1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27
28 #include <trace/events/block.h>
29
30 #define DM_MSG_PREFIX "core"
31
32 #ifdef CONFIG_PRINTK
33 /*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41
42 /*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48
49 static const char *_name = DM_NAME;
50
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53
54 static DEFINE_IDR(_minor_idr);
55
56 static DEFINE_SPINLOCK(_minor_lock);
57
58 static void do_deferred_remove(struct work_struct *w);
59
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62 static struct workqueue_struct *deferred_remove_workqueue;
63
64 /*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68 struct dm_io {
69 struct mapped_device *md;
70 int error;
71 atomic_t io_count;
72 struct bio *bio;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
76 };
77
78 /*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82 struct dm_rq_target_io {
83 struct mapped_device *md;
84 struct dm_target *ti;
85 struct request *orig, *clone;
86 struct kthread_work work;
87 int error;
88 union map_info info;
89 };
90
91 /*
92 * For request-based dm - the bio clones we allocate are embedded in these
93 * structs.
94 *
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
97 * struct.
98 */
99 struct dm_rq_clone_bio_info {
100 struct bio *orig;
101 struct dm_rq_target_io *tio;
102 struct bio clone;
103 };
104
dm_get_rq_mapinfo(struct request * rq)105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 if (rq && rq->end_io_data)
108 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112
113 #define MINOR_ALLOCED ((void *)-1)
114
115 /*
116 * Bits for the md->flags field.
117 */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127
128 /*
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
131 */
132 struct dm_table {
133 int undefined__;
134 };
135
136 /*
137 * Work processed by per-device workqueue.
138 */
139 struct mapped_device {
140 struct srcu_struct io_barrier;
141 struct mutex suspend_lock;
142 atomic_t holders;
143 atomic_t open_count;
144
145 /*
146 * The current mapping.
147 * Use dm_get_live_table{_fast} or take suspend_lock for
148 * dereference.
149 */
150 struct dm_table __rcu *map;
151
152 struct list_head table_devices;
153 struct mutex table_devices_lock;
154
155 unsigned long flags;
156
157 struct request_queue *queue;
158 unsigned type;
159 /* Protect queue and type against concurrent access. */
160 struct mutex type_lock;
161
162 struct target_type *immutable_target_type;
163
164 struct gendisk *disk;
165 char name[16];
166
167 void *interface_ptr;
168
169 /*
170 * A list of ios that arrived while we were suspended.
171 */
172 atomic_t pending[2];
173 wait_queue_head_t wait;
174 struct work_struct work;
175 struct bio_list deferred;
176 spinlock_t deferred_lock;
177
178 /*
179 * Processing queue (flush)
180 */
181 struct workqueue_struct *wq;
182
183 /*
184 * io objects are allocated from here.
185 */
186 mempool_t *io_pool;
187 mempool_t *rq_pool;
188
189 struct bio_set *bs;
190
191 /*
192 * Event handling.
193 */
194 atomic_t event_nr;
195 wait_queue_head_t eventq;
196 atomic_t uevent_seq;
197 struct list_head uevent_list;
198 spinlock_t uevent_lock; /* Protect access to uevent_list */
199
200 /*
201 * freeze/thaw support require holding onto a super block
202 */
203 struct super_block *frozen_sb;
204 struct block_device *bdev;
205
206 /* forced geometry settings */
207 struct hd_geometry geometry;
208
209 /* kobject and completion */
210 struct dm_kobject_holder kobj_holder;
211
212 /* zero-length flush that will be cloned and submitted to targets */
213 struct bio flush_bio;
214
215 /* the number of internal suspends */
216 unsigned internal_suspend_count;
217
218 struct dm_stats stats;
219
220 struct kthread_worker kworker;
221 struct task_struct *kworker_task;
222
223 /* for request-based merge heuristic in dm_request_fn() */
224 unsigned seq_rq_merge_deadline_usecs;
225 int last_rq_rw;
226 sector_t last_rq_pos;
227 ktime_t last_rq_start_time;
228
229 /* for blk-mq request-based DM support */
230 struct blk_mq_tag_set tag_set;
231 bool use_blk_mq;
232 };
233
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239
dm_use_blk_mq(struct mapped_device * md)240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 return md->use_blk_mq;
243 }
244
245 /*
246 * For mempools pre-allocation at the table loading time.
247 */
248 struct dm_md_mempools {
249 mempool_t *io_pool;
250 mempool_t *rq_pool;
251 struct bio_set *bs;
252 };
253
254 struct table_device {
255 struct list_head list;
256 atomic_t count;
257 struct dm_dev dm_dev;
258 };
259
260 #define RESERVED_BIO_BASED_IOS 16
261 #define RESERVED_REQUEST_BASED_IOS 256
262 #define RESERVED_MAX_IOS 1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266
267 /*
268 * Bio-based DM's mempools' reserved IOs set by the user.
269 */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271
272 /*
273 * Request-based DM's mempools' reserved IOs set by the user.
274 */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)277 static unsigned __dm_get_module_param(unsigned *module_param,
278 unsigned def, unsigned max)
279 {
280 unsigned param = ACCESS_ONCE(*module_param);
281 unsigned modified_param = 0;
282
283 if (!param)
284 modified_param = def;
285 else if (param > max)
286 modified_param = max;
287
288 if (modified_param) {
289 (void)cmpxchg(module_param, param, modified_param);
290 param = modified_param;
291 }
292
293 return param;
294 }
295
dm_get_reserved_bio_based_ios(void)296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 return __dm_get_module_param(&reserved_bio_based_ios,
299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302
dm_get_reserved_rq_based_ios(void)303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 return __dm_get_module_param(&reserved_rq_based_ios,
306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309
local_init(void)310 static int __init local_init(void)
311 {
312 int r = -ENOMEM;
313
314 /* allocate a slab for the dm_ios */
315 _io_cache = KMEM_CACHE(dm_io, 0);
316 if (!_io_cache)
317 return r;
318
319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 if (!_rq_tio_cache)
321 goto out_free_io_cache;
322
323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 __alignof__(struct request), 0, NULL);
325 if (!_rq_cache)
326 goto out_free_rq_tio_cache;
327
328 r = dm_uevent_init();
329 if (r)
330 goto out_free_rq_cache;
331
332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 if (!deferred_remove_workqueue) {
334 r = -ENOMEM;
335 goto out_uevent_exit;
336 }
337
338 _major = major;
339 r = register_blkdev(_major, _name);
340 if (r < 0)
341 goto out_free_workqueue;
342
343 if (!_major)
344 _major = r;
345
346 return 0;
347
348 out_free_workqueue:
349 destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 dm_uevent_exit();
352 out_free_rq_cache:
353 kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 kmem_cache_destroy(_io_cache);
358
359 return r;
360 }
361
local_exit(void)362 static void local_exit(void)
363 {
364 flush_scheduled_work();
365 destroy_workqueue(deferred_remove_workqueue);
366
367 kmem_cache_destroy(_rq_cache);
368 kmem_cache_destroy(_rq_tio_cache);
369 kmem_cache_destroy(_io_cache);
370 unregister_blkdev(_major, _name);
371 dm_uevent_exit();
372
373 _major = 0;
374
375 DMINFO("cleaned up");
376 }
377
378 static int (*_inits[])(void) __initdata = {
379 local_init,
380 dm_target_init,
381 dm_linear_init,
382 dm_stripe_init,
383 dm_io_init,
384 dm_kcopyd_init,
385 dm_interface_init,
386 dm_statistics_init,
387 };
388
389 static void (*_exits[])(void) = {
390 local_exit,
391 dm_target_exit,
392 dm_linear_exit,
393 dm_stripe_exit,
394 dm_io_exit,
395 dm_kcopyd_exit,
396 dm_interface_exit,
397 dm_statistics_exit,
398 };
399
dm_init(void)400 static int __init dm_init(void)
401 {
402 const int count = ARRAY_SIZE(_inits);
403
404 int r, i;
405
406 for (i = 0; i < count; i++) {
407 r = _inits[i]();
408 if (r)
409 goto bad;
410 }
411
412 return 0;
413
414 bad:
415 while (i--)
416 _exits[i]();
417
418 return r;
419 }
420
dm_exit(void)421 static void __exit dm_exit(void)
422 {
423 int i = ARRAY_SIZE(_exits);
424
425 while (i--)
426 _exits[i]();
427
428 /*
429 * Should be empty by this point.
430 */
431 idr_destroy(&_minor_idr);
432 }
433
434 /*
435 * Block device functions
436 */
dm_deleting_md(struct mapped_device * md)437 int dm_deleting_md(struct mapped_device *md)
438 {
439 return test_bit(DMF_DELETING, &md->flags);
440 }
441
dm_blk_open(struct block_device * bdev,fmode_t mode)442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 struct mapped_device *md;
445
446 spin_lock(&_minor_lock);
447
448 md = bdev->bd_disk->private_data;
449 if (!md)
450 goto out;
451
452 if (test_bit(DMF_FREEING, &md->flags) ||
453 dm_deleting_md(md)) {
454 md = NULL;
455 goto out;
456 }
457
458 dm_get(md);
459 atomic_inc(&md->open_count);
460 out:
461 spin_unlock(&_minor_lock);
462
463 return md ? 0 : -ENXIO;
464 }
465
dm_blk_close(struct gendisk * disk,fmode_t mode)466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 struct mapped_device *md;
469
470 spin_lock(&_minor_lock);
471
472 md = disk->private_data;
473 if (WARN_ON(!md))
474 goto out;
475
476 if (atomic_dec_and_test(&md->open_count) &&
477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 queue_work(deferred_remove_workqueue, &deferred_remove_work);
479
480 dm_put(md);
481 out:
482 spin_unlock(&_minor_lock);
483 }
484
dm_open_count(struct mapped_device * md)485 int dm_open_count(struct mapped_device *md)
486 {
487 return atomic_read(&md->open_count);
488 }
489
490 /*
491 * Guarantees nothing is using the device before it's deleted.
492 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 int r = 0;
496
497 spin_lock(&_minor_lock);
498
499 if (dm_open_count(md)) {
500 r = -EBUSY;
501 if (mark_deferred)
502 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 r = -EEXIST;
505 else
506 set_bit(DMF_DELETING, &md->flags);
507
508 spin_unlock(&_minor_lock);
509
510 return r;
511 }
512
dm_cancel_deferred_remove(struct mapped_device * md)513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 int r = 0;
516
517 spin_lock(&_minor_lock);
518
519 if (test_bit(DMF_DELETING, &md->flags))
520 r = -EBUSY;
521 else
522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523
524 spin_unlock(&_minor_lock);
525
526 return r;
527 }
528
do_deferred_remove(struct work_struct * w)529 static void do_deferred_remove(struct work_struct *w)
530 {
531 dm_deferred_remove();
532 }
533
dm_get_size(struct mapped_device * md)534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 return get_capacity(md->disk);
537 }
538
dm_get_md_queue(struct mapped_device * md)539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 return md->queue;
542 }
543
dm_get_stats(struct mapped_device * md)544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 return &md->stats;
547 }
548
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 struct mapped_device *md = bdev->bd_disk->private_data;
552
553 return dm_get_geometry(md, geo);
554 }
555
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 unsigned int cmd, unsigned long arg)
558 {
559 struct mapped_device *md = bdev->bd_disk->private_data;
560 int srcu_idx;
561 struct dm_table *map;
562 struct dm_target *tgt;
563 int r = -ENOTTY;
564
565 retry:
566 map = dm_get_live_table(md, &srcu_idx);
567
568 if (!map || !dm_table_get_size(map))
569 goto out;
570
571 /* We only support devices that have a single target */
572 if (dm_table_get_num_targets(map) != 1)
573 goto out;
574
575 tgt = dm_table_get_target(map, 0);
576 if (!tgt->type->ioctl)
577 goto out;
578
579 if (dm_suspended_md(md)) {
580 r = -EAGAIN;
581 goto out;
582 }
583
584 r = tgt->type->ioctl(tgt, cmd, arg);
585
586 out:
587 dm_put_live_table(md, srcu_idx);
588
589 if (r == -ENOTCONN) {
590 msleep(10);
591 goto retry;
592 }
593
594 return r;
595 }
596
alloc_io(struct mapped_device * md)597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601
free_io(struct mapped_device * md,struct dm_io * io)602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 mempool_free(io, md->io_pool);
605 }
606
free_tio(struct mapped_device * md,struct dm_target_io * tio)607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 bio_put(&tio->clone);
610 }
611
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 gfp_t gfp_mask)
614 {
615 return mempool_alloc(md->io_pool, gfp_mask);
616 }
617
free_rq_tio(struct dm_rq_target_io * tio)618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 mempool_free(tio, tio->md->io_pool);
621 }
622
alloc_clone_request(struct mapped_device * md,gfp_t gfp_mask)623 static struct request *alloc_clone_request(struct mapped_device *md,
624 gfp_t gfp_mask)
625 {
626 return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628
free_clone_request(struct mapped_device * md,struct request * rq)629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 mempool_free(rq, md->rq_pool);
632 }
633
md_in_flight(struct mapped_device * md)634 static int md_in_flight(struct mapped_device *md)
635 {
636 return atomic_read(&md->pending[READ]) +
637 atomic_read(&md->pending[WRITE]);
638 }
639
start_io_acct(struct dm_io * io)640 static void start_io_acct(struct dm_io *io)
641 {
642 struct mapped_device *md = io->md;
643 struct bio *bio = io->bio;
644 int cpu;
645 int rw = bio_data_dir(bio);
646
647 io->start_time = jiffies;
648
649 cpu = part_stat_lock();
650 part_round_stats(cpu, &dm_disk(md)->part0);
651 part_stat_unlock();
652 atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 atomic_inc_return(&md->pending[rw]));
654
655 if (unlikely(dm_stats_used(&md->stats)))
656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659
end_io_acct(struct dm_io * io)660 static void end_io_acct(struct dm_io *io)
661 {
662 struct mapped_device *md = io->md;
663 struct bio *bio = io->bio;
664 unsigned long duration = jiffies - io->start_time;
665 int pending;
666 int rw = bio_data_dir(bio);
667
668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669
670 if (unlikely(dm_stats_used(&md->stats)))
671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 bio_sectors(bio), true, duration, &io->stats_aux);
673
674 /*
675 * After this is decremented the bio must not be touched if it is
676 * a flush.
