1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-uevent.h"
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/idr.h>
20#include <linux/hdreg.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/kthread.h>
24#include <linux/ktime.h>
25#include <linux/elevator.h> /* for rq_end_sector() */
26#include <linux/blk-mq.h>
27
28#include <trace/events/block.h>
29
30#define DM_MSG_PREFIX "core"
31
32#ifdef CONFIG_PRINTK
33/*
34 * ratelimit state to be used in DMXXX_LIMIT().
35 */
36DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37		       DEFAULT_RATELIMIT_INTERVAL,
38		       DEFAULT_RATELIMIT_BURST);
39EXPORT_SYMBOL(dm_ratelimit_state);
40#endif
41
42/*
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
45 */
46#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47#define DM_COOKIE_LENGTH 24
48
49static const char *_name = DM_NAME;
50
51static unsigned int major = 0;
52static unsigned int _major = 0;
53
54static DEFINE_IDR(_minor_idr);
55
56static DEFINE_SPINLOCK(_minor_lock);
57
58static void do_deferred_remove(struct work_struct *w);
59
60static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61
62static struct workqueue_struct *deferred_remove_workqueue;
63
64/*
65 * For bio-based dm.
66 * One of these is allocated per bio.
67 */
68struct dm_io {
69	struct mapped_device *md;
70	int error;
71	atomic_t io_count;
72	struct bio *bio;
73	unsigned long start_time;
74	spinlock_t endio_lock;
75	struct dm_stats_aux stats_aux;
76};
77
78/*
79 * For request-based dm.
80 * One of these is allocated per request.
81 */
82struct dm_rq_target_io {
83	struct mapped_device *md;
84	struct dm_target *ti;
85	struct request *orig, *clone;
86	struct kthread_work work;
87	int error;
88	union map_info info;
89};
90
91/*
92 * For request-based dm - the bio clones we allocate are embedded in these
93 * structs.
94 *
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
97 * struct.
98 */
99struct dm_rq_clone_bio_info {
100	struct bio *orig;
101	struct dm_rq_target_io *tio;
102	struct bio clone;
103};
104
105union map_info *dm_get_rq_mapinfo(struct request *rq)
106{
107	if (rq && rq->end_io_data)
108		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109	return NULL;
110}
111EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112
113#define MINOR_ALLOCED ((void *)-1)
114
115/*
116 * Bits for the md->flags field.
117 */
118#define DMF_BLOCK_IO_FOR_SUSPEND 0
119#define DMF_SUSPENDED 1
120#define DMF_FROZEN 2
121#define DMF_FREEING 3
122#define DMF_DELETING 4
123#define DMF_NOFLUSH_SUSPENDING 5
124#define DMF_MERGE_IS_OPTIONAL 6
125#define DMF_DEFERRED_REMOVE 7
126#define DMF_SUSPENDED_INTERNALLY 8
127
128/*
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
131 */
132struct dm_table {
133	int undefined__;
134};
135
136/*
137 * Work processed by per-device workqueue.
138 */
139struct mapped_device {
140	struct srcu_struct io_barrier;
141	struct mutex suspend_lock;
142	atomic_t holders;
143	atomic_t open_count;
144
145	/*
146	 * The current mapping.
147	 * Use dm_get_live_table{_fast} or take suspend_lock for
148	 * dereference.
149	 */
150	struct dm_table __rcu *map;
151
152	struct list_head table_devices;
153	struct mutex table_devices_lock;
154
155	unsigned long flags;
156
157	struct request_queue *queue;
158	unsigned type;
159	/* Protect queue and type against concurrent access. */
160	struct mutex type_lock;
161
162	struct target_type *immutable_target_type;
163
164	struct gendisk *disk;
165	char name[16];
166
167	void *interface_ptr;
168
169	/*
170	 * A list of ios that arrived while we were suspended.
171	 */
172	atomic_t pending[2];
173	wait_queue_head_t wait;
174	struct work_struct work;
175	struct bio_list deferred;
176	spinlock_t deferred_lock;
177
178	/*
179	 * Processing queue (flush)
180	 */
181	struct workqueue_struct *wq;
182
183	/*
184	 * io objects are allocated from here.
185	 */
186	mempool_t *io_pool;
187	mempool_t *rq_pool;
188
189	struct bio_set *bs;
190
191	/*
192	 * Event handling.
193	 */
194	atomic_t event_nr;
195	wait_queue_head_t eventq;
196	atomic_t uevent_seq;
197	struct list_head uevent_list;
198	spinlock_t uevent_lock; /* Protect access to uevent_list */
199
200	/*
201	 * freeze/thaw support require holding onto a super block
202	 */
203	struct super_block *frozen_sb;
204	struct block_device *bdev;
205
206	/* forced geometry settings */
207	struct hd_geometry geometry;
208
209	/* kobject and completion */
210	struct dm_kobject_holder kobj_holder;
211
212	/* zero-length flush that will be cloned and submitted to targets */
213	struct bio flush_bio;
214
215	/* the number of internal suspends */
216	unsigned internal_suspend_count;
217
218	struct dm_stats stats;
219
220	struct kthread_worker kworker;
221	struct task_struct *kworker_task;
222
223	/* for request-based merge heuristic in dm_request_fn() */
224	unsigned seq_rq_merge_deadline_usecs;
225	int last_rq_rw;
226	sector_t last_rq_pos;
227	ktime_t last_rq_start_time;
228
229	/* for blk-mq request-based DM support */
230	struct blk_mq_tag_set tag_set;
231	bool use_blk_mq;
232};
233
234#ifdef CONFIG_DM_MQ_DEFAULT
235static bool use_blk_mq = true;
236#else
237static bool use_blk_mq = false;
238#endif
239
240bool dm_use_blk_mq(struct mapped_device *md)
241{
242	return md->use_blk_mq;
243}
244
245/*
246 * For mempools pre-allocation at the table loading time.
247 */
248struct dm_md_mempools {
249	mempool_t *io_pool;
250	mempool_t *rq_pool;
251	struct bio_set *bs;
252};
253
254struct table_device {
255	struct list_head list;
256	atomic_t count;
257	struct dm_dev dm_dev;
258};
259
260#define RESERVED_BIO_BASED_IOS		16
261#define RESERVED_REQUEST_BASED_IOS	256
262#define RESERVED_MAX_IOS		1024
263static struct kmem_cache *_io_cache;
264static struct kmem_cache *_rq_tio_cache;
265static struct kmem_cache *_rq_cache;
266
267/*
268 * Bio-based DM's mempools' reserved IOs set by the user.
269 */
270static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271
272/*
273 * Request-based DM's mempools' reserved IOs set by the user.
274 */
275static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276
277static unsigned __dm_get_module_param(unsigned *module_param,
278				      unsigned def, unsigned max)
279{
280	unsigned param = ACCESS_ONCE(*module_param);
281	unsigned modified_param = 0;
282
283	if (!param)
284		modified_param = def;
285	else if (param > max)
286		modified_param = max;
287
288	if (modified_param) {
289		(void)cmpxchg(module_param, param, modified_param);
290		param = modified_param;
291	}
292
293	return param;
294}
295
296unsigned dm_get_reserved_bio_based_ios(void)
297{
298	return __dm_get_module_param(&reserved_bio_based_ios,
299				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300}
301EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302
303unsigned dm_get_reserved_rq_based_ios(void)
304{
305	return __dm_get_module_param(&reserved_rq_based_ios,
306				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307}
308EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309
310static int __init local_init(void)
311{
312	int r = -ENOMEM;
313
314	/* allocate a slab for the dm_ios */
315	_io_cache = KMEM_CACHE(dm_io, 0);
316	if (!_io_cache)
317		return r;
318
319	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320	if (!_rq_tio_cache)
321		goto out_free_io_cache;
322
323	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324				      __alignof__(struct request), 0, NULL);
325	if (!_rq_cache)
326		goto out_free_rq_tio_cache;
327
328	r = dm_uevent_init();
329	if (r)
330		goto out_free_rq_cache;
331
332	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333	if (!deferred_remove_workqueue) {
334		r = -ENOMEM;
335		goto out_uevent_exit;
336	}
337
338	_major = major;
339	r = register_blkdev(_major, _name);
340	if (r < 0)
341		goto out_free_workqueue;
342
343	if (!_major)
344		_major = r;
345
346	return 0;
347
348out_free_workqueue:
349	destroy_workqueue(deferred_remove_workqueue);
350out_uevent_exit:
351	dm_uevent_exit();
352out_free_rq_cache:
353	kmem_cache_destroy(_rq_cache);
354out_free_rq_tio_cache:
355	kmem_cache_destroy(_rq_tio_cache);
356out_free_io_cache:
357	kmem_cache_destroy(_io_cache);
358
359	return r;
360}
361
362static void local_exit(void)
363{
364	flush_scheduled_work();
365	destroy_workqueue(deferred_remove_workqueue);
366
367	kmem_cache_destroy(_rq_cache);
368	kmem_cache_destroy(_rq_tio_cache);
369	kmem_cache_destroy(_io_cache);
370	unregister_blkdev(_major, _name);
371	dm_uevent_exit();
372
373	_major = 0;
374
375	DMINFO("cleaned up");
376}
377
378static int (*_inits[])(void) __initdata = {
379	local_init,
380	dm_target_init,
381	dm_linear_init,
382	dm_stripe_init,
383	dm_io_init,
384	dm_kcopyd_init,
385	dm_interface_init,
386	dm_statistics_init,
387};
388
389static void (*_exits[])(void) = {
390	local_exit,
391	dm_target_exit,
392	dm_linear_exit,
393	dm_stripe_exit,
394	dm_io_exit,
395	dm_kcopyd_exit,
396	dm_interface_exit,
397	dm_statistics_exit,
398};
399
400static int __init dm_init(void)
401{
402	const int count = ARRAY_SIZE(_inits);
403
404	int r, i;
405
406	for (i = 0; i < count; i++) {
407		r = _inits[i]();
408		if (r)
409			goto bad;
410	}
411
412	return 0;
413
414      bad:
415	while (i--)
416		_exits[i]();
417
418	return r;
419}
420
421static void __exit dm_exit(void)
422{
423	int i = ARRAY_SIZE(_exits);
424
425	while (i--)
426		_exits[i]();
427
428	/*
429	 * Should be empty by this point.
430	 */
431	idr_destroy(&_minor_idr);
432}
433
434/*
435 * Block device functions
436 */
437int dm_deleting_md(struct mapped_device *md)
438{
439	return test_bit(DMF_DELETING, &md->flags);
440}
441
442static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443{
444	struct mapped_device *md;
445
446	spin_lock(&_minor_lock);
447
448	md = bdev->bd_disk->private_data;
449	if (!md)
450		goto out;
451
452	if (test_bit(DMF_FREEING, &md->flags) ||
453	    dm_deleting_md(md)) {
454		md = NULL;
455		goto out;
456	}
457
458	dm_get(md);
459	atomic_inc(&md->open_count);
460out:
461	spin_unlock(&_minor_lock);
462
463	return md ? 0 : -ENXIO;
464}
465
466static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467{
468	struct mapped_device *md;
469
470	spin_lock(&_minor_lock);
471
472	md = disk->private_data;
473	if (WARN_ON(!md))
474		goto out;
475
476	if (atomic_dec_and_test(&md->open_count) &&
477	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478		queue_work(deferred_remove_workqueue, &deferred_remove_work);
479
480	dm_put(md);
481out:
482	spin_unlock(&_minor_lock);
483}
484
485int dm_open_count(struct mapped_device *md)
486{
487	return atomic_read(&md->open_count);
488}
489
490/*
491 * Guarantees nothing is using the device before it's deleted.
