1/* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8#include "dm.h" 9#include "dm-uevent.h" 10 11#include <linux/init.h> 12#include <linux/module.h> 13#include <linux/mutex.h> 14#include <linux/moduleparam.h> 15#include <linux/blkpg.h> 16#include <linux/bio.h> 17#include <linux/mempool.h> 18#include <linux/slab.h> 19#include <linux/idr.h> 20#include <linux/hdreg.h> 21#include <linux/delay.h> 22#include <linux/wait.h> 23#include <linux/kthread.h> 24#include <linux/ktime.h> 25#include <linux/elevator.h> /* for rq_end_sector() */ 26#include <linux/blk-mq.h> 27 28#include <trace/events/block.h> 29 30#define DM_MSG_PREFIX "core" 31 32#ifdef CONFIG_PRINTK 33/* 34 * ratelimit state to be used in DMXXX_LIMIT(). 35 */ 36DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 37 DEFAULT_RATELIMIT_INTERVAL, 38 DEFAULT_RATELIMIT_BURST); 39EXPORT_SYMBOL(dm_ratelimit_state); 40#endif 41 42/* 43 * Cookies are numeric values sent with CHANGE and REMOVE 44 * uevents while resuming, removing or renaming the device. 45 */ 46#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 47#define DM_COOKIE_LENGTH 24 48 49static const char *_name = DM_NAME; 50 51static unsigned int major = 0; 52static unsigned int _major = 0; 53 54static DEFINE_IDR(_minor_idr); 55 56static DEFINE_SPINLOCK(_minor_lock); 57 58static void do_deferred_remove(struct work_struct *w); 59 60static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 61 62static struct workqueue_struct *deferred_remove_workqueue; 63 64/* 65 * For bio-based dm. 66 * One of these is allocated per bio. 67 */ 68struct dm_io { 69 struct mapped_device *md; 70 int error; 71 atomic_t io_count; 72 struct bio *bio; 73 unsigned long start_time; 74 spinlock_t endio_lock; 75 struct dm_stats_aux stats_aux; 76}; 77 78/* 79 * For request-based dm. 80 * One of these is allocated per request. 81 */ 82struct dm_rq_target_io { 83 struct mapped_device *md; 84 struct dm_target *ti; 85 struct request *orig, *clone; 86 struct kthread_work work; 87 int error; 88 union map_info info; 89}; 90 91/* 92 * For request-based dm - the bio clones we allocate are embedded in these 93 * structs. 94 * 95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 96 * the bioset is created - this means the bio has to come at the end of the 97 * struct. 98 */ 99struct dm_rq_clone_bio_info { 100 struct bio *orig; 101 struct dm_rq_target_io *tio; 102 struct bio clone; 103}; 104 105union map_info *dm_get_rq_mapinfo(struct request *rq) 106{ 107 if (rq && rq->end_io_data) 108 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 109 return NULL; 110} 111EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 112 113#define MINOR_ALLOCED ((void *)-1) 114 115/* 116 * Bits for the md->flags field. 117 */ 118#define DMF_BLOCK_IO_FOR_SUSPEND 0 119#define DMF_SUSPENDED 1 120#define DMF_FROZEN 2 121#define DMF_FREEING 3 122#define DMF_DELETING 4 123#define DMF_NOFLUSH_SUSPENDING 5 124#define DMF_MERGE_IS_OPTIONAL 6 125#define DMF_DEFERRED_REMOVE 7 126#define DMF_SUSPENDED_INTERNALLY 8 127 128/* 129 * A dummy definition to make RCU happy. 130 * struct dm_table should never be dereferenced in this file. 131 */ 132struct dm_table { 133 int undefined__; 134}; 135 136/* 137 * Work processed by per-device workqueue. 138 */ 139struct mapped_device { 140 struct srcu_struct io_barrier; 141 struct mutex suspend_lock; 142 atomic_t holders; 143 atomic_t open_count; 144 145 /* 146 * The current mapping. 147 * Use dm_get_live_table{_fast} or take suspend_lock for 148 * dereference. 149 */ 150 struct dm_table __rcu *map; 151 152 struct list_head table_devices; 153 struct mutex table_devices_lock; 154 155 unsigned long flags; 156 157 struct request_queue *queue; 158 unsigned type; 159 /* Protect queue and type against concurrent access. */ 160 struct mutex type_lock; 161 162 struct target_type *immutable_target_type; 163 164 struct gendisk *disk; 165 char name[16]; 166 167 void *interface_ptr; 168 169 /* 170 * A list of ios that arrived while we were suspended. 171 */ 172 atomic_t pending[2]; 173 wait_queue_head_t wait; 174 struct work_struct work; 175 struct bio_list deferred; 176 spinlock_t deferred_lock; 177 178 /* 179 * Processing queue (flush) 180 */ 181 struct workqueue_struct *wq; 182 183 /* 184 * io objects are allocated from here. 185 */ 186 mempool_t *io_pool; 187 mempool_t *rq_pool; 188 189 struct bio_set *bs; 190 191 /* 192 * Event handling. 193 */ 194 atomic_t event_nr; 195 wait_queue_head_t eventq; 196 atomic_t uevent_seq; 197 struct list_head uevent_list; 198 spinlock_t uevent_lock; /* Protect access to uevent_list */ 199 200 /* 201 * freeze/thaw support require holding onto a super block 202 */ 203 struct super_block *frozen_sb; 204 struct block_device *bdev; 205 206 /* forced geometry settings */ 207 struct hd_geometry geometry; 208 209 /* kobject and completion */ 210 struct dm_kobject_holder kobj_holder; 211 212 /* zero-length flush that will be cloned and submitted to targets */ 213 struct bio flush_bio; 214 215 /* the number of internal suspends */ 216 unsigned internal_suspend_count; 217 218 struct dm_stats stats; 219 220 struct kthread_worker kworker; 221 struct task_struct *kworker_task; 222 223 /* for request-based merge heuristic in dm_request_fn() */ 224 unsigned seq_rq_merge_deadline_usecs; 225 int last_rq_rw; 226 sector_t last_rq_pos; 227 ktime_t last_rq_start_time; 228 229 /* for blk-mq request-based DM support */ 230 struct blk_mq_tag_set tag_set; 231 bool use_blk_mq; 232}; 233 234#ifdef CONFIG_DM_MQ_DEFAULT 235static bool use_blk_mq = true; 236#else 237static bool use_blk_mq = false; 238#endif 239 240bool dm_use_blk_mq(struct mapped_device *md) 241{ 242 return md->use_blk_mq; 243} 244 245/* 246 * For mempools pre-allocation at the table loading time. 247 */ 248struct dm_md_mempools { 249 mempool_t *io_pool; 250 mempool_t *rq_pool; 251 struct bio_set *bs; 252}; 253 254struct table_device { 255 struct list_head list; 256 atomic_t count; 257 struct dm_dev dm_dev; 258}; 259 260#define RESERVED_BIO_BASED_IOS 16 261#define RESERVED_REQUEST_BASED_IOS 256 262#define RESERVED_MAX_IOS 1024 263static struct kmem_cache *_io_cache; 264static struct kmem_cache *_rq_tio_cache; 265static struct kmem_cache *_rq_cache; 266 267/* 268 * Bio-based DM's mempools' reserved IOs set by the user. 269 */ 270static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 271 272/* 273 * Request-based DM's mempools' reserved IOs set by the user. 274 */ 275static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 276 277static unsigned __dm_get_module_param(unsigned *module_param, 278 unsigned def, unsigned max) 279{ 280 unsigned param = ACCESS_ONCE(*module_param); 281 unsigned modified_param = 0; 282 283 if (!param) 284 modified_param = def; 285 else if (param > max) 286 modified_param = max; 287 288 if (modified_param) { 289 (void)cmpxchg(module_param, param, modified_param); 290 param = modified_param; 291 } 292 293 return param; 294} 295 296unsigned dm_get_reserved_bio_based_ios(void) 297{ 298 return __dm_get_module_param(&reserved_bio_based_ios, 299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 300} 301EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 302 303unsigned dm_get_reserved_rq_based_ios(void) 304{ 305 return __dm_get_module_param(&reserved_rq_based_ios, 306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 307} 308EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 309 310static int __init local_init(void) 311{ 312 int r = -ENOMEM; 313 314 /* allocate a slab for the dm_ios */ 315 _io_cache = KMEM_CACHE(dm_io, 0); 316 if (!_io_cache) 317 return r; 318 319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 320 if (!_rq_tio_cache) 321 goto out_free_io_cache; 322 323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 324 __alignof__(struct request), 0, NULL); 325 if (!_rq_cache) 326 goto out_free_rq_tio_cache; 327 328 r = dm_uevent_init(); 329 if (r) 330 goto out_free_rq_cache; 331 332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 333 if (!deferred_remove_workqueue) { 334 r = -ENOMEM; 335 goto out_uevent_exit; 336 } 337 338 _major = major; 339 r = register_blkdev(_major, _name); 340 if (r < 0) 341 goto out_free_workqueue; 342 343 if (!_major) 344 _major = r; 345 346 return 0; 347 348out_free_workqueue: 349 destroy_workqueue(deferred_remove_workqueue); 350out_uevent_exit: 351 dm_uevent_exit(); 352out_free_rq_cache: 353 kmem_cache_destroy(_rq_cache); 354out_free_rq_tio_cache: 355 kmem_cache_destroy(_rq_tio_cache); 356out_free_io_cache: 357 kmem_cache_destroy(_io_cache); 358 359 return r; 360} 361 362static void local_exit(void) 363{ 364 flush_scheduled_work(); 365 destroy_workqueue(deferred_remove_workqueue); 366 367 kmem_cache_destroy(_rq_cache); 368 kmem_cache_destroy(_rq_tio_cache); 369 kmem_cache_destroy(_io_cache); 370 unregister_blkdev(_major, _name); 371 dm_uevent_exit(); 372 373 _major = 0; 374 375 DMINFO("cleaned up"); 376} 377 378static int (*_inits[])(void) __initdata = { 379 local_init, 380 dm_target_init, 381 dm_linear_init, 382 dm_stripe_init, 383 dm_io_init, 384 dm_kcopyd_init, 385 dm_interface_init, 386 dm_statistics_init, 387}; 388 389static void (*_exits[])(void) = { 390 local_exit, 391 dm_target_exit, 392 dm_linear_exit, 393 dm_stripe_exit, 394 dm_io_exit, 395 dm_kcopyd_exit, 396 dm_interface_exit, 397 dm_statistics_exit, 398}; 399 400static int __init dm_init(void) 401{ 402 const int count = ARRAY_SIZE(_inits); 403 404 int r, i; 405 406 for (i = 0; i < count; i++) { 407 r = _inits[i](); 408 if (r) 409 goto bad; 410 } 411 412 return 0; 413 414 bad: 415 while (i--) 416 _exits[i](); 417 418 return r; 419} 420 421static void __exit dm_exit(void) 422{ 423 int i = ARRAY_SIZE(_exits); 424 425 while (i--) 426 _exits[i](); 427 428 /* 429 * Should be empty by this point. 430 */ 431 idr_destroy(&_minor_idr); 432} 433 434/* 435 * Block device functions 436 */ 437int dm_deleting_md(struct mapped_device *md) 438{ 439 return test_bit(DMF_DELETING, &md->flags); 440} 441 442static int dm_blk_open(struct block_device *bdev, fmode_t mode) 443{ 444 struct mapped_device *md; 445 446 spin_lock(&_minor_lock); 447 448 md = bdev->bd_disk->private_data; 449 if (!md) 450 goto out; 451 452 if (test_bit(DMF_FREEING, &md->flags) || 453 dm_deleting_md(md)) { 454 md = NULL; 455 goto out; 456 } 457 458 dm_get(md); 459 atomic_inc(&md->open_count); 460out: 461 spin_unlock(&_minor_lock); 462 463 return md ? 0 : -ENXIO; 464} 465 466static void dm_blk_close(struct gendisk *disk, fmode_t mode) 467{ 468 struct mapped_device *md; 469 470 spin_lock(&_minor_lock); 471 472 md = disk->private_data; 473 if (WARN_ON(!md)) 474 goto out; 475 476 if (atomic_dec_and_test(&md->open_count) && 477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 478 queue_work(deferred_remove_workqueue, &deferred_remove_work); 479 480 dm_put(md); 481out: 482 spin_unlock(&_minor_lock); 483} 484 485int dm_open_count(struct mapped_device *md) 486{ 487 return atomic_read(&md->open_count); 488} 489 490/* 491 * Guarantees nothing is using the device before it's deleted. 