677 */
678 pending = atomic_dec_return(&md->pending[rw]);
679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 pending += atomic_read(&md->pending[rw^0x1]);
681
682 /* nudge anyone waiting on suspend queue */
683 if (!pending)
684 wake_up(&md->wait);
685 }
686
687 /*
688 * Add the bio to the list of deferred io.
689 */
queue_io(struct mapped_device * md,struct bio * bio)690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 unsigned long flags;
693
694 spin_lock_irqsave(&md->deferred_lock, flags);
695 bio_list_add(&md->deferred, bio);
696 spin_unlock_irqrestore(&md->deferred_lock, flags);
697 queue_work(md->wq, &md->work);
698 }
699
700 /*
701 * Everyone (including functions in this file), should use this
702 * function to access the md->map field, and make sure they call
703 * dm_put_live_table() when finished.
704 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 *srcu_idx = srcu_read_lock(&md->io_barrier);
708
709 return srcu_dereference(md->map, &md->io_barrier);
710 }
711
dm_put_live_table(struct mapped_device * md,int srcu_idx)712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716
dm_sync_table(struct mapped_device * md)717 void dm_sync_table(struct mapped_device *md)
718 {
719 synchronize_srcu(&md->io_barrier);
720 synchronize_rcu_expedited();
721 }
722
723 /*
724 * A fast alternative to dm_get_live_table/dm_put_live_table.
725 * The caller must not block between these two functions.
726 */
dm_get_live_table_fast(struct mapped_device * md)727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 rcu_read_lock();
730 return rcu_dereference(md->map);
731 }
732
dm_put_live_table_fast(struct mapped_device * md)733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 rcu_read_unlock();
736 }
737
738 /*
739 * Open a table device so we can use it as a map destination.
740 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)741 static int open_table_device(struct table_device *td, dev_t dev,
742 struct mapped_device *md)
743 {
744 static char *_claim_ptr = "I belong to device-mapper";
745 struct block_device *bdev;
746
747 int r;
748
749 BUG_ON(td->dm_dev.bdev);
750
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 if (IS_ERR(bdev))
753 return PTR_ERR(bdev);
754
755 r = bd_link_disk_holder(bdev, dm_disk(md));
756 if (r) {
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 return r;
759 }
760
761 td->dm_dev.bdev = bdev;
762 return 0;
763 }
764
765 /*
766 * Close a table device that we've been using.
767 */
close_table_device(struct table_device * td,struct mapped_device * md)768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 if (!td->dm_dev.bdev)
771 return;
772
773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = NULL;
776 }
777
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 fmode_t mode) {
780 struct table_device *td;
781
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 return td;
785
786 return NULL;
787 }
788
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result) {
791 int r;
792 struct table_device *td;
793
794 mutex_lock(&md->table_devices_lock);
795 td = find_table_device(&md->table_devices, dev, mode);
796 if (!td) {
797 td = kmalloc(sizeof(*td), GFP_KERNEL);
798 if (!td) {
799 mutex_unlock(&md->table_devices_lock);
800 return -ENOMEM;
801 }
802
803 td->dm_dev.mode = mode;
804 td->dm_dev.bdev = NULL;
805
806 if ((r = open_table_device(td, dev, md))) {
807 mutex_unlock(&md->table_devices_lock);
808 kfree(td);
809 return r;
810 }
811
812 format_dev_t(td->dm_dev.name, dev);
813
814 atomic_set(&td->count, 0);
815 list_add(&td->list, &md->table_devices);
816 }
817 atomic_inc(&td->count);
818 mutex_unlock(&md->table_devices_lock);
819
820 *result = &td->dm_dev;
821 return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 struct table_device *td = container_of(d, struct table_device, dm_dev);
828
829 mutex_lock(&md->table_devices_lock);
830 if (atomic_dec_and_test(&td->count)) {
831 close_table_device(td, md);
832 list_del(&td->list);
833 kfree(td);
834 }
835 mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838
free_table_devices(struct list_head * devices)839 static void free_table_devices(struct list_head *devices)
840 {
841 struct list_head *tmp, *next;
842
843 list_for_each_safe(tmp, next, devices) {
844 struct table_device *td = list_entry(tmp, struct table_device, list);
845
846 DMWARN("dm_destroy: %s still exists with %d references",
847 td->dm_dev.name, atomic_read(&td->count));
848 kfree(td);
849 }
850 }
851
852 /*
853 * Get the geometry associated with a dm device
854 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 *geo = md->geometry;
858
859 return 0;
860 }
861
862 /*
863 * Set the geometry of a device.
864 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868
869 if (geo->start > sz) {
870 DMWARN("Start sector is beyond the geometry limits.");
871 return -EINVAL;
872 }
873
874 md->geometry = *geo;
875
876 return 0;
877 }
878
879 /*-----------------------------------------------------------------
880 * CRUD START:
881 * A more elegant soln is in the works that uses the queue
882 * merge fn, unfortunately there are a couple of changes to
883 * the block layer that I want to make for this. So in the
884 * interests of getting something for people to use I give
885 * you this clearly demarcated crap.
886 *---------------------------------------------------------------*/
887
__noflush_suspending(struct mapped_device * md)888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892
893 /*
894 * Decrements the number of outstanding ios that a bio has been
895 * cloned into, completing the original io if necc.
896 */
dec_pending(struct dm_io * io,int error)897 static void dec_pending(struct dm_io *io, int error)
898 {
899 unsigned long flags;
900 int io_error;
901 struct bio *bio;
902 struct mapped_device *md = io->md;
903
904 /* Push-back supersedes any I/O errors */
905 if (unlikely(error)) {
906 spin_lock_irqsave(&io->endio_lock, flags);
907 if (!(io->error > 0 && __noflush_suspending(md)))
908 io->error = error;
909 spin_unlock_irqrestore(&io->endio_lock, flags);
910 }
911
912 if (atomic_dec_and_test(&io->io_count)) {
913 if (io->error == DM_ENDIO_REQUEUE) {
914 /*
915 * Target requested pushing back the I/O.
916 */
917 spin_lock_irqsave(&md->deferred_lock, flags);
918 if (__noflush_suspending(md))
919 bio_list_add_head(&md->deferred, io->bio);
920 else
921 /* noflush suspend was interrupted. */
922 io->error = -EIO;
923 spin_unlock_irqrestore(&md->deferred_lock, flags);
924 }
925
926 io_error = io->error;
927 bio = io->bio;
928 end_io_acct(io);
929 free_io(md, io);
930
931 if (io_error == DM_ENDIO_REQUEUE)
932 return;
933
934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 /*
936 * Preflush done for flush with data, reissue
937 * without REQ_FLUSH.
938 */
939 bio->bi_rw &= ~REQ_FLUSH;
940 queue_io(md, bio);
941 } else {
942 /* done with normal IO or empty flush */
943 trace_block_bio_complete(md->queue, bio, io_error);
944 bio_endio(bio, io_error);
945 }
946 }
947 }
948
disable_write_same(struct mapped_device * md)949 static void disable_write_same(struct mapped_device *md)
950 {
951 struct queue_limits *limits = dm_get_queue_limits(md);
952
953 /* device doesn't really support WRITE SAME, disable it */
954 limits->max_write_same_sectors = 0;
955 }
956
clone_endio(struct bio * bio,int error)957 static void clone_endio(struct bio *bio, int error)
958 {
959 int r = error;
960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 struct dm_io *io = tio->io;
962 struct mapped_device *md = tio->io->md;
963 dm_endio_fn endio = tio->ti->type->end_io;
964
965 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 error = -EIO;
967
968 if (endio) {
969 r = endio(tio->ti, bio, error);
970 if (r < 0 || r == DM_ENDIO_REQUEUE)
971 /*
972 * error and requeue request are handled
973 * in dec_pending().
974 */
975 error = r;
976 else if (r == DM_ENDIO_INCOMPLETE)
977 /* The target will handle the io */
978 return;
979 else if (r) {
980 DMWARN("unimplemented target endio return value: %d", r);
981 BUG();
982 }
983 }
984
985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 disable_write_same(md);
988
989 free_tio(md, tio);
990 dec_pending(io, error);
991 }
992
993 /*
994 * Partial completion handling for request-based dm
995 */
end_clone_bio(struct bio * clone,int error)996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 struct dm_rq_clone_bio_info *info =
999 container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 struct dm_rq_target_io *tio = info->tio;
1001 struct bio *bio = info->orig;
1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003
1004 bio_put(clone);
1005
1006 if (tio->error)
1007 /*
1008 * An error has already been detected on the request.
1009 * Once error occurred, just let clone->end_io() handle
1010 * the remainder.
1011 */
1012 return;
1013 else if (error) {
1014 /*
1015 * Don't notice the error to the upper layer yet.
1016 * The error handling decision is made by the target driver,
1017 * when the request is completed.
1018 */
1019 tio->error = error;
1020 return;
1021 }
1022
1023 /*
1024 * I/O for the bio successfully completed.
1025 * Notice the data completion to the upper layer.
1026 */
1027
1028 /*
1029 * bios are processed from the head of the list.
1030 * So the completing bio should always be rq->bio.
1031 * If it's not, something wrong is happening.
1032 */
1033 if (tio->orig->bio != bio)
1034 DMERR("bio completion is going in the middle of the request");
1035
1036 /*
1037 * Update the original request.
1038 * Do not use blk_end_request() here, because it may complete
1039 * the original request before the clone, and break the ordering.
1040 */
1041 blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043
tio_from_request(struct request * rq)1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048
1049 /*
1050 * Don't touch any member of the md after calling this function because
1051 * the md may be freed in dm_put() at the end of this function.
1052 * Or do dm_get() before calling this function and dm_put() later.
1053 */
rq_completed(struct mapped_device * md,int rw,bool run_queue)1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 atomic_dec(&md->pending[rw]);
1057
1058 /* nudge anyone waiting on suspend queue */
1059 if (!md_in_flight(md))
1060 wake_up(&md->wait);
1061
1062 /*
1063 * Run this off this callpath, as drivers could invoke end_io while
1064 * inside their request_fn (and holding the queue lock). Calling
1065 * back into ->request_fn() could deadlock attempting to grab the
1066 * queue lock again.
1067 */
1068 if (!md->queue->mq_ops && run_queue)
1069 blk_run_queue_async(md->queue);
1070
1071 /*
1072 * dm_put() must be at the end of this function. See the comment above
1073 */
1074 dm_put(md);
1075 }
1076
free_rq_clone(struct request * clone)1077 static void free_rq_clone(struct request *clone)
1078 {
1079 struct dm_rq_target_io *tio = clone->end_io_data;
1080 struct mapped_device *md = tio->md;
1081
1082 blk_rq_unprep_clone(clone);
1083
1084 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1085 /* stacked on blk-mq queue(s) */
1086 tio->ti->type->release_clone_rq(clone);
1087 else if (!md->queue->mq_ops)
1088 /* request_fn queue stacked on request_fn queue(s) */
1089 free_clone_request(md, clone);
1090 /*
1091 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1092 * no need to call free_clone_request() because we leverage blk-mq by
1093 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1094 */
1095
1096 if (!md->queue->mq_ops)
1097 free_rq_tio(tio);
1098 }
1099
1100 /*
1101 * Complete the clone and the original request.
1102 * Must be called without clone's queue lock held,
1103 * see end_clone_request() for more details.