492 */
493int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494{
495	int r = 0;
496
497	spin_lock(&_minor_lock);
498
499	if (dm_open_count(md)) {
500		r = -EBUSY;
501		if (mark_deferred)
502			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504		r = -EEXIST;
505	else
506		set_bit(DMF_DELETING, &md->flags);
507
508	spin_unlock(&_minor_lock);
509
510	return r;
511}
512
513int dm_cancel_deferred_remove(struct mapped_device *md)
514{
515	int r = 0;
516
517	spin_lock(&_minor_lock);
518
519	if (test_bit(DMF_DELETING, &md->flags))
520		r = -EBUSY;
521	else
522		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523
524	spin_unlock(&_minor_lock);
525
526	return r;
527}
528
529static void do_deferred_remove(struct work_struct *w)
530{
531	dm_deferred_remove();
532}
533
534sector_t dm_get_size(struct mapped_device *md)
535{
536	return get_capacity(md->disk);
537}
538
539struct request_queue *dm_get_md_queue(struct mapped_device *md)
540{
541	return md->queue;
542}
543
544struct dm_stats *dm_get_stats(struct mapped_device *md)
545{
546	return &md->stats;
547}
548
549static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550{
551	struct mapped_device *md = bdev->bd_disk->private_data;
552
553	return dm_get_geometry(md, geo);
554}
555
556static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557			unsigned int cmd, unsigned long arg)
558{
559	struct mapped_device *md = bdev->bd_disk->private_data;
560	int srcu_idx;
561	struct dm_table *map;
562	struct dm_target *tgt;
563	int r = -ENOTTY;
564
565retry:
566	map = dm_get_live_table(md, &srcu_idx);
567
568	if (!map || !dm_table_get_size(map))
569		goto out;
570
571	/* We only support devices that have a single target */
572	if (dm_table_get_num_targets(map) != 1)
573		goto out;
574
575	tgt = dm_table_get_target(map, 0);
576	if (!tgt->type->ioctl)
577		goto out;
578
579	if (dm_suspended_md(md)) {
580		r = -EAGAIN;
581		goto out;
582	}
583
584	r = tgt->type->ioctl(tgt, cmd, arg);
585
586out:
587	dm_put_live_table(md, srcu_idx);
588
589	if (r == -ENOTCONN) {
590		msleep(10);
591		goto retry;
592	}
593
594	return r;
595}
596
597static struct dm_io *alloc_io(struct mapped_device *md)
598{
599	return mempool_alloc(md->io_pool, GFP_NOIO);
600}
601
602static void free_io(struct mapped_device *md, struct dm_io *io)
603{
604	mempool_free(io, md->io_pool);
605}
606
607static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608{
609	bio_put(&tio->clone);
610}
611
612static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613					    gfp_t gfp_mask)
614{
615	return mempool_alloc(md->io_pool, gfp_mask);
616}
617
618static void free_rq_tio(struct dm_rq_target_io *tio)
619{
620	mempool_free(tio, tio->md->io_pool);
621}
622
623static struct request *alloc_clone_request(struct mapped_device *md,
624					   gfp_t gfp_mask)
625{
626	return mempool_alloc(md->rq_pool, gfp_mask);
627}
628
629static void free_clone_request(struct mapped_device *md, struct request *rq)
630{
631	mempool_free(rq, md->rq_pool);
632}
633
634static int md_in_flight(struct mapped_device *md)
635{
636	return atomic_read(&md->pending[READ]) +
637	       atomic_read(&md->pending[WRITE]);
638}
639
640static void start_io_acct(struct dm_io *io)
641{
642	struct mapped_device *md = io->md;
643	struct bio *bio = io->bio;
644	int cpu;
645	int rw = bio_data_dir(bio);
646
647	io->start_time = jiffies;
648
649	cpu = part_stat_lock();
650	part_round_stats(cpu, &dm_disk(md)->part0);
651	part_stat_unlock();
652	atomic_set(&dm_disk(md)->part0.in_flight[rw],
653		atomic_inc_return(&md->pending[rw]));
654
655	if (unlikely(dm_stats_used(&md->stats)))
656		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657				    bio_sectors(bio), false, 0, &io->stats_aux);
658}
659
660static void end_io_acct(struct dm_io *io)
661{
662	struct mapped_device *md = io->md;
663	struct bio *bio = io->bio;
664	unsigned long duration = jiffies - io->start_time;
665	int pending;
666	int rw = bio_data_dir(bio);
667
668	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669
670	if (unlikely(dm_stats_used(&md->stats)))
671		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672				    bio_sectors(bio), true, duration, &io->stats_aux);
673
674	/*
675	 * After this is decremented the bio must not be touched if it is
676	 * a flush.
677	 */
678	pending = atomic_dec_return(&md->pending[rw]);
679	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680	pending += atomic_read(&md->pending[rw^0x1]);
681
682	/* nudge anyone waiting on suspend queue */
683	if (!pending)
684		wake_up(&md->wait);
685}
686
687/*
688 * Add the bio to the list of deferred io.
689 */
690static void queue_io(struct mapped_device *md, struct bio *bio)
691{
692	unsigned long flags;
693
694	spin_lock_irqsave(&md->deferred_lock, flags);
695	bio_list_add(&md->deferred, bio);
696	spin_unlock_irqrestore(&md->deferred_lock, flags);
697	queue_work(md->wq, &md->work);
698}
699
700/*
701 * Everyone (including functions in this file), should use this
702 * function to access the md->map field, and make sure they call
703 * dm_put_live_table() when finished.
704 */
705struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706{
707	*srcu_idx = srcu_read_lock(&md->io_barrier);
708
709	return srcu_dereference(md->map, &md->io_barrier);
710}
711
712void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713{
714	srcu_read_unlock(&md->io_barrier, srcu_idx);
715}
716
717void dm_sync_table(struct mapped_device *md)
718{
719	synchronize_srcu(&md->io_barrier);
720	synchronize_rcu_expedited();
721}
722
723/*
724 * A fast alternative to dm_get_live_table/dm_put_live_table.
725 * The caller must not block between these two functions.
726 */
727static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728{
729	rcu_read_lock();
730	return rcu_dereference(md->map);
731}
732
733static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734{
735	rcu_read_unlock();
736}
737
738/*
739 * Open a table device so we can use it as a map destination.
740 */
741static int open_table_device(struct table_device *td, dev_t dev,
742			     struct mapped_device *md)
743{
744	static char *_claim_ptr = "I belong to device-mapper";
745	struct block_device *bdev;
746
747	int r;
748
749	BUG_ON(td->dm_dev.bdev);
750
751	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752	if (IS_ERR(bdev))
753		return PTR_ERR(bdev);
754
755	r = bd_link_disk_holder(bdev, dm_disk(md));
756	if (r) {
757		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758		return r;
759	}
760
761	td->dm_dev.bdev = bdev;
762	return 0;
763}
764
765/*
766 * Close a table device that we've been using.
767 */
768static void close_table_device(struct table_device *td, struct mapped_device *md)
769{
770	if (!td->dm_dev.bdev)
771		return;
772
773	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775	td->dm_dev.bdev = NULL;
776}
777
778static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779					      fmode_t mode) {
780	struct table_device *td;
781
782	list_for_each_entry(td, l, list)
783		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784			return td;
785
786	return NULL;
787}
788
789int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790			struct dm_dev **result) {
791	int r;
792	struct table_device *td;
793
794	mutex_lock(&md->table_devices_lock);
795	td = find_table_device(&md->table_devices, dev, mode);
796	if (!td) {
797		td = kmalloc(sizeof(*td), GFP_KERNEL);
798		if (!td) {
799			mutex_unlock(&md->table_devices_lock);
800			return -ENOMEM;
801		}
802
803		td->dm_dev.mode = mode;
804		td->dm_dev.bdev = NULL;
805
806		if ((r = open_table_device(td, dev, md))) {
807			mutex_unlock(&md->table_devices_lock);
808			kfree(td);
809			return r;
810		}
811
812		format_dev_t(td->dm_dev.name, dev);
813
814		atomic_set(&td->count, 0);
815		list_add(&td->list, &md->table_devices);
816	}
817	atomic_inc(&td->count);
818	mutex_unlock(&md->table_devices_lock);
819
820	*result = &td->dm_dev;
821	return 0;
822}
823EXPORT_SYMBOL_GPL(dm_get_table_device);
824
825void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826{
827	struct table_device *td = container_of(d, struct table_device, dm_dev);
828
829	mutex_lock(&md->table_devices_lock);
830	if (atomic_dec_and_test(&td->count)) {
831		close_table_device(td, md);
832		list_del(&td->list);
833		kfree(td);
834	}
835	mutex_unlock(&md->table_devices_lock);
836}
837EXPORT_SYMBOL(dm_put_table_device);
838
839static void free_table_devices(struct list_head *devices)
840{
841	struct list_head *tmp, *next;
842
843	list_for_each_safe(tmp, next, devices) {
844		struct table_device *td = list_entry(tmp, struct table_device, list);
845
846		DMWARN("dm_destroy: %s still exists with %d references",
847		       td->dm_dev.name, atomic_read(&td->count));
848		kfree(td);
849	}
850}
851
852/*
853 * Get the geometry associated with a dm device
854 */
855int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856{
857	*geo = md->geometry;
858
859	return 0;
860}
861
862/*
863 * Set the geometry of a device.
864 */
865int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866{
867	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868
869	if (geo->start > sz) {
870		DMWARN("Start sector is beyond the geometry limits.");
871		return -EINVAL;
872	}
873
874	md->geometry = *geo;
875
876	return 0;
877}
878
879/*-----------------------------------------------------------------
880 * CRUD START:
881 *   A more elegant soln is in the works that uses the queue
882 *   merge fn, unfortunately there are a couple of changes to
883 *   the block layer that I want to make for this.  So in the
884 *   interests of getting something for people to use I give
885 *   you this clearly demarcated crap.
886 *---------------------------------------------------------------*/
887
888static int __noflush_suspending(struct mapped_device *md)
889{
890	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891}
892
893/*
894 * Decrements the number of outstanding ios that a bio has been
895 * cloned into, completing the original io if necc.
896 */
897static void dec_pending(struct dm_io *io, int error)
898{
899	unsigned long flags;
900	int io_error;
901	struct bio *bio;
902	struct mapped_device *md = io->md;
903
904	/* Push-back supersedes any I/O errors */
905	if (unlikely(error)) {
906		spin_lock_irqsave(&io->endio_lock, flags);
907		if (!(io->error > 0 && __noflush_suspending(md)))
908			io->error = error;
909		spin_unlock_irqrestore(&io->endio_lock, flags);
910	}
911
912	if (atomic_dec_and_test(&io->io_count)) {
913		if (io->error == DM_ENDIO_REQUEUE) {
914			/*
915			 * Target requested pushing back the I/O.
916			 */
917			spin_lock_irqsave(&md->deferred_lock, flags);
918			if (__noflush_suspending(md))
919				bio_list_add_head(&md->deferred, io->bio);
920			else
921				/* noflush suspend was interrupted. */
922				io->error = -EIO;
923			spin_unlock_irqrestore(&md->deferred_lock, flags);
924		}
925
926		io_error = io->error;
927		bio = io->bio;
928		end_io_acct(io);
929		free_io(md, io);
930
931		if (io_error == DM_ENDIO_REQUEUE)
932			return;
933
934		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935			/*
936			 * Preflush done for flush with data, reissue
937			 * without REQ_FLUSH.
938			 */
939			bio->bi_rw &= ~REQ_FLUSH;
940			queue_io(md, bio);
941		} else {
942			/* done with normal IO or empty flush */
943			trace_block_bio_complete(md->queue, bio, io_error);
944			bio_endio(bio, io_error);
945		}
946	}
947}
948
949static void disable_write_same(struct mapped_device *md)
950{
951	struct queue_limits *limits = dm_get_queue_limits(md);
952
953	/* device doesn't really support WRITE SAME, disable it */
954	limits->max_write_same_sectors = 0;
955}
956
957static void clone_endio(struct bio *bio, int error)
958{
959	int r = error;
960	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961	struct dm_io *io = tio->io;
962	struct mapped_device *md = tio->io->md;
963	dm_endio_fn endio = tio->ti->type->end_io;
964
965	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966		error = -EIO;
967
968	if (endio) {
969		r = endio(tio->ti, bio, error);
970		if (r < 0 || r == DM_ENDIO_REQUEUE)
971			/*
972			 * error and requeue request are handled
973			 * in dec_pending().
974			 */
975			error = r;
976		else if (r == DM_ENDIO_INCOMPLETE)
977			/* The target will handle the io */
978			return;
979		else if (r) {
980			DMWARN("unimplemented target endio return value: %d", r);
981			BUG();
982		}
983	}
984
985	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987		disable_write_same(md);
988
989	free_tio(md, tio);
990	dec_pending(io, error);
991}
992
993/*
994 * Partial completion handling for request-based dm
995 */
996static void end_clone_bio(struct bio *clone, int error)
997{
998	struct dm_rq_clone_bio_info *info =
999		container_of(clone, struct dm_rq_clone_bio_info, clone);
1000	struct dm_rq_target_io *tio = info->tio;
1001	struct bio *bio = info->orig;
1002	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003
1004	bio_put(clone);
1005
1006	if (tio->error)
1007		/*
1008		 * An error has already been detected on the request.
1009		 * Once error occurred, just let clone->end_io() handle
1010		 * the remainder.
1011		 */
1012		return;
1013	else if (error) {
1014		/*
1015		 * Don't notice the error to the upper layer yet.
