;
4667	if (atomic_read(&conf->empty_inactive_list_nr))
4668		return 1;
4669
4670	return 0;
4671}
4672
4673/* We want read requests to align with chunks where possible,
4674 * but write requests don't need to.
4675 */
4676static int raid5_mergeable_bvec(struct mddev *mddev,
4677				struct bvec_merge_data *bvm,
4678				struct bio_vec *biovec)
4679{
4680	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4681	int max;
4682	unsigned int chunk_sectors = mddev->chunk_sectors;
4683	unsigned int bio_sectors = bvm->bi_size >> 9;
4684
4685	/*
4686	 * always allow writes to be mergeable, read as well if array
4687	 * is degraded as we'll go through stripe cache anyway.
4688	 */
4689	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4690		return biovec->bv_len;
4691
4692	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4693		chunk_sectors = mddev->new_chunk_sectors;
4694	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4695	if (max < 0) max = 0;
4696	if (max <= biovec->bv_len && bio_sectors == 0)
4697		return biovec->bv_len;
4698	else
4699		return max;
4700}
4701
4702static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4703{
4704	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4705	unsigned int chunk_sectors = mddev->chunk_sectors;
4706	unsigned int bio_sectors = bio_sectors(bio);
4707
4708	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4709		chunk_sectors = mddev->new_chunk_sectors;
4710	return  chunk_sectors >=
4711		((sector & (chunk_sectors - 1)) + bio_sectors);
4712}
4713
4714/*
4715 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4716 *  later sampled by raid5d.
4717 */
4718static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4719{
4720	unsigned long flags;
4721
4722	spin_lock_irqsave(&conf->device_lock, flags);
4723
4724	bi->bi_next = conf->retry_read_aligned_list;
4725	conf->retry_read_aligned_list = bi;
4726
4727	spin_unlock_irqrestore(&conf->device_lock, flags);
4728	md_wakeup_thread(conf->mddev->thread);
4729}
4730
4731static struct bio *remove_bio_from_retry(struct r5conf *conf)
4732{
4733	struct bio *bi;
4734
4735	bi = conf->retry_read_aligned;
4736	if (bi) {
4737		conf->retry_read_aligned = NULL;
4738		return bi;
4739	}
4740	bi = conf->retry_read_aligned_list;
4741	if(bi) {
4742		conf->retry_read_aligned_list = bi->bi_next;
4743		bi->bi_next = NULL;
4744		/*
4745		 * this sets the active strip count to 1 and the processed
4746		 * strip count to zero (upper 8 bits)
4747		 */
4748		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4749	}
4750
4751	return bi;
4752}
4753
4754/*
4755 *  The "raid5_align_endio" should check if the read succeeded and if it
4756 *  did, call bio_endio on the original bio (having bio_put the new bio
4757 *  first).
4758 *  If the read failed..
4759 */
4760static void raid5_align_endio(struct bio *bi, int error)
4761{
4762	struct bio* raid_bi  = bi->bi_private;
4763	struct mddev *mddev;
4764	struct r5conf *conf;
4765	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4766	struct md_rdev *rdev;
4767
4768	bio_put(bi);
4769
4770	rdev = (void*)raid_bi->bi_next;
4771	raid_bi->bi_next = NULL;
4772	mddev = rdev->mddev;
4773	conf = mddev->private;
4774
4775	rdev_dec_pending(rdev, conf->mddev);
4776
4777	if (!error && uptodate) {
4778		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4779					 raid_bi, 0);
4780		bio_endio(raid_bi, 0);
4781		if (atomic_dec_and_test(&conf->active_aligned_reads))
4782			wake_up(&conf->wait_for_stripe);
4783		return;
4784	}
4785
4786	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4787
4788	add_bio_to_retry(raid_bi, conf);
4789}
4790
4791static int bio_fits_rdev(struct bio *bi)
4792{
4793	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4794
4795	if (bio_sectors(bi) > queue_max_sectors(q))
4796		return 0;
4797	blk_recount_segments(q, bi);
4798	if (bi->bi_phys_segments > queue_max_segments(q))
4799		return 0;
4800
4801	if (q->merge_bvec_fn)
4802		/* it's too hard to apply the merge_bvec_fn at this stage,
4803		 * just just give up
4804		 */
4805		return 0;
4806
4807	return 1;
4808}
4809
4810static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4811{
4812	struct r5conf *conf = mddev->private;
4813	int dd_idx;
4814	struct bio* align_bi;
4815	struct md_rdev *rdev;
4816	sector_t end_sector;
4817
4818	if (!in_chunk_boundary(mddev, raid_bio)) {
4819		pr_debug("chunk_aligned_read : non aligned\n");
4820		return 0;
4821	}
4822	/*
4823	 * use bio_clone_mddev to make a copy of the bio
4824	 */
4825	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4826	if (!align_bi)
4827		return 0;
4828	/*
4829	 *   set bi_end_io to a new function, and set bi_private to the
4830	 *     original bio.
4831	 */
4832	align_bi->bi_end_io  = raid5_align_endio;
4833	align_bi->bi_private = raid_bio;
4834	/*
4835	 *	compute position
4836	 */
4837	align_bi->bi_iter.bi_sector =
4838		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4839				     0, &dd_idx, NULL);
4840
4841	end_sector = bio_end_sector(align_bi);
4842	rcu_read_lock();
4843	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4844	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4845	    rdev->recovery_offset < end_sector) {
4846		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4847		if (rdev &&
4848		    (test_bit(Faulty, &rdev->flags) ||
4849		    !(test_bit(In_sync, &rdev->flags) ||
4850		      rdev->recovery_offset >= end_sector)))
4851			rdev = NULL;
4852	}
4853	if (rdev) {
4854		sector_t first_bad;
4855		int bad_sectors;
4856
4857		atomic_inc(&rdev->nr_pending);
4858		rcu_read_unlock();
4859		raid_bio->bi_next = (void*)rdev;
4860		align_bi->bi_bdev =  rdev->bdev;
4861		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4862
4863		if (!bio_fits_rdev(align_bi) ||
4864		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4865				bio_sectors(align_bi),
4866				&first_bad, &bad_sectors)) {
4867			/* too big in some way, or has a known bad block */
4868			bio_put(align_bi);
4869			rdev_dec_pending(rdev, mddev);
4870			return 0;
4871		}
4872
4873		/* No reshape active, so we can trust rdev->data_offset */
4874		align_bi->bi_iter.bi_sector += rdev->data_offset;
4875
4876		spin_lock_irq(&conf->device_lock);
4877		wait_event_lock_irq(conf->wait_for_stripe,
4878				    conf->quiesce == 0,
4879				    conf->device_lock);
4880		atomic_inc(&conf->active_aligned_reads);
4881		spin_unlock_irq(&conf->device_lock);
4882
4883		if (mddev->gendisk)
4884			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4885					      align_bi, disk_devt(mddev->gendisk),
4886					      raid_bio->bi_iter.bi_sector);
4887		generic_make_request(align_bi);
4888		return 1;
4889	} else {
4890		rcu_read_unlock();
4891		bio_put(align_bi);
4892		return 0;
4893	}
4894}
4895
4896/* __get_priority_stripe - get the next stripe to process
4897 *
4898 * Full stripe writes are allowed to pass preread active stripes up until
4899 * the bypass_threshold is exceeded.  In general the bypass_count
4900 * increments when the handle_list is handled before the hold_list; however, it
4901 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4902 * stripe with in flight i/o.  The bypass_count will be reset when the
4903 * head of the hold_list has changed, i.e. the head was promoted to the
4904 * handle_list.
4905 */
4906static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4907{
4908	struct stripe_head *sh = NULL, *tmp;
4909	struct list_head *handle_list = NULL;
4910	struct r5worker_group *wg = NULL;
4911
4912	if (conf->worker_cnt_per_group == 0) {
4913		handle_list = &conf->handle_list;
4914	} else if (group != ANY_GROUP) {
4915		handle_list = &conf->worker_groups[group].handle_list;
4916		wg = &conf->worker_groups[group];
4917	} else {
4918		int i;
4919		for (i = 0; i < conf->group_cnt; i++) {
4920			handle_list = &conf->worker_groups[i].handle_list;
4921			wg = &conf->worker_groups[i];
4922			if (!list_empty(handle_list))
4923				break;
4924		}
4925	}
4926
4927	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4928		  __func__,
4929		  list_empty(handle_list) ? "empty" : "busy",
4930		  list_empty(&conf->hold_list) ? "empty" : "busy",
4931		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4932
4933	if (!list_empty(handle_list)) {
4934		sh = list_entry(handle_list->next, typeof(*sh), lru);
4935
4936		if (list_empty(&conf->hold_list))
4937			conf->bypass_count = 0;
4938		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4939			if (conf->hold_list.next == conf->last_hold)
4940				conf->bypass_count++;
4941			else {
4942				conf->last_hold = conf->hold_list.next;
4943				conf->bypass_count -= conf->bypass_threshold;
4944				if (conf->bypass_count < 0)
4945					conf->bypass_count = 0;
4946			}
4947		}
4948	} else if (!list_empty(&conf->hold_list) &&
4949		   ((conf->bypass_threshold &&
4950		     conf->bypass_count > conf->bypass_threshold) ||
4951		    atomic_read(&conf->pending_full_writes) == 0)) {
4952
4953		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4954			if (conf->worker_cnt_per_group == 0 ||
4955			    group == ANY_GROUP ||
4956			    !cpu_online(tmp->cpu) ||
4957			    cpu_to_group(tmp->cpu) == group) {
4958				sh = tmp;
4959				break;
4960			}
4961		}
4962
4963		if (sh) {
4964			conf->bypass_count -= conf->bypass_threshold;
4965			if (conf->bypass_count < 0)
4966				conf->bypass_count = 0;
4967		}
4968		wg = NULL;
4969	}
4970
4971	if (!sh)
4972		return NULL;
4973
4974	if (wg) {
4975		wg->stripes_cnt--;
4976		sh->group = NULL;
4977	}
4978	list_del_init(&sh->lru);
4979	BUG_ON(atomic_inc_return(&sh->count) != 1);
4980	return sh;
4981}
4982
4983struct raid5_plug_cb {
4984	struct blk_plug_cb	cb;
4985	struct list_head	list;
4986	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4987};
4988
4989static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4990{
4991	struct raid5_plug_cb *cb = container_of(
4992		blk_cb, struct raid5_plug_cb, cb);
4993	struct stripe_head *sh;
4994	struct mddev *mddev = cb->cb.data;
4995	struct r5conf *conf = mddev->private;
4996	int cnt = 0;
4997	int hash;
4998
4999	if (cb->list.next && !list_empty(&cb->list)) {
5000		spin_lock_irq(&conf->device_lock);
5001		while (!list_empty(&cb->list)) {
5002			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5003			list_del_init(&sh->lru);
5004			/*
5005			 * avoid race release_stripe_plug() sees
5006			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5007			 * is still in our list
5008			 */
5009			smp_mb__before_atomic();
5010			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5011			/*
5012			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5013			 * case, the count is always > 1 here
5014			 */
5015			hash = sh->hash_lock_index;
5016			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5017			cnt++;
5018		}
5019		spin_unlock_irq(&conf->device_lock);
5020	}
5021	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5022				     NR_STRIPE_HASH_LOCKS);
5023	if (mddev->queue)
5024		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5025	kfree(cb);
5026}
5027
5028static void release_stripe_plug(struct mddev *mddev,
5029				struct stripe_head *sh)
5030{
5031	struct blk_plug_cb *blk_cb = blk_check_plugged(
5032		raid5_unplug, mddev,
5033		sizeof(struct raid5_plug_cb));
5034	struct raid5_plug_cb *cb;
5035
5036	if (!blk_cb) {
5037		release_stripe(sh);
5038		return;
5039	}
5040
5041	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5042
5043	if (cb->list.next == NULL) {
5044		int i;
5045		INIT_LIST_HEAD(&cb->list);
5046		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5047			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5048	}
5049
5050	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5051		list_add_tail(&sh->lru, &cb->list);
5052	else
5053		release_stripe(sh);
5054}
5055
5056static void make_discard_request(struct mddev *mddev, struct bio *bi)
5057{
5058	struct r5conf *conf = mddev->private;
5059	sector_t logical_sector, last_sector;
5060	struct stripe_head *sh;
5061	int remaining;
5062	int stripe_sectors;
5063
5064	if (mddev->reshape_position != MaxSector)
5065		/* Skip discard while reshape is happening */
5066		return;
5067
5068	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5069	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5070
5071	bi->bi_next = NULL;
5072	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5073
5074	stripe_sectors = conf->chunk_sectors *
5075		(conf->raid_disks - conf->max_degraded);
5076	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5077					       stripe_sectors);
5078	sector_div(last_sector, stripe_sectors);
5079
5080	logical_sector *= conf->chunk_sectors;
5081	last_sector *= conf->chunk_sectors;
5082
5083	for (; logical_sector < last_sector;
5084	     logical_sector += STRIPE_SECTORS) {
5085		DEFINE_WAIT(w);
5086		int d;
5087	again:
5088		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5089		prepare_to_wait(&conf->wait_for_overlap, &w,
5090				TASK_UNINTERRUPTIBLE);
5091		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5092		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5093			release_stripe(sh);
5094			schedule();
5095			goto again;
5096		}
5097		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5098		spin_lock_irq(&sh->stripe_lock);
5099		for (d = 0; d < conf->raid_disks; d++) {
5100			if (d == sh->pd_idx || d == sh->qd_idx)
5101				continue;
5102			if (sh->dev[d].towrite || sh->dev[d].toread) {
5103				set_bit(R5_Overlap, &sh->dev[d].flags);
5104				spin_unlock_irq(&sh->stripe_lock);
5105				release_stripe(sh);
5106				schedule();
5107				goto again;
5108			}
5109		}
5110		set_bit(STRIPE_DISCARD, &sh->state);
5111		finish_wait(&conf->wait_for_overlap, &w);
5112		sh->overwrite_disks = 0;
5113		for (d = 0; d < conf->raid_disks; d++) {
5114			if (d == sh->pd_idx || d == sh->qd_idx)
5115				continue;
5116			sh->dev[d].towrite = bi;
5117			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5118			raid5_inc_bi_active_stripes(bi);
5119			sh->overwrite_disks++;
5120		}
5121		spin_unlock_irq(&sh->stripe_lock);
5122		if (conf->mddev->bitmap) {
5123			for (d = 0;
5124			     d < conf->raid_disks - conf->max_degraded;
5125			     d++)
5126				bitmap_startwrite(mddev->bitmap,
5127						  sh->sector,
5128						  STRIPE_SECTORS,
5129						  0);
5130			sh->bm_seq = conf->seq_flush + 1;
5131			set_bit(STRIPE_BIT_DELAY, &sh->state);
5132		}
5133
5134		set_bit(STRIPE_HANDLE, &sh->state);
5135		clear_bit(STRIPE_DELAYED, &sh->state);
5136		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5137			atomic_inc(&conf->preread_active_stripes);
5138		release_stripe_plug(mddev, sh);
5139	}
5140
5141	remaining = raid5_dec_bi_active_stripes(bi);
5142	if (remaining == 0) {
5143		md_write_end(mddev);
5144		bio_endio(bi, 0);
5145	}
5146}
5147
5148static void make_request(struct mddev *mddev, struct bio * bi)
5149{
5150	struct r5conf *conf = mddev->private;
5151	int dd_idx;
5152	sector_t new_sector;
5153	sector_t logical_sector, last_sector;
5154	struct stripe_head *sh;
5155	const int rw = bio_data_dir(bi);
5156	int remaining;
5157	DEFINE_WAIT(w);
5158	bool do_prepare;
5159
5160	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5161		md_flush_request(mddev, bi);
5162		return;
5163	}
5164
5165	md_write_start(mddev, bi);
5166
5167	/*
5168	 * If array is degraded, better not do chunk aligned read because
5169	 * later we might have to read it again in order to reconstruct
5170	 * data on failed drives.