1104 */
dm_end_request(struct request * clone,int error)1105 static void dm_end_request(struct request *clone, int error)
1106 {
1107 int rw = rq_data_dir(clone);
1108 struct dm_rq_target_io *tio = clone->end_io_data;
1109 struct mapped_device *md = tio->md;
1110 struct request *rq = tio->orig;
1111
1112 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1113 rq->errors = clone->errors;
1114 rq->resid_len = clone->resid_len;
1115
1116 if (rq->sense)
1117 /*
1118 * We are using the sense buffer of the original
1119 * request.
1120 * So setting the length of the sense data is enough.
1121 */
1122 rq->sense_len = clone->sense_len;
1123 }
1124
1125 free_rq_clone(clone);
1126 if (!rq->q->mq_ops)
1127 blk_end_request_all(rq, error);
1128 else
1129 blk_mq_end_request(rq, error);
1130 rq_completed(md, rw, true);
1131 }
1132
dm_unprep_request(struct request * rq)1133 static void dm_unprep_request(struct request *rq)
1134 {
1135 struct dm_rq_target_io *tio = tio_from_request(rq);
1136 struct request *clone = tio->clone;
1137
1138 if (!rq->q->mq_ops) {
1139 rq->special = NULL;
1140 rq->cmd_flags &= ~REQ_DONTPREP;
1141 }
1142
1143 if (clone)
1144 free_rq_clone(clone);
1145 else if (!tio->md->queue->mq_ops)
1146 free_rq_tio(tio);
1147 }
1148
1149 /*
1150 * Requeue the original request of a clone.
1151 */
old_requeue_request(struct request * rq)1152 static void old_requeue_request(struct request *rq)
1153 {
1154 struct request_queue *q = rq->q;
1155 unsigned long flags;
1156
1157 spin_lock_irqsave(q->queue_lock, flags);
1158 blk_requeue_request(q, rq);
1159 blk_run_queue_async(q);
1160 spin_unlock_irqrestore(q->queue_lock, flags);
1161 }
1162
dm_requeue_unmapped_original_request(struct mapped_device * md,struct request * rq)1163 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1164 struct request *rq)
1165 {
1166 int rw = rq_data_dir(rq);
1167
1168 dm_unprep_request(rq);
1169
1170 if (!rq->q->mq_ops)
1171 old_requeue_request(rq);
1172 else {
1173 blk_mq_requeue_request(rq);
1174 blk_mq_kick_requeue_list(rq->q);
1175 }
1176
1177 rq_completed(md, rw, false);
1178 }
1179
dm_requeue_unmapped_request(struct request * clone)1180 static void dm_requeue_unmapped_request(struct request *clone)
1181 {
1182 struct dm_rq_target_io *tio = clone->end_io_data;
1183
1184 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1185 }
1186
old_stop_queue(struct request_queue * q)1187 static void old_stop_queue(struct request_queue *q)
1188 {
1189 unsigned long flags;
1190
1191 if (blk_queue_stopped(q))
1192 return;
1193
1194 spin_lock_irqsave(q->queue_lock, flags);
1195 blk_stop_queue(q);
1196 spin_unlock_irqrestore(q->queue_lock, flags);
1197 }
1198
stop_queue(struct request_queue * q)1199 static void stop_queue(struct request_queue *q)
1200 {
1201 if (!q->mq_ops)
1202 old_stop_queue(q);
1203 else
1204 blk_mq_stop_hw_queues(q);
1205 }
1206
old_start_queue(struct request_queue * q)1207 static void old_start_queue(struct request_queue *q)
1208 {
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(q->queue_lock, flags);
1212 if (blk_queue_stopped(q))
1213 blk_start_queue(q);
1214 spin_unlock_irqrestore(q->queue_lock, flags);
1215 }
1216
start_queue(struct request_queue * q)1217 static void start_queue(struct request_queue *q)
1218 {
1219 if (!q->mq_ops)
1220 old_start_queue(q);
1221 else
1222 blk_mq_start_stopped_hw_queues(q, true);
1223 }
1224
dm_done(struct request * clone,int error,bool mapped)1225 static void dm_done(struct request *clone, int error, bool mapped)
1226 {
1227 int r = error;
1228 struct dm_rq_target_io *tio = clone->end_io_data;
1229 dm_request_endio_fn rq_end_io = NULL;
1230
1231 if (tio->ti) {
1232 rq_end_io = tio->ti->type->rq_end_io;
1233
1234 if (mapped && rq_end_io)
1235 r = rq_end_io(tio->ti, clone, error, &tio->info);
1236 }
1237
1238 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1239 !clone->q->limits.max_write_same_sectors))
1240 disable_write_same(tio->md);
1241
1242 if (r <= 0)
1243 /* The target wants to complete the I/O */
1244 dm_end_request(clone, r);
1245 else if (r == DM_ENDIO_INCOMPLETE)
1246 /* The target will handle the I/O */
1247 return;
1248 else if (r == DM_ENDIO_REQUEUE)
1249 /* The target wants to requeue the I/O */
1250 dm_requeue_unmapped_request(clone);
1251 else {
1252 DMWARN("unimplemented target endio return value: %d", r);
1253 BUG();
1254 }
1255 }
1256
1257 /*
1258 * Request completion handler for request-based dm
1259 */
dm_softirq_done(struct request * rq)1260 static void dm_softirq_done(struct request *rq)
1261 {
1262 bool mapped = true;
1263 struct dm_rq_target_io *tio = tio_from_request(rq);
1264 struct request *clone = tio->clone;
1265 int rw;
1266
1267 if (!clone) {
1268 rw = rq_data_dir(rq);
1269 if (!rq->q->mq_ops) {
1270 blk_end_request_all(rq, tio->error);
1271 rq_completed(tio->md, rw, false);
1272 free_rq_tio(tio);
1273 } else {
1274 blk_mq_end_request(rq, tio->error);
1275 rq_completed(tio->md, rw, false);
1276 }
1277 return;
1278 }
1279
1280 if (rq->cmd_flags & REQ_FAILED)
1281 mapped = false;
1282
1283 dm_done(clone, tio->error, mapped);
1284 }
1285
1286 /*
1287 * Complete the clone and the original request with the error status
1288 * through softirq context.
1289 */
dm_complete_request(struct request * rq,int error)1290 static void dm_complete_request(struct request *rq, int error)
1291 {
1292 struct dm_rq_target_io *tio = tio_from_request(rq);
1293
1294 tio->error = error;
1295 if (!rq->q->mq_ops)
1296 blk_complete_request(rq);
1297 else
1298 blk_mq_complete_request(rq);
1299 }
1300
1301 /*
1302 * Complete the not-mapped clone and the original request with the error status
1303 * through softirq context.
1304 * Target's rq_end_io() function isn't called.
1305 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1306 */
dm_kill_unmapped_request(struct request * rq,int error)1307 static void dm_kill_unmapped_request(struct request *rq, int error)
1308 {
1309 rq->cmd_flags |= REQ_FAILED;
1310 dm_complete_request(rq, error);
1311 }
1312
1313 /*
1314 * Called with the clone's queue lock held (for non-blk-mq)
1315 */
end_clone_request(struct request * clone,int error)1316 static void end_clone_request(struct request *clone, int error)
1317 {
1318 struct dm_rq_target_io *tio = clone->end_io_data;
1319
1320 if (!clone->q->mq_ops) {
1321 /*
1322 * For just cleaning up the information of the queue in which
1323 * the clone was dispatched.
1324 * The clone is *NOT* freed actually here because it is alloced
1325 * from dm own mempool (REQ_ALLOCED isn't set).
1326 */
1327 __blk_put_request(clone->q, clone);
1328 }
1329
1330 /*
1331 * Actual request completion is done in a softirq context which doesn't
1332 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1333 * - another request may be submitted by the upper level driver
1334 * of the stacking during the completion
1335 * - the submission which requires queue lock may be done
1336 * against this clone's queue
1337 */
1338 dm_complete_request(tio->orig, error);
1339 }
1340
1341 /*
1342 * Return maximum size of I/O possible at the supplied sector up to the current
1343 * target boundary.
1344 */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)1345 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1346 {
1347 sector_t target_offset = dm_target_offset(ti, sector);
1348
1349 return ti->len - target_offset;
1350 }
1351
max_io_len(sector_t sector,struct dm_target * ti)1352 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1353 {
1354 sector_t len = max_io_len_target_boundary(sector, ti);
1355 sector_t offset, max_len;
1356
1357 /*
1358 * Does the target need to split even further?
1359 */
1360 if (ti->max_io_len) {
1361 offset = dm_target_offset(ti, sector);
1362 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1363 max_len = sector_div(offset, ti->max_io_len);
1364 else
1365 max_len = offset & (ti->max_io_len - 1);
1366 max_len = ti->max_io_len - max_len;
1367
1368 if (len > max_len)
1369 len = max_len;
1370 }
1371
1372 return len;
1373 }
1374
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1375 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1376 {
1377 if (len > UINT_MAX) {
1378 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1379 (unsigned long long)len, UINT_MAX);
1380 ti->error = "Maximum size of target IO is too large";
1381 return -EINVAL;
1382 }
1383
1384 ti->max_io_len = (uint32_t) len;
1385
1386 return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1389
1390 /*
1391 * A target may call dm_accept_partial_bio only from the map routine. It is
1392 * allowed for all bio types except REQ_FLUSH.
1393 *
1394 * dm_accept_partial_bio informs the dm that the target only wants to process
1395 * additional n_sectors sectors of the bio and the rest of the data should be
1396 * sent in a next bio.
1397 *
1398 * A diagram that explains the arithmetics:
1399 * +--------------------+---------------+-------+
1400 * | 1 | 2 | 3 |
1401 * +--------------------+---------------+-------+
1402 *
1403 * <-------------- *tio->len_ptr --------------->
1404 * <------- bi_size ------->
1405 * <-- n_sectors -->
1406 *
1407 * Region 1 was already iterated over with bio_advance or similar function.
1408 * (it may be empty if the target doesn't use bio_advance)
1409 * Region 2 is the remaining bio size that the target wants to process.
1410 * (it may be empty if region 1 is non-empty, although there is no reason
1411 * to make it empty)
1412 * The target requires that region 3 is to be sent in the next bio.
1413 *
1414 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1415 * the partially processed part (the sum of regions 1+2) must be the same for all
1416 * copies of the bio.
1417 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1418 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1419 {
1420 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1421 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1422 BUG_ON(bio->bi_rw & REQ_FLUSH);
1423 BUG_ON(bi_size > *tio->len_ptr);
1424 BUG_ON(n_sectors > bi_size);
1425 *tio->len_ptr -= bi_size - n_sectors;
1426 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1427 }
1428 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1429
__map_bio(struct dm_target_io * tio)1430 static void __map_bio(struct dm_target_io *tio)
1431 {
1432 int r;
1433 sector_t sector;
1434 struct mapped_device *md;
1435 struct bio *clone = &tio->clone;
1436 struct dm_target *ti = tio->ti;
1437
1438 clone->bi_end_io = clone_endio;
1439
1440 /*
1441 * Map the clone. If r == 0 we don't need to do
1442 * anything, the target has assumed ownership of
1443 * this io.
1444 */
1445 atomic_inc(&tio->io->io_count);
1446 sector = clone->bi_iter.bi_sector;
1447 r = ti->type->map(ti, clone);
1448 if (r == DM_MAPIO_REMAPPED) {
1449 /* the bio has been remapped so dispatch it */
1450
1451 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1452 tio->io->bio->bi_bdev->bd_dev, sector);
1453
1454 generic_make_request(clone);
1455 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1456 /* error the io and bail out, or requeue it if needed */
1457 md = tio->io->md;
1458 dec_pending(tio->io, r);
1459 free_tio(md, tio);
1460 } else if (r) {
1461 DMWARN("unimplemented target map return value: %d", r);
1462 BUG();
1463 }
1464 }
1465
1466 struct clone_info {
1467 struct mapped_device *md;
1468 struct dm_table *map;
1469 struct bio *bio;
1470 struct dm_io *io;
1471 sector_t sector;
1472 unsigned sector_count;
1473 };
1474
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1475 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1476 {
1477 bio->bi_iter.bi_sector = sector;
1478 bio->bi_iter.bi_size = to_bytes(len);
1479 }
1480
1481 /*
1482 * Creates a bio that consists of range of complete bvecs.