492 */ 493int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 494{ 495 int r = 0; 496 497 spin_lock(&_minor_lock); 498 499 if (dm_open_count(md)) { 500 r = -EBUSY; 501 if (mark_deferred) 502 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 504 r = -EEXIST; 505 else 506 set_bit(DMF_DELETING, &md->flags); 507 508 spin_unlock(&_minor_lock); 509 510 return r; 511} 512 513int dm_cancel_deferred_remove(struct mapped_device *md) 514{ 515 int r = 0; 516 517 spin_lock(&_minor_lock); 518 519 if (test_bit(DMF_DELETING, &md->flags)) 520 r = -EBUSY; 521 else 522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 523 524 spin_unlock(&_minor_lock); 525 526 return r; 527} 528 529static void do_deferred_remove(struct work_struct *w) 530{ 531 dm_deferred_remove(); 532} 533 534sector_t dm_get_size(struct mapped_device *md) 535{ 536 return get_capacity(md->disk); 537} 538 539struct request_queue *dm_get_md_queue(struct mapped_device *md) 540{ 541 return md->queue; 542} 543 544struct dm_stats *dm_get_stats(struct mapped_device *md) 545{ 546 return &md->stats; 547} 548 549static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 550{ 551 struct mapped_device *md = bdev->bd_disk->private_data; 552 553 return dm_get_geometry(md, geo); 554} 555 556static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 557 unsigned int cmd, unsigned long arg) 558{ 559 struct mapped_device *md = bdev->bd_disk->private_data; 560 int srcu_idx; 561 struct dm_table *map; 562 struct dm_target *tgt; 563 int r = -ENOTTY; 564 565retry: 566 map = dm_get_live_table(md, &srcu_idx); 567 568 if (!map || !dm_table_get_size(map)) 569 goto out; 570 571 /* We only support devices that have a single target */ 572 if (dm_table_get_num_targets(map) != 1) 573 goto out; 574 575 tgt = dm_table_get_target(map, 0); 576 if (!tgt->type->ioctl) 577 goto out; 578 579 if (dm_suspended_md(md)) { 580 r = -EAGAIN; 581 goto out; 582 } 583 584 r = tgt->type->ioctl(tgt, cmd, arg); 585 586out: 587 dm_put_live_table(md, srcu_idx); 588 589 if (r == -ENOTCONN) { 590 msleep(10); 591 goto retry; 592 } 593 594 return r; 595} 596 597static struct dm_io *alloc_io(struct mapped_device *md) 598{ 599 return mempool_alloc(md->io_pool, GFP_NOIO); 600} 601 602static void free_io(struct mapped_device *md, struct dm_io *io) 603{ 604 mempool_free(io, md->io_pool); 605} 606 607static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 608{ 609 bio_put(&tio->clone); 610} 611 612static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 613 gfp_t gfp_mask) 614{ 615 return mempool_alloc(md->io_pool, gfp_mask); 616} 617 618static void free_rq_tio(struct dm_rq_target_io *tio) 619{ 620 mempool_free(tio, tio->md->io_pool); 621} 622 623static struct request *alloc_clone_request(struct mapped_device *md, 624 gfp_t gfp_mask) 625{ 626 return mempool_alloc(md->rq_pool, gfp_mask); 627} 628 629static void free_clone_request(struct mapped_device *md, struct request *rq) 630{ 631 mempool_free(rq, md->rq_pool); 632} 633 634static int md_in_flight(struct mapped_device *md) 635{ 636 return atomic_read(&md->pending[READ]) + 637 atomic_read(&md->pending[WRITE]); 638} 639 640static void start_io_acct(struct dm_io *io) 641{ 642 struct mapped_device *md = io->md; 643 struct bio *bio = io->bio; 644 int cpu; 645 int rw = bio_data_dir(bio); 646 647 io->start_time = jiffies; 648 649 cpu = part_stat_lock(); 650 part_round_stats(cpu, &dm_disk(md)->part0); 651 part_stat_unlock(); 652 atomic_set(&dm_disk(md)->part0.in_flight[rw], 653 atomic_inc_return(&md->pending[rw])); 654 655 if (unlikely(dm_stats_used(&md->stats))) 656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 657 bio_sectors(bio), false, 0, &io->stats_aux); 658} 659 660static void end_io_acct(struct dm_io *io) 661{ 662 struct mapped_device *md = io->md; 663 struct bio *bio = io->bio; 664 unsigned long duration = jiffies - io->start_time; 665 int pending; 666 int rw = bio_data_dir(bio); 667 668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 669 670 if (unlikely(dm_stats_used(&md->stats))) 671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 672 bio_sectors(bio), true, duration, &io->stats_aux); 673 674 /* 675 * After this is decremented the bio must not be touched if it is 676 * a flush. 677 */ 678 pending = atomic_dec_return(&md->pending[rw]); 679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 680 pending += atomic_read(&md->pending[rw^0x1]); 681 682 /* nudge anyone waiting on suspend queue */ 683 if (!pending) 684 wake_up(&md->wait); 685} 686 687/* 688 * Add the bio to the list of deferred io. 689 */ 690static void queue_io(struct mapped_device *md, struct bio *bio) 691{ 692 unsigned long flags; 693 694 spin_lock_irqsave(&md->deferred_lock, flags); 695 bio_list_add(&md->deferred, bio); 696 spin_unlock_irqrestore(&md->deferred_lock, flags); 697 queue_work(md->wq, &md->work); 698} 699 700/* 701 * Everyone (including functions in this file), should use this 702 * function to access the md->map field, and make sure they call 703 * dm_put_live_table() when finished. 704 */ 705struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 706{ 707 *srcu_idx = srcu_read_lock(&md->io_barrier); 708 709 return srcu_dereference(md->map, &md->io_barrier); 710} 711 712void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 713{ 714 srcu_read_unlock(&md->io_barrier, srcu_idx); 715} 716 717void dm_sync_table(struct mapped_device *md) 718{ 719 synchronize_srcu(&md->io_barrier); 720 synchronize_rcu_expedited(); 721} 722 723/* 724 * A fast alternative to dm_get_live_table/dm_put_live_table. 725 * The caller must not block between these two functions. 726 */ 727static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 728{ 729 rcu_read_lock(); 730 return rcu_dereference(md->map); 731} 732 733static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 734{ 735 rcu_read_unlock(); 736} 737 738/* 739 * Open a table device so we can use it as a map destination. 740 */ 741static int open_table_device(struct table_device *td, dev_t dev, 742 struct mapped_device *md) 743{ 744 static char *_claim_ptr = "I belong to device-mapper"; 745 struct block_device *bdev; 746 747 int r; 748 749 BUG_ON(td->dm_dev.bdev); 750 751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 752 if (IS_ERR(bdev)) 753 return PTR_ERR(bdev); 754 755 r = bd_link_disk_holder(bdev, dm_disk(md)); 756 if (r) { 757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 758 return r; 759 } 760 761 td->dm_dev.bdev = bdev; 762 return 0; 763} 764 765/* 766 * Close a table device that we've been using. 767 */ 768static void close_table_device(struct table_device *td, struct mapped_device *md) 769{ 770 if (!td->dm_dev.bdev) 771 return; 772 773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 775 td->dm_dev.bdev = NULL; 776} 777 778static struct table_device *find_table_device(struct list_head *l, dev_t dev, 779 fmode_t mode) { 780 struct table_device *td; 781 782 list_for_each_entry(td, l, list) 783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 784 return td; 785 786 return NULL; 787} 788 789int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 790 struct dm_dev **result) { 791 int r; 792 struct table_device *td; 793 794 mutex_lock(&md->table_devices_lock); 795 td = find_table_device(&md->table_devices, dev, mode); 796 if (!td) { 797 td = kmalloc(sizeof(*td), GFP_KERNEL); 798 if (!td) { 799 mutex_unlock(&md->table_devices_lock); 800 return -ENOMEM; 801 } 802 803 td->dm_dev.mode = mode; 804 td->dm_dev.bdev = NULL; 805 806 if ((r = open_table_device(td, dev, md))) { 807 mutex_unlock(&md->table_devices_lock); 808 kfree(td); 809 return r; 810 } 811 812 format_dev_t(td->dm_dev.name, dev); 813 814 atomic_set(&td->count, 0); 815 list_add(&td->list, &md->table_devices); 816 } 817 atomic_inc(&td->count); 818 mutex_unlock(&md->table_devices_lock); 819 820 *result = &td->dm_dev; 821 return 0; 822} 823EXPORT_SYMBOL_GPL(dm_get_table_device); 824 825void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 826{ 827 struct table_device *td = container_of(d, struct table_device, dm_dev); 828 829 mutex_lock(&md->table_devices_lock); 830 if (atomic_dec_and_test(&td->count)) { 831 close_table_device(td, md); 832 list_del(&td->list); 833 kfree(td); 834 } 835 mutex_unlock(&md->table_devices_lock); 836} 837EXPORT_SYMBOL(dm_put_table_device); 838 839static void free_table_devices(struct list_head *devices) 840{ 841 struct list_head *tmp, *next; 842 843 list_for_each_safe(tmp, next, devices) { 844 struct table_device *td = list_entry(tmp, struct table_device, list); 845 846 DMWARN("dm_destroy: %s still exists with %d references", 847 td->dm_dev.name, atomic_read(&td->count)); 848 kfree(td); 849 } 850} 851 852/* 853 * Get the geometry associated with a dm device 854 */ 855int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 856{ 857 *geo = md->geometry; 858 859 return 0; 860} 861 862/* 863 * Set the geometry of a device. 864 */ 865int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 866{ 867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 868 869 if (geo->start > sz) { 870 DMWARN("Start sector is beyond the geometry limits."); 871 return -EINVAL; 872 } 873 874 md->geometry = *geo; 875 876 return 0; 877} 878 879/*----------------------------------------------------------------- 880 * CRUD START: 881 * A more elegant soln is in the works that uses the queue 882 * merge fn, unfortunately there are a couple of changes to 883 * the block layer that I want to make for this. So in the 884 * interests of getting something for people to use I give 885 * you this clearly demarcated crap. 886 *---------------------------------------------------------------*/ 887 888static int __noflush_suspending(struct mapped_device *md) 889{ 890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 891} 892 893/* 894 * Decrements the number of outstanding ios that a bio has been 895 * cloned into, completing the original io if necc. 896 */ 897static void dec_pending(struct dm_io *io, int error) 898{ 899 unsigned long flags; 900 int io_error; 901 struct bio *bio; 902 struct mapped_device *md = io->md; 903 904 /* Push-back supersedes any I/O errors */ 905 if (unlikely(error)) { 906 spin_lock_irqsave(&io->endio_lock, flags); 907 if (!(io->error > 0 && __noflush_suspending(md))) 908 io->error = error; 909 spin_unlock_irqrestore(&io->endio_lock, flags); 910 } 911 912 if (atomic_dec_and_test(&io->io_count)) { 913 if (io->error == DM_ENDIO_REQUEUE) { 914 /* 915 * Target requested pushing back the I/O. 916 */ 917 spin_lock_irqsave(&md->deferred_lock, flags); 918 if (__noflush_suspending(md)) 919 bio_list_add_head(&md->deferred, io->bio); 920 else 921 /* noflush suspend was interrupted. */ 922 io->error = -EIO; 923 spin_unlock_irqrestore(&md->deferred_lock, flags); 924 } 925 926 io_error = io->error; 927 bio = io->bio; 928 end_io_acct(io); 929 free_io(md, io); 930 931 if (io_error == DM_ENDIO_REQUEUE) 932 return; 933 934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 935 /* 936 * Preflush done for flush with data, reissue 937 * without REQ_FLUSH. 938 */ 939 bio->bi_rw &= ~REQ_FLUSH; 940 queue_io(md, bio); 941 } else { 942 /* done with normal IO or empty flush */ 943 trace_block_bio_complete(md->queue, bio, io_error); 944 bio_endio(bio, io_error); 945 } 946 } 947} 948 949static void disable_write_same(struct mapped_device *md) 950{ 951 struct queue_limits *limits = dm_get_queue_limits(md); 952 953 /* device doesn't really support WRITE SAME, disable it */ 954 limits->max_write_same_sectors = 0; 955} 956 957static void clone_endio(struct bio *bio, int error) 958{ 959 int r = error; 960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 961 struct dm_io *io = tio->io; 962 struct mapped_device *md = tio->io->md; 963 dm_endio_fn endio = tio->ti->type->end_io; 964 965 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 966 error = -EIO; 967 968 if (endio) { 969 r = endio(tio->ti, bio, error); 970 if (r < 0 || r == DM_ENDIO_REQUEUE) 971 /* 972 * error and requeue request are handled 973 * in dec_pending(). 974 */ 975 error = r; 976 else if (r == DM_ENDIO_INCOMPLETE) 977 /* The target will handle the io */ 978 return; 979 else if (r) { 980 DMWARN("unimplemented target endio return value: %d", r); 981 BUG(); 982 } 983 } 984 985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 987 disable_write_same(md); 988 989 free_tio(md, tio); 990 dec_pending(io, error); 991} 992 993/* 994 * Partial completion handling for request-based dm 995 */ 996static void end_clone_bio(struct bio *clone, int error) 997{ 998 struct dm_rq_clone_bio_info *info = 999 container_of(clone, struct dm_rq_clone_bio_info, clone); 1000 struct dm_rq_target_io *tio = info->tio; 1001 struct bio *bio = info->orig; 1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1003 1004 bio_put(clone); 1005 1006 if (tio->error) 1007 /* 1008 * An error has already been detected on the request. 