1016		 * The error handling decision is made by the target driver,
1017		 * when the request is completed.
1018		 */
1019		tio->error = error;
1020		return;
1021	}
1022
1023	/*
1024	 * I/O for the bio successfully completed.
1025	 * Notice the data completion to the upper layer.
1026	 */
1027
1028	/*
1029	 * bios are processed from the head of the list.
1030	 * So the completing bio should always be rq->bio.
1031	 * If it's not, something wrong is happening.
1032	 */
1033	if (tio->orig->bio != bio)
1034		DMERR("bio completion is going in the middle of the request");
1035
1036	/*
1037	 * Update the original request.
1038	 * Do not use blk_end_request() here, because it may complete
1039	 * the original request before the clone, and break the ordering.
1040	 */
1041	blk_update_request(tio->orig, 0, nr_bytes);
1042}
1043
1044static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045{
1046	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047}
1048
1049/*
1050 * Don't touch any member of the md after calling this function because
1051 * the md may be freed in dm_put() at the end of this function.
1052 * Or do dm_get() before calling this function and dm_put() later.
1053 */
1054static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055{
1056	atomic_dec(&md->pending[rw]);
1057
1058	/* nudge anyone waiting on suspend queue */
1059	if (!md_in_flight(md))
1060		wake_up(&md->wait);
1061
1062	/*
1063	 * Run this off this callpath, as drivers could invoke end_io while
1064	 * inside their request_fn (and holding the queue lock). Calling
1065	 * back into ->request_fn() could deadlock attempting to grab the
1066	 * queue lock again.
1067	 */
1068	if (!md->queue->mq_ops && run_queue)
1069		blk_run_queue_async(md->queue);
1070
1071	/*
1072	 * dm_put() must be at the end of this function. See the comment above
1073	 */
1074	dm_put(md);
1075}
1076
1077static void free_rq_clone(struct request *clone)
1078{
1079	struct dm_rq_target_io *tio = clone->end_io_data;
1080	struct mapped_device *md = tio->md;
1081
1082	blk_rq_unprep_clone(clone);
1083
1084	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1085		/* stacked on blk-mq queue(s) */
1086		tio->ti->type->release_clone_rq(clone);
1087	else if (!md->queue->mq_ops)
1088		/* request_fn queue stacked on request_fn queue(s) */
1089		free_clone_request(md, clone);
1090	/*
1091	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1092	 * no need to call free_clone_request() because we leverage blk-mq by
1093	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1094	 */
1095
1096	if (!md->queue->mq_ops)
1097		free_rq_tio(tio);
1098}
1099
1100/*
1101 * Complete the clone and the original request.
1102 * Must be called without clone's queue lock held,
1103 * see end_clone_request() for more details.
1104 */
1105static void dm_end_request(struct request *clone, int error)
1106{
1107	int rw = rq_data_dir(clone);
1108	struct dm_rq_target_io *tio = clone->end_io_data;
1109	struct mapped_device *md = tio->md;
1110	struct request *rq = tio->orig;
1111
1112	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1113		rq->errors = clone->errors;
1114		rq->resid_len = clone->resid_len;
1115
1116		if (rq->sense)
1117			/*
1118			 * We are using the sense buffer of the original
1119			 * request.
1120			 * So setting the length of the sense data is enough.
1121			 */
1122			rq->sense_len = clone->sense_len;
1123	}
1124
1125	free_rq_clone(clone);
1126	if (!rq->q->mq_ops)
1127		blk_end_request_all(rq, error);
1128	else
1129		blk_mq_end_request(rq, error);
1130	rq_completed(md, rw, true);
1131}
1132
1133static void dm_unprep_request(struct request *rq)
1134{
1135	struct dm_rq_target_io *tio = tio_from_request(rq);
1136	struct request *clone = tio->clone;
1137
1138	if (!rq->q->mq_ops) {
1139		rq->special = NULL;
1140		rq->cmd_flags &= ~REQ_DONTPREP;
1141	}
1142
1143	if (clone)
1144		free_rq_clone(clone);
1145	else if (!tio->md->queue->mq_ops)
1146		free_rq_tio(tio);
1147}
1148
1149/*
1150 * Requeue the original request of a clone.
1151 */
1152static void old_requeue_request(struct request *rq)
1153{
1154	struct request_queue *q = rq->q;
1155	unsigned long flags;
1156
1157	spin_lock_irqsave(q->queue_lock, flags);
1158	blk_requeue_request(q, rq);
1159	blk_run_queue_async(q);
1160	spin_unlock_irqrestore(q->queue_lock, flags);
1161}
1162
1163static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1164						 struct request *rq)
1165{
1166	int rw = rq_data_dir(rq);
1167
1168	dm_unprep_request(rq);
1169
1170	if (!rq->q->mq_ops)
1171		old_requeue_request(rq);
1172	else {
1173		blk_mq_requeue_request(rq);
1174		blk_mq_kick_requeue_list(rq->q);
1175	}
1176
1177	rq_completed(md, rw, false);
1178}
1179
1180static void dm_requeue_unmapped_request(struct request *clone)
1181{
1182	struct dm_rq_target_io *tio = clone->end_io_data;
1183
1184	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1185}
1186
1187static void old_stop_queue(struct request_queue *q)
1188{
1189	unsigned long flags;
1190
1191	if (blk_queue_stopped(q))
1192		return;
1193
1194	spin_lock_irqsave(q->queue_lock, flags);
1195	blk_stop_queue(q);
1196	spin_unlock_irqrestore(q->queue_lock, flags);
1197}
1198
1199static void stop_queue(struct request_queue *q)
1200{
1201	if (!q->mq_ops)
1202		old_stop_queue(q);
1203	else
1204		blk_mq_stop_hw_queues(q);
1205}
1206
1207static void old_start_queue(struct request_queue *q)
1208{
1209	unsigned long flags;
1210
1211	spin_lock_irqsave(q->queue_lock, flags);
1212	if (blk_queue_stopped(q))
1213		blk_start_queue(q);
1214	spin_unlock_irqrestore(q->queue_lock, flags);
1215}
1216
1217static void start_queue(struct request_queue *q)
1218{
1219	if (!q->mq_ops)
1220		old_start_queue(q);
1221	else
1222		blk_mq_start_stopped_hw_queues(q, true);
1223}
1224
1225static void dm_done(struct request *clone, int error, bool mapped)
1226{
1227	int r = error;
1228	struct dm_rq_target_io *tio = clone->end_io_data;
1229	dm_request_endio_fn rq_end_io = NULL;
1230
1231	if (tio->ti) {
1232		rq_end_io = tio->ti->type->rq_end_io;
1233
1234		if (mapped && rq_end_io)
1235			r = rq_end_io(tio->ti, clone, error, &tio->info);
1236	}
1237
1238	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1239		     !clone->q->limits.max_write_same_sectors))
1240		disable_write_same(tio->md);
1241
1242	if (r <= 0)
1243		/* The target wants to complete the I/O */
1244		dm_end_request(clone, r);
1245	else if (r == DM_ENDIO_INCOMPLETE)
1246		/* The target will handle the I/O */
1247		return;
1248	else if (r == DM_ENDIO_REQUEUE)
1249		/* The target wants to requeue the I/O */
1250		dm_requeue_unmapped_request(clone);
1251	else {
1252		DMWARN("unimplemented target endio return value: %d", r);
1253		BUG();
1254	}
1255}
1256
1257/*
1258 * Request completion handler for request-based dm
1259 */
1260static void dm_softirq_done(struct request *rq)
1261{
1262	bool mapped = true;
1263	struct dm_rq_target_io *tio = tio_from_request(rq);
1264	struct request *clone = tio->clone;
1265	int rw;
1266
1267	if (!clone) {
1268		rw = rq_data_dir(rq);
1269		if (!rq->q->mq_ops) {
1270			blk_end_request_all(rq, tio->error);
1271			rq_completed(tio->md, rw, false);
1272			free_rq_tio(tio);
1273		} else {
1274			blk_mq_end_request(rq, tio->error);
1275			rq_completed(tio->md, rw, false);
1276		}
1277		return;
1278	}
1279
1280	if (rq->cmd_flags & REQ_FAILED)
1281		mapped = false;
1282
1283	dm_done(clone, tio->error, mapped);
1284}
1285
1286/*
1287 * Complete the clone and the original request with the error status
1288 * through softirq context.
1289 */
1290static void dm_complete_request(struct request *rq, int error)
1291{
1292	struct dm_rq_target_io *tio = tio_from_request(rq);
1293
1294	tio->error = error;
1295	if (!rq->q->mq_ops)
1296		blk_complete_request(rq);
1297	else
1298		blk_mq_complete_request(rq);
1299}
1300
1301/*
1302 * Complete the not-mapped clone and the original request with the error status
1303 * through softirq context.
1304 * Target's rq_end_io() function isn't called.
1305 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1306 */
1307static void dm_kill_unmapped_request(struct request *rq, int error)
1308{
1309	rq->cmd_flags |= REQ_FAILED;
1310	dm_complete_request(rq, error);
1311}
1312
1313/*
1314 * Called with the clone's queue lock held (for non-blk-mq)
1315 */
1316static void end_clone_request(struct request *clone, int error)
1317{
1318	struct dm_rq_target_io *tio = clone->end_io_data;
1319
1320	if (!clone->q->mq_ops) {
1321		/*
1322		 * For just cleaning up the information of the queue in which
1323		 * the clone was dispatched.
1324		 * The clone is *NOT* freed actually here because it is alloced
1325		 * from dm own mempool (REQ_ALLOCED isn't set).
1326		 */
1327		__blk_put_request(clone->q, clone);
1328	}
1329
1330	/*
1331	 * Actual request completion is done in a softirq context which doesn't
1332	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1333	 *     - another request may be submitted by the upper level driver
1334	 *       of the stacking during the completion
1335	 *     - the submission which requires queue lock may be done
1336	 *       against this clone's queue
1337	 */
1338	dm_complete_request(tio->orig, error);
1339}
1340
1341/*
1342 * Return maximum size of I/O possible at the supplied sector up to the current
1343 * target boundary.
1344 */
1345static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1346{
1347	sector_t target_offset = dm_target_offset(ti, sector);
1348
1349	return ti->len - target_offset;
1350}
1351
1352static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1353{
1354	sector_t len = max_io_len_target_boundary(sector, ti);
1355	sector_t offset, max_len;
1356
1357	/*
1358	 * Does the target need to split even further?
1359	 */
1360	if (ti->max_io_len) {
1361		offset = dm_target_offset(ti, sector);
1362		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1363			max_len = sector_div(offset, ti->max_io_len);
1364		else
1365			max_len = offset & (ti->max_io_len - 1);
1366		max_len = ti->max_io_len - max_len;
1367
1368		if (len > max_len)
1369			len = max_len;
1370	}
1371
1372	return len;
1373}
1374
1375int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1376{
1377	if (len > UINT_MAX) {
1378		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1379		      (unsigned long long)len, UINT_MAX);
1380		ti->error = "Maximum size of target IO is too large";
1381		return -EINVAL;
1382	}
1383
1384	ti->max_io_len = (uint32_t) len;
1385
1386	return 0;
1387}
1388EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1389
1390/*
1391 * A target may call dm_accept_partial_bio only from the map routine.  It is
1392 * allowed for all bio types except REQ_FLUSH.
1393 *
1394 * dm_accept_partial_bio informs the dm that the target only wants to process
1395 * additional n_sectors sectors of the bio and the rest of the data should be
1396 * sent in a next bio.
1397 *
1398 * A diagram that explains the arithmetics:
1399 * +--------------------+---------------+-------+
1400 * |         1          |       2       |   3   |
1401 * +--------------------+---------------+-------+
1402 *
1403 * <-------------- *tio->len_ptr --------------->
1404 *                      <------- bi_size ------->
1405 *                      <-- n_sectors -->
1406 *
1407 * Region 1 was already iterated over with bio_advance or similar function.
1408 *	(it may be empty if the target doesn't use bio_advance)
1409 * Region 2 is the remaining bio size that the target wants to process.
1410 *	(it may be empty if region 1 is non-empty, although there is no reason
1411 *	 to make it empty)
1412 * The target requires that region 3 is to be sent in the next bio.
1413 *
1414 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1415 * the partially processed part (the sum of regions 1+2) must be the same for all
1416 * copies of the bio.
