1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 *      - bitmap marked during normal i/o
19 *      - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/module.h>
38#include <linux/seq_file.h>
39#include <linux/ratelimit.h>
40#include "md.h"
41#include "raid1.h"
42#include "bitmap.h"
43
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define	NR_RAID1_BIOS 256
48
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error.  To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context.  So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
68
69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70			  sector_t bi_sector);
71static void lower_barrier(struct r1conf *conf);
72
73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74{
75	struct pool_info *pi = data;
76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78	/* allocate a r1bio with room for raid_disks entries in the bios array */
79	return kzalloc(size, gfp_flags);
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84	kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
88#define RESYNC_DEPTH 32
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96{
97	struct pool_info *pi = data;
98	struct r1bio *r1_bio;
99	struct bio *bio;
100	int need_pages;
101	int i, j;
102
103	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104	if (!r1_bio)
105		return NULL;
106
107	/*
108	 * Allocate bios : 1 for reading, n-1 for writing
109	 */
110	for (j = pi->raid_disks ; j-- ; ) {
111		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112		if (!bio)
113			goto out_free_bio;
114		r1_bio->bios[j] = bio;
115	}
116	/*
117	 * Allocate RESYNC_PAGES data pages and attach them to
118	 * the first bio.
119	 * If this is a user-requested check/repair, allocate
120	 * RESYNC_PAGES for each bio.
121	 */
122	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123		need_pages = pi->raid_disks;
124	else
125		need_pages = 1;
126	for (j = 0; j < need_pages; j++) {
127		bio = r1_bio->bios[j];
128		bio->bi_vcnt = RESYNC_PAGES;
129
130		if (bio_alloc_pages(bio, gfp_flags))
131			goto out_free_pages;
132	}
133	/* If not user-requests, copy the page pointers to all bios */
134	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135		for (i=0; i<RESYNC_PAGES ; i++)
136			for (j=1; j<pi->raid_disks; j++)
137				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139	}
140
141	r1_bio->master_bio = NULL;
142
143	return r1_bio;
144
145out_free_pages:
146	while (--j >= 0) {
147		struct bio_vec *bv;
148
149		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150			__free_page(bv->bv_page);
151	}
152
153out_free_bio:
154	while (++j < pi->raid_disks)
155		bio_put(r1_bio->bios[j]);
156	r1bio_pool_free(r1_bio, data);
157	return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162	struct pool_info *pi = data;
163	int i,j;
164	struct r1bio *r1bio = __r1_bio;
165
166	for (i = 0; i < RESYNC_PAGES; i++)
167		for (j = pi->raid_disks; j-- ;) {
168			if (j == 0 ||
169			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172		}
173	for (i=0 ; i < pi->raid_disks; i++)
174		bio_put(r1bio->bios[i]);
175
176	r1bio_pool_free(r1bio, data);
177}
178
179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180{
181	int i;
182
183	for (i = 0; i < conf->raid_disks * 2; i++) {
184		struct bio **bio = r1_bio->bios + i;
185		if (!BIO_SPECIAL(*bio))
186			bio_put(*bio);
187		*bio = NULL;
188	}
189}
190
191static void free_r1bio(struct r1bio *r1_bio)
192{
193	struct r1conf *conf = r1_bio->mddev->private;
194
195	put_all_bios(conf, r1_bio);
196	mempool_free(r1_bio, conf->r1bio_pool);
197}
198
199static void put_buf(struct r1bio *r1_bio)
200{
201	struct r1conf *conf = r1_bio->mddev->private;
202	int i;
203
204	for (i = 0; i < conf->raid_disks * 2; i++) {
205		struct bio *bio = r1_bio->bios[i];
206		if (bio->bi_end_io)
207			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208	}
209
210	mempool_free(r1_bio, conf->r1buf_pool);
211
212	lower_barrier(conf);
213}
214
215static void reschedule_retry(struct r1bio *r1_bio)
216{
217	unsigned long flags;
218	struct mddev *mddev = r1_bio->mddev;
219	struct r1conf *conf = mddev->private;
220
221	spin_lock_irqsave(&conf->device_lock, flags);
222	list_add(&r1_bio->retry_list, &conf->retry_list);
223	conf->nr_queued ++;
224	spin_unlock_irqrestore(&conf->device_lock, flags);
225
226	wake_up(&conf->wait_barrier);
227	md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235static void call_bio_endio(struct r1bio *r1_bio)
236{
237	struct bio *bio = r1_bio->master_bio;
238	int done;
239	struct r1conf *conf = r1_bio->mddev->private;
240	sector_t start_next_window = r1_bio->start_next_window;
241	sector_t bi_sector = bio->bi_iter.bi_sector;
242
243	if (bio->bi_phys_segments) {
244		unsigned long flags;
245		spin_lock_irqsave(&conf->device_lock, flags);
246		bio->bi_phys_segments--;
247		done = (bio->bi_phys_segments == 0);
248		spin_unlock_irqrestore(&conf->device_lock, flags);
249		/*
250		 * make_request() might be waiting for
251		 * bi_phys_segments to decrease
252		 */
253		wake_up(&conf->wait_barrier);
254	} else
255		done = 1;
256
257	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259	if (done) {
260		bio_endio(bio, 0);
261		/*
262		 * Wake up any possible resync thread that waits for the device
263		 * to go idle.
264		 */
265		allow_barrier(conf, start_next_window, bi_sector);
266	}
267}
268
269static void raid_end_bio_io(struct r1bio *r1_bio)
270{
271	struct bio *bio = r1_bio->master_bio;
272
273	/* if nobody has done the final endio yet, do it now */
274	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277			 (unsigned long long) bio->bi_iter.bi_sector,
278			 (unsigned long long) bio_end_sector(bio) - 1);
279
280		call_bio_endio(r1_bio);
281	}
282	free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289{
290	struct r1conf *conf = r1_bio->mddev->private;
291
292	conf->mirrors[disk].head_position =
293		r1_bio->sector + (r1_bio->sectors);
294}
295
296/*
297 * Find the disk number which triggered given bio
298 */
299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300{
301	int mirror;
302	struct r1conf *conf = r1_bio->mddev->private;
303	int raid_disks = conf->raid_disks;
304
305	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306		if (r1_bio->bios[mirror] == bio)
307			break;
308
309	BUG_ON(mirror == raid_disks * 2);
310	update_head_pos(mirror, r1_bio);
311
312	return mirror;
313}
314
315static void raid1_end_read_request(struct bio *bio, int error)
316{
317	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318	struct r1bio *r1_bio = bio->bi_private;
319	int mirror;
320	struct r1conf *conf = r1_bio->mddev->private;
321
322	mirror = r1_bio->read_disk;
323	/*
324	 * this branch is our 'one mirror IO has finished' event handler:
325	 */
326	update_head_pos(mirror, r1_bio);
327
328	if (uptodate)
329		set_bit(R1BIO_Uptodate, &r1_bio->state);
330	else {
331		/* If all other devices have failed, we want to return
332		 * the error upwards rather than fail the last device.
333		 * Here we redefine "uptodate" to mean "Don't want to retry"
334		 */
335		unsigned long flags;
336		spin_lock_irqsave(&conf->device_lock, flags);
337		if (r1_bio->mddev->degraded == conf->raid_disks ||
338		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340			uptodate = 1;
341		spin_unlock_irqrestore(&conf->device_lock, flags);
342	}
343
344	if (uptodate) {
345		raid_end_bio_io(r1_bio);
346		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347	} else {
348		/*
349		 * oops, read error:
350		 */
351		char b[BDEVNAME_SIZE];
352		printk_ratelimited(
353			KERN_ERR "md/raid1:%s: %s: "
354			"rescheduling sector %llu\n",
355			mdname(conf->mddev),
356			bdevname(conf->mirrors[mirror].rdev->bdev,
357				 b),
358			(unsigned long long)r1_bio->sector);
359		set_bit(R1BIO_ReadError, &r1_bio->state);
360		reschedule_retry(r1_bio);
361		/* don't drop the reference on read_disk yet */
362	}
363}
364
365static void close_write(struct r1bio *r1_bio)
366{
367	/* it really is the end of this request */
368	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369		/* free extra copy of the data pages */
370		int i = r1_bio->behind_page_count;
371		while (i--)
372			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373		kfree(r1_bio->behind_bvecs);
374		r1_bio->behind_bvecs = NULL;
375	}
376	/* clear the bitmap if all writes complete successfully */
377	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378			r1_bio->sectors,
379			!test_bit(R1BIO_Degraded, &r1_bio->state),
380			test_bit(R1BIO_BehindIO, &r1_bio->state));
381	md_write_end(r1_bio->mddev);
382}
383
384static void r1_bio_write_done(struct r1bio *r1_bio)
385{
386	if (!atomic_dec_and_test(&r1_bio->remaining))
387		return;
388
389	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390		reschedule_retry(r1_bio);
391	else {
392		close_write(r1_bio);
393		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394			reschedule_retry(r1_bio);
395		else
396			raid_end_bio_io(r1_bio);
397	}
398}
399
400static void raid1_end_write_request(struct bio *bio, int error)
401{
402	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403	struct r1bio *r1_bio = bio->bi_private;
404	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405	struct r1conf *conf = r1_bio->mddev->private;
406	struct bio *to_put = NULL;
407
408	mirror = find_bio_disk(r1_bio, bio);
409
410	/*
411	 * 'one mirror IO has finished' event handler:
412	 */
413	if (!uptodate) {
414		set_bit(WriteErrorSeen,
415			&conf->mirrors[mirror].rdev->flags);
416		if (!test_and_set_bit(WantReplacement,
417				      &conf->mirrors[mirror].rdev->flags))
418			set_bit(MD_RECOVERY_NEEDED, &
419				conf->mddev->recovery);
420
421		set_bit(R1BIO_WriteError, &r1_bio->state);
422	} else {
423		/*
424		 * Set R1BIO_Uptodate in our master bio, so that we
425		 * will return a good error code for to the higher
426		 * levels even if IO on some other mirrored buffer
427		 * fails.
428		 *
429		 * The 'master' represents the composite IO operation
430		 * to user-side. So if something waits for IO, then it
431		 * will wait for the 'master' bio.
432		 */
433		sector_t first_bad;
434		int bad_sectors;
435
436		r1_bio->bios[mirror] = NULL;
437		to_put = bio;
438		/*
439		 * Do not set R1BIO_Uptodate if the current device is
440		 * rebuilding or Faulty. This is because we cannot use
441		 * such device for properly reading the data back (we could
442		 * potentially use it, if the current write would have felt
443		 * before rdev->recovery_offset, but for simplicity we don't
444		 * check this here.
445		 */
446		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448			set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450		/* Maybe we can clear some bad blocks. */
451		if (is_badblock(conf->mirrors[mirror].rdev,
452				r1_bio->sector, r1_bio->sectors,
453				&first_bad, &bad_sectors)) {
454			r1_bio->bios[mirror] = IO_MADE_GOOD;
455			set_bit(R1BIO_MadeGood, &r1_bio->state);
456		}
457	}
458
459	if (behind) {
460		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461			atomic_dec(&r1_bio->behind_remaining);
462
463		/*
464		 * In behind mode, we ACK the master bio once the I/O
465		 * has safely reached all non-writemostly
466		 * disks. Setting the Returned bit ensures that this
467		 * gets done only once -- we don't ever want to return
468		 * -EIO here, instead we'll wait
469		 */
470		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472			/* Maybe we can return now */
473			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474				struct bio *mbio = r1_bio->master_bio;
475				pr_debug("raid1: behind end write sectors"
476					 " %llu-%llu\n",
477					 (unsigned long long) mbio->bi_iter.bi_sector,
478					 (unsigned long long) bio_end_sector(mbio) - 1);
479				call_bio_endio(r1_bio);
480			}
481		}
482	}
483	if (r1_bio->bios[mirror] == NULL)
484		rdev_dec_pending(conf->mirrors[mirror].rdev,
485				 conf->mddev);
486
487	/*
488	 * Let's see if all mirrored write operations have finished
489	 * already.
490	 */
491	r1_bio_write_done(r1_bio);
492
493	if (to_put)
494		bio_put(to_put);
495}
496
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512{
513	const sector_t this_sector = r1_bio->sector;
514	int sectors;
515	int best_good_sectors;
516	int best_disk, best_dist_disk, best_pending_disk;
517	int has_nonrot_disk;
518	int disk;
519	sector_t best_dist;
520	unsigned int min_pending;
521	struct md_rdev *rdev;
522	int choose_first;
523	int choose_next_idle;
524
525	rcu_read_lock();
526	/*
527	 * Check if we can balance. We can balance on the whole
528	 * device if no resync is going on, or below the resync window.