1009 * Once error occurred, just let clone->end_io() handle 1010 * the remainder. 1011 */ 1012 return; 1013 else if (error) { 1014 /* 1015 * Don't notice the error to the upper layer yet. 1016 * The error handling decision is made by the target driver, 1017 * when the request is completed. 1018 */ 1019 tio->error = error; 1020 return; 1021 } 1022 1023 /* 1024 * I/O for the bio successfully completed. 1025 * Notice the data completion to the upper layer. 1026 */ 1027 1028 /* 1029 * bios are processed from the head of the list. 1030 * So the completing bio should always be rq->bio. 1031 * If it's not, something wrong is happening. 1032 */ 1033 if (tio->orig->bio != bio) 1034 DMERR("bio completion is going in the middle of the request"); 1035 1036 /* 1037 * Update the original request. 1038 * Do not use blk_end_request() here, because it may complete 1039 * the original request before the clone, and break the ordering. 1040 */ 1041 blk_update_request(tio->orig, 0, nr_bytes); 1042} 1043 1044static struct dm_rq_target_io *tio_from_request(struct request *rq) 1045{ 1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1047} 1048 1049/* 1050 * Don't touch any member of the md after calling this function because 1051 * the md may be freed in dm_put() at the end of this function. 1052 * Or do dm_get() before calling this function and dm_put() later. 1053 */ 1054static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1055{ 1056 atomic_dec(&md->pending[rw]); 1057 1058 /* nudge anyone waiting on suspend queue */ 1059 if (!md_in_flight(md)) 1060 wake_up(&md->wait); 1061 1062 /* 1063 * Run this off this callpath, as drivers could invoke end_io while 1064 * inside their request_fn (and holding the queue lock). Calling 1065 * back into ->request_fn() could deadlock attempting to grab the 1066 * queue lock again. 1067 */ 1068 if (!md->queue->mq_ops && run_queue) 1069 blk_run_queue_async(md->queue); 1070 1071 /* 1072 * dm_put() must be at the end of this function. See the comment above 1073 */ 1074 dm_put(md); 1075} 1076 1077static void free_rq_clone(struct request *clone) 1078{ 1079 struct dm_rq_target_io *tio = clone->end_io_data; 1080 struct mapped_device *md = tio->md; 1081 1082 blk_rq_unprep_clone(clone); 1083 1084 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1085 /* stacked on blk-mq queue(s) */ 1086 tio->ti->type->release_clone_rq(clone); 1087 else if (!md->queue->mq_ops) 1088 /* request_fn queue stacked on request_fn queue(s) */ 1089 free_clone_request(md, clone); 1090 /* 1091 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case: 1092 * no need to call free_clone_request() because we leverage blk-mq by 1093 * allocating the clone at the end of the blk-mq pdu (see: clone_rq) 1094 */ 1095 1096 if (!md->queue->mq_ops) 1097 free_rq_tio(tio); 1098} 1099 1100/* 1101 * Complete the clone and the original request. 1102 * Must be called without clone's queue lock held, 1103 * see end_clone_request() for more details. 1104 */ 1105static void dm_end_request(struct request *clone, int error) 1106{ 1107 int rw = rq_data_dir(clone); 1108 struct dm_rq_target_io *tio = clone->end_io_data; 1109 struct mapped_device *md = tio->md; 1110 struct request *rq = tio->orig; 1111 1112 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1113 rq->errors = clone->errors; 1114 rq->resid_len = clone->resid_len; 1115 1116 if (rq->sense) 1117 /* 1118 * We are using the sense buffer of the original 1119 * request. 1120 * So setting the length of the sense data is enough. 1121 */ 1122 rq->sense_len = clone->sense_len; 1123 } 1124 1125 free_rq_clone(clone); 1126 if (!rq->q->mq_ops) 1127 blk_end_request_all(rq, error); 1128 else 1129 blk_mq_end_request(rq, error); 1130 rq_completed(md, rw, true); 1131} 1132 1133static void dm_unprep_request(struct request *rq) 1134{ 1135 struct dm_rq_target_io *tio = tio_from_request(rq); 1136 struct request *clone = tio->clone; 1137 1138 if (!rq->q->mq_ops) { 1139 rq->special = NULL; 1140 rq->cmd_flags &= ~REQ_DONTPREP; 1141 } 1142 1143 if (clone) 1144 free_rq_clone(clone); 1145 else if (!tio->md->queue->mq_ops) 1146 free_rq_tio(tio); 1147} 1148 1149/* 1150 * Requeue the original request of a clone. 1151 */ 1152static void old_requeue_request(struct request *rq) 1153{ 1154 struct request_queue *q = rq->q; 1155 unsigned long flags; 1156 1157 spin_lock_irqsave(q->queue_lock, flags); 1158 blk_requeue_request(q, rq); 1159 blk_run_queue_async(q); 1160 spin_unlock_irqrestore(q->queue_lock, flags); 1161} 1162 1163static void dm_requeue_unmapped_original_request(struct mapped_device *md, 1164 struct request *rq) 1165{ 1166 int rw = rq_data_dir(rq); 1167 1168 dm_unprep_request(rq); 1169 1170 if (!rq->q->mq_ops) 1171 old_requeue_request(rq); 1172 else { 1173 blk_mq_requeue_request(rq); 1174 blk_mq_kick_requeue_list(rq->q); 1175 } 1176 1177 rq_completed(md, rw, false); 1178} 1179 1180static void dm_requeue_unmapped_request(struct request *clone) 1181{ 1182 struct dm_rq_target_io *tio = clone->end_io_data; 1183 1184 dm_requeue_unmapped_original_request(tio->md, tio->orig); 1185} 1186 1187static void old_stop_queue(struct request_queue *q) 1188{ 1189 unsigned long flags; 1190 1191 if (blk_queue_stopped(q)) 1192 return; 1193 1194 spin_lock_irqsave(q->queue_lock, flags); 1195 blk_stop_queue(q); 1196 spin_unlock_irqrestore(q->queue_lock, flags); 1197} 1198 1199static void stop_queue(struct request_queue *q) 1200{ 1201 if (!q->mq_ops) 1202 old_stop_queue(q); 1203 else 1204 blk_mq_stop_hw_queues(q); 1205} 1206 1207static void old_start_queue(struct request_queue *q) 1208{ 1209 unsigned long flags; 1210 1211 spin_lock_irqsave(q->queue_lock, flags); 1212 if (blk_queue_stopped(q)) 1213 blk_start_queue(q); 1214 spin_unlock_irqrestore(q->queue_lock, flags); 1215} 1216 1217static void start_queue(struct request_queue *q) 1218{ 1219 if (!q->mq_ops) 1220 old_start_queue(q); 1221 else 1222 blk_mq_start_stopped_hw_queues(q, true); 1223} 1224 1225static void dm_done(struct request *clone, int error, bool mapped) 1226{ 1227 int r = error; 1228 struct dm_rq_target_io *tio = clone->end_io_data; 1229 dm_request_endio_fn rq_end_io = NULL; 1230 1231 if (tio->ti) { 1232 rq_end_io = tio->ti->type->rq_end_io; 1233 1234 if (mapped && rq_end_io) 1235 r = rq_end_io(tio->ti, clone, error, &tio->info); 1236 } 1237 1238 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1239 !clone->q->limits.max_write_same_sectors)) 1240 disable_write_same(tio->md); 1241 1242 if (r <= 0) 1243 /* The target wants to complete the I/O */ 1244 dm_end_request(clone, r); 1245 else if (r == DM_ENDIO_INCOMPLETE) 1246 /* The target will handle the I/O */ 1247 return; 1248 else if (r == DM_ENDIO_REQUEUE) 1249 /* The target wants to requeue the I/O */ 1250 dm_requeue_unmapped_request(clone); 1251 else { 1252 DMWARN("unimplemented target endio return value: %d", r); 1253 BUG(); 1254 } 1255} 1256 1257/* 1258 * Request completion handler for request-based dm 1259 */ 1260static void dm_softirq_done(struct request *rq) 1261{ 1262 bool mapped = true; 1263 struct dm_rq_target_io *tio = tio_from_request(rq); 1264 struct request *clone = tio->clone; 1265 int rw; 1266 1267 if (!clone) { 1268 rw = rq_data_dir(rq); 1269 if (!rq->q->mq_ops) { 1270 blk_end_request_all(rq, tio->error); 1271 rq_completed(tio->md, rw, false); 1272 free_rq_tio(tio); 1273 } else { 1274 blk_mq_end_request(rq, tio->error); 1275 rq_completed(tio->md, rw, false); 1276 } 1277 return; 1278 } 1279 1280 if (rq->cmd_flags & REQ_FAILED) 1281 mapped = false; 1282 1283 dm_done(clone, tio->error, mapped); 1284} 1285 1286/* 1287 * Complete the clone and the original request with the error status 1288 * through softirq context. 1289 */ 1290static void dm_complete_request(struct request *rq, int error) 1291{ 1292 struct dm_rq_target_io *tio = tio_from_request(rq); 1293 1294 tio->error = error; 1295 if (!rq->q->mq_ops) 1296 blk_complete_request(rq); 1297 else 1298 blk_mq_complete_request(rq); 1299} 1300 1301/* 1302 * Complete the not-mapped clone and the original request with the error status 1303 * through softirq context. 1304 * Target's rq_end_io() function isn't called. 1305 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1306 */ 1307static void dm_kill_unmapped_request(struct request *rq, int error) 1308{ 1309 rq->cmd_flags |= REQ_FAILED; 1310 dm_complete_request(rq, error); 1311} 1312 1313/* 1314 * Called with the clone's queue lock held (for non-blk-mq) 1315 */ 1316static void end_clone_request(struct request *clone, int error) 1317{ 1318 struct dm_rq_target_io *tio = clone->end_io_data; 1319 1320 if (!clone->q->mq_ops) { 1321 /* 1322 * For just cleaning up the information of the queue in which 1323 * the clone was dispatched. 1324 * The clone is *NOT* freed actually here because it is alloced 1325 * from dm own mempool (REQ_ALLOCED isn't set). 1326 */ 1327 __blk_put_request(clone->q, clone); 1328 } 1329 1330 /* 1331 * Actual request completion is done in a softirq context which doesn't 1332 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1333 * - another request may be submitted by the upper level driver 1334 * of the stacking during the completion 1335 * - the submission which requires queue lock may be done 1336 * against this clone's queue 1337 */ 1338 dm_complete_request(tio->orig, error); 1339} 1340 1341/* 1342 * Return maximum size of I/O possible at the supplied sector up to the current 1343 * target boundary. 1344 */ 1345static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1346{ 1347 sector_t target_offset = dm_target_offset(ti, sector); 1348 1349 return ti->len - target_offset; 1350} 1351 1352static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1353{ 1354 sector_t len = max_io_len_target_boundary(sector, ti); 1355 sector_t offset, max_len; 1356 1357 /* 1358 * Does the target need to split even further? 1359 */ 1360 if (ti->max_io_len) { 1361 offset = dm_target_offset(ti, sector); 1362 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1363 max_len = sector_div(offset, ti->max_io_len); 1364 else 1365 max_len = offset & (ti->max_io_len - 1); 1366 max_len = ti->max_io_len - max_len; 1367 1368 if (len > max_len) 1369 len = max_len; 1370 } 1371 1372 return len; 1373} 1374 1375int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1376{ 1377 if (len > UINT_MAX) { 1378 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1379 (unsigned long long)len, UINT_MAX); 1380 ti->error = "Maximum size of target IO is too large"; 1381 return -EINVAL; 1382 } 1383 1384 ti->max_io_len = (uint32_t) len; 1385 1386 return 0; 1387} 1388EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1389 1390/* 1391 * A target may call dm_accept_partial_bio only from the map routine. It is 1392 * allowed for all bio types except REQ_FLUSH. 1393 * 1394 * dm_accept_partial_bio informs the dm that the target only wants to process 1395 * additional n_sectors sectors of the bio and the rest of the data should be 1396 * sent in a next bio. 1397 * 1398 * A diagram that explains the arithmetics: 1399 * +--------------------+---------------+-------+ 1400 * | 1 | 2 | 3 | 1401 * +--------------------+---------------+-------+ 1402 * 1403 * <-------------- *tio->len_ptr ---------------> 1404 * <------- bi_size -------> 1405 * <-- n_sectors --> 1406 * 1407 * Region 1 was already iterated over with bio_advance or similar function. 1408 * (it may be empty if the target doesn't use bio_advance) 1409 * Region 2 is the remaining bio size that the target wants to process. 