1417 */
1418void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1419{
1420	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1421	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1422	BUG_ON(bio->bi_rw & REQ_FLUSH);
1423	BUG_ON(bi_size > *tio->len_ptr);
1424	BUG_ON(n_sectors > bi_size);
1425	*tio->len_ptr -= bi_size - n_sectors;
1426	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1427}
1428EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1429
1430static void __map_bio(struct dm_target_io *tio)
1431{
1432	int r;
1433	sector_t sector;
1434	struct mapped_device *md;
1435	struct bio *clone = &tio->clone;
1436	struct dm_target *ti = tio->ti;
1437
1438	clone->bi_end_io = clone_endio;
1439
1440	/*
1441	 * Map the clone.  If r == 0 we don't need to do
1442	 * anything, the target has assumed ownership of
1443	 * this io.
1444	 */
1445	atomic_inc(&tio->io->io_count);
1446	sector = clone->bi_iter.bi_sector;
1447	r = ti->type->map(ti, clone);
1448	if (r == DM_MAPIO_REMAPPED) {
1449		/* the bio has been remapped so dispatch it */
1450
1451		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1452				      tio->io->bio->bi_bdev->bd_dev, sector);
1453
1454		generic_make_request(clone);
1455	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1456		/* error the io and bail out, or requeue it if needed */
1457		md = tio->io->md;
1458		dec_pending(tio->io, r);
1459		free_tio(md, tio);
1460	} else if (r) {
1461		DMWARN("unimplemented target map return value: %d", r);
1462		BUG();
1463	}
1464}
1465
1466struct clone_info {
1467	struct mapped_device *md;
1468	struct dm_table *map;
1469	struct bio *bio;
1470	struct dm_io *io;
1471	sector_t sector;
1472	unsigned sector_count;
1473};
1474
1475static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1476{
1477	bio->bi_iter.bi_sector = sector;
1478	bio->bi_iter.bi_size = to_bytes(len);
1479}
1480
1481/*
1482 * Creates a bio that consists of range of complete bvecs.
1483 */
1484static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1485		      sector_t sector, unsigned len)
1486{
1487	struct bio *clone = &tio->clone;
1488
1489	__bio_clone_fast(clone, bio);
1490
1491	if (bio_integrity(bio))
1492		bio_integrity_clone(clone, bio, GFP_NOIO);
1493
1494	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1495	clone->bi_iter.bi_size = to_bytes(len);
1496
1497	if (bio_integrity(bio))
1498		bio_integrity_trim(clone, 0, len);
1499}
1500
1501static struct dm_target_io *alloc_tio(struct clone_info *ci,
1502				      struct dm_target *ti,
1503				      unsigned target_bio_nr)
1504{
1505	struct dm_target_io *tio;
1506	struct bio *clone;
1507
1508	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1509	tio = container_of(clone, struct dm_target_io, clone);
1510
1511	tio->io = ci->io;
1512	tio->ti = ti;
1513	tio->target_bio_nr = target_bio_nr;
1514
1515	return tio;
1516}
1517
1518static void __clone_and_map_simple_bio(struct clone_info *ci,
1519				       struct dm_target *ti,
1520				       unsigned target_bio_nr, unsigned *len)
1521{
1522	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1523	struct bio *clone = &tio->clone;
1524
1525	tio->len_ptr = len;
1526
1527	__bio_clone_fast(clone, ci->bio);
1528	if (len)
1529		bio_setup_sector(clone, ci->sector, *len);
1530
1531	__map_bio(tio);
1532}
1533
1534static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1535				  unsigned num_bios, unsigned *len)
1536{
1537	unsigned target_bio_nr;
1538
1539	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1540		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1541}
1542
1543static int __send_empty_flush(struct clone_info *ci)
1544{
1545	unsigned target_nr = 0;
1546	struct dm_target *ti;
1547
1548	BUG_ON(bio_has_data(ci->bio));
1549	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1550		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1551
1552	return 0;
1553}
1554
1555static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1556				     sector_t sector, unsigned *len)
1557{
1558	struct bio *bio = ci->bio;
1559	struct dm_target_io *tio;
1560	unsigned target_bio_nr;
1561	unsigned num_target_bios = 1;
1562
1563	/*
1564	 * Does the target want to receive duplicate copies of the bio?
1565	 */
1566	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1567		num_target_bios = ti->num_write_bios(ti, bio);
1568
1569	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1570		tio = alloc_tio(ci, ti, target_bio_nr);
1571		tio->len_ptr = len;
1572		clone_bio(tio, bio, sector, *len);
1573		__map_bio(tio);
1574	}
1575}
1576
1577typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1578
1579static unsigned get_num_discard_bios(struct dm_target *ti)
1580{
1581	return ti->num_discard_bios;
1582}
1583
1584static unsigned get_num_write_same_bios(struct dm_target *ti)
1585{
1586	return ti->num_write_same_bios;
1587}
1588
1589typedef bool (*is_split_required_fn)(struct dm_target *ti);
1590
1591static bool is_split_required_for_discard(struct dm_target *ti)
1592{
1593	return ti->split_discard_bios;
1594}
1595
1596static int __send_changing_extent_only(struct clone_info *ci,
1597				       get_num_bios_fn get_num_bios,
1598				       is_split_required_fn is_split_required)
1599{
1600	struct dm_target *ti;
1601	unsigned len;
1602	unsigned num_bios;
1603
1604	do {
1605		ti = dm_table_find_target(ci->map, ci->sector);
1606		if (!dm_target_is_valid(ti))
1607			return -EIO;
1608
1609		/*
1610		 * Even though the device advertised support for this type of
1611		 * request, that does not mean every target supports it, and
1612		 * reconfiguration might also have changed that since the
1613		 * check was performed.
1614		 */
1615		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1616		if (!num_bios)
1617			return -EOPNOTSUPP;
1618
1619		if (is_split_required && !is_split_required(ti))
1620			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1621		else
1622			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1623
1624		__send_duplicate_bios(ci, ti, num_bios, &len);
1625
1626		ci->sector += len;
1627	} while (ci->sector_count -= len);
1628
1629	return 0;
1630}
1631
1632static int __send_discard(struct clone_info *ci)
1633{
1634	return __send_changing_extent_only(ci, get_num_discard_bios,
1635					   is_split_required_for_discard);
1636}
1637
1638static int __send_write_same(struct clone_info *ci)
1639{
1640	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1641}
1642
1643/*
1644 * Select the correct strategy for processing a non-flush bio.
1645 */
1646static int __split_and_process_non_flush(struct clone_info *ci)
1647{
1648	struct bio *bio = ci->bio;
1649	struct dm_target *ti;
1650	unsigned len;
1651
1652	if (unlikely(bio->bi_rw & REQ_DISCARD))
1653		return __send_discard(ci);
1654	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1655		return __send_write_same(ci);
1656
1657	ti = dm_table_find_target(ci->map, ci->sector);
1658	if (!dm_target_is_valid(ti))
1659		return -EIO;
1660
1661	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1662
1663	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1664
1665	ci->sector += len;
1666	ci->sector_count -= len;
1667
1668	return 0;
1669}
1670
1671/*
1672 * Entry point to split a bio into clones and submit them to the targets.
1673 */
1674static void __split_and_process_bio(struct mapped_device *md,
1675				    struct dm_table *map, struct bio *bio)
1676{
1677	struct clone_info ci;
1678	int error = 0;
1679
1680	if (unlikely(!map)) {
1681		bio_io_error(bio);
1682		return;
1683	}
1684
1685	ci.map = map;
1686	ci.md = md;
1687	ci.io = alloc_io(md);
1688	ci.io->error = 0;
1689	atomic_set(&ci.io->io_count, 1);
1690	ci.io->bio = bio;
1691	ci.io->md = md;
1692	spin_lock_init(&ci.io->endio_lock);
1693	ci.sector = bio->bi_iter.bi_sector;
1694
1695	start_io_acct(ci.io);
1696
1697	if (bio->bi_rw & REQ_FLUSH) {
1698		ci.bio = &ci.md->flush_bio;
1699		ci.sector_count = 0;
1700		error = __send_empty_flush(&ci);
1701		/* dec_pending submits any data associated with flush */
1702	} else {
1703		ci.bio = bio;
1704		ci.sector_count = bio_sectors(bio);
1705		while (ci.sector_count && !error)
1706			error = __split_and_process_non_flush(&ci);
1707	}
1708
1709	/* drop the extra reference count */
1710	dec_pending(ci.io, error);
1711}
1712/*-----------------------------------------------------------------
1713 * CRUD END
1714 *---------------------------------------------------------------*/
1715
1716static int dm_merge_bvec(struct request_queue *q,
1717			 struct bvec_merge_data *bvm,
1718			 struct bio_vec *biovec)
1719{
1720	struct mapped_device *md = q->queuedata;
1721	struct dm_table *map = dm_get_live_table_fast(md);
1722	struct dm_target *ti;
1723	sector_t max_sectors;
1724	int max_size = 0;
1725
1726	if (unlikely(!map))
1727		goto out;
1728
1729	ti = dm_table_find_target(map, bvm->bi_sector);
1730	if (!dm_target_is_valid(ti))
1731		goto out;
1732
1733	/*
1734	 * Find maximum amount of I/O that won't need splitting
1735	 */
1736	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1737			  (sector_t) BIO_MAX_SECTORS);
1738	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1739	if (max_size < 0)
1740		max_size = 0;
1741
1742	/*
1743	 * merge_bvec_fn() returns number of bytes
1744	 * it can accept at this offset
1745	 * max is precomputed maximal io size
1746	 */
1747	if (max_size && ti->type->merge)
1748		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1749	/*
1750	 * If the target doesn't support merge method and some of the devices
1751	 * provided their merge_bvec method (we know this by looking at
1752	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1753	 * entries.  So always set max_size to 0, and the code below allows
1754	 * just one page.
1755	 */
1756	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1757		max_size = 0;
1758
1759out:
1760	dm_put_live_table_fast(md);
1761	/*
1762	 * Always allow an entire first page
1763	 */
1764	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1765		max_size = biovec->bv_len;
1766
1767	return max_size;
1768}
1769
1770/*
1771 * The request function that just remaps the bio built up by
1772 * dm_merge_bvec.
1773 */
1774static void dm_make_request(struct request_queue *q, struct bio *bio)
1775{
1776	int rw = bio_data_dir(bio);
1777	struct mapped_device *md = q->queuedata;
1778	int srcu_idx;
1779	struct dm_table *map;
1780
1781	map = dm_get_live_table(md, &srcu_idx);
1782
1783	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1784
1785	/* if we're suspended, we have to queue this io for later */
1786	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1787		dm_put_live_table(md, srcu_idx);
1788
1789		if (bio_rw(bio) != READA)
1790			queue_io(md, bio);
1791		else
1792			bio_io_error(bio);
1793		return;
1794	}
1795
1796	__split_and_process_bio(md, map, bio);
1797	dm_put_live_table(md, srcu_idx);
1798	return;
1799}
1800
1801int dm_request_based(struct mapped_device *md)
1802{
1803	return blk_queue_stackable(md->queue);
1804}
1805
1806static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1807{
1808	int r;
1809
1810	if (blk_queue_io_stat(clone->q))
1811		clone->cmd_flags |= REQ_IO_STAT;
1812
1813	clone->start_time = jiffies;
1814	r = blk_insert_cloned_request(clone->q, clone);
1815	if (r)
1816		/* must complete clone in terms of original request */
1817		dm_complete_request(rq, r);
1818}
1819
1820static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1821				 void *data)
1822{
1823	struct dm_rq_target_io *tio = data;
1824	struct dm_rq_clone_bio_info *info =
1825		container_of(bio, struct dm_rq_clone_bio_info, clone);
1826
1827	info->orig = bio_orig;
1828	info->tio = tio;
1829	bio->bi_end_io = end_clone_bio;
1830
1831	return 0;
1832}
1833
1834static int setup_clone(struct request *clone, struct request *rq,
1835		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1836{
1837	int r;
1838
1839	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1840			      dm_rq_bio_constructor, tio);
1841	if (r)
1842		return r;
1843
1844	clone->cmd = rq->cmd;
1845	clone->cmd_len = rq->cmd_len;
1846	clone->sense = rq->sense;
1847	clone->end_io = end_clone_request;
1848	clone->end_io_data = tio;
1849
1850	tio->clone = clone;
1851
1852	return 0;
1853}
1854
1855static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1856				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1857{
1858	/*
1859	 * Do not allocate a clone if tio->clone was already set
1860	 * (see: dm_mq_queue_rq).