1483 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1484 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1485 sector_t sector, unsigned len)
1486 {
1487 struct bio *clone = &tio->clone;
1488
1489 __bio_clone_fast(clone, bio);
1490
1491 if (bio_integrity(bio))
1492 bio_integrity_clone(clone, bio, GFP_NOIO);
1493
1494 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1495 clone->bi_iter.bi_size = to_bytes(len);
1496
1497 if (bio_integrity(bio))
1498 bio_integrity_trim(clone, 0, len);
1499 }
1500
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr)1501 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1502 struct dm_target *ti,
1503 unsigned target_bio_nr)
1504 {
1505 struct dm_target_io *tio;
1506 struct bio *clone;
1507
1508 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1509 tio = container_of(clone, struct dm_target_io, clone);
1510
1511 tio->io = ci->io;
1512 tio->ti = ti;
1513 tio->target_bio_nr = target_bio_nr;
1514
1515 return tio;
1516 }
1517
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len)1518 static void __clone_and_map_simple_bio(struct clone_info *ci,
1519 struct dm_target *ti,
1520 unsigned target_bio_nr, unsigned *len)
1521 {
1522 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1523 struct bio *clone = &tio->clone;
1524
1525 tio->len_ptr = len;
1526
1527 __bio_clone_fast(clone, ci->bio);
1528 if (len)
1529 bio_setup_sector(clone, ci->sector, *len);
1530
1531 __map_bio(tio);
1532 }
1533
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1534 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1535 unsigned num_bios, unsigned *len)
1536 {
1537 unsigned target_bio_nr;
1538
1539 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1540 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1541 }
1542
__send_empty_flush(struct clone_info * ci)1543 static int __send_empty_flush(struct clone_info *ci)
1544 {
1545 unsigned target_nr = 0;
1546 struct dm_target *ti;
1547
1548 BUG_ON(bio_has_data(ci->bio));
1549 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1550 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1551
1552 return 0;
1553 }
1554
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1555 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1556 sector_t sector, unsigned *len)
1557 {
1558 struct bio *bio = ci->bio;
1559 struct dm_target_io *tio;
1560 unsigned target_bio_nr;
1561 unsigned num_target_bios = 1;
1562
1563 /*
1564 * Does the target want to receive duplicate copies of the bio?
1565 */
1566 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1567 num_target_bios = ti->num_write_bios(ti, bio);
1568
1569 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1570 tio = alloc_tio(ci, ti, target_bio_nr);
1571 tio->len_ptr = len;
1572 clone_bio(tio, bio, sector, *len);
1573 __map_bio(tio);
1574 }
1575 }
1576
1577 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1578
get_num_discard_bios(struct dm_target * ti)1579 static unsigned get_num_discard_bios(struct dm_target *ti)
1580 {
1581 return ti->num_discard_bios;
1582 }
1583
get_num_write_same_bios(struct dm_target * ti)1584 static unsigned get_num_write_same_bios(struct dm_target *ti)
1585 {
1586 return ti->num_write_same_bios;
1587 }
1588
1589 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1590
is_split_required_for_discard(struct dm_target * ti)1591 static bool is_split_required_for_discard(struct dm_target *ti)
1592 {
1593 return ti->split_discard_bios;
1594 }
1595
__send_changing_extent_only(struct clone_info * ci,get_num_bios_fn get_num_bios,is_split_required_fn is_split_required)1596 static int __send_changing_extent_only(struct clone_info *ci,
1597 get_num_bios_fn get_num_bios,
1598 is_split_required_fn is_split_required)
1599 {
1600 struct dm_target *ti;
1601 unsigned len;
1602 unsigned num_bios;
1603
1604 do {
1605 ti = dm_table_find_target(ci->map, ci->sector);
1606 if (!dm_target_is_valid(ti))
1607 return -EIO;
1608
1609 /*
1610 * Even though the device advertised support for this type of
1611 * request, that does not mean every target supports it, and
1612 * reconfiguration might also have changed that since the
1613 * check was performed.
1614 */
1615 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1616 if (!num_bios)
1617 return -EOPNOTSUPP;
1618
1619 if (is_split_required && !is_split_required(ti))
1620 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1621 else
1622 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1623
1624 __send_duplicate_bios(ci, ti, num_bios, &len);
1625
1626 ci->sector += len;
1627 } while (ci->sector_count -= len);
1628
1629 return 0;
1630 }
1631
__send_discard(struct clone_info * ci)1632 static int __send_discard(struct clone_info *ci)
1633 {
1634 return __send_changing_extent_only(ci, get_num_discard_bios,
1635 is_split_required_for_discard);
1636 }
1637
__send_write_same(struct clone_info * ci)1638 static int __send_write_same(struct clone_info *ci)
1639 {
1640 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1641 }
1642
1643 /*
1644 * Select the correct strategy for processing a non-flush bio.
1645 */
__split_and_process_non_flush(struct clone_info * ci)1646 static int __split_and_process_non_flush(struct clone_info *ci)
1647 {
1648 struct bio *bio = ci->bio;
1649 struct dm_target *ti;
1650 unsigned len;
1651
1652 if (unlikely(bio->bi_rw & REQ_DISCARD))
1653 return __send_discard(ci);
1654 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1655 return __send_write_same(ci);
1656
1657 ti = dm_table_find_target(ci->map, ci->sector);
1658 if (!dm_target_is_valid(ti))
1659 return -EIO;
1660
1661 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1662
1663 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1664
1665 ci->sector += len;
1666 ci->sector_count -= len;
1667
1668 return 0;
1669 }
1670
1671 /*
1672 * Entry point to split a bio into clones and submit them to the targets.
1673 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1674 static void __split_and_process_bio(struct mapped_device *md,
1675 struct dm_table *map, struct bio *bio)
1676 {
1677 struct clone_info ci;
1678 int error = 0;
1679
1680 if (unlikely(!map)) {
1681 bio_io_error(bio);
1682 return;
1683 }
1684
1685 ci.map = map;
1686 ci.md = md;
1687 ci.io = alloc_io(md);
1688 ci.io->error = 0;
1689 atomic_set(&ci.io->io_count, 1);
1690 ci.io->bio = bio;
1691 ci.io->md = md;
1692 spin_lock_init(&ci.io->endio_lock);
1693 ci.sector = bio->bi_iter.bi_sector;
1694
1695 start_io_acct(ci.io);
1696
1697 if (bio->bi_rw & REQ_FLUSH) {
1698 ci.bio = &ci.md->flush_bio;
1699 ci.sector_count = 0;
1700 error = __send_empty_flush(&ci);
1701 /* dec_pending submits any data associated with flush */
1702 } else {
1703 ci.bio = bio;
1704 ci.sector_count = bio_sectors(bio);
1705 while (ci.sector_count && !error)
1706 error = __split_and_process_non_flush(&ci);
1707 }
1708
1709 /* drop the extra reference count */
1710 dec_pending(ci.io, error);
1711 }
1712 /*-----------------------------------------------------------------
1713 * CRUD END
1714 *---------------------------------------------------------------*/
1715
dm_merge_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)1716 static int dm_merge_bvec(struct request_queue *q,
1717 struct bvec_merge_data *bvm,
1718 struct bio_vec *biovec)
1719 {
1720 struct mapped_device *md = q->queuedata;
1721 struct dm_table *map = dm_get_live_table_fast(md);
1722 struct dm_target *ti;
1723 sector_t max_sectors;
1724 int max_size = 0;
1725
1726 if (unlikely(!map))
1727 goto out;
1728
1729 ti = dm_table_find_target(map, bvm->bi_sector);
1730 if (!dm_target_is_valid(ti))
1731 goto out;
1732
1733 /*
1734 * Find maximum amount of I/O that won't need splitting
1735 */
1736 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1737 (sector_t) BIO_MAX_SECTORS);
1738 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1739 if (max_size < 0)
1740 max_size = 0;
1741
1742 /*
1743 * merge_bvec_fn() returns number of bytes
1744 * it can accept at this offset
1745 * max is precomputed maximal io size
1746 */
1747 if (max_size && ti->type->merge)
1748 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1749 /*
1750 * If the target doesn't support merge method and some of the devices
1751 * provided their merge_bvec method (we know this by looking at
1752 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1753 * entries. So always set max_size to 0, and the code below allows
1754 * just one page.
1755 */
1756 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1757 max_size = 0;
1758
1759 out:
1760 dm_put_live_table_fast(md);
1761 /*
1762 * Always allow an entire first page
1763 */
1764 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1765 max_size = biovec->bv_len;
1766
1767 return max_size;
1768 }
1769
1770 /*
1771 * The request function that just remaps the bio built up by
1772 * dm_merge_bvec.
1773 */
dm_make_request(struct request_queue * q,struct bio * bio)1774 static void dm_make_request(struct request_queue *q, struct bio *bio)
1775 {
1776 int rw = bio_data_dir(bio);
1777 struct mapped_device *md = q->queuedata;
1778 int srcu_idx;
1779 struct dm_table *map;
1780
1781 map = dm_get_live_table(md, &srcu_idx);
1782
1783 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1784
1785 /* if we're suspended, we have to queue this io for later */
1786 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787 dm_put_live_table(md, srcu_idx);
1788
1789 if (bio_rw(bio) != READA)
1790 queue_io(md, bio);
1791 else
1792 bio_io_error(bio);
1793 return;
1794 }
1795
1796 __split_and_process_bio(md, map, bio);
1797 dm_put_live_table(md, srcu_idx);
1798 return;
1799 }
1800
dm_request_based(struct mapped_device * md)1801 int dm_request_based(struct mapped_device *md)
1802 {
1803 return blk_queue_stackable(md->queue);
1804 }
1805
dm_dispatch_clone_request(struct request * clone,struct request * rq)1806 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1807 {
1808 int r;
1809
1810 if (blk_queue_io_stat(clone->q))
1811 clone->cmd_flags |= REQ_IO_STAT;
1812
1813 clone->start_time = jiffies;
1814 r = blk_insert_cloned_request(clone->q, clone);
1815 if (r)
1816 /* must complete clone in terms of original request */
1817 dm_complete_request(rq, r);
1818 }
1819
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1820 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1821 void *data)
1822 {
1823 struct dm_rq_target_io *tio = data;
1824 struct dm_rq_clone_bio_info *info =
1825 container_of(bio, struct dm_rq_clone_bio_info, clone);
1826
1827 info->orig = bio_orig;
1828 info->tio = tio;
1829 bio->bi_end_io = end_clone_bio;
1830
1831 return 0;
1832 }
1833
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio,gfp_t gfp_mask)1834 static int setup_clone(struct request *clone, struct request *rq,
1835 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1836 {
1837 int r;
1838
1839 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1840 dm_rq_bio_constructor, tio);
1841 if (r)
1842 return r;
1843
1844 clone->cmd = rq->cmd;
1845 clone->cmd_len = rq->cmd_len;
1846 clone->sense = rq->sense;
1847 clone->end_io = end_clone_request;
1848 clone->end_io_data = tio;
1849
1850 tio->clone = clone;
1851
1852 return 0;
1853 }
1854
clone_rq(struct request * rq,struct mapped_device * md,struct dm_rq_target_io * tio,gfp_t gfp_mask)1855 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1856 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1857 {
1858 /*
1859 * Do not allocate a clone if tio->clone was already set
1860 * (see: dm_mq_queue_rq).
1861 */
1862 bool alloc_clone = !tio->clone;
1863 struct request *clone;
1864
1865 if (alloc_clone) {
1866 clone = alloc_clone_request(md, gfp_mask);
1867 if (!clone)
1868 return NULL;
1869 } else
1870 clone = tio->clone;
1871
1872 blk_rq_init(NULL, clone);
1873 if (setup_clone(clone, rq, tio, gfp_mask)) {
1874 /* -ENOMEM */
1875 if (alloc_clone)
1876 free_clone_request(md, clone);
1877 return NULL;
1878 }
1879
1880 return clone;
1881 }
1882
1883 static void map_tio_request(struct kthread_work *work);
1884
init_tio(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1885 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1886 struct mapped_device *md)
1887 {
1888 tio->md = md;
1889 tio->ti = NULL;
1890 tio->clone = NULL;
1891 tio->orig = rq;
1892 tio->error = 0;
1893 memset(&tio->info, 0, sizeof(tio->info));
1894 if (md->kworker_task)
1895 init_kthread_work(&tio->work, map_tio_request);
1896 }
1897
prep_tio(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1898 static struct dm_rq_target_io *prep_tio(struct request *rq,
1899 struct mapped_device *md, gfp_t gfp_mask)
1900 {
1901 struct dm_rq_target_io *tio;
1902 int srcu_idx;
1903 struct dm_table *table;
1904
1905 tio = alloc_rq_tio(md, gfp_mask);
1906 if (!tio)
1907 return NULL;
1908
1909 init_tio(tio, rq, md);
1910
1911 table = dm_get_live_table(md, &srcu_idx);
1912 if (!dm_table_mq_request_based(table)) {
1913 if (!clone_rq(rq, md, tio, gfp_mask)) {
1914 dm_put_live_table(md, srcu_idx);
1915 free_rq_tio(tio);
1916 return NULL;
1917 }
1918 }
1919 dm_put_live_table(md, srcu_idx);
1920
1921 return tio;
1922 }
1923
1924 /*
1925 * Called with the queue lock held.