1410 * (it may be empty if region 1 is non-empty, although there is no reason 1411 * to make it empty) 1412 * The target requires that region 3 is to be sent in the next bio. 1413 * 1414 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1415 * the partially processed part (the sum of regions 1+2) must be the same for all 1416 * copies of the bio. 1417 */ 1418void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1419{ 1420 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1421 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1422 BUG_ON(bio->bi_rw & REQ_FLUSH); 1423 BUG_ON(bi_size > *tio->len_ptr); 1424 BUG_ON(n_sectors > bi_size); 1425 *tio->len_ptr -= bi_size - n_sectors; 1426 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1427} 1428EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1429 1430static void __map_bio(struct dm_target_io *tio) 1431{ 1432 int r; 1433 sector_t sector; 1434 struct mapped_device *md; 1435 struct bio *clone = &tio->clone; 1436 struct dm_target *ti = tio->ti; 1437 1438 clone->bi_end_io = clone_endio; 1439 1440 /* 1441 * Map the clone. If r == 0 we don't need to do 1442 * anything, the target has assumed ownership of 1443 * this io. 1444 */ 1445 atomic_inc(&tio->io->io_count); 1446 sector = clone->bi_iter.bi_sector; 1447 r = ti->type->map(ti, clone); 1448 if (r == DM_MAPIO_REMAPPED) { 1449 /* the bio has been remapped so dispatch it */ 1450 1451 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1452 tio->io->bio->bi_bdev->bd_dev, sector); 1453 1454 generic_make_request(clone); 1455 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1456 /* error the io and bail out, or requeue it if needed */ 1457 md = tio->io->md; 1458 dec_pending(tio->io, r); 1459 free_tio(md, tio); 1460 } else if (r) { 1461 DMWARN("unimplemented target map return value: %d", r); 1462 BUG(); 1463 } 1464} 1465 1466struct clone_info { 1467 struct mapped_device *md; 1468 struct dm_table *map; 1469 struct bio *bio; 1470 struct dm_io *io; 1471 sector_t sector; 1472 unsigned sector_count; 1473}; 1474 1475static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1476{ 1477 bio->bi_iter.bi_sector = sector; 1478 bio->bi_iter.bi_size = to_bytes(len); 1479} 1480 1481/* 1482 * Creates a bio that consists of range of complete bvecs. 1483 */ 1484static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1485 sector_t sector, unsigned len) 1486{ 1487 struct bio *clone = &tio->clone; 1488 1489 __bio_clone_fast(clone, bio); 1490 1491 if (bio_integrity(bio)) 1492 bio_integrity_clone(clone, bio, GFP_NOIO); 1493 1494 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1495 clone->bi_iter.bi_size = to_bytes(len); 1496 1497 if (bio_integrity(bio)) 1498 bio_integrity_trim(clone, 0, len); 1499} 1500 1501static struct dm_target_io *alloc_tio(struct clone_info *ci, 1502 struct dm_target *ti, 1503 unsigned target_bio_nr) 1504{ 1505 struct dm_target_io *tio; 1506 struct bio *clone; 1507 1508 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1509 tio = container_of(clone, struct dm_target_io, clone); 1510 1511 tio->io = ci->io; 1512 tio->ti = ti; 1513 tio->target_bio_nr = target_bio_nr; 1514 1515 return tio; 1516} 1517 1518static void __clone_and_map_simple_bio(struct clone_info *ci, 1519 struct dm_target *ti, 1520 unsigned target_bio_nr, unsigned *len) 1521{ 1522 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1523 struct bio *clone = &tio->clone; 1524 1525 tio->len_ptr = len; 1526 1527 __bio_clone_fast(clone, ci->bio); 1528 if (len) 1529 bio_setup_sector(clone, ci->sector, *len); 1530 1531 __map_bio(tio); 1532} 1533 1534static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1535 unsigned num_bios, unsigned *len) 1536{ 1537 unsigned target_bio_nr; 1538 1539 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1540 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1541} 1542 1543static int __send_empty_flush(struct clone_info *ci) 1544{ 1545 unsigned target_nr = 0; 1546 struct dm_target *ti; 1547 1548 BUG_ON(bio_has_data(ci->bio)); 1549 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1550 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1551 1552 return 0; 1553} 1554 1555static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1556 sector_t sector, unsigned *len) 1557{ 1558 struct bio *bio = ci->bio; 1559 struct dm_target_io *tio; 1560 unsigned target_bio_nr; 1561 unsigned num_target_bios = 1; 1562 1563 /* 1564 * Does the target want to receive duplicate copies of the bio? 1565 */ 1566 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1567 num_target_bios = ti->num_write_bios(ti, bio); 1568 1569 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1570 tio = alloc_tio(ci, ti, target_bio_nr); 1571 tio->len_ptr = len; 1572 clone_bio(tio, bio, sector, *len); 1573 __map_bio(tio); 1574 } 1575} 1576 1577typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1578 1579static unsigned get_num_discard_bios(struct dm_target *ti) 1580{ 1581 return ti->num_discard_bios; 1582} 1583 1584static unsigned get_num_write_same_bios(struct dm_target *ti) 1585{ 1586 return ti->num_write_same_bios; 1587} 1588 1589typedef bool (*is_split_required_fn)(struct dm_target *ti); 1590 1591static bool is_split_required_for_discard(struct dm_target *ti) 1592{ 1593 return ti->split_discard_bios; 1594} 1595 1596static int __send_changing_extent_only(struct clone_info *ci, 1597 get_num_bios_fn get_num_bios, 1598 is_split_required_fn is_split_required) 1599{ 1600 struct dm_target *ti; 1601 unsigned len; 1602 unsigned num_bios; 1603 1604 do { 1605 ti = dm_table_find_target(ci->map, ci->sector); 1606 if (!dm_target_is_valid(ti)) 1607 return -EIO; 1608 1609 /* 1610 * Even though the device advertised support for this type of 1611 * request, that does not mean every target supports it, and 1612 * reconfiguration might also have changed that since the 1613 * check was performed. 1614 */ 1615 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1616 if (!num_bios) 1617 return -EOPNOTSUPP; 1618 1619 if (is_split_required && !is_split_required(ti)) 1620 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1621 else 1622 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1623 1624 __send_duplicate_bios(ci, ti, num_bios, &len); 1625 1626 ci->sector += len; 1627 } while (ci->sector_count -= len); 1628 1629 return 0; 1630} 1631 1632static int __send_discard(struct clone_info *ci) 1633{ 1634 return __send_changing_extent_only(ci, get_num_discard_bios, 1635 is_split_required_for_discard); 1636} 1637 1638static int __send_write_same(struct clone_info *ci) 1639{ 1640 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1641} 1642 1643/* 1644 * Select the correct strategy for processing a non-flush bio. 1645 */ 1646static int __split_and_process_non_flush(struct clone_info *ci) 1647{ 1648 struct bio *bio = ci->bio; 1649 struct dm_target *ti; 1650 unsigned len; 1651 1652 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1653 return __send_discard(ci); 1654 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1655 return __send_write_same(ci); 1656 1657 ti = dm_table_find_target(ci->map, ci->sector); 1658 if (!dm_target_is_valid(ti)) 1659 return -EIO; 1660 1661 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1662 1663 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1664 1665 ci->sector += len; 1666 ci->sector_count -= len; 1667 1668 return 0; 1669} 1670 1671/* 1672 * Entry point to split a bio into clones and submit them to the targets. 1673 */ 1674static void __split_and_process_bio(struct mapped_device *md, 1675 struct dm_table *map, struct bio *bio) 1676{ 1677 struct clone_info ci; 1678 int error = 0; 1679 1680 if (unlikely(!map)) { 1681 bio_io_error(bio); 1682 return; 1683 } 1684 1685 ci.map = map; 1686 ci.md = md; 1687 ci.io = alloc_io(md); 1688 ci.io->error = 0; 1689 atomic_set(&ci.io->io_count, 1); 1690 ci.io->bio = bio; 1691 ci.io->md = md; 1692 spin_lock_init(&ci.io->endio_lock); 1693 ci.sector = bio->bi_iter.bi_sector; 1694 1695 start_io_acct(ci.io); 1696 1697 if (bio->bi_rw & REQ_FLUSH) { 1698 ci.bio = &ci.md->flush_bio; 1699 ci.sector_count = 0; 1700 error = __send_empty_flush(&ci); 1701 /* dec_pending submits any data associated with flush */ 1702 } else { 1703 ci.bio = bio; 1704 ci.sector_count = bio_sectors(bio); 1705 while (ci.sector_count && !error) 1706 error = __split_and_process_non_flush(&ci); 1707 } 1708 1709 /* drop the extra reference count */ 1710 dec_pending(ci.io, error); 1711} 1712/*----------------------------------------------------------------- 1713 * CRUD END 1714 *---------------------------------------------------------------*/ 1715 1716static int dm_merge_bvec(struct request_queue *q, 1717 struct bvec_merge_data *bvm, 1718 struct bio_vec *biovec) 1719{ 1720 struct mapped_device *md = q->queuedata; 1721 struct dm_table *map = dm_get_live_table_fast(md); 1722 struct dm_target *ti; 1723 sector_t max_sectors; 1724 int max_size = 0; 1725 1726 if (unlikely(!map)) 1727 goto out; 1728 1729 ti = dm_table_find_target(map, bvm->bi_sector); 1730 if (!dm_target_is_valid(ti)) 1731 goto out; 1732 1733 /* 1734 * Find maximum amount of I/O that won't need splitting 1735 */ 1736 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1737 (sector_t) BIO_MAX_SECTORS); 1738 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1739 if (max_size < 0) 1740 max_size = 0; 1741 1742 /* 1743 * merge_bvec_fn() returns number of bytes 1744 * it can accept at this offset 1745 * max is precomputed maximal io size 1746 */ 1747 if (max_size && ti->type->merge) 1748 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1749 /* 1750 * If the target doesn't support merge method and some of the devices 1751 * provided their merge_bvec method (we know this by looking at 1752 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1753 * entries. So always set max_size to 0, and the code below allows 1754 * just one page. 1755 */ 1756 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1757 max_size = 0; 1758 1759out: 1760 dm_put_live_table_fast(md); 1761 /* 1762 * Always allow an entire first page 1763 */ 1764 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1765 max_size = biovec->bv_len; 1766 1767 return max_size; 1768} 1769 1770/* 1771 * The request function that just remaps the bio built up by 1772 * dm_merge_bvec. 1773 */ 1774static void dm_make_request(struct request_queue *q, struct bio *bio) 1775{ 1776 int rw = bio_data_dir(bio); 1777 struct mapped_device *md = q->queuedata; 1778 int srcu_idx; 1779 struct dm_table *map; 1780 1781 map = dm_get_live_table(md, &srcu_idx); 1782 1783 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1784 1785 /* if we're suspended, we have to queue this io for later */ 1786 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1787 dm_put_live_table(md, srcu_idx); 1788 1789 if (bio_rw(bio) != READA) 1790 queue_io(md, bio); 1791 else 1792 bio_io_error(bio); 1793 return; 1794 } 1795 1796 __split_and_process_bio(md, map, bio); 1797 dm_put_live_table(md, srcu_idx); 1798 return; 1799} 1800 1801int dm_request_based(struct mapped_device *md) 1802{ 1803 return blk_queue_stackable(md->queue); 1804} 1805 1806static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1807{ 1808 int r; 1809 1810 if (blk_queue_io_stat(clone->q)) 1811 clone->cmd_flags |= REQ_IO_STAT; 1812 1813 clone->start_time = jiffies; 1814 r = blk_insert_cloned_request(clone->q, clone); 1815 if (r) 1816 /* must complete clone in terms of original request */ 1817 dm_complete_request(rq, r); 1818} 1819 1820static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1821 void *data) 1822{ 1823 struct dm_rq_target_io *tio = data; 1824 struct dm_rq_clone_bio_info *info = 1825 container_of(bio, struct dm_rq_clone_bio_info, clone); 1826 1827 info->orig = bio_orig; 1828 info->tio = tio; 1829 bio->bi_end_io = end_clone_bio; 1830 1831 return 0; 1832} 1833 1834static int setup_clone(struct request *clone, struct request *rq, 1835 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1836{ 1837 int r; 1838 1839 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1840 dm_rq_bio_constructor, tio); 1841 if (r) 1842 return r; 1843 1844 clone->cmd = rq->cmd; 1845 clone->cmd_len = rq->cmd_len; 1846 clone->sense = rq->sense; 1847 clone->end_io = end_clone_request; 1848 clone->end_io_data = tio; 1849 1850 tio->clone = clone; 1851 1852 return 0; 1853} 1854 1855static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1856 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1857{ 1858 /* 1859 * Do not allocate a clone if tio->clone was already set 1860 * (see: dm_mq_queue_rq). 