1861	 */
1862	bool alloc_clone = !tio->clone;
1863	struct request *clone;
1864
1865	if (alloc_clone) {
1866		clone = alloc_clone_request(md, gfp_mask);
1867		if (!clone)
1868			return NULL;
1869	} else
1870		clone = tio->clone;
1871
1872	blk_rq_init(NULL, clone);
1873	if (setup_clone(clone, rq, tio, gfp_mask)) {
1874		/* -ENOMEM */
1875		if (alloc_clone)
1876			free_clone_request(md, clone);
1877		return NULL;
1878	}
1879
1880	return clone;
1881}
1882
1883static void map_tio_request(struct kthread_work *work);
1884
1885static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1886		     struct mapped_device *md)
1887{
1888	tio->md = md;
1889	tio->ti = NULL;
1890	tio->clone = NULL;
1891	tio->orig = rq;
1892	tio->error = 0;
1893	memset(&tio->info, 0, sizeof(tio->info));
1894	if (md->kworker_task)
1895		init_kthread_work(&tio->work, map_tio_request);
1896}
1897
1898static struct dm_rq_target_io *prep_tio(struct request *rq,
1899					struct mapped_device *md, gfp_t gfp_mask)
1900{
1901	struct dm_rq_target_io *tio;
1902	int srcu_idx;
1903	struct dm_table *table;
1904
1905	tio = alloc_rq_tio(md, gfp_mask);
1906	if (!tio)
1907		return NULL;
1908
1909	init_tio(tio, rq, md);
1910
1911	table = dm_get_live_table(md, &srcu_idx);
1912	if (!dm_table_mq_request_based(table)) {
1913		if (!clone_rq(rq, md, tio, gfp_mask)) {
1914			dm_put_live_table(md, srcu_idx);
1915			free_rq_tio(tio);
1916			return NULL;
1917		}
1918	}
1919	dm_put_live_table(md, srcu_idx);
1920
1921	return tio;
1922}
1923
1924/*
1925 * Called with the queue lock held.
1926 */
1927static int dm_prep_fn(struct request_queue *q, struct request *rq)
1928{
1929	struct mapped_device *md = q->queuedata;
1930	struct dm_rq_target_io *tio;
1931
1932	if (unlikely(rq->special)) {
1933		DMWARN("Already has something in rq->special.");
1934		return BLKPREP_KILL;
1935	}
1936
1937	tio = prep_tio(rq, md, GFP_ATOMIC);
1938	if (!tio)
1939		return BLKPREP_DEFER;
1940
1941	rq->special = tio;
1942	rq->cmd_flags |= REQ_DONTPREP;
1943
1944	return BLKPREP_OK;
1945}
1946
1947/*
1948 * Returns:
1949 * 0                : the request has been processed
1950 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1951 * < 0              : the request was completed due to failure
1952 */
1953static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1954		       struct mapped_device *md)
1955{
1956	int r;
1957	struct dm_target *ti = tio->ti;
1958	struct request *clone = NULL;
1959
1960	if (tio->clone) {
1961		clone = tio->clone;
1962		r = ti->type->map_rq(ti, clone, &tio->info);
1963	} else {
1964		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1965		if (r < 0) {
1966			/* The target wants to complete the I/O */
1967			dm_kill_unmapped_request(rq, r);
1968			return r;
1969		}
1970		if (r != DM_MAPIO_REMAPPED)
1971			return r;
1972		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1973			/* -ENOMEM */
1974			ti->type->release_clone_rq(clone);
1975			return DM_MAPIO_REQUEUE;
1976		}
1977	}
1978
1979	switch (r) {
1980	case DM_MAPIO_SUBMITTED:
1981		/* The target has taken the I/O to submit by itself later */
1982		break;
1983	case DM_MAPIO_REMAPPED:
1984		/* The target has remapped the I/O so dispatch it */
1985		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1986				     blk_rq_pos(rq));
1987		dm_dispatch_clone_request(clone, rq);
1988		break;
1989	case DM_MAPIO_REQUEUE:
1990		/* The target wants to requeue the I/O */
1991		dm_requeue_unmapped_request(clone);
1992		break;
1993	default:
1994		if (r > 0) {
1995			DMWARN("unimplemented target map return value: %d", r);
1996			BUG();
1997		}
1998
1999		/* The target wants to complete the I/O */
2000		dm_kill_unmapped_request(rq, r);
2001		return r;
2002	}
2003
2004	return 0;
2005}
2006
2007static void map_tio_request(struct kthread_work *work)
2008{
2009	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2010	struct request *rq = tio->orig;
2011	struct mapped_device *md = tio->md;
2012
2013	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2014		dm_requeue_unmapped_original_request(md, rq);
2015}
2016
2017static void dm_start_request(struct mapped_device *md, struct request *orig)
2018{
2019	if (!orig->q->mq_ops)
2020		blk_start_request(orig);
2021	else
2022		blk_mq_start_request(orig);
2023	atomic_inc(&md->pending[rq_data_dir(orig)]);
2024
2025	if (md->seq_rq_merge_deadline_usecs) {
2026		md->last_rq_pos = rq_end_sector(orig);
2027		md->last_rq_rw = rq_data_dir(orig);
2028		md->last_rq_start_time = ktime_get();
2029	}
2030
2031	/*
2032	 * Hold the md reference here for the in-flight I/O.
2033	 * We can't rely on the reference count by device opener,
2034	 * because the device may be closed during the request completion
2035	 * when all bios are completed.
2036	 * See the comment in rq_completed() too.
2037	 */
2038	dm_get(md);
2039}
2040
2041#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2042
2043ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2044{
2045	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2046}
2047
2048ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2049						     const char *buf, size_t count)
2050{
2051	unsigned deadline;
2052
2053	if (!dm_request_based(md) || md->use_blk_mq)
2054		return count;
2055
2056	if (kstrtouint(buf, 10, &deadline))
2057		return -EINVAL;
2058
2059	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2060		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2061
2062	md->seq_rq_merge_deadline_usecs = deadline;
2063
2064	return count;
2065}
2066
2067static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2068{
2069	ktime_t kt_deadline;
2070
2071	if (!md->seq_rq_merge_deadline_usecs)
2072		return false;
2073
2074	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2075	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2076
2077	return !ktime_after(ktime_get(), kt_deadline);
2078}
2079
2080/*
2081 * q->request_fn for request-based dm.
2082 * Called with the queue lock held.
2083 */
2084static void dm_request_fn(struct request_queue *q)
2085{
2086	struct mapped_device *md = q->queuedata;
2087	int srcu_idx;
2088	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2089	struct dm_target *ti;
2090	struct request *rq;
2091	struct dm_rq_target_io *tio;
2092	sector_t pos;
2093
2094	/*
2095	 * For suspend, check blk_queue_stopped() and increment
2096	 * ->pending within a single queue_lock not to increment the
2097	 * number of in-flight I/Os after the queue is stopped in
2098	 * dm_suspend().
2099	 */
2100	while (!blk_queue_stopped(q)) {
2101		rq = blk_peek_request(q);
2102		if (!rq)
2103			goto out;
2104
2105		/* always use block 0 to find the target for flushes for now */
2106		pos = 0;
2107		if (!(rq->cmd_flags & REQ_FLUSH))
2108			pos = blk_rq_pos(rq);
2109
2110		ti = dm_table_find_target(map, pos);
2111		if (!dm_target_is_valid(ti)) {
2112			/*
2113			 * Must perform setup, that rq_completed() requires,
2114			 * before calling dm_kill_unmapped_request
2115			 */
2116			DMERR_LIMIT("request attempted access beyond the end of device");
2117			dm_start_request(md, rq);
2118			dm_kill_unmapped_request(rq, -EIO);
2119			continue;
2120		}
2121
2122		if (dm_request_peeked_before_merge_deadline(md) &&
2123		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2124		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2125			goto delay_and_out;
2126
2127		if (ti->type->busy && ti->type->busy(ti))
2128			goto delay_and_out;
2129
2130		dm_start_request(md, rq);
2131
2132		tio = tio_from_request(rq);
2133		/* Establish tio->ti before queuing work (map_tio_request) */
2134		tio->ti = ti;
2135		queue_kthread_work(&md->kworker, &tio->work);
2136		BUG_ON(!irqs_disabled());
2137	}
2138
2139	goto out;
2140
2141delay_and_out:
2142	blk_delay_queue(q, HZ / 100);
2143out:
2144	dm_put_live_table(md, srcu_idx);
2145}
2146
2147static int dm_any_congested(void *congested_data, int bdi_bits)
2148{
2149	int r = bdi_bits;
2150	struct mapped_device *md = congested_data;
2151	struct dm_table *map;
2152
2153	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2154		map = dm_get_live_table_fast(md);
2155		if (map) {
2156			/*
2157			 * Request-based dm cares about only own queue for
2158			 * the query about congestion status of request_queue
2159			 */
2160			if (dm_request_based(md))
2161				r = md->queue->backing_dev_info.state &
2162				    bdi_bits;
2163			else
2164				r = dm_table_any_congested(map, bdi_bits);
2165		}
2166		dm_put_live_table_fast(md);
2167	}
2168
2169	return r;
2170}
2171
2172/*-----------------------------------------------------------------
2173 * An IDR is used to keep track of allocated minor numbers.
2174 *---------------------------------------------------------------*/
2175static void free_minor(int minor)
2176{
2177	spin_lock(&_minor_lock);
2178	idr_remove(&_minor_idr, minor);
2179	spin_unlock(&_minor_lock);
2180}
2181
2182/*
2183 * See if the device with a specific minor # is free.
2184 */
2185static int specific_minor(int minor)
2186{
2187	int r;
2188
2189	if (minor >= (1 << MINORBITS))
2190		return -EINVAL;
2191
2192	idr_preload(GFP_KERNEL);
2193	spin_lock(&_minor_lock);
2194
2195	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2196
2197	spin_unlock(&_minor_lock);
2198	idr_preload_end();
2199	if (r < 0)
2200		return r == -ENOSPC ? -EBUSY : r;
2201	return 0;
2202}
2203
2204static int next_free_minor(int *minor)
2205{
2206	int r;
2207
2208	idr_preload(GFP_KERNEL);
2209	spin_lock(&_minor_lock);
2210
2211	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2212
2213	spin_unlock(&_minor_lock);
2214	idr_preload_end();
2215	if (r < 0)
2216		return r;
2217	*minor = r;
2218	return 0;
2219}
2220
2221static const struct block_device_operations dm_blk_dops;
2222
2223static void dm_wq_work(struct work_struct *work);
2224
2225static void dm_init_md_queue(struct mapped_device *md)
2226{
2227	/*
2228	 * Request-based dm devices cannot be stacked on top of bio-based dm
2229	 * devices.  The type of this dm device may not have been decided yet.
2230	 * The type is decided at the first table loading time.
2231	 * To prevent problematic device stacking, clear the queue flag
2232	 * for request stacking support until then.
2233	 *
2234	 * This queue is new, so no concurrency on the queue_flags.
2235	 */
2236	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2237}
2238
2239static void dm_init_old_md_queue(struct mapped_device *md)
2240{
2241	md->use_blk_mq = false;
2242	dm_init_md_queue(md);
2243
2244	/*
2245	 * Initialize aspects of queue that aren't relevant for blk-mq
2246	 */
2247	md->queue->queuedata = md;
2248	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2249	md->queue->backing_dev_info.congested_data = md;
2250
2251	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2252}
2253
2254/*
2255 * Allocate and initialise a blank device with a given minor.