5171	 */
5172	if (rw == READ && mddev->degraded == 0 &&
5173	     mddev->reshape_position == MaxSector &&
5174	     chunk_aligned_read(mddev,bi))
5175		return;
5176
5177	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5178		make_discard_request(mddev, bi);
5179		return;
5180	}
5181
5182	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5183	last_sector = bio_end_sector(bi);
5184	bi->bi_next = NULL;
5185	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5186
5187	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5188	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5189		int previous;
5190		int seq;
5191
5192		do_prepare = false;
5193	retry:
5194		seq = read_seqcount_begin(&conf->gen_lock);
5195		previous = 0;
5196		if (do_prepare)
5197			prepare_to_wait(&conf->wait_for_overlap, &w,
5198				TASK_UNINTERRUPTIBLE);
5199		if (unlikely(conf->reshape_progress != MaxSector)) {
5200			/* spinlock is needed as reshape_progress may be
5201			 * 64bit on a 32bit platform, and so it might be
5202			 * possible to see a half-updated value
5203			 * Of course reshape_progress could change after
5204			 * the lock is dropped, so once we get a reference
5205			 * to the stripe that we think it is, we will have
5206			 * to check again.
5207			 */
5208			spin_lock_irq(&conf->device_lock);
5209			if (mddev->reshape_backwards
5210			    ? logical_sector < conf->reshape_progress
5211			    : logical_sector >= conf->reshape_progress) {
5212				previous = 1;
5213			} else {
5214				if (mddev->reshape_backwards
5215				    ? logical_sector < conf->reshape_safe
5216				    : logical_sector >= conf->reshape_safe) {
5217					spin_unlock_irq(&conf->device_lock);
5218					schedule();
5219					do_prepare = true;
5220					goto retry;
5221				}
5222			}
5223			spin_unlock_irq(&conf->device_lock);
5224		}
5225
5226		new_sector = raid5_compute_sector(conf, logical_sector,
5227						  previous,
5228						  &dd_idx, NULL);
5229		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5230			(unsigned long long)new_sector,
5231			(unsigned long long)logical_sector);
5232
5233		sh = get_active_stripe(conf, new_sector, previous,
5234				       (bi->bi_rw&RWA_MASK), 0);
5235		if (sh) {
5236			if (unlikely(previous)) {
5237				/* expansion might have moved on while waiting for a
5238				 * stripe, so we must do the range check again.
5239				 * Expansion could still move past after this
5240				 * test, but as we are holding a reference to
5241				 * 'sh', we know that if that happens,
5242				 *  STRIPE_EXPANDING will get set and the expansion
5243				 * won't proceed until we finish with the stripe.
5244				 */
5245				int must_retry = 0;
5246				spin_lock_irq(&conf->device_lock);
5247				if (mddev->reshape_backwards
5248				    ? logical_sector >= conf->reshape_progress
5249				    : logical_sector < conf->reshape_progress)
5250					/* mismatch, need to try again */
5251					must_retry = 1;
5252				spin_unlock_irq(&conf->device_lock);
5253				if (must_retry) {
5254					release_stripe(sh);
5255					schedule();
5256					do_prepare = true;
5257					goto retry;
5258				}
5259			}
5260			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5261				/* Might have got the wrong stripe_head
5262				 * by accident
5263				 */
5264				release_stripe(sh);
5265				goto retry;
5266			}
5267
5268			if (rw == WRITE &&
5269			    logical_sector >= mddev->suspend_lo &&
5270			    logical_sector < mddev->suspend_hi) {
5271				release_stripe(sh);
5272				/* As the suspend_* range is controlled by
5273				 * userspace, we want an interruptible
5274				 * wait.
5275				 */
5276				flush_signals(current);
5277				prepare_to_wait(&conf->wait_for_overlap,
5278						&w, TASK_INTERRUPTIBLE);
5279				if (logical_sector >= mddev->suspend_lo &&
5280				    logical_sector < mddev->suspend_hi) {
5281					schedule();
5282					do_prepare = true;
5283				}
5284				goto retry;
5285			}
5286
5287			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5288			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5289				/* Stripe is busy expanding or
5290				 * add failed due to overlap.  Flush everything
5291				 * and wait a while
5292				 */
5293				md_wakeup_thread(mddev->thread);
5294				release_stripe(sh);
5295				schedule();
5296				do_prepare = true;
5297				goto retry;
5298			}
5299			set_bit(STRIPE_HANDLE, &sh->state);
5300			clear_bit(STRIPE_DELAYED, &sh->state);
5301			if ((!sh->batch_head || sh == sh->batch_head) &&
5302			    (bi->bi_rw & REQ_SYNC) &&
5303			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5304				atomic_inc(&conf->preread_active_stripes);
5305			release_stripe_plug(mddev, sh);
5306		} else {
5307			/* cannot get stripe for read-ahead, just give-up */
5308			clear_bit(BIO_UPTODATE, &bi->bi_flags);
5309			break;
5310		}
5311	}
5312	finish_wait(&conf->wait_for_overlap, &w);
5313
5314	remaining = raid5_dec_bi_active_stripes(bi);
5315	if (remaining == 0) {
5316
5317		if ( rw == WRITE )
5318			md_write_end(mddev);
5319
5320		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5321					 bi, 0);
5322		bio_endio(bi, 0);
5323	}
5324}
5325
5326static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5327
5328static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5329{
5330	/* reshaping is quite different to recovery/resync so it is
5331	 * handled quite separately ... here.
5332	 *
5333	 * On each call to sync_request, we gather one chunk worth of
5334	 * destination stripes and flag them as expanding.
5335	 * Then we find all the source stripes and request reads.
5336	 * As the reads complete, handle_stripe will copy the data
5337	 * into the destination stripe and release that stripe.
5338	 */
5339	struct r5conf *conf = mddev->private;
5340	struct stripe_head *sh;
5341	sector_t first_sector, last_sector;
5342	int raid_disks = conf->previous_raid_disks;
5343	int data_disks = raid_disks - conf->max_degraded;
5344	int new_data_disks = conf->raid_disks - conf->max_degraded;
5345	int i;
5346	int dd_idx;
5347	sector_t writepos, readpos, safepos;
5348	sector_t stripe_addr;
5349	int reshape_sectors;
5350	struct list_head stripes;
5351
5352	if (sector_nr == 0) {
5353		/* If restarting in the middle, skip the initial sectors */
5354		if (mddev->reshape_backwards &&
5355		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5356			sector_nr = raid5_size(mddev, 0, 0)
5357				- conf->reshape_progress;
5358		} else if (!mddev->reshape_backwards &&
5359			   conf->reshape_progress > 0)
5360			sector_nr = conf->reshape_progress;
5361		sector_div(sector_nr, new_data_disks);
5362		if (sector_nr) {
5363			mddev->curr_resync_completed = sector_nr;
5364			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5365			*skipped = 1;
5366			return sector_nr;
5367		}
5368	}
5369
5370	/* We need to process a full chunk at a time.
5371	 * If old and new chunk sizes differ, we need to process the
5372	 * largest of these
5373	 */
5374	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5375		reshape_sectors = mddev->new_chunk_sectors;
5376	else
5377		reshape_sectors = mddev->chunk_sectors;
5378
5379	/* We update the metadata at least every 10 seconds, or when
5380	 * the data about to be copied would over-write the source of
5381	 * the data at the front of the range.  i.e. one new_stripe
5382	 * along from reshape_progress new_maps to after where
5383	 * reshape_safe old_maps to
5384	 */
5385	writepos = conf->reshape_progress;
5386	sector_div(writepos, new_data_disks);
5387	readpos = conf->reshape_progress;
5388	sector_div(readpos, data_disks);
5389	safepos = conf->reshape_safe;
5390	sector_div(safepos, data_disks);
5391	if (mddev->reshape_backwards) {
5392		writepos -= min_t(sector_t, reshape_sectors, writepos);
5393		readpos += reshape_sectors;
5394		safepos += reshape_sectors;
5395	} else {
5396		writepos += reshape_sectors;
5397		readpos -= min_t(sector_t, reshape_sectors, readpos);
5398		safepos -= min_t(sector_t, reshape_sectors, safepos);
5399	}
5400
5401	/* Having calculated the 'writepos' possibly use it
5402	 * to set 'stripe_addr' which is where we will write to.
5403	 */
5404	if (mddev->reshape_backwards) {
5405		BUG_ON(conf->reshape_progress == 0);
5406		stripe_addr = writepos;
5407		BUG_ON((mddev->dev_sectors &
5408			~((sector_t)reshape_sectors - 1))
5409		       - reshape_sectors - stripe_addr
5410		       != sector_nr);
5411	} else {
5412		BUG_ON(writepos != sector_nr + reshape_sectors);
5413		stripe_addr = sector_nr;
5414	}
5415
5416	/* 'writepos' is the most advanced device address we might write.
5417	 * 'readpos' is the least advanced device address we might read.
5418	 * 'safepos' is the least address recorded in the metadata as having
5419	 *     been reshaped.
5420	 * If there is a min_offset_diff, these are adjusted either by
5421	 * increasing the safepos/readpos if diff is negative, or
5422	 * increasing writepos if diff is positive.
5423	 * If 'readpos' is then behind 'writepos', there is no way that we can
5424	 * ensure safety in the face of a crash - that must be done by userspace
5425	 * making a backup of the data.  So in that case there is no particular
5426	 * rush to update metadata.
5427	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5428	 * update the metadata to advance 'safepos' to match 'readpos' so that
5429	 * we can be safe in the event of a crash.
5430	 * So we insist on updating metadata if safepos is behind writepos and
5431	 * readpos is beyond writepos.
5432	 * In any case, update the metadata every 10 seconds.
5433	 * Maybe that number should be configurable, but I'm not sure it is
5434	 * worth it.... maybe it could be a multiple of safemode_delay???