529	 * We take the first readable disk when above the resync window.
530	 */
531 retry:
532	sectors = r1_bio->sectors;
533	best_disk = -1;
534	best_dist_disk = -1;
535	best_dist = MaxSector;
536	best_pending_disk = -1;
537	min_pending = UINT_MAX;
538	best_good_sectors = 0;
539	has_nonrot_disk = 0;
540	choose_next_idle = 0;
541
542	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543	    (mddev_is_clustered(conf->mddev) &&
544	    md_cluster_ops->area_resyncing(conf->mddev, this_sector,
545		    this_sector + sectors)))
546		choose_first = 1;
547	else
548		choose_first = 0;
549
550	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551		sector_t dist;
552		sector_t first_bad;
553		int bad_sectors;
554		unsigned int pending;
555		bool nonrot;
556
557		rdev = rcu_dereference(conf->mirrors[disk].rdev);
558		if (r1_bio->bios[disk] == IO_BLOCKED
559		    || rdev == NULL
560		    || test_bit(Unmerged, &rdev->flags)
561		    || test_bit(Faulty, &rdev->flags))
562			continue;
563		if (!test_bit(In_sync, &rdev->flags) &&
564		    rdev->recovery_offset < this_sector + sectors)
565			continue;
566		if (test_bit(WriteMostly, &rdev->flags)) {
567			/* Don't balance among write-mostly, just
568			 * use the first as a last resort */
569			if (best_dist_disk < 0) {
570				if (is_badblock(rdev, this_sector, sectors,
571						&first_bad, &bad_sectors)) {
572					if (first_bad < this_sector)
573						/* Cannot use this */
574						continue;
575					best_good_sectors = first_bad - this_sector;
576				} else
577					best_good_sectors = sectors;
578				best_dist_disk = disk;
579				best_pending_disk = disk;
580			}
581			continue;
582		}
583		/* This is a reasonable device to use.  It might
584		 * even be best.
585		 */
586		if (is_badblock(rdev, this_sector, sectors,
587				&first_bad, &bad_sectors)) {
588			if (best_dist < MaxSector)
589				/* already have a better device */
590				continue;
591			if (first_bad <= this_sector) {
592				/* cannot read here. If this is the 'primary'
593				 * device, then we must not read beyond
594				 * bad_sectors from another device..
595				 */
596				bad_sectors -= (this_sector - first_bad);
597				if (choose_first && sectors > bad_sectors)
598					sectors = bad_sectors;
599				if (best_good_sectors > sectors)
600					best_good_sectors = sectors;
601
602			} else {
603				sector_t good_sectors = first_bad - this_sector;
604				if (good_sectors > best_good_sectors) {
605					best_good_sectors = good_sectors;
606					best_disk = disk;
607				}
608				if (choose_first)
609					break;
610			}
611			continue;
612		} else
613			best_good_sectors = sectors;
614
615		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
616		has_nonrot_disk |= nonrot;
617		pending = atomic_read(&rdev->nr_pending);
618		dist = abs(this_sector - conf->mirrors[disk].head_position);
619		if (choose_first) {
620			best_disk = disk;
621			break;
622		}
623		/* Don't change to another disk for sequential reads */
624		if (conf->mirrors[disk].next_seq_sect == this_sector
625		    || dist == 0) {
626			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
627			struct raid1_info *mirror = &conf->mirrors[disk];
628
629			best_disk = disk;
630			/*
631			 * If buffered sequential IO size exceeds optimal
632			 * iosize, check if there is idle disk. If yes, choose
633			 * the idle disk. read_balance could already choose an
634			 * idle disk before noticing it's a sequential IO in
635			 * this disk. This doesn't matter because this disk
636			 * will idle, next time it will be utilized after the
637			 * first disk has IO size exceeds optimal iosize. In
638			 * this way, iosize of the first disk will be optimal
639			 * iosize at least. iosize of the second disk might be
640			 * small, but not a big deal since when the second disk
641			 * starts IO, the first disk is likely still busy.
642			 */
643			if (nonrot && opt_iosize > 0 &&
644			    mirror->seq_start != MaxSector &&
645			    mirror->next_seq_sect > opt_iosize &&
646			    mirror->next_seq_sect - opt_iosize >=
647			    mirror->seq_start) {
648				choose_next_idle = 1;
649				continue;
650			}
651			break;
652		}
653		/* If device is idle, use it */
654		if (pending == 0) {
655			best_disk = disk;
656			break;
657		}
658
659		if (choose_next_idle)
660			continue;
661
662		if (min_pending > pending) {
663			min_pending = pending;
664			best_pending_disk = disk;
665		}
666
667		if (dist < best_dist) {
668			best_dist = dist;
669			best_dist_disk = disk;
670		}
671	}
672
673	/*
674	 * If all disks are rotational, choose the closest disk. If any disk is
675	 * non-rotational, choose the disk with less pending request even the
676	 * disk is rotational, which might/might not be optimal for raids with
677	 * mixed ratation/non-rotational disks depending on workload.
678	 */
679	if (best_disk == -1) {
680		if (has_nonrot_disk)
681			best_disk = best_pending_disk;
682		else
683			best_disk = best_dist_disk;
684	}
685
686	if (best_disk >= 0) {
687		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
688		if (!rdev)
689			goto retry;
690		atomic_inc(&rdev->nr_pending);
691		if (test_bit(Faulty, &rdev->flags)) {
692			/* cannot risk returning a device that failed
693			 * before we inc'ed nr_pending
694			 */
695			rdev_dec_pending(rdev, conf->mddev);
696			goto retry;
697		}
698		sectors = best_good_sectors;
699
700		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
701			conf->mirrors[best_disk].seq_start = this_sector;
702
703		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
704	}
705	rcu_read_unlock();
706	*max_sectors = sectors;
707
708	return best_disk;
709}
710
711static int raid1_mergeable_bvec(struct mddev *mddev,
712				struct bvec_merge_data *bvm,
713				struct bio_vec *biovec)
714{
715	struct r1conf *conf = mddev->private;
716	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
717	int max = biovec->bv_len;
718
719	if (mddev->merge_check_needed) {
720		int disk;
721		rcu_read_lock();
722		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
723			struct md_rdev *rdev = rcu_dereference(
724				conf->mirrors[disk].rdev);
725			if (rdev && !test_bit(Faulty, &rdev->flags)) {
726				struct request_queue *q =
727					bdev_get_queue(rdev->bdev);
728				if (q->merge_bvec_fn) {
729					bvm->bi_sector = sector +
730						rdev->data_offset;
731					bvm->bi_bdev = rdev->bdev;
732					max = min(max, q->merge_bvec_fn(
733							  q, bvm, biovec));
734				}
735			}
736		}
737		rcu_read_unlock();
738	}
739	return max;
740
741}
742
743static int raid1_congested(struct mddev *mddev, int bits)
744{
745	struct r1conf *conf = mddev->private;
746	int i, ret = 0;
747
748	if ((bits & (1 << BDI_async_congested)) &&
749	    conf->pending_count >= max_queued_requests)
750		return 1;
751
752	rcu_read_lock();
753	for (i = 0; i < conf->raid_disks * 2; i++) {
754		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
755		if (rdev && !test_bit(Faulty, &rdev->flags)) {
756			struct request_queue *q = bdev_get_queue(rdev->bdev);
757
758			BUG_ON(!q);
759
760			/* Note the '|| 1' - when read_balance prefers
761			 * non-congested targets, it can be removed
762			 */
763			if ((bits & (1<<BDI_async_congested)) || 1)
764				ret |= bdi_congested(&q->backing_dev_info, bits);
765			else
766				ret &= bdi_congested(&q->backing_dev_info, bits);
767		}
768	}
769	rcu_read_unlock();
770	return ret;
771}
772
773static void flush_pending_writes(struct r1conf *conf)
774{
775	/* Any writes that have been queued but are awaiting
776	 * bitmap updates get flushed here.
777	 */
778	spin_lock_irq(&conf->device_lock);
779
780	if (conf->pending_bio_list.head) {
781		struct bio *bio;
782		bio = bio_list_get(&conf->pending_bio_list);
783		conf->pending_count = 0;
784		spin_unlock_irq(&conf->device_lock);
785		/* flush any pending bitmap writes to
786		 * disk before proceeding w/ I/O */
787		bitmap_unplug(conf->mddev->bitmap);
788		wake_up(&conf->wait_barrier);
789
790		while (bio) { /* submit pending writes */
791			struct bio *next = bio->bi_next;
792			bio->bi_next = NULL;
793			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
794			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
795				/* Just ignore it */
796				bio_endio(bio, 0);
797			else
798				generic_make_request(bio);
799			bio = next;
800		}
801	} else
802		spin_unlock_irq(&conf->device_lock);
803}
804
805/* Barriers....
806 * Sometimes we need to suspend IO while we do something else,
807 * either some resync/recovery, or reconfigure the array.
808 * To do this we raise a 'barrier'.
809 * The 'barrier' is a counter that can be raised multiple times
810 * to count how many activities are happening which preclude
811 * normal IO.
812 * We can only raise the barrier if there is no pending IO.
813 * i.e. if nr_pending == 0.
814 * We choose only to raise the barrier if no-one is waiting for the
815 * barrier to go down.  This means that as soon as an IO request
816 * is ready, no other operations which require a barrier will start
817 * until the IO request has had a chance.
818 *
819 * So: regular IO calls 'wait_barrier'.  When that returns there
820 *    is no backgroup IO happening,  It must arrange to call
821 *    allow_barrier when it has finished its IO.
822 * backgroup IO calls must call raise_barrier.  Once that returns
823 *    there is no normal IO happeing.  It must arrange to call
824 *    lower_barrier when the particular background IO completes.
825 */
826static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
827{
828	spin_lock_irq(&conf->resync_lock);
829
830	/* Wait until no block IO is waiting */
831	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
832			    conf->resync_lock);
833
834	/* block any new IO from starting */
835	conf->barrier++;
836	conf->next_resync = sector_nr;
837
838	/* For these conditions we must wait:
839	 * A: while the array is in frozen state
840	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841	 *    the max count which allowed.
842	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843	 *    next resync will reach to the window which normal bios are
844	 *    handling.
845	 * D: while there are any active requests in the current window.
846	 */
847	wait_event_lock_irq(conf->wait_barrier,
848			    !conf->array_frozen &&
849			    conf->barrier < RESYNC_DEPTH &&
850			    conf->current_window_requests == 0 &&
851			    (conf->start_next_window >=
852			     conf->next_resync + RESYNC_SECTORS),
853			    conf->resync_lock);
854
855	conf->nr_pending++;
856	spin_unlock_irq(&conf->resync_lock);
857}
858
859static void lower_barrier(struct r1conf *conf)
860{
861	unsigned long flags;
862	BUG_ON(conf->barrier <= 0);
863	spin_lock_irqsave(&conf->resync_lock, flags);
864	conf->barrier--;
865	conf->nr_pending--;
866	spin_unlock_irqrestore(&conf->resync_lock, flags);
867	wake_up(&conf->wait_barrier);
868}
869
870static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
871{
872	bool wait = false;
873
874	if (conf->array_frozen || !bio)
875		wait = true;
876	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
877		if ((conf->mddev->curr_resync_completed
878		     >= bio_end_sector(bio)) ||
879		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
880		     <= bio->bi_iter.bi_sector))
881			wait = false;
882		else
883			wait = true;
884	}
885
886	return wait;
887}
888
889static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
890{
891	sector_t sector = 0;
892
893	spin_lock_irq(&conf->resync_lock);
894	if (need_to_wait_for_sync(conf, bio)) {
895		conf->nr_waiting++;
896		/* Wait for the barrier to drop.
897		 * However if there are already pending
898		 * requests (preventing the barrier from
899		 * rising completely), and the
900		 * per-process bio queue isn't empty,
901		 * then don't wait, as we need to empty
902		 * that queue to allow conf->start_next_window
903		 * to increase.