1861 */ 1862 bool alloc_clone = !tio->clone; 1863 struct request *clone; 1864 1865 if (alloc_clone) { 1866 clone = alloc_clone_request(md, gfp_mask); 1867 if (!clone) 1868 return NULL; 1869 } else 1870 clone = tio->clone; 1871 1872 blk_rq_init(NULL, clone); 1873 if (setup_clone(clone, rq, tio, gfp_mask)) { 1874 /* -ENOMEM */ 1875 if (alloc_clone) 1876 free_clone_request(md, clone); 1877 return NULL; 1878 } 1879 1880 return clone; 1881} 1882 1883static void map_tio_request(struct kthread_work *work); 1884 1885static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1886 struct mapped_device *md) 1887{ 1888 tio->md = md; 1889 tio->ti = NULL; 1890 tio->clone = NULL; 1891 tio->orig = rq; 1892 tio->error = 0; 1893 memset(&tio->info, 0, sizeof(tio->info)); 1894 if (md->kworker_task) 1895 init_kthread_work(&tio->work, map_tio_request); 1896} 1897 1898static struct dm_rq_target_io *prep_tio(struct request *rq, 1899 struct mapped_device *md, gfp_t gfp_mask) 1900{ 1901 struct dm_rq_target_io *tio; 1902 int srcu_idx; 1903 struct dm_table *table; 1904 1905 tio = alloc_rq_tio(md, gfp_mask); 1906 if (!tio) 1907 return NULL; 1908 1909 init_tio(tio, rq, md); 1910 1911 table = dm_get_live_table(md, &srcu_idx); 1912 if (!dm_table_mq_request_based(table)) { 1913 if (!clone_rq(rq, md, tio, gfp_mask)) { 1914 dm_put_live_table(md, srcu_idx); 1915 free_rq_tio(tio); 1916 return NULL; 1917 } 1918 } 1919 dm_put_live_table(md, srcu_idx); 1920 1921 return tio; 1922} 1923 1924/* 1925 * Called with the queue lock held. 1926 */ 1927static int dm_prep_fn(struct request_queue *q, struct request *rq) 1928{ 1929 struct mapped_device *md = q->queuedata; 1930 struct dm_rq_target_io *tio; 1931 1932 if (unlikely(rq->special)) { 1933 DMWARN("Already has something in rq->special."); 1934 return BLKPREP_KILL; 1935 } 1936 1937 tio = prep_tio(rq, md, GFP_ATOMIC); 1938 if (!tio) 1939 return BLKPREP_DEFER; 1940 1941 rq->special = tio; 1942 rq->cmd_flags |= REQ_DONTPREP; 1943 1944 return BLKPREP_OK; 1945} 1946 1947/* 1948 * Returns: 1949 * 0 : the request has been processed 1950 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1951 * < 0 : the request was completed due to failure 1952 */ 1953static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1954 struct mapped_device *md) 1955{ 1956 int r; 1957 struct dm_target *ti = tio->ti; 1958 struct request *clone = NULL; 1959 1960 if (tio->clone) { 1961 clone = tio->clone; 1962 r = ti->type->map_rq(ti, clone, &tio->info); 1963 } else { 1964 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1965 if (r < 0) { 1966 /* The target wants to complete the I/O */ 1967 dm_kill_unmapped_request(rq, r); 1968 return r; 1969 } 1970 if (r != DM_MAPIO_REMAPPED) 1971 return r; 1972 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1973 /* -ENOMEM */ 1974 ti->type->release_clone_rq(clone); 1975 return DM_MAPIO_REQUEUE; 1976 } 1977 } 1978 1979 switch (r) { 1980 case DM_MAPIO_SUBMITTED: 1981 /* The target has taken the I/O to submit by itself later */ 1982 break; 1983 case DM_MAPIO_REMAPPED: 1984 /* The target has remapped the I/O so dispatch it */ 1985 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1986 blk_rq_pos(rq)); 1987 dm_dispatch_clone_request(clone, rq); 1988 break; 1989 case DM_MAPIO_REQUEUE: 1990 /* The target wants to requeue the I/O */ 1991 dm_requeue_unmapped_request(clone); 1992 break; 1993 default: 1994 if (r > 0) { 1995 DMWARN("unimplemented target map return value: %d", r); 1996 BUG(); 1997 } 1998 1999 /* The target wants to complete the I/O */ 2000 dm_kill_unmapped_request(rq, r); 2001 return r; 2002 } 2003 2004 return 0; 2005} 2006 2007static void map_tio_request(struct kthread_work *work) 2008{ 2009 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 2010 struct request *rq = tio->orig; 2011 struct mapped_device *md = tio->md; 2012 2013 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2014 dm_requeue_unmapped_original_request(md, rq); 2015} 2016 2017static void dm_start_request(struct mapped_device *md, struct request *orig) 2018{ 2019 if (!orig->q->mq_ops) 2020 blk_start_request(orig); 2021 else 2022 blk_mq_start_request(orig); 2023 atomic_inc(&md->pending[rq_data_dir(orig)]); 2024 2025 if (md->seq_rq_merge_deadline_usecs) { 2026 md->last_rq_pos = rq_end_sector(orig); 2027 md->last_rq_rw = rq_data_dir(orig); 2028 md->last_rq_start_time = ktime_get(); 2029 } 2030 2031 /* 2032 * Hold the md reference here for the in-flight I/O. 2033 * We can't rely on the reference count by device opener, 2034 * because the device may be closed during the request completion 2035 * when all bios are completed. 2036 * See the comment in rq_completed() too. 2037 */ 2038 dm_get(md); 2039} 2040 2041#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2042 2043ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2044{ 2045 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2046} 2047 2048ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2049 const char *buf, size_t count) 2050{ 2051 unsigned deadline; 2052 2053 if (!dm_request_based(md) || md->use_blk_mq) 2054 return count; 2055 2056 if (kstrtouint(buf, 10, &deadline)) 2057 return -EINVAL; 2058 2059 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2060 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2061 2062 md->seq_rq_merge_deadline_usecs = deadline; 2063 2064 return count; 2065} 2066 2067static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2068{ 2069 ktime_t kt_deadline; 2070 2071 if (!md->seq_rq_merge_deadline_usecs) 2072 return false; 2073 2074 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2075 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2076 2077 return !ktime_after(ktime_get(), kt_deadline); 2078} 2079 2080/* 2081 * q->request_fn for request-based dm. 2082 * Called with the queue lock held. 2083 */ 2084static void dm_request_fn(struct request_queue *q) 2085{ 2086 struct mapped_device *md = q->queuedata; 2087 int srcu_idx; 2088 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2089 struct dm_target *ti; 2090 struct request *rq; 2091 struct dm_rq_target_io *tio; 2092 sector_t pos; 2093 2094 /* 2095 * For suspend, check blk_queue_stopped() and increment 2096 * ->pending within a single queue_lock not to increment the 2097 * number of in-flight I/Os after the queue is stopped in 2098 * dm_suspend(). 2099 */ 2100 while (!blk_queue_stopped(q)) { 2101 rq = blk_peek_request(q); 2102 if (!rq) 2103 goto out; 2104 2105 /* always use block 0 to find the target for flushes for now */ 2106 pos = 0; 2107 if (!(rq->cmd_flags & REQ_FLUSH)) 2108 pos = blk_rq_pos(rq); 2109 2110 ti = dm_table_find_target(map, pos); 2111 if (!dm_target_is_valid(ti)) { 2112 /* 2113 * Must perform setup, that rq_completed() requires, 2114 * before calling dm_kill_unmapped_request 2115 */ 2116 DMERR_LIMIT("request attempted access beyond the end of device"); 2117 dm_start_request(md, rq); 2118 dm_kill_unmapped_request(rq, -EIO); 2119 continue; 2120 } 2121 2122 if (dm_request_peeked_before_merge_deadline(md) && 2123 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2124 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) 2125 goto delay_and_out; 2126 2127 if (ti->type->busy && ti->type->busy(ti)) 2128 goto delay_and_out; 2129 2130 dm_start_request(md, rq); 2131 2132 tio = tio_from_request(rq); 2133 /* Establish tio->ti before queuing work (map_tio_request) */ 2134 tio->ti = ti; 2135 queue_kthread_work(&md->kworker, &tio->work); 2136 BUG_ON(!irqs_disabled()); 2137 } 2138 2139 goto out; 2140 2141delay_and_out: 2142 blk_delay_queue(q, HZ / 100); 2143out: 2144 dm_put_live_table(md, srcu_idx); 2145} 2146 2147static int dm_any_congested(void *congested_data, int bdi_bits) 2148{ 2149 int r = bdi_bits; 2150 struct mapped_device *md = congested_data; 2151 struct dm_table *map; 2152 2153 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2154 map = dm_get_live_table_fast(md); 2155 if (map) { 2156 /* 2157 * Request-based dm cares about only own queue for 2158 * the query about congestion status of request_queue 2159 */ 2160 if (dm_request_based(md)) 2161 r = md->queue->backing_dev_info.state & 2162 bdi_bits; 2163 else 2164 r = dm_table_any_congested(map, bdi_bits); 2165 } 2166 dm_put_live_table_fast(md); 2167 } 2168 2169 return r; 2170} 2171 2172/*----------------------------------------------------------------- 2173 * An IDR is used to keep track of allocated minor numbers. 2174 *---------------------------------------------------------------*/ 2175static void free_minor(int minor) 2176{ 2177 spin_lock(&_minor_lock); 2178 idr_remove(&_minor_idr, minor); 2179 spin_unlock(&_minor_lock); 2180} 2181 2182/* 2183 * See if the device with a specific minor # is free. 2184 */ 2185static int specific_minor(int minor) 2186{ 2187 int r; 2188 2189 if (minor >= (1 << MINORBITS)) 2190 return -EINVAL; 2191 2192 idr_preload(GFP_KERNEL); 2193 spin_lock(&_minor_lock); 2194 2195 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2196 2197 spin_unlock(&_minor_lock); 2198 idr_preload_end(); 2199 if (r < 0) 2200 return r == -ENOSPC ? -EBUSY : r; 2201 return 0; 2202} 2203 2204static int next_free_minor(int *minor) 2205{ 2206 int r; 2207 2208 idr_preload(GFP_KERNEL); 2209 spin_lock(&_minor_lock); 2210 2211 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2212 2213 spin_unlock(&_minor_lock); 2214 idr_preload_end(); 2215 if (r < 0) 2216 return r; 2217 *minor = r; 2218 return 0; 2219} 2220 2221static const struct block_device_operations dm_blk_dops; 2222 2223static void dm_wq_work(struct work_struct *work); 2224 2225static void dm_init_md_queue(struct mapped_device *md) 2226{ 2227 /* 2228 * Request-based dm devices cannot be stacked on top of bio-based dm 2229 * devices. The type of this dm device may not have been decided yet. 2230 * The type is decided at the first table loading time. 2231 * To prevent problematic device stacking, clear the queue flag 2232 * for request stacking support until then. 2233 * 2234 * This queue is new, so no concurrency on the queue_flags. 2235 */ 2236 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2237} 2238 2239static void dm_init_old_md_queue(struct mapped_device *md) 2240{ 2241 md->use_blk_mq = false; 2242 dm_init_md_queue(md); 2243 2244 /* 2245 * Initialize aspects of queue that aren't relevant for blk-mq 2246 */ 2247 md->queue->queuedata = md; 2248 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2249 md->queue->backing_dev_info.congested_data = md; 2250 2251 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2252} 2253 2254/* 2255 * Allocate and initialise a blank device with a given minor. 