1/* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7#include "dm-thin-metadata.h" 8#include "dm-bio-prison.h" 9#include "dm.h" 10 11#include <linux/device-mapper.h> 12#include <linux/dm-io.h> 13#include <linux/dm-kcopyd.h> 14#include <linux/jiffies.h> 15#include <linux/log2.h> 16#include <linux/list.h> 17#include <linux/rculist.h> 18#include <linux/init.h> 19#include <linux/module.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/sort.h> 23#include <linux/rbtree.h> 24 25#define DM_MSG_PREFIX "thin" 26 27/* 28 * Tunable constants 29 */ 30#define ENDIO_HOOK_POOL_SIZE 1024 31#define MAPPING_POOL_SIZE 1024 32#define COMMIT_PERIOD HZ 33#define NO_SPACE_TIMEOUT_SECS 60 34 35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40/* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47/* 48 * Device id is restricted to 24 bits. 49 */ 50#define MAX_DEV_ID ((1 << 24) - 1) 51 52/* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110/*----------------------------------------------------------------*/ 111 112/* 113 * Key building. 114 */ 115static void build_data_key(struct dm_thin_device *td, 116 dm_block_t b, struct dm_cell_key *key) 117{ 118 key->virtual = 0; 119 key->dev = dm_thin_dev_id(td); 120 key->block_begin = b; 121 key->block_end = b + 1ULL; 122} 123 124static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 125 struct dm_cell_key *key) 126{ 127 key->virtual = 1; 128 key->dev = dm_thin_dev_id(td); 129 key->block_begin = b; 130 key->block_end = b + 1ULL; 131} 132 133/*----------------------------------------------------------------*/ 134 135#define THROTTLE_THRESHOLD (1 * HZ) 136 137struct throttle { 138 struct rw_semaphore lock; 139 unsigned long threshold; 140 bool throttle_applied; 141}; 142 143static void throttle_init(struct throttle *t) 144{ 145 init_rwsem(&t->lock); 146 t->throttle_applied = false; 147} 148 149static void throttle_work_start(struct throttle *t) 150{ 151 t->threshold = jiffies + THROTTLE_THRESHOLD; 152} 153 154static void throttle_work_update(struct throttle *t) 155{ 156 if (!t->throttle_applied && jiffies > t->threshold) { 157 down_write(&t->lock); 158 t->throttle_applied = true; 159 } 160} 161 162static void throttle_work_complete(struct throttle *t) 163{ 164 if (t->throttle_applied) { 165 t->throttle_applied = false; 166 up_write(&t->lock); 167 } 168} 169 170static void throttle_lock(struct throttle *t) 171{ 172 down_read(&t->lock); 173} 174 175static void throttle_unlock(struct throttle *t) 176{ 177 up_read(&t->lock); 178} 179 180/*----------------------------------------------------------------*/ 181 182/* 183 * A pool device ties together a metadata device and a data device. It 184 * also provides the interface for creating and destroying internal 185 * devices. 186 */ 187struct dm_thin_new_mapping; 188 189/* 190 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 191 */ 192enum pool_mode { 193 PM_WRITE, /* metadata may be changed */ 194 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 195 PM_READ_ONLY, /* metadata may not be changed */ 196 PM_FAIL, /* all I/O fails */ 197}; 198 199struct pool_features { 200 enum pool_mode mode; 201 202 bool zero_new_blocks:1; 203 bool discard_enabled:1; 204 bool discard_passdown:1; 205 bool error_if_no_space:1; 206}; 207 208struct thin_c; 209typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 210typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 211typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 212 213#define CELL_SORT_ARRAY_SIZE 8192 214 215struct pool { 216 struct list_head list; 217 struct dm_target *ti; /* Only set if a pool target is bound */ 218 219 struct mapped_device *pool_md; 220 struct block_device *md_dev; 221 struct dm_pool_metadata *pmd; 222 223 dm_block_t low_water_blocks; 224 uint32_t sectors_per_block; 225 int sectors_per_block_shift; 226 227 struct pool_features pf; 228 bool low_water_triggered:1; /* A dm event has been sent */ 229 bool suspended:1; 230 231 struct dm_bio_prison *prison; 232 struct dm_kcopyd_client *copier; 233 234 struct workqueue_struct *wq; 235 struct throttle throttle; 236 struct work_struct worker; 237 struct delayed_work waker; 238 struct delayed_work no_space_timeout; 239 240 unsigned long