904		 */
905		wait_event_lock_irq(conf->wait_barrier,
906				    !conf->array_frozen &&
907				    (!conf->barrier ||
908				     ((conf->start_next_window <
909				       conf->next_resync + RESYNC_SECTORS) &&
910				      current->bio_list &&
911				      !bio_list_empty(current->bio_list))),
912				    conf->resync_lock);
913		conf->nr_waiting--;
914	}
915
916	if (bio && bio_data_dir(bio) == WRITE) {
917		if (bio->bi_iter.bi_sector >=
918		    conf->mddev->curr_resync_completed) {
919			if (conf->start_next_window == MaxSector)
920				conf->start_next_window =
921					conf->next_resync +
922					NEXT_NORMALIO_DISTANCE;
923
924			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
925			    <= bio->bi_iter.bi_sector)
926				conf->next_window_requests++;
927			else
928				conf->current_window_requests++;
929			sector = conf->start_next_window;
930		}
931	}
932
933	conf->nr_pending++;
934	spin_unlock_irq(&conf->resync_lock);
935	return sector;
936}
937
938static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939			  sector_t bi_sector)
940{
941	unsigned long flags;
942
943	spin_lock_irqsave(&conf->resync_lock, flags);
944	conf->nr_pending--;
945	if (start_next_window) {
946		if (start_next_window == conf->start_next_window) {
947			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
948			    <= bi_sector)
949				conf->next_window_requests--;
950			else
951				conf->current_window_requests--;
952		} else
953			conf->current_window_requests--;
954
955		if (!conf->current_window_requests) {
956			if (conf->next_window_requests) {
957				conf->current_window_requests =
958					conf->next_window_requests;
959				conf->next_window_requests = 0;
960				conf->start_next_window +=
961					NEXT_NORMALIO_DISTANCE;
962			} else
963				conf->start_next_window = MaxSector;
964		}
965	}
966	spin_unlock_irqrestore(&conf->resync_lock, flags);
967	wake_up(&conf->wait_barrier);
968}
969
970static void freeze_array(struct r1conf *conf, int extra)
971{
972	/* stop syncio and normal IO and wait for everything to
973	 * go quite.
974	 * We wait until nr_pending match nr_queued+extra
975	 * This is called in the context of one normal IO request
976	 * that has failed. Thus any sync request that might be pending
977	 * will be blocked by nr_pending, and we need to wait for
978	 * pending IO requests to complete or be queued for re-try.
979	 * Thus the number queued (nr_queued) plus this request (extra)
980	 * must match the number of pending IOs (nr_pending) before
981	 * we continue.
982	 */
983	spin_lock_irq(&conf->resync_lock);
984	conf->array_frozen = 1;
985	wait_event_lock_irq_cmd(conf->wait_barrier,
986				conf->nr_pending == conf->nr_queued+extra,
987				conf->resync_lock,
988				flush_pending_writes(conf));
989	spin_unlock_irq(&conf->resync_lock);
990}
991static void unfreeze_array(struct r1conf *conf)
992{
993	/* reverse the effect of the freeze */
994	spin_lock_irq(&conf->resync_lock);
995	conf->array_frozen = 0;
996	wake_up(&conf->wait_barrier);
997	spin_unlock_irq(&conf->resync_lock);
998}
999
1000/* duplicate the data pages for behind I/O
1001 */
1002static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1003{
1004	int i;
1005	struct bio_vec *bvec;
1006	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1007					GFP_NOIO);
1008	if (unlikely(!bvecs))
1009		return;
1010
1011	bio_for_each_segment_all(bvec, bio, i) {
1012		bvecs[i] = *bvec;
1013		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014		if (unlikely(!bvecs[i].bv_page))
1015			goto do_sync_io;
1016		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018		kunmap(bvecs[i].bv_page);
1019		kunmap(bvec->bv_page);
1020	}
1021	r1_bio->behind_bvecs = bvecs;
1022	r1_bio->behind_page_count = bio->bi_vcnt;
1023	set_bit(R1BIO_BehindIO, &r1_bio->state);
1024	return;
1025
1026do_sync_io:
1027	for (i = 0; i < bio->bi_vcnt; i++)
1028		if (bvecs[i].bv_page)
1029			put_page(bvecs[i].bv_page);
1030	kfree(bvecs);
1031	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1032		 bio->bi_iter.bi_size);
1033}
1034
1035struct raid1_plug_cb {
1036	struct blk_plug_cb	cb;
1037	struct bio_list		pending;
1038	int			pending_cnt;
1039};
1040
1041static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1042{
1043	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1044						  cb);
1045	struct mddev *mddev = plug->cb.data;
1046	struct r1conf *conf = mddev->private;
1047	struct bio *bio;
1048
1049	if (from_schedule || current->bio_list) {
1050		spin_lock_irq(&conf->device_lock);
1051		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1052		conf->pending_count += plug->pending_cnt;
1053		spin_unlock_irq(&conf->device_lock);
1054		wake_up(&conf->wait_barrier);
1055		md_wakeup_thread(mddev->thread);
1056		kfree(plug);
1057		return;
1058	}
1059
1060	/* we aren't scheduling, so we can do the write-out directly. */
1061	bio = bio_list_get(&plug->pending);
1062	bitmap_unplug(mddev->bitmap);
1063	wake_up(&conf->wait_barrier);
1064
1065	while (bio) { /* submit pending writes */
1066		struct bio *next = bio->bi_next;
1067		bio->bi_next = NULL;
1068		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1069		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1070			/* Just ignore it */
1071			bio_endio(bio, 0);
1072		else
1073			generic_make_request(bio);
1074		bio = next;
1075	}
1076	kfree(plug);
1077}
1078
1079static void make_request(struct mddev *mddev, struct bio * bio)
1080{
1081	struct r1conf *conf = mddev->private;
1082	struct raid1_info *mirror;
1083	struct r1bio *r1_bio;
1084	struct bio *read_bio;
1085	int i, disks;
1086	struct bitmap *bitmap;
1087	unsigned long flags;
1088	const int rw = bio_data_dir(bio);
1089	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1090	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1091	const unsigned long do_discard = (bio->bi_rw
1092					  & (REQ_DISCARD | REQ_SECURE));
1093	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1094	struct md_rdev *blocked_rdev;
1095	struct blk_plug_cb *cb;
1096	struct raid1_plug_cb *plug = NULL;
1097	int first_clone;
1098	int sectors_handled;
1099	int max_sectors;
1100	sector_t start_next_window;
1101
1102	/*
1103	 * Register the new request and wait if the reconstruction
1104	 * thread has put up a bar for new requests.
1105	 * Continue immediately if no resync is active currently.
1106	 */
1107
1108	md_write_start(mddev, bio); /* wait on superblock update early */
1109
1110	if (bio_data_dir(bio) == WRITE &&
1111	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1112	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1113	    (mddev_is_clustered(mddev) &&
1114	     md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1115		/* As the suspend_* range is controlled by
1116		 * userspace, we want an interruptible
1117		 * wait.
1118		 */
1119		DEFINE_WAIT(w);
1120		for (;;) {
1121			flush_signals(current);
1122			prepare_to_wait(&conf->wait_barrier,
1123					&w, TASK_INTERRUPTIBLE);
1124			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1125			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1126			    (mddev_is_clustered(mddev) &&
1127			     !md_cluster_ops->area_resyncing(mddev,
1128				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1129				break;
1130			schedule();
1131		}
1132		finish_wait(&conf->wait_barrier, &w);
1133	}
1134
1135	start_next_window = wait_barrier(conf, bio);
1136
1137	bitmap = mddev->bitmap;
1138
1139	/*
1140	 * make_request() can abort the operation when READA is being
1141	 * used and no empty request is available.
1142	 *
1143	 */
1144	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1145
1146	r1_bio->master_bio = bio;
1147	r1_bio->sectors = bio_sectors(bio);
1148	r1_bio->state = 0;
1149	r1_bio->mddev = mddev;
1150	r1_bio->sector = bio->bi_iter.bi_sector;
1151
1152	/* We might need to issue multiple reads to different
1153	 * devices if there are bad blocks around, so we keep
1154	 * track of the number of reads in bio->bi_phys_segments.
1155	 * If this is 0, there is only one r1_bio and no locking
1156	 * will be needed when requests complete.  If it is
1157	 * non-zero, then it is the number of not-completed requests.
1158	 */
1159	bio->bi_phys_segments = 0;
1160	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1161
1162	if (rw == READ) {
1163		/*
1164		 * read balancing logic:
1165		 */
1166		int rdisk;
1167
1168read_again:
1169		rdisk = read_balance(conf, r1_bio, &max_sectors);
1170
1171		if (rdisk < 0) {
1172			/* couldn't find anywhere to read from */
1173			raid_end_bio_io(r1_bio);
1174			return;
1175		}
1176		mirror = conf->mirrors + rdisk;
1177
1178		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1179		    bitmap) {
1180			/* Reading from a write-mostly device must
1181			 * take care not to over-take any writes
1182			 * that are 'behind'
1183			 */
1184			wait_event(bitmap->behind_wait,
1185				   atomic_read(&bitmap->behind_writes) == 0);
1186		}
1187		r1_bio->read_disk = rdisk;
1188		r1_bio->start_next_window = 0;
1189
1190		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192			 max_sectors);
1193
1194		r1_bio->bios[rdisk] = read_bio;
1195
1196		read_bio->bi_iter.bi_sector = r1_bio->sector +
1197			mirror->rdev->data_offset;
1198		read_bio->bi_bdev = mirror->rdev->bdev;
1199		read_bio->bi_end_io = raid1_end_read_request;
1200		read_bio->bi_rw = READ | do_sync;
1201		read_bio->bi_private = r1_bio;
1202
1203		if (max_sectors < r1_bio->sectors) {
1204			/* could not read all from this device, so we will
1205			 * need another r1_bio.
1206			 */
1207
1208			sectors_handled = (r1_bio->sector + max_sectors
1209					   - bio->bi_iter.bi_sector);
1210			r1_bio->sectors = max_sectors;
1211			spin_lock_irq(&conf->device_lock);
1212			if (bio->bi_phys_segments == 0)
1213				bio->bi_phys_segments = 2;
1214			else
1215				bio->bi_phys_segments++;
1216			spin_unlock_irq(&conf->device_lock);
1217			/* Cannot call generic_make_request directly
1218			 * as that will be queued in __make_request
1219			 * and subsequent mempool_alloc might block waiting
1220			 * for it.  So hand bio over to raid1d.
1221			 */
1222			reschedule_retry(r1_bio);
1223
1224			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225
1226			r1_bio->master_bio = bio;
1227			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228			r1_bio->state = 0;
1229			r1_bio->mddev = mddev;
1230			r1_bio->sector = bio->bi_iter.bi_sector +
1231				sectors_handled;
1232			goto read_again;
1233		} else
1234			generic_make_request(read_bio);
1235		return;
1236	}
1237
1238	/*
1239	 * WRITE:
1240	 */
1241	if (conf->pending_count >= max_queued_requests) {
1242		md_wakeup_thread(mddev->thread);
1243		wait_event(conf->wait_barrier,
1244			   conf->pending_count < max_queued_requests);
1245	}
1246	/* first select target devices under rcu_lock and
1247	 * inc refcount on their rdev.  Record them by setting
1248	 * bios[x] to bio
1249	 * If there are known/acknowledged bad blocks on any device on
1250	 * which we have seen a write error, we want to avoid writing those
1251	 * blocks.
1252	 * This potentially requires several writes to write around
1253	 * the bad blocks.  Each set of writes gets it's own r1bio
1254	 * with a set of bios attached.
1255	 */
1256
1257	disks = conf->raid_disks * 2;
1258 retry_write:
1259	r1_bio->start_next_window = start_next_window;
1260	blocked_rdev = NULL;
1261	rcu_read_lock();
1262	max_sectors = r1_bio->sectors;
1263	for (i = 0;  i < disks; i++) {
1264		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266			atomic_inc(&rdev->nr_pending);
1267			blocked_rdev = rdev;
1268			break;
1269		}
1270		r1_bio->bios[i] = NULL;
1271		if (!rdev || test_bit(Faulty, &rdev->flags)
1272		    || test_bit(Unmerged, &rdev->flags)) {
1273			if (i < conf->raid_disks)
1274				set_bit(R1BIO_Degraded, &r1_bio->state);
1275			continue;
1276		}
1277
1278		atomic_inc(&rdev->nr_pending);
1279		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280			sector_t first_bad;
1281			int bad_sectors;
1282			int is_bad;
1283
1284			is_bad = is_badblock(rdev, r1_bio->sector,
1285					     max_sectors,
1286					     &first_bad, &bad_sectors);
1287			if (is_bad < 0) {
1288				/* mustn't write here until the bad block is
1289				 * acknowledged*/
1290				set_bit(BlockedBadBlocks, &rdev->flags);
1291				blocked_rdev = rdev;
1292				break;
1293			}
1294			if (is_bad && first_bad <= r1_bio->sector) {
1295				/* Cannot write here at all */
1296				bad_sectors -= (r1_bio->sector - first_bad);
1297				if (bad_sectors < max_sectors)
1298					/* mustn't write more than bad_sectors
1299					 * to other devices yet
1300					 */
1301					max_sectors = bad_sectors;
1302				rdev_dec_pending(rdev, mddev);
1303				/* We don't set R1BIO_Degraded as that
1304				 * only applies if the disk is
1305				 * missing, so it might be re-added,
1306				 * and we want to know to recover this
1307				 * chunk.