2256 */ 2257static struct mapped_device *alloc_dev(int minor) 2258{ 2259 int r; 2260 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2261 void *old_md; 2262 2263 if (!md) { 2264 DMWARN("unable to allocate device, out of memory."); 2265 return NULL; 2266 } 2267 2268 if (!try_module_get(THIS_MODULE)) 2269 goto bad_module_get; 2270 2271 /* get a minor number for the dev */ 2272 if (minor == DM_ANY_MINOR) 2273 r = next_free_minor(&minor); 2274 else 2275 r = specific_minor(minor); 2276 if (r < 0) 2277 goto bad_minor; 2278 2279 r = init_srcu_struct(&md->io_barrier); 2280 if (r < 0) 2281 goto bad_io_barrier; 2282 2283 md->use_blk_mq = use_blk_mq; 2284 md->type = DM_TYPE_NONE; 2285 mutex_init(&md->suspend_lock); 2286 mutex_init(&md->type_lock); 2287 mutex_init(&md->table_devices_lock); 2288 spin_lock_init(&md->deferred_lock); 2289 atomic_set(&md->holders, 1); 2290 atomic_set(&md->open_count, 0); 2291 atomic_set(&md->event_nr, 0); 2292 atomic_set(&md->uevent_seq, 0); 2293 INIT_LIST_HEAD(&md->uevent_list); 2294 INIT_LIST_HEAD(&md->table_devices); 2295 spin_lock_init(&md->uevent_lock); 2296 2297 md->queue = blk_alloc_queue(GFP_KERNEL); 2298 if (!md->queue) 2299 goto bad_queue; 2300 2301 dm_init_md_queue(md); 2302 2303 md->disk = alloc_disk(1); 2304 if (!md->disk) 2305 goto bad_disk; 2306 2307 atomic_set(&md->pending[0], 0); 2308 atomic_set(&md->pending[1], 0); 2309 init_waitqueue_head(&md->wait); 2310 INIT_WORK(&md->work, dm_wq_work); 2311 init_waitqueue_head(&md->eventq); 2312 init_completion(&md->kobj_holder.completion); 2313 md->kworker_task = NULL; 2314 2315 md->disk->major = _major; 2316 md->disk->first_minor = minor; 2317 md->disk->fops = &dm_blk_dops; 2318 md->disk->queue = md->queue; 2319 md->disk->private_data = md; 2320 sprintf(md->disk->disk_name, "dm-%d", minor); 2321 add_disk(md->disk); 2322 format_dev_t(md->name, MKDEV(_major, minor)); 2323 2324 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2325 if (!md->wq) 2326 goto bad_thread; 2327 2328 md->bdev = bdget_disk(md->disk, 0); 2329 if (!md->bdev) 2330 goto bad_bdev; 2331 2332 bio_init(&md->flush_bio); 2333 md->flush_bio.bi_bdev = md->bdev; 2334 md->flush_bio.bi_rw = WRITE_FLUSH; 2335 2336 dm_stats_init(&md->stats); 2337 2338 /* Populate the mapping, nobody knows we exist yet */ 2339 spin_lock(&_minor_lock); 2340 old_md = idr_replace(&_minor_idr, md, minor); 2341 spin_unlock(&_minor_lock); 2342 2343 BUG_ON(old_md != MINOR_ALLOCED); 2344 2345 return md; 2346 2347bad_bdev: 2348 destroy_workqueue(md->wq); 2349bad_thread: 2350 del_gendisk(md->disk); 2351 put_disk(md->disk); 2352bad_disk: 2353 blk_cleanup_queue(md->queue); 2354bad_queue: 2355 cleanup_srcu_struct(&md->io_barrier); 2356bad_io_barrier: 2357 free_minor(minor); 2358bad_minor: 2359 module_put(THIS_MODULE); 2360bad_module_get: 2361 kfree(md); 2362 return NULL; 2363} 2364 2365static void unlock_fs(struct mapped_device *md); 2366 2367static void free_dev(struct mapped_device *md) 2368{ 2369 int minor = MINOR(disk_devt(md->disk)); 2370 2371 unlock_fs(md); 2372 destroy_workqueue(md->wq); 2373 2374 if (md->kworker_task) 2375 kthread_stop(md->kworker_task); 2376 if (md->io_pool) 2377 mempool_destroy(md->io_pool); 2378 if (md->rq_pool) 2379 mempool_destroy(md->rq_pool); 2380 if (md->bs) 2381 bioset_free(md->bs); 2382 2383 cleanup_srcu_struct(&md->io_barrier); 2384 free_table_devices(&md->table_devices); 2385 dm_stats_cleanup(&md->stats); 2386 2387 spin_lock(&_minor_lock); 2388 md->disk->private_data = NULL; 2389 spin_unlock(&_minor_lock); 2390 if (blk_get_integrity(md->disk)) 2391 blk_integrity_unregister(md->disk); 2392 del_gendisk(md->disk); 2393 put_disk(md->disk); 2394 blk_cleanup_queue(md->queue); 2395 if (md->use_blk_mq) 2396 blk_mq_free_tag_set(&md->tag_set); 2397 bdput(md->bdev); 2398 free_minor(minor); 2399 2400 module_put(THIS_MODULE); 2401 kfree(md); 2402} 2403 2404static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2405{ 2406 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2407 2408 if (md->bs) { 2409 /* The md already has necessary mempools. */ 2410 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2411 /* 2412 * Reload bioset because front_pad may have changed 2413 * because a different table was loaded. 2414 */ 2415 bioset_free(md->bs); 2416 md->bs = p->bs; 2417 p->bs = NULL; 2418 } 2419 /* 2420 * There's no need to reload with request-based dm 2421 * because the size of front_pad doesn't change. 2422 * Note for future: If you are to reload bioset, 2423 * prep-ed requests in the queue may refer 2424 * to bio from the old bioset, so you must walk 2425 * through the queue to unprep. 2426 */ 2427 goto out; 2428 } 2429 2430 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2431 2432 md->io_pool = p->io_pool; 2433 p->io_pool = NULL; 2434 md->rq_pool = p->rq_pool; 2435 p->rq_pool = NULL; 2436 md->bs = p->bs; 2437 p->bs = NULL; 2438 2439out: 2440 /* mempool bind completed, no longer need any mempools in the table */ 2441 dm_table_free_md_mempools(t); 2442} 2443 2444/* 2445 * Bind a table to the device. 2446 */ 2447static void event_callback(void *context) 2448{ 2449 unsigned long flags; 2450 LIST_HEAD(uevents); 2451 struct mapped_device *md = (struct mapped_device *) context; 2452 2453 spin_lock_irqsave(&md->uevent_lock, flags); 2454 list_splice_init(&md->uevent_list, &uevents); 2455 spin_unlock_irqrestore(&md->uevent_lock, flags); 2456 2457 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2458 2459 atomic_inc(&md->event_nr); 2460 wake_up(&md->eventq); 2461} 2462 2463/* 2464 * Protected by md->suspend_lock obtained by dm_swap_table(). 2465 */ 2466static void __set_size(struct mapped_device *md, sector_t size) 2467{ 2468 set_capacity(md->disk, size); 2469 2470 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2471} 2472 2473/* 2474 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2475 * 2476 * If this function returns 0, then the device is either a non-dm 2477 * device without a merge_bvec_fn, or it is a dm device that is 2478 * able to split any bios it receives that are too big. 2479 */ 2480int dm_queue_merge_is_compulsory(struct request_queue *q) 2481{ 2482 struct mapped_device *dev_md; 2483 2484 if (!q->merge_bvec_fn) 2485 return 0; 2486 2487 if (q->make_request_fn == dm_make_request) { 2488 dev_md = q->queuedata; 2489 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2490 return 0; 2491 } 2492 2493 return 1; 2494} 2495 2496static int dm_device_merge_is_compulsory(struct dm_target *ti, 2497 struct dm_dev *dev, sector_t start, 2498 sector_t len, void *data) 2499{ 2500 struct block_device *bdev = dev->bdev; 2501 struct request_queue *q = bdev_get_queue(bdev); 2502 2503 return dm_queue_merge_is_compulsory(q); 2504} 2505 2506/* 2507 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2508 * on the properties of the underlying devices. 2509 */ 2510static int dm_table_merge_is_optional(struct dm_table *table) 2511{ 2512 unsigned i = 0; 2513 struct dm_target *ti; 2514 2515 while (i < dm_table_get_num_targets(table)) { 2516 ti = dm_table_get_target(table, i++); 2517 2518 if (ti->type->iterate_devices && 2519 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2520 return 0; 2521 } 2522 2523 return 1; 2524} 2525 2526/* 2527 * Returns old map, which caller must destroy. 2528 */ 2529static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2530 struct queue_limits *limits) 2531{ 2532 struct dm_table *old_map; 2533 struct request_queue *q = md->queue; 2534 sector_t size; 2535 int merge_is_optional; 2536 2537 size = dm_table_get_size(t); 2538 2539 /* 2540 * Wipe any geometry if the size of the table changed. 2541 */ 2542 if (size != dm_get_size(md)) 2543 memset(&md->geometry, 0, sizeof(md->geometry)); 2544 2545 __set_size(md, size); 2546 2547 dm_table_event_callback(t, event_callback, md); 2548 2549 /* 2550 * The queue hasn't been stopped yet, if the old table type wasn't 2551 * for request-based during suspension. So stop it to prevent 2552 * I/O mapping before resume. 2553 * This must be done before setting the queue restrictions, 2554 * because request-based dm may be run just after the setting. 2555 */ 2556 if (dm_table_request_based(t)) 2557 stop_queue(q); 2558 2559 __bind_mempools(md, t); 2560 2561 merge_is_optional = dm_table_merge_is_optional(t); 2562 2563 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2564 rcu_assign_pointer(md->map, t); 2565 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2566 2567 dm_table_set_restrictions(t, q, limits); 2568 if (merge_is_optional) 2569 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2570 else 2571 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2572 if (old_map) 2573 dm_sync_table(md); 2574 2575 return old_map; 2576} 2577 2578/* 2579 * Returns unbound table for the caller to free. 2580 */ 2581static struct dm_table *__unbind(struct mapped_device *md) 2582{ 2583 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2584 2585 if (!map) 2586 return NULL; 2587 2588 dm_table_event_callback(map, NULL, NULL); 2589 RCU_INIT_POINTER(md->map, NULL); 2590 dm_sync_table(md); 2591 2592 return map; 2593} 2594 2595/* 2596 * Constructor for a new device. 2597 */ 2598int dm_create(int minor, struct mapped_device **result) 2599{ 2600 struct mapped_device *md; 2601 2602 md = alloc_dev(minor); 2603 if (!md) 2604 return -ENXIO; 2605 2606 dm_sysfs_init(md); 2607 2608 *result = md; 2609 return 0; 2610} 2611 2612/* 2613 * Functions to manage md->type. 2614 * All are required to hold md->type_lock. 2615 */ 2616void dm_lock_md_type(struct mapped_device *md) 2617{ 2618 mutex_lock(&md->type_lock); 2619} 2620 2621void dm_unlock_md_type(struct mapped_device *md) 2622{ 2623 mutex_unlock(&md->type_lock); 2624} 2625 2626void dm_set_md_type(struct mapped_device *md, unsigned type) 2627{ 2628 BUG_ON(!mutex_is_locked(&md->type_lock)); 2629 md->type = type; 2630} 2631 2632unsigned dm_get_md_type(struct mapped_device *md) 2633{ 2634 BUG_ON(!mutex_is_locked(&md->type_lock)); 2635 return md->type; 2636} 2637 2638struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2639{ 2640 return md->immutable_target_type; 2641} 2642 2643/* 2644 * The queue_limits are only valid as long as you have a reference 2645 * count on 'md'. 2646 */ 2647struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2648{ 2649 BUG_ON(!atomic_read(&md->holders)); 2650 return &md->queue->limits; 2651} 2652EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2653 2654static void init_rq_based_worker_thread(struct mapped_device *md) 2655{ 2656 /* Initialize the request-based DM worker thread */ 2657 init_kthread_worker(&md->kworker); 2658 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2659 "kdmwork-%s", dm_device_name(md)); 2660} 2661 2662/* 2663 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2664 */ 2665static int dm_init_request_based_queue(struct mapped_device *md) 2666{ 2667 struct request_queue *q = NULL; 2668 2669 /* Fully initialize the queue */ 2670 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2671 if (!q) 2672 return -EINVAL; 2673 2674 /* disable dm_request_fn's merge heuristic by default */ 2675 md->seq_rq_merge_deadline_usecs = 0; 2676 2677 md->queue = q; 2678 dm_init_old_md_queue(md); 2679 blk_queue_softirq_done(md->queue, dm_softirq_done); 2680 blk_queue_prep_rq(md->queue, dm_prep_fn); 2681 2682 init_rq_based_worker_thread(md); 2683 2684 elv_register_queue(md->queue); 2685 2686 return 0; 2687} 2688 2689static int dm_mq_init_request(void *data, struct request *rq, 2690 unsigned int hctx_idx, unsigned int request_idx, 2691 unsigned int numa_node) 2692{ 2693 struct mapped_device *md = data; 2694 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2695 2696 /* 2697 * Must initialize md member of tio, otherwise it won't 2698 * be available in dm_mq_queue_rq. 2699 */ 2700 tio->md = md; 2701 2702 return 0; 2703} 2704 2705static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2706 const struct blk_mq_queue_data *bd) 2707{ 2708 struct request *rq = bd->rq; 2709 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2710 struct mapped_device *md = tio->md; 2711 int srcu_idx; 2712 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2713 struct dm_target *ti; 2714 sector_t pos; 2715 2716 /* always use block 0 to find the target for flushes for now */ 2717 pos = 0; 2718 if (!(rq->cmd_flags & REQ_FLUSH)) 2719 pos = blk_rq_pos(rq); 2720 2721 ti = dm_table_find_target(map, pos); 2722 if (!dm_target_is_valid(ti)) { 2723 dm_put_live_table(md, srcu_idx); 2724 DMERR_LIMIT("request attempted access beyond the end of device"); 2725 /* 2726 * Must perform setup, that rq_completed() requires, 2727 * before returning BLK_MQ_RQ_QUEUE_ERROR 2728 */ 2729 dm_start_request(md, rq); 2730 return BLK_MQ_RQ_QUEUE_ERROR; 2731 } 2732 dm_put_live_table(md, srcu_idx); 2733 2734 if (ti->type->busy && ti->type->busy(ti)) 2735 return BLK_MQ_RQ_QUEUE_BUSY; 2736 2737 dm_start_request(md, rq); 2738 2739 /* Init tio using md established in .init_request */ 2740 init_tio(tio, rq, md); 2741 2742 /* 2743 * Establish tio->ti before queuing work (map_tio_request) 2744 * or making direct call to map_request(). 