last_commit_jiffies; 241 unsigned ref_count; 242 243 spinlock_t lock; 244 struct bio_list deferred_flush_bios; 245 struct list_head prepared_mappings; 246 struct list_head prepared_discards; 247 struct list_head active_thins; 248 249 struct dm_deferred_set *shared_read_ds; 250 struct dm_deferred_set *all_io_ds; 251 252 struct dm_thin_new_mapping *next_mapping; 253 mempool_t *mapping_pool; 254 255 process_bio_fn process_bio; 256 process_bio_fn process_discard; 257 258 process_cell_fn process_cell; 259 process_cell_fn process_discard_cell; 260 261 process_mapping_fn process_prepared_mapping; 262 process_mapping_fn process_prepared_discard; 263 264 struct dm_bio_prison_cell **cell_sort_array; 265}; 266 267static enum pool_mode get_pool_mode(struct pool *pool); 268static void metadata_operation_failed(struct pool *pool, const char *op, int r); 269 270/* 271 * Target context for a pool. 272 */ 273struct pool_c { 274 struct dm_target *ti; 275 struct pool *pool; 276 struct dm_dev *data_dev; 277 struct dm_dev *metadata_dev; 278 struct dm_target_callbacks callbacks; 279 280 dm_block_t low_water_blocks; 281 struct pool_features requested_pf; /* Features requested during table load */ 282 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 283}; 284 285/* 286 * Target context for a thin. 287 */ 288struct thin_c { 289 struct list_head list; 290 struct dm_dev *pool_dev; 291 struct dm_dev *origin_dev; 292 sector_t origin_size; 293 dm_thin_id dev_id; 294 295 struct pool *pool; 296 struct dm_thin_device *td; 297 struct mapped_device *thin_md; 298 299 bool requeue_mode:1; 300 spinlock_t lock; 301 struct list_head deferred_cells; 302 struct bio_list deferred_bio_list; 303 struct bio_list retry_on_resume_list; 304 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 305 306 /* 307 * Ensures the thin is not destroyed until the worker has finished 308 * iterating the active_thins list. 309 */ 310 atomic_t refcount; 311 struct completion can_destroy; 312}; 313 314/*----------------------------------------------------------------*/ 315 316/* 317 * wake_worker() is used when new work is queued and when pool_resume is 318 * ready to continue deferred IO processing. 319 */ 320static void wake_worker(struct pool *pool) 321{ 322 queue_work(pool->wq, &pool->worker); 323} 324 325/*----------------------------------------------------------------*/ 326 327static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 328 struct dm_bio_prison_cell **cell_result) 329{ 330 int r; 331 struct dm_bio_prison_cell *cell_prealloc; 332 333 /* 334 * Allocate a cell from the prison's mempool. 335 * This might block but it can't fail. 336 */ 337 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 338 339 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 340 if (r) 341 /* 342 * We reused an old cell; we can get rid of 343 * the new one. 344 */ 345 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 346 347 return r; 348} 349 350static void cell_release(struct pool *pool, 351 struct dm_bio_prison_cell *cell, 352 struct bio_list *bios) 353{ 354 dm_cell_release(pool->prison, cell, bios); 355 dm_bio_prison_free_cell(pool->prison, cell); 356} 357 358static void cell_visit_release(struct pool *pool, 359 void (*fn)(void *, struct dm_bio_prison_cell *), 360 void *context, 361 struct dm_bio_prison_cell *cell) 362{ 363 dm_cell_visit_release(pool->prison, fn, context, cell); 364 dm_bio_prison_free_cell(pool->prison, cell); 365} 366 367static void cell_release_no_holder(struct pool *pool, 368 struct dm_bio_prison_cell *cell, 369 struct bio_list *bios) 370{ 371 dm_cell_release_no_holder(pool->prison, cell, bios); 372 dm_bio_prison_free_cell(pool->prison, cell); 373} 374 375static void cell_error_with_code(struct pool *pool, 376 struct dm_bio_prison_cell *cell, int error_code) 377{ 378 dm_cell_error(pool->prison, cell, error_code); 379 dm_bio_prison_free_cell(pool->prison, cell); 380} 381 382static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 383{ 384 cell_error_with_code(pool, cell, -EIO); 385} 386 387static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 388{ 389 cell_error_with_code(pool, cell, 0); 390} 391 392static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 