5435	 */
5436	if (conf->min_offset_diff < 0) {
5437		safepos += -conf->min_offset_diff;
5438		readpos += -conf->min_offset_diff;
5439	} else
5440		writepos += conf->min_offset_diff;
5441
5442	if ((mddev->reshape_backwards
5443	     ? (safepos > writepos && readpos < writepos)
5444	     : (safepos < writepos && readpos > writepos)) ||
5445	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5446		/* Cannot proceed until we've updated the superblock... */
5447		wait_event(conf->wait_for_overlap,
5448			   atomic_read(&conf->reshape_stripes)==0
5449			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5450		if (atomic_read(&conf->reshape_stripes) != 0)
5451			return 0;
5452		mddev->reshape_position = conf->reshape_progress;
5453		mddev->curr_resync_completed = sector_nr;
5454		conf->reshape_checkpoint = jiffies;
5455		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5456		md_wakeup_thread(mddev->thread);
5457		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5458			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5459		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5460			return 0;
5461		spin_lock_irq(&conf->device_lock);
5462		conf->reshape_safe = mddev->reshape_position;
5463		spin_unlock_irq(&conf->device_lock);
5464		wake_up(&conf->wait_for_overlap);
5465		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5466	}
5467
5468	INIT_LIST_HEAD(&stripes);
5469	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5470		int j;
5471		int skipped_disk = 0;
5472		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5473		set_bit(STRIPE_EXPANDING, &sh->state);
5474		atomic_inc(&conf->reshape_stripes);
5475		/* If any of this stripe is beyond the end of the old
5476		 * array, then we need to zero those blocks
5477		 */
5478		for (j=sh->disks; j--;) {
5479			sector_t s;
5480			if (j == sh->pd_idx)
5481				continue;
5482			if (conf->level == 6 &&
5483			    j == sh->qd_idx)
5484				continue;
5485			s = compute_blocknr(sh, j, 0);
5486			if (s < raid5_size(mddev, 0, 0)) {
5487				skipped_disk = 1;
5488				continue;
5489			}
5490			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5491			set_bit(R5_Expanded, &sh->dev[j].flags);
5492			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5493		}
5494		if (!skipped_disk) {
5495			set_bit(STRIPE_EXPAND_READY, &sh->state);
5496			set_bit(STRIPE_HANDLE, &sh->state);
5497		}
5498		list_add(&sh->lru, &stripes);
5499	}
5500	spin_lock_irq(&conf->device_lock);
5501	if (mddev->reshape_backwards)
5502		conf->reshape_progress -= reshape_sectors * new_data_disks;
5503	else
5504		conf->reshape_progress += reshape_sectors * new_data_disks;
5505	spin_unlock_irq(&conf->device_lock);
5506	/* Ok, those stripe are ready. We can start scheduling
5507	 * reads on the source stripes.
5508	 * The source stripes are determined by mapping the first and last
5509	 * block on the destination stripes.
5510	 */
5511	first_sector =
5512		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5513				     1, &dd_idx, NULL);
5514	last_sector =
5515		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5516					    * new_data_disks - 1),
5517				     1, &dd_idx, NULL);
5518	if (last_sector >= mddev->dev_sectors)
5519		last_sector = mddev->dev_sectors - 1;
5520	while (first_sector <= last_sector) {
5521		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5522		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5523		set_bit(STRIPE_HANDLE, &sh->state);
5524		release_stripe(sh);
5525		first_sector += STRIPE_SECTORS;
5526	}
5527	/* Now that the sources are clearly marked, we can release
5528	 * the destination stripes
5529	 */
5530	while (!list_empty(&stripes)) {
5531		sh = list_entry(stripes.next, struct stripe_head, lru);
5532		list_del_init(&sh->lru);
5533		release_stripe(sh);
5534	}
5535	/* If this takes us to the resync_max point where we have to pause,
5536	 * then we need to write out the superblock.
5537	 */
5538	sector_nr += reshape_sectors;
5539	if ((sector_nr - mddev->curr_resync_completed) * 2
5540	    >= mddev->resync_max - mddev->curr_resync_completed) {
5541		/* Cannot proceed until we've updated the superblock... */
5542		wait_event(conf->wait_for_overlap,
5543			   atomic_read(&conf->reshape_stripes) == 0
5544			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5545		if (atomic_read(&conf->reshape_stripes) != 0)
5546			goto ret;
5547		mddev->reshape_position = conf->reshape_progress;
5548		mddev->curr_resync_completed = sector_nr;
5549		conf->reshape_checkpoint = jiffies;
5550		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5551		md_wakeup_thread(mddev->thread);
5552		wait_event(mddev->sb_wait,
5553			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5554			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5555		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5556			goto ret;
5557		spin_lock_irq(&conf->device_lock);
5558		conf->reshape_safe = mddev->reshape_position;
5559		spin_unlock_irq(&conf->device_lock);
5560		wake_up(&conf->wait_for_overlap);
5561		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5562	}
5563ret:
5564	return reshape_sectors;
5565}
5566
5567static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5568{
5569	struct r5conf *conf = mddev->private;
5570	struct stripe_head *sh;
5571	sector_t max_sector = mddev->dev_sectors;
5572	sector_t sync_blocks;
5573	int still_degraded = 0;
5574	int i;
5575
5576	if (sector_nr >= max_sector) {
5577		/* just being told to finish up .. nothing much to do */
5578
5579		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5580			end_reshape(conf);
5581			return 0;
5582		}
5583
5584		if (mddev->curr_resync < max_sector) /* aborted */
5585			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5586					&sync_blocks, 1);
5587		else /* completed sync */
5588			conf->fullsync = 0;
5589		bitmap_close_sync(mddev->bitmap);
5590
5591		return 0;
5592	}
5593
5594	/* Allow raid5_quiesce to complete */
5595	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5596
5597	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5598		return reshape_request(mddev, sector_nr, skipped);
5599
5600	/* No need to check resync_max as we never do more than one
5601	 * stripe, and as resync_max will always be on a chunk boundary,
5602	 * if the check in md_do_sync didn't fire, there is no chance
5603	 * of overstepping resync_max here
5604	 */
5605
5606	/* if there is too many failed drives and we are trying
5607	 * to resync, then assert that we are finished, because there is
5608	 * nothing we can do.
5609	 */
5610	if (mddev->degraded >= conf->max_degraded &&
5611	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5612		sector_t rv = mddev->dev_sectors - sector_nr;
5613		*skipped = 1;
5614		return rv;
5615	}
5616	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5617	    !conf->fullsync &&
5618	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5619	    sync_blocks >= STRIPE_SECTORS) {
5620		/* we can skip this block, and probably more */
5621		sync_blocks /= STRIPE_SECTORS;
5622		*skipped = 1;
5623		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5624	}
5625
5626	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5627
5628	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5629	if (sh == NULL) {
5630		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5631		/* make sure we don't swamp the stripe cache if someone else
5632		 * is trying to get access
5633		 */
5634		schedule_timeout_uninterruptible(1);
5635	}
5636	/* Need to check if array will still be degraded after recovery/resync
5637	 * Note in case of > 1 drive failures it's possible we're rebuilding
5638	 * one drive while leaving another faulty drive in array.
5639	 */
5640	rcu_read_lock();
5641	for (i = 0; i < conf->raid_disks; i++) {
5642		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5643
5644		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5645			still_degraded = 1;
5646	}
5647	rcu_read_unlock();
5648
5649	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5650
5651	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5652	set_bit(STRIPE_HANDLE, &sh->state);
5653
5654	release_stripe(sh);
5655
5656	return STRIPE_SECTORS;
5657}
5658
5659static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5660{
5661	/* We may not be able to submit a whole bio at once as there
5662	 * may not be enough stripe_heads available.
5663	 * We cannot pre-allocate enough stripe_heads as we may need
5664	 * more than exist in the cache (if we allow ever large chunks).
5665	 * So we do one stripe head at a time and record in
5666	 * ->bi_hw_segments how many have been done.
5667	 *
5668	 * We *know* that this entire raid_bio is in one chunk, so
5669	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5670	 */
5671	struct stripe_head *sh;
5672	int dd_idx;
5673	sector_t sector, logical_sector, last_sector;
5674	int scnt = 0;
5675	int remaining;
5676	int handled = 0;
5677
5678	logical_sector = raid_bio->bi_iter.bi_sector &
5679		~((sector_t)STRIPE_SECTORS-1);
5680	sector = raid5_compute_sector(conf, logical_sector,
5681				      0, &dd_idx, NULL);
5682	last_sector = bio_end_sector(raid_bio);
5683
5684	for (; logical_sector < last_sector;
5685	     logical_sector += STRIPE_SECTORS,
5686		     sector += STRIPE_SECTORS,
5687		     scnt++) {
5688
5689		if (scnt < raid5_bi_processed_stripes(raid_bio))
5690			/* already done this stripe */
5691			continue;
5692
5693		sh = get_active_stripe(conf, sector, 0, 1, 1);
5694
5695		if (!sh) {
5696			/* failed to get a stripe - must wait */
5697			raid5_set_bi_processed_stripes(raid_bio, scnt);
5698			conf->retry_read_aligned = raid_bio;
5699			return handled;
5700		}
5701
5702		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5703			release_stripe(sh);
5704			raid5_set_bi_processed_stripes(raid_bio, scnt);
5705			conf->retry_read_aligned = raid_bio;
5706			return handled;
5707		}
5708
5709		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5710		handle_stripe(sh);
5711		release_stripe(sh);
5712		handled++;
5713	}
5714	remaining = raid5_dec_bi_active_stripes(raid_bio);
5715	if (remaining == 0) {
5716		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5717					 raid_bio, 0);
5718		bio_endio(raid_bio, 0);
5719	}
5720	if (atomic_dec_and_test(&conf->active_aligned_reads))
5721		wake_up(&conf->wait_for_stripe);
5722	return handled;
5723}
5724
5725static int handle_active_stripes(struct r5conf *conf, int group,
5726				 struct r5worker *worker,
5727				 struct list_head *temp_inactive_list)
5728{
5729	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5730	int i, batch_size = 0, hash;
5731	bool release_inactive = false;
5732
5733	while (batch_size < MAX_STRIPE_BATCH &&
5734			(sh = __get_priority_stripe(conf, group)) != NULL)
5735		batch[batch_size++] = sh;
5736
5737	if (batch_size == 0) {
5738		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5739			if (!list_empty(temp_inactive_list + i))
5740				break;
5741		if (i == NR_STRIPE_HASH_LOCKS)
5742			return batch_size;
5743		release_inactive = true;
5744	}
5745	spin_unlock_irq(&conf->device_lock);
5746
5747	release_inactive_stripe_list(conf, temp_inactive_list,
5748				     NR_STRIPE_HASH_LOCKS);
5749
5750	if (release_inactive) {
5751		spin_lock_irq(&conf->device_lock);
5752		return 0;
5753	}
5754
5755	for (i = 0; i < batch_size; i++)
5756		handle_stripe(batch[i]);
5757
5758	cond_resched();
5759
5760	spin_lock_irq(&conf->device_lock);
5761	for (i = 0; i < batch_size; i++) {
5762		hash = batch[i]->hash_lock_index;
5763		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5764	}
5765	return batch_size;
5766}
5767
5768static void raid5_do_work(struct work_struct *work)
5769{
5770	struct r5worker *worker = container_of(work, struct r5worker, work);
5771	struct r5worker_group *group = worker->group;
5772	struct r5conf *conf = group->conf;
5773	int group_id = group - conf->worker_groups;
5774	int handled;
5775	struct blk_plug plug;
5776
5777	pr_debug("+++ raid5worker active\n");
5778
5779	blk_start_plug(&plug);
5780	handled = 0;
5781	spin_lock_irq(&conf->device_lock);
5782	while (1) {
5783		int batch_size, released;
5784
5785		released = release_stripe_list(conf, worker->temp_inactive_list);
5786
5787		batch_size = handle_active_stripes(conf, group_id, worker,
5788						   worker->temp_inactive_list);
5789		worker->working = false;
5790		if (!batch_size && !released)
5791			break;
5792		handled += batch_size;
5793	}
5794	pr_debug("%d stripes handled\n", handled);
5795
5796	spin_unlock_irq(&conf->device_lock);
5797	blk_finish_plug(&plug);
5798
5799	pr_debug("--- raid5worker inactive\n");
5800}
5801
5802/*
5803 * This is our raid5 kernel thread.
5804 *
5805 * We scan the hash table for stripes which can be handled now.
5806 * During the scan, completed stripes are saved for us by the interrupt
5807 * handler, so that they will not have to wait for our next wakeup.
