1/* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34#include <linux/slab.h> 35#include <linux/delay.h> 36#include <linux/blkdev.h> 37#include <linux/module.h> 38#include <linux/seq_file.h> 39#include <linux/ratelimit.h> 40#include "md.h" 41#include "raid1.h" 42#include "bitmap.h" 43 44/* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47#define NR_RAID1_BIOS 256 48 49/* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54#define IO_BLOCKED ((struct bio *)1) 55/* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59#define IO_MADE_GOOD ((struct bio *)2) 60 61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63/* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67static int max_queued_requests = 1024; 68 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 70 sector_t bi_sector); 71static void lower_barrier(struct r1conf *conf); 72 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 74{ 75 struct pool_info *pi = data; 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 77 78 /* allocate a r1bio with room for raid_disks entries in the bios array */ 79 return kzalloc(size, gfp_flags); 80} 81 82static void r1bio_pool_free(void *r1_bio, void *data) 83{ 84 kfree(r1_bio); 85} 86 87#define RESYNC_BLOCK_SIZE (64*1024) 88#define RESYNC_DEPTH 32 89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 94 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 96{ 97 struct pool_info *pi = data; 98 struct r1bio *r1_bio; 99 struct bio *bio; 100 int need_pages; 101 int i, j; 102 103 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 104 if (!r1_bio) 105 return NULL; 106 107 /* 108 * Allocate bios : 1 for reading, n-1 for writing 109 */ 110 for (j = pi->raid_disks ; j-- ; ) { 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 112 if (!bio) 113 goto out_free_bio; 114 r1_bio->bios[j] = bio; 115 } 116 /* 117 * Allocate RESYNC_PAGES data pages and attach them to 118 * the first bio. 119 * If this is a user-requested check/repair, allocate 120 * RESYNC_PAGES for each bio. 121 */ 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 123 need_pages = pi->raid_disks; 124 else 125 need_pages = 1; 126 for (j = 0; j < need_pages; j++) { 127 bio = r1_bio->bios[j]; 128 bio->bi_vcnt = RESYNC_PAGES; 129 130 if (bio_alloc_pages(bio, gfp_flags)) 131 goto out_free_pages; 132 } 133 /* If not user-requests, copy the page pointers to all bios */ 134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 135 for (i=0; i<RESYNC_PAGES ; i++) 136 for (j=1; j<pi->raid_disks; j++) 137 r1_bio->bios[j]->bi_io_vec[i].bv_page = 138 r1_bio->bios[0]->bi_io_vec[i].bv_page; 139 } 140 141 r1_bio->master_bio = NULL; 142 143 return r1_bio; 144 145out_free_pages: 146 while (--j >= 0) { 147 struct bio_vec *bv; 148 149 bio_for_each_segment_all(bv, r1_bio->bios[j], i) 150 __free_page(bv->bv_page); 151 } 152 153out_free_bio: 154 while (++j < pi->raid_disks) 155 bio_put(r1_bio->bios[j]); 156 r1bio_pool_free(r1_bio, data); 157 return NULL; 158} 159 160static void r1buf_pool_free(void *__r1_bio, void *data) 161{ 162 struct pool_info *pi = data; 163 int i,j; 164 struct r1bio *r1bio = __r1_bio; 165 166 for (i = 0; i < RESYNC_PAGES; i++) 167 for (j = pi->raid_disks; j-- ;) { 168 if (j == 0 || 169 r1bio->bios[j]->bi_io_vec[i].bv_page != 170 r1bio->bios[0]->bi_io_vec[i].bv_page) 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 172 } 173 for (i=0 ; i < pi->raid_disks; i++) 174 bio_put(r1bio->bios[i]); 175 176 r1bio_pool_free(r1bio, data); 177} 178 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 180{ 181 int i; 182 183 for (i = 0; i < conf->raid_disks * 2; i++) { 184 struct bio **bio = r1_bio->bios + i; 185 if (!BIO_SPECIAL(*bio)) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189} 190 191static void free_r1bio(struct r1bio *r1_bio) 192{ 193 struct r1conf *conf = r1_bio->mddev->private; 194 195 put_all_bios(conf, r1_bio); 196 mempool_free(r1_bio, conf->r1bio_pool); 197} 198 199static void put_buf(struct r1bio *r1_bio) 200{ 201 struct r1conf *conf = r1_bio->mddev->private; 202 int i; 203 204 for (i = 0; i < conf->raid_disks * 2; i++) { 205 struct bio *bio = r1_bio->bios[i]; 206 if (bio->bi_end_io) 207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 208 } 209 210 mempool_free(r1_bio, conf->r1buf_pool); 211 212 lower_barrier(conf); 213} 214 215static void reschedule_retry(struct r1bio *r1_bio) 216{ 217 unsigned long flags; 218 struct mddev *mddev = r1_bio->mddev; 219 struct r1conf *conf = mddev->private; 220 221 spin_lock_irqsave(&conf->device_lock, flags); 222 list_add(&r1_bio->retry_list, &conf->retry_list); 223 conf->nr_queued ++; 224 spin_unlock_irqrestore(&conf->device_lock, flags); 225 226 wake_up(&conf->wait_barrier); 227 md_wakeup_thread(mddev->thread); 228} 229 230/* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235static void call_bio_endio(struct r1bio *r1_bio) 236{ 237 struct bio *bio = r1_bio->master_bio; 238 int done; 239 struct r1conf *conf = r1_bio->mddev->private; 240 sector_t start_next_window = r1_bio->start_next_window; 241 sector_t bi_sector = bio->bi_iter.bi_sector; 242 243 if (bio->bi_phys_segments) { 244 unsigned long flags; 245 spin_lock_irqsave(&conf->device_lock, flags); 246 bio->bi_phys_segments--; 247 done = (bio->bi_phys_segments == 0); 248 spin_unlock_irqrestore(&conf->device_lock, flags); 249 /* 250 * make_request() might be waiting for 251 * bi_phys_segments to decrease 252 */ 253 wake_up(&conf->wait_barrier); 254 } else 255 done = 1; 256 257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 258 clear_bit(BIO_UPTODATE, &bio->bi_flags); 259 if (done) { 260 bio_endio(bio, 0); 261 /* 262 * Wake up any possible resync thread that waits for the device 263 * to go idle. 264 */ 265 allow_barrier(conf, start_next_window, bi_sector); 266 } 267} 268 269static void raid_end_bio_io(struct r1bio *r1_bio) 270{ 271 struct bio *bio = r1_bio->master_bio; 272 273 /* if nobody has done the final endio yet, do it now */ 274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 276 (bio_data_dir(bio) == WRITE) ? "write" : "read", 277 (unsigned long long) bio->bi_iter.bi_sector, 278 (unsigned long long) bio_end_sector(bio) - 1); 279 280 call_bio_endio(r1_bio); 281 } 282 free_r1bio(r1_bio); 283} 284 285/* 286 * Update disk head position estimator based on IRQ completion info. 287 */ 288static inline void update_head_pos(int disk, struct r1bio *r1_bio) 289{ 290 struct r1conf *conf = r1_bio->mddev->private; 291 292 conf->mirrors[disk].head_position = 293 r1_bio->sector + (r1_bio->sectors); 294} 295 296/* 297 * Find the disk number which triggered given bio 298 */ 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 300{ 301 int mirror; 302 struct r1conf *conf = r1_bio->mddev->private; 303 int raid_disks = conf->raid_disks; 304 305 for (mirror = 0; mirror < raid_disks * 2; mirror++) 306 if (r1_bio->bios[mirror] == bio) 307 break; 308 309 BUG_ON(mirror == raid_disks * 2); 310 update_head_pos(mirror, r1_bio); 311 312 return mirror; 313} 314 315static void raid1_end_read_request(struct bio *bio, int error) 316{ 317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 318 struct r1bio *r1_bio = bio->bi_private; 319 int mirror; 320 struct r1conf *conf = r1_bio->mddev->private; 321 322 mirror = r1_bio->read_disk; 323 /* 324 * this branch is our 'one mirror IO has finished' event handler: 325 */ 326 update_head_pos(mirror, r1_bio); 327 328 if (uptodate) 329 set_bit(R1BIO_Uptodate, &r1_bio->state); 330 else { 331 /* If all other devices have failed, we want to return 332 * the error upwards rather than fail the last device. 333 * Here we redefine "uptodate" to mean "Don't want to retry" 334 */ 335 unsigned long flags; 336 spin_lock_irqsave(&conf->device_lock, flags); 337 if (r1_bio->mddev->degraded == conf->raid_disks || 338 (r1_bio->mddev->degraded == conf->raid_disks-1 && 339 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags))) 340 uptodate = 1; 341 spin_unlock_irqrestore(&conf->device_lock, flags); 342 } 343 344 if (uptodate) { 345 raid_end_bio_io(r1_bio); 346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 347 } else { 348 /* 349 * oops, read error: 350 */ 351 char b[BDEVNAME_SIZE]; 352 printk_ratelimited( 353 KERN_ERR "md/raid1:%s: %s: " 354 "rescheduling sector %llu\n", 355 mdname(conf->mddev), 356 bdevname(conf->mirrors[mirror].rdev->bdev, 357 b), 358 (unsigned long long)r1_bio->sector); 359 set_bit(R1BIO_ReadError, &r1_bio->state); 360 reschedule_retry(r1_bio); 361 /* don't drop the reference on read_disk yet */ 362 } 363} 364 365static void close_write(struct r1bio *r1_bio) 366{ 367 /* it really is the end of this request */ 368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 369 /* free extra copy of the data pages */ 370 int i = r1_bio->behind_page_count; 371 while (i--) 372 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 373 kfree(r1_bio->behind_bvecs); 374 r1_bio->behind_bvecs = NULL; 375 } 376 /* clear the bitmap if all writes complete successfully */ 377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 378 r1_bio->sectors, 379 !test_bit(R1BIO_Degraded, &r1_bio->state), 380 test_bit(R1BIO_BehindIO, &r1_bio->state)); 381 md_write_end(r1_bio->mddev); 382} 383 384static void r1_bio_write_done(struct r1bio *r1_bio) 385{ 386 if (!atomic_dec_and_test(&r1_bio->remaining)) 387 return; 388 389 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 390 reschedule_retry(r1_bio); 391 else { 392 close_write(r1_bio); 393 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 394 reschedule_retry(r1_bio); 395 else 396 raid_end_bio_io(r1_bio); 397 } 398} 399 400static void raid1_end_write_request(struct bio *bio, int error) 401{ 402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 403 struct r1bio *r1_bio = bio->bi_private; 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 405 struct r1conf *conf = r1_bio->mddev->private; 406 struct bio *to_put = NULL; 407 408 mirror = find_bio_disk(r1_bio, bio); 409 410 /* 411 * 'one mirror IO has finished' event handler: 412 */ 413 if (!uptodate) { 414 set_bit(WriteErrorSeen, 415 &conf->mirrors[mirror].rdev->flags); 416 if (!test_and_set_bit(WantReplacement, 417 &conf->mirrors[mirror].rdev->flags)) 418 set_bit(MD_RECOVERY_NEEDED, & 419 conf->mddev->recovery); 420 421 set_bit(R1BIO_WriteError, &r1_bio->state); 422 } else { 423 /* 424 * Set R1BIO_Uptodate in our master bio, so that we 425 * will return a good error code for to the higher 426 * levels even if IO on some other mirrored buffer 427 * fails. 428 * 429 * The 'master' represents the composite IO operation 430 * to user-side. So if something waits for IO, then it 431 * will wait for the 'master' bio. 432 */ 433 sector_t first_bad; 434 int bad_sectors; 435 436 r1_bio->bios[mirror] = NULL; 437 to_put = bio; 438 /* 439 * Do not set R1BIO_Uptodate if the current device is 440 * rebuilding or Faulty. This is because we cannot use 441 * such device for properly reading the data back (we could 442 * potentially use it, if the current write would have felt 443 * before rdev->recovery_offset, but for simplicity we don't 444 * check this here. 445 */ 446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && 447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) 448 set_bit(R1BIO_Uptodate, &r1_bio->state); 449 450 /* Maybe we can clear some bad blocks. */ 451 if (is_badblock(conf->mirrors[mirror].rdev, 452 r1_bio->sector, r1_bio->sectors, 453 &first_bad, &bad_sectors)) { 454 r1_bio->bios[mirror] = IO_MADE_GOOD; 455 set_bit(R1BIO_MadeGood, &r1_bio->state); 456 } 457 } 458 459 if (behind) { 460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 461 atomic_dec(&r1_bio->behind_remaining); 462 463 /* 464 * In behind mode, we ACK the master bio once the I/O 465 * has safely reached all non-writemostly 466 * disks. Setting the Returned bit ensures that this 467 * gets done only once -- we don't ever want to return 468 * -EIO here, instead we'll wait 469 */ 470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 471 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 472 /* Maybe we can return now */ 473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 474 struct bio *mbio = r1_bio->master_bio; 475 pr_debug("raid1: behind end write sectors" 476 " %llu-%llu\n", 477 (unsigned long long) mbio->bi_iter.bi_sector, 478 (unsigned long long) bio_end_sector(mbio) - 1); 479 call_bio_endio(r1_bio); 480 } 481 } 482 } 483 if (r1_bio->bios[mirror] == NULL) 484 rdev_dec_pending(conf->mirrors[mirror].rdev, 485 conf->mddev); 486 487 /* 488 * Let's see if all mirrored write operations have finished 489 * already. 