2256 */
2257static struct mapped_device *alloc_dev(int minor)
2258{
2259	int r;
2260	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2261	void *old_md;
2262
2263	if (!md) {
2264		DMWARN("unable to allocate device, out of memory.");
2265		return NULL;
2266	}
2267
2268	if (!try_module_get(THIS_MODULE))
2269		goto bad_module_get;
2270
2271	/* get a minor number for the dev */
2272	if (minor == DM_ANY_MINOR)
2273		r = next_free_minor(&minor);
2274	else
2275		r = specific_minor(minor);
2276	if (r < 0)
2277		goto bad_minor;
2278
2279	r = init_srcu_struct(&md->io_barrier);
2280	if (r < 0)
2281		goto bad_io_barrier;
2282
2283	md->use_blk_mq = use_blk_mq;
2284	md->type = DM_TYPE_NONE;
2285	mutex_init(&md->suspend_lock);
2286	mutex_init(&md->type_lock);
2287	mutex_init(&md->table_devices_lock);
2288	spin_lock_init(&md->deferred_lock);
2289	atomic_set(&md->holders, 1);
2290	atomic_set(&md->open_count, 0);
2291	atomic_set(&md->event_nr, 0);
2292	atomic_set(&md->uevent_seq, 0);
2293	INIT_LIST_HEAD(&md->uevent_list);
2294	INIT_LIST_HEAD(&md->table_devices);
2295	spin_lock_init(&md->uevent_lock);
2296
2297	md->queue = blk_alloc_queue(GFP_KERNEL);
2298	if (!md->queue)
2299		goto bad_queue;
2300
2301	dm_init_md_queue(md);
2302
2303	md->disk = alloc_disk(1);
2304	if (!md->disk)
2305		goto bad_disk;
2306
2307	atomic_set(&md->pending[0], 0);
2308	atomic_set(&md->pending[1], 0);
2309	init_waitqueue_head(&md->wait);
2310	INIT_WORK(&md->work, dm_wq_work);
2311	init_waitqueue_head(&md->eventq);
2312	init_completion(&md->kobj_holder.completion);
2313	md->kworker_task = NULL;
2314
2315	md->disk->major = _major;
2316	md->disk->first_minor = minor;
2317	md->disk->fops = &dm_blk_dops;
2318	md->disk->queue = md->queue;
2319	md->disk->private_data = md;
2320	sprintf(md->disk->disk_name, "dm-%d", minor);
2321	add_disk(md->disk);
2322	format_dev_t(md->name, MKDEV(_major, minor));
2323
2324	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2325	if (!md->wq)
2326		goto bad_thread;
2327
2328	md->bdev = bdget_disk(md->disk, 0);
2329	if (!md->bdev)
2330		goto bad_bdev;
2331
2332	bio_init(&md->flush_bio);
2333	md->flush_bio.bi_bdev = md->bdev;
2334	md->flush_bio.bi_rw = WRITE_FLUSH;
2335
2336	dm_stats_init(&md->stats);
2337
2338	/* Populate the mapping, nobody knows we exist yet */
2339	spin_lock(&_minor_lock);
2340	old_md = idr_replace(&_minor_idr, md, minor);
2341	spin_unlock(&_minor_lock);
2342
2343	BUG_ON(old_md != MINOR_ALLOCED);
2344
2345	return md;
2346
2347bad_bdev:
2348	destroy_workqueue(md->wq);
2349bad_thread:
2350	del_gendisk(md->disk);
2351	put_disk(md->disk);
2352bad_disk:
2353	blk_cleanup_queue(md->queue);
2354bad_queue:
2355	cleanup_srcu_struct(&md->io_barrier);
2356bad_io_barrier:
2357	free_minor(minor);
2358bad_minor:
2359	module_put(THIS_MODULE);
2360bad_module_get:
2361	kfree(md);
2362	return NULL;
2363}
2364
2365static void unlock_fs(struct mapped_device *md);
2366
2367static void free_dev(struct mapped_device *md)
2368{
2369	int minor = MINOR(disk_devt(md->disk));
2370
2371	unlock_fs(md);
2372	destroy_workqueue(md->wq);
2373
2374	if (md->kworker_task)
2375		kthread_stop(md->kworker_task);
2376	if (md->io_pool)
2377		mempool_destroy(md->io_pool);
2378	if (md->rq_pool)
2379		mempool_destroy(md->rq_pool);
2380	if (md->bs)
2381		bioset_free(md->bs);
2382
2383	cleanup_srcu_struct(&md->io_barrier);
2384	free_table_devices(&md->table_devices);
2385	dm_stats_cleanup(&md->stats);
2386
2387	spin_lock(&_minor_lock);
2388	md->disk->private_data = NULL;
2389	spin_unlock(&_minor_lock);
2390	if (blk_get_integrity(md->disk))
2391		blk_integrity_unregister(md->disk);
2392	del_gendisk(md->disk);
2393	put_disk(md->disk);
2394	blk_cleanup_queue(md->queue);
2395	if (md->use_blk_mq)
2396		blk_mq_free_tag_set(&md->tag_set);
2397	bdput(md->bdev);
2398	free_minor(minor);
2399
2400	module_put(THIS_MODULE);
2401	kfree(md);
2402}
2403
2404static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2405{
2406	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2407
2408	if (md->bs) {
2409		/* The md already has necessary mempools. */
2410		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2411			/*
2412			 * Reload bioset because front_pad may have changed
2413			 * because a different table was loaded.
2414			 */
2415			bioset_free(md->bs);
2416			md->bs = p->bs;
2417			p->bs = NULL;
2418		}
2419		/*
2420		 * There's no need to reload with request-based dm
2421		 * because the size of front_pad doesn't change.
2422		 * Note for future: If you are to reload bioset,
2423		 * prep-ed requests in the queue may refer
2424		 * to bio from the old bioset, so you must walk
2425		 * through the queue to unprep.
2426		 */
2427		goto out;
2428	}
2429
2430	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2431
2432	md->io_pool = p->io_pool;
2433	p->io_pool = NULL;
2434	md->rq_pool = p->rq_pool;
2435	p->rq_pool = NULL;
2436	md->bs = p->bs;
2437	p->bs = NULL;
2438
2439out:
2440	/* mempool bind completed, no longer need any mempools in the table */
2441	dm_table_free_md_mempools(t);
2442}
2443
2444/*
2445 * Bind a table to the device.
2446 */
2447static void event_callback(void *context)
2448{
2449	unsigned long flags;
2450	LIST_HEAD(uevents);
2451	struct mapped_device *md = (struct mapped_device *) context;
2452
2453	spin_lock_irqsave(&md->uevent_lock, flags);
2454	list_splice_init(&md->uevent_list, &uevents);
2455	spin_unlock_irqrestore(&md->uevent_lock, flags);
2456
2457	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2458
2459	atomic_inc(&md->event_nr);
2460	wake_up(&md->eventq);
2461}
2462
2463/*
2464 * Protected by md->suspend_lock obtained by dm_swap_table().
2465 */
2466static void __set_size(struct mapped_device *md, sector_t size)
2467{
2468	set_capacity(md->disk, size);
2469
2470	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2471}
2472
2473/*
2474 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2475 *
2476 * If this function returns 0, then the device is either a non-dm
2477 * device without a merge_bvec_fn, or it is a dm device that is
2478 * able to split any bios it receives that are too big.
2479 */
2480int dm_queue_merge_is_compulsory(struct request_queue *q)
2481{
2482	struct mapped_device *dev_md;
2483
2484	if (!q->merge_bvec_fn)
2485		return 0;
2486
2487	if (q->make_request_fn == dm_make_request) {
2488		dev_md = q->queuedata;
2489		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2490			return 0;
2491	}
2492
2493	return 1;
2494}
2495
2496static int dm_device_merge_is_compulsory(struct dm_target *ti,
2497					 struct dm_dev *dev, sector_t start,
2498					 sector_t len, void *data)
2499{
2500	struct block_device *bdev = dev->bdev;
2501	struct request_queue *q = bdev_get_queue(bdev);
2502
2503	return dm_queue_merge_is_compulsory(q);
2504}
2505
2506/*
2507 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2508 * on the properties of the underlying devices.
2509 */
2510static int dm_table_merge_is_optional(struct dm_table *table)
2511{
2512	unsigned i = 0;
2513	struct dm_target *ti;
2514
2515	while (i < dm_table_get_num_targets(table)) {
2516		ti = dm_table_get_target(table, i++);
2517
2518		if (ti->type->iterate_devices &&
2519		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2520			return 0;
2521	}
2522
2523	return 1;
2524}
2525
2526/*
2527 * Returns old map, which caller must destroy.
2528 */
2529static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2530			       struct queue_limits *limits)
2531{
2532	struct dm_table *old_map;
2533	struct request_queue *q = md->queue;
2534	sector_t size;
2535	int merge_is_optional;
2536
2537	size = dm_table_get_size(t);
2538
2539	/*
2540	 * Wipe any geometry if the size of the table changed.
2541	 */
2542	if (size != dm_get_size(md))
2543		memset(&md->geometry, 0, sizeof(md->geometry));
2544
2545	__set_size(md, size);
2546
2547	dm_table_event_callback(t, event_callback, md);
2548
2549	/*
2550	 * The queue hasn't been stopped yet, if the old table type wasn't
2551	 * for request-based during suspension.  So stop it to prevent
2552	 * I/O mapping before resume.
2553	 * This must be done before setting the queue restrictions,
2554	 * because request-based dm may be run just after the setting.
2555	 */
2556	if (dm_table_request_based(t))
2557		stop_queue(q);
2558
2559	__bind_mempools(md, t);
2560
2561	merge_is_optional = dm_table_merge_is_optional(t);
2562
2563	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2564	rcu_assign_pointer(md->map, t);
2565	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2566
2567	dm_table_set_restrictions(t, q, limits);
2568	if (merge_is_optional)
2569		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2570	else
2571		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2572	if (old_map)
2573		dm_sync_table(md);
2574
2575	return old_map;
2576}
2577
2578/*
2579 * Returns unbound table for the caller to free.
2580 */
2581static struct dm_table *__unbind(struct mapped_device *md)
2582{
2583	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2584
2585	if (!map)
2586		return NULL;
2587
2588	dm_table_event_callback(map, NULL, NULL);
2589	RCU_INIT_POINTER(md->map, NULL);
2590	dm_sync_table(md);
2591
2592	return map;
2593}
2594
2595/*
2596 * Constructor for a new device.
2597 */
2598int dm_create(int minor, struct mapped_device **result)
2599{
2600	struct mapped_device *md;
2601
2602	md = alloc_dev(minor);
2603	if (!md)
2604		return -ENXIO;
2605
2606	dm_sysfs_init(md);
2607
2608	*result = md;
2609	return 0;
2610}
2611
2612/*
2613 * Functions to manage md->type.
2614 * All are required to hold md->type_lock.
2615 */
2616void dm_lock_md_type(struct mapped_device *md)
2617{
2618	mutex_lock(&md->type_lock);
2619}
2620
2621void dm_unlock_md_type(struct mapped_device *md)
2622{
2623	mutex_unlock(&md->type_lock);
2624}
2625
2626void dm_set_md_type(struct mapped_device *md, unsigned type)
2627{
2628	BUG_ON(!mutex_is_locked(&md->type_lock));
2629	md->type = type;
2630}
2631
2632unsigned dm_get_md_type(struct mapped_device *md)
2633{
2634	BUG_ON(!mutex_is_locked(&md->type_lock));
2635	return md->type;
2636}
2637
2638struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2639{
2640	return md->immutable_target_type;
2641}
2642
2643/*
2644 * The queue_limits are only valid as long as you have a reference
2645 * count on 'md'.
2646 */
2647struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2648{
2649	BUG_ON(!atomic_read(&md->holders));
2650	return &md->queue->limits;
2651}
2652EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2653
2654static void init_rq_based_worker_thread(struct mapped_device *md)
2655{
2656	/* Initialize the request-based DM worker thread */
2657	init_kthread_worker(&md->kworker);
2658	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2659				       "kdmwork-%s", dm_device_name(md));
2660}
2661
2662/*
2663 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2664 */
2665static int dm_init_request_based_queue(struct mapped_device *md)
2666{
2667	struct request_queue *q = NULL;
2668
2669	/* Fully initialize the queue */
2670	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2671	if (!q)
2672		return -EINVAL;
2673
2674	/* disable dm_request_fn's merge heuristic by default */
2675	md->seq_rq_merge_deadline_usecs = 0;
2676
2677	md->queue = q;
2678	dm_init_old_md_queue(md);
2679	blk_queue_softirq_done(md->queue, dm_softirq_done);
2680	blk_queue_prep_rq(md->queue, dm_prep_fn);
2681
2682	init_rq_based_worker_thread(md);
2683
2684	elv_register_queue(md->queue);
2685
2686	return 0;
2687}
2688
2689static int dm_mq_init_request(void *data, struct request *rq,
2690			      unsigned int hctx_idx, unsigned int request_idx,
2691			      unsigned int numa_node)
2692{
2693	struct mapped_device *md = data;
2694	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2695
2696	/*
2697	 * Must initialize md member of tio, otherwise it won't
2698	 * be available in dm_mq_queue_rq.
2699	 */
2700	tio->md = md;
2701
2702	return 0;
2703}
2704
2705static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2706			  const struct blk_mq_queue_data *bd)
2707{
2708	struct request *rq = bd->rq;
2709	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2710	struct mapped_device *md = tio->md;
2711	int srcu_idx;
2712	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2713	struct dm_target *ti;
2714	sector_t pos;
2715
2716	/* always use block 0 to find the target for flushes for now */
2717	pos = 0;
2718	if (!(rq->cmd_flags & REQ_FLUSH))
2719		pos = blk_rq_pos(rq);
2720
2721	ti = dm_table_find_target(map, pos);
2722	if (!dm_target_is_valid(ti)) {
2723		dm_put_live_table(md, srcu_idx);
2724		DMERR_LIMIT("request attempted access beyond the end of device");
2725		/*
2726		 * Must perform setup, that rq_completed() requires,
2727		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2728		 */
2729		dm_start_request(md, rq);
2730		return BLK_MQ_RQ_QUEUE_ERROR;
2731	}
2732	dm_put_live_table(md, srcu_idx);
2733
2734	if (ti->type->busy && ti->type->busy(ti))
2735		return BLK_MQ_RQ_QUEUE_BUSY;
2736
2737	dm_start_request(md, rq);
2738
2739	/* Init tio using md established in .init_request */
2740	init_tio(tio, rq, md);
2741
2742	/*
2743	 * Establish tio->ti before queuing work (map_tio_request)
2744	 * or making direct call to map_request().