1308				 * In this case the device is here,
1309				 * and the fact that this chunk is not
1310				 * in-sync is recorded in the bad
1311				 * block log
1312				 */
1313				continue;
1314			}
1315			if (is_bad) {
1316				int good_sectors = first_bad - r1_bio->sector;
1317				if (good_sectors < max_sectors)
1318					max_sectors = good_sectors;
1319			}
1320		}
1321		r1_bio->bios[i] = bio;
1322	}
1323	rcu_read_unlock();
1324
1325	if (unlikely(blocked_rdev)) {
1326		/* Wait for this device to become unblocked */
1327		int j;
1328		sector_t old = start_next_window;
1329
1330		for (j = 0; j < i; j++)
1331			if (r1_bio->bios[j])
1332				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333		r1_bio->state = 0;
1334		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336		start_next_window = wait_barrier(conf, bio);
1337		/*
1338		 * We must make sure the multi r1bios of bio have
1339		 * the same value of bi_phys_segments
1340		 */
1341		if (bio->bi_phys_segments && old &&
1342		    old != start_next_window)
1343			/* Wait for the former r1bio(s) to complete */
1344			wait_event(conf->wait_barrier,
1345				   bio->bi_phys_segments == 1);
1346		goto retry_write;
1347	}
1348
1349	if (max_sectors < r1_bio->sectors) {
1350		/* We are splitting this write into multiple parts, so
1351		 * we need to prepare for allocating another r1_bio.
1352		 */
1353		r1_bio->sectors = max_sectors;
1354		spin_lock_irq(&conf->device_lock);
1355		if (bio->bi_phys_segments == 0)
1356			bio->bi_phys_segments = 2;
1357		else
1358			bio->bi_phys_segments++;
1359		spin_unlock_irq(&conf->device_lock);
1360	}
1361	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1362
1363	atomic_set(&r1_bio->remaining, 1);
1364	atomic_set(&r1_bio->behind_remaining, 0);
1365
1366	first_clone = 1;
1367	for (i = 0; i < disks; i++) {
1368		struct bio *mbio;
1369		if (!r1_bio->bios[i])
1370			continue;
1371
1372		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1374
1375		if (first_clone) {
1376			/* do behind I/O ?
1377			 * Not if there are too many, or cannot
1378			 * allocate memory, or a reader on WriteMostly
1379			 * is waiting for behind writes to flush */
1380			if (bitmap &&
1381			    (atomic_read(&bitmap->behind_writes)
1382			     < mddev->bitmap_info.max_write_behind) &&
1383			    !waitqueue_active(&bitmap->behind_wait))
1384				alloc_behind_pages(mbio, r1_bio);
1385
1386			bitmap_startwrite(bitmap, r1_bio->sector,
1387					  r1_bio->sectors,
1388					  test_bit(R1BIO_BehindIO,
1389						   &r1_bio->state));
1390			first_clone = 0;
1391		}
1392		if (r1_bio->behind_bvecs) {
1393			struct bio_vec *bvec;
1394			int j;
1395
1396			/*
1397			 * We trimmed the bio, so _all is legit
1398			 */
1399			bio_for_each_segment_all(bvec, mbio, j)
1400				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402				atomic_inc(&r1_bio->behind_remaining);
1403		}
1404
1405		r1_bio->bios[i] = mbio;
1406
1407		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1408				   conf->mirrors[i].rdev->data_offset);
1409		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410		mbio->bi_end_io	= raid1_end_write_request;
1411		mbio->bi_rw =
1412			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413		mbio->bi_private = r1_bio;
1414
1415		atomic_inc(&r1_bio->remaining);
1416
1417		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418		if (cb)
1419			plug = container_of(cb, struct raid1_plug_cb, cb);
1420		else
1421			plug = NULL;
1422		spin_lock_irqsave(&conf->device_lock, flags);
1423		if (plug) {
1424			bio_list_add(&plug->pending, mbio);
1425			plug->pending_cnt++;
1426		} else {
1427			bio_list_add(&conf->pending_bio_list, mbio);
1428			conf->pending_count++;
1429		}
1430		spin_unlock_irqrestore(&conf->device_lock, flags);
1431		if (!plug)
1432			md_wakeup_thread(mddev->thread);
1433	}
1434	/* Mustn't call r1_bio_write_done before this next test,
1435	 * as it could result in the bio being freed.
1436	 */
1437	if (sectors_handled < bio_sectors(bio)) {
1438		r1_bio_write_done(r1_bio);
1439		/* We need another r1_bio.  It has already been counted
1440		 * in bio->bi_phys_segments
1441		 */
1442		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443		r1_bio->master_bio = bio;
1444		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445		r1_bio->state = 0;
1446		r1_bio->mddev = mddev;
1447		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448		goto retry_write;
1449	}
1450
1451	r1_bio_write_done(r1_bio);
1452
1453	/* In case raid1d snuck in to freeze_array */
1454	wake_up(&conf->wait_barrier);
1455}
1456
1457static void status(struct seq_file *seq, struct mddev *mddev)
1458{
1459	struct r1conf *conf = mddev->private;
1460	int i;
1461
1462	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463		   conf->raid_disks - mddev->degraded);
1464	rcu_read_lock();
1465	for (i = 0; i < conf->raid_disks; i++) {
1466		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467		seq_printf(seq, "%s",
1468			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469	}
1470	rcu_read_unlock();
1471	seq_printf(seq, "]");
1472}
1473
1474static void error(struct mddev *mddev, struct md_rdev *rdev)
1475{
1476	char b[BDEVNAME_SIZE];
1477	struct r1conf *conf = mddev->private;
1478	unsigned long flags;
1479
1480	/*
1481	 * If it is not operational, then we have already marked it as dead
1482	 * else if it is the last working disks, ignore the error, let the
1483	 * next level up know.
1484	 * else mark the drive as failed
1485	 */
1486	if (test_bit(In_sync, &rdev->flags)
1487	    && (conf->raid_disks - mddev->degraded) == 1) {
1488		/*
1489		 * Don't fail the drive, act as though we were just a
1490		 * normal single drive.
1491		 * However don't try a recovery from this drive as
1492		 * it is very likely to fail.
1493		 */
1494		conf->recovery_disabled = mddev->recovery_disabled;
1495		return;
1496	}
1497	set_bit(Blocked, &rdev->flags);
1498	spin_lock_irqsave(&conf->device_lock, flags);
1499	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1500		mddev->degraded++;
1501		set_bit(Faulty, &rdev->flags);
1502	} else
1503		set_bit(Faulty, &rdev->flags);
1504	spin_unlock_irqrestore(&conf->device_lock, flags);
1505	/*
1506	 * if recovery is running, make sure it aborts.
1507	 */
1508	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1509	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1510	printk(KERN_ALERT
1511	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1512	       "md/raid1:%s: Operation continuing on %d devices.\n",
1513	       mdname(mddev), bdevname(rdev->bdev, b),
1514	       mdname(mddev), conf->raid_disks - mddev->degraded);
1515}
1516
1517static void print_conf(struct r1conf *conf)
1518{
1519	int i;
1520
1521	printk(KERN_DEBUG "RAID1 conf printout:\n");
1522	if (!conf) {
1523		printk(KERN_DEBUG "(!conf)\n");
1524		return;
1525	}
1526	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1527		conf->raid_disks);
1528
1529	rcu_read_lock();
1530	for (i = 0; i < conf->raid_disks; i++) {
1531		char b[BDEVNAME_SIZE];
1532		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1533		if (rdev)
1534			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1535			       i, !test_bit(In_sync, &rdev->flags),
1536			       !test_bit(Faulty, &rdev->flags),
1537			       bdevname(rdev->bdev,b));
1538	}
1539	rcu_read_unlock();
1540}
1541
1542static void close_sync(struct r1conf *conf)
1543{
1544	wait_barrier(conf, NULL);
1545	allow_barrier(conf, 0, 0);
1546
1547	mempool_destroy(conf->r1buf_pool);
1548	conf->r1buf_pool = NULL;
1549
1550	spin_lock_irq(&conf->resync_lock);
1551	conf->next_resync = 0;
1552	conf->start_next_window = MaxSector;
1553	conf->current_window_requests +=
1554		conf->next_window_requests;
1555	conf->next_window_requests = 0;
1556	spin_unlock_irq(&conf->resync_lock);
1557}
1558
1559static int raid1_spare_active(struct mddev *mddev)
1560{
1561	int i;
1562	struct r1conf *conf = mddev->private;
1563	int count = 0;
1564	unsigned long flags;
1565
1566	/*
1567	 * Find all failed disks within the RAID1 configuration
1568	 * and mark them readable.
1569	 * Called under mddev lock, so rcu protection not needed.
1570	 * device_lock used to avoid races with raid1_end_read_request
1571	 * which expects 'In_sync' flags and ->degraded to be consistent.
1572	 */
1573	spin_lock_irqsave(&conf->device_lock, flags);
1574	for (i = 0; i < conf->raid_disks; i++) {
1575		struct md_rdev *rdev = conf->mirrors[i].rdev;
1576		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1577		if (repl
1578		    && !test_bit(Candidate, &repl->flags)
1579		    && repl->recovery_offset == MaxSector
1580		    && !test_bit(Faulty, &repl->flags)
1581		    && !test_and_set_bit(In_sync, &repl->flags)) {
1582			/* replacement has just become active */
1583			if (!rdev ||
1584			    !test_and_clear_bit(In_sync, &rdev->flags))
1585				count++;
1586			if (rdev) {
1587				/* Replaced device not technically
1588				 * faulty, but we need to be sure
1589				 * it gets removed and never re-added
1590				 */
1591				set_bit(Faulty, &rdev->flags);
1592				sysfs_notify_dirent_safe(
1593					rdev->sysfs_state);
1594			}
1595		}
1596		if (rdev
1597		    && rdev->recovery_offset == MaxSector
1598		    && !test_bit(Faulty, &rdev->flags)
1599		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1600			count++;
1601			sysfs_notify_dirent_safe(rdev->sysfs_state);
1602		}
1603	}
1604	mddev->degraded -= count;
1605	spin_unlock_irqrestore(&conf->device_lock, flags);
1606
1607	print_conf(conf);
1608	return count;
1609}
1610
1611static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1612{
1613	struct r1conf *conf = mddev->private;
1614	int err = -EEXIST;
1615	int mirror = 0;
1616	struct raid1_info *p;
1617	int first = 0;
1618	int last = conf->raid_disks - 1;
1619	struct request_queue *q = bdev_get_queue(rdev->bdev);
1620
1621	if (mddev->recovery_disabled == conf->recovery_disabled)
1622		return -EBUSY;
1623
1624	if (rdev->raid_disk >= 0)
1625		first = last = rdev->raid_disk;
1626
1627	if (q->merge_bvec_fn) {
1628		set_bit(Unmerged, &rdev->flags);
1629		mddev->merge_check_needed = 1;
1630	}
1631
1632	for (mirror = first; mirror <= last; mirror++) {
1633		p = conf->mirrors+mirror;
1634		if (!p->rdev) {
1635
1636			if (mddev->gendisk)
1637				disk_stack_limits(mddev->gendisk, rdev->bdev,
1638						  rdev->data_offset << 9);
1639
1640			p->head_position = 0;
1641			rdev->raid_disk = mirror;
1642			err = 0;
1643			/* As all devices are equivalent, we don't need a full recovery
1644			 * if this was recently any drive of the array
1645			 */
1646			if (rdev->saved_raid_disk < 0)
1647				conf->fullsync = 1;
1648			rcu_assign_pointer(p->rdev, rdev);
1649			break;
1650		}
1651		if (test_bit(WantReplacement, &p->rdev->flags) &&
1652		    p[conf->raid_disks].rdev == NULL) {
1653			/* Add this device as a replacement */
1654			clear_bit(In_sync, &rdev->flags);
1655			set_bit(Replacement, &rdev->flags);
1656			rdev->raid_disk = mirror;
1657			err = 0;
1658			conf->fullsync = 1;
1659			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1660			break;
1661		}
1662	}
1663	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1664		/* Some requests might not have seen this new
1665		 * merge_bvec_fn.  We must wait for them to complete
1666		 * before merging the device fully.
1667		 * First we make sure any code which has tested
1668		 * our function has submitted the request, then
1669		 * we wait for all outstanding requests to complete.