5808 */
5809static void raid5d(struct md_thread *thread)
5810{
5811	struct mddev *mddev = thread->mddev;
5812	struct r5conf *conf = mddev->private;
5813	int handled;
5814	struct blk_plug plug;
5815
5816	pr_debug("+++ raid5d active\n");
5817
5818	md_check_recovery(mddev);
5819
5820	blk_start_plug(&plug);
5821	handled = 0;
5822	spin_lock_irq(&conf->device_lock);
5823	while (1) {
5824		struct bio *bio;
5825		int batch_size, released;
5826
5827		released = release_stripe_list(conf, conf->temp_inactive_list);
5828		if (released)
5829			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5830
5831		if (
5832		    !list_empty(&conf->bitmap_list)) {
5833			/* Now is a good time to flush some bitmap updates */
5834			conf->seq_flush++;
5835			spin_unlock_irq(&conf->device_lock);
5836			bitmap_unplug(mddev->bitmap);
5837			spin_lock_irq(&conf->device_lock);
5838			conf->seq_write = conf->seq_flush;
5839			activate_bit_delay(conf, conf->temp_inactive_list);
5840		}
5841		raid5_activate_delayed(conf);
5842
5843		while ((bio = remove_bio_from_retry(conf))) {
5844			int ok;
5845			spin_unlock_irq(&conf->device_lock);
5846			ok = retry_aligned_read(conf, bio);
5847			spin_lock_irq(&conf->device_lock);
5848			if (!ok)
5849				break;
5850			handled++;
5851		}
5852
5853		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5854						   conf->temp_inactive_list);
5855		if (!batch_size && !released)
5856			break;
5857		handled += batch_size;
5858
5859		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5860			spin_unlock_irq(&conf->device_lock);
5861			md_check_recovery(mddev);
5862			spin_lock_irq(&conf->device_lock);
5863		}
5864	}
5865	pr_debug("%d stripes handled\n", handled);
5866
5867	spin_unlock_irq(&conf->device_lock);
5868	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5869	    mutex_trylock(&conf->cache_size_mutex)) {
5870		grow_one_stripe(conf, __GFP_NOWARN);
5871		/* Set flag even if allocation failed.  This helps
5872		 * slow down allocation requests when mem is short
5873		 */
5874		set_bit(R5_DID_ALLOC, &conf->cache_state);
5875		mutex_unlock(&conf->cache_size_mutex);
5876	}
5877
5878	async_tx_issue_pending_all();
5879	blk_finish_plug(&plug);
5880
5881	pr_debug("--- raid5d inactive\n");
5882}
5883
5884static ssize_t
5885raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5886{
5887	struct r5conf *conf;
5888	int ret = 0;
5889	spin_lock(&mddev->lock);
5890	conf = mddev->private;
5891	if (conf)
5892		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5893	spin_unlock(&mddev->lock);
5894	return ret;
5895}
5896
5897int
5898raid5_set_cache_size(struct mddev *mddev, int size)
5899{
5900	struct r5conf *conf = mddev->private;
5901	int err;
5902
5903	if (size <= 16 || size > 32768)
5904		return -EINVAL;
5905
5906	conf->min_nr_stripes = size;
5907	mutex_lock(&conf->cache_size_mutex);
5908	while (size < conf->max_nr_stripes &&
5909	       drop_one_stripe(conf))
5910		;
5911	mutex_unlock(&conf->cache_size_mutex);
5912
5913
5914	err = md_allow_write(mddev);
5915	if (err)
5916		return err;
5917
5918	mutex_lock(&conf->cache_size_mutex);
5919	while (size > conf->max_nr_stripes)
5920		if (!grow_one_stripe(conf, GFP_KERNEL))
5921			break;
5922	mutex_unlock(&conf->cache_size_mutex);
5923
5924	return 0;
5925}
5926EXPORT_SYMBOL(raid5_set_cache_size);
5927
5928static ssize_t
5929raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5930{
5931	struct r5conf *conf;
5932	unsigned long new;
5933	int err;
5934
5935	if (len >= PAGE_SIZE)
5936		return -EINVAL;
5937	if (kstrtoul(page, 10, &new))
5938		return -EINVAL;
5939	err = mddev_lock(mddev);
5940	if (err)
5941		return err;
5942	conf = mddev->private;
5943	if (!conf)
5944		err = -ENODEV;
5945	else
5946		err = raid5_set_cache_size(mddev, new);
5947	mddev_unlock(mddev);
5948
5949	return err ?: len;
5950}
5951
5952static struct md_sysfs_entry
5953raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5954				raid5_show_stripe_cache_size,
5955				raid5_store_stripe_cache_size);
5956
5957static ssize_t
5958raid5_show_rmw_level(struct mddev  *mddev, char *page)
5959{
5960	struct r5conf *conf = mddev->private;
5961	if (conf)
5962		return sprintf(page, "%d\n", conf->rmw_level);
5963	else
5964		return 0;
5965}
5966
5967static ssize_t
5968raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5969{
5970	struct r5conf *conf = mddev->private;
5971	unsigned long new;
5972
5973	if (!conf)
5974		return -ENODEV;
5975
5976	if (len >= PAGE_SIZE)
5977		return -EINVAL;
5978
5979	if (kstrtoul(page, 10, &new))
5980		return -EINVAL;
5981
5982	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5983		return -EINVAL;
5984
5985	if (new != PARITY_DISABLE_RMW &&
5986	    new != PARITY_ENABLE_RMW &&
5987	    new != PARITY_PREFER_RMW)
5988		return -EINVAL;
5989
5990	conf->rmw_level = new;
5991	return len;
5992}
5993
5994static struct md_sysfs_entry
5995raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5996			 raid5_show_rmw_level,
5997			 raid5_store_rmw_level);
5998
5999
6000static ssize_t
6001raid5_show_preread_threshold(struct mddev *mddev, char *page)
6002{
6003	struct r5conf *conf;
6004	int ret = 0;
6005	spin_lock(&mddev->lock);
6006	conf = mddev->private;
6007	if (conf)
6008		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6009	spin_unlock(&mddev->lock);
6010	return ret;
6011}
6012
6013static ssize_t
6014raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6015{
6016	struct r5conf *conf;
6017	unsigned long new;
6018	int err;
6019
6020	if (len >= PAGE_SIZE)
6021		return -EINVAL;
6022	if (kstrtoul(page, 10, &new))
6023		return -EINVAL;
6024
6025	err = mddev_lock(mddev);
6026	if (err)
6027		return err;
6028	conf = mddev->private;
6029	if (!conf)
6030		err = -ENODEV;
6031	else if (new > conf->min_nr_stripes)
6032		err = -EINVAL;
6033	else
6034		conf->bypass_threshold = new;
6035	mddev_unlock(mddev);
6036	return err ?: len;
6037}
6038
6039static struct md_sysfs_entry
6040raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6041					S_IRUGO | S_IWUSR,
6042					raid5_show_preread_threshold,
6043					raid5_store_preread_threshold);
6044
6045static ssize_t
6046raid5_show_skip_copy(struct mddev *mddev, char *page)
6047{
6048	struct r5conf *conf;
6049	int ret = 0;
6050	spin_lock(&mddev->lock);
6051	conf = mddev->private;
6052	if (conf)
6053		ret = sprintf(page, "%d\n", conf->skip_copy);
6054	spin_unlock(&mddev->lock);
6055	return ret;
6056}
6057
6058static ssize_t
6059raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6060{
6061	struct r5conf *conf;
6062	unsigned long new;
6063	int err;
6064
6065	if (len >= PAGE_SIZE)
6066		return -EINVAL;
6067	if (kstrtoul(page, 10, &new))
6068		return -EINVAL;
6069	new = !!new;
6070
6071	err = mddev_lock(mddev);
6072	if (err)
6073		return err;
6074	conf = mddev->private;
6075	if (!conf)
6076		err = -ENODEV;
6077	else if (new != conf->skip_copy) {
6078		mddev_suspend(mddev);
6079		conf->skip_copy = new;
6080		if (new)
6081			mddev->queue->backing_dev_info.capabilities |=
6082				BDI_CAP_STABLE_WRITES;
6083		else
6084			mddev->queue->backing_dev_info.capabilities &=
6085				~BDI_CAP_STABLE_WRITES;
6086		mddev_resume(mddev);
6087	}
6088	mddev_unlock(mddev);
6089	return err ?: len;
6090}
6091
6092static struct md_sysfs_entry
6093raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6094					raid5_show_skip_copy,
6095					raid5_store_skip_copy);
6096
6097static ssize_t
6098stripe_cache_active_show(struct mddev *mddev, char *page)
6099{
6100	struct r5conf *conf = mddev->private;
6101	if (conf)
6102		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6103	else
6104		return 0;
6105}
6106
6107static struct md_sysfs_entry
6108raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6109
6110static ssize_t
6111raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6112{
6113	struct r5conf *conf;
6114	int ret = 0;
6115	spin_lock(&mddev->lock);
6116	conf = mddev->private;
6117	if (conf)
6118		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6119	spin_unlock(&mddev->lock);
6120	return ret;
6121}
6122
6123static int alloc_thread_groups(struct r5conf *conf, int cnt,
6124			       int *group_cnt,
6125			       int *worker_cnt_per_group,
6126			       struct r5worker_group **worker_groups);
6127static ssize_t
6128raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6129{
6130	struct r5conf *conf;
6131	unsigned long new;
6132	int err;
6133	struct r5worker_group *new_groups, *old_groups;
6134	int group_cnt, worker_cnt_per_group;
6135
6136	if (len >= PAGE_SIZE)
6137		return -EINVAL;
6138	if (kstrtoul(page, 10, &new))
6139		return -EINVAL;
6140
6141	err = mddev_lock(mddev);
6142	if (err)
6143		return err;
6144	conf = mddev->private;
6145	if (!conf)
6146		err = -ENODEV;
6147	else if (new != conf->worker_cnt_per_group) {
6148		mddev_suspend(mddev);
6149
6150		old_groups = conf->worker_groups;
6151		if (old_groups)
6152			flush_workqueue(raid5_wq);
6153
6154		err = alloc_thread_groups(conf, new,
6155					  &group_cnt, &worker_cnt_per_group,
6156					  &new_groups);
6157		if (!err) {
6158			spin_lock_irq(&conf->device_lock);
6159			conf->group_cnt = group_cnt;
6160			conf->worker_cnt_per_group = worker_cnt_per_group;
6161			conf->worker_groups = new_groups;
6162			spin_unlock_irq(&conf->device_lock);
6163
6164			if (old_groups)
6165				kfree(old_groups[0].workers);
6166			kfree(old_groups);
6167		}
6168		mddev_resume(mddev);
6169	}
6170	mddev_unlock(mddev);
6171
6172	return err ?: len;
6173}
6174
6175static struct md_sysfs_entry
6176raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6177				raid5_show_group_thread_cnt,
6178				raid5_store_group_thread_cnt);
6179
6180static struct attribute *raid5_attrs[] =  {
6181	&raid5_stripecache_size.attr,
6182	&raid5_stripecache_active.attr,
6183	&raid5_preread_bypass_threshold.attr,
6184	&raid5_group_thread_cnt.attr,
6185	&raid5_skip_copy.attr,
6186	&raid5_rmw_level.attr,
6187	NULL,
6188};
6189static struct attribute_group raid5_attrs_group = {
6190	.name = NULL,
6191	.attrs = raid5_attrs,
6192};
6193
6194static int alloc_thread_groups(struct r5conf *conf, int cnt,
6195			       int *group_cnt,
6196			       int *worker_cnt_per_group,
6197			       struct r5worker_group **worker_groups)
6198{
6199	int i, j, k;
6200	ssize_t size;
6201	struct r5worker *workers;
6202
6203	*worker_cnt_per_group = cnt;
6204	if (cnt == 0) {
6205		*group_cnt = 0;
6206		*worker_groups = NULL;
6207		return 0;
6208	}
6209	*group_cnt = num_possible_nodes();
6210	size = sizeof(struct r5worker) * cnt;
6211	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6212	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6213				*group_cnt, GFP_NOIO);
6214	if (!*worker_groups || !workers) {
6215		kfree(workers);
6216		kfree(*worker_groups);
6217		return -ENOMEM;
6218	}
6219
6220	for (i = 0; i < *group_cnt; i++) {
6221		struct r5worker_group *group;
6222
6223		group = &(*worker_groups)[i];
6224		INIT_LIST_HEAD(&group->handle_list);
6225		group->conf = conf;
6226		group->workers = workers + i * cnt;
6227
6228		for (j = 0; j < cnt; j++) {
6229			struct r5worker *worker = group->workers + j;
6230			worker->group = group;
6231			INIT_WORK(&worker->work, raid5_do_work);
6232
6233			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6234				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6235		}
6236	}
6237
6238	return 0;
6239}
6240
6241static void free_thread_groups(struct r5conf *conf)
6242{
6243	if (conf->worker_groups)
6244		kfree(conf->worker_groups[0].workers);
6245	kfree(conf->worker_groups);
6246	conf->worker_groups = NULL;
6247}
6248
6249static sector_t
6250raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6251{
6252	struct r5conf *conf = mddev->private;
6253
6254	if (!sectors)
6255		sectors = mddev->dev_sectors;
6256	if (!raid_disks)
6257		/* size is defined by the smallest of previous and new size */
6258		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6259
6260	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6261	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6262	return sectors * (raid_disks - conf->max_degraded);
6263}
6264
6265static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6266{
6267	safe_put_page(percpu->spare_page);
6268	if (percpu->scribble)
6269		flex_array_free(percpu->scribble);
6270	percpu->spare_page = NULL;
6271	percpu->scribble = NULL;
6272}
6273
6274static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6275{
6276	if (conf->level == 6 && !percpu->spare_page)
6277		percpu->spare_page = alloc_page(GFP_KERNEL);
6278	if (!percpu->scribble)
6279		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6280						      conf->previous_raid_disks),
6281						  max(conf->chunk_sectors,
6282						      conf->prev_chunk_sectors)
6283						   / STRIPE_SECTORS,
6284						  GFP_KERNEL);
6285
6286	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6287		free_scratch_buffer(conf, percpu);
6288		return -ENOMEM;
6289	}
6290
6291	return 0;
6292}
6293
6294static void raid5_free_percpu(struct r5conf *conf)
6295{
6296	unsigned long cpu;
6297
6298	if (!conf->percpu)
6299		return;
6300
6301#ifdef CONFIG_HOTPLUG_CPU
6302	unregister_cpu_notifier(&conf->cpu_notify);
6303#endif
6304
6305	get_online_cpus();
6306	for_each_possible_cpu(cpu)
6307		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6308	put_online_cpus();
6309
6310	free_percpu(conf->percpu);
6311}
6312
6313static void free_conf(struct r5conf *conf)
6314{
6315	if (conf->shrinker.seeks)