1926 */
dm_prep_fn(struct request_queue * q,struct request * rq)1927 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1928 {
1929 struct mapped_device *md = q->queuedata;
1930 struct dm_rq_target_io *tio;
1931
1932 if (unlikely(rq->special)) {
1933 DMWARN("Already has something in rq->special.");
1934 return BLKPREP_KILL;
1935 }
1936
1937 tio = prep_tio(rq, md, GFP_ATOMIC);
1938 if (!tio)
1939 return BLKPREP_DEFER;
1940
1941 rq->special = tio;
1942 rq->cmd_flags |= REQ_DONTPREP;
1943
1944 return BLKPREP_OK;
1945 }
1946
1947 /*
1948 * Returns:
1949 * 0 : the request has been processed
1950 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1951 * < 0 : the request was completed due to failure
1952 */
map_request(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1953 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1954 struct mapped_device *md)
1955 {
1956 int r;
1957 struct dm_target *ti = tio->ti;
1958 struct request *clone = NULL;
1959
1960 if (tio->clone) {
1961 clone = tio->clone;
1962 r = ti->type->map_rq(ti, clone, &tio->info);
1963 } else {
1964 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1965 if (r < 0) {
1966 /* The target wants to complete the I/O */
1967 dm_kill_unmapped_request(rq, r);
1968 return r;
1969 }
1970 if (r != DM_MAPIO_REMAPPED)
1971 return r;
1972 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1973 /* -ENOMEM */
1974 ti->type->release_clone_rq(clone);
1975 return DM_MAPIO_REQUEUE;
1976 }
1977 }
1978
1979 switch (r) {
1980 case DM_MAPIO_SUBMITTED:
1981 /* The target has taken the I/O to submit by itself later */
1982 break;
1983 case DM_MAPIO_REMAPPED:
1984 /* The target has remapped the I/O so dispatch it */
1985 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1986 blk_rq_pos(rq));
1987 dm_dispatch_clone_request(clone, rq);
1988 break;
1989 case DM_MAPIO_REQUEUE:
1990 /* The target wants to requeue the I/O */
1991 dm_requeue_unmapped_request(clone);
1992 break;
1993 default:
1994 if (r > 0) {
1995 DMWARN("unimplemented target map return value: %d", r);
1996 BUG();
1997 }
1998
1999 /* The target wants to complete the I/O */
2000 dm_kill_unmapped_request(rq, r);
2001 return r;
2002 }
2003
2004 return 0;
2005 }
2006
map_tio_request(struct kthread_work * work)2007 static void map_tio_request(struct kthread_work *work)
2008 {
2009 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2010 struct request *rq = tio->orig;
2011 struct mapped_device *md = tio->md;
2012
2013 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2014 dm_requeue_unmapped_original_request(md, rq);
2015 }
2016
dm_start_request(struct mapped_device * md,struct request * orig)2017 static void dm_start_request(struct mapped_device *md, struct request *orig)
2018 {
2019 if (!orig->q->mq_ops)
2020 blk_start_request(orig);
2021 else
2022 blk_mq_start_request(orig);
2023 atomic_inc(&md->pending[rq_data_dir(orig)]);
2024
2025 if (md->seq_rq_merge_deadline_usecs) {
2026 md->last_rq_pos = rq_end_sector(orig);
2027 md->last_rq_rw = rq_data_dir(orig);
2028 md->last_rq_start_time = ktime_get();
2029 }
2030
2031 /*
2032 * Hold the md reference here for the in-flight I/O.
2033 * We can't rely on the reference count by device opener,
2034 * because the device may be closed during the request completion
2035 * when all bios are completed.
2036 * See the comment in rq_completed() too.
2037 */
2038 dm_get(md);
2039 }
2040
2041 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2042
dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device * md,char * buf)2043 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2044 {
2045 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2046 }
2047
dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device * md,const char * buf,size_t count)2048 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2049 const char *buf, size_t count)
2050 {
2051 unsigned deadline;
2052
2053 if (!dm_request_based(md) || md->use_blk_mq)
2054 return count;
2055
2056 if (kstrtouint(buf, 10, &deadline))
2057 return -EINVAL;
2058
2059 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2060 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2061
2062 md->seq_rq_merge_deadline_usecs = deadline;
2063
2064 return count;
2065 }
2066
dm_request_peeked_before_merge_deadline(struct mapped_device * md)2067 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2068 {
2069 ktime_t kt_deadline;
2070
2071 if (!md->seq_rq_merge_deadline_usecs)
2072 return false;
2073
2074 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2075 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2076
2077 return !ktime_after(ktime_get(), kt_deadline);
2078 }
2079
2080 /*
2081 * q->request_fn for request-based dm.
2082 * Called with the queue lock held.
2083 */
dm_request_fn(struct request_queue * q)2084 static void dm_request_fn(struct request_queue *q)
2085 {
2086 struct mapped_device *md = q->queuedata;
2087 int srcu_idx;
2088 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2089 struct dm_target *ti;
2090 struct request *rq;
2091 struct dm_rq_target_io *tio;
2092 sector_t pos;
2093
2094 /*
2095 * For suspend, check blk_queue_stopped() and increment
2096 * ->pending within a single queue_lock not to increment the
2097 * number of in-flight I/Os after the queue is stopped in
2098 * dm_suspend().
2099 */
2100 while (!blk_queue_stopped(q)) {
2101 rq = blk_peek_request(q);
2102 if (!rq)
2103 goto out;
2104
2105 /* always use block 0 to find the target for flushes for now */
2106 pos = 0;
2107 if (!(rq->cmd_flags & REQ_FLUSH))
2108 pos = blk_rq_pos(rq);
2109
2110 ti = dm_table_find_target(map, pos);
2111 if (!dm_target_is_valid(ti)) {
2112 /*
2113 * Must perform setup, that rq_completed() requires,
2114 * before calling dm_kill_unmapped_request
2115 */
2116 DMERR_LIMIT("request attempted access beyond the end of device");
2117 dm_start_request(md, rq);
2118 dm_kill_unmapped_request(rq, -EIO);
2119 continue;
2120 }
2121
2122 if (dm_request_peeked_before_merge_deadline(md) &&
2123 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2124 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2125 goto delay_and_out;
2126
2127 if (ti->type->busy && ti->type->busy(ti))
2128 goto delay_and_out;
2129
2130 dm_start_request(md, rq);
2131
2132 tio = tio_from_request(rq);
2133 /* Establish tio->ti before queuing work (map_tio_request) */
2134 tio->ti = ti;
2135 queue_kthread_work(&md->kworker, &tio->work);
2136 BUG_ON(!irqs_disabled());
2137 }
2138
2139 goto out;
2140
2141 delay_and_out:
2142 blk_delay_queue(q, HZ / 100);
2143 out:
2144 dm_put_live_table(md, srcu_idx);
2145 }
2146
dm_any_congested(void * congested_data,int bdi_bits)2147 static int dm_any_congested(void *congested_data, int bdi_bits)
2148 {
2149 int r = bdi_bits;
2150 struct mapped_device *md = congested_data;
2151 struct dm_table *map;
2152
2153 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2154 map = dm_get_live_table_fast(md);
2155 if (map) {
2156 /*
2157 * Request-based dm cares about only own queue for
2158 * the query about congestion status of request_queue
2159 */
2160 if (dm_request_based(md))
2161 r = md->queue->backing_dev_info.state &
2162 bdi_bits;
2163 else
2164 r = dm_table_any_congested(map, bdi_bits);
2165 }
2166 dm_put_live_table_fast(md);
2167 }
2168
2169 return r;
2170 }
2171
2172 /*-----------------------------------------------------------------
2173 * An IDR is used to keep track of allocated minor numbers.
2174 *---------------------------------------------------------------*/
free_minor(int minor)2175 static void free_minor(int minor)
2176 {
2177 spin_lock(&_minor_lock);
2178 idr_remove(&_minor_idr, minor);
2179 spin_unlock(&_minor_lock);
2180 }
2181
2182 /*
2183 * See if the device with a specific minor # is free.
2184 */
specific_minor(int minor)2185 static int specific_minor(int minor)
2186 {
2187 int r;
2188
2189 if (minor >= (1 << MINORBITS))
2190 return -EINVAL;
2191
2192 idr_preload(GFP_KERNEL);
2193 spin_lock(&_minor_lock);
2194
2195 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2196
2197 spin_unlock(&_minor_lock);
2198 idr_preload_end();
2199 if (r < 0)
2200 return r == -ENOSPC ? -EBUSY : r;
2201 return 0;
2202 }
2203
next_free_minor(int * minor)2204 static int next_free_minor(int *minor)
2205 {
2206 int r;
2207
2208 idr_preload(GFP_KERNEL);
2209 spin_lock(&_minor_lock);
2210
2211 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2212
2213 spin_unlock(&_minor_lock);
2214 idr_preload_end();
2215 if (r < 0)
2216 return r;
2217 *minor = r;
2218 return 0;
2219 }
2220
2221 static const struct block_device_operations dm_blk_dops;
2222
2223 static void dm_wq_work(struct work_struct *work);
2224
dm_init_md_queue(struct mapped_device * md)2225 static void dm_init_md_queue(struct mapped_device *md)
2226 {
2227 /*
2228 * Request-based dm devices cannot be stacked on top of bio-based dm
2229 * devices. The type of this dm device may not have been decided yet.
2230 * The type is decided at the first table loading time.
2231 * To prevent problematic device stacking, clear the queue flag
2232 * for request stacking support until then.
2233 *
2234 * This queue is new, so no concurrency on the queue_flags.
2235 */
2236 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2237 }
2238
dm_init_old_md_queue(struct mapped_device * md)2239 static void dm_init_old_md_queue(struct mapped_device *md)
2240 {
2241 md->use_blk_mq = false;
2242 dm_init_md_queue(md);
2243
2244 /*
2245 * Initialize aspects of queue that aren't relevant for blk-mq
2246 */
2247 md->queue->queuedata = md;
2248 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2249 md->queue->backing_dev_info.congested_data = md;
2250
2251 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2252 }
2253
2254 /*
2255 * Allocate and initialise a blank device with a given minor.
2256 */
alloc_dev(int minor)2257 static struct mapped_device *alloc_dev(int minor)
2258 {
2259 int r;
2260 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2261 void *old_md;
2262
2263 if (!md) {
2264 DMWARN("unable to allocate device, out of memory.");
2265 return NULL;
2266 }
2267
2268 if (!try_module_get(THIS_MODULE))
2269 goto bad_module_get;
2270
2271 /* get a minor number for the dev */
2272 if (minor == DM_ANY_MINOR)
2273 r = next_free_minor(&minor);
2274 else
2275 r = specific_minor(minor);
2276 if (r < 0)
2277 goto bad_minor;
2278
2279 r = init_srcu_struct(&md->io_barrier);
2280 if (r < 0)
2281 goto bad_io_barrier;
2282
2283 md->use_blk_mq = use_blk_mq;
2284 md->type = DM_TYPE_NONE;
2285 mutex_init(&md->suspend_lock);
2286 mutex_init(&md->type_lock);
2287 mutex_init(&md->table_devices_lock);
2288 spin_lock_init(&md->deferred_lock);
2289 atomic_set(&md->holders, 1);
2290 atomic_set(&md->open_count, 0);
2291 atomic_set(&md->event_nr, 0);
2292 atomic_set(&md->uevent_seq, 0);
2293 INIT_LIST_HEAD(&md->uevent_list);
2294 INIT_LIST_HEAD(&md->table_devices);
2295 spin_lock_init(&md->uevent_lock);
2296
2297 md->queue = blk_alloc_queue(GFP_KERNEL);
2298 if (!md->queue)
2299 goto bad_queue;
2300
2301 dm_init_md_queue(md);
2302
2303 md->disk = alloc_disk(1);
2304 if (!md->disk)
2305 goto bad_disk;
2306
2307 atomic_set(&md->pending[0], 0);
2308 atomic_set(&md->pending[1], 0);
2309 init_waitqueue_head(&md->wait);
2310 INIT_WORK(&md->work, dm_wq_work);
2311 init_waitqueue_head(&md->eventq);
2312 init_completion(&md->kobj_holder.completion);
2313 md->kworker_task = NULL;
2314
2315 md->disk->major = _major;
2316 md->disk->first_minor = minor;
2317 md->disk->fops = &dm_blk_dops;
2318 md->disk->queue = md->queue;
2319 md->disk->private_data = md;
2320 sprintf(md->disk->disk_name, "dm-%d", minor);
2321 add_disk(md->disk);
2322 format_dev_t(md->name, MKDEV(_major, minor));
2323
2324 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2325 if (!md->wq)
2326 goto bad_thread;
2327
2328 md->bdev = bdget_disk(md->disk, 0);
2329 if (!md->bdev)
2330 goto bad_bdev;
2331
2332 bio_init(&md->flush_bio);
2333 md->flush_bio.bi_bdev = md->bdev;
2334 md->flush_bio.bi_rw = WRITE_FLUSH;
2335
2336 dm_stats_init(&md->stats);
2337
2338 /* Populate the mapping, nobody knows we exist yet */
2339 spin_lock(&_minor_lock);
2340 old_md = idr_replace(&_minor_idr, md, minor);
2341 spin_unlock(&_minor_lock);
2342
2343 BUG_ON(old_md != MINOR_ALLOCED);
2344
2345 return md;
2346
2347 bad_bdev:
2348 destroy_workqueue(md->wq);
2349 bad_thread:
2350 del_gendisk(md->disk);
2351 put_disk(md->disk);
2352 bad_disk:
2353 blk_cleanup_queue(md->queue);
2354 bad_queue:
2355 cleanup_srcu_struct(&md->io_barrier);
2356 bad_io_barrier:
2357 free_minor(minor);
2358 bad_minor:
2359 module_put(THIS_MODULE);
2360 bad_module_get:
2361 kfree(md);
2362 return NULL;
2363 }
2364
2365 static void unlock_fs(struct mapped_device *md);
2366
free_dev(struct mapped_device * md)2367 static void free_dev(struct mapped_device *md)
2368 {
2369 int minor = MINOR(disk_devt(md->disk));
2370
2371 unlock_fs(md);
2372 destroy_workqueue(md->wq);
2373
2374 if (md->kworker_task)
2375 kthread_stop(md->kworker_task);
2376 if (md->io_pool)
2377 mempool_destroy(md->io_pool);
2378 if (md->rq_pool)
2379 mempool_destroy(md->rq_pool);
2380 if (md->bs)
2381 bioset_free(md->bs);
2382
2383 cleanup_srcu_struct(&md->io_barrier);
2384 free_table_devices(&md->table_devices);
2385 dm_stats_cleanup(&md->stats);
2386
2387 spin_lock(&_minor_lock);
2388 md->disk->private_data = NULL;
2389 spin_unlock(&_minor_lock);
2390 if (blk_get_integrity(md->disk))
2391 blk_integrity_unregister(md->disk);
2392 del_gendisk(md->disk);
2393 put_disk(md->disk);
2394 blk_cleanup_queue(md->queue);
2395 if (md->use_blk_mq)
2396 blk_mq_free_tag_set(&md->tag_set);
2397 bdput(md->bdev);
2398 free_minor(minor);
2399
2400 module_put(THIS_MODULE);
2401 kfree(md);
2402 }
2403
__bind_mempools(struct mapped_device * md,struct dm_table * t)2404 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2405 {
2406 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2407
2408 if (md->bs) {
2409 /* The md already has necessary mempools. */
2410 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2411 /*
2412 * Reload bioset because front_pad may have changed
2413 * because a different table was loaded.