1670		 */
1671		synchronize_sched();
1672		freeze_array(conf, 0);
1673		unfreeze_array(conf);
1674		clear_bit(Unmerged, &rdev->flags);
1675	}
1676	md_integrity_add_rdev(rdev, mddev);
1677	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1678		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1679	print_conf(conf);
1680	return err;
1681}
1682
1683static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1684{
1685	struct r1conf *conf = mddev->private;
1686	int err = 0;
1687	int number = rdev->raid_disk;
1688	struct raid1_info *p = conf->mirrors + number;
1689
1690	if (rdev != p->rdev)
1691		p = conf->mirrors + conf->raid_disks + number;
1692
1693	print_conf(conf);
1694	if (rdev == p->rdev) {
1695		if (test_bit(In_sync, &rdev->flags) ||
1696		    atomic_read(&rdev->nr_pending)) {
1697			err = -EBUSY;
1698			goto abort;
1699		}
1700		/* Only remove non-faulty devices if recovery
1701		 * is not possible.
1702		 */
1703		if (!test_bit(Faulty, &rdev->flags) &&
1704		    mddev->recovery_disabled != conf->recovery_disabled &&
1705		    mddev->degraded < conf->raid_disks) {
1706			err = -EBUSY;
1707			goto abort;
1708		}
1709		p->rdev = NULL;
1710		synchronize_rcu();
1711		if (atomic_read(&rdev->nr_pending)) {
1712			/* lost the race, try later */
1713			err = -EBUSY;
1714			p->rdev = rdev;
1715			goto abort;
1716		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1717			/* We just removed a device that is being replaced.
1718			 * Move down the replacement.  We drain all IO before
1719			 * doing this to avoid confusion.
1720			 */
1721			struct md_rdev *repl =
1722				conf->mirrors[conf->raid_disks + number].rdev;
1723			freeze_array(conf, 0);
1724			clear_bit(Replacement, &repl->flags);
1725			p->rdev = repl;
1726			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1727			unfreeze_array(conf);
1728			clear_bit(WantReplacement, &rdev->flags);
1729		} else
1730			clear_bit(WantReplacement, &rdev->flags);
1731		err = md_integrity_register(mddev);
1732	}
1733abort:
1734
1735	print_conf(conf);
1736	return err;
1737}
1738
1739static void end_sync_read(struct bio *bio, int error)
1740{
1741	struct r1bio *r1_bio = bio->bi_private;
1742
1743	update_head_pos(r1_bio->read_disk, r1_bio);
1744
1745	/*
1746	 * we have read a block, now it needs to be re-written,
1747	 * or re-read if the read failed.
1748	 * We don't do much here, just schedule handling by raid1d
1749	 */
1750	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1751		set_bit(R1BIO_Uptodate, &r1_bio->state);
1752
1753	if (atomic_dec_and_test(&r1_bio->remaining))
1754		reschedule_retry(r1_bio);
1755}
1756
1757static void end_sync_write(struct bio *bio, int error)
1758{
1759	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1760	struct r1bio *r1_bio = bio->bi_private;
1761	struct mddev *mddev = r1_bio->mddev;
1762	struct r1conf *conf = mddev->private;
1763	int mirror=0;
1764	sector_t first_bad;
1765	int bad_sectors;
1766
1767	mirror = find_bio_disk(r1_bio, bio);
1768
1769	if (!uptodate) {
1770		sector_t sync_blocks = 0;
1771		sector_t s = r1_bio->sector;
1772		long sectors_to_go = r1_bio->sectors;
1773		/* make sure these bits doesn't get cleared. */
1774		do {
1775			bitmap_end_sync(mddev->bitmap, s,
1776					&sync_blocks, 1);
1777			s += sync_blocks;
1778			sectors_to_go -= sync_blocks;
1779		} while (sectors_to_go > 0);
1780		set_bit(WriteErrorSeen,
1781			&conf->mirrors[mirror].rdev->flags);
1782		if (!test_and_set_bit(WantReplacement,
1783				      &conf->mirrors[mirror].rdev->flags))
1784			set_bit(MD_RECOVERY_NEEDED, &
1785				mddev->recovery);
1786		set_bit(R1BIO_WriteError, &r1_bio->state);
1787	} else if (is_badblock(conf->mirrors[mirror].rdev,
1788			       r1_bio->sector,
1789			       r1_bio->sectors,
1790			       &first_bad, &bad_sectors) &&
1791		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1792				r1_bio->sector,
1793				r1_bio->sectors,
1794				&first_bad, &bad_sectors)
1795		)
1796		set_bit(R1BIO_MadeGood, &r1_bio->state);
1797
1798	if (atomic_dec_and_test(&r1_bio->remaining)) {
1799		int s = r1_bio->sectors;
1800		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1801		    test_bit(R1BIO_WriteError, &r1_bio->state))
1802			reschedule_retry(r1_bio);
1803		else {
1804			put_buf(r1_bio);
1805			md_done_sync(mddev, s, uptodate);
1806		}
1807	}
1808}
1809
1810static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1811			    int sectors, struct page *page, int rw)
1812{
1813	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1814		/* success */
1815		return 1;
1816	if (rw == WRITE) {
1817		set_bit(WriteErrorSeen, &rdev->flags);
1818		if (!test_and_set_bit(WantReplacement,
1819				      &rdev->flags))
1820			set_bit(MD_RECOVERY_NEEDED, &
1821				rdev->mddev->recovery);
1822	}
1823	/* need to record an error - either for the block or the device */
1824	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1825		md_error(rdev->mddev, rdev);
1826	return 0;
1827}
1828
1829static int fix_sync_read_error(struct r1bio *r1_bio)
1830{
1831	/* Try some synchronous reads of other devices to get
1832	 * good data, much like with normal read errors.  Only
1833	 * read into the pages we already have so we don't
1834	 * need to re-issue the read request.
1835	 * We don't need to freeze the array, because being in an
1836	 * active sync request, there is no normal IO, and
1837	 * no overlapping syncs.
1838	 * We don't need to check is_badblock() again as we
1839	 * made sure that anything with a bad block in range
1840	 * will have bi_end_io clear.
1841	 */
1842	struct mddev *mddev = r1_bio->mddev;
1843	struct r1conf *conf = mddev->private;
1844	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1845	sector_t sect = r1_bio->sector;
1846	int sectors = r1_bio->sectors;
1847	int idx = 0;
1848
1849	while(sectors) {
1850		int s = sectors;
1851		int d = r1_bio->read_disk;
1852		int success = 0;
1853		struct md_rdev *rdev;
1854		int start;
1855
1856		if (s > (PAGE_SIZE>>9))
1857			s = PAGE_SIZE >> 9;
1858		do {
1859			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1860				/* No rcu protection needed here devices
1861				 * can only be removed when no resync is
1862				 * active, and resync is currently active
1863				 */
1864				rdev = conf->mirrors[d].rdev;
1865				if (sync_page_io(rdev, sect, s<<9,
1866						 bio->bi_io_vec[idx].bv_page,
1867						 READ, false)) {
1868					success = 1;
1869					break;
1870				}
1871			}
1872			d++;
1873			if (d == conf->raid_disks * 2)
1874				d = 0;
1875		} while (!success && d != r1_bio->read_disk);
1876
1877		if (!success) {
1878			char b[BDEVNAME_SIZE];
1879			int abort = 0;
1880			/* Cannot read from anywhere, this block is lost.
1881			 * Record a bad block on each device.  If that doesn't
1882			 * work just disable and interrupt the recovery.
1883			 * Don't fail devices as that won't really help.
1884			 */
1885			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1886			       " for block %llu\n",
1887			       mdname(mddev),
1888			       bdevname(bio->bi_bdev, b),
1889			       (unsigned long long)r1_bio->sector);
1890			for (d = 0; d < conf->raid_disks * 2; d++) {
1891				rdev = conf->mirrors[d].rdev;
1892				if (!rdev || test_bit(Faulty, &rdev->flags))
1893					continue;
1894				if (!rdev_set_badblocks(rdev, sect, s, 0))
1895					abort = 1;
1896			}
1897			if (abort) {
1898				conf->recovery_disabled =
1899					mddev->recovery_disabled;
1900				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1901				md_done_sync(mddev, r1_bio->sectors, 0);
1902				put_buf(r1_bio);
1903				return 0;
1904			}
1905			/* Try next page */
1906			sectors -= s;
1907			sect += s;
1908			idx++;
1909			continue;
1910		}
1911
1912		start = d;
1913		/* write it back and re-read */
1914		while (d != r1_bio->read_disk) {
1915			if (d == 0)
1916				d = conf->raid_disks * 2;
1917			d--;
1918			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919				continue;
1920			rdev = conf->mirrors[d].rdev;
1921			if (r1_sync_page_io(rdev, sect, s,
1922					    bio->bi_io_vec[idx].bv_page,
1923					    WRITE) == 0) {
1924				r1_bio->bios[d]->bi_end_io = NULL;
1925				rdev_dec_pending(rdev, mddev);
1926			}
1927		}
1928		d = start;
1929		while (d != r1_bio->read_disk) {
1930			if (d == 0)
1931				d = conf->raid_disks * 2;
1932			d--;
1933			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1934				continue;
1935			rdev = conf->mirrors[d].rdev;
1936			if (r1_sync_page_io(rdev, sect, s,
1937					    bio->bi_io_vec[idx].bv_page,
1938					    READ) != 0)
1939				atomic_add(s, &rdev->corrected_errors);
1940		}
1941		sectors -= s;
1942		sect += s;
1943		idx ++;
1944	}
1945	set_bit(R1BIO_Uptodate, &r1_bio->state);
1946	set_bit(BIO_UPTODATE, &bio->bi_flags);
1947	return 1;
1948}
1949
1950static void process_checks(struct r1bio *r1_bio)
1951{
1952	/* We have read all readable devices.  If we haven't
1953	 * got the block, then there is no hope left.
1954	 * If we have, then we want to do a comparison
1955	 * and skip the write if everything is the same.
1956	 * If any blocks failed to read, then we need to
1957	 * attempt an over-write
1958	 */
1959	struct mddev *mddev = r1_bio->mddev;
1960	struct r1conf *conf = mddev->private;
1961	int primary;
1962	int i;
1963	int vcnt;
1964
1965	/* Fix variable parts of all bios */
1966	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1967	for (i = 0; i < conf->raid_disks * 2; i++) {
1968		int j;
1969		int size;
1970		int uptodate;
1971		struct bio *b = r1_bio->bios[i];
1972		if (b->bi_end_io != end_sync_read)
1973			continue;
1974		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1975		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1976		bio_reset(b);
1977		if (!uptodate)
1978			clear_bit(BIO_UPTODATE, &b->bi_flags);
1979		b->bi_vcnt = vcnt;
1980		b->bi_iter.bi_size = r1_bio->sectors << 9;
1981		b->bi_iter.bi_sector = r1_bio->sector +
1982			conf->mirrors[i].rdev->data_offset;
1983		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1984		b->bi_end_io = end_sync_read;
1985		b->bi_private = r1_bio;
1986
1987		size = b->bi_iter.bi_size;
1988		for (j = 0; j < vcnt ; j++) {
1989			struct bio_vec *bi;
1990			bi = &b->bi_io_vec[j];
1991			bi->bv_offset = 0;
1992			if (size > PAGE_SIZE)
1993				bi->bv_len = PAGE_SIZE;
1994			else
1995				bi->bv_len = size;
1996			size -= PAGE_SIZE;
1997		}
1998	}
1999	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2000		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2001		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2002			r1_bio->bios[primary]->bi_end_io = NULL;
2003			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2004			break;
2005		}
2006	r1_bio->read_disk = primary;
2007	for (i = 0; i < conf->raid_disks * 2; i++) {
2008		int j;
2009		struct bio *pbio = r1_bio->bios[primary];
2010		struct bio *sbio = r1_bio->bios[i];
2011		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2012
2013		if (sbio->bi_end_io != end_sync_read)
2014			continue;
2015		/* Now we can 'fixup' the BIO_UPTODATE flag */
2016		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2017
2018		if (uptodate) {
2019			for (j = vcnt; j-- ; ) {
2020				struct page *p, *s;
2021				p = pbio->bi_io_vec[j].bv_page;
2022				s = sbio->bi_io_vec[j].bv_page;
2023				if (memcmp(page_address(p),
2024					   page_address(s),
2025					   sbio->bi_io_vec[j].bv_len))
2026					break;
2027			}
2028		} else
2029			j = 0;
2030		if (j >= 0)
2031			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2032		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2033			      && uptodate)) {
2034			/* No need to write to this device. */
2035			sbio->bi_end_io = NULL;
2036			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2037			continue;
2038		}
2039
2040		bio_copy_data(sbio, pbio);
2041	}
2042}
2043
2044static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2045{
2046	struct r1conf *conf = mddev->private;
2047	int i;
2048	int disks = conf->raid_disks * 2;
2049	struct bio *bio, *wbio;
2050
2051	bio = r1_bio->bios[r1_bio->read_disk];
2052
2053	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2054		/* ouch - failed to read all of that. */
2055		if (!fix_sync_read_error(r1_bio))
2056			return;
2057
2058	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2059		process_checks(r1_bio);
2060
2061	/*
2062	 * schedule writes
2063	 */
2064	atomic_set(&r1_bio->remaining, 1);
2065	for (i = 0; i < disks ; i++) {
2066		wbio = r1_bio->bios[i];
2067		if (wbio->bi_end_io == NULL ||
2068		    (wbio->bi_end_io == end_sync_read &&
2069		     (i == r1_bio->read_disk ||
2070		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2071			continue;
2072
2073		wbio->bi_rw = WRITE;
2074		wbio->bi_end_io = end_sync_write;
2075		atomic_inc(&r1_bio->remaining);
2076		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2077
2078		generic_make_request(wbio);
2079	}
2080
2081	if (atomic_dec_and_test(&r1_bio->remaining)) {
2082		/* if we're here, all write(s) have completed, so clean up */
2083		int s = r1_bio->sectors;
2084		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2085		    test_bit(R1BIO_WriteError, &r1_bio->state))
2086			reschedule_retry(r1_bio);
2087		else {
2088			put_buf(r1_bio);
2089			md_done_sync(mddev, s, 1);
2090		}
2091	}
2092}
2093
2094/*
2095 * This is a kernel thread which:
2096 *
2097 *	1.	Retries failed read operations on working mirrors.