6316		unregister_shrinker(&conf->shrinker);
6317	free_thread_groups(conf);
6318	shrink_stripes(conf);
6319	raid5_free_percpu(conf);
6320	kfree(conf->disks);
6321	kfree(conf->stripe_hashtbl);
6322	kfree(conf);
6323}
6324
6325#ifdef CONFIG_HOTPLUG_CPU
6326static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6327			      void *hcpu)
6328{
6329	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6330	long cpu = (long)hcpu;
6331	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6332
6333	switch (action) {
6334	case CPU_UP_PREPARE:
6335	case CPU_UP_PREPARE_FROZEN:
6336		if (alloc_scratch_buffer(conf, percpu)) {
6337			pr_err("%s: failed memory allocation for cpu%ld\n",
6338			       __func__, cpu);
6339			return notifier_from_errno(-ENOMEM);
6340		}
6341		break;
6342	case CPU_DEAD:
6343	case CPU_DEAD_FROZEN:
6344		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6345		break;
6346	default:
6347		break;
6348	}
6349	return NOTIFY_OK;
6350}
6351#endif
6352
6353static int raid5_alloc_percpu(struct r5conf *conf)
6354{
6355	unsigned long cpu;
6356	int err = 0;
6357
6358	conf->percpu = alloc_percpu(struct raid5_percpu);
6359	if (!conf->percpu)
6360		return -ENOMEM;
6361
6362#ifdef CONFIG_HOTPLUG_CPU
6363	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6364	conf->cpu_notify.priority = 0;
6365	err = register_cpu_notifier(&conf->cpu_notify);
6366	if (err)
6367		return err;
6368#endif
6369
6370	get_online_cpus();
6371	for_each_present_cpu(cpu) {
6372		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6373		if (err) {
6374			pr_err("%s: failed memory allocation for cpu%ld\n",
6375			       __func__, cpu);
6376			break;
6377		}
6378	}
6379	put_online_cpus();
6380
6381	if (!err) {
6382		conf->scribble_disks = max(conf->raid_disks,
6383			conf->previous_raid_disks);
6384		conf->scribble_sectors = max(conf->chunk_sectors,
6385			conf->prev_chunk_sectors);
6386	}
6387	return err;
6388}
6389
6390static unsigned long raid5_cache_scan(struct shrinker *shrink,
6391				      struct shrink_control *sc)
6392{
6393	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6394	unsigned long ret = SHRINK_STOP;
6395
6396	if (mutex_trylock(&conf->cache_size_mutex)) {
6397		ret= 0;
6398		while (ret < sc->nr_to_scan &&
6399		       conf->max_nr_stripes > conf->min_nr_stripes) {
6400			if (drop_one_stripe(conf) == 0) {
6401				ret = SHRINK_STOP;
6402				break;
6403			}
6404			ret++;
6405		}
6406		mutex_unlock(&conf->cache_size_mutex);
6407	}
6408	return ret;
6409}
6410
6411static unsigned long raid5_cache_count(struct shrinker *shrink,
6412				       struct shrink_control *sc)
6413{
6414	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6415
6416	if (conf->max_nr_stripes < conf->min_nr_stripes)
6417		/* unlikely, but not impossible */
6418		return 0;
6419	return conf->max_nr_stripes - conf->min_nr_stripes;
6420}
6421
6422static struct r5conf *setup_conf(struct mddev *mddev)
6423{
6424	struct r5conf *conf;
6425	int raid_disk, memory, max_disks;
6426	struct md_rdev *rdev;
6427	struct disk_info *disk;
6428	char pers_name[6];
6429	int i;
6430	int group_cnt, worker_cnt_per_group;
6431	struct r5worker_group *new_group;
6432
6433	if (mddev->new_level != 5
6434	    && mddev->new_level != 4
6435	    && mddev->new_level != 6) {
6436		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6437		       mdname(mddev), mddev->new_level);
6438		return ERR_PTR(-EIO);
6439	}
6440	if ((mddev->new_level == 5
6441	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6442	    (mddev->new_level == 6
6443	     && !algorithm_valid_raid6(mddev->new_layout))) {
6444		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6445		       mdname(mddev), mddev->new_layout);
6446		return ERR_PTR(-EIO);
6447	}
6448	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6449		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6450		       mdname(mddev), mddev->raid_disks);
6451		return ERR_PTR(-EINVAL);
6452	}
6453
6454	if (!mddev->new_chunk_sectors ||
6455	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6456	    !is_power_of_2(mddev->new_chunk_sectors)) {
6457		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6458		       mdname(mddev), mddev->new_chunk_sectors << 9);
6459		return ERR_PTR(-EINVAL);
6460	}
6461
6462	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6463	if (conf == NULL)
6464		goto abort;
6465	/* Don't enable multi-threading by default*/
6466	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6467				 &new_group)) {
6468		conf->group_cnt = group_cnt;
6469		conf->worker_cnt_per_group = worker_cnt_per_group;
6470		conf->worker_groups = new_group;
6471	} else
6472		goto abort;
6473	spin_lock_init(&conf->device_lock);
6474	seqcount_init(&conf->gen_lock);
6475	mutex_init(&conf->cache_size_mutex);
6476	init_waitqueue_head(&conf->wait_for_stripe);
6477	init_waitqueue_head(&conf->wait_for_overlap);
6478	INIT_LIST_HEAD(&conf->handle_list);
6479	INIT_LIST_HEAD(&conf->hold_list);
6480	INIT_LIST_HEAD(&conf->delayed_list);
6481	INIT_LIST_HEAD(&conf->bitmap_list);
6482	init_llist_head(&conf->released_stripes);
6483	atomic_set(&conf->active_stripes, 0);
6484	atomic_set(&conf->preread_active_stripes, 0);
6485	atomic_set(&conf->active_aligned_reads, 0);
6486	conf->bypass_threshold = BYPASS_THRESHOLD;
6487	conf->recovery_disabled = mddev->recovery_disabled - 1;
6488
6489	conf->raid_disks = mddev->raid_disks;
6490	if (mddev->reshape_position == MaxSector)
6491		conf->previous_raid_disks = mddev->raid_disks;
6492	else
6493		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6494	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6495
6496	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6497			      GFP_KERNEL);
6498	if (!conf->disks)
6499		goto abort;
6500
6501	conf->mddev = mddev;
6502
6503	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6504		goto abort;
6505
6506	/* We init hash_locks[0] separately to that it can be used
6507	 * as the reference lock in the spin_lock_nest_lock() call
6508	 * in lock_all_device_hash_locks_irq in order to convince
6509	 * lockdep that we know what we are doing.
6510	 */
6511	spin_lock_init(conf->hash_locks);
6512	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6513		spin_lock_init(conf->hash_locks + i);
6514
6515	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6516		INIT_LIST_HEAD(conf->inactive_list + i);
6517
6518	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6519		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6520
6521	conf->level = mddev->new_level;
6522	conf->chunk_sectors = mddev->new_chunk_sectors;
6523	if (raid5_alloc_percpu(conf) != 0)
6524		goto abort;
6525
6526	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6527
6528	rdev_for_each(rdev, mddev) {
6529		raid_disk = rdev->raid_disk;
6530		if (raid_disk >= max_disks
6531		    || raid_disk < 0)
6532			continue;
6533		disk = conf->disks + raid_disk;
6534
6535		if (test_bit(Replacement, &rdev->flags)) {
6536			if (disk->replacement)
6537				goto abort;
6538			disk->replacement = rdev;
6539		} else {
6540			if (disk->rdev)
6541				goto abort;
6542			disk->rdev = rdev;
6543		}
6544
6545		if (test_bit(In_sync, &rdev->flags)) {
6546			char b[BDEVNAME_SIZE];
6547			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6548			       " disk %d\n",
6549			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6550		} else if (rdev->saved_raid_disk != raid_disk)
6551			/* Cannot rely on bitmap to complete recovery */
6552			conf->fullsync = 1;
6553	}
6554
6555	conf->level = mddev->new_level;
6556	if (conf->level == 6) {
6557		conf->max_degraded = 2;
6558		if (raid6_call.xor_syndrome)
6559			conf->rmw_level = PARITY_ENABLE_RMW;
6560		else
6561			conf->rmw_level = PARITY_DISABLE_RMW;
6562	} else {
6563		conf->max_degraded = 1;
6564		conf->rmw_level = PARITY_ENABLE_RMW;
6565	}
6566	conf->algorithm = mddev->new_layout;
6567	conf->reshape_progress = mddev->reshape_position;
6568	if (conf->reshape_progress != MaxSector) {
6569		conf->prev_chunk_sectors = mddev->chunk_sectors;
6570		conf->prev_algo = mddev->layout;
6571	}
6572
6573	conf->min_nr_stripes = NR_STRIPES;
6574	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6575		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6576	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6577	if (grow_stripes(conf, conf->min_nr_stripes)) {
6578		printk(KERN_ERR
6579		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6580		       mdname(mddev), memory);
6581		goto abort;
6582	} else
6583		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6584		       mdname(mddev), memory);
6585	/*
6586	 * Losing a stripe head costs more than the time to refill it,
6587	 * it reduces the queue depth and so can hurt throughput.
6588	 * So set it rather large, scaled by number of devices.
6589	 */
6590	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6591	conf->shrinker.scan_objects = raid5_cache_scan;
6592	conf->shrinker.count_objects = raid5_cache_count;
6593	conf->shrinker.batch = 128;
6594	conf->shrinker.flags = 0;
6595	register_shrinker(&conf->shrinker);
6596
6597	sprintf(pers_name, "raid%d", mddev->new_level);
6598	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6599	if (!conf->thread) {
6600		printk(KERN_ERR
6601		       "md/raid:%s: couldn't allocate thread.\n",
6602		       mdname(mddev));
6603		goto abort;
6604	}
6605
6606	return conf;
6607
6608 abort:
6609	if (conf) {
6610		free_conf(conf);
6611		return ERR_PTR(-EIO);
6612	} else
6613		return ERR_PTR(-ENOMEM);
6614}
6615
6616static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6617{
6618	switch (algo) {
6619	case ALGORITHM_PARITY_0:
6620		if (raid_disk < max_degraded)
6621			return 1;
6622		break;
6623	case ALGORITHM_PARITY_N:
6624		if (raid_disk >= raid_disks - max_degraded)
6625			return 1;
6626		break;
6627	case ALGORITHM_PARITY_0_6:
6628		if (raid_disk == 0 ||
6629		    raid_disk == raid_disks - 1)
6630			return 1;
6631		break;
6632	case ALGORITHM_LEFT_ASYMMETRIC_6:
6633	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6634	case ALGORITHM_LEFT_SYMMETRIC_6:
6635	case ALGORITHM_RIGHT_SYMMETRIC_6:
6636		if (raid_disk == raid_disks - 1)
6637			return 1;
6638	}
6639	return 0;
6640}
6641
6642static int run(struct mddev *mddev)
6643{
6644	struct r5conf *conf;
6645	int working_disks = 0;
6646	int dirty_parity_disks = 0;
6647	struct md_rdev *rdev;
6648	sector_t reshape_offset = 0;
6649	int i;
6650	long long min_offset_diff = 0;
6651	int first = 1;
6652
6653	if (mddev->recovery_cp != MaxSector)
6654		printk(KERN_NOTICE "md/raid:%s: not clean"
6655		       " -- starting background reconstruction\n",
6656		       mdname(mddev));
6657
6658	rdev_for_each(rdev, mddev) {
6659		long long diff;
6660		if (rdev->raid_disk < 0)
6661			continue;
6662		diff = (rdev->new_data_offset - rdev->data_offset);
6663		if (first) {
6664			min_offset_diff = diff;
6665			first = 0;
6666		} else if (mddev->reshape_backwards &&
6667			 diff < min_offset_diff)
6668			min_offset_diff = diff;
6669		else if (!mddev->reshape_backwards &&
6670			 diff > min_offset_diff)
6671			min_offset_diff = diff;
6672	}
6673
6674	if (mddev->reshape_position != MaxSector) {
6675		/* Check that we can continue the reshape.
6676		 * Difficulties arise if the stripe we would write to
6677		 * next is at or after the stripe we would read from next.
6678		 * For a reshape that changes the number of devices, this
6679		 * is only possible for a very short time, and mdadm makes
6680		 * sure that time appears to have past before assembling
6681		 * the array.  So we fail if that time hasn't passed.
6682		 * For a reshape that keeps the number of devices the same
6683		 * mdadm must be monitoring the reshape can keeping the
6684		 * critical areas read-only and backed up.  It will start
6685		 * the array in read-only mode, so we check for that.
6686		 */
6687		sector_t here_new, here_old;
6688		int old_disks;
6689		int max_degraded = (mddev->level == 6 ? 2 : 1);
6690
6691		if (mddev->new_level != mddev->level) {
6692			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6693			       "required - aborting.\n",
6694			       mdname(mddev));
6695			return -EINVAL;
6696		}
6697		old_disks = mddev->raid_disks - mddev->delta_disks;
6698		/* reshape_position must be on a new-stripe boundary, and one
6699		 * further up in new geometry must map after here in old
6700		 * geometry.
6701		 */
6702		here_new = mddev->reshape_position;
6703		if (sector_div(here_new, mddev->new_chunk_sectors *
6704			       (mddev->raid_disks - max_degraded))) {
6705			printk(KERN_ERR "md/raid:%s: reshape_position not "
6706			       "on a stripe boundary\n", mdname(mddev));
6707			return -EINVAL;
6708		}
6709		reshape_offset = here_new * mddev->new_chunk_sectors;
6710		/* here_new is the stripe we will write to */
6711		here_old = mddev->reshape_position;
6712		sector_div(here_old, mddev->chunk_sectors *
6713			   (old_disks-max_degraded));
6714		/* here_old is the first stripe that we might need to read
6715		 * from */
6716		if (mddev->delta_disks == 0) {
6717			if ((here_new * mddev->new_chunk_sectors !=
6718			     here_old * mddev->chunk_sectors)) {
6719				printk(KERN_ERR "md/raid:%s: reshape position is"
6720				       " confused - aborting\n", mdname(mddev));
6721				return -EINVAL;
6722			}
6723			/* We cannot be sure it is safe to start an in-place
6724			 * reshape.  It is only safe if user-space is monitoring
6725			 * and taking constant backups.