393{ 394 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 395} 396 397/*----------------------------------------------------------------*/ 398 399/* 400 * A global list of pools that uses a struct mapped_device as a key. 401 */ 402static struct dm_thin_pool_table { 403 struct mutex mutex; 404 struct list_head pools; 405} dm_thin_pool_table; 406 407static void pool_table_init(void) 408{ 409 mutex_init(&dm_thin_pool_table.mutex); 410 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 411} 412 413static void __pool_table_insert(struct pool *pool) 414{ 415 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 416 list_add(&pool->list, &dm_thin_pool_table.pools); 417} 418 419static void __pool_table_remove(struct pool *pool) 420{ 421 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 422 list_del(&pool->list); 423} 424 425static struct pool *__pool_table_lookup(struct mapped_device *md) 426{ 427 struct pool *pool = NULL, *tmp; 428 429 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 430 431 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 432 if (tmp->pool_md == md) { 433 pool = tmp; 434 break; 435 } 436 } 437 438 return pool; 439} 440 441static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 442{ 443 struct pool *pool = NULL, *tmp; 444 445 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 446 447 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 448 if (tmp->md_dev == md_dev) { 449 pool = tmp; 450 break; 451 } 452 } 453 454 return pool; 455} 456 457/*----------------------------------------------------------------*/ 458 459struct dm_thin_endio_hook { 460 struct thin_c *tc; 461 struct dm_deferred_entry *shared_read_entry; 462 struct dm_deferred_entry *all_io_entry; 463 struct dm_thin_new_mapping *overwrite_mapping; 464 struct rb_node rb_node; 465}; 466 467static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 468{ 469 bio_list_merge(bios, master); 470 bio_list_init(master); 471} 472 473static void error_bio_list(struct bio_list *bios, int error) 474{ 475 struct bio *bio; 476 477 while ((bio = bio_list_pop(bios))) 478 bio_endio(bio, error); 479} 480 481static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 482{ 483 struct bio_list bios; 484 unsigned long flags; 485 486 bio_list_init(&bios); 487 488 spin_lock_irqsave(&tc->lock, flags); 489 __merge_bio_list(&bios, master); 490 spin_unlock_irqrestore(&tc->lock, flags); 491 492 error_bio_list(&bios, error); 493} 494 495static void requeue_deferred_cells(struct thin_c *tc) 496{ 497 struct pool *pool = tc->pool; 498 unsigned long flags; 499 struct list_head cells; 500 struct dm_bio_prison_cell *cell, *tmp; 501 502 INIT_LIST_HEAD(&cells); 503 504 spin_lock_irqsave(&tc->lock, flags); 505 list_splice_init(&tc->deferred_cells, &cells); 506 spin_unlock_irqrestore(&tc->lock, flags); 507 508 list_for_each_entry_safe(cell, tmp, &cells, user_list) 509 cell_requeue(pool, cell); 510} 511 512static void requeue_io(struct thin_c *tc) 513{ 514 struct bio_list bios; 515 unsigned long flags; 516 517 bio_list_init(&bios); 518 519 spin_lock_irqsave(&tc->lock, flags); 520 __merge_bio_list(&bios, &tc->deferred_bio_list); 521 __merge_bio_list(&bios, &tc->retry_on_resume_list); 522 spin_unlock_irqrestore(&tc->lock, flags); 523 524 error_bio_list(&bios, DM_ENDIO_REQUEUE); 525 requeue_deferred_cells(tc); 526} 527 528static void error_retry_list(struct pool *pool) 529{ 530 struct thin_c *tc; 531 532 rcu_read_lock(); 533 list_for_each_entry_rcu(tc, &pool->active_thins, list) 534 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO); 535 rcu_read_unlock(); 536} 537 538/* 539 * This section of code contains the logic for processing a thin device's IO. 540 * Much of the code depends on pool object resources (lists, workqueues, etc) 541 * but most is exclusively called from the thin target rather than the thin-pool 542 * target. 