2098 *	2.	Updates the raid superblock when problems encounter.
2099 *	3.	Performs writes following reads for array synchronising.
2100 */
2101
2102static void fix_read_error(struct r1conf *conf, int read_disk,
2103			   sector_t sect, int sectors)
2104{
2105	struct mddev *mddev = conf->mddev;
2106	while(sectors) {
2107		int s = sectors;
2108		int d = read_disk;
2109		int success = 0;
2110		int start;
2111		struct md_rdev *rdev;
2112
2113		if (s > (PAGE_SIZE>>9))
2114			s = PAGE_SIZE >> 9;
2115
2116		do {
2117			/* Note: no rcu protection needed here
2118			 * as this is synchronous in the raid1d thread
2119			 * which is the thread that might remove
2120			 * a device.  If raid1d ever becomes multi-threaded....
2121			 */
2122			sector_t first_bad;
2123			int bad_sectors;
2124
2125			rdev = conf->mirrors[d].rdev;
2126			if (rdev &&
2127			    (test_bit(In_sync, &rdev->flags) ||
2128			     (!test_bit(Faulty, &rdev->flags) &&
2129			      rdev->recovery_offset >= sect + s)) &&
2130			    is_badblock(rdev, sect, s,
2131					&first_bad, &bad_sectors) == 0 &&
2132			    sync_page_io(rdev, sect, s<<9,
2133					 conf->tmppage, READ, false))
2134				success = 1;
2135			else {
2136				d++;
2137				if (d == conf->raid_disks * 2)
2138					d = 0;
2139			}
2140		} while (!success && d != read_disk);
2141
2142		if (!success) {
2143			/* Cannot read from anywhere - mark it bad */
2144			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2145			if (!rdev_set_badblocks(rdev, sect, s, 0))
2146				md_error(mddev, rdev);
2147			break;
2148		}
2149		/* write it back and re-read */
2150		start = d;
2151		while (d != read_disk) {
2152			if (d==0)
2153				d = conf->raid_disks * 2;
2154			d--;
2155			rdev = conf->mirrors[d].rdev;
2156			if (rdev &&
2157			    !test_bit(Faulty, &rdev->flags))
2158				r1_sync_page_io(rdev, sect, s,
2159						conf->tmppage, WRITE);
2160		}
2161		d = start;
2162		while (d != read_disk) {
2163			char b[BDEVNAME_SIZE];
2164			if (d==0)
2165				d = conf->raid_disks * 2;
2166			d--;
2167			rdev = conf->mirrors[d].rdev;
2168			if (rdev &&
2169			    !test_bit(Faulty, &rdev->flags)) {
2170				if (r1_sync_page_io(rdev, sect, s,
2171						    conf->tmppage, READ)) {
2172					atomic_add(s, &rdev->corrected_errors);
2173					printk(KERN_INFO
2174					       "md/raid1:%s: read error corrected "
2175					       "(%d sectors at %llu on %s)\n",
2176					       mdname(mddev), s,
2177					       (unsigned long long)(sect +
2178					           rdev->data_offset),
2179					       bdevname(rdev->bdev, b));
2180				}
2181			}
2182		}
2183		sectors -= s;
2184		sect += s;
2185	}
2186}
2187
2188static int narrow_write_error(struct r1bio *r1_bio, int i)
2189{
2190	struct mddev *mddev = r1_bio->mddev;
2191	struct r1conf *conf = mddev->private;
2192	struct md_rdev *rdev = conf->mirrors[i].rdev;
2193
2194	/* bio has the data to be written to device 'i' where
2195	 * we just recently had a write error.
2196	 * We repeatedly clone the bio and trim down to one block,
2197	 * then try the write.  Where the write fails we record
2198	 * a bad block.
2199	 * It is conceivable that the bio doesn't exactly align with
2200	 * blocks.  We must handle this somehow.
2201	 *
2202	 * We currently own a reference on the rdev.
2203	 */
2204
2205	int block_sectors;
2206	sector_t sector;
2207	int sectors;
2208	int sect_to_write = r1_bio->sectors;
2209	int ok = 1;
2210
2211	if (rdev->badblocks.shift < 0)
2212		return 0;
2213
2214	block_sectors = roundup(1 << rdev->badblocks.shift,
2215				bdev_logical_block_size(rdev->bdev) >> 9);
2216	sector = r1_bio->sector;
2217	sectors = ((sector + block_sectors)
2218		   & ~(sector_t)(block_sectors - 1))
2219		- sector;
2220
2221	while (sect_to_write) {
2222		struct bio *wbio;
2223		if (sectors > sect_to_write)
2224			sectors = sect_to_write;
2225		/* Write at 'sector' for 'sectors'*/
2226
2227		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2228			unsigned vcnt = r1_bio->behind_page_count;
2229			struct bio_vec *vec = r1_bio->behind_bvecs;
2230
2231			while (!vec->bv_page) {
2232				vec++;
2233				vcnt--;
2234			}
2235
2236			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2237			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2238
2239			wbio->bi_vcnt = vcnt;
2240		} else {
2241			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2242		}
2243
2244		wbio->bi_rw = WRITE;
2245		wbio->bi_iter.bi_sector = r1_bio->sector;
2246		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2247
2248		bio_trim(wbio, sector - r1_bio->sector, sectors);
2249		wbio->bi_iter.bi_sector += rdev->data_offset;
2250		wbio->bi_bdev = rdev->bdev;
2251		if (submit_bio_wait(WRITE, wbio) < 0)
2252			/* failure! */
2253			ok = rdev_set_badblocks(rdev, sector,
2254						sectors, 0)
2255				&& ok;
2256
2257		bio_put(wbio);
2258		sect_to_write -= sectors;
2259		sector += sectors;
2260		sectors = block_sectors;
2261	}
2262	return ok;
2263}
2264
2265static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2266{
2267	int m;
2268	int s = r1_bio->sectors;
2269	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2270		struct md_rdev *rdev = conf->mirrors[m].rdev;
2271		struct bio *bio = r1_bio->bios[m];
2272		if (bio->bi_end_io == NULL)
2273			continue;
2274		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2276			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2277		}
2278		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2279		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2280			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2281				md_error(conf->mddev, rdev);
2282		}
2283	}
2284	put_buf(r1_bio);
2285	md_done_sync(conf->mddev, s, 1);
2286}
2287
2288static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2289{
2290	int m;
2291	for (m = 0; m < conf->raid_disks * 2 ; m++)
2292		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2293			struct md_rdev *rdev = conf->mirrors[m].rdev;
2294			rdev_clear_badblocks(rdev,
2295					     r1_bio->sector,
2296					     r1_bio->sectors, 0);
2297			rdev_dec_pending(rdev, conf->mddev);
2298		} else if (r1_bio->bios[m] != NULL) {
2299			/* This drive got a write error.  We need to
2300			 * narrow down and record precise write
2301			 * errors.
2302			 */
2303			if (!narrow_write_error(r1_bio, m)) {
2304				md_error(conf->mddev,
2305					 conf->mirrors[m].rdev);
2306				/* an I/O failed, we can't clear the bitmap */
2307				set_bit(R1BIO_Degraded, &r1_bio->state);
2308			}
2309			rdev_dec_pending(conf->mirrors[m].rdev,
2310					 conf->mddev);
2311		}
2312	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2313		close_write(r1_bio);
2314	raid_end_bio_io(r1_bio);
2315}
2316
2317static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2318{
2319	int disk;
2320	int max_sectors;
2321	struct mddev *mddev = conf->mddev;
2322	struct bio *bio;
2323	char b[BDEVNAME_SIZE];
2324	struct md_rdev *rdev;
2325
2326	clear_bit(R1BIO_ReadError, &r1_bio->state);
2327	/* we got a read error. Maybe the drive is bad.  Maybe just
2328	 * the block and we can fix it.
2329	 * We freeze all other IO, and try reading the block from
2330	 * other devices.  When we find one, we re-write
2331	 * and check it that fixes the read error.
2332	 * This is all done synchronously while the array is
2333	 * frozen
2334	 */
2335	if (mddev->ro == 0) {
2336		freeze_array(conf, 1);
2337		fix_read_error(conf, r1_bio->read_disk,
2338			       r1_bio->sector, r1_bio->sectors);
2339		unfreeze_array(conf);
2340	} else
2341		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2342	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2343
2344	bio = r1_bio->bios[r1_bio->read_disk];
2345	bdevname(bio->bi_bdev, b);
2346read_more:
2347	disk = read_balance(conf, r1_bio, &max_sectors);
2348	if (disk == -1) {
2349		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2350		       " read error for block %llu\n",
2351		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2352		raid_end_bio_io(r1_bio);
2353	} else {
2354		const unsigned long do_sync
2355			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2356		if (bio) {
2357			r1_bio->bios[r1_bio->read_disk] =
2358				mddev->ro ? IO_BLOCKED : NULL;
2359			bio_put(bio);
2360		}
2361		r1_bio->read_disk = disk;
2362		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2363		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2364			 max_sectors);
2365		r1_bio->bios[r1_bio->read_disk] = bio;
2366		rdev = conf->mirrors[disk].rdev;
2367		printk_ratelimited(KERN_ERR
2368				   "md/raid1:%s: redirecting sector %llu"
2369				   " to other mirror: %s\n",
2370				   mdname(mddev),
2371				   (unsigned long long)r1_bio->sector,
2372				   bdevname(rdev->bdev, b));
2373		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2374		bio->bi_bdev = rdev->bdev;
2375		bio->bi_end_io = raid1_end_read_request;
2376		bio->bi_rw = READ | do_sync;
2377		bio->bi_private = r1_bio;
2378		if (max_sectors < r1_bio->sectors) {
2379			/* Drat - have to split this up more */
2380			struct bio *mbio = r1_bio->master_bio;
2381			int sectors_handled = (r1_bio->sector + max_sectors
2382					       - mbio->bi_iter.bi_sector);
2383			r1_bio->sectors = max_sectors;
2384			spin_lock_irq(&conf->device_lock);
2385			if (mbio->bi_phys_segments == 0)
2386				mbio->bi_phys_segments = 2;
2387			else
2388				mbio->bi_phys_segments++;
2389			spin_unlock_irq(&conf->device_lock);
2390			generic_make_request(bio);
2391			bio = NULL;
2392
2393			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2394
2395			r1_bio->master_bio = mbio;
2396			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2397			r1_bio->state = 0;
2398			set_bit(R1BIO_ReadError, &r1_bio->state);
2399			r1_bio->mddev = mddev;
2400			r1_bio->sector = mbio->bi_iter.bi_sector +
2401				sectors_handled;
2402
2403			goto read_more;
2404		} else
2405			generic_make_request(bio);
2406	}
2407}
2408
2409static void raid1d(struct md_thread *thread)
2410{
2411	struct mddev *mddev = thread->mddev;
2412	struct r1bio *r1_bio;
2413	unsigned long flags;
2414	struct r1conf *conf = mddev->private;
2415	struct list_head *head = &conf->retry_list;
2416	struct blk_plug plug;
2417
2418	md_check_recovery(mddev);
2419
2420	blk_start_plug(&plug);
2421	for (;;) {
2422
2423		flush_pending_writes(conf);
2424
2425		spin_lock_irqsave(&conf->device_lock, flags);
2426		if (list_empty(head)) {
2427			spin_unlock_irqrestore(&conf->device_lock, flags);
2428			break;
2429		}
2430		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2431		list_del(head->prev);
2432		conf->nr_queued--;
2433		spin_unlock_irqrestore(&conf->device_lock, flags);
2434
2435		mddev = r1_bio->mddev;
2436		conf = mddev->private;
2437		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2438			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439			    test_bit(R1BIO_WriteError, &r1_bio->state))
2440				handle_sync_write_finished(conf, r1_bio);
2441			else
2442				sync_request_write(mddev, r1_bio);
2443		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2444			   test_bit(R1BIO_WriteError, &r1_bio->state))
2445			handle_write_finished(conf, r1_bio);
2446		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2447			handle_read_error(conf, r1_bio);
2448		else
2449			/* just a partial read to be scheduled from separate
2450			 * context
2451			 */
2452			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2453
2454		cond_resched();
2455		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2456			md_check_recovery(mddev);
2457	}
2458	blk_finish_plug(&plug);
2459}
2460
2461static int init_resync(struct r1conf *conf)
2462{
2463	int buffs;
2464
2465	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2466	BUG_ON(conf->r1buf_pool);
2467	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2468					  conf->poolinfo);
2469	if (!conf->r1buf_pool)
2470		return -ENOMEM;
2471	conf->next_resync = 0;
2472	return 0;
2473}
2474
2475/*
2476 * perform a "sync" on one "block"
2477 *
2478 * We need to make sure that no normal I/O request - particularly write
2479 * requests - conflict with active sync requests.