6726			 * mdadm always starts a situation like this in
6727			 * readonly mode so it can take control before
6728			 * allowing any writes.  So just check for that.
6729			 */
6730			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6731			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6732				/* not really in-place - so OK */;
6733			else if (mddev->ro == 0) {
6734				printk(KERN_ERR "md/raid:%s: in-place reshape "
6735				       "must be started in read-only mode "
6736				       "- aborting\n",
6737				       mdname(mddev));
6738				return -EINVAL;
6739			}
6740		} else if (mddev->reshape_backwards
6741		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6742		       here_old * mddev->chunk_sectors)
6743		    : (here_new * mddev->new_chunk_sectors >=
6744		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6745			/* Reading from the same stripe as writing to - bad */
6746			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6747			       "auto-recovery - aborting.\n",
6748			       mdname(mddev));
6749			return -EINVAL;
6750		}
6751		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6752		       mdname(mddev));
6753		/* OK, we should be able to continue; */
6754	} else {
6755		BUG_ON(mddev->level != mddev->new_level);
6756		BUG_ON(mddev->layout != mddev->new_layout);
6757		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6758		BUG_ON(mddev->delta_disks != 0);
6759	}
6760
6761	if (mddev->private == NULL)
6762		conf = setup_conf(mddev);
6763	else
6764		conf = mddev->private;
6765
6766	if (IS_ERR(conf))
6767		return PTR_ERR(conf);
6768
6769	conf->min_offset_diff = min_offset_diff;
6770	mddev->thread = conf->thread;
6771	conf->thread = NULL;
6772	mddev->private = conf;
6773
6774	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6775	     i++) {
6776		rdev = conf->disks[i].rdev;
6777		if (!rdev && conf->disks[i].replacement) {
6778			/* The replacement is all we have yet */
6779			rdev = conf->disks[i].replacement;
6780			conf->disks[i].replacement = NULL;
6781			clear_bit(Replacement, &rdev->flags);
6782			conf->disks[i].rdev = rdev;
6783		}
6784		if (!rdev)
6785			continue;
6786		if (conf->disks[i].replacement &&
6787		    conf->reshape_progress != MaxSector) {
6788			/* replacements and reshape simply do not mix. */
6789			printk(KERN_ERR "md: cannot handle concurrent "
6790			       "replacement and reshape.\n");
6791			goto abort;
6792		}
6793		if (test_bit(In_sync, &rdev->flags)) {
6794			working_disks++;
6795			continue;
6796		}
6797		/* This disc is not fully in-sync.  However if it
6798		 * just stored parity (beyond the recovery_offset),
6799		 * when we don't need to be concerned about the
6800		 * array being dirty.
6801		 * When reshape goes 'backwards', we never have
6802		 * partially completed devices, so we only need
6803		 * to worry about reshape going forwards.
6804		 */
6805		/* Hack because v0.91 doesn't store recovery_offset properly. */
6806		if (mddev->major_version == 0 &&
6807		    mddev->minor_version > 90)
6808			rdev->recovery_offset = reshape_offset;
6809
6810		if (rdev->recovery_offset < reshape_offset) {
6811			/* We need to check old and new layout */
6812			if (!only_parity(rdev->raid_disk,
6813					 conf->algorithm,
6814					 conf->raid_disks,
6815					 conf->max_degraded))
6816				continue;
6817		}
6818		if (!only_parity(rdev->raid_disk,
6819				 conf->prev_algo,
6820				 conf->previous_raid_disks,
6821				 conf->max_degraded))
6822			continue;
6823		dirty_parity_disks++;
6824	}
6825
6826	/*
6827	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6828	 */
6829	mddev->degraded = calc_degraded(conf);
6830
6831	if (has_failed(conf)) {
6832		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6833			" (%d/%d failed)\n",
6834			mdname(mddev), mddev->degraded, conf->raid_disks);
6835		goto abort;
6836	}
6837
6838	/* device size must be a multiple of chunk size */
6839	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6840	mddev->resync_max_sectors = mddev->dev_sectors;
6841
6842	if (mddev->degraded > dirty_parity_disks &&
6843	    mddev->recovery_cp != MaxSector) {
6844		if (mddev->ok_start_degraded)
6845			printk(KERN_WARNING
6846			       "md/raid:%s: starting dirty degraded array"
6847			       " - data corruption possible.\n",
6848			       mdname(mddev));
6849		else {
6850			printk(KERN_ERR
6851			       "md/raid:%s: cannot start dirty degraded array.\n",
6852			       mdname(mddev));
6853			goto abort;
6854		}
6855	}
6856
6857	if (mddev->degraded == 0)
6858		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6859		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6860		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6861		       mddev->new_layout);
6862	else
6863		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6864		       " out of %d devices, algorithm %d\n",
6865		       mdname(mddev), conf->level,
6866		       mddev->raid_disks - mddev->degraded,
6867		       mddev->raid_disks, mddev->new_layout);
6868
6869	print_raid5_conf(conf);
6870
6871	if (conf->reshape_progress != MaxSector) {
6872		conf->reshape_safe = conf->reshape_progress;
6873		atomic_set(&conf->reshape_stripes, 0);
6874		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6875		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6876		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6877		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6878		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6879							"reshape");
6880	}
6881
6882	/* Ok, everything is just fine now */
6883	if (mddev->to_remove == &raid5_attrs_group)
6884		mddev->to_remove = NULL;
6885	else if (mddev->kobj.sd &&
6886	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6887		printk(KERN_WARNING
6888		       "raid5: failed to create sysfs attributes for %s\n",
6889		       mdname(mddev));
6890	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6891
6892	if (mddev->queue) {
6893		int chunk_size;
6894		bool discard_supported = true;
6895		/* read-ahead size must cover two whole stripes, which
6896		 * is 2 * (datadisks) * chunksize where 'n' is the
6897		 * number of raid devices
6898		 */
6899		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6900		int stripe = data_disks *
6901			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6902		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6903			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6904
6905		chunk_size = mddev->chunk_sectors << 9;
6906		blk_queue_io_min(mddev->queue, chunk_size);
6907		blk_queue_io_opt(mddev->queue, chunk_size *
6908				 (conf->raid_disks - conf->max_degraded));
6909		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6910		/*
6911		 * We can only discard a whole stripe. It doesn't make sense to
6912		 * discard data disk but write parity disk
6913		 */
6914		stripe = stripe * PAGE_SIZE;
6915		/* Round up to power of 2, as discard handling
6916		 * currently assumes that */
6917		while ((stripe-1) & stripe)
6918			stripe = (stripe | (stripe-1)) + 1;
6919		mddev->queue->limits.discard_alignment = stripe;
6920		mddev->queue->limits.discard_granularity = stripe;
6921		/*
6922		 * unaligned part of discard request will be ignored, so can't
6923		 * guarantee discard_zeroes_data
6924		 */
6925		mddev->queue->limits.discard_zeroes_data = 0;
6926
6927		blk_queue_max_write_same_sectors(mddev->queue, 0);
6928
6929		rdev_for_each(rdev, mddev) {
6930			disk_stack_limits(mddev->gendisk, rdev->bdev,
6931					  rdev->data_offset << 9);
6932			disk_stack_limits(mddev->gendisk, rdev->bdev,
6933					  rdev->new_data_offset << 9);
6934			/*
6935			 * discard_zeroes_data is required, otherwise data
6936			 * could be lost. Consider a scenario: discard a stripe
6937			 * (the stripe could be inconsistent if
6938			 * discard_zeroes_data is 0); write one disk of the
6939			 * stripe (the stripe could be inconsistent again
6940			 * depending on which disks are used to calculate
6941			 * parity); the disk is broken; The stripe data of this
6942			 * disk is lost.
6943			 */
6944			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6945			    !bdev_get_queue(rdev->bdev)->
6946						limits.discard_zeroes_data)
6947				discard_supported = false;
6948			/* Unfortunately, discard_zeroes_data is not currently
6949			 * a guarantee - just a hint.  So we only allow DISCARD
6950			 * if the sysadmin has confirmed that only safe devices
6951			 * are in use by setting a module parameter.
6952			 */
6953			if (!devices_handle_discard_safely) {
6954				if (discard_supported) {
6955					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6956					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6957				}
6958				discard_supported = false;
6959			}
6960		}
6961
6962		if (discard_supported &&
6963		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
6964		    mddev->queue->limits.discard_granularity >= stripe)
6965			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6966						mddev->queue);
6967		else
6968			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6969						mddev->queue);
6970	}
6971
6972	return 0;
6973abort:
6974	md_unregister_thread(&mddev->thread);
6975	print_raid5_conf(conf);
6976	free_conf(conf);
6977	mddev->private = NULL;
6978	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6979	return -EIO;
6980}
6981
6982static void raid5_free(struct mddev *mddev, void *priv)
6983{
6984	struct r5conf *conf = priv;
6985
6986	free_conf(conf);
6987	mddev->to_remove = &raid5_attrs_group;
6988}
6989
6990static void status(struct seq_file *seq, struct mddev *mddev)
6991{
6992	struct r5conf *conf = mddev->private;
6993	int i;
6994
6995	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6996		mddev->chunk_sectors / 2, mddev->layout);
6997	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6998	for (i = 0; i < conf->raid_disks; i++)
6999		seq_printf (seq, "%s",
7000			       conf->disks[i].rdev &&
7001			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7002	seq_printf (seq, "]");
7003}
7004
7005static void print_raid5_conf (struct r5conf *conf)
7006{
7007	int i;
7008	struct disk_info *tmp;
7009
7010	printk(KERN_DEBUG "RAID conf printout:\n");
7011	if (!conf) {
7012		printk("(conf==NULL)\n");
7013		return;
7014	}
7015	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7016	       conf->raid_disks,
7017	       conf->raid_disks - conf->mddev->degraded);
7018
7019	for (i = 0; i < conf->raid_disks; i++) {
7020		char b[BDEVNAME_SIZE];
7021		tmp = conf->disks + i;
7022		if (tmp->rdev)
7023			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7024			       i, !test_bit(Faulty, &tmp->rdev->flags),
7025			       bdevname(tmp->rdev->bdev, b));
7026	}
7027}
7028
7029static int raid5_spare_active(struct mddev *mddev)
7030{
7031	int i;
7032	struct r5conf *conf = mddev->private;
7033	struct disk_info *tmp;
7034	int count = 0;
7035	unsigned long flags;
7036
7037	for (i = 0; i < conf->raid_disks; i++) {
7038		tmp = conf->disks + i;
7039		if (tmp->replacement
7040		    && tmp->replacement->recovery_offset == MaxSector
7041		    && !test_bit(Faulty, &tmp->replacement->flags)
7042		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7043			/* Replacement has just become active. */
7044			if (!tmp->rdev
7045			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7046				count++;
7047			if (tmp->rdev) {
7048				/* Replaced device not technically faulty,
7049				 * but we need to be sure it gets removed
7050				 * and never re-added.
7051				 */
7052				set_bit(Faulty, &tmp->rdev->flags);
7053				sysfs_notify_dirent_safe(
7054					tmp->rdev->sysfs_state);
7055			}
7056			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7057		} else if (tmp->rdev
7058		    && tmp->rdev->recovery_offset == MaxSector
7059		    && !test_bit(Faulty, &tmp->rdev->flags)
7060		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7061			count++;
7062			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7063		}
7064	}
7065	spin_lock_irqsave(&conf->device_lock, flags);
7066	mddev->degraded = calc_degraded(conf);
7067	spin_unlock_irqrestore(&conf->device_lock, flags);
7068	print_raid5_conf(conf);
7069	return count;
7070}
7071
7072static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7073{
7074	struct r5conf *conf = mddev->private;
7075	int err = 0;
7076	int number = rdev->raid_disk;
7077	struct md_rdev **rdevp;
7078	struct disk_info *p = conf->disks + number;
7079
7080	print_raid5_conf(conf);
7081	if (rdev == p->rdev)
7082		rdevp = &p->rdev;
7083	else if (rdev == p->replacement)
7084		rdevp = &p->replacement;
7085	else
7086		return 0;
7087
7088	if (number >= conf->raid_disks &&
7089	    conf->reshape_progress == MaxSector)
7090		clear_bit(In_sync, &rdev->flags);
7091
7092	if (test_bit(In_sync, &rdev->flags) ||
7093	    atomic_read(&rdev->nr_pending)) {
7094		err = -EBUSY;
7095		goto abort;
7096	}
7097	/* Only remove non-faulty devices if recovery
7098	 * isn't possible.