543 */ 544 545static bool block_size_is_power_of_two(struct pool *pool) 546{ 547 return pool->sectors_per_block_shift >= 0; 548} 549 550static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 551{ 552 struct pool *pool = tc->pool; 553 sector_t block_nr = bio->bi_iter.bi_sector; 554 555 if (block_size_is_power_of_two(pool)) 556 block_nr >>= pool->sectors_per_block_shift; 557 else 558 (void) sector_div(block_nr, pool->sectors_per_block); 559 560 return block_nr; 561} 562 563static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 564{ 565 struct pool *pool = tc->pool; 566 sector_t bi_sector = bio->bi_iter.bi_sector; 567 568 bio->bi_bdev = tc->pool_dev->bdev; 569 if (block_size_is_power_of_two(pool)) 570 bio->bi_iter.bi_sector = 571 (block << pool->sectors_per_block_shift) | 572 (bi_sector & (pool->sectors_per_block - 1)); 573 else 574 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 575 sector_div(bi_sector, pool->sectors_per_block); 576} 577 578static void remap_to_origin(struct thin_c *tc, struct bio *bio) 579{ 580 bio->bi_bdev = tc->origin_dev->bdev; 581} 582 583static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 584{ 585 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 586 dm_thin_changed_this_transaction(tc->td); 587} 588 589static void inc_all_io_entry(struct pool *pool, struct bio *bio) 590{ 591 struct dm_thin_endio_hook *h; 592 593 if (bio->bi_rw & REQ_DISCARD) 594 return; 595 596 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 597 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 598} 599 600static void issue(struct thin_c *tc, struct bio *bio) 601{ 602 struct pool *pool = tc->pool; 603 unsigned long flags; 604 605 if (!bio_triggers_commit(tc, bio)) { 606 generic_make_request(bio); 607 return; 608 } 609 610 /* 611 * Complete bio with an error if earlier I/O caused changes to 612 * the metadata that can't be committed e.g, due to I/O errors 613 * on the metadata device. 614 */ 615 if (dm_thin_aborted_changes(tc->td)) { 616 bio_io_error(bio); 617 return; 618 } 619 620 /* 621 * Batch together any bios that trigger commits and then issue a 622 * single commit for them in process_deferred_bios(). 623 */ 624 spin_lock_irqsave(&pool->lock, flags); 625 bio_list_add(&pool->deferred_flush_bios, bio); 626 spin_unlock_irqrestore(&pool->lock, flags); 627} 628 629static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 630{ 631 remap_to_origin(tc, bio); 632 issue(tc, bio); 633} 634 635static void remap_and_issue(struct thin_c *tc, struct bio *bio, 636 dm_block_t block) 637{ 638 remap(tc, bio, block); 639 issue(tc, bio); 640} 641 642/*----------------------------------------------------------------*/ 643 644/* 645 * Bio endio functions. 646 */ 647struct dm_thin_new_mapping { 648 struct list_head list; 649 650 bool pass_discard:1; 651 bool definitely_not_shared:1; 652 653 /* 654 * Track quiescing, copying and zeroing preparation actions. When this 655 * counter hits zero the block is prepared and can be inserted into the 656 * btree. 657 */ 658 atomic_t prepare_actions; 659 660 int err; 661 struct thin_c *tc; 662 dm_block_t virt_block; 663 dm_block_t data_block; 664 struct dm_bio_prison_cell *cell, *cell2; 665 666 /* 667 * If the bio covers the whole area of a block then we can avoid 668 * zeroing or copying. Instead this bio is hooked. The bio will 669 * still be in the cell, so care has to be taken to avoid issuing 670 * the bio twice. 671 */ 672 struct bio *bio; 673 bio_end_io_t *saved_bi_end_io; 674}; 675 676static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 677{ 678 struct pool *pool = m->tc->pool; 679 680 if (atomic_dec_and_test(&m->prepare_actions)) { 681 list_add_tail(&m->list, &pool->prepared_mappings); 682 wake_worker(pool); 683 } 684} 685 686static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 687{ 688 unsigned long flags; 689 struct pool *pool = m->tc->pool; 690 691 spin_lock_irqsave(&pool->lock, flags); 692 __complete_mapping_preparation(m); 693 spin_unlock_irqrestore(&pool->lock, flags); 694} 695 696static void copy_complete(int read_err, unsigned long write_err, void *context) 697{ 698 struct dm_thin_new_mapping *m = context; 699 700 m->err = read_err || write_err ? -EIO : 0; 701 complete_mapping_preparation(m); 702} 703 704static void overwrite_endio(struct bio *bio, int err) 705{ 706 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 707 struct dm_thin_new_mapping *m = h->overwrite_mapping; 708 709 m->err = err; 710 complete_mapping_preparation(m); 711} 712 713/*----------------------------------------------------------------*/ 714 715/* 716 * Workqueue. 