2480 *
2481 * This is achieved by tracking pending requests and a 'barrier' concept
2482 * that can be installed to exclude normal IO requests.
2483 */
2484
2485static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2486{
2487	struct r1conf *conf = mddev->private;
2488	struct r1bio *r1_bio;
2489	struct bio *bio;
2490	sector_t max_sector, nr_sectors;
2491	int disk = -1;
2492	int i;
2493	int wonly = -1;
2494	int write_targets = 0, read_targets = 0;
2495	sector_t sync_blocks;
2496	int still_degraded = 0;
2497	int good_sectors = RESYNC_SECTORS;
2498	int min_bad = 0; /* number of sectors that are bad in all devices */
2499
2500	if (!conf->r1buf_pool)
2501		if (init_resync(conf))
2502			return 0;
2503
2504	max_sector = mddev->dev_sectors;
2505	if (sector_nr >= max_sector) {
2506		/* If we aborted, we need to abort the
2507		 * sync on the 'current' bitmap chunk (there will
2508		 * only be one in raid1 resync.
2509		 * We can find the current addess in mddev->curr_resync
2510		 */
2511		if (mddev->curr_resync < max_sector) /* aborted */
2512			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2513						&sync_blocks, 1);
2514		else /* completed sync */
2515			conf->fullsync = 0;
2516
2517		bitmap_close_sync(mddev->bitmap);
2518		close_sync(conf);
2519		return 0;
2520	}
2521
2522	if (mddev->bitmap == NULL &&
2523	    mddev->recovery_cp == MaxSector &&
2524	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2525	    conf->fullsync == 0) {
2526		*skipped = 1;
2527		return max_sector - sector_nr;
2528	}
2529	/* before building a request, check if we can skip these blocks..
2530	 * This call the bitmap_start_sync doesn't actually record anything
2531	 */
2532	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2533	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2534		/* We can skip this block, and probably several more */
2535		*skipped = 1;
2536		return sync_blocks;
2537	}
2538
2539	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2540	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2541
2542	raise_barrier(conf, sector_nr);
2543
2544	rcu_read_lock();
2545	/*
2546	 * If we get a correctably read error during resync or recovery,
2547	 * we might want to read from a different device.  So we
2548	 * flag all drives that could conceivably be read from for READ,
2549	 * and any others (which will be non-In_sync devices) for WRITE.
2550	 * If a read fails, we try reading from something else for which READ
2551	 * is OK.
2552	 */
2553
2554	r1_bio->mddev = mddev;
2555	r1_bio->sector = sector_nr;
2556	r1_bio->state = 0;
2557	set_bit(R1BIO_IsSync, &r1_bio->state);
2558
2559	for (i = 0; i < conf->raid_disks * 2; i++) {
2560		struct md_rdev *rdev;
2561		bio = r1_bio->bios[i];
2562		bio_reset(bio);
2563
2564		rdev = rcu_dereference(conf->mirrors[i].rdev);
2565		if (rdev == NULL ||
2566		    test_bit(Faulty, &rdev->flags)) {
2567			if (i < conf->raid_disks)
2568				still_degraded = 1;
2569		} else if (!test_bit(In_sync, &rdev->flags)) {
2570			bio->bi_rw = WRITE;
2571			bio->bi_end_io = end_sync_write;
2572			write_targets ++;
2573		} else {
2574			/* may need to read from here */
2575			sector_t first_bad = MaxSector;
2576			int bad_sectors;
2577
2578			if (is_badblock(rdev, sector_nr, good_sectors,
2579					&first_bad, &bad_sectors)) {
2580				if (first_bad > sector_nr)
2581					good_sectors = first_bad - sector_nr;
2582				else {
2583					bad_sectors -= (sector_nr - first_bad);
2584					if (min_bad == 0 ||
2585					    min_bad > bad_sectors)
2586						min_bad = bad_sectors;
2587				}
2588			}
2589			if (sector_nr < first_bad) {
2590				if (test_bit(WriteMostly, &rdev->flags)) {
2591					if (wonly < 0)
2592						wonly = i;
2593				} else {
2594					if (disk < 0)
2595						disk = i;
2596				}
2597				bio->bi_rw = READ;
2598				bio->bi_end_io = end_sync_read;
2599				read_targets++;
2600			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2601				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2602				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2603				/*
2604				 * The device is suitable for reading (InSync),
2605				 * but has bad block(s) here. Let's try to correct them,
2606				 * if we are doing resync or repair. Otherwise, leave
2607				 * this device alone for this sync request.
2608				 */
2609				bio->bi_rw = WRITE;
2610				bio->bi_end_io = end_sync_write;
2611				write_targets++;
2612			}
2613		}
2614		if (bio->bi_end_io) {
2615			atomic_inc(&rdev->nr_pending);
2616			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2617			bio->bi_bdev = rdev->bdev;
2618			bio->bi_private = r1_bio;
2619		}
2620	}
2621	rcu_read_unlock();
2622	if (disk < 0)
2623		disk = wonly;
2624	r1_bio->read_disk = disk;
2625
2626	if (read_targets == 0 && min_bad > 0) {
2627		/* These sectors are bad on all InSync devices, so we
2628		 * need to mark them bad on all write targets
2629		 */
2630		int ok = 1;
2631		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2632			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2633				struct md_rdev *rdev = conf->mirrors[i].rdev;
2634				ok = rdev_set_badblocks(rdev, sector_nr,
2635							min_bad, 0
2636					) && ok;
2637			}
2638		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2639		*skipped = 1;
2640		put_buf(r1_bio);
2641
2642		if (!ok) {
2643			/* Cannot record the badblocks, so need to
2644			 * abort the resync.
2645			 * If there are multiple read targets, could just
2646			 * fail the really bad ones ???
2647			 */
2648			conf->recovery_disabled = mddev->recovery_disabled;
2649			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2650			return 0;
2651		} else
2652			return min_bad;
2653
2654	}
2655	if (min_bad > 0 && min_bad < good_sectors) {
2656		/* only resync enough to reach the next bad->good
2657		 * transition */
2658		good_sectors = min_bad;
2659	}
2660
2661	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2662		/* extra read targets are also write targets */
2663		write_targets += read_targets-1;
2664
2665	if (write_targets == 0 || read_targets == 0) {
2666		/* There is nowhere to write, so all non-sync
2667		 * drives must be failed - so we are finished
2668		 */
2669		sector_t rv;
2670		if (min_bad > 0)
2671			max_sector = sector_nr + min_bad;
2672		rv = max_sector - sector_nr;
2673		*skipped = 1;
2674		put_buf(r1_bio);
2675		return rv;
2676	}
2677
2678	if (max_sector > mddev->resync_max)
2679		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2680	if (max_sector > sector_nr + good_sectors)
2681		max_sector = sector_nr + good_sectors;
2682	nr_sectors = 0;
2683	sync_blocks = 0;
2684	do {
2685		struct page *page;
2686		int len = PAGE_SIZE;
2687		if (sector_nr + (len>>9) > max_sector)
2688			len = (max_sector - sector_nr) << 9;
2689		if (len == 0)
2690			break;
2691		if (sync_blocks == 0) {
2692			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2693					       &sync_blocks, still_degraded) &&
2694			    !conf->fullsync &&
2695			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2696				break;
2697			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2698			if ((len >> 9) > sync_blocks)
2699				len = sync_blocks<<9;
2700		}
2701
2702		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2703			bio = r1_bio->bios[i];
2704			if (bio->bi_end_io) {
2705				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2706				if (bio_add_page(bio, page, len, 0) == 0) {
2707					/* stop here */
2708					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2709					while (i > 0) {
2710						i--;
2711						bio = r1_bio->bios[i];
2712						if (bio->bi_end_io==NULL)
2713							continue;
2714						/* remove last page from this bio */
2715						bio->bi_vcnt--;
2716						bio->bi_iter.bi_size -= len;
2717						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2718					}
2719					goto bio_full;
2720				}
2721			}
2722		}
2723		nr_sectors += len>>9;
2724		sector_nr += len>>9;
2725		sync_blocks -= (len>>9);
2726	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2727 bio_full:
2728	r1_bio->sectors = nr_sectors;
2729
2730	/* For a user-requested sync, we read all readable devices and do a
2731	 * compare
2732	 */
2733	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2734		atomic_set(&r1_bio->remaining, read_targets);
2735		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2736			bio = r1_bio->bios[i];
2737			if (bio->bi_end_io == end_sync_read) {
2738				read_targets--;
2739				md_sync_acct(bio->bi_bdev, nr_sectors);
2740				generic_make_request(bio);
2741			}
2742		}
2743	} else {
2744		atomic_set(&r1_bio->remaining, 1);
2745		bio = r1_bio->bios[r1_bio->read_disk];
2746		md_sync_acct(bio->bi_bdev, nr_sectors);
2747		generic_make_request(bio);
2748
2749	}
2750	return nr_sectors;
2751}
2752
2753static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2754{
2755	if (sectors)
2756		return sectors;
2757
2758	return mddev->dev_sectors;
2759}
2760
2761static struct r1conf *setup_conf(struct mddev *mddev)
2762{
2763	struct r1conf *conf;
2764	int i;
2765	struct raid1_info *disk;
2766	struct md_rdev *rdev;
2767	int err = -ENOMEM;
2768
2769	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2770	if (!conf)
2771		goto abort;
2772
2773	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2774				* mddev->raid_disks * 2,
2775				 GFP_KERNEL);
2776	if (!conf->mirrors)
2777		goto abort;
2778
2779	conf->tmppage = alloc_page(GFP_KERNEL);
2780	if (!conf->tmppage)
2781		goto abort;
2782
2783	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2784	if (!conf->poolinfo)
2785		goto abort;
2786	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2787	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2788					  r1bio_pool_free,
2789					  conf->poolinfo);
2790	if (!conf->r1bio_pool)
2791		goto abort;
2792
2793	conf->poolinfo->mddev = mddev;
2794
2795	err = -EINVAL;
2796	spin_lock_init(&conf->device_lock);
2797	rdev_for_each(rdev, mddev) {
2798		struct request_queue *q;
2799		int disk_idx = rdev->raid_disk;
2800		if (disk_idx >= mddev->raid_disks
2801		    || disk_idx < 0)
2802			continue;
2803		if (test_bit(Replacement, &rdev->flags))
2804			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2805		else
2806			disk = conf->mirrors + disk_idx;
2807
2808		if (disk->rdev)
2809			goto abort;
2810		disk->rdev = rdev;
2811		q = bdev_get_queue(rdev->bdev);
2812		if (q->merge_bvec_fn)
2813			mddev->merge_check_needed = 1;
2814
2815		disk->head_position = 0;
2816		disk->seq_start = MaxSector;
2817	}
2818	conf->raid_disks = mddev->raid_disks;
2819	conf->mddev = mddev;
2820	INIT_LIST_HEAD(&conf->retry_list);
2821
2822	spin_lock_init(&conf->resync_lock);
2823	init_waitqueue_head(&conf->wait_barrier);
2824
2825	bio_list_init(&conf->pending_bio_list);
2826	conf->pending_count = 0;