7099	 */
7100	if (!test_bit(Faulty, &rdev->flags) &&
7101	    mddev->recovery_disabled != conf->recovery_disabled &&
7102	    !has_failed(conf) &&
7103	    (!p->replacement || p->replacement == rdev) &&
7104	    number < conf->raid_disks) {
7105		err = -EBUSY;
7106		goto abort;
7107	}
7108	*rdevp = NULL;
7109	synchronize_rcu();
7110	if (atomic_read(&rdev->nr_pending)) {
7111		/* lost the race, try later */
7112		err = -EBUSY;
7113		*rdevp = rdev;
7114	} else if (p->replacement) {
7115		/* We must have just cleared 'rdev' */
7116		p->rdev = p->replacement;
7117		clear_bit(Replacement, &p->replacement->flags);
7118		smp_mb(); /* Make sure other CPUs may see both as identical
7119			   * but will never see neither - if they are careful
7120			   */
7121		p->replacement = NULL;
7122		clear_bit(WantReplacement, &rdev->flags);
7123	} else
7124		/* We might have just removed the Replacement as faulty-
7125		 * clear the bit just in case
7126		 */
7127		clear_bit(WantReplacement, &rdev->flags);
7128abort:
7129
7130	print_raid5_conf(conf);
7131	return err;
7132}
7133
7134static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7135{
7136	struct r5conf *conf = mddev->private;
7137	int err = -EEXIST;
7138	int disk;
7139	struct disk_info *p;
7140	int first = 0;
7141	int last = conf->raid_disks - 1;
7142
7143	if (mddev->recovery_disabled == conf->recovery_disabled)
7144		return -EBUSY;
7145
7146	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7147		/* no point adding a device */
7148		return -EINVAL;
7149
7150	if (rdev->raid_disk >= 0)
7151		first = last = rdev->raid_disk;
7152
7153	/*
7154	 * find the disk ... but prefer rdev->saved_raid_disk
7155	 * if possible.
7156	 */
7157	if (rdev->saved_raid_disk >= 0 &&
7158	    rdev->saved_raid_disk >= first &&
7159	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7160		first = rdev->saved_raid_disk;
7161
7162	for (disk = first; disk <= last; disk++) {
7163		p = conf->disks + disk;
7164		if (p->rdev == NULL) {
7165			clear_bit(In_sync, &rdev->flags);
7166			rdev->raid_disk = disk;
7167			err = 0;
7168			if (rdev->saved_raid_disk != disk)
7169				conf->fullsync = 1;
7170			rcu_assign_pointer(p->rdev, rdev);
7171			goto out;
7172		}
7173	}
7174	for (disk = first; disk <= last; disk++) {
7175		p = conf->disks + disk;
7176		if (test_bit(WantReplacement, &p->rdev->flags) &&
7177		    p->replacement == NULL) {
7178			clear_bit(In_sync, &rdev->flags);
7179			set_bit(Replacement, &rdev->flags);
7180			rdev->raid_disk = disk;
7181			err = 0;
7182			conf->fullsync = 1;
7183			rcu_assign_pointer(p->replacement, rdev);
7184			break;
7185		}
7186	}
7187out:
7188	print_raid5_conf(conf);
7189	return err;
7190}
7191
7192static int raid5_resize(struct mddev *mddev, sector_t sectors)
7193{
7194	/* no resync is happening, and there is enough space
7195	 * on all devices, so we can resize.
7196	 * We need to make sure resync covers any new space.
7197	 * If the array is shrinking we should possibly wait until
7198	 * any io in the removed space completes, but it hardly seems
7199	 * worth it.
7200	 */
7201	sector_t newsize;
7202	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7203	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7204	if (mddev->external_size &&
7205	    mddev->array_sectors > newsize)
7206		return -EINVAL;
7207	if (mddev->bitmap) {
7208		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7209		if (ret)
7210			return ret;
7211	}
7212	md_set_array_sectors(mddev, newsize);
7213	set_capacity(mddev->gendisk, mddev->array_sectors);
7214	revalidate_disk(mddev->gendisk);
7215	if (sectors > mddev->dev_sectors &&
7216	    mddev->recovery_cp > mddev->dev_sectors) {
7217		mddev->recovery_cp = mddev->dev_sectors;
7218		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7219	}
7220	mddev->dev_sectors = sectors;
7221	mddev->resync_max_sectors = sectors;
7222	return 0;
7223}
7224
7225static int check_stripe_cache(struct mddev *mddev)
7226{
7227	/* Can only proceed if there are plenty of stripe_heads.
7228	 * We need a minimum of one full stripe,, and for sensible progress
7229	 * it is best to have about 4 times that.
7230	 * If we require 4 times, then the default 256 4K stripe_heads will
7231	 * allow for chunk sizes up to 256K, which is probably OK.
7232	 * If the chunk size is greater, user-space should request more
7233	 * stripe_heads first.
7234	 */
7235	struct r5conf *conf = mddev->private;
7236	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7237	    > conf->min_nr_stripes ||
7238	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7239	    > conf->min_nr_stripes) {
7240		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7241		       mdname(mddev),
7242		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7243			/ STRIPE_SIZE)*4);
7244		return 0;
7245	}
7246	return 1;
7247}
7248
7249static int check_reshape(struct mddev *mddev)
7250{
7251	struct r5conf *conf = mddev->private;
7252
7253	if (mddev->delta_disks == 0 &&
7254	    mddev->new_layout == mddev->layout &&
7255	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7256		return 0; /* nothing to do */
7257	if (has_failed(conf))
7258		return -EINVAL;
7259	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7260		/* We might be able to shrink, but the devices must
7261		 * be made bigger first.
7262		 * For raid6, 4 is the minimum size.
7263		 * Otherwise 2 is the minimum
7264		 */
7265		int min = 2;
7266		if (mddev->level == 6)
7267			min = 4;
7268		if (mddev->raid_disks + mddev->delta_disks < min)
7269			return -EINVAL;
7270	}
7271
7272	if (!check_stripe_cache(mddev))
7273		return -ENOSPC;
7274
7275	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7276	    mddev->delta_disks > 0)
7277		if (resize_chunks(conf,
7278				  conf->previous_raid_disks
7279				  + max(0, mddev->delta_disks),
7280				  max(mddev->new_chunk_sectors,
7281				      mddev->chunk_sectors)
7282			    ) < 0)
7283			return -ENOMEM;
7284	return resize_stripes(conf, (conf->previous_raid_disks
7285				     + mddev->delta_disks));
7286}
7287
7288static int raid5_start_reshape(struct mddev *mddev)
7289{
7290	struct r5conf *conf = mddev->private;
7291	struct md_rdev *rdev;
7292	int spares = 0;
7293	unsigned long flags;
7294
7295	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7296		return -EBUSY;
7297
7298	if (!check_stripe_cache(mddev))
7299		return -ENOSPC;
7300
7301	if (has_failed(conf))
7302		return -EINVAL;
7303
7304	rdev_for_each(rdev, mddev) {
7305		if (!test_bit(In_sync, &rdev->flags)
7306		    && !test_bit(Faulty, &rdev->flags))
7307			spares++;
7308	}
7309
7310	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7311		/* Not enough devices even to make a degraded array
7312		 * of that size
7313		 */
7314		return -EINVAL;
7315
7316	/* Refuse to reduce size of the array.  Any reductions in
7317	 * array size must be through explicit setting of array_size
7318	 * attribute.
7319	 */
7320	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7321	    < mddev->array_sectors) {
7322		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7323		       "before number of disks\n", mdname(mddev));
7324		return -EINVAL;
7325	}
7326
7327	atomic_set(&conf->reshape_stripes, 0);
7328	spin_lock_irq(&conf->device_lock);
7329	write_seqcount_begin(&conf->gen_lock);
7330	conf->previous_raid_disks = conf->raid_disks;
7331	conf->raid_disks += mddev->delta_disks;
7332	conf->prev_chunk_sectors = conf->chunk_sectors;
7333	conf->chunk_sectors = mddev->new_chunk_sectors;
7334	conf->prev_algo = conf->algorithm;
7335	conf->algorithm = mddev->new_layout;
7336	conf->generation++;
7337	/* Code that selects data_offset needs to see the generation update
7338	 * if reshape_progress has been set - so a memory barrier needed.
7339	 */
7340	smp_mb();
7341	if (mddev->reshape_backwards)
7342		conf->reshape_progress = raid5_size(mddev, 0, 0);
7343	else
7344		conf->reshape_progress = 0;
7345	conf->reshape_safe = conf->reshape_progress;
7346	write_seqcount_end(&conf->gen_lock);
7347	spin_unlock_irq(&conf->device_lock);
7348
7349	/* Now make sure any requests that proceeded on the assumption
7350	 * the reshape wasn't running - like Discard or Read - have
7351	 * completed.
7352	 */
7353	mddev_suspend(mddev);
7354	mddev_resume(mddev);
7355
7356	/* Add some new drives, as many as will fit.
7357	 * We know there are enough to make the newly sized array work.
7358	 * Don't add devices if we are reducing the number of
7359	 * devices in the array.  This is because it is not possible
7360	 * to correctly record the "partially reconstructed" state of
7361	 * such devices during the reshape and confusion could result.
7362	 */
7363	if (mddev->delta_disks >= 0) {
7364		rdev_for_each(rdev, mddev)
7365			if (rdev->raid_disk < 0 &&
7366			    !test_bit(Faulty, &rdev->flags)) {
7367				if (raid5_add_disk(mddev, rdev) == 0) {
7368					if (rdev->raid_disk
7369					    >= conf->previous_raid_disks)
7370						set_bit(In_sync, &rdev->flags);
7371					else
7372						rdev->recovery_offset = 0;
7373
7374					if (sysfs_link_rdev(mddev, rdev))
7375						/* Failure here is OK */;
7376				}
7377			} else if (rdev->raid_disk >= conf->previous_raid_disks
7378				   && !test_bit(Faulty, &rdev->flags)) {
7379				/* This is a spare that was manually added */
7380				set_bit(In_sync, &rdev->flags);
7381			}
7382
7383		/* When a reshape changes the number of devices,
7384		 * ->degraded is measured against the larger of the
7385		 * pre and post number of devices.
7386		 */
7387		spin_lock_irqsave(&conf->device_lock, flags);
7388		mddev->degraded = calc_degraded(conf);
7389		spin_unlock_irqrestore(&conf->device_lock, flags);
7390	}
7391	mddev->raid_disks = conf->raid_disks;
7392	mddev->reshape_position = conf->reshape_progress;
7393	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7394
7395	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7396	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7397	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7398	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7399	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7400	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7401						"reshape");
7402	if (!mddev->sync_thread) {
7403		mddev->recovery = 0;
7404		spin_lock_irq(&conf->device_lock);
7405		write_seqcount_begin(&conf->gen_lock);
7406		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7407		mddev->new_chunk_sectors =
7408			conf->chunk_sectors = conf->prev_chunk_sectors;
7409		mddev->new_layout = conf->algorithm = conf->prev_algo;
7410		rdev_for_each(rdev, mddev)
7411			rdev->new_data_offset = rdev->data_offset;
7412		smp_wmb();
7413		conf->generation --;
7414		conf->reshape_progress = MaxSector;
7415		mddev->reshape_position = MaxSector;
7416		write_seqcount_end(&conf->gen_lock);
7417		spin_unlock_irq(&conf->device_lock);
7418		return -EAGAIN;
7419	}
7420	conf->reshape_checkpoint = jiffies;
7421	md_wakeup_thread(mddev->sync_thread);
7422	md_new_event(mddev);
7423	return 0;
7424}
7425
7426/* This is called from the reshape thread and should make any
7427 * changes needed in 'conf'
7428 */
7429static void end_reshape(struct r5conf *conf)
7430{
7431
7432	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7433		struct md_rdev *rdev;
7434
7435		spin_lock_irq(&conf->device_lock);
7436		conf->previous_raid_disks = conf->raid_disks;
7437		rdev_for_each(rdev, conf->mddev)
7438			rdev->data_offset = rdev->new_data_offset;
7439		smp_wmb();
7440		conf->reshape_progress = MaxSector;
7441		spin_unlock_irq(&conf->device_lock);
7442		wake_up(&conf->wait_for_overlap);
7443
7444		/* read-ahead size must cover two whole stripes, which is
7445		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7446		 */
7447		if (conf->mddev->queue) {
7448			int data_disks = conf->raid_disks - conf->max_degraded;
7449			int stripe = data_disks * ((conf->chunk_sectors << 9)
7450						   / PAGE_SIZE);
7451			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7452				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7453		}
7454	}
7455}
7456
7457/* This is called from the raid5d thread with mddev_lock held.
7458 * It makes config changes to the device.