2745	 */
2746	tio->ti = ti;
2747
2748	/* Clone the request if underlying devices aren't blk-mq */
2749	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2750		/* clone request is allocated at the end of the pdu */
2751		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2752		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2753		queue_kthread_work(&md->kworker, &tio->work);
2754	} else {
2755		/* Direct call is fine since .queue_rq allows allocations */
2756		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2757			/* Undo dm_start_request() before requeuing */
2758			rq_completed(md, rq_data_dir(rq), false);
2759			return BLK_MQ_RQ_QUEUE_BUSY;
2760		}
2761	}
2762
2763	return BLK_MQ_RQ_QUEUE_OK;
2764}
2765
2766static struct blk_mq_ops dm_mq_ops = {
2767	.queue_rq = dm_mq_queue_rq,
2768	.map_queue = blk_mq_map_queue,
2769	.complete = dm_softirq_done,
2770	.init_request = dm_mq_init_request,
2771};
2772
2773static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2774{
2775	unsigned md_type = dm_get_md_type(md);
2776	struct request_queue *q;
2777	int err;
2778
2779	memset(&md->tag_set, 0, sizeof(md->tag_set));
2780	md->tag_set.ops = &dm_mq_ops;
2781	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2782	md->tag_set.numa_node = NUMA_NO_NODE;
2783	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2784	md->tag_set.nr_hw_queues = 1;
2785	if (md_type == DM_TYPE_REQUEST_BASED) {
2786		/* make the memory for non-blk-mq clone part of the pdu */
2787		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2788	} else
2789		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2790	md->tag_set.driver_data = md;
2791
2792	err = blk_mq_alloc_tag_set(&md->tag_set);
2793	if (err)
2794		return err;
2795
2796	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2797	if (IS_ERR(q)) {
2798		err = PTR_ERR(q);
2799		goto out_tag_set;
2800	}
2801	md->queue = q;
2802	dm_init_md_queue(md);
2803
2804	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2805	blk_mq_register_disk(md->disk);
2806
2807	if (md_type == DM_TYPE_REQUEST_BASED)
2808		init_rq_based_worker_thread(md);
2809
2810	return 0;
2811
2812out_tag_set:
2813	blk_mq_free_tag_set(&md->tag_set);
2814	return err;
2815}
2816
2817static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2818{
2819	if (type == DM_TYPE_BIO_BASED)
2820		return type;
2821
2822	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2823}
2824
2825/*
2826 * Setup the DM device's queue based on md's type
2827 */
2828int dm_setup_md_queue(struct mapped_device *md)
2829{
2830	int r;
2831	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2832
2833	switch (md_type) {
2834	case DM_TYPE_REQUEST_BASED:
2835		r = dm_init_request_based_queue(md);
2836		if (r) {
2837			DMWARN("Cannot initialize queue for request-based mapped device");
2838			return r;
2839		}
2840		break;
2841	case DM_TYPE_MQ_REQUEST_BASED:
2842		r = dm_init_request_based_blk_mq_queue(md);
2843		if (r) {
2844			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2845			return r;
2846		}
2847		break;
2848	case DM_TYPE_BIO_BASED:
2849		dm_init_old_md_queue(md);
2850		blk_queue_make_request(md->queue, dm_make_request);
2851		blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2852		break;
2853	}
2854
2855	return 0;
2856}
2857
2858struct mapped_device *dm_get_md(dev_t dev)
2859{
2860	struct mapped_device *md;
2861	unsigned minor = MINOR(dev);
2862
2863	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2864		return NULL;
2865
2866	spin_lock(&_minor_lock);
2867
2868	md = idr_find(&_minor_idr, minor);
2869	if (md) {
2870		if ((md == MINOR_ALLOCED ||
2871		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2872		     dm_deleting_md(md) ||
2873		     test_bit(DMF_FREEING, &md->flags))) {
2874			md = NULL;
2875			goto out;
2876		}
2877		dm_get(md);
2878	}
2879
2880out:
2881	spin_unlock(&_minor_lock);
2882
2883	return md;
2884}
2885EXPORT_SYMBOL_GPL(dm_get_md);
2886
2887void *dm_get_mdptr(struct mapped_device *md)
2888{
2889	return md->interface_ptr;
2890}
2891
2892void dm_set_mdptr(struct mapped_device *md, void *ptr)
2893{
2894	md->interface_ptr = ptr;
2895}
2896
2897void dm_get(struct mapped_device *md)
2898{
2899	atomic_inc(&md->holders);
2900	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2901}
2902
2903int dm_hold(struct mapped_device *md)
2904{
2905	spin_lock(&_minor_lock);
2906	if (test_bit(DMF_FREEING, &md->flags)) {
2907		spin_unlock(&_minor_lock);
2908		return -EBUSY;
2909	}
2910	dm_get(md);
2911	spin_unlock(&_minor_lock);
2912	return 0;
2913}
2914EXPORT_SYMBOL_GPL(dm_hold);
2915
2916const char *dm_device_name(struct mapped_device *md)
2917{
2918	return md->name;
2919}
2920EXPORT_SYMBOL_GPL(dm_device_name);
2921
2922static void __dm_destroy(struct mapped_device *md, bool wait)
2923{
2924	struct dm_table *map;
2925	int srcu_idx;
2926
2927	might_sleep();
2928
2929	spin_lock(&_minor_lock);
2930	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2931	set_bit(DMF_FREEING, &md->flags);
2932	spin_unlock(&_minor_lock);
2933
2934	if (dm_request_based(md) && md->kworker_task)
2935		flush_kthread_worker(&md->kworker);
2936
2937	/*
2938	 * Take suspend_lock so that presuspend and postsuspend methods
2939	 * do not race with internal suspend.
2940	 */
2941	mutex_lock(&md->suspend_lock);
2942	map = dm_get_live_table(md, &srcu_idx);
2943	if (!dm_suspended_md(md)) {
2944		dm_table_presuspend_targets(map);
2945		dm_table_postsuspend_targets(map);
2946	}
2947	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948	dm_put_live_table(md, srcu_idx);
2949	mutex_unlock(&md->suspend_lock);
2950
2951	/*
2952	 * Rare, but there may be I/O requests still going to complete,
2953	 * for example.  Wait for all references to disappear.
2954	 * No one should increment the reference count of the mapped_device,
2955	 * after the mapped_device state becomes DMF_FREEING.
2956	 */
2957	if (wait)
2958		while (atomic_read(&md->holders))
2959			msleep(1);
2960	else if (atomic_read(&md->holders))
2961		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2962		       dm_device_name(md), atomic_read(&md->holders));
2963
2964	dm_sysfs_exit(md);
2965	dm_table_destroy(__unbind(md));
2966	free_dev(md);
2967}
2968
2969void dm_destroy(struct mapped_device *md)
2970{
2971	__dm_destroy(md, true);
2972}
2973
2974void dm_destroy_immediate(struct mapped_device *md)
2975{
2976	__dm_destroy(md, false);
2977}
2978
2979void dm_put(struct mapped_device *md)
2980{
2981	atomic_dec(&md->holders);
2982}
2983EXPORT_SYMBOL_GPL(dm_put);
2984
2985static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2986{
2987	int r = 0;
2988	DECLARE_WAITQUEUE(wait, current);
2989
2990	add_wait_queue(&md->wait, &wait);
2991
2992	while (1) {
2993		set_current_state(interruptible);
2994
2995		if (!md_in_flight(md))
2996			break;
2997
2998		if (interruptible == TASK_INTERRUPTIBLE &&
2999		    signal_pending(current)) {
3000			r = -EINTR;
3001			break;
3002		}
3003
3004		io_schedule();
3005	}
3006	set_current_state(TASK_RUNNING);
3007
3008	remove_wait_queue(&md->wait, &wait);
3009
3010	return r;
3011}
3012
3013/*
3014 * Process the deferred bios
3015 */
3016static void dm_wq_work(struct work_struct *work)
3017{
3018	struct mapped_device *md = container_of(work, struct mapped_device,
3019						work);
3020	struct bio *c;
3021	int srcu_idx;
3022	struct dm_table *map;
3023
3024	map = dm_get_live_table(md, &srcu_idx);
3025
3026	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3027		spin_lock_irq(&md->deferred_lock);
3028		c = bio_list_pop(&md->deferred);
3029		spin_unlock_irq(&md->deferred_lock);
3030
3031		if (!c)
3032			break;
3033
3034		if (dm_request_based(md))
3035			generic_make_request(c);
3036		else
3037			__split_and_process_bio(md, map, c);
3038	}
3039
3040	dm_put_live_table(md, srcu_idx);
3041}
3042
3043static void dm_queue_flush(struct mapped_device *md)
3044{
3045	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046	smp_mb__after_atomic();
3047	queue_work(md->wq, &md->work);
3048}
3049
3050/*
3051 * Swap in a new table, returning the old one for the caller to destroy.
3052 */
3053struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054{
3055	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3056	struct queue_limits limits;
3057	int r;
3058
3059	mutex_lock(&md->suspend_lock);
3060
3061	/* device must be suspended */
3062	if (!dm_suspended_md(md))
3063		goto out;
3064
3065	/*
3066	 * If the new table has no data devices, retain the existing limits.
3067	 * This helps multipath with queue_if_no_path if all paths disappear,
3068	 * then new I/O is queued based on these limits, and then some paths
3069	 * reappear.
3070	 */
3071	if (dm_table_has_no_data_devices(table)) {
3072		live_map = dm_get_live_table_fast(md);
3073		if (live_map)
3074			limits = md->queue->limits;
3075		dm_put_live_table_fast(md);
3076	}
3077
3078	if (!live_map) {
3079		r = dm_calculate_queue_limits(table, &limits);
3080		if (r) {
3081			map = ERR_PTR(r);
3082			goto out;
3083		}
3084	}
3085
3086	map = __bind(md, table, &limits);
3087
3088out:
3089	mutex_unlock(&md->suspend_lock);
3090	return map;
3091}
3092
3093/*
3094 * Functions to lock and unlock any filesystem running on the
3095 * device.
3096 */
3097static int lock_fs(struct mapped_device *md)
3098{
3099	int r;
3100
3101	WARN_ON(md->frozen_sb);
3102
3103	md->frozen_sb = freeze_bdev(md->bdev);
3104	if (IS_ERR(md->frozen_sb)) {
3105		r = PTR_ERR(md->frozen_sb);
3106		md->frozen_sb = NULL;
3107		return r;
3108	}
3109
3110	set_bit(DMF_FROZEN, &md->flags);
3111
3112	return 0;
3113}
3114
3115static void unlock_fs(struct mapped_device *md)
3116{
3117	if (!test_bit(DMF_FROZEN, &md->flags))
3118		return;
3119
3120	thaw_bdev(md->bdev, md->frozen_sb);
3121	md->frozen_sb = NULL;
3122	clear_bit(DMF_FROZEN, &md->flags);
3123}
3124
3125/*
3126 * If __dm_suspend returns 0, the device is completely quiescent
3127 * now. There is no request-processing activity. All new requests
3128 * are being added to md->deferred list.
3129 *
3130 * Caller must hold md->suspend_lock
3131 */
3132static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3133			unsigned suspend_flags, int interruptible)
3134{
3135	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3136	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3137	int r;
3138
3139	/*
3140	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3141	 * This flag is cleared before dm_suspend returns.
3142	 */
3143	if (noflush)
3144		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3145
3146	/*
3147	 * This gets reverted if there's an error later and the targets
3148	 * provide the .presuspend_undo hook.
3149	 */
3150	dm_table_presuspend_targets(map);
3151
3152	/*
3153	 * Flush I/O to the device.
3154	 * Any I/O submitted after lock_fs() may not be flushed.
3155	 * noflush takes precedence over do_lockfs.
3156	 * (lock_fs() flushes I/Os and waits for them to complete.)