2827	conf->recovery_disabled = mddev->recovery_disabled - 1;
2828
2829	conf->start_next_window = MaxSector;
2830	conf->current_window_requests = conf->next_window_requests = 0;
2831
2832	err = -EIO;
2833	for (i = 0; i < conf->raid_disks * 2; i++) {
2834
2835		disk = conf->mirrors + i;
2836
2837		if (i < conf->raid_disks &&
2838		    disk[conf->raid_disks].rdev) {
2839			/* This slot has a replacement. */
2840			if (!disk->rdev) {
2841				/* No original, just make the replacement
2842				 * a recovering spare
2843				 */
2844				disk->rdev =
2845					disk[conf->raid_disks].rdev;
2846				disk[conf->raid_disks].rdev = NULL;
2847			} else if (!test_bit(In_sync, &disk->rdev->flags))
2848				/* Original is not in_sync - bad */
2849				goto abort;
2850		}
2851
2852		if (!disk->rdev ||
2853		    !test_bit(In_sync, &disk->rdev->flags)) {
2854			disk->head_position = 0;
2855			if (disk->rdev &&
2856			    (disk->rdev->saved_raid_disk < 0))
2857				conf->fullsync = 1;
2858		}
2859	}
2860
2861	err = -ENOMEM;
2862	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2863	if (!conf->thread) {
2864		printk(KERN_ERR
2865		       "md/raid1:%s: couldn't allocate thread\n",
2866		       mdname(mddev));
2867		goto abort;
2868	}
2869
2870	return conf;
2871
2872 abort:
2873	if (conf) {
2874		if (conf->r1bio_pool)
2875			mempool_destroy(conf->r1bio_pool);
2876		kfree(conf->mirrors);
2877		safe_put_page(conf->tmppage);
2878		kfree(conf->poolinfo);
2879		kfree(conf);
2880	}
2881	return ERR_PTR(err);
2882}
2883
2884static void raid1_free(struct mddev *mddev, void *priv);
2885static int run(struct mddev *mddev)
2886{
2887	struct r1conf *conf;
2888	int i;
2889	struct md_rdev *rdev;
2890	int ret;
2891	bool discard_supported = false;
2892
2893	if (mddev->level != 1) {
2894		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2895		       mdname(mddev), mddev->level);
2896		return -EIO;
2897	}
2898	if (mddev->reshape_position != MaxSector) {
2899		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2900		       mdname(mddev));
2901		return -EIO;
2902	}
2903	/*
2904	 * copy the already verified devices into our private RAID1
2905	 * bookkeeping area. [whatever we allocate in run(),
2906	 * should be freed in raid1_free()]
2907	 */
2908	if (mddev->private == NULL)
2909		conf = setup_conf(mddev);
2910	else
2911		conf = mddev->private;
2912
2913	if (IS_ERR(conf))
2914		return PTR_ERR(conf);
2915
2916	if (mddev->queue)
2917		blk_queue_max_write_same_sectors(mddev->queue, 0);
2918
2919	rdev_for_each(rdev, mddev) {
2920		if (!mddev->gendisk)
2921			continue;
2922		disk_stack_limits(mddev->gendisk, rdev->bdev,
2923				  rdev->data_offset << 9);
2924		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2925			discard_supported = true;
2926	}
2927
2928	mddev->degraded = 0;
2929	for (i=0; i < conf->raid_disks; i++)
2930		if (conf->mirrors[i].rdev == NULL ||
2931		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2932		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2933			mddev->degraded++;
2934
2935	if (conf->raid_disks - mddev->degraded == 1)
2936		mddev->recovery_cp = MaxSector;
2937
2938	if (mddev->recovery_cp != MaxSector)
2939		printk(KERN_NOTICE "md/raid1:%s: not clean"
2940		       " -- starting background reconstruction\n",
2941		       mdname(mddev));
2942	printk(KERN_INFO
2943		"md/raid1:%s: active with %d out of %d mirrors\n",
2944		mdname(mddev), mddev->raid_disks - mddev->degraded,
2945		mddev->raid_disks);
2946
2947	/*
2948	 * Ok, everything is just fine now
2949	 */
2950	mddev->thread = conf->thread;
2951	conf->thread = NULL;
2952	mddev->private = conf;
2953
2954	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2955
2956	if (mddev->queue) {
2957		if (discard_supported)
2958			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2959						mddev->queue);
2960		else
2961			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2962						  mddev->queue);
2963	}
2964
2965	ret =  md_integrity_register(mddev);
2966	if (ret) {
2967		md_unregister_thread(&mddev->thread);
2968		raid1_free(mddev, conf);
2969	}
2970	return ret;
2971}
2972
2973static void raid1_free(struct mddev *mddev, void *priv)
2974{
2975	struct r1conf *conf = priv;
2976
2977	if (conf->r1bio_pool)
2978		mempool_destroy(conf->r1bio_pool);
2979	kfree(conf->mirrors);
2980	safe_put_page(conf->tmppage);
2981	kfree(conf->poolinfo);
2982	kfree(conf);
2983}
2984
2985static int raid1_resize(struct mddev *mddev, sector_t sectors)
2986{
2987	/* no resync is happening, and there is enough space
2988	 * on all devices, so we can resize.
2989	 * We need to make sure resync covers any new space.
2990	 * If the array is shrinking we should possibly wait until
2991	 * any io in the removed space completes, but it hardly seems
2992	 * worth it.
2993	 */
2994	sector_t newsize = raid1_size(mddev, sectors, 0);
2995	if (mddev->external_size &&
2996	    mddev->array_sectors > newsize)
2997		return -EINVAL;
2998	if (mddev->bitmap) {
2999		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3000		if (ret)
3001			return ret;
3002	}
3003	md_set_array_sectors(mddev, newsize);
3004	set_capacity(mddev->gendisk, mddev->array_sectors);
3005	revalidate_disk(mddev->gendisk);
3006	if (sectors > mddev->dev_sectors &&
3007	    mddev->recovery_cp > mddev->dev_sectors) {
3008		mddev->recovery_cp = mddev->dev_sectors;
3009		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3010	}
3011	mddev->dev_sectors = sectors;
3012	mddev->resync_max_sectors = sectors;
3013	return 0;
3014}
3015
3016static int raid1_reshape(struct mddev *mddev)
3017{
3018	/* We need to:
3019	 * 1/ resize the r1bio_pool
3020	 * 2/ resize conf->mirrors
3021	 *
3022	 * We allocate a new r1bio_pool if we can.
3023	 * Then raise a device barrier and wait until all IO stops.
3024	 * Then resize conf->mirrors and swap in the new r1bio pool.
3025	 *
3026	 * At the same time, we "pack" the devices so that all the missing
3027	 * devices have the higher raid_disk numbers.
3028	 */
3029	mempool_t *newpool, *oldpool;
3030	struct pool_info *newpoolinfo;
3031	struct raid1_info *newmirrors;
3032	struct r1conf *conf = mddev->private;
3033	int cnt, raid_disks;
3034	unsigned long flags;
3035	int d, d2, err;
3036
3037	/* Cannot change chunk_size, layout, or level */
3038	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3039	    mddev->layout != mddev->new_layout ||
3040	    mddev->level != mddev->new_level) {
3041		mddev->new_chunk_sectors = mddev->chunk_sectors;
3042		mddev->new_layout = mddev->layout;
3043		mddev->new_level = mddev->level;
3044		return -EINVAL;
3045	}
3046
3047	err = md_allow_write(mddev);
3048	if (err)
3049		return err;
3050
3051	raid_disks = mddev->raid_disks + mddev->delta_disks;
3052
3053	if (raid_disks < conf->raid_disks) {
3054		cnt=0;
3055		for (d= 0; d < conf->raid_disks; d++)
3056			if (conf->mirrors[d].rdev)
3057				cnt++;
3058		if (cnt > raid_disks)
3059			return -EBUSY;
3060	}
3061
3062	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3063	if (!newpoolinfo)
3064		return -ENOMEM;
3065	newpoolinfo->mddev = mddev;
3066	newpoolinfo->raid_disks = raid_disks * 2;
3067
3068	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3069				 r1bio_pool_free, newpoolinfo);
3070	if (!newpool) {
3071		kfree(newpoolinfo);
3072		return -ENOMEM;
3073	}
3074	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3075			     GFP_KERNEL);
3076	if (!newmirrors) {
3077		kfree(newpoolinfo);
3078		mempool_destroy(newpool);
3079		return -ENOMEM;
3080	}
3081
3082	freeze_array(conf, 0);
3083
3084	/* ok, everything is stopped */
3085	oldpool = conf->r1bio_pool;
3086	conf->r1bio_pool = newpool;
3087
3088	for (d = d2 = 0; d < conf->raid_disks; d++) {
3089		struct md_rdev *rdev = conf->mirrors[d].rdev;
3090		if (rdev && rdev->raid_disk != d2) {
3091			sysfs_unlink_rdev(mddev, rdev);
3092			rdev->raid_disk = d2;
3093			sysfs_unlink_rdev(mddev, rdev);
3094			if (sysfs_link_rdev(mddev, rdev))
3095				printk(KERN_WARNING
3096				       "md/raid1:%s: cannot register rd%d\n",
3097				       mdname(mddev), rdev->raid_disk);
3098		}
3099		if (rdev)
3100			newmirrors[d2++].rdev = rdev;
3101	}
3102	kfree(conf->mirrors);
3103	conf->mirrors = newmirrors;
3104	kfree(conf->poolinfo);
3105	conf->poolinfo = newpoolinfo;
3106
3107	spin_lock_irqsave(&conf->device_lock, flags);
3108	mddev->degraded += (raid_disks - conf->raid_disks);
3109	spin_unlock_irqrestore(&conf->device_lock, flags);
3110	conf->raid_disks = mddev->raid_disks = raid_disks;
3111	mddev->delta_disks = 0;
3112
3113	unfreeze_array(conf);
3114
3115	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3116	md_wakeup_thread(mddev->thread);
3117
3118	mempool_destroy(oldpool);
3119	return 0;
3120}
3121
3122static void raid1_quiesce(struct mddev *mddev, int state)
3123{
3124	struct r1conf *conf = mddev->private;
3125
3126	switch(state) {
3127	case 2: /* wake for suspend */
3128		wake_up(&conf->wait_barrier);
3129		break;
3130	case 1:
3131		freeze_array(conf, 0);
3132		break;
3133	case 0:
3134		unfreeze_array(conf);
3135		break;
3136	}
3137}
3138
3139static void *raid1_takeover(struct mddev *mddev)
3140{
3141	/* raid1 can take over:
3142	 *  raid5 with 2 devices, any layout or chunk size
3143	 */
3144	if (mddev->level == 5 && mddev->raid_disks == 2) {
3145		struct r1conf *conf;
3146		mddev->new_level = 1;
3147		mddev->new_layout = 0;
3148		mddev->new_chunk_sectors = 0;
3149		conf = setup_conf(mddev);
3150		if (!IS_ERR(conf))
3151			/* Array must appear to be quiesced */
3152			conf->array_frozen = 1;
3153		return conf;
3154	}
3155	return ERR_PTR(-EINVAL);
3156}
3157
3158static struct md_personality raid1_personality =
3159{
3160	.name		= "raid1",
3161	.level		= 1,
3162	.owner		= THIS_MODULE,
3163	.make_request	= make_request,
3164	.run		= run,
3165	.free		= raid1_free,
3166	.status		= status,
3167	.error_handler	= error,
3168	.hot_add_disk	= raid1_add_disk,
3169	.hot_remove_disk= raid1_remove_disk,
3170	.spare_active	= raid1_spare_active,
3171	.sync_request	= sync_request,
3172	.resize		= raid1_resize,
3173	.size		= raid1_size,
3174	.check_reshape	= raid1_reshape,
3175	.quiesce	= raid1_quiesce,
3176	.takeover	= raid1_takeover,
3177	.congested	= raid1_congested,
3178	.mergeable_bvec	= raid1_mergeable_bvec,
3179};
3180
3181static int __init raid_init(void)
3182{
3183	return register_md_personality(&raid1_personality);
3184}
3185
3186static void raid_exit(void)
3187{
3188	unregister_md_personality(&raid1_personality);
3189}
3190
3191module_init(raid_init);
3192module_exit(raid_exit);
3193MODULE_LICENSE("GPL");
3194MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3195MODULE_ALIAS("md-personality-3"); /* RAID1 */
3196MODULE_ALIAS("md-raid1");
3197MODULE_ALIAS("md-level-1");
3198
3199module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3200