2414 */
2415 bioset_free(md->bs);
2416 md->bs = p->bs;
2417 p->bs = NULL;
2418 }
2419 /*
2420 * There's no need to reload with request-based dm
2421 * because the size of front_pad doesn't change.
2422 * Note for future: If you are to reload bioset,
2423 * prep-ed requests in the queue may refer
2424 * to bio from the old bioset, so you must walk
2425 * through the queue to unprep.
2426 */
2427 goto out;
2428 }
2429
2430 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2431
2432 md->io_pool = p->io_pool;
2433 p->io_pool = NULL;
2434 md->rq_pool = p->rq_pool;
2435 p->rq_pool = NULL;
2436 md->bs = p->bs;
2437 p->bs = NULL;
2438
2439 out:
2440 /* mempool bind completed, no longer need any mempools in the table */
2441 dm_table_free_md_mempools(t);
2442 }
2443
2444 /*
2445 * Bind a table to the device.
2446 */
event_callback(void * context)2447 static void event_callback(void *context)
2448 {
2449 unsigned long flags;
2450 LIST_HEAD(uevents);
2451 struct mapped_device *md = (struct mapped_device *) context;
2452
2453 spin_lock_irqsave(&md->uevent_lock, flags);
2454 list_splice_init(&md->uevent_list, &uevents);
2455 spin_unlock_irqrestore(&md->uevent_lock, flags);
2456
2457 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2458
2459 atomic_inc(&md->event_nr);
2460 wake_up(&md->eventq);
2461 }
2462
2463 /*
2464 * Protected by md->suspend_lock obtained by dm_swap_table().
2465 */
__set_size(struct mapped_device * md,sector_t size)2466 static void __set_size(struct mapped_device *md, sector_t size)
2467 {
2468 set_capacity(md->disk, size);
2469
2470 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2471 }
2472
2473 /*
2474 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2475 *
2476 * If this function returns 0, then the device is either a non-dm
2477 * device without a merge_bvec_fn, or it is a dm device that is
2478 * able to split any bios it receives that are too big.
2479 */
dm_queue_merge_is_compulsory(struct request_queue * q)2480 int dm_queue_merge_is_compulsory(struct request_queue *q)
2481 {
2482 struct mapped_device *dev_md;
2483
2484 if (!q->merge_bvec_fn)
2485 return 0;
2486
2487 if (q->make_request_fn == dm_make_request) {
2488 dev_md = q->queuedata;
2489 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2490 return 0;
2491 }
2492
2493 return 1;
2494 }
2495
dm_device_merge_is_compulsory(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2496 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2497 struct dm_dev *dev, sector_t start,
2498 sector_t len, void *data)
2499 {
2500 struct block_device *bdev = dev->bdev;
2501 struct request_queue *q = bdev_get_queue(bdev);
2502
2503 return dm_queue_merge_is_compulsory(q);
2504 }
2505
2506 /*
2507 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2508 * on the properties of the underlying devices.
2509 */
dm_table_merge_is_optional(struct dm_table * table)2510 static int dm_table_merge_is_optional(struct dm_table *table)
2511 {
2512 unsigned i = 0;
2513 struct dm_target *ti;
2514
2515 while (i < dm_table_get_num_targets(table)) {
2516 ti = dm_table_get_target(table, i++);
2517
2518 if (ti->type->iterate_devices &&
2519 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2520 return 0;
2521 }
2522
2523 return 1;
2524 }
2525
2526 /*
2527 * Returns old map, which caller must destroy.
2528 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2529 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2530 struct queue_limits *limits)
2531 {
2532 struct dm_table *old_map;
2533 struct request_queue *q = md->queue;
2534 sector_t size;
2535 int merge_is_optional;
2536
2537 size = dm_table_get_size(t);
2538
2539 /*
2540 * Wipe any geometry if the size of the table changed.
2541 */
2542 if (size != dm_get_size(md))
2543 memset(&md->geometry, 0, sizeof(md->geometry));
2544
2545 __set_size(md, size);
2546
2547 dm_table_event_callback(t, event_callback, md);
2548
2549 /*
2550 * The queue hasn't been stopped yet, if the old table type wasn't
2551 * for request-based during suspension. So stop it to prevent
2552 * I/O mapping before resume.
2553 * This must be done before setting the queue restrictions,
2554 * because request-based dm may be run just after the setting.
2555 */
2556 if (dm_table_request_based(t))
2557 stop_queue(q);
2558
2559 __bind_mempools(md, t);
2560
2561 merge_is_optional = dm_table_merge_is_optional(t);
2562
2563 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2564 rcu_assign_pointer(md->map, t);
2565 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2566
2567 dm_table_set_restrictions(t, q, limits);
2568 if (merge_is_optional)
2569 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2570 else
2571 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2572 if (old_map)
2573 dm_sync_table(md);
2574
2575 return old_map;
2576 }
2577
2578 /*
2579 * Returns unbound table for the caller to free.
2580 */
__unbind(struct mapped_device * md)2581 static struct dm_table *__unbind(struct mapped_device *md)
2582 {
2583 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2584
2585 if (!map)
2586 return NULL;
2587
2588 dm_table_event_callback(map, NULL, NULL);
2589 RCU_INIT_POINTER(md->map, NULL);
2590 dm_sync_table(md);
2591
2592 return map;
2593 }
2594
2595 /*
2596 * Constructor for a new device.
2597 */
dm_create(int minor,struct mapped_device ** result)2598 int dm_create(int minor, struct mapped_device **result)
2599 {
2600 struct mapped_device *md;
2601
2602 md = alloc_dev(minor);
2603 if (!md)
2604 return -ENXIO;
2605
2606 dm_sysfs_init(md);
2607
2608 *result = md;
2609 return 0;
2610 }
2611
2612 /*
2613 * Functions to manage md->type.
2614 * All are required to hold md->type_lock.
2615 */
dm_lock_md_type(struct mapped_device * md)2616 void dm_lock_md_type(struct mapped_device *md)
2617 {
2618 mutex_lock(&md->type_lock);
2619 }
2620
dm_unlock_md_type(struct mapped_device * md)2621 void dm_unlock_md_type(struct mapped_device *md)
2622 {
2623 mutex_unlock(&md->type_lock);
2624 }
2625
dm_set_md_type(struct mapped_device * md,unsigned type)2626 void dm_set_md_type(struct mapped_device *md, unsigned type)
2627 {
2628 BUG_ON(!mutex_is_locked(&md->type_lock));
2629 md->type = type;
2630 }
2631
dm_get_md_type(struct mapped_device * md)2632 unsigned dm_get_md_type(struct mapped_device *md)
2633 {
2634 BUG_ON(!mutex_is_locked(&md->type_lock));
2635 return md->type;
2636 }
2637
dm_get_immutable_target_type(struct mapped_device * md)2638 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2639 {
2640 return md->immutable_target_type;
2641 }
2642
2643 /*
2644 * The queue_limits are only valid as long as you have a reference
2645 * count on 'md'.
2646 */
dm_get_queue_limits(struct mapped_device * md)2647 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2648 {
2649 BUG_ON(!atomic_read(&md->holders));
2650 return &md->queue->limits;
2651 }
2652 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2653
init_rq_based_worker_thread(struct mapped_device * md)2654 static void init_rq_based_worker_thread(struct mapped_device *md)
2655 {
2656 /* Initialize the request-based DM worker thread */
2657 init_kthread_worker(&md->kworker);
2658 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2659 "kdmwork-%s", dm_device_name(md));
2660 }
2661
2662 /*
2663 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2664 */
dm_init_request_based_queue(struct mapped_device * md)2665 static int dm_init_request_based_queue(struct mapped_device *md)
2666 {
2667 struct request_queue *q = NULL;
2668
2669 /* Fully initialize the queue */
2670 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2671 if (!q)
2672 return -EINVAL;
2673
2674 /* disable dm_request_fn's merge heuristic by default */
2675 md->seq_rq_merge_deadline_usecs = 0;
2676
2677 md->queue = q;
2678 dm_init_old_md_queue(md);
2679 blk_queue_softirq_done(md->queue, dm_softirq_done);
2680 blk_queue_prep_rq(md->queue, dm_prep_fn);
2681
2682 init_rq_based_worker_thread(md);
2683
2684 elv_register_queue(md->queue);
2685
2686 return 0;
2687 }
2688
dm_mq_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)2689 static int dm_mq_init_request(void *data, struct request *rq,
2690 unsigned int hctx_idx, unsigned int request_idx,
2691 unsigned int numa_node)
2692 {
2693 struct mapped_device *md = data;
2694 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2695
2696 /*
2697 * Must initialize md member of tio, otherwise it won't
2698 * be available in dm_mq_queue_rq.
2699 */
2700 tio->md = md;
2701
2702 return 0;
2703 }
2704
dm_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2705 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2706 const struct blk_mq_queue_data *bd)
2707 {
2708 struct request *rq = bd->rq;
2709 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2710 struct mapped_device *md = tio->md;
2711 int srcu_idx;
2712 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2713 struct dm_target *ti;
2714 sector_t pos;
2715
2716 /* always use block 0 to find the target for flushes for now */
2717 pos = 0;
2718 if (!(rq->cmd_flags & REQ_FLUSH))
2719 pos = blk_rq_pos(rq);
2720
2721 ti = dm_table_find_target(map, pos);
2722 if (!dm_target_is_valid(ti)) {
2723 dm_put_live_table(md, srcu_idx);
2724 DMERR_LIMIT("request attempted access beyond the end of device");
2725 /*
2726 * Must perform setup, that rq_completed() requires,
2727 * before returning BLK_MQ_RQ_QUEUE_ERROR
2728 */
2729 dm_start_request(md, rq);
2730 return BLK_MQ_RQ_QUEUE_ERROR;
2731 }
2732 dm_put_live_table(md, srcu_idx);
2733
2734 if (ti->type->busy && ti->type->busy(ti))
2735 return BLK_MQ_RQ_QUEUE_BUSY;
2736
2737 dm_start_request(md, rq);
2738
2739 /* Init tio using md established in .init_request */
2740 init_tio(tio, rq, md);
2741
2742 /*
2743 * Establish tio->ti before queuing work (map_tio_request)
2744 * or making direct call to map_request().