2745 */ 2746 tio->ti = ti; 2747 2748 /* Clone the request if underlying devices aren't blk-mq */ 2749 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) { 2750 /* clone request is allocated at the end of the pdu */ 2751 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2752 (void) clone_rq(rq, md, tio, GFP_ATOMIC); 2753 queue_kthread_work(&md->kworker, &tio->work); 2754 } else { 2755 /* Direct call is fine since .queue_rq allows allocations */ 2756 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2757 /* Undo dm_start_request() before requeuing */ 2758 rq_completed(md, rq_data_dir(rq), false); 2759 return BLK_MQ_RQ_QUEUE_BUSY; 2760 } 2761 } 2762 2763 return BLK_MQ_RQ_QUEUE_OK; 2764} 2765 2766static struct blk_mq_ops dm_mq_ops = { 2767 .queue_rq = dm_mq_queue_rq, 2768 .map_queue = blk_mq_map_queue, 2769 .complete = dm_softirq_done, 2770 .init_request = dm_mq_init_request, 2771}; 2772 2773static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2774{ 2775 unsigned md_type = dm_get_md_type(md); 2776 struct request_queue *q; 2777 int err; 2778 2779 memset(&md->tag_set, 0, sizeof(md->tag_set)); 2780 md->tag_set.ops = &dm_mq_ops; 2781 md->tag_set.queue_depth = BLKDEV_MAX_RQ; 2782 md->tag_set.numa_node = NUMA_NO_NODE; 2783 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2784 md->tag_set.nr_hw_queues = 1; 2785 if (md_type == DM_TYPE_REQUEST_BASED) { 2786 /* make the memory for non-blk-mq clone part of the pdu */ 2787 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request); 2788 } else 2789 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io); 2790 md->tag_set.driver_data = md; 2791 2792 err = blk_mq_alloc_tag_set(&md->tag_set); 2793 if (err) 2794 return err; 2795 2796 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue); 2797 if (IS_ERR(q)) { 2798 err = PTR_ERR(q); 2799 goto out_tag_set; 2800 } 2801 md->queue = q; 2802 dm_init_md_queue(md); 2803 2804 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2805 blk_mq_register_disk(md->disk); 2806 2807 if (md_type == DM_TYPE_REQUEST_BASED) 2808 init_rq_based_worker_thread(md); 2809 2810 return 0; 2811 2812out_tag_set: 2813 blk_mq_free_tag_set(&md->tag_set); 2814 return err; 2815} 2816 2817static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2818{ 2819 if (type == DM_TYPE_BIO_BASED) 2820 return type; 2821 2822 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2823} 2824 2825/* 2826 * Setup the DM device's queue based on md's type 2827 */ 2828int dm_setup_md_queue(struct mapped_device *md) 2829{ 2830 int r; 2831 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2832 2833 switch (md_type) { 2834 case DM_TYPE_REQUEST_BASED: 2835 r = dm_init_request_based_queue(md); 2836 if (r) { 2837 DMWARN("Cannot initialize queue for request-based mapped device"); 2838 return r; 2839 } 2840 break; 2841 case DM_TYPE_MQ_REQUEST_BASED: 2842 r = dm_init_request_based_blk_mq_queue(md); 2843 if (r) { 2844 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2845 return r; 2846 } 2847 break; 2848 case DM_TYPE_BIO_BASED: 2849 dm_init_old_md_queue(md); 2850 blk_queue_make_request(md->queue, dm_make_request); 2851 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 2852 break; 2853 } 2854 2855 return 0; 2856} 2857 2858struct mapped_device *dm_get_md(dev_t dev) 2859{ 2860 struct mapped_device *md; 2861 unsigned minor = MINOR(dev); 2862 2863 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2864 return NULL; 2865 2866 spin_lock(&_minor_lock); 2867 2868 md = idr_find(&_minor_idr, minor); 2869 if (md) { 2870 if ((md == MINOR_ALLOCED || 2871 (MINOR(disk_devt(dm_disk(md))) != minor) || 2872 dm_deleting_md(md) || 2873 test_bit(DMF_FREEING, &md->flags))) { 2874 md = NULL; 2875 goto out; 2876 } 2877 dm_get(md); 2878 } 2879 2880out: 2881 spin_unlock(&_minor_lock); 2882 2883 return md; 2884} 2885EXPORT_SYMBOL_GPL(dm_get_md); 2886 2887void *dm_get_mdptr(struct mapped_device *md) 2888{ 2889 return md->interface_ptr; 2890} 2891 2892void dm_set_mdptr(struct mapped_device *md, void *ptr) 2893{ 2894 md->interface_ptr = ptr; 2895} 2896 2897void dm_get(struct mapped_device *md) 2898{ 2899 atomic_inc(&md->holders); 2900 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2901} 2902 2903int dm_hold(struct mapped_device *md) 2904{ 2905 spin_lock(&_minor_lock); 2906 if (test_bit(DMF_FREEING, &md->flags)) { 2907 spin_unlock(&_minor_lock); 2908 return -EBUSY; 2909 } 2910 dm_get(md); 2911 spin_unlock(&_minor_lock); 2912 return 0; 2913} 2914EXPORT_SYMBOL_GPL(dm_hold); 2915 2916const char *dm_device_name(struct mapped_device *md) 2917{ 2918 return md->name; 2919} 2920EXPORT_SYMBOL_GPL(dm_device_name); 2921 2922static void __dm_destroy(struct mapped_device *md, bool wait) 2923{ 2924 struct dm_table *map; 2925 int srcu_idx; 2926 2927 might_sleep(); 2928 2929 spin_lock(&_minor_lock); 2930 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2931 set_bit(DMF_FREEING, &md->flags); 2932 spin_unlock(&_minor_lock); 2933 2934 if (dm_request_based(md) && md->kworker_task) 2935 flush_kthread_worker(&md->kworker); 2936 2937 /* 2938 * Take suspend_lock so that presuspend and postsuspend methods 2939 * do not race with internal suspend. 2940 */ 2941 mutex_lock(&md->suspend_lock); 2942 map = dm_get_live_table(md, &srcu_idx); 2943 if (!dm_suspended_md(md)) { 2944 dm_table_presuspend_targets(map); 2945 dm_table_postsuspend_targets(map); 2946 } 2947 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2948 dm_put_live_table(md, srcu_idx); 2949 mutex_unlock(&md->suspend_lock); 2950 2951 /* 2952 * Rare, but there may be I/O requests still going to complete, 2953 * for example. Wait for all references to disappear. 2954 * No one should increment the reference count of the mapped_device, 2955 * after the mapped_device state becomes DMF_FREEING. 2956 */ 2957 if (wait) 2958 while (atomic_read(&md->holders)) 2959 msleep(1); 2960 else if (atomic_read(&md->holders)) 2961 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2962 dm_device_name(md), atomic_read(&md->holders)); 2963 2964 dm_sysfs_exit(md); 2965 dm_table_destroy(__unbind(md)); 2966 free_dev(md); 2967} 2968 2969void dm_destroy(struct mapped_device *md) 2970{ 2971 __dm_destroy(md, true); 2972} 2973 2974void dm_destroy_immediate(struct mapped_device *md) 2975{ 2976 __dm_destroy(md, false); 2977} 2978 2979void dm_put(struct mapped_device *md) 2980{ 2981 atomic_dec(&md->holders); 2982} 2983EXPORT_SYMBOL_GPL(dm_put); 2984 2985static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2986{ 2987 int r = 0; 2988 DECLARE_WAITQUEUE(wait, current); 2989 2990 add_wait_queue(&md->wait, &wait); 2991 2992 while (1) { 2993 set_current_state(interruptible); 2994 2995 if (!md_in_flight(md)) 2996 break; 2997 2998 if (interruptible == TASK_INTERRUPTIBLE && 2999 signal_pending(current)) { 3000 r = -EINTR; 3001 break; 3002 } 3003 3004 io_schedule(); 3005 } 3006 set_current_state(TASK_RUNNING); 3007 3008 remove_wait_queue(&md->wait, &wait); 3009 3010 return r; 3011} 3012 3013/* 3014 * Process the deferred bios 3015 */ 3016static void dm_wq_work(struct work_struct *work) 3017{ 3018 struct mapped_device *md = container_of(work, struct mapped_device, 3019 work); 3020 struct bio *c; 3021 int srcu_idx; 3022 struct dm_table *map; 3023 3024 map = dm_get_live_table(md, &srcu_idx); 3025 3026 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 3027 spin_lock_irq(&md->deferred_lock); 3028 c = bio_list_pop(&md->deferred); 3029 spin_unlock_irq(&md->deferred_lock); 3030 3031 if (!c) 3032 break; 3033 3034 if (dm_request_based(md)) 3035 generic_make_request(c); 3036 else 3037 __split_and_process_bio(md, map, c); 3038 } 3039 3040 dm_put_live_table(md, srcu_idx); 3041} 3042 3043static void dm_queue_flush(struct mapped_device *md) 3044{ 3045 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3046 smp_mb__after_atomic(); 3047 queue_work(md->wq, &md->work); 3048} 3049 3050/* 3051 * Swap in a new table, returning the old one for the caller to destroy. 3052 */ 3053struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 3054{ 3055 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 3056 struct queue_limits limits; 3057 int r; 3058 3059 mutex_lock(&md->suspend_lock); 3060 3061 /* device must be suspended */ 3062 if (!dm_suspended_md(md)) 3063 goto out; 3064 3065 /* 3066 * If the new table has no data devices, retain the existing limits. 3067 * This helps multipath with queue_if_no_path if all paths disappear, 3068 * then new I/O is queued based on these limits, and then some paths 3069 * reappear. 3070 */ 3071 if (dm_table_has_no_data_devices(table)) { 3072 live_map = dm_get_live_table_fast(md); 3073 if (live_map) 3074 limits = md->queue->limits; 3075 dm_put_live_table_fast(md); 3076 } 3077 3078 if (!live_map) { 3079 r = dm_calculate_queue_limits(table, &limits); 3080 if (r) { 3081 map = ERR_PTR(r); 3082 goto out; 3083 } 3084 } 3085 3086 map = __bind(md, table, &limits); 3087 3088out: 3089 mutex_unlock(&md->suspend_lock); 3090 return map; 3091} 3092 3093/* 3094 * Functions to lock and unlock any filesystem running on the 3095 * device. 3096 */ 3097static int lock_fs(struct mapped_device *md) 3098{ 3099 int r; 3100 3101 WARN_ON(md->frozen_sb); 3102 3103 md->frozen_sb = freeze_bdev(md->bdev); 3104 if (IS_ERR(md->frozen_sb)) { 3105 r = PTR_ERR(md->frozen_sb); 3106 md->frozen_sb = NULL; 3107 return r; 3108 } 3109 3110 set_bit(DMF_FROZEN, &md->flags); 3111 3112 return 0; 3113} 3114 3115static void unlock_fs(struct mapped_device *md) 3116{ 3117 if (!test_bit(DMF_FROZEN, &md->flags)) 3118 return; 3119 3120 thaw_bdev(md->bdev, md->frozen_sb); 3121 md->frozen_sb = NULL; 3122 clear_bit(DMF_FROZEN, &md->flags); 3123} 3124 3125/* 3126 * If __dm_suspend returns 0, the device is completely quiescent 3127 * now. There is no request-processing activity. All new requests 3128 * are being added to md->deferred list. 3129 * 3130 * Caller must hold md->suspend_lock 3131 */ 3132static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3133 unsigned suspend_flags, int interruptible) 3134{ 3135 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3136 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3137 int r; 3138 3139 /* 3140 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3141 * This flag is cleared before dm_suspend returns. 3142 */ 3143 if (noflush) 3144 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3145 3146 /* 3147 * This gets reverted if there's an error later and the targets 3148 * provide the .presuspend_undo hook. 3149 */ 3150 dm_table_presuspend_targets(map); 3151 3152 /* 3153 * Flush I/O to the device. 3154 * Any I/O submitted after lock_fs() may not be flushed. 3155 * noflush takes precedence over do_lockfs. 3156 * (lock_fs() flushes I/Os and waits for them to complete.) 3157 */ 3158 if (!noflush && do_lockfs) { 3159 r = lock_fs(md); 3160 if (r) { 3161 dm_table_presuspend_undo_targets(map); 3162 return r; 3163 } 3164 } 3165 3166 /* 3167 * Here we must make sure that no processes are submitting requests 3168 * to target drivers i.e. no one may be executing 3169 * __split_and_process_bio. This is called from dm_request and 3170 * dm_wq_work. 3171 * 3172 * To get all processes out of __split_and_process_bio in dm_request, 3173 * we take the write lock. To prevent any process from reentering 3174 * __split_and_process_bio from dm_request and quiesce the thread 3175 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3176 * flush_workqueue(md->wq). 3177 */ 3178 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3179 if (map) 3180 synchronize_srcu(&md->io_barrier); 3181 3182 /* 3183 * Stop md->queue before flushing md->wq in case request-based 3184 * dm defers requests to md->wq from md->queue. 3185 */ 3186 if (dm_request_based(md)) { 3187 stop_queue(md->queue); 3188 if (md->kworker_task) 3189 flush_kthread_worker(&md->kworker); 3190 } 3191 3192 flush_workqueue(md->wq); 3193 3194 /* 3195 * At this point no more requests are entering target request routines. 3196 * We call dm_wait_for_completion to wait for all existing requests 3197 * to finish. 