7459 */
7460static void raid5_finish_reshape(struct mddev *mddev)
7461{
7462	struct r5conf *conf = mddev->private;
7463
7464	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7465
7466		if (mddev->delta_disks > 0) {
7467			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7468			set_capacity(mddev->gendisk, mddev->array_sectors);
7469			revalidate_disk(mddev->gendisk);
7470		} else {
7471			int d;
7472			spin_lock_irq(&conf->device_lock);
7473			mddev->degraded = calc_degraded(conf);
7474			spin_unlock_irq(&conf->device_lock);
7475			for (d = conf->raid_disks ;
7476			     d < conf->raid_disks - mddev->delta_disks;
7477			     d++) {
7478				struct md_rdev *rdev = conf->disks[d].rdev;
7479				if (rdev)
7480					clear_bit(In_sync, &rdev->flags);
7481				rdev = conf->disks[d].replacement;
7482				if (rdev)
7483					clear_bit(In_sync, &rdev->flags);
7484			}
7485		}
7486		mddev->layout = conf->algorithm;
7487		mddev->chunk_sectors = conf->chunk_sectors;
7488		mddev->reshape_position = MaxSector;
7489		mddev->delta_disks = 0;
7490		mddev->reshape_backwards = 0;
7491	}
7492}
7493
7494static void raid5_quiesce(struct mddev *mddev, int state)
7495{
7496	struct r5conf *conf = mddev->private;
7497
7498	switch(state) {
7499	case 2: /* resume for a suspend */
7500		wake_up(&conf->wait_for_overlap);
7501		break;
7502
7503	case 1: /* stop all writes */
7504		lock_all_device_hash_locks_irq(conf);
7505		/* '2' tells resync/reshape to pause so that all
7506		 * active stripes can drain
7507		 */
7508		conf->quiesce = 2;
7509		wait_event_cmd(conf->wait_for_stripe,
7510				    atomic_read(&conf->active_stripes) == 0 &&
7511				    atomic_read(&conf->active_aligned_reads) == 0,
7512				    unlock_all_device_hash_locks_irq(conf),
7513				    lock_all_device_hash_locks_irq(conf));
7514		conf->quiesce = 1;
7515		unlock_all_device_hash_locks_irq(conf);
7516		/* allow reshape to continue */
7517		wake_up(&conf->wait_for_overlap);
7518		break;
7519
7520	case 0: /* re-enable writes */
7521		lock_all_device_hash_locks_irq(conf);
7522		conf->quiesce = 0;
7523		wake_up(&conf->wait_for_stripe);
7524		wake_up(&conf->wait_for_overlap);
7525		unlock_all_device_hash_locks_irq(conf);
7526		break;
7527	}
7528}
7529
7530static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7531{
7532	struct r0conf *raid0_conf = mddev->private;
7533	sector_t sectors;
7534
7535	/* for raid0 takeover only one zone is supported */
7536	if (raid0_conf->nr_strip_zones > 1) {
7537		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7538		       mdname(mddev));
7539		return ERR_PTR(-EINVAL);
7540	}
7541
7542	sectors = raid0_conf->strip_zone[0].zone_end;
7543	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7544	mddev->dev_sectors = sectors;
7545	mddev->new_level = level;
7546	mddev->new_layout = ALGORITHM_PARITY_N;
7547	mddev->new_chunk_sectors = mddev->chunk_sectors;
7548	mddev->raid_disks += 1;
7549	mddev->delta_disks = 1;
7550	/* make sure it will be not marked as dirty */
7551	mddev->recovery_cp = MaxSector;
7552
7553	return setup_conf(mddev);
7554}
7555
7556static void *raid5_takeover_raid1(struct mddev *mddev)
7557{
7558	int chunksect;
7559
7560	if (mddev->raid_disks != 2 ||
7561	    mddev->degraded > 1)
7562		return ERR_PTR(-EINVAL);
7563
7564	/* Should check if there are write-behind devices? */
7565
7566	chunksect = 64*2; /* 64K by default */
7567
7568	/* The array must be an exact multiple of chunksize */
7569	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7570		chunksect >>= 1;
7571
7572	if ((chunksect<<9) < STRIPE_SIZE)
7573		/* array size does not allow a suitable chunk size */
7574		return ERR_PTR(-EINVAL);
7575
7576	mddev->new_level = 5;
7577	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7578	mddev->new_chunk_sectors = chunksect;
7579
7580	return setup_conf(mddev);
7581}
7582
7583static void *raid5_takeover_raid6(struct mddev *mddev)
7584{
7585	int new_layout;
7586
7587	switch (mddev->layout) {
7588	case ALGORITHM_LEFT_ASYMMETRIC_6:
7589		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7590		break;
7591	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7592		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7593		break;
7594	case ALGORITHM_LEFT_SYMMETRIC_6:
7595		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7596		break;
7597	case ALGORITHM_RIGHT_SYMMETRIC_6:
7598		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7599		break;
7600	case ALGORITHM_PARITY_0_6:
7601		new_layout = ALGORITHM_PARITY_0;
7602		break;
7603	case ALGORITHM_PARITY_N:
7604		new_layout = ALGORITHM_PARITY_N;
7605		break;
7606	default:
7607		return ERR_PTR(-EINVAL);
7608	}
7609	mddev->new_level = 5;
7610	mddev->new_layout = new_layout;
7611	mddev->delta_disks = -1;
7612	mddev->raid_disks -= 1;
7613	return setup_conf(mddev);
7614}
7615
7616static int raid5_check_reshape(struct mddev *mddev)
7617{
7618	/* For a 2-drive array, the layout and chunk size can be changed
7619	 * immediately as not restriping is needed.
7620	 * For larger arrays we record the new value - after validation
7621	 * to be used by a reshape pass.
7622	 */
7623	struct r5conf *conf = mddev->private;
7624	int new_chunk = mddev->new_chunk_sectors;
7625
7626	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7627		return -EINVAL;
7628	if (new_chunk > 0) {
7629		if (!is_power_of_2(new_chunk))
7630			return -EINVAL;
7631		if (new_chunk < (PAGE_SIZE>>9))
7632			return -EINVAL;
7633		if (mddev->array_sectors & (new_chunk-1))
7634			/* not factor of array size */
7635			return -EINVAL;
7636	}
7637
7638	/* They look valid */
7639
7640	if (mddev->raid_disks == 2) {
7641		/* can make the change immediately */
7642		if (mddev->new_layout >= 0) {
7643			conf->algorithm = mddev->new_layout;
7644			mddev->layout = mddev->new_layout;
7645		}
7646		if (new_chunk > 0) {
7647			conf->chunk_sectors = new_chunk ;
7648			mddev->chunk_sectors = new_chunk;
7649		}
7650		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7651		md_wakeup_thread(mddev->thread);
7652	}
7653	return check_reshape(mddev);
7654}
7655
7656static int raid6_check_reshape(struct mddev *mddev)
7657{
7658	int new_chunk = mddev->new_chunk_sectors;
7659
7660	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7661		return -EINVAL;
7662	if (new_chunk > 0) {
7663		if (!is_power_of_2(new_chunk))
7664			return -EINVAL;
7665		if (new_chunk < (PAGE_SIZE >> 9))
7666			return -EINVAL;
7667		if (mddev->array_sectors & (new_chunk-1))
7668			/* not factor of array size */
7669			return -EINVAL;
7670	}
7671
7672	/* They look valid */
7673	return check_reshape(mddev);
7674}
7675
7676static void *raid5_takeover(struct mddev *mddev)
7677{
7678	/* raid5 can take over:
7679	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7680	 *  raid1 - if there are two drives.  We need to know the chunk size
7681	 *  raid4 - trivial - just use a raid4 layout.
7682	 *  raid6 - Providing it is a *_6 layout
7683	 */
7684	if (mddev->level == 0)
7685		return raid45_takeover_raid0(mddev, 5);
7686	if (mddev->level == 1)
7687		return raid5_takeover_raid1(mddev);
7688	if (mddev->level == 4) {
7689		mddev->new_layout = ALGORITHM_PARITY_N;
7690		mddev->new_level = 5;
7691		return setup_conf(mddev);
7692	}
7693	if (mddev->level == 6)
7694		return raid5_takeover_raid6(mddev);
7695
7696	return ERR_PTR(-EINVAL);
7697}
7698
7699static void *raid4_takeover(struct mddev *mddev)
7700{
7701	/* raid4 can take over:
7702	 *  raid0 - if there is only one strip zone
7703	 *  raid5 - if layout is right
7704	 */
7705	if (mddev->level == 0)
7706		return raid45_takeover_raid0(mddev, 4);
7707	if (mddev->level == 5 &&
7708	    mddev->layout == ALGORITHM_PARITY_N) {
7709		mddev->new_layout = 0;
7710		mddev->new_level = 4;
7711		return setup_conf(mddev);
7712	}
7713	return ERR_PTR(-EINVAL);
7714}
7715
7716static struct md_personality raid5_personality;
7717
7718static void *raid6_takeover(struct mddev *mddev)
7719{
7720	/* Currently can only take over a raid5.  We map the
7721	 * personality to an equivalent raid6 personality
7722	 * with the Q block at the end.
7723	 */
7724	int new_layout;
7725
7726	if (mddev->pers != &raid5_personality)
7727		return ERR_PTR(-EINVAL);
7728	if (mddev->degraded > 1)
7729		return ERR_PTR(-EINVAL);
7730	if (mddev->raid_disks > 253)
7731		return ERR_PTR(-EINVAL);
7732	if (mddev->raid_disks < 3)
7733		return ERR_PTR(-EINVAL);
7734
7735	switch (mddev->layout) {
7736	case ALGORITHM_LEFT_ASYMMETRIC:
7737		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7738		break;
7739	case ALGORITHM_RIGHT_ASYMMETRIC:
7740		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7741		break;
7742	case ALGORITHM_LEFT_SYMMETRIC:
7743		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7744		break;
7745	case ALGORITHM_RIGHT_SYMMETRIC:
7746		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7747		break;
7748	case ALGORITHM_PARITY_0:
7749		new_layout = ALGORITHM_PARITY_0_6;
7750		break;
7751	case ALGORITHM_PARITY_N:
7752		new_layout = ALGORITHM_PARITY_N;
7753		break;
7754	default:
7755		return ERR_PTR(-EINVAL);
7756	}
7757	mddev->new_level = 6;
7758	mddev->new_layout = new_layout;
7759	mddev->delta_disks = 1;
7760	mddev->raid_disks += 1;
7761	return setup_conf(mddev);
7762}
7763
7764static struct md_personality raid6_personality =
7765{
7766	.name		= "raid6",
7767	.level		= 6,
7768	.owner		= THIS_MODULE,
7769	.make_request	= make_request,
7770	.run		= run,
7771	.free		= raid5_free,
7772	.status		= status,
7773	.error_handler	= error,
7774	.hot_add_disk	= raid5_add_disk,
7775	.hot_remove_disk= raid5_remove_disk,
7776	.spare_active	= raid5_spare_active,
7777	.sync_request	= sync_request,
7778	.resize		= raid5_resize,
7779	.size		= raid5_size,
7780	.check_reshape	= raid6_check_reshape,
7781	.start_reshape  = raid5_start_reshape,
7782	.finish_reshape = raid5_finish_reshape,
7783	.quiesce	= raid5_quiesce,
7784	.takeover	= raid6_takeover,
7785	.congested	= raid5_congested,
7786	.mergeable_bvec	= raid5_mergeable_bvec,
7787};
7788static struct md_personality raid5_personality =
7789{
7790	.name		= "raid5",
7791	.level		= 5,
7792	.owner		= THIS_MODULE,
7793	.make_request	= make_request,
7794	.run		= run,
7795	.free		= raid5_free,
7796	.status		= status,
7797	.error_handler	= error,
7798	.hot_add_disk	= raid5_add_disk,
7799	.hot_remove_disk= raid5_remove_disk,
7800	.spare_active	= raid5_spare_active,
7801	.sync_request	= sync_request,
7802	.resize		= raid5_resize,
7803	.size		= raid5_size,
7804	.check_reshape	= raid5_check_reshape,
7805	.start_reshape  = raid5_start_reshape,
7806	.finish_reshape = raid5_finish_reshape,
7807	.quiesce	= raid5_quiesce,
7808	.takeover	= raid5_takeover,
7809	.congested	= raid5_congested,
7810	.mergeable_bvec	= raid5_mergeable_bvec,
7811};
7812
7813static struct md_personality raid4_personality =
7814{
7815	.name		= "raid4",
7816	.level		= 4,
7817	.owner		= THIS_MODULE,
7818	.make_request	= make_request,
7819	.run		= run,
7820	.free		= raid5_free,
7821	.status		= status,
7822	.error_handler	= error,
7823	.hot_add_disk	= raid5_add_disk,
7824	.hot_remove_disk= raid5_remove_disk,
7825	.spare_active	= raid5_spare_active,
7826	.sync_request	= sync_request,
7827	.resize		= raid5_resize,
7828	.size		= raid5_size,
7829	.check_reshape	= raid5_check_reshape,
7830	.start_reshape  = raid5_start_reshape,
7831	.finish_reshape = raid5_finish_reshape,
7832	.quiesce	= raid5_quiesce,
7833	.takeover	= raid4_takeover,
7834	.congested	= raid5_congested,
7835	.mergeable_bvec	= raid5_mergeable_bvec,
7836};
7837
7838static int __init raid5_init(void)
7839{
7840	raid5_wq = alloc_workqueue("raid5wq",
7841		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7842	if (!raid5_wq)
7843		return -ENOMEM;
7844	register_md_personality(&raid6_personality);
7845	register_md_personality(&raid5_personality);
7846	register_md_personality(&raid4_personality);
7847	return 0;
7848}
7849
7850static void raid5_exit(void)
7851{
7852	unregister_md_personality(&raid6_personality);
7853	unregister_md_personality(&raid5_personality);
7854	unregister_md_personality(&raid4_personality);
7855	destroy_workqueue(raid5_wq);
7856}
7857
7858module_init(raid5_init);
7859module_exit(raid5_exit);
7860MODULE_LICENSE("GPL");
7861MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7862MODULE_ALIAS("md-personality-4"); /* RAID5 */
7863MODULE_ALIAS("md-raid5");
7864MODULE_ALIAS("md-raid4");
7865MODULE_ALIAS("md-level-5");
7866MODULE_ALIAS("md-level-4");
7867MODULE_ALIAS("md-personality-8"); /* RAID6 */
7868MODULE_ALIAS("md-raid6");
7869MODULE_ALIAS("md-level-6");
7870
7871/* This used to be two separate modules, they were: */
7872MODULE_ALIAS("raid5");
7873MODULE_ALIAS("raid6");
7874