2745 */
2746 tio->ti = ti;
2747
2748 /* Clone the request if underlying devices aren't blk-mq */
2749 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2750 /* clone request is allocated at the end of the pdu */
2751 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2752 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2753 queue_kthread_work(&md->kworker, &tio->work);
2754 } else {
2755 /* Direct call is fine since .queue_rq allows allocations */
2756 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2757 /* Undo dm_start_request() before requeuing */
2758 rq_completed(md, rq_data_dir(rq), false);
2759 return BLK_MQ_RQ_QUEUE_BUSY;
2760 }
2761 }
2762
2763 return BLK_MQ_RQ_QUEUE_OK;
2764 }
2765
2766 static struct blk_mq_ops dm_mq_ops = {
2767 .queue_rq = dm_mq_queue_rq,
2768 .map_queue = blk_mq_map_queue,
2769 .complete = dm_softirq_done,
2770 .init_request = dm_mq_init_request,
2771 };
2772
dm_init_request_based_blk_mq_queue(struct mapped_device * md)2773 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2774 {
2775 unsigned md_type = dm_get_md_type(md);
2776 struct request_queue *q;
2777 int err;
2778
2779 memset(&md->tag_set, 0, sizeof(md->tag_set));
2780 md->tag_set.ops = &dm_mq_ops;
2781 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2782 md->tag_set.numa_node = NUMA_NO_NODE;
2783 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2784 md->tag_set.nr_hw_queues = 1;
2785 if (md_type == DM_TYPE_REQUEST_BASED) {
2786 /* make the memory for non-blk-mq clone part of the pdu */
2787 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2788 } else
2789 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2790 md->tag_set.driver_data = md;
2791
2792 err = blk_mq_alloc_tag_set(&md->tag_set);
2793 if (err)
2794 return err;
2795
2796 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2797 if (IS_ERR(q)) {
2798 err = PTR_ERR(q);
2799 goto out_tag_set;
2800 }
2801 md->queue = q;
2802 dm_init_md_queue(md);
2803
2804 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2805 blk_mq_register_disk(md->disk);
2806
2807 if (md_type == DM_TYPE_REQUEST_BASED)
2808 init_rq_based_worker_thread(md);
2809
2810 return 0;
2811
2812 out_tag_set:
2813 blk_mq_free_tag_set(&md->tag_set);
2814 return err;
2815 }
2816
filter_md_type(unsigned type,struct mapped_device * md)2817 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2818 {
2819 if (type == DM_TYPE_BIO_BASED)
2820 return type;
2821
2822 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2823 }
2824
2825 /*
2826 * Setup the DM device's queue based on md's type
2827 */
dm_setup_md_queue(struct mapped_device * md)2828 int dm_setup_md_queue(struct mapped_device *md)
2829 {
2830 int r;
2831 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2832
2833 switch (md_type) {
2834 case DM_TYPE_REQUEST_BASED:
2835 r = dm_init_request_based_queue(md);
2836 if (r) {
2837 DMWARN("Cannot initialize queue for request-based mapped device");
2838 return r;
2839 }
2840 break;
2841 case DM_TYPE_MQ_REQUEST_BASED:
2842 r = dm_init_request_based_blk_mq_queue(md);
2843 if (r) {
2844 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2845 return r;
2846 }
2847 break;
2848 case DM_TYPE_BIO_BASED:
2849 dm_init_old_md_queue(md);
2850 blk_queue_make_request(md->queue, dm_make_request);
2851 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2852 break;
2853 }
2854
2855 return 0;
2856 }
2857
dm_get_md(dev_t dev)2858 struct mapped_device *dm_get_md(dev_t dev)
2859 {
2860 struct mapped_device *md;
2861 unsigned minor = MINOR(dev);
2862
2863 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2864 return NULL;
2865
2866 spin_lock(&_minor_lock);
2867
2868 md = idr_find(&_minor_idr, minor);
2869 if (md) {
2870 if ((md == MINOR_ALLOCED ||
2871 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2872 dm_deleting_md(md) ||
2873 test_bit(DMF_FREEING, &md->flags))) {
2874 md = NULL;
2875 goto out;
2876 }
2877 dm_get(md);
2878 }
2879
2880 out:
2881 spin_unlock(&_minor_lock);
2882
2883 return md;
2884 }
2885 EXPORT_SYMBOL_GPL(dm_get_md);
2886
dm_get_mdptr(struct mapped_device * md)2887 void *dm_get_mdptr(struct mapped_device *md)
2888 {
2889 return md->interface_ptr;
2890 }
2891
dm_set_mdptr(struct mapped_device * md,void * ptr)2892 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2893 {
2894 md->interface_ptr = ptr;
2895 }
2896
dm_get(struct mapped_device * md)2897 void dm_get(struct mapped_device *md)
2898 {
2899 atomic_inc(&md->holders);
2900 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2901 }
2902
dm_hold(struct mapped_device * md)2903 int dm_hold(struct mapped_device *md)
2904 {
2905 spin_lock(&_minor_lock);
2906 if (test_bit(DMF_FREEING, &md->flags)) {
2907 spin_unlock(&_minor_lock);
2908 return -EBUSY;
2909 }
2910 dm_get(md);
2911 spin_unlock(&_minor_lock);
2912 return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(dm_hold);
2915
dm_device_name(struct mapped_device * md)2916 const char *dm_device_name(struct mapped_device *md)
2917 {
2918 return md->name;
2919 }
2920 EXPORT_SYMBOL_GPL(dm_device_name);
2921
__dm_destroy(struct mapped_device * md,bool wait)2922 static void __dm_destroy(struct mapped_device *md, bool wait)
2923 {
2924 struct dm_table *map;
2925 int srcu_idx;
2926
2927 might_sleep();
2928
2929 spin_lock(&_minor_lock);
2930 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2931 set_bit(DMF_FREEING, &md->flags);
2932 spin_unlock(&_minor_lock);
2933
2934 if (dm_request_based(md) && md->kworker_task)
2935 flush_kthread_worker(&md->kworker);
2936
2937 /*
2938 * Take suspend_lock so that presuspend and postsuspend methods
2939 * do not race with internal suspend.
2940 */
2941 mutex_lock(&md->suspend_lock);
2942 map = dm_get_live_table(md, &srcu_idx);
2943 if (!dm_suspended_md(md)) {
2944 dm_table_presuspend_targets(map);
2945 dm_table_postsuspend_targets(map);
2946 }
2947 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948 dm_put_live_table(md, srcu_idx);
2949 mutex_unlock(&md->suspend_lock);
2950
2951 /*
2952 * Rare, but there may be I/O requests still going to complete,
2953 * for example. Wait for all references to disappear.
2954 * No one should increment the reference count of the mapped_device,
2955 * after the mapped_device state becomes DMF_FREEING.
2956 */
2957 if (wait)
2958 while (atomic_read(&md->holders))
2959 msleep(1);
2960 else if (atomic_read(&md->holders))
2961 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2962 dm_device_name(md), atomic_read(&md->holders));
2963
2964 dm_sysfs_exit(md);
2965 dm_table_destroy(__unbind(md));
2966 free_dev(md);
2967 }
2968
dm_destroy(struct mapped_device * md)2969 void dm_destroy(struct mapped_device *md)
2970 {
2971 __dm_destroy(md, true);
2972 }
2973
dm_destroy_immediate(struct mapped_device * md)2974 void dm_destroy_immediate(struct mapped_device *md)
2975 {
2976 __dm_destroy(md, false);
2977 }
2978
dm_put(struct mapped_device * md)2979 void dm_put(struct mapped_device *md)
2980 {
2981 atomic_dec(&md->holders);
2982 }
2983 EXPORT_SYMBOL_GPL(dm_put);
2984
dm_wait_for_completion(struct mapped_device * md,int interruptible)2985 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2986 {
2987 int r = 0;
2988 DECLARE_WAITQUEUE(wait, current);
2989
2990 add_wait_queue(&md->wait, &wait);
2991
2992 while (1) {
2993 set_current_state(interruptible);
2994
2995 if (!md_in_flight(md))
2996 break;
2997
2998 if (interruptible == TASK_INTERRUPTIBLE &&
2999 signal_pending(current)) {
3000 r = -EINTR;
3001 break;
3002 }
3003
3004 io_schedule();
3005 }
3006 set_current_state(TASK_RUNNING);
3007
3008 remove_wait_queue(&md->wait, &wait);
3009
3010 return r;
3011 }
3012
3013 /*
3014 * Process the deferred bios
3015 */
dm_wq_work(struct work_struct * work)3016 static void dm_wq_work(struct work_struct *work)
3017 {
3018 struct mapped_device *md = container_of(work, struct mapped_device,
3019 work);
3020 struct bio *c;
3021 int srcu_idx;
3022 struct dm_table *map;
3023
3024 map = dm_get_live_table(md, &srcu_idx);
3025
3026 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3027 spin_lock_irq(&md->deferred_lock);
3028 c = bio_list_pop(&md->deferred);
3029 spin_unlock_irq(&md->deferred_lock);
3030
3031 if (!c)
3032 break;
3033
3034 if (dm_request_based(md))
3035 generic_make_request(c);
3036 else
3037 __split_and_process_bio(md, map, c);
3038 }
3039
3040 dm_put_live_table(md, srcu_idx);
3041 }
3042
dm_queue_flush(struct mapped_device * md)3043 static void dm_queue_flush(struct mapped_device *md)
3044 {
3045 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046 smp_mb__after_atomic();
3047 queue_work(md->wq, &md->work);
3048 }
3049
3050 /*
3051 * Swap in a new table, returning the old one for the caller to destroy.
3052 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)3053 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054 {
3055 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3056 struct queue_limits limits;
3057 int r;
3058
3059 mutex_lock(&md->suspend_lock);
3060
3061 /* device must be suspended */
3062 if (!dm_suspended_md(md))
3063 goto out;
3064
3065 /*
3066 * If the new table has no data devices, retain the existing limits.
3067 * This helps multipath with queue_if_no_path if all paths disappear,
3068 * then new I/O is queued based on these limits, and then some paths
3069 * reappear.
3070 */
3071 if (dm_table_has_no_data_devices(table)) {
3072 live_map = dm_get_live_table_fast(md);
3073 if (live_map)
3074 limits = md->queue->limits;
3075 dm_put_live_table_fast(md);
3076 }
3077
3078 if (!live_map) {
3079 r = dm_calculate_queue_limits(table, &limits);
3080 if (r) {
3081 map = ERR_PTR(r);
3082 goto out;
3083 }
3084 }
3085
3086 map = __bind(md, table, &limits);
3087
3088 out:
3089 mutex_unlock(&md->suspend_lock);
3090 return map;
3091 }
3092
3093 /*
3094 * Functions to lock and unlock any filesystem running on the
3095 * device.
3096 */
lock_fs(struct mapped_device * md)3097 static int lock_fs(struct mapped_device *md)
3098 {
3099 int r;
3100
3101 WARN_ON(md->frozen_sb);
3102
3103 md->frozen_sb = freeze_bdev(md->bdev);
3104 if (IS_ERR(md->frozen_sb)) {
3105 r = PTR_ERR(md->frozen_sb);
3106 md->frozen_sb = NULL;
3107 return r;
3108 }
3109
3110 set_bit(DMF_FROZEN, &md->flags);
3111
3112 return 0;
3113 }
3114
unlock_fs(struct mapped_device * md)3115 static void unlock_fs(struct mapped_device *md)
3116 {
3117 if (!test_bit(DMF_FROZEN, &md->flags))
3118 return;
3119
3120 thaw_bdev(md->bdev, md->frozen_sb);
3121 md->frozen_sb = NULL;
3122 clear_bit(DMF_FROZEN, &md->flags);
3123 }
3124
3125 /*
3126 * If __dm_suspend returns 0, the device is completely quiescent
3127 * now. There is no request-processing activity. All new requests
3128 * are being added to md->deferred list.
3129 *
3130 * Caller must hold md->suspend_lock
3131 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,int interruptible)3132 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3133 unsigned suspend_flags, int interruptible)
3134 {
3135 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3136 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3137 int r;
3138
3139 /*
3140 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3141 * This flag is cleared before dm_suspend returns.
3142 */
3143 if (noflush)
3144 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3145
3146 /*
3147 * This gets reverted if there's an error later and the targets
3148 * provide the .presuspend_undo hook.
3149 */
3150 dm_table_presuspend_targets(map);
3151
3152 /*
3153 * Flush I/O to the device.
3154 * Any I/O submitted after lock_fs() may not be flushed.
3155 * noflush takes precedence over do_lockfs.
3156 * (lock_fs() flushes I/Os and waits for them to complete.)
3157 */
3158 if (!noflush && do_lockfs) {
3159 r = lock_fs(md);
3160 if (r) {
3161 dm_table_presuspend_undo_targets(map);
3162 return r;
3163 }
3164 }
3165
3166 /*
3167 * Here we must make sure that no processes are submitting requests
3168 * to target drivers i.e. no one may be executing
3169 * __split_and_process_bio. This is called from dm_request and
3170 * dm_wq_work.
3171 *
3172 * To get all processes out of __split_and_process_bio in dm_request,
3173 * we take the write lock. To prevent any process from reentering
3174 * __split_and_process_bio from dm_request and quiesce the thread
3175 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3176 * flush_workqueue(md->wq).
3177 */
3178 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179 if (map)
3180 synchronize_srcu(&md->io_barrier);
3181
3182 /*
3183 * Stop md->queue before flushing md->wq in case request-based
3184 * dm defers requests to md->wq from md->queue.