717 */ 718 719/* 720 * Prepared mapping jobs. 721 */ 722 723/* 724 * This sends the bios in the cell, except the original holder, back 725 * to the deferred_bios list. 726 */ 727static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 728{ 729 struct pool *pool = tc->pool; 730 unsigned long flags; 731 732 spin_lock_irqsave(&tc->lock, flags); 733 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 734 spin_unlock_irqrestore(&tc->lock, flags); 735 736 wake_worker(pool); 737} 738 739static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 740 741struct remap_info { 742 struct thin_c *tc; 743 struct bio_list defer_bios; 744 struct bio_list issue_bios; 745}; 746 747static void __inc_remap_and_issue_cell(void *context, 748 struct dm_bio_prison_cell *cell) 749{ 750 struct remap_info *info = context; 751 struct bio *bio; 752 753 while ((bio = bio_list_pop(&cell->bios))) { 754 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) 755 bio_list_add(&info->defer_bios, bio); 756 else { 757 inc_all_io_entry(info->tc->pool, bio); 758 759 /* 760 * We can't issue the bios with the bio prison lock 761 * held, so we add them to a list to issue on 762 * return from this function. 763 */ 764 bio_list_add(&info->issue_bios, bio); 765 } 766 } 767} 768 769static void inc_remap_and_issue_cell(struct thin_c *tc, 770 struct dm_bio_prison_cell *cell, 771 dm_block_t block) 772{ 773 struct bio *bio; 774 struct remap_info info; 775 776 info.tc = tc; 777 bio_list_init(&info.defer_bios); 778 bio_list_init(&info.issue_bios); 779 780 /* 781 * We have to be careful to inc any bios we're about to issue 782 * before the cell is released, and avoid a race with new bios 783 * being added to the cell. 784 */ 785 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 786 &info, cell); 787 788 while ((bio = bio_list_pop(&info.defer_bios))) 789 thin_defer_bio(tc, bio); 790 791 while ((bio = bio_list_pop(&info.issue_bios))) 792 remap_and_issue(info.tc, bio, block); 793} 794 795static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 796{ 797 if (m->bio) { 798 m->bio->bi_end_io = m->saved_bi_end_io; 799 atomic_inc(&m->bio->bi_remaining); 800 } 801 cell_error(m->tc->pool, m->cell); 802 list_del(&m->list); 803 mempool_free(m, m->tc->pool->mapping_pool); 804} 805 806static void process_prepared_mapping(struct dm_thin_new_mapping *m) 807{ 808 struct thin_c *tc = m->tc; 809 struct pool *pool = tc->pool; 810 struct bio *bio; 811 int r; 812 813 bio = m->bio; 814 if (bio) { 815 bio->bi_end_io = m->saved_bi_end_io; 816 atomic_inc(&bio->bi_remaining); 817 } 818 819 if (m->err) { 820 cell_error(pool, m->cell); 821 goto out; 822 } 823 824 /* 825 * Commit the prepared block into the mapping btree. 826 * Any I/O for this block arriving after this point will get 827 * remapped to it directly. 828 */ 829 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 830 if (r) { 831 metadata_operation_failed(pool, "dm_thin_insert_block", r); 832 cell_error(pool, m->cell); 833 goto out; 834 } 835 836 /* 837 * Release any bios held while the block was being provisioned. 838 * If we are processing a write bio that completely covers the block, 839 * we already processed it so can ignore it now when processing 840 * the bios in the cell. 841 */ 842 if (bio) { 843 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 844 bio_endio(bio, 0); 845 } else { 846 inc_all_io_entry(tc->pool, m->cell->holder); 847 remap_and_issue(tc, m->cell->holder, m->data_block); 848 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 849 } 850 851out: 852 list_del(&m->list); 853 mempool_free(m, pool->mapping_pool); 854} 855 856static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 857{ 858 struct thin_c *tc = m->tc; 859 860 bio_io_error(m->bio); 861 cell_defer_no_holder(tc, m->cell); 862 cell_defer_no_holder(tc, m->cell2); 863 mempool_free(m, tc->pool->mapping_pool); 864} 865 866static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 867{ 868 struct thin_c *tc = m->tc; 869 870 inc_all_io_entry(tc->pool, m->bio); 871 cell_defer_no_holder(tc, m->cell); 872 cell_defer_no_holder(tc, m->cell2); 873 874 if (m->pass_discard) 875 if (m->definitely_not_shared) 876 remap_and_issue(tc, m->bio, m->data_block); 