3198 */ 3199 r = dm_wait_for_completion(md, interruptible); 3200 3201 if (noflush) 3202 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3203 if (map) 3204 synchronize_srcu(&md->io_barrier); 3205 3206 /* were we interrupted ? */ 3207 if (r < 0) { 3208 dm_queue_flush(md); 3209 3210 if (dm_request_based(md)) 3211 start_queue(md->queue); 3212 3213 unlock_fs(md); 3214 dm_table_presuspend_undo_targets(map); 3215 /* pushback list is already flushed, so skip flush */ 3216 } 3217 3218 return r; 3219} 3220 3221/* 3222 * We need to be able to change a mapping table under a mounted 3223 * filesystem. For example we might want to move some data in 3224 * the background. Before the table can be swapped with 3225 * dm_bind_table, dm_suspend must be called to flush any in 3226 * flight bios and ensure that any further io gets deferred. 3227 */ 3228/* 3229 * Suspend mechanism in request-based dm. 3230 * 3231 * 1. Flush all I/Os by lock_fs() if needed. 3232 * 2. Stop dispatching any I/O by stopping the request_queue. 3233 * 3. Wait for all in-flight I/Os to be completed or requeued. 3234 * 3235 * To abort suspend, start the request_queue. 3236 */ 3237int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3238{ 3239 struct dm_table *map = NULL; 3240 int r = 0; 3241 3242retry: 3243 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3244 3245 if (dm_suspended_md(md)) { 3246 r = -EINVAL; 3247 goto out_unlock; 3248 } 3249 3250 if (dm_suspended_internally_md(md)) { 3251 /* already internally suspended, wait for internal resume */ 3252 mutex_unlock(&md->suspend_lock); 3253 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3254 if (r) 3255 return r; 3256 goto retry; 3257 } 3258 3259 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3260 3261 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3262 if (r) 3263 goto out_unlock; 3264 3265 set_bit(DMF_SUSPENDED, &md->flags); 3266 3267 dm_table_postsuspend_targets(map); 3268 3269out_unlock: 3270 mutex_unlock(&md->suspend_lock); 3271 return r; 3272} 3273 3274static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3275{ 3276 if (map) { 3277 int r = dm_table_resume_targets(map); 3278 if (r) 3279 return r; 3280 } 3281 3282 dm_queue_flush(md); 3283 3284 /* 3285 * Flushing deferred I/Os must be done after targets are resumed 3286 * so that mapping of targets can work correctly. 3287 * Request-based dm is queueing the deferred I/Os in its request_queue. 3288 */ 3289 if (dm_request_based(md)) 3290 start_queue(md->queue); 3291 3292 unlock_fs(md); 3293 3294 return 0; 3295} 3296 3297int dm_resume(struct mapped_device *md) 3298{ 3299 int r = -EINVAL; 3300 struct dm_table *map = NULL; 3301 3302retry: 3303 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3304 3305 if (!dm_suspended_md(md)) 3306 goto out; 3307 3308 if (dm_suspended_internally_md(md)) { 3309 /* already internally suspended, wait for internal resume */ 3310 mutex_unlock(&md->suspend_lock); 3311 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3312 if (r) 3313 return r; 3314 goto retry; 3315 } 3316 3317 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3318 if (!map || !dm_table_get_size(map)) 3319 goto out; 3320 3321 r = __dm_resume(md, map); 3322 if (r) 3323 goto out; 3324 3325 clear_bit(DMF_SUSPENDED, &md->flags); 3326 3327 r = 0; 3328out: 3329 mutex_unlock(&md->suspend_lock); 3330 3331 return r; 3332} 3333 3334/* 3335 * Internal suspend/resume works like userspace-driven suspend. It waits 3336 * until all bios finish and prevents issuing new bios to the target drivers. 3337 * It may be used only from the kernel. 3338 */ 3339 3340static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3341{ 3342 struct dm_table *map = NULL; 3343 3344 if (md->internal_suspend_count++) 3345 return; /* nested internal suspend */ 3346 3347 if (dm_suspended_md(md)) { 3348 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3349 return; /* nest suspend */ 3350 } 3351 3352 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3353 3354 /* 3355 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3356 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3357 * would require changing .presuspend to return an error -- avoid this 3358 * until there is a need for more elaborate variants of internal suspend. 3359 */ 3360 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3361 3362 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3363 3364 dm_table_postsuspend_targets(map); 3365} 3366 3367static void __dm_internal_resume(struct mapped_device *md) 3368{ 3369 BUG_ON(!md->internal_suspend_count); 3370 3371 if (--md->internal_suspend_count) 3372 return; /* resume from nested internal suspend */ 3373 3374 if (dm_suspended_md(md)) 3375 goto done; /* resume from nested suspend */ 3376 3377 /* 3378 * NOTE: existing callers don't need to call dm_table_resume_targets 3379 * (which may fail -- so best to avoid it for now by passing NULL map) 3380 */ 3381 (void) __dm_resume(md, NULL); 3382 3383done: 3384 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3385 smp_mb__after_atomic(); 3386 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3387} 3388 3389void dm_internal_suspend_noflush(struct mapped_device *md) 3390{ 3391 mutex_lock(&md->suspend_lock); 3392 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3393 mutex_unlock(&md->suspend_lock); 3394} 3395EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3396 3397void dm_internal_resume(struct mapped_device *md) 3398{ 3399 mutex_lock(&md->suspend_lock); 3400 __dm_internal_resume(md); 3401 mutex_unlock(&md->suspend_lock); 3402} 3403EXPORT_SYMBOL_GPL(dm_internal_resume); 3404 3405/* 3406 * Fast variants of internal suspend/resume hold md->suspend_lock, 3407 * which prevents interaction with userspace-driven suspend. 3408 */ 3409 3410void dm_internal_suspend_fast(struct mapped_device *md) 3411{ 3412 mutex_lock(&md->suspend_lock); 3413 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3414 return; 3415 3416 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3417 synchronize_srcu(&md->io_barrier); 3418 flush_workqueue(md->wq); 3419 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3420} 3421EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3422 3423void dm_internal_resume_fast(struct mapped_device *md) 3424{ 3425 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3426 goto done; 3427 3428 dm_queue_flush(md); 3429 3430done: 3431 mutex_unlock(&md->suspend_lock); 3432} 3433EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3434 3435/*----------------------------------------------------------------- 3436 * Event notification. 3437 *---------------------------------------------------------------*/ 3438int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3439 unsigned cookie) 3440{ 3441 char udev_cookie[DM_COOKIE_LENGTH]; 3442 char *envp[] = { udev_cookie, NULL }; 3443 3444 if (!cookie) 3445 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3446 else { 3447 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3448 DM_COOKIE_ENV_VAR_NAME, cookie); 3449 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3450 action, envp); 3451 } 3452} 3453 3454uint32_t dm_next_uevent_seq(struct mapped_device *md) 3455{ 3456 return atomic_add_return(1, &md->uevent_seq); 3457} 3458 3459uint32_t dm_get_event_nr(struct mapped_device *md) 3460{ 3461 return atomic_read(&md->event_nr); 3462} 3463 3464int dm_wait_event(struct mapped_device *md, int event_nr) 3465{ 3466 return wait_event_interruptible(md->eventq, 3467 (event_nr != atomic_read(&md->event_nr))); 3468} 3469 3470void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3471{ 3472 unsigned long flags; 3473 3474 spin_lock_irqsave(&md->uevent_lock, flags); 3475 list_add(elist, &md->uevent_list); 3476 spin_unlock_irqrestore(&md->uevent_lock, flags); 3477} 3478 3479/* 3480 * The gendisk is only valid as long as you have a reference 3481 * count on 'md'. 3482 */ 3483struct gendisk *dm_disk(struct mapped_device *md) 3484{ 3485 return md->disk; 3486} 3487EXPORT_SYMBOL_GPL(dm_disk); 3488 3489struct kobject *dm_kobject(struct mapped_device *md) 3490{ 3491 return &md->kobj_holder.kobj; 3492} 3493 3494struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3495{ 3496 struct mapped_device *md; 3497 3498 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3499 3500 if (test_bit(DMF_FREEING, &md->flags) || 3501 dm_deleting_md(md)) 3502 return NULL; 3503 3504 dm_get(md); 3505 return md; 3506} 3507 3508int dm_suspended_md(struct mapped_device *md) 3509{ 3510 return test_bit(DMF_SUSPENDED, &md->flags); 3511} 3512 3513int dm_suspended_internally_md(struct mapped_device *md) 3514{ 3515 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3516} 3517 3518int dm_test_deferred_remove_flag(struct mapped_device *md) 3519{ 3520 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3521} 3522 3523int dm_suspended(struct dm_target *ti) 3524{ 3525 return dm_suspended_md(dm_table_get_md(ti->table)); 3526} 3527EXPORT_SYMBOL_GPL(dm_suspended); 3528 3529int dm_noflush_suspending(struct dm_target *ti) 3530{ 3531 return __noflush_suspending(dm_table_get_md(ti->table)); 3532} 3533EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3534 3535struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3536 unsigned integrity, unsigned per_bio_data_size) 3537{ 3538 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3539 struct kmem_cache *cachep = NULL; 3540 unsigned int pool_size = 0; 3541 unsigned int front_pad; 3542 3543 if (!pools) 3544 return NULL; 3545 3546 type = filter_md_type(type, md); 3547 3548 switch (type) { 3549 case DM_TYPE_BIO_BASED: 3550 cachep = _io_cache; 3551 pool_size = dm_get_reserved_bio_based_ios(); 3552 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3553 break; 3554 case DM_TYPE_REQUEST_BASED: 3555 cachep = _rq_tio_cache; 3556 pool_size = dm_get_reserved_rq_based_ios(); 3557 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3558 if (!pools->rq_pool) 3559 goto out; 3560 /* fall through to setup remaining rq-based pools */ 3561 case DM_TYPE_MQ_REQUEST_BASED: 3562 if (!pool_size) 3563 pool_size = dm_get_reserved_rq_based_ios(); 3564 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3565 /* per_bio_data_size is not used. See __bind_mempools(). */ 3566 WARN_ON(per_bio_data_size != 0); 3567 break; 3568 default: 3569 BUG(); 3570 } 3571 3572 if (cachep) { 3573 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3574 if (!pools->io_pool) 3575 goto out; 3576 } 3577 3578 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3579 if (!pools->bs) 3580 goto out; 3581 3582 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3583 goto out; 3584 3585 return pools; 3586 3587out: 3588 dm_free_md_mempools(pools); 3589 3590 return NULL; 3591} 3592 3593void dm_free_md_mempools(struct dm_md_mempools *pools) 3594{ 3595 if (!pools) 3596 return; 3597 3598 if (pools->io_pool) 3599 mempool_destroy(pools->io_pool); 3600 3601 if (pools->rq_pool) 3602 mempool_destroy(pools->rq_pool); 3603 3604 if (pools->bs) 3605 bioset_free(pools->bs); 3606 3607 kfree(pools); 3608} 3609 3610static const struct block_device_operations dm_blk_dops = { 3611 .open = dm_blk_open, 3612 .release = dm_blk_close, 3613 .ioctl = dm_blk_ioctl, 3614 .getgeo = dm_blk_getgeo, 3615 .owner = THIS_MODULE 3616}; 3617 3618/* 3619 * module hooks 3620 */ 3621module_init(dm_init); 3622module_exit(dm_exit); 3623 3624module_param(major, uint, 0); 3625MODULE_PARM_DESC(major, "The major number of the device mapper"); 3626 3627module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3628MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3629 3630module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3631MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3632 3633module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3634MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3635 3636MODULE_DESCRIPTION(DM_NAME " driver"); 3637MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3638MODULE_LICENSE("GPL"); 3639