3185 */
3186 if (dm_request_based(md)) {
3187 stop_queue(md->queue);
3188 if (md->kworker_task)
3189 flush_kthread_worker(&md->kworker);
3190 }
3191
3192 flush_workqueue(md->wq);
3193
3194 /*
3195 * At this point no more requests are entering target request routines.
3196 * We call dm_wait_for_completion to wait for all existing requests
3197 * to finish.
3198 */
3199 r = dm_wait_for_completion(md, interruptible);
3200
3201 if (noflush)
3202 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203 if (map)
3204 synchronize_srcu(&md->io_barrier);
3205
3206 /* were we interrupted ? */
3207 if (r < 0) {
3208 dm_queue_flush(md);
3209
3210 if (dm_request_based(md))
3211 start_queue(md->queue);
3212
3213 unlock_fs(md);
3214 dm_table_presuspend_undo_targets(map);
3215 /* pushback list is already flushed, so skip flush */
3216 }
3217
3218 return r;
3219 }
3220
3221 /*
3222 * We need to be able to change a mapping table under a mounted
3223 * filesystem. For example we might want to move some data in
3224 * the background. Before the table can be swapped with
3225 * dm_bind_table, dm_suspend must be called to flush any in
3226 * flight bios and ensure that any further io gets deferred.
3227 */
3228 /*
3229 * Suspend mechanism in request-based dm.
3230 *
3231 * 1. Flush all I/Os by lock_fs() if needed.
3232 * 2. Stop dispatching any I/O by stopping the request_queue.
3233 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 *
3235 * To abort suspend, start the request_queue.
3236 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)3237 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238 {
3239 struct dm_table *map = NULL;
3240 int r = 0;
3241
3242 retry:
3243 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244
3245 if (dm_suspended_md(md)) {
3246 r = -EINVAL;
3247 goto out_unlock;
3248 }
3249
3250 if (dm_suspended_internally_md(md)) {
3251 /* already internally suspended, wait for internal resume */
3252 mutex_unlock(&md->suspend_lock);
3253 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3254 if (r)
3255 return r;
3256 goto retry;
3257 }
3258
3259 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3260
3261 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3262 if (r)
3263 goto out_unlock;
3264
3265 set_bit(DMF_SUSPENDED, &md->flags);
3266
3267 dm_table_postsuspend_targets(map);
3268
3269 out_unlock:
3270 mutex_unlock(&md->suspend_lock);
3271 return r;
3272 }
3273
__dm_resume(struct mapped_device * md,struct dm_table * map)3274 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3275 {
3276 if (map) {
3277 int r = dm_table_resume_targets(map);
3278 if (r)
3279 return r;
3280 }
3281
3282 dm_queue_flush(md);
3283
3284 /*
3285 * Flushing deferred I/Os must be done after targets are resumed
3286 * so that mapping of targets can work correctly.
3287 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288 */
3289 if (dm_request_based(md))
3290 start_queue(md->queue);
3291
3292 unlock_fs(md);
3293
3294 return 0;
3295 }
3296
dm_resume(struct mapped_device * md)3297 int dm_resume(struct mapped_device *md)
3298 {
3299 int r = -EINVAL;
3300 struct dm_table *map = NULL;
3301
3302 retry:
3303 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304
3305 if (!dm_suspended_md(md))
3306 goto out;
3307
3308 if (dm_suspended_internally_md(md)) {
3309 /* already internally suspended, wait for internal resume */
3310 mutex_unlock(&md->suspend_lock);
3311 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3312 if (r)
3313 return r;
3314 goto retry;
3315 }
3316
3317 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3318 if (!map || !dm_table_get_size(map))
3319 goto out;
3320
3321 r = __dm_resume(md, map);
3322 if (r)
3323 goto out;
3324
3325 clear_bit(DMF_SUSPENDED, &md->flags);
3326
3327 r = 0;
3328 out:
3329 mutex_unlock(&md->suspend_lock);
3330
3331 return r;
3332 }
3333
3334 /*
3335 * Internal suspend/resume works like userspace-driven suspend. It waits
3336 * until all bios finish and prevents issuing new bios to the target drivers.
3337 * It may be used only from the kernel.
3338 */
3339
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)3340 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341 {
3342 struct dm_table *map = NULL;
3343
3344 if (md->internal_suspend_count++)
3345 return; /* nested internal suspend */
3346
3347 if (dm_suspended_md(md)) {
3348 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3349 return; /* nest suspend */
3350 }
3351
3352 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353
3354 /*
3355 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3356 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3357 * would require changing .presuspend to return an error -- avoid this
3358 * until there is a need for more elaborate variants of internal suspend.
3359 */
3360 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3361
3362 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363
3364 dm_table_postsuspend_targets(map);
3365 }
3366
__dm_internal_resume(struct mapped_device * md)3367 static void __dm_internal_resume(struct mapped_device *md)
3368 {
3369 BUG_ON(!md->internal_suspend_count);
3370
3371 if (--md->internal_suspend_count)
3372 return; /* resume from nested internal suspend */
3373
3374 if (dm_suspended_md(md))
3375 goto done; /* resume from nested suspend */
3376
3377 /*
3378 * NOTE: existing callers don't need to call dm_table_resume_targets
3379 * (which may fail -- so best to avoid it for now by passing NULL map)
3380 */
3381 (void) __dm_resume(md, NULL);
3382
3383 done:
3384 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3385 smp_mb__after_atomic();
3386 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3387 }
3388
dm_internal_suspend_noflush(struct mapped_device * md)3389 void dm_internal_suspend_noflush(struct mapped_device *md)
3390 {
3391 mutex_lock(&md->suspend_lock);
3392 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3393 mutex_unlock(&md->suspend_lock);
3394 }
3395 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396
dm_internal_resume(struct mapped_device * md)3397 void dm_internal_resume(struct mapped_device *md)
3398 {
3399 mutex_lock(&md->suspend_lock);
3400 __dm_internal_resume(md);
3401 mutex_unlock(&md->suspend_lock);
3402 }
3403 EXPORT_SYMBOL_GPL(dm_internal_resume);
3404
3405 /*
3406 * Fast variants of internal suspend/resume hold md->suspend_lock,
3407 * which prevents interaction with userspace-driven suspend.
3408 */
3409
dm_internal_suspend_fast(struct mapped_device * md)3410 void dm_internal_suspend_fast(struct mapped_device *md)
3411 {
3412 mutex_lock(&md->suspend_lock);
3413 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3414 return;
3415
3416 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3417 synchronize_srcu(&md->io_barrier);
3418 flush_workqueue(md->wq);
3419 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420 }
3421 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422
dm_internal_resume_fast(struct mapped_device * md)3423 void dm_internal_resume_fast(struct mapped_device *md)
3424 {
3425 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426 goto done;
3427
3428 dm_queue_flush(md);
3429
3430 done:
3431 mutex_unlock(&md->suspend_lock);
3432 }
3433 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434
3435 /*-----------------------------------------------------------------
3436 * Event notification.
3437 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)3438 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3439 unsigned cookie)
3440 {
3441 char udev_cookie[DM_COOKIE_LENGTH];
3442 char *envp[] = { udev_cookie, NULL };
3443
3444 if (!cookie)
3445 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446 else {
3447 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3448 DM_COOKIE_ENV_VAR_NAME, cookie);
3449 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3450 action, envp);
3451 }
3452 }
3453
dm_next_uevent_seq(struct mapped_device * md)3454 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455 {
3456 return atomic_add_return(1, &md->uevent_seq);
3457 }
3458
dm_get_event_nr(struct mapped_device * md)3459 uint32_t dm_get_event_nr(struct mapped_device *md)
3460 {
3461 return atomic_read(&md->event_nr);
3462 }
3463
dm_wait_event(struct mapped_device * md,int event_nr)3464 int dm_wait_event(struct mapped_device *md, int event_nr)
3465 {
3466 return wait_event_interruptible(md->eventq,
3467 (event_nr != atomic_read(&md->event_nr)));
3468 }
3469
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3470 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471 {
3472 unsigned long flags;
3473
3474 spin_lock_irqsave(&md->uevent_lock, flags);
3475 list_add(elist, &md->uevent_list);
3476 spin_unlock_irqrestore(&md->uevent_lock, flags);
3477 }
3478
3479 /*
3480 * The gendisk is only valid as long as you have a reference
3481 * count on 'md'.
3482 */
dm_disk(struct mapped_device * md)3483 struct gendisk *dm_disk(struct mapped_device *md)
3484 {
3485 return md->disk;
3486 }
3487 EXPORT_SYMBOL_GPL(dm_disk);
3488
dm_kobject(struct mapped_device * md)3489 struct kobject *dm_kobject(struct mapped_device *md)
3490 {
3491 return &md->kobj_holder.kobj;
3492 }
3493
dm_get_from_kobject(struct kobject * kobj)3494 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495 {
3496 struct mapped_device *md;
3497
3498 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3499
3500 if (test_bit(DMF_FREEING, &md->flags) ||
3501 dm_deleting_md(md))
3502 return NULL;
3503
3504 dm_get(md);
3505 return md;
3506 }
3507
dm_suspended_md(struct mapped_device * md)3508 int dm_suspended_md(struct mapped_device *md)
3509 {
3510 return test_bit(DMF_SUSPENDED, &md->flags);
3511 }
3512
dm_suspended_internally_md(struct mapped_device * md)3513 int dm_suspended_internally_md(struct mapped_device *md)
3514 {
3515 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3516 }
3517
dm_test_deferred_remove_flag(struct mapped_device * md)3518 int dm_test_deferred_remove_flag(struct mapped_device *md)
3519 {
3520 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3521 }
3522
dm_suspended(struct dm_target * ti)3523 int dm_suspended(struct dm_target *ti)
3524 {
3525 return dm_suspended_md(dm_table_get_md(ti->table));
3526 }
3527 EXPORT_SYMBOL_GPL(dm_suspended);
3528
dm_noflush_suspending(struct dm_target * ti)3529 int dm_noflush_suspending(struct dm_target *ti)
3530 {
3531 return __noflush_suspending(dm_table_get_md(ti->table));
3532 }
3533 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534
dm_alloc_md_mempools(struct mapped_device * md,unsigned type,unsigned integrity,unsigned per_bio_data_size)3535 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3536 unsigned integrity, unsigned per_bio_data_size)
3537 {
3538 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3539 struct kmem_cache *cachep = NULL;
3540 unsigned int pool_size = 0;
3541 unsigned int front_pad;
3542
3543 if (!pools)
3544 return NULL;
3545
3546 type = filter_md_type(type, md);
3547
3548 switch (type) {
3549 case DM_TYPE_BIO_BASED:
3550 cachep = _io_cache;
3551 pool_size = dm_get_reserved_bio_based_ios();
3552 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3553 break;
3554 case DM_TYPE_REQUEST_BASED:
3555 cachep = _rq_tio_cache;
3556 pool_size = dm_get_reserved_rq_based_ios();
3557 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3558 if (!pools->rq_pool)
3559 goto out;
3560 /* fall through to setup remaining rq-based pools */
3561 case DM_TYPE_MQ_REQUEST_BASED:
3562 if (!pool_size)
3563 pool_size = dm_get_reserved_rq_based_ios();
3564 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3565 /* per_bio_data_size is not used. See __bind_mempools(). */
3566 WARN_ON(per_bio_data_size != 0);
3567 break;
3568 default:
3569 BUG();
3570 }
3571
3572 if (cachep) {
3573 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3574 if (!pools->io_pool)
3575 goto out;
3576 }
3577
3578 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3579 if (!pools->bs)
3580 goto out;
3581
3582 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3583 goto out;
3584
3585 return pools;
3586
3587 out:
3588 dm_free_md_mempools(pools);
3589
3590 return NULL;
3591 }
3592
dm_free_md_mempools(struct dm_md_mempools * pools)3593 void dm_free_md_mempools(struct dm_md_mempools *pools)
3594 {
3595 if (!pools)
3596 return;
3597
3598 if (pools->io_pool)
3599 mempool_destroy(pools->io_pool);
3600
3601 if (pools->rq_pool)
3602 mempool_destroy(pools->rq_pool);
3603
3604 if (pools->bs)
3605 bioset_free(pools->bs);
3606
3607 kfree(pools);
3608 }
3609
3610 static const struct block_device_operations dm_blk_dops = {
3611 .open = dm_blk_open,
3612 .release = dm_blk_close,
3613 .ioctl = dm_blk_ioctl,
3614 .getgeo = dm_blk_getgeo,
3615 .owner = THIS_MODULE
3616 };
3617
3618 /*
3619 * module hooks
3620 */
3621 module_init(dm_init);
3622 module_exit(dm_exit);
3623
3624 module_param(major, uint, 0);
3625 MODULE_PARM_DESC(major, "The major number of the device mapper");
3626
3627 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3628 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3629
3630 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3631 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3632
3633 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3634 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3635
3636 MODULE_DESCRIPTION(DM_NAME " driver");
3637 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3638 MODULE_LICENSE("GPL");
3639