877 else { 878 bool used = false; 879 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 880 bio_endio(m->bio, 0); 881 else 882 remap_and_issue(tc, m->bio, m->data_block); 883 } 884 else 885 bio_endio(m->bio, 0); 886 887 mempool_free(m, tc->pool->mapping_pool); 888} 889 890static void process_prepared_discard(struct dm_thin_new_mapping *m) 891{ 892 int r; 893 struct thin_c *tc = m->tc; 894 895 r = dm_thin_remove_block(tc->td, m->virt_block); 896 if (r) 897 DMERR_LIMIT("dm_thin_remove_block() failed"); 898 899 process_prepared_discard_passdown(m); 900} 901 902static void process_prepared(struct pool *pool, struct list_head *head, 903 process_mapping_fn *fn) 904{ 905 unsigned long flags; 906 struct list_head maps; 907 struct dm_thin_new_mapping *m, *tmp; 908 909 INIT_LIST_HEAD(&maps); 910 spin_lock_irqsave(&pool->lock, flags); 911 list_splice_init(head, &maps); 912 spin_unlock_irqrestore(&pool->lock, flags); 913 914 list_for_each_entry_safe(m, tmp, &maps, list) 915 (*fn)(m); 916} 917 918/* 919 * Deferred bio jobs. 920 */ 921static int io_overlaps_block(struct pool *pool, struct bio *bio) 922{ 923 return bio->bi_iter.bi_size == 924 (pool->sectors_per_block << SECTOR_SHIFT); 925} 926 927static int io_overwrites_block(struct pool *pool, struct bio *bio) 928{ 929 return (bio_data_dir(bio) == WRITE) && 930 io_overlaps_block(pool, bio); 931} 932 933static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 934 bio_end_io_t *fn) 935{ 936 *save = bio->bi_end_io; 937 bio->bi_end_io = fn; 938} 939 940static int ensure_next_mapping(struct pool *pool) 941{ 942 if (pool->next_mapping) 943 return 0; 944 945 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 946 947 return pool->next_mapping ? 0 : -ENOMEM; 948} 949 950static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 951{ 952 struct dm_thin_new_mapping *m = pool->next_mapping; 953 954 BUG_ON(!pool->next_mapping); 955 956 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 957 INIT_LIST_HEAD(&m->list); 958 m->bio = NULL; 959 960 pool->next_mapping = NULL; 961 962 return m; 963} 964 965static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 966 sector_t begin, sector_t end) 967{ 968 int r; 969 struct dm_io_region to; 970 971 to.bdev = tc->pool_dev->bdev; 972 to.sector = begin; 973 to.count = end - begin; 974 975 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 976 if (r < 0) { 977 DMERR_LIMIT("dm_kcopyd_zero() failed"); 978 copy_complete(1, 1, m); 979 } 980} 981 982static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 983 dm_block_t data_block, 984 struct dm_thin_new_mapping *m) 985{ 986 struct pool *pool = tc->pool; 987 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 988 989 h->overwrite_mapping = m; 990 m->bio = bio; 991 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 992 inc_all_io_entry(pool, bio); 993 remap_and_issue(tc, bio, data_block); 994} 995 996/* 997 * A partial copy also needs to zero the uncopied region. 998 */ 999static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1000 struct dm_dev *origin, dm_block_t data_origin, 1001 dm_block_t data_dest, 1002 struct dm_bio_prison_cell *cell, struct bio *bio, 1003 sector_t len) 1004{ 1005 int r; 1006 struct pool *pool = tc->pool; 1007 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1008 1009 m->tc = tc; 1010 m->virt_block = virt_block; 1011 m->data_block = data_dest; 1012 m->cell = cell; 1013 1014 /* 1015 * quiesce action + copy action + an extra reference held for the 1016 * duration of this function (we may need to inc later for a 1017 * partial zero). 1018 */ 1019 atomic_set(&m->prepare_actions, 3); 1020 1021 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1022 complete_mapping_preparation(m); /* already quiesced */ 1023 1024 /* 1025 * IO to pool_dev remaps to the pool target's data_dev. 1026 * 1027 * If the whole block of data is being overwritten, we can issue the 1028 * bio immediately. Otherwise we use kcopyd to clone the data first. 1029 */ 1030 if (io_overwrites_block(pool, bio)) 1031 remap_and_issue_overwrite(tc, bio, data_dest, m); 1032 else { 1033 struct dm_io_region from, to; 1034 1035 from.bdev = origin->bdev; 1036 from.sector = data_origin * pool->sectors_