3157	 */
3158	if (!noflush && do_lockfs) {
3159		r = lock_fs(md);
3160		if (r) {
3161			dm_table_presuspend_undo_targets(map);
3162			return r;
3163		}
3164	}
3165
3166	/*
3167	 * Here we must make sure that no processes are submitting requests
3168	 * to target drivers i.e. no one may be executing
3169	 * __split_and_process_bio. This is called from dm_request and
3170	 * dm_wq_work.
3171	 *
3172	 * To get all processes out of __split_and_process_bio in dm_request,
3173	 * we take the write lock. To prevent any process from reentering
3174	 * __split_and_process_bio from dm_request and quiesce the thread
3175	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3176	 * flush_workqueue(md->wq).
3177	 */
3178	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179	if (map)
3180		synchronize_srcu(&md->io_barrier);
3181
3182	/*
3183	 * Stop md->queue before flushing md->wq in case request-based
3184	 * dm defers requests to md->wq from md->queue.
3185	 */
3186	if (dm_request_based(md)) {
3187		stop_queue(md->queue);
3188		if (md->kworker_task)
3189			flush_kthread_worker(&md->kworker);
3190	}
3191
3192	flush_workqueue(md->wq);
3193
3194	/*
3195	 * At this point no more requests are entering target request routines.
3196	 * We call dm_wait_for_completion to wait for all existing requests
3197	 * to finish.
3198	 */
3199	r = dm_wait_for_completion(md, interruptible);
3200
3201	if (noflush)
3202		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203	if (map)
3204		synchronize_srcu(&md->io_barrier);
3205
3206	/* were we interrupted ? */
3207	if (r < 0) {
3208		dm_queue_flush(md);
3209
3210		if (dm_request_based(md))
3211			start_queue(md->queue);
3212
3213		unlock_fs(md);
3214		dm_table_presuspend_undo_targets(map);
3215		/* pushback list is already flushed, so skip flush */
3216	}
3217
3218	return r;
3219}
3220
3221/*
3222 * We need to be able to change a mapping table under a mounted
3223 * filesystem.  For example we might want to move some data in
3224 * the background.  Before the table can be swapped with
3225 * dm_bind_table, dm_suspend must be called to flush any in
3226 * flight bios and ensure that any further io gets deferred.
3227 */
3228/*
3229 * Suspend mechanism in request-based dm.
3230 *
3231 * 1. Flush all I/Os by lock_fs() if needed.
3232 * 2. Stop dispatching any I/O by stopping the request_queue.
3233 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 *
3235 * To abort suspend, start the request_queue.
3236 */
3237int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238{
3239	struct dm_table *map = NULL;
3240	int r = 0;
3241
3242retry:
3243	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244
3245	if (dm_suspended_md(md)) {
3246		r = -EINVAL;
3247		goto out_unlock;
3248	}
3249
3250	if (dm_suspended_internally_md(md)) {
3251		/* already internally suspended, wait for internal resume */
3252		mutex_unlock(&md->suspend_lock);
3253		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3254		if (r)
3255			return r;
3256		goto retry;
3257	}
3258
3259	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3260
3261	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3262	if (r)
3263		goto out_unlock;
3264
3265	set_bit(DMF_SUSPENDED, &md->flags);
3266
3267	dm_table_postsuspend_targets(map);
3268
3269out_unlock:
3270	mutex_unlock(&md->suspend_lock);
3271	return r;
3272}
3273
3274static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3275{
3276	if (map) {
3277		int r = dm_table_resume_targets(map);
3278		if (r)
3279			return r;
3280	}
3281
3282	dm_queue_flush(md);
3283
3284	/*
3285	 * Flushing deferred I/Os must be done after targets are resumed
3286	 * so that mapping of targets can work correctly.
3287	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288	 */
3289	if (dm_request_based(md))
3290		start_queue(md->queue);
3291
3292	unlock_fs(md);
3293
3294	return 0;
3295}
3296
3297int dm_resume(struct mapped_device *md)
3298{
3299	int r = -EINVAL;
3300	struct dm_table *map = NULL;
3301
3302retry:
3303	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304
3305	if (!dm_suspended_md(md))
3306		goto out;
3307
3308	if (dm_suspended_internally_md(md)) {
3309		/* already internally suspended, wait for internal resume */
3310		mutex_unlock(&md->suspend_lock);
3311		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3312		if (r)
3313			return r;
3314		goto retry;
3315	}
3316
3317	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3318	if (!map || !dm_table_get_size(map))
3319		goto out;
3320
3321	r = __dm_resume(md, map);
3322	if (r)
3323		goto out;
3324
3325	clear_bit(DMF_SUSPENDED, &md->flags);
3326
3327	r = 0;
3328out:
3329	mutex_unlock(&md->suspend_lock);
3330
3331	return r;
3332}
3333
3334/*
3335 * Internal suspend/resume works like userspace-driven suspend. It waits
3336 * until all bios finish and prevents issuing new bios to the target drivers.
3337 * It may be used only from the kernel.
3338 */
3339
3340static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341{
3342	struct dm_table *map = NULL;
3343
3344	if (md->internal_suspend_count++)
3345		return; /* nested internal suspend */
3346
3347	if (dm_suspended_md(md)) {
3348		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3349		return; /* nest suspend */
3350	}
3351
3352	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353
3354	/*
3355	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3356	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3357	 * would require changing .presuspend to return an error -- avoid this
3358	 * until there is a need for more elaborate variants of internal suspend.
3359	 */
3360	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3361
3362	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363
3364	dm_table_postsuspend_targets(map);
3365}
3366
3367static void __dm_internal_resume(struct mapped_device *md)
3368{
3369	BUG_ON(!md->internal_suspend_count);
3370
3371	if (--md->internal_suspend_count)
3372		return; /* resume from nested internal suspend */
3373
3374	if (dm_suspended_md(md))
3375		goto done; /* resume from nested suspend */
3376
3377	/*
3378	 * NOTE: existing callers don't need to call dm_table_resume_targets
3379	 * (which may fail -- so best to avoid it for now by passing NULL map)
3380	 */
3381	(void) __dm_resume(md, NULL);
3382
3383done:
3384	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3385	smp_mb__after_atomic();
3386	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3387}
3388
3389void dm_internal_suspend_noflush(struct mapped_device *md)
3390{
3391	mutex_lock(&md->suspend_lock);
3392	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3393	mutex_unlock(&md->suspend_lock);
3394}
3395EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396
3397void dm_internal_resume(struct mapped_device *md)
3398{
3399	mutex_lock(&md->suspend_lock);
3400	__dm_internal_resume(md);
3401	mutex_unlock(&md->suspend_lock);
3402}
3403EXPORT_SYMBOL_GPL(dm_internal_resume);
3404
3405/*
3406 * Fast variants of internal suspend/resume hold md->suspend_lock,
3407 * which prevents interaction with userspace-driven suspend.
3408 */
3409
3410void dm_internal_suspend_fast(struct mapped_device *md)
3411{
3412	mutex_lock(&md->suspend_lock);
3413	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3414		return;
3415
3416	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3417	synchronize_srcu(&md->io_barrier);
3418	flush_workqueue(md->wq);
3419	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420}
3421EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422
3423void dm_internal_resume_fast(struct mapped_device *md)
3424{
3425	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426		goto done;
3427
3428	dm_queue_flush(md);
3429
3430done:
3431	mutex_unlock(&md->suspend_lock);
3432}
3433EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434
3435/*-----------------------------------------------------------------
3436 * Event notification.
3437 *---------------------------------------------------------------*/
3438int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3439		       unsigned cookie)
3440{
3441	char udev_cookie[DM_COOKIE_LENGTH];
3442	char *envp[] = { udev_cookie, NULL };
3443
3444	if (!cookie)
3445		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446	else {
3447		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3448			 DM_COOKIE_ENV_VAR_NAME, cookie);
3449		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3450					  action, envp);
3451	}
3452}
3453
3454uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455{
3456	return atomic_add_return(1, &md->uevent_seq);
3457}
3458
3459uint32_t dm_get_event_nr(struct mapped_device *md)
3460{
3461	return atomic_read(&md->event_nr);
3462}
3463
3464int dm_wait_event(struct mapped_device *md, int event_nr)
3465{
3466	return wait_event_interruptible(md->eventq,
3467			(event_nr != atomic_read(&md->event_nr)));
3468}
3469
3470void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471{
3472	unsigned long flags;
3473
3474	spin_lock_irqsave(&md->uevent_lock, flags);
3475	list_add(elist, &md->uevent_list);
3476	spin_unlock_irqrestore(&md->uevent_lock, flags);
3477}
3478
3479/*
3480 * The gendisk is only valid as long as you have a reference
3481 * count on 'md'.
3482 */
3483struct gendisk *dm_disk(struct mapped_device *md)
3484{
3485	return md->disk;
3486}
3487EXPORT_SYMBOL_GPL(dm_disk);
3488
3489struct kobject *dm_kobject(struct mapped_device *md)
3490{
3491	return &md->kobj_holder.kobj;
3492}
3493
3494struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495{
3496	struct mapped_device *md;
3497
3498	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3499
3500	if (test_bit(DMF_FREEING, &md->flags) ||
3501	    dm_deleting_md(md))
3502		return NULL;
3503
3504	dm_get(md);
3505	return md;
3506}
3507
3508int dm_suspended_md(struct mapped_device *md)
3509{
3510	return test_bit(DMF_SUSPENDED, &md->flags);
3511}
3512
3513int dm_suspended_internally_md(struct mapped_device *md)
3514{
3515	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3516}
3517
3518int dm_test_deferred_remove_flag(struct mapped_device *md)
3519{
3520	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3521}
3522
3523int dm_suspended(struct dm_target *ti)
3524{
3525	return dm_suspended_md(dm_table_get_md(ti->table));
3526}
3527EXPORT_SYMBOL_GPL(dm_suspended);
3528
3529int dm_noflush_suspending(struct dm_target *ti)
3530{
3531	return __noflush_suspending(dm_table_get_md(ti->table));
3532}
3533EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534
3535struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3536					    unsigned integrity, unsigned per_bio_data_size)
3537{
3538	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3539	struct kmem_cache *cachep = NULL;
3540	unsigned int pool_size = 0;
3541	unsigned int front_pad;
3542
3543	if (!pools)
3544		return NULL;
3545
3546	type = filter_md_type(type, md);
3547
3548	switch (type) {
3549	case DM_TYPE_BIO_BASED:
3550		cachep = _io_cache;
3551		pool_size = dm_get_reserved_bio_based_ios();
3552		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3553		break;
3554	case DM_TYPE_REQUEST_BASED:
3555		cachep = _rq_tio_cache;
3556		pool_size = dm_get_reserved_rq_based_ios();
3557		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3558		if (!pools->rq_pool)
3559			goto out;
3560		/* fall through to setup remaining rq-based pools */
3561	case DM_TYPE_MQ_REQUEST_BASED:
3562		if (!pool_size)
3563			pool_size = dm_get_reserved_rq_based_ios();
3564		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3565		/* per_bio_data_size is not used. See __bind_mempools(). */
3566		WARN_ON(per_bio_data_size != 0);
3567		break;
3568	default:
3569		BUG();
3570	}
3571
3572	if (cachep) {
3573		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3574		if (!pools->io_pool)
3575			goto out;
3576	}
3577
3578	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3579	if (!pools->bs)
3580		goto out;
3581
3582	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3583		goto out;
3584
3585	return pools;
3586
3587out:
3588	dm_free_md_mempools(pools);
3589
3590	return NULL;
3591}
3592
3593void dm_free_md_mempools(struct dm_md_mempools *pools)
3594{
3595	if (!pools)
3596		return;
3597
3598	if (pools->io_pool)
3599		mempool_destroy(pools->io_pool);
3600
3601	if (pools->rq_pool)
3602		mempool_destroy(pools->rq_pool);
3603
3604	if (pools->bs)
3605		bioset_free(pools->bs);
3606
3607	kfree(pools);
3608}
3609
3610static const struct block_device_operations dm_blk_dops = {
3611	.open = dm_blk_open,
3612	.release = dm_blk_close,
3613	.ioctl = dm_blk_ioctl,
3614	.getgeo = dm_blk_getgeo,
3615	.owner = THIS_MODULE
3616};
3617
3618/*
3619 * module hooks
3620 */
3621module_init(dm_init);
3622module_exit(dm_exit);
3623
3624module_param(major, uint, 0);
3625MODULE_PARM_DESC(major, "The major number of the device mapper");
3626
3627module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3628MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3629
3630module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3631MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3632
3633module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3634MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3635
3636MODULE_DESCRIPTION(DM_NAME " driver");
3637MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3638MODULE_LICENSE("GPL");
3639