490 */ 491 r1_bio_write_done(r1_bio); 492 493 if (to_put) 494 bio_put(to_put); 495} 496 497/* 498 * This routine returns the disk from which the requested read should 499 * be done. There is a per-array 'next expected sequential IO' sector 500 * number - if this matches on the next IO then we use the last disk. 501 * There is also a per-disk 'last know head position' sector that is 502 * maintained from IRQ contexts, both the normal and the resync IO 503 * completion handlers update this position correctly. If there is no 504 * perfect sequential match then we pick the disk whose head is closest. 505 * 506 * If there are 2 mirrors in the same 2 devices, performance degrades 507 * because position is mirror, not device based. 508 * 509 * The rdev for the device selected will have nr_pending incremented. 510 */ 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 512{ 513 const sector_t this_sector = r1_bio->sector; 514 int sectors; 515 int best_good_sectors; 516 int best_disk, best_dist_disk, best_pending_disk; 517 int has_nonrot_disk; 518 int disk; 519 sector_t best_dist; 520 unsigned int min_pending; 521 struct md_rdev *rdev; 522 int choose_first; 523 int choose_next_idle; 524 525 rcu_read_lock(); 526 /* 527 * Check if we can balance. We can balance on the whole 528 * device if no resync is going on, or below the resync window. 529 * We take the first readable disk when above the resync window. 530 */ 531 retry: 532 sectors = r1_bio->sectors; 533 best_disk = -1; 534 best_dist_disk = -1; 535 best_dist = MaxSector; 536 best_pending_disk = -1; 537 min_pending = UINT_MAX; 538 best_good_sectors = 0; 539 has_nonrot_disk = 0; 540 choose_next_idle = 0; 541 542 if ((conf->mddev->recovery_cp < this_sector + sectors) || 543 (mddev_is_clustered(conf->mddev) && 544 md_cluster_ops->area_resyncing(conf->mddev, this_sector, 545 this_sector + sectors))) 546 choose_first = 1; 547 else 548 choose_first = 0; 549 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 551 sector_t dist; 552 sector_t first_bad; 553 int bad_sectors; 554 unsigned int pending; 555 bool nonrot; 556 557 rdev = rcu_dereference(conf->mirrors[disk].rdev); 558 if (r1_bio->bios[disk] == IO_BLOCKED 559 || rdev == NULL 560 || test_bit(Unmerged, &rdev->flags) 561 || test_bit(Faulty, &rdev->flags)) 562 continue; 563 if (!test_bit(In_sync, &rdev->flags) && 564 rdev->recovery_offset < this_sector + sectors) 565 continue; 566 if (test_bit(WriteMostly, &rdev->flags)) { 567 /* Don't balance among write-mostly, just 568 * use the first as a last resort */ 569 if (best_dist_disk < 0) { 570 if (is_badblock(rdev, this_sector, sectors, 571 &first_bad, &bad_sectors)) { 572 if (first_bad < this_sector) 573 /* Cannot use this */ 574 continue; 575 best_good_sectors = first_bad - this_sector; 576 } else 577 best_good_sectors = sectors; 578 best_dist_disk = disk; 579 best_pending_disk = disk; 580 } 581 continue; 582 } 583 /* This is a reasonable device to use. It might 584 * even be best. 585 */ 586 if (is_badblock(rdev, this_sector, sectors, 587 &first_bad, &bad_sectors)) { 588 if (best_dist < MaxSector) 589 /* already have a better device */ 590 continue; 591 if (first_bad <= this_sector) { 592 /* cannot read here. If this is the 'primary' 593 * device, then we must not read beyond 594 * bad_sectors from another device.. 595 */ 596 bad_sectors -= (this_sector - first_bad); 597 if (choose_first && sectors > bad_sectors) 598 sectors = bad_sectors; 599 if (best_good_sectors > sectors) 600 best_good_sectors = sectors; 601 602 } else { 603 sector_t good_sectors = first_bad - this_sector; 604 if (good_sectors > best_good_sectors) { 605 best_good_sectors = good_sectors; 606 best_disk = disk; 607 } 608 if (choose_first) 609 break; 610 } 611 continue; 612 } else 613 best_good_sectors = sectors; 614 615 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 616 has_nonrot_disk |= nonrot; 617 pending = atomic_read(&rdev->nr_pending); 618 dist = abs(this_sector - conf->mirrors[disk].head_position); 619 if (choose_first) { 620 best_disk = disk; 621 break; 622 } 623 /* Don't change to another disk for sequential reads */ 624 if (conf->mirrors[disk].next_seq_sect == this_sector 625 || dist == 0) { 626 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 627 struct raid1_info *mirror = &conf->mirrors[disk]; 628 629 best_disk = disk; 630 /* 631 * If buffered sequential IO size exceeds optimal 632 * iosize, check if there is idle disk. If yes, choose 633 * the idle disk. read_balance could already choose an 634 * idle disk before noticing it's a sequential IO in 635 * this disk. This doesn't matter because this disk 636 * will idle, next time it will be utilized after the 637 * first disk has IO size exceeds optimal iosize. In 638 * this way, iosize of the first disk will be optimal 639 * iosize at least. iosize of the second disk might be 640 * small, but not a big deal since when the second disk 641 * starts IO, the first disk is likely still busy. 642 */ 643 if (nonrot && opt_iosize > 0 && 644 mirror->seq_start != MaxSector && 645 mirror->next_seq_sect > opt_iosize && 646 mirror->next_seq_sect - opt_iosize >= 647 mirror->seq_start) { 648 choose_next_idle = 1; 649 continue; 650 } 651 break; 652 } 653 /* If device is idle, use it */ 654 if (pending == 0) { 655 best_disk = disk; 656 break; 657 } 658 659 if (choose_next_idle) 660 continue; 661 662 if (min_pending > pending) { 663 min_pending = pending; 664 best_pending_disk = disk; 665 } 666 667 if (dist < best_dist) { 668 best_dist = dist; 669 best_dist_disk = disk; 670 } 671 } 672 673 /* 674 * If all disks are rotational, choose the closest disk. If any disk is 675 * non-rotational, choose the disk with less pending request even the 676 * disk is rotational, which might/might not be optimal for raids with 677 * mixed ratation/non-rotational disks depending on workload. 678 */ 679 if (best_disk == -1) { 680 if (has_nonrot_disk) 681 best_disk = best_pending_disk; 682 else 683 best_disk = best_dist_disk; 684 } 685 686 if (best_disk >= 0) { 687 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 688 if (!rdev) 689 goto retry; 690 atomic_inc(&rdev->nr_pending); 691 if (test_bit(Faulty, &rdev->flags)) { 692 /* cannot risk returning a device that failed 693 * before we inc'ed nr_pending 694 */ 695 rdev_dec_pending(rdev, conf->mddev); 696 goto retry; 697 } 698 sectors = best_good_sectors; 699 700 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 701 conf->mirrors[best_disk].seq_start = this_sector; 702 703 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 704 } 705 rcu_read_unlock(); 706 *max_sectors = sectors; 707 708 return best_disk; 709} 710 711static int raid1_mergeable_bvec(struct mddev *mddev, 712 struct bvec_merge_data *bvm, 713 struct bio_vec *biovec) 714{ 715 struct r1conf *conf = mddev->private; 716 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 717 int max = biovec->bv_len; 718 719 if (mddev->merge_check_needed) { 720 int disk; 721 rcu_read_lock(); 722 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 723 struct md_rdev *rdev = rcu_dereference( 724 conf->mirrors[disk].rdev); 725 if (rdev && !test_bit(Faulty, &rdev->flags)) { 726 struct request_queue *q = 727 bdev_get_queue(rdev->bdev); 728 if (q->merge_bvec_fn) { 729 bvm->bi_sector = sector + 730 rdev->data_offset; 731 bvm->bi_bdev = rdev->bdev; 732 max = min(max, q->merge_bvec_fn( 733 q, bvm, biovec)); 734 } 735 } 736 } 737 rcu_read_unlock(); 738 } 739 return max; 740 741} 742 743static int raid1_congested(struct mddev *mddev, int bits) 744{ 745 struct r1conf *conf = mddev->private; 746 int i, ret = 0; 747 748 if ((bits & (1 << BDI_async_congested)) && 749 conf->pending_count >= max_queued_requests) 750 return 1; 751 752 rcu_read_lock(); 753 for (i = 0; i < conf->raid_disks * 2; i++) { 754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 755 if (rdev && !test_bit(Faulty, &rdev->flags)) { 756 struct request_queue *q = bdev_get_queue(rdev->bdev); 757 758 BUG_ON(!q); 759 760 /* Note the '|| 1' - when read_balance prefers 761 * non-congested targets, it can be removed 762 */ 763 if ((bits & (1<<BDI_async_congested)) || 1) 764 ret |= bdi_congested(&q->backing_dev_info, bits); 765 else 766 ret &= bdi_congested(&q->backing_dev_info, bits); 767 } 768 } 769 rcu_read_unlock(); 770 return ret; 771} 772 773static void flush_pending_writes(struct r1conf *conf) 774{ 775 /* Any writes that have been queued but are awaiting 776 * bitmap updates get flushed here. 777 */ 778 spin_lock_irq(&conf->device_lock); 779 780 if (conf->pending_bio_list.head) { 781 struct bio *bio; 782 bio = bio_list_get(&conf->pending_bio_list); 783 conf->pending_count = 0; 784 spin_unlock_irq(&conf->device_lock); 785 /* flush any pending bitmap writes to 786 * disk before proceeding w/ I/O */ 787 bitmap_unplug(conf->mddev->bitmap); 788 wake_up(&conf->wait_barrier); 789 790 while (bio) { /* submit pending writes */ 791 struct bio *next = bio->bi_next; 792 bio->bi_next = NULL; 793 if (unlikely((bio->bi_rw & REQ_DISCARD) && 794 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 795 /* Just ignore it */ 796 bio_endio(bio, 0); 797 else 798 generic_make_request(bio); 799 bio = next; 800 } 801 } else 802 spin_unlock_irq(&conf->device_lock); 803} 804 805/* Barriers.... 806 * Sometimes we need to suspend IO while we do something else, 807 * either some resync/recovery, or reconfigure the array. 808 * To do this we raise a 'barrier'. 809 * The 'barrier' is a counter that can be raised multiple times 810 * to count how many activities are happening which preclude 811 * normal IO. 812 * We can only raise the barrier if there is no pending IO. 813 * i.e. if nr_pending == 0. 814 * We choose only to raise the barrier if no-one is waiting for the 815 * barrier to go down. This means that as soon as an IO request 816 * is ready, no other operations which require a barrier will start 817 * until the IO request has had a chance. 818 * 819 * So: regular IO calls 'wait_barrier'. When that returns there 820 * is no backgroup IO happening, It must arrange to call 821 * allow_barrier when it has finished its IO. 822 * backgroup IO calls must call raise_barrier. Once that returns 823 * there is no normal IO happeing. It must arrange to call 824 * lower_barrier when the particular background IO completes. 825 */ 826static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 827{ 828 spin_lock_irq(&conf->resync_lock); 829 830 /* Wait until no block IO is waiting */ 831 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 832 conf->resync_lock); 833 834 /* block any new IO from starting */ 835 conf->barrier++; 836 conf->next_resync = sector_nr; 837 838 /* For these conditions we must wait: 839 * A: while the array is in frozen state 840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 841 * the max count which allowed. 842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 843 * next resync will reach to the window which normal bios are 844 * handling. 845 * D: while there are any active requests in the current window. 846 */ 847 wait_event_lock_irq(conf->wait_barrier, 848 !conf->array_frozen && 849 conf->barrier < RESYNC_DEPTH && 850 conf->current_window_requests == 0 && 851 (conf->start_next_window >= 852 conf->next_resync + RESYNC_SECTORS), 853 conf->resync_lock); 854 855 conf->nr_pending++; 856 spin_unlock_irq(&conf->resync_lock); 857} 858 859static void lower_barrier(struct r1conf *conf) 860{ 861 unsigned long flags; 862 BUG_ON(conf->barrier <= 0); 863 spin_lock_irqsave(&conf->resync_lock, flags); 864 conf->barrier--; 865 conf->nr_pending--; 866 spin_unlock_irqrestore(&conf->resync_lock, flags); 867 wake_up(&conf->wait_barrier); 868} 869 870static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 871{ 872 bool wait = false; 873 874 if (conf->array_frozen || !bio) 875 wait = true; 876 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 877 if ((conf->mddev->curr_resync_completed 878 >= bio_end_sector(bio)) || 879 (conf->next_resync + NEXT_NORMALIO_DISTANCE 880 <= bio->bi_iter.bi_sector)) 881 wait = false; 882 else 883 wait = true; 884 } 885 886 return wait; 887} 888 889static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 890{ 891 sector_t sector = 0; 892 893 spin_lock_irq(&conf->resync_lock); 894 if (need_to_wait_for_sync(conf, bio)) { 895 conf->nr_waiting++; 896 /* Wait for the barrier to drop. 897 * However if there are already pending 898 * requests (preventing the barrier from 899 * rising completely), and the 900 * per-process bio queue isn't empty, 901 * then don't wait, as we need to empty 902 * that queue to allow conf->start_next_window 903 * to increase. 904 */ 905 wait_event_lock_irq(conf->wait_barrier, 906 !conf->array_frozen && 907 (!conf->barrier || 908 ((conf->start_next_window < 909 conf->next_resync + RESYNC_SECTORS) && 910 current->bio_list && 911 !bio_list_empty(current->bio_list))), 912 conf->resync_lock); 913 conf->nr_waiting--; 914 } 915 916 if (bio && bio_data_dir(bio) == WRITE) { 917 if (bio->bi_iter.bi_sector >= 918 conf->mddev->curr_resync_completed) { 919 if (conf->start_next_window == MaxSector) 920 conf->start_next_window = 921 conf->next_resync + 922 NEXT_NORMALIO_DISTANCE; 923 924 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 925 <= bio->bi_iter.bi_sector) 926 conf->next_window_requests++; 927 else 928 conf->current_window_requests++; 929 sector = conf->start_next_window; 930 } 931 } 932 933 conf->nr_pending++; 934 spin_unlock_irq(&conf->resync_lock); 935 return sector; 936} 937 938static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 939 sector_t bi_sector) 940{ 941 unsigned long flags; 942 943 spin_lock_irqsave(&conf->resync_lock, flags); 944 conf->nr_pending--; 945 if (start_next_window) { 946 if (start_next_window == conf->start_next_window) { 947 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 948 <= bi_sector) 949 conf->next_window_requests--; 950 else 951 conf->current_window_requests--; 952 } else 953 conf->current_window_requests--; 954 955 if (!conf->current_window_requests) { 956 if (conf->next_window_requests) { 957 conf->current_window_requests = 958 conf->next_window_requests; 959 conf->next_window_requests = 0; 960 conf->start_next_window += 961 NEXT_NORMALIO_DISTANCE; 962 } else 963 conf->start_next_window = MaxSector; 964 } 965 } 966 spin_unlock_irqrestore(&conf->resync_lock, flags); 967 wake_up(&conf->wait_barrier); 968} 969 970static void freeze_array(struct r1conf *conf, int extra) 971{ 972 /* stop syncio and normal IO and wait for everything to 973 * go quite. 974 * We wait until nr_pending match nr_queued+extra 975 * This is called in the context of one normal IO request 976 * that has failed. Thus any sync request that might be pending 977 * will be blocked by nr_pending, and we need to wait for 978 * pending IO requests to complete or be queued for re-try. 979 * Thus the number queued (nr_queued) plus this request (extra) 980 * must match the number of pending IOs (nr_pending) before 981 * we continue. 982 */ 983 spin_lock_irq(&conf->resync_lock); 984 conf->array_frozen = 1; 985 wait_event_lock_irq_cmd(conf->wait_barrier, 986 conf->nr_pending == conf->nr_queued+extra, 987 conf->resync_lock, 988 flush_pending_writes(conf)); 989 spin_unlock_irq(&conf->resync_lock); 990} 991static void unfreeze_array(struct r1conf *conf) 992{ 993 /* reverse the effect of the freeze */ 994 spin_lock_irq(&conf->resync_lock); 995 conf->array_frozen = 0; 996 wake_up(&conf->wait_barrier); 997 spin_unlock_irq(&conf->resync_lock); 998} 999 1000/* duplicate the data pages for behind I/O 1001 */ 1002static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 1003{ 1004 int i; 1005 struct bio_vec *bvec; 1006 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 1007 GFP_NOIO); 1008 if (unlikely(!bvecs)) 1009 return; 1010 1011 bio_for_each_segment_all(bvec, bio, i) { 1012 bvecs[i] = *bvec; 1013 bvecs[i].bv_page = alloc_page(GFP_NOIO); 1014 if (unlikely(!bvecs[i].bv_page)) 1015 goto do_sync_io; 1016 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1017 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1018 kunmap(bvecs[i].bv_page); 1019 kunmap(bvec->bv_page); 1020 } 1021 r1_bio->behind_bvecs = bvecs; 1022 r1_bio->behind_page_count = bio->bi_vcnt; 1023 set_bit(R1BIO_BehindIO, &r1_bio->state); 1024 return; 1025 1026do_sync_io: 1027 for (i = 0; i < bio->bi_vcnt; i++) 1028 if (bvecs[i].bv_page) 1029 put_page(bvecs[i].bv_page); 1030 kfree(bvecs); 1031 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1032 bio->bi_iter.bi_size); 1033} 1034 1035struct raid1_plug_cb { 1036 struct blk_plug_cb cb; 1037 struct bio_list pending; 1038 int pending_cnt; 1039}; 1040 1041static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1042{ 1043 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1044 cb); 1045 struct mddev *mddev = plug->cb.data; 1046 struct r1conf *conf = mddev->private; 1047 struct bio *bio; 1048 1049 if (from_schedule || current->bio_list) { 1050 spin_lock_irq(&conf->device_lock); 1051 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1052 conf->pending_count += plug->pending_cnt; 1053 spin_unlock_irq(&conf->device_lock); 1054 wake_up(&conf->wait_barrier); 1055 md_wakeup_thread(mddev->thread); 1056 kfree(plug); 1057 return; 1058 } 1059 1060 /* we aren't scheduling, so we can do the write-out directly. */ 1061 bio = bio_list_get(&plug->pending); 1062 bitmap_unplug(mddev->bitmap); 1063 wake_up(&conf->wait_barrier); 1064 1065 while (bio) { /* submit pending writes */ 1066 struct bio *next = bio->bi_next; 1067 bio->bi_next = NULL; 1068 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1069 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1070 /* Just ignore it */ 1071 bio_endio(bio, 0); 1072 else 1073 generic_make_request(bio); 1074 bio = next; 1075 } 1076 kfree(plug); 1077} 1078 1079static void make_request(struct mddev *mddev, struct bio * bio) 1080{ 1081 struct r1conf *conf = mddev->private; 1082 struct raid1_info *mirror; 1083 struct r1bio *r1_bio; 1084 struct bio *read_bio; 1085 int i, disks; 1086 struct bitmap *bitmap; 1087 unsigned long flags; 1088 const int rw = bio_data_dir(bio); 1089 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1090 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1091 const unsigned long do_discard = (bio->bi_rw 1092 & (REQ_DISCARD | REQ_SECURE)); 1093 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1094 struct md_rdev *blocked_rdev; 1095 struct blk_plug_cb *cb; 1096 struct raid1_plug_cb *plug = NULL; 1097 int first_clone; 1098 int sectors_handled; 1099 int max_sectors; 1100 sector_t start_next_window; 1101 1102 /* 1103 * Register the new request and wait if the reconstruction 1104 * thread has put up a bar for new requests. 1105 * Continue immediately if no resync is active currently. 1106 */ 1107 1108 md_write_start(mddev, bio); /* wait on superblock update early */ 1109 1110 if (bio_data_dir(bio) == WRITE && 1111 ((bio_end_sector(bio) > mddev->suspend_lo && 1112 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1113 (mddev_is_clustered(mddev) && 1114 md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) { 1115 /* As the suspend_* range is controlled by 1116 * userspace, we want an interruptible 1117 * wait. 1118 */ 1119 DEFINE_WAIT(w); 1120 for (;;) { 1121 flush_signals(current); 1122 prepare_to_wait(&conf->wait_barrier, 1123 &w, TASK_INTERRUPTIBLE); 1124 if (bio_end_sector(bio) <= mddev->suspend_lo || 1125 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1126 (mddev_is_clustered(mddev) && 1127 !md_cluster_ops->area_resyncing(mddev, 1128 bio->bi_iter.bi_sector, bio_end_sector(bio)))) 1129 break; 1130 schedule(); 1131 } 1132 finish_wait(&conf->wait_barrier, &w); 1133 } 1134 1135 start_next_window = wait_barrier(conf, bio); 1136 1137 bitmap = mddev->bitmap; 1138 1139 /* 1140 * make_request() can abort the operation when READA is being 1141 * used and no empty request is available. 1142 * 1143 */ 1144 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1145 1146 r1_bio->master_bio = bio; 1147 r1_bio->sectors = bio_sectors(bio); 1148 r1_bio->state = 0; 1149 r1_bio->mddev = mddev; 1150 r1_bio->sector = bio->bi_iter.bi_sector; 1151 1152 /* We might need to issue multiple reads to different 1153 * devices if there are bad blocks around, so we keep 1154 * track of the number of reads in bio->bi_phys_segments. 1155 * If this is 0, there is only one r1_bio and no locking 1156 * will be needed when requests complete. If it is 1157 * non-zero, then it is the number of not-completed requests. 1158 */ 1159 bio->bi_phys_segments = 0; 1160 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1161 1162 if (rw == READ) { 1163 /* 1164 * read balancing logic: 1165 */ 1166 int rdisk; 1167 1168read_again: 1169 rdisk = read_balance(conf, r1_bio, &max_sectors); 1170 1171 if (rdisk < 0) { 1172 /* couldn't find anywhere to read from */ 1173 raid_end_bio_io(r1_bio); 1174 return; 1175 } 1176 mirror = conf->mirrors + rdisk; 1177 1178 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1179 bitmap) { 1180 /* Reading from a write-mostly device must 1181 * take care not to over-take any writes 1182 * that are 'behind' 1183 */ 1184 wait_event(bitmap->behind_wait, 1185 atomic_read(&bitmap->behind_writes) == 0); 1186 } 1187 r1_bio->read_disk = rdisk; 1188 r1_bio->start_next_window = 0; 1189 1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1192 max_sectors); 1193 1194 r1_bio->bios[rdisk] = read_bio; 1195 1196 read_bio->bi_iter.bi_sector = r1_bio->sector + 1197 mirror->rdev->data_offset; 1198 read_bio->bi_bdev = mirror->rdev->bdev; 1199 read_bio->bi_end_io = raid1_end_read_request; 1200 read_bio->bi_rw = READ | do_sync; 1201 read_bio->bi_private = r1_bio; 1202 1203 if (max_sectors < r1_bio->sectors) { 1204 /* could not read all from this device, so we will 1205 * need another r1_bio. 1206 */ 1207 1208 sectors_handled = (r1_bio->sector + max_sectors 1209 - bio->bi_iter.bi_sector); 1210 r1_bio->sectors = max_sectors; 1211 spin_lock_irq(&conf->device_lock); 1212 if (bio->bi_phys_segments == 0) 1213 bio->bi_phys_segments = 2; 1214 else 1215 bio->bi_phys_segments++; 1216 spin_unlock_irq(&conf->device_lock); 1217 /* Cannot call generic_make_request directly 1218 * as that will be queued in __make_request 1219 * and subsequent mempool_alloc might block waiting 1220 * for it. So hand bio over to raid1d. 1221 */ 1222 reschedule_retry(r1_bio); 1223 1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1225 1226 r1_bio->master_bio = bio; 1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1228 r1_bio->state = 0; 1229 r1_bio->mddev = mddev; 1230 r1_bio->sector = bio->bi_iter.bi_sector + 1231 sectors_handled; 1232 goto read_again; 1233 } else 1234 generic_make_request(read_bio); 1235 return; 1236 } 1237 1238 /* 1239 * WRITE: 1240 */ 1241 if (conf->pending_count >= max_queued_requests) { 1242 md_wakeup_thread(mddev->thread); 1243 wait_event(conf->wait_barrier, 1244 conf->pending_count < max_queued_requests); 1245 } 1246 /* first select target devices under rcu_lock and 1247 * inc refcount on their rdev. Record them by setting 1248 * bios[x] to bio 1249 * If there are known/acknowledged bad blocks on any device on 1250 * which we have seen a write error, we want to avoid writing those 1251 * blocks. 1252 * This potentially requires several writes to write around 1253 * the bad blocks. Each set of writes gets it's own r1bio 1254 * with a set of bios attached. 1255 */ 1256 1257 disks = conf->raid_disks * 2; 1258 retry_write: 1259 r1_bio->start_next_window = start_next_window; 1260 blocked_rdev = NULL; 1261 rcu_read_lock(); 1262 max_sectors = r1_bio->sectors; 1263 for (i = 0; i < disks; i++) { 1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1266 atomic_inc(&rdev->nr_pending); 1267 blocked_rdev = rdev; 1268 break; 1269 } 1270 r1_bio->bios[i] = NULL; 1271 if (!rdev || test_bit(Faulty, &rdev->flags) 1272 || test_bit(Unmerged, &rdev->flags)) { 1273 if (i < conf->raid_disks) 1274 set_bit(R1BIO_Degraded, &r1_bio->state); 1275 continue; 1276 } 1277 1278 atomic_inc(&rdev->nr_pending); 1279 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1280 sector_t first_bad; 1281 int bad_sectors; 1282 int is_bad; 1283 1284 is_bad = is_badblock(rdev, r1_bio->sector, 1285 max_sectors, 1286 &first_bad, &bad_sectors); 1287 if (is_bad < 0) { 1288 /* mustn't write here until the bad block is 1289 * acknowledged*/ 1290 set_bit(BlockedBadBlocks, &rdev->flags); 1291 blocked_rdev = rdev; 1292 break; 1293 } 1294 if (is_bad && first_bad <= r1_bio->sector) { 1295 /* Cannot write here at all */ 1296 bad_sectors -= (r1_bio->sector - first_bad); 1297 if (bad_sectors < max_sectors) 1298 /* mustn't write more than bad_sectors 1299 * to other devices yet 1300 */ 1301 max_sectors = bad_sectors; 1302 rdev_dec_pending(rdev, mddev); 1303 /* We don't set R1BIO_Degraded as that 1304 * only applies if the disk is 1305 * missing, so it might be re-added, 1306 * and we want to know to recover this 1307 * chunk. 1308 * In this case the device is here, 1309 * and the fact that this chunk is not 1310 * in-sync is recorded in the bad 1311 * block log 1312 */ 1313 continue; 1314 } 1315 if (is_bad) { 1316 int good_sectors = first_bad - r1_bio->sector; 1317 if (good_sectors < max_sectors) 1318 max_sectors = good_sectors; 1319 } 1320 } 1321 r1_bio->bios[i] = bio; 1322 } 1323 rcu_read_unlock(); 1324 1325 if (unlikely(blocked_rdev)) { 1326 /* Wait for this device to become unblocked */ 1327 int j; 1328 sector_t old = start_next_window; 1329 1330 for (j = 0; j < i; j++) 1331 if (r1_bio->bios[j]) 1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1333 r1_bio->state = 0; 1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1335 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1336 start_next_window = wait_barrier(conf, bio); 1337 /* 1338 * We must make sure the multi r1bios of bio have 1339 * the same value of bi_phys_segments 1340 */ 1341 if (bio->bi_phys_segments && old && 1342 old != start_next_window) 1343 /* Wait for the former r1bio(s) to complete */ 1344 wait_event(conf->wait_barrier, 1345 bio->bi_phys_segments == 1); 1346 goto retry_write; 1347 } 1348 1349 if (max_sectors < r1_bio->sectors) { 1350 /* We are splitting this write into multiple parts, so 1351 * we need to prepare for allocating another r1_bio. 1352 */ 1353 r1_bio->sectors = max_sectors; 1354 spin_lock_irq(&conf->device_lock); 1355 if (bio->bi_phys_segments == 0) 1356 bio->bi_phys_segments = 2; 1357 else 1358 bio->bi_phys_segments++; 1359 spin_unlock_irq(&conf->device_lock); 1360 } 1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1362 1363 atomic_set(&r1_bio->remaining, 1); 1364 atomic_set(&r1_bio->behind_remaining, 0); 1365 1366 first_clone = 1; 1367 for (i = 0; i < disks; i++) { 1368 struct bio *mbio; 1369 if (!r1_bio->bios[i]) 1370 continue; 1371 1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1374 1375 if (first_clone) { 1376 /* do behind I/O ? 1377 * Not if there are too many, or cannot 1378 * allocate memory, or a reader on WriteMostly 1379 * is waiting for behind writes to flush */ 1380 if (bitmap && 1381 (atomic_read(&bitmap->behind_writes) 1382 < mddev->bitmap_info.max_write_behind) && 1383 !waitqueue_active(&bitmap->behind_wait)) 1384 alloc_behind_pages(mbio, r1_bio); 1385 1386 bitmap_startwrite(bitmap, r1_bio->sector, 1387 r1_bio->sectors, 1388 test_bit(R1BIO_BehindIO, 1389 &r1_bio->state)); 1390 first_clone = 0; 1391 } 1392 if (r1_bio->behind_bvecs) { 1393 struct bio_vec *bvec; 1394 int j; 1395 1396 /* 1397 * We trimmed the bio, so _all is legit 1398 */ 1399 bio_for_each_segment_all(bvec, mbio, j) 1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1402 atomic_inc(&r1_bio->behind_remaining); 1403 } 1404 1405 r1_bio->bios[i] = mbio; 1406 1407 mbio->bi_iter.bi_sector = (r1_bio->sector + 1408 conf->mirrors[i].rdev->data_offset); 1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1410 mbio->bi_end_io = raid1_end_write_request; 1411 mbio->bi_rw = 1412 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1413 mbio->bi_private = r1_bio; 1414 1415 atomic_inc(&r1_bio->remaining); 1416 1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1418 if (cb) 1419 plug = container_of(cb, struct raid1_plug_cb, cb); 1420 else 1421 plug = NULL; 1422 spin_lock_irqsave(&conf->device_lock, flags); 1423 if (plug) { 1424 bio_list_add(&plug->pending, mbio); 1425 plug->pending_cnt++; 1426 } else { 1427 bio_list_add(&conf->pending_bio_list, mbio); 1428 conf->pending_count++; 1429 } 1430 spin_unlock_irqrestore(&conf->device_lock, flags); 1431 if (!plug) 1432 md_wakeup_thread(mddev->thread); 1433 } 1434 /* Mustn't call r1_bio_write_done before this next test, 1435 * as it could result in the bio being freed. 1436 */ 1437 if (sectors_handled < bio_sectors(bio)) { 1438 r1_bio_write_done(r1_bio); 1439 /* We need another r1_bio. It has already been counted 1440 * in bio->bi_phys_segments 1441 */ 1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1443 r1_bio->master_bio = bio; 1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1445 r1_bio->state = 0; 1446 r1_bio->mddev = mddev; 1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1448 goto retry_write; 1449 } 1450 1451 r1_bio_write_done(r1_bio); 1452 1453 /* In case raid1d snuck in to freeze_array */ 1454 wake_up(&conf->wait_barrier); 1455} 1456 1457static void status(struct seq_file *seq, struct mddev *mddev) 1458{ 1459 struct r1conf *conf = mddev->private; 1460 int i; 1461 1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1463 conf->raid_disks - mddev->degraded); 1464 rcu_read_lock(); 1465 for (i = 0; i < conf->raid_disks; i++) { 1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1467 seq_printf(seq, "%s", 1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1469 } 1470 rcu_read_unlock(); 1471 seq_printf(seq, "]"); 1472} 1473 1474static void error(struct mddev *mddev, struct md_rdev *rdev) 1475{ 1476 char b[BDEVNAME_SIZE]; 1477 struct r1conf *conf = mddev->private; 1478 unsigned long flags; 1479 1480 /* 1481 * If it is not operational, then we have already marked it as dead 1482 * else if it is the last working disks, ignore the error, let the 1483 * next level up know. 1484 * else mark the drive as failed 1485 */ 1486 if (test_bit(In_sync, &rdev->flags) 1487 && (conf->raid_disks - mddev->degraded) == 1) { 1488 /* 1489 * Don't fail the drive, act as though we were just a 1490 * normal single drive. 1491 * However don't try a recovery from this drive as 1492 * it is very likely to fail. 1493 */ 1494 conf->recovery_disabled = mddev->recovery_disabled; 1495 return; 1496 } 1497 set_bit(Blocked, &rdev->flags); 1498 spin_lock_irqsave(&conf->device_lock, flags); 1499 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1500 mddev->degraded++; 1501 set_bit(Faulty, &rdev->flags); 1502 } else 1503 set_bit(Faulty, &rdev->flags); 1504 spin_unlock_irqrestore(&conf->device_lock, flags); 1505 /* 1506 * if recovery is running, make sure it aborts. 1507 */ 1508 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1509 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1510 printk(KERN_ALERT 1511 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1512 "md/raid1:%s: Operation continuing on %d devices.\n", 1513 mdname(mddev), bdevname(rdev->bdev, b), 1514 mdname(mddev), conf->raid_disks - mddev->degraded); 1515} 1516 1517static void print_conf(struct r1conf *conf) 1518{ 1519 int i; 1520 1521 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1522 if (!conf) { 1523 printk(KERN_DEBUG "(!conf)\n"); 1524 return; 1525 } 1526 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1527 conf->raid_disks); 1528 1529 rcu_read_lock(); 1530 for (i = 0; i < conf->raid_disks; i++) { 1531 char b[BDEVNAME_SIZE]; 1532 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1533 if (rdev) 1534 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1535 i, !test_bit(In_sync, &rdev->flags), 1536 !test_bit(Faulty, &rdev->flags), 1537 bdevname(rdev->bdev,b)); 1538 } 1539 rcu_read_unlock(); 1540} 1541 1542static void close_sync(struct r1conf *conf) 1543{ 1544 wait_barrier(conf, NULL); 1545 allow_barrier(conf, 0, 0); 1546 1547 mempool_destroy(conf->r1buf_pool); 1548 conf->r1buf_pool = NULL; 1549 1550 spin_lock_irq(&conf->resync_lock); 1551 conf->next_resync = 0; 1552 conf->start_next_window = MaxSector; 1553 conf->current_window_requests += 1554 conf->next_window_requests; 1555 conf->next_window_requests = 0; 1556 spin_unlock_irq(&conf->resync_lock); 1557} 1558 1559static int raid1_spare_active(struct mddev *mddev) 1560{ 1561 int i; 1562 struct r1conf *conf = mddev->private; 1563 int count = 0; 1564 unsigned long flags; 1565 1566 /* 1567 * Find all failed disks within the RAID1 configuration 1568 * and mark them readable. 1569 * Called under mddev lock, so rcu protection not needed. 1570 * device_lock used to avoid races with raid1_end_read_request 1571 * which expects 'In_sync' flags and ->degraded to be consistent. 1572 */ 1573 spin_lock_irqsave(&conf->device_lock, flags); 1574 for (i = 0; i < conf->raid_disks; i++) { 1575 struct md_rdev *rdev = conf->mirrors[i].rdev; 1576 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1577 if (repl 1578 && !test_bit(Candidate, &repl->flags) 1579 && repl->recovery_offset == MaxSector 1580 && !test_bit(Faulty, &repl->flags) 1581 && !test_and_set_bit(In_sync, &repl->flags)) { 1582 /* replacement has just become active */ 1583 if (!rdev || 1584 !test_and_clear_bit(In_sync, &rdev->flags)) 1585 count++; 1586 if (rdev) { 1587 /* Replaced device not technically 1588 * faulty, but we need to be sure 1589 * it gets removed and never re-added 1590 */ 1591 set_bit(Faulty, &rdev->flags); 1592 sysfs_notify_dirent_safe( 1593 rdev->sysfs_state); 1594 } 1595 } 1596 if (rdev 1597 && rdev->recovery_offset == MaxSector 1598 && !test_bit(Faulty, &rdev->flags) 1599 && !test_and_set_bit(In_sync, &rdev->flags)) { 1600 count++; 1601 sysfs_notify_dirent_safe(rdev->sysfs_state); 1602 } 1603 } 1604 mddev->degraded -= count; 1605 spin_unlock_irqrestore(&conf->device_lock, flags); 1606 1607 print_conf(conf); 1608 return count; 1609} 1610 1611static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1612{ 1613 struct r1conf *conf = mddev->private; 1614 int err = -EEXIST; 1615 int mirror = 0; 1616 struct raid1_info *p; 1617 int first = 0; 1618 int last = conf->raid_disks - 1; 1619 struct request_queue *q = bdev_get_queue(rdev->bdev); 1620 1621 if (mddev->recovery_disabled == conf->recovery_disabled) 1622 return -EBUSY; 1623 1624 if (rdev->raid_disk >= 0) 1625 first = last = rdev->raid_disk; 1626 1627 if (q->merge_bvec_fn) { 1628 set_bit(Unmerged, &rdev->flags); 1629 mddev->merge_check_needed = 1; 1630 } 1631 1632 for (mirror = first; mirror <= last; mirror++) { 1633 p = conf->mirrors+mirror; 1634 if (!p->rdev) { 1635 1636 if (mddev->gendisk) 1637 disk_stack_limits(mddev->gendisk, rdev->bdev, 1638 rdev->data_offset << 9); 1639 1640 p->head_position = 0; 1641 rdev->raid_disk = mirror; 1642 err = 0; 1643 /* As all devices are equivalent, we don't need a full recovery 1644 * if this was recently any drive of the array 1645 */ 1646 if (rdev->saved_raid_disk < 0) 1647 conf->fullsync = 1; 1648 rcu_assign_pointer(p->rdev, rdev); 1649 break; 1650 } 1651 if (test_bit(WantReplacement, &p->rdev->flags) && 1652 p[conf->raid_disks].rdev == NULL) { 1653 /* Add this device as a replacement */ 1654 clear_bit(In_sync, &rdev->flags); 1655 set_bit(Replacement, &rdev->flags); 1656 rdev->raid_disk = mirror; 1657 err = 0; 1658 conf->fullsync = 1; 1659 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1660 break; 1661 } 1662 } 1663 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1664 /* Some requests might not have seen this new 1665 * merge_bvec_fn. We must wait for them to complete 1666 * before merging the device fully. 1667 * First we make sure any code which has tested 1668 * our function has submitted the request, then 1669 * we wait for all outstanding requests to complete. 1670 */ 1671 synchronize_sched(); 1672 freeze_array(conf, 0); 1673 unfreeze_array(conf); 1674 clear_bit(Unmerged, &rdev->flags); 1675 } 1676 md_integrity_add_rdev(rdev, mddev); 1677 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1678 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1679 print_conf(conf); 1680 return err; 1681} 1682 1683static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1684{ 1685 struct r1conf *conf = mddev->private; 1686 int err = 0; 1687 int number = rdev->raid_disk; 1688 struct raid1_info *p = conf->mirrors + number; 1689 1690 if (rdev != p->rdev) 1691 p = conf->mirrors + conf->raid_disks + number; 1692 1693 print_conf(conf); 1694 if (rdev == p->rdev) { 1695 if (test_bit(In_sync, &rdev->flags) || 1696 atomic_read(&rdev->nr_pending)) { 1697 err = -EBUSY; 1698 goto abort; 1699 } 1700 /* Only remove non-faulty devices if recovery 1701 * is not possible. 1702 */ 1703 if (!test_bit(Faulty, &rdev->flags) && 1704 mddev->recovery_disabled != conf->recovery_disabled && 1705 mddev->degraded < conf->raid_disks) { 1706 err = -EBUSY; 1707 goto abort; 1708 } 1709 p->rdev = NULL; 1710 synchronize_rcu(); 1711 if (atomic_read(&rdev->nr_pending)) { 1712 /* lost the race, try later */ 1713 err = -EBUSY; 1714 p->rdev = rdev; 1715 goto abort; 1716 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1717 /* We just removed a device that is being replaced. 1718 * Move down the replacement. We drain all IO before 1719 * doing this to avoid confusion. 1720 */ 1721 struct md_rdev *repl = 1722 conf->mirrors[conf->raid_disks + number].rdev; 1723 freeze_array(conf, 0); 1724 clear_bit(Replacement, &repl->flags); 1725 p->rdev = repl; 1726 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1727 unfreeze_array(conf); 1728 clear_bit(WantReplacement, &rdev->flags); 1729 } else 1730 clear_bit(WantReplacement, &rdev->flags); 1731 err = md_integrity_register(mddev); 1732 } 1733abort: 1734 1735 print_conf(conf); 1736 return err; 1737} 1738 1739static void end_sync_read(struct bio *bio, int error) 1740{ 1741 struct r1bio *r1_bio = bio->bi_private; 1742 1743 update_head_pos(r1_bio->read_disk, r1_bio); 1744 1745 /* 1746 * we have read a block, now it needs to be re-written, 1747 * or re-read if the read failed. 1748 * We don't do much here, just schedule handling by raid1d 1749 */ 1750 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1751 set_bit(R1BIO_Uptodate, &r1_bio->state); 1752 1753 if (atomic_dec_and_test(&r1_bio->remaining)) 1754 reschedule_retry(r1_bio); 1755} 1756 1757static void end_sync_write(struct bio *bio, int error) 1758{ 1759 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1760 struct r1bio *r1_bio = bio->bi_private; 1761 struct mddev *mddev = r1_bio->mddev; 1762 struct r1conf *conf = mddev->private; 1763 int mirror=0; 1764 sector_t first_bad; 1765 int bad_sectors; 1766 1767 mirror = find_bio_disk(r1_bio, bio); 1768 1769 if (!uptodate) { 1770 sector_t sync_blocks = 0; 1771 sector_t s = r1_bio->sector; 1772 long sectors_to_go = r1_bio->sectors; 1773 /* make sure these bits doesn't get cleared. */ 1774 do { 1775 bitmap_end_sync(mddev->bitmap, s, 1776 &sync_blocks, 1); 1777 s += sync_blocks; 1778 sectors_to_go -= sync_blocks; 1779 } while (sectors_to_go > 0); 1780 set_bit(WriteErrorSeen, 1781 &conf->mirrors[mirror].rdev->flags); 1782 if (!test_and_set_bit(WantReplacement, 1783 &conf->mirrors[mirror].rdev->flags)) 1784 set_bit(MD_RECOVERY_NEEDED, & 1785 mddev->recovery); 1786 set_bit(R1BIO_WriteError, &r1_bio->state); 1787 } else if (is_badblock(conf->mirrors[mirror].rdev, 1788 r1_bio->sector, 1789 r1_bio->sectors, 1790 &first_bad, &bad_sectors) && 1791 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1792 r1_bio->sector, 1793 r1_bio->sectors, 1794 &first_bad, &bad_sectors) 1795 ) 1796 set_bit(R1BIO_MadeGood, &r1_bio->state); 1797 1798 if (atomic_dec_and_test(&r1_bio->remaining)) { 1799 int s = r1_bio->sectors; 1800 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1801 test_bit(R1BIO_WriteError, &r1_bio->state)) 1802 reschedule_retry(r1_bio); 1803 else { 1804 put_buf(r1_bio); 1805 md_done_sync(mddev, s, uptodate); 1806 } 1807 } 1808} 1809 1810static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1811 int sectors, struct page *page, int rw) 1812{ 1813 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1814 /* success */ 1815 return 1; 1816 if (rw == WRITE) { 1817 set_bit(WriteErrorSeen, &rdev->flags); 1818 if (!test_and_set_bit(WantReplacement, 1819 &rdev->flags)) 1820 set_bit(MD_RECOVERY_NEEDED, & 1821 rdev->mddev->recovery); 1822 } 1823 /* need to record an error - either for the block or the device */ 1824 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1825 md_error(rdev->mddev, rdev); 1826 return 0; 1827} 1828 1829static int fix_sync_read_error(struct r1bio *r1_bio) 1830{ 1831 /* Try some synchronous reads of other devices to get 1832 * good data, much like with normal read errors. Only 1833 * read into the pages we already have so we don't 1834 * need to re-issue the read request. 1835 * We don't need to freeze the array, because being in an 1836 * active sync request, there is no normal IO, and 1837 * no overlapping syncs. 1838 * We don't need to check is_badblock() again as we 1839 * made sure that anything with a bad block in range 1840 * will have bi_end_io clear. 1841 */ 1842 struct mddev *mddev = r1_bio->mddev; 1843 struct r1conf *conf = mddev->private; 1844 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1845 sector_t sect = r1_bio->sector; 1846 int sectors = r1_bio->sectors; 1847 int idx = 0; 1848 1849 while(sectors) { 1850 int s = sectors; 1851 int d = r1_bio->read_disk; 1852 int success = 0; 1853 struct md_rdev *rdev; 1854 int start; 1855 1856 if (s > (PAGE_SIZE>>9)) 1857 s = PAGE_SIZE >> 9; 1858 do { 1859 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1860 /* No rcu protection needed here devices 1861 * can only be removed when no resync is 1862 * active, and resync is currently active 1863 */ 1864 rdev = conf->mirrors[d].rdev; 1865 if (sync_page_io(rdev, sect, s<<9, 1866 bio->bi_io_vec[idx].bv_page, 1867 READ, false)) { 1868 success = 1; 1869 break; 1870 } 1871 } 1872 d++; 1873 if (d == conf->raid_disks * 2) 1874 d = 0; 1875 } while (!success && d != r1_bio->read_disk); 1876 1877 if (!success) { 1878 char b[BDEVNAME_SIZE]; 1879 int abort = 0; 1880 /* Cannot read from anywhere, this block is lost. 1881 * Record a bad block on each device. If that doesn't 1882 * work just disable and interrupt the recovery. 1883 * Don't fail devices as that won't really help. 1884 */ 1885 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1886 " for block %llu\n", 1887 mdname(mddev), 1888 bdevname(bio->bi_bdev, b), 1889 (unsigned long long)r1_bio->sector); 1890 for (d = 0; d < conf->raid_disks * 2; d++) { 1891 rdev = conf->mirrors[d].rdev; 1892 if (!rdev || test_bit(Faulty, &rdev->flags)) 1893 continue; 1894 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1895 abort = 1; 1896 } 1897 if (abort) { 1898 conf->recovery_disabled = 1899 mddev->recovery_disabled; 1900 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1901 md_done_sync(mddev, r1_bio->sectors, 0); 1902 put_buf(r1_bio); 1903 return 0; 1904 } 1905 /* Try next page */ 1906 sectors -= s; 1907 sect += s; 1908 idx++; 1909 continue; 1910 } 1911 1912 start = d; 1913 /* write it back and re-read */ 1914 while (d != r1_bio->read_disk) { 1915 if (d == 0) 1916 d = conf->raid_disks * 2; 1917 d--; 1918 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1919 continue; 1920 rdev = conf->mirrors[d].rdev; 1921 if (r1_sync_page_io(rdev, sect, s, 1922 bio->bi_io_vec[idx].bv_page, 1923 WRITE) == 0) { 1924 r1_bio->bios[d]->bi_end_io = NULL; 1925 rdev_dec_pending(rdev, mddev); 1926 } 1927 } 1928 d = start; 1929 while (d != r1_bio->read_disk) { 1930 if (d == 0) 1931 d = conf->raid_disks * 2; 1932 d--; 1933 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1934 continue; 1935 rdev = conf->mirrors[d].rdev; 1936 if (r1_sync_page_io(rdev, sect, s, 1937 bio->bi_io_vec[idx].bv_page, 1938 READ) != 0) 1939 atomic_add(s, &rdev->corrected_errors); 1940 } 1941 sectors -= s; 1942 sect += s; 1943 idx ++; 1944 } 1945 set_bit(R1BIO_Uptodate, &r1_bio->state); 1946 set_bit(BIO_UPTODATE, &bio->bi_flags); 1947 return 1; 1948} 1949 1950static void process_checks(struct r1bio *r1_bio) 1951{ 1952 /* We have read all readable devices. If we haven't 1953 * got the block, then there is no hope left. 1954 * If we have, then we want to do a comparison 1955 * and skip the write if everything is the same. 1956 * If any blocks failed to read, then we need to 1957 * attempt an over-write 1958 */ 1959 struct mddev *mddev = r1_bio->mddev; 1960 struct r1conf *conf = mddev->private; 1961 int primary; 1962 int i; 1963 int vcnt; 1964 1965 /* Fix variable parts of all bios */ 1966 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1967 for (i = 0; i < conf->raid_disks * 2; i++) { 1968 int j; 1969 int size; 1970 int uptodate; 1971 struct bio *b = r1_bio->bios[i]; 1972 if (b->bi_end_io != end_sync_read) 1973 continue; 1974 /* fixup the bio for reuse, but preserve BIO_UPTODATE */ 1975 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags); 1976 bio_reset(b); 1977 if (!uptodate) 1978 clear_bit(BIO_UPTODATE, &b->bi_flags); 1979 b->bi_vcnt = vcnt; 1980 b->bi_iter.bi_size = r1_bio->sectors << 9; 1981 b->bi_iter.bi_sector = r1_bio->sector + 1982 conf->mirrors[i].rdev->data_offset; 1983 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1984 b->bi_end_io = end_sync_read; 1985 b->bi_private = r1_bio; 1986 1987 size = b->bi_iter.bi_size; 1988 for (j = 0; j < vcnt ; j++) { 1989 struct bio_vec *bi; 1990 bi = &b->bi_io_vec[j]; 1991 bi->bv_offset = 0; 1992 if (size > PAGE_SIZE) 1993 bi->bv_len = PAGE_SIZE; 1994 else 1995 bi->bv_len = size; 1996 size -= PAGE_SIZE; 1997 } 1998 } 1999 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2000 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2001 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 2002 r1_bio->bios[primary]->bi_end_io = NULL; 2003 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2004 break; 2005 } 2006 r1_bio->read_disk = primary; 2007 for (i = 0; i < conf->raid_disks * 2; i++) { 2008 int j; 2009 struct bio *pbio = r1_bio->bios[primary]; 2010 struct bio *sbio = r1_bio->bios[i]; 2011 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags); 2012 2013 if (sbio->bi_end_io != end_sync_read) 2014 continue; 2015 /* Now we can 'fixup' the BIO_UPTODATE flag */ 2016 set_bit(BIO_UPTODATE, &sbio->bi_flags); 2017 2018 if (uptodate) { 2019 for (j = vcnt; j-- ; ) { 2020 struct page *p, *s; 2021 p = pbio->bi_io_vec[j].bv_page; 2022 s = sbio->bi_io_vec[j].bv_page; 2023 if (memcmp(page_address(p), 2024 page_address(s), 2025 sbio->bi_io_vec[j].bv_len)) 2026 break; 2027 } 2028 } else 2029 j = 0; 2030 if (j >= 0) 2031 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2032 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2033 && uptodate)) { 2034 /* No need to write to this device. */ 2035 sbio->bi_end_io = NULL; 2036 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2037 continue; 2038 } 2039 2040 bio_copy_data(sbio, pbio); 2041 } 2042} 2043 2044static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2045{ 2046 struct r1conf *conf = mddev->private; 2047 int i; 2048 int disks = conf->raid_disks * 2; 2049 struct bio *bio, *wbio; 2050 2051 bio = r1_bio->bios[r1_bio->read_disk]; 2052 2053 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2054 /* ouch - failed to read all of that. */ 2055 if (!fix_sync_read_error(r1_bio)) 2056 return; 2057 2058 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2059 process_checks(r1_bio); 2060 2061 /* 2062 * schedule writes 2063 */ 2064 atomic_set(&r1_bio->remaining, 1); 2065 for (i = 0; i < disks ; i++) { 2066 wbio = r1_bio->bios[i]; 2067 if (wbio->bi_end_io == NULL || 2068 (wbio->bi_end_io == end_sync_read && 2069 (i == r1_bio->read_disk || 2070 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2071 continue; 2072 2073 wbio->bi_rw = WRITE; 2074 wbio->bi_end_io = end_sync_write; 2075 atomic_inc(&r1_bio->remaining); 2076 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2077 2078 generic_make_request(wbio); 2079 } 2080 2081 if (atomic_dec_and_test(&r1_bio->remaining)) { 2082 /* if we're here, all write(s) have completed, so clean up */ 2083 int s = r1_bio->sectors; 2084 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2085 test_bit(R1BIO_WriteError, &r1_bio->state)) 2086 reschedule_retry(r1_bio); 2087 else { 2088 put_buf(r1_bio); 2089 md_done_sync(mddev, s, 1); 2090 } 2091 } 2092} 2093 2094/* 2095 * This is a kernel thread which: 2096 * 2097 * 1. Retries failed read operations on working mirrors. 2098 * 2. Updates the raid superblock when problems encounter. 2099 * 3. Performs writes following reads for array synchronising. 2100 */ 2101 2102static void fix_read_error(struct r1conf *conf, int read_disk, 2103 sector_t sect, int sectors) 2104{ 2105 struct mddev *mddev = conf->mddev; 2106 while(sectors) { 2107 int s = sectors; 2108 int d = read_disk; 2109 int success = 0; 2110 int start; 2111 struct md_rdev *rdev; 2112 2113 if (s > (PAGE_SIZE>>9)) 2114 s = PAGE_SIZE >> 9; 2115 2116 do { 2117 /* Note: no rcu protection needed here 2118 * as this is synchronous in the raid1d thread 2119 * which is the thread that might remove 2120 * a device. If raid1d ever becomes multi-threaded.... 2121 */ 2122 sector_t first_bad; 2123 int bad_sectors; 2124 2125 rdev = conf->mirrors[d].rdev; 2126 if (rdev && 2127 (test_bit(In_sync, &rdev->flags) || 2128 (!test_bit(Faulty, &rdev->flags) && 2129 rdev->recovery_offset >= sect + s)) && 2130 is_badblock(rdev, sect, s, 2131 &first_bad, &bad_sectors) == 0 && 2132 sync_page_io(rdev, sect, s<<9, 2133 conf->tmppage, READ, false)) 2134 success = 1; 2135 else { 2136 d++; 2137 if (d == conf->raid_disks * 2) 2138 d = 0; 2139 } 2140 } while (!success && d != read_disk); 2141 2142 if (!success) { 2143 /* Cannot read from anywhere - mark it bad */ 2144 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2145 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2146 md_error(mddev, rdev); 2147 break; 2148 } 2149 /* write it back and re-read */ 2150 start = d; 2151 while (d != read_disk) { 2152 if (d==0) 2153 d = conf->raid_disks * 2; 2154 d--; 2155 rdev = conf->mirrors[d].rdev; 2156 if (rdev && 2157 !test_bit(Faulty, &rdev->flags)) 2158 r1_sync_page_io(rdev, sect, s, 2159 conf->tmppage, WRITE); 2160 } 2161 d = start; 2162 while (d != read_disk) { 2163 char b[BDEVNAME_SIZE]; 2164 if (d==0) 2165 d = conf->raid_disks * 2; 2166 d--; 2167 rdev = conf->mirrors[d].rdev; 2168 if (rdev && 2169 !test_bit(Faulty, &rdev->flags)) { 2170 if (r1_sync_page_io(rdev, sect, s, 2171 conf->tmppage, READ)) { 2172 atomic_add(s, &rdev->corrected_errors); 2173 printk(KERN_INFO 2174 "md/raid1:%s: read error corrected " 2175 "(%d sectors at %llu on %s)\n", 2176 mdname(mddev), s, 2177 (unsigned long long)(sect + 2178 rdev->data_offset), 2179 bdevname(rdev->bdev, b)); 2180 } 2181 } 2182 } 2183 sectors -= s; 2184 sect += s; 2185 } 2186} 2187 2188static int narrow_write_error(struct r1bio *r1_bio, int i) 2189{ 2190 struct mddev *mddev = r1_bio->mddev; 2191 struct r1conf *conf = mddev->private; 2192 struct md_rdev *rdev = conf->mirrors[i].rdev; 2193 2194 /* bio has the data to be written to device 'i' where 2195 * we just recently had a write error. 2196 * We repeatedly clone the bio and trim down to one block, 2197 * then try the write. Where the write fails we record 2198 * a bad block. 2199 * It is conceivable that the bio doesn't exactly align with 2200 * blocks. We must handle this somehow. 2201 * 2202 * We currently own a reference on the rdev. 2203 */ 2204 2205 int block_sectors; 2206 sector_t sector; 2207 int sectors; 2208 int sect_to_write = r1_bio->sectors; 2209 int ok = 1; 2210 2211 if (rdev->badblocks.shift < 0) 2212 return 0; 2213 2214 block_sectors = roundup(1 << rdev->badblocks.shift, 2215 bdev_logical_block_size(rdev->bdev) >> 9); 2216 sector = r1_bio->sector; 2217 sectors = ((sector + block_sectors) 2218 & ~(sector_t)(block_sectors - 1)) 2219 - sector; 2220 2221 while (sect_to_write) { 2222 struct bio *wbio; 2223 if (sectors > sect_to_write) 2224 sectors = sect_to_write; 2225 /* Write at 'sector' for 'sectors'*/ 2226 2227 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2228 unsigned vcnt = r1_bio->behind_page_count; 2229 struct bio_vec *vec = r1_bio->behind_bvecs; 2230 2231 while (!vec->bv_page) { 2232 vec++; 2233 vcnt--; 2234 } 2235 2236 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2237 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2238 2239 wbio->bi_vcnt = vcnt; 2240 } else { 2241 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2242 } 2243 2244 wbio->bi_rw = WRITE; 2245 wbio->bi_iter.bi_sector = r1_bio->sector; 2246 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2247 2248 bio_trim(wbio, sector - r1_bio->sector, sectors); 2249 wbio->bi_iter.bi_sector += rdev->data_offset; 2250 wbio->bi_bdev = rdev->bdev; 2251 if (submit_bio_wait(WRITE, wbio) < 0) 2252 /* failure! */ 2253 ok = rdev_set_badblocks(rdev, sector, 2254 sectors, 0) 2255 && ok; 2256 2257 bio_put(wbio); 2258 sect_to_write -= sectors; 2259 sector += sectors; 2260 sectors = block_sectors; 2261 } 2262 return ok; 2263} 2264 2265static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2266{ 2267 int m; 2268 int s = r1_bio->sectors; 2269 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2270 struct md_rdev *rdev = conf->mirrors[m].rdev; 2271 struct bio *bio = r1_bio->bios[m]; 2272 if (bio->bi_end_io == NULL) 2273 continue; 2274 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2275 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2276 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2277 } 2278 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2279 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2280 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2281 md_error(conf->mddev, rdev); 2282 } 2283 } 2284 put_buf(r1_bio); 2285 md_done_sync(conf->mddev, s, 1); 2286} 2287 2288static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2289{ 2290 int m; 2291 for (m = 0; m < conf->raid_disks * 2 ; m++) 2292 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2293 struct md_rdev *rdev = conf->mirrors[m].rdev; 2294 rdev_clear_badblocks(rdev, 2295 r1_bio->sector, 2296 r1_bio->sectors, 0); 2297 rdev_dec_pending(rdev, conf->mddev); 2298 } else if (r1_bio->bios[m] != NULL) { 2299 /* This drive got a write error. We need to 2300 * narrow down and record precise write 2301 * errors. 2302 */ 2303 if (!narrow_write_error(r1_bio, m)) { 2304 md_error(conf->mddev, 2305 conf->mirrors[m].rdev); 2306 /* an I/O failed, we can't clear the bitmap */ 2307 set_bit(R1BIO_Degraded, &r1_bio->state); 2308 } 2309 rdev_dec_pending(conf->mirrors[m].rdev, 2310 conf->mddev); 2311 } 2312 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2313 close_write(r1_bio); 2314 raid_end_bio_io(r1_bio); 2315} 2316 2317static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2318{ 2319 int disk; 2320 int max_sectors; 2321 struct mddev *mddev = conf->mddev; 2322 struct bio *bio; 2323 char b[BDEVNAME_SIZE]; 2324 struct md_rdev *rdev; 2325 2326 clear_bit(R1BIO_ReadError, &r1_bio->state); 2327 /* we got a read error. Maybe the drive is bad. Maybe just 2328 * the block and we can fix it. 2329 * We freeze all other IO, and try reading the block from 2330 * other devices. When we find one, we re-write 2331 * and check it that fixes the read error. 2332 * This is all done synchronously while the array is 2333 * frozen 2334 */ 2335 if (mddev->ro == 0) { 2336 freeze_array(conf, 1); 2337 fix_read_error(conf, r1_bio->read_disk, 2338 r1_bio->sector, r1_bio->sectors); 2339 unfreeze_array(conf); 2340 } else 2341 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2342 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2343 2344 bio = r1_bio->bios[r1_bio->read_disk]; 2345 bdevname(bio->bi_bdev, b); 2346read_more: 2347 disk = read_balance(conf, r1_bio, &max_sectors); 2348 if (disk == -1) { 2349 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2350 " read error for block %llu\n", 2351 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2352 raid_end_bio_io(r1_bio); 2353 } else { 2354 const unsigned long do_sync 2355 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2356 if (bio) { 2357 r1_bio->bios[r1_bio->read_disk] = 2358 mddev->ro ? IO_BLOCKED : NULL; 2359 bio_put(bio); 2360 } 2361 r1_bio->read_disk = disk; 2362 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2363 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2364 max_sectors); 2365 r1_bio->bios[r1_bio->read_disk] = bio; 2366 rdev = conf->mirrors[disk].rdev; 2367 printk_ratelimited(KERN_ERR 2368 "md/raid1:%s: redirecting sector %llu" 2369 " to other mirror: %s\n", 2370 mdname(mddev), 2371 (unsigned long long)r1_bio->sector, 2372 bdevname(rdev->bdev, b)); 2373 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2374 bio->bi_bdev = rdev->bdev; 2375 bio->bi_end_io = raid1_end_read_request; 2376 bio->bi_rw = READ | do_sync; 2377 bio->bi_private = r1_bio; 2378 if (max_sectors < r1_bio->sectors) { 2379 /* Drat - have to split this up more */ 2380 struct bio *mbio = r1_bio->master_bio; 2381 int sectors_handled = (r1_bio->sector + max_sectors 2382 - mbio->bi_iter.bi_sector); 2383 r1_bio->sectors = max_sectors; 2384 spin_lock_irq(&conf->device_lock); 2385 if (mbio->bi_phys_segments == 0) 2386 mbio->bi_phys_segments = 2; 2387 else 2388 mbio->bi_phys_segments++; 2389 spin_unlock_irq(&conf->device_lock); 2390 generic_make_request(bio); 2391 bio = NULL; 2392 2393 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2394 2395 r1_bio->master_bio = mbio; 2396 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2397 r1_bio->state = 0; 2398 set_bit(R1BIO_ReadError, &r1_bio->state); 2399 r1_bio->mddev = mddev; 2400 r1_bio->sector = mbio->bi_iter.bi_sector + 2401 sectors_handled; 2402 2403 goto read_more; 2404 } else 2405 generic_make_request(bio); 2406 } 2407} 2408 2409static void raid1d(struct md_thread *thread) 2410{ 2411 struct mddev *mddev = thread->mddev; 2412 struct r1bio *r1_bio; 2413 unsigned long flags; 2414 struct r1conf *conf = mddev->private; 2415 struct list_head *head = &conf->retry_list; 2416 struct blk_plug plug; 2417 2418 md_check_recovery(mddev); 2419 2420 blk_start_plug(&plug); 2421 for (;;) { 2422 2423 flush_pending_writes(conf); 2424 2425 spin_lock_irqsave(&conf->device_lock, flags); 2426 if (list_empty(head)) { 2427 spin_unlock_irqrestore(&conf->device_lock, flags); 2428 break; 2429 } 2430 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2431 list_del(head->prev); 2432 conf->nr_queued--; 2433 spin_unlock_irqrestore(&conf->device_lock, flags); 2434 2435 mddev = r1_bio->mddev; 2436 conf = mddev->private; 2437 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2438 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2439 test_bit(R1BIO_WriteError, &r1_bio->state)) 2440 handle_sync_write_finished(conf, r1_bio); 2441 else 2442 sync_request_write(mddev, r1_bio); 2443 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2444 test_bit(R1BIO_WriteError, &r1_bio->state)) 2445 handle_write_finished(conf, r1_bio); 2446 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2447 handle_read_error(conf, r1_bio); 2448 else 2449 /* just a partial read to be scheduled from separate 2450 * context 2451 */ 2452 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2453 2454 cond_resched(); 2455 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2456 md_check_recovery(mddev); 2457 } 2458 blk_finish_plug(&plug); 2459} 2460 2461static int init_resync(struct r1conf *conf) 2462{ 2463 int buffs; 2464 2465 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2466 BUG_ON(conf->r1buf_pool); 2467 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2468 conf->poolinfo); 2469 if (!conf->r1buf_pool) 2470 return -ENOMEM; 2471 conf->next_resync = 0; 2472 return 0; 2473} 2474 2475/* 2476 * perform a "sync" on one "block" 2477 * 2478 * We need to make sure that no normal I/O request - particularly write 2479 * requests - conflict with active sync requests. 2480 * 2481 * This is achieved by tracking pending requests and a 'barrier' concept 2482 * that can be installed to exclude normal IO requests. 2483 */ 2484 2485static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 2486{ 2487 struct r1conf *conf = mddev->private; 2488 struct r1bio *r1_bio; 2489 struct bio *bio; 2490 sector_t max_sector, nr_sectors; 2491 int disk = -1; 2492 int i; 2493 int wonly = -1; 2494 int write_targets = 0, read_targets = 0; 2495 sector_t sync_blocks; 2496 int still_degraded = 0; 2497 int good_sectors = RESYNC_SECTORS; 2498 int min_bad = 0; /* number of sectors that are bad in all devices */ 2499 2500 if (!conf->r1buf_pool) 2501 if (init_resync(conf)) 2502 return 0; 2503 2504 max_sector = mddev->dev_sectors; 2505 if (sector_nr >= max_sector) { 2506 /* If we aborted, we need to abort the 2507 * sync on the 'current' bitmap chunk (there will 2508 * only be one in raid1 resync. 2509 * We can find the current addess in mddev->curr_resync 2510 */ 2511 if (mddev->curr_resync < max_sector) /* aborted */ 2512 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2513 &sync_blocks, 1); 2514 else /* completed sync */ 2515 conf->fullsync = 0; 2516 2517 bitmap_close_sync(mddev->bitmap); 2518 close_sync(conf); 2519 return 0; 2520 } 2521 2522 if (mddev->bitmap == NULL && 2523 mddev->recovery_cp == MaxSector && 2524 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2525 conf->fullsync == 0) { 2526 *skipped = 1; 2527 return max_sector - sector_nr; 2528 } 2529 /* before building a request, check if we can skip these blocks.. 2530 * This call the bitmap_start_sync doesn't actually record anything 2531 */ 2532 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2533 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2534 /* We can skip this block, and probably several more */ 2535 *skipped = 1; 2536 return sync_blocks; 2537 } 2538 2539 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2540 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2541 2542 raise_barrier(conf, sector_nr); 2543 2544 rcu_read_lock(); 2545 /* 2546 * If we get a correctably read error during resync or recovery, 2547 * we might want to read from a different device. So we 2548 * flag all drives that could conceivably be read from for READ, 2549 * and any others (which will be non-In_sync devices) for WRITE. 2550 * If a read fails, we try reading from something else for which READ 2551 * is OK. 2552 */ 2553 2554 r1_bio->mddev = mddev; 2555 r1_bio->sector = sector_nr; 2556 r1_bio->state = 0; 2557 set_bit(R1BIO_IsSync, &r1_bio->state); 2558 2559 for (i = 0; i < conf->raid_disks * 2; i++) { 2560 struct md_rdev *rdev; 2561 bio = r1_bio->bios[i]; 2562 bio_reset(bio); 2563 2564 rdev = rcu_dereference(conf->mirrors[i].rdev); 2565 if (rdev == NULL || 2566 test_bit(Faulty, &rdev->flags)) { 2567 if (i < conf->raid_disks) 2568 still_degraded = 1; 2569 } else if (!test_bit(In_sync, &rdev->flags)) { 2570 bio->bi_rw = WRITE; 2571 bio->bi_end_io = end_sync_write; 2572 write_targets ++; 2573 } else { 2574 /* may need to read from here */ 2575 sector_t first_bad = MaxSector; 2576 int bad_sectors; 2577 2578 if (is_badblock(rdev, sector_nr, good_sectors, 2579 &first_bad, &bad_sectors)) { 2580 if (first_bad > sector_nr) 2581 good_sectors = first_bad - sector_nr; 2582 else { 2583 bad_sectors -= (sector_nr - first_bad); 2584 if (min_bad == 0 || 2585 min_bad > bad_sectors) 2586 min_bad = bad_sectors; 2587 } 2588 } 2589 if (sector_nr < first_bad) { 2590 if (test_bit(WriteMostly, &rdev->flags)) { 2591 if (wonly < 0) 2592 wonly = i; 2593 } else { 2594 if (disk < 0) 2595 disk = i; 2596 } 2597 bio->bi_rw = READ; 2598 bio->bi_end_io = end_sync_read; 2599 read_targets++; 2600 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2601 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2602 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2603 /* 2604 * The device is suitable for reading (InSync), 2605 * but has bad block(s) here. Let's try to correct them, 2606 * if we are doing resync or repair. Otherwise, leave 2607 * this device alone for this sync request. 2608 */ 2609 bio->bi_rw = WRITE; 2610 bio->bi_end_io = end_sync_write; 2611 write_targets++; 2612 } 2613 } 2614 if (bio->bi_end_io) { 2615 atomic_inc(&rdev->nr_pending); 2616 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2617 bio->bi_bdev = rdev->bdev; 2618 bio->bi_private = r1_bio; 2619 } 2620 } 2621 rcu_read_unlock(); 2622 if (disk < 0) 2623 disk = wonly; 2624 r1_bio->read_disk = disk; 2625 2626 if (read_targets == 0 && min_bad > 0) { 2627 /* These sectors are bad on all InSync devices, so we 2628 * need to mark them bad on all write targets 2629 */ 2630 int ok = 1; 2631 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2632 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2633 struct md_rdev *rdev = conf->mirrors[i].rdev; 2634 ok = rdev_set_badblocks(rdev, sector_nr, 2635 min_bad, 0 2636 ) && ok; 2637 } 2638 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2639 *skipped = 1; 2640 put_buf(r1_bio); 2641 2642 if (!ok) { 2643 /* Cannot record the badblocks, so need to 2644 * abort the resync. 2645 * If there are multiple read targets, could just 2646 * fail the really bad ones ??? 2647 */ 2648 conf->recovery_disabled = mddev->recovery_disabled; 2649 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2650 return 0; 2651 } else 2652 return min_bad; 2653 2654 } 2655 if (min_bad > 0 && min_bad < good_sectors) { 2656 /* only resync enough to reach the next bad->good 2657 * transition */ 2658 good_sectors = min_bad; 2659 } 2660 2661 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2662 /* extra read targets are also write targets */ 2663 write_targets += read_targets-1; 2664 2665 if (write_targets == 0 || read_targets == 0) { 2666 /* There is nowhere to write, so all non-sync 2667 * drives must be failed - so we are finished 2668 */ 2669 sector_t rv; 2670 if (min_bad > 0) 2671 max_sector = sector_nr + min_bad; 2672 rv = max_sector - sector_nr; 2673 *skipped = 1; 2674 put_buf(r1_bio); 2675 return rv; 2676 } 2677 2678 if (max_sector > mddev->resync_max) 2679 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2680 if (max_sector > sector_nr + good_sectors) 2681 max_sector = sector_nr + good_sectors; 2682 nr_sectors = 0; 2683 sync_blocks = 0; 2684 do { 2685 struct page *page; 2686 int len = PAGE_SIZE; 2687 if (sector_nr + (len>>9) > max_sector) 2688 len = (max_sector - sector_nr) << 9; 2689 if (len == 0) 2690 break; 2691 if (sync_blocks == 0) { 2692 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2693 &sync_blocks, still_degraded) && 2694 !conf->fullsync && 2695 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2696 break; 2697 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2698 if ((len >> 9) > sync_blocks) 2699 len = sync_blocks<<9; 2700 } 2701 2702 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2703 bio = r1_bio->bios[i]; 2704 if (bio->bi_end_io) { 2705 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2706 if (bio_add_page(bio, page, len, 0) == 0) { 2707 /* stop here */ 2708 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2709 while (i > 0) { 2710 i--; 2711 bio = r1_bio->bios[i]; 2712 if (bio->bi_end_io==NULL) 2713 continue; 2714 /* remove last page from this bio */ 2715 bio->bi_vcnt--; 2716 bio->bi_iter.bi_size -= len; 2717 __clear_bit(BIO_SEG_VALID, &bio->bi_flags); 2718 } 2719 goto bio_full; 2720 } 2721 } 2722 } 2723 nr_sectors += len>>9; 2724 sector_nr += len>>9; 2725 sync_blocks -= (len>>9); 2726 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2727 bio_full: 2728 r1_bio->sectors = nr_sectors; 2729 2730 /* For a user-requested sync, we read all readable devices and do a 2731 * compare 2732 */ 2733 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2734 atomic_set(&r1_bio->remaining, read_targets); 2735 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2736 bio = r1_bio->bios[i]; 2737 if (bio->bi_end_io == end_sync_read) { 2738 read_targets--; 2739 md_sync_acct(bio->bi_bdev, nr_sectors); 2740 generic_make_request(bio); 2741 } 2742 } 2743 } else { 2744 atomic_set(&r1_bio->remaining, 1); 2745 bio = r1_bio->bios[r1_bio->read_disk]; 2746 md_sync_acct(bio->bi_bdev, nr_sectors); 2747 generic_make_request(bio); 2748 2749 } 2750 return nr_sectors; 2751} 2752 2753static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2754{ 2755 if (sectors) 2756 return sectors; 2757 2758 return mddev->dev_sectors; 2759} 2760 2761static struct r1conf *setup_conf(struct mddev *mddev) 2762{ 2763 struct r1conf *conf; 2764 int i; 2765 struct raid1_info *disk; 2766 struct md_rdev *rdev; 2767 int err = -ENOMEM; 2768 2769 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2770 if (!conf) 2771 goto abort; 2772 2773 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2774 * mddev->raid_disks * 2, 2775 GFP_KERNEL); 2776 if (!conf->mirrors) 2777 goto abort; 2778 2779 conf->tmppage = alloc_page(GFP_KERNEL); 2780 if (!conf->tmppage) 2781 goto abort; 2782 2783 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2784 if (!conf->poolinfo) 2785 goto abort; 2786 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2787 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2788 r1bio_pool_free, 2789 conf->poolinfo); 2790 if (!conf->r1bio_pool) 2791 goto abort; 2792 2793 conf->poolinfo->mddev = mddev; 2794 2795 err = -EINVAL; 2796 spin_lock_init(&conf->device_lock); 2797 rdev_for_each(rdev, mddev) { 2798 struct request_queue *q; 2799 int disk_idx = rdev->raid_disk; 2800 if (disk_idx >= mddev->raid_disks 2801 || disk_idx < 0) 2802 continue; 2803 if (test_bit(Replacement, &rdev->flags)) 2804 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2805 else 2806 disk = conf->mirrors + disk_idx; 2807 2808 if (disk->rdev) 2809 goto abort; 2810 disk->rdev = rdev; 2811 q = bdev_get_queue(rdev->bdev); 2812 if (q->merge_bvec_fn) 2813 mddev->merge_check_needed = 1; 2814 2815 disk->head_position = 0; 2816 disk->seq_start = MaxSector; 2817 } 2818 conf->raid_disks = mddev->raid_disks; 2819 conf->mddev = mddev; 2820 INIT_LIST_HEAD(&conf->retry_list); 2821 2822 spin_lock_init(&conf->resync_lock); 2823 init_waitqueue_head(&conf->wait_barrier); 2824 2825 bio_list_init(&conf->pending_bio_list); 2826 conf->pending_count = 0; 2827 conf->recovery_disabled = mddev->recovery_disabled - 1; 2828 2829 conf->start_next_window = MaxSector; 2830 conf->current_window_requests = conf->next_window_requests = 0; 2831 2832 err = -EIO; 2833 for (i = 0; i < conf->raid_disks * 2; i++) { 2834 2835 disk = conf->mirrors + i; 2836 2837 if (i < conf->raid_disks && 2838 disk[conf->raid_disks].rdev) { 2839 /* This slot has a replacement. */ 2840 if (!disk->rdev) { 2841 /* No original, just make the replacement 2842 * a recovering spare 2843 */ 2844 disk->rdev = 2845 disk[conf->raid_disks].rdev; 2846 disk[conf->raid_disks].rdev = NULL; 2847 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2848 /* Original is not in_sync - bad */ 2849 goto abort; 2850 } 2851 2852 if (!disk->rdev || 2853 !test_bit(In_sync, &disk->rdev->flags)) { 2854 disk->head_position = 0; 2855 if (disk->rdev && 2856 (disk->rdev->saved_raid_disk < 0)) 2857 conf->fullsync = 1; 2858 } 2859 } 2860 2861 err = -ENOMEM; 2862 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2863 if (!conf->thread) { 2864 printk(KERN_ERR 2865 "md/raid1:%s: couldn't allocate thread\n", 2866 mdname(mddev)); 2867 goto abort; 2868 } 2869 2870 return conf; 2871 2872 abort: 2873 if (conf) { 2874 if (conf->r1bio_pool) 2875 mempool_destroy(conf->r1bio_pool); 2876 kfree(conf->mirrors); 2877 safe_put_page(conf->tmppage); 2878 kfree(conf->poolinfo); 2879 kfree(conf); 2880 } 2881 return ERR_PTR(err); 2882} 2883 2884static void raid1_free(struct mddev *mddev, void *priv); 2885static int run(struct mddev *mddev) 2886{ 2887 struct r1conf *conf; 2888 int i; 2889 struct md_rdev *rdev; 2890 int ret; 2891 bool discard_supported = false; 2892 2893 if (mddev->level != 1) { 2894 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2895 mdname(mddev), mddev->level); 2896 return -EIO; 2897 } 2898 if (mddev->reshape_position != MaxSector) { 2899 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2900 mdname(mddev)); 2901 return -EIO; 2902 } 2903 /* 2904 * copy the already verified devices into our private RAID1 2905 * bookkeeping area. [whatever we allocate in run(), 2906 * should be freed in raid1_free()] 2907 */ 2908 if (mddev->private == NULL) 2909 conf = setup_conf(mddev); 2910 else 2911 conf = mddev->private; 2912 2913 if (IS_ERR(conf)) 2914 return PTR_ERR(conf); 2915 2916 if (mddev->queue) 2917 blk_queue_max_write_same_sectors(mddev->queue, 0); 2918 2919 rdev_for_each(rdev, mddev) { 2920 if (!mddev->gendisk) 2921 continue; 2922 disk_stack_limits(mddev->gendisk, rdev->bdev, 2923 rdev->data_offset << 9); 2924 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2925 discard_supported = true; 2926 } 2927 2928 mddev->degraded = 0; 2929 for (i=0; i < conf->raid_disks; i++) 2930 if (conf->mirrors[i].rdev == NULL || 2931 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2932 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2933 mddev->degraded++; 2934 2935 if (conf->raid_disks - mddev->degraded == 1) 2936 mddev->recovery_cp = MaxSector; 2937 2938 if (mddev->recovery_cp != MaxSector) 2939 printk(KERN_NOTICE "md/raid1:%s: not clean" 2940 " -- starting background reconstruction\n", 2941 mdname(mddev)); 2942 printk(KERN_INFO 2943 "md/raid1:%s: active with %d out of %d mirrors\n", 2944 mdname(mddev), mddev->raid_disks - mddev->degraded, 2945 mddev->raid_disks); 2946 2947 /* 2948 * Ok, everything is just fine now 2949 */ 2950 mddev->thread = conf->thread; 2951 conf->thread = NULL; 2952 mddev->private = conf; 2953 2954 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2955 2956 if (mddev->queue) { 2957 if (discard_supported) 2958 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2959 mddev->queue); 2960 else 2961 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2962 mddev->queue); 2963 } 2964 2965 ret = md_integrity_register(mddev); 2966 if (ret) { 2967 md_unregister_thread(&mddev->thread); 2968 raid1_free(mddev, conf); 2969 } 2970 return ret; 2971} 2972 2973static void raid1_free(struct mddev *mddev, void *priv) 2974{ 2975 struct r1conf *conf = priv; 2976 2977 if (conf->r1bio_pool) 2978 mempool_destroy(conf->r1bio_pool); 2979 kfree(conf->mirrors); 2980 safe_put_page(conf->tmppage); 2981 kfree(conf->poolinfo); 2982 kfree(conf); 2983} 2984 2985static int raid1_resize(struct mddev *mddev, sector_t sectors) 2986{ 2987 /* no resync is happening, and there is enough space 2988 * on all devices, so we can resize. 2989 * We need to make sure resync covers any new space. 2990 * If the array is shrinking we should possibly wait until 2991 * any io in the removed space completes, but it hardly seems 2992 * worth it. 2993 */ 2994 sector_t newsize = raid1_size(mddev, sectors, 0); 2995 if (mddev->external_size && 2996 mddev->array_sectors > newsize) 2997 return -EINVAL; 2998 if (mddev->bitmap) { 2999 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3000 if (ret) 3001 return ret; 3002 } 3003 md_set_array_sectors(mddev, newsize); 3004 set_capacity(mddev->gendisk, mddev->array_sectors); 3005 revalidate_disk(mddev->gendisk); 3006 if (sectors > mddev->dev_sectors && 3007 mddev->recovery_cp > mddev->dev_sectors) { 3008 mddev->recovery_cp = mddev->dev_sectors; 3009 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3010 } 3011 mddev->dev_sectors = sectors; 3012 mddev->resync_max_sectors = sectors; 3013 return 0; 3014} 3015 3016static int raid1_reshape(struct mddev *mddev) 3017{ 3018 /* We need to: 3019 * 1/ resize the r1bio_pool 3020 * 2/ resize conf->mirrors 3021 * 3022 * We allocate a new r1bio_pool if we can. 3023 * Then raise a device barrier and wait until all IO stops. 3024 * Then resize conf->mirrors and swap in the new r1bio pool. 3025 * 3026 * At the same time, we "pack" the devices so that all the missing 3027 * devices have the higher raid_disk numbers. 3028 */ 3029 mempool_t *newpool, *oldpool; 3030 struct pool_info *newpoolinfo; 3031 struct raid1_info *newmirrors; 3032 struct r1conf *conf = mddev->private; 3033 int cnt, raid_disks; 3034 unsigned long flags; 3035 int d, d2, err; 3036 3037 /* Cannot change chunk_size, layout, or level */ 3038 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3039 mddev->layout != mddev->new_layout || 3040 mddev->level != mddev->new_level) { 3041 mddev->new_chunk_sectors = mddev->chunk_sectors; 3042 mddev->new_layout = mddev->layout; 3043 mddev->new_level = mddev->level; 3044 return -EINVAL; 3045 } 3046 3047 err = md_allow_write(mddev); 3048 if (err) 3049 return err; 3050 3051 raid_disks = mddev->raid_disks + mddev->delta_disks; 3052 3053 if (raid_disks < conf->raid_disks) { 3054 cnt=0; 3055 for (d= 0; d < conf->raid_disks; d++) 3056 if (conf->mirrors[d].rdev) 3057 cnt++; 3058 if (cnt > raid_disks) 3059 return -EBUSY; 3060 } 3061 3062 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3063 if (!newpoolinfo) 3064 return -ENOMEM; 3065 newpoolinfo->mddev = mddev; 3066 newpoolinfo->raid_disks = raid_disks * 2; 3067 3068 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3069 r1bio_pool_free, newpoolinfo); 3070 if (!newpool) { 3071 kfree(newpoolinfo); 3072 return -ENOMEM; 3073 } 3074 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3075 GFP_KERNEL); 3076 if (!newmirrors) { 3077 kfree(newpoolinfo); 3078 mempool_destroy(newpool); 3079 return -ENOMEM; 3080 } 3081 3082 freeze_array(conf, 0); 3083 3084 /* ok, everything is stopped */ 3085 oldpool = conf->r1bio_pool; 3086 conf->r1bio_pool = newpool; 3087 3088 for (d = d2 = 0; d < conf->raid_disks; d++) { 3089 struct md_rdev *rdev = conf->mirrors[d].rdev; 3090 if (rdev && rdev->raid_disk != d2) { 3091 sysfs_unlink_rdev(mddev, rdev); 3092 rdev->raid_disk = d2; 3093 sysfs_unlink_rdev(mddev, rdev); 3094 if (sysfs_link_rdev(mddev, rdev)) 3095 printk(KERN_WARNING 3096 "md/raid1:%s: cannot register rd%d\n", 3097 mdname(mddev), rdev->raid_disk); 3098 } 3099 if (rdev) 3100 newmirrors[d2++].rdev = rdev; 3101 } 3102 kfree(conf->mirrors); 3103 conf->mirrors = newmirrors; 3104 kfree(conf->poolinfo); 3105 conf->poolinfo = newpoolinfo; 3106 3107 spin_lock_irqsave(&conf->device_lock, flags); 3108 mddev->degraded += (raid_disks - conf->raid_disks); 3109 spin_unlock_irqrestore(&conf->device_lock, flags); 3110 conf->raid_disks = mddev->raid_disks = raid_disks; 3111 mddev->delta_disks = 0; 3112 3113 unfreeze_array(conf); 3114 3115 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3116 md_wakeup_thread(mddev->thread); 3117 3118 mempool_destroy(oldpool); 3119 return 0; 3120} 3121 3122static void raid1_quiesce(struct mddev *mddev, int state) 3123{ 3124 struct r1conf *conf = mddev->private; 3125 3126 switch(state) { 3127 case 2: /* wake for suspend */ 3128 wake_up(&conf->wait_barrier); 3129 break; 3130 case 1: 3131 freeze_array(conf, 0); 3132 break; 3133 case 0: 3134 unfreeze_array(conf); 3135 break; 3136 } 3137} 3138 3139static void *raid1_takeover(struct mddev *mddev) 3140{ 3141 /* raid1 can take over: 3142 * raid5 with 2 devices, any layout or chunk size 3143 */ 3144 if (mddev->level == 5 && mddev->raid_disks == 2) { 3145 struct r1conf *conf; 3146 mddev->new_level = 1; 3147 mddev->new_layout = 0; 3148 mddev->new_chunk_sectors = 0; 3149 conf = setup_conf(mddev); 3150 if (!IS_ERR(conf)) 3151 /* Array must appear to be quiesced */ 3152 conf->array_frozen = 1; 3153 return conf; 3154 } 3155 return ERR_PTR(-EINVAL); 3156} 3157 3158static struct md_personality raid1_personality = 3159{ 3160 .name = "raid1", 3161 .level = 1, 3162 .owner = THIS_MODULE, 3163 .make_request = make_request, 3164 .run = run, 3165 .free = raid1_free, 3166 .status = status, 3167 .error_handler = error, 3168 .hot_add_disk = raid1_add_disk, 3169 .hot_remove_disk= raid1_remove_disk, 3170 .spare_active = raid1_spare_active, 3171 .sync_request = sync_request, 3172 .resize = raid1_resize, 3173 .size = raid1_size, 3174 .check_reshape = raid1_reshape, 3175 .quiesce = raid1_quiesce, 3176 .takeover = raid1_takeover, 3177 .congested = raid1_congested, 3178 .mergeable_bvec = raid1_mergeable_bvec, 3179}; 3180 3181static int __init raid_init(void) 3182{ 3183 return register_md_personality(&raid1_personality); 3184} 3185 3186static void raid_exit(void) 3187{ 3188 unregister_md_personality(&raid1_personality); 3189} 3190 3191module_init(raid_init); 3192module_exit(raid_exit); 3193MODULE_LICENSE("GPL"); 3194MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3195MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3196MODULE_ALIAS("md-raid1"); 3197MODULE_ALIAS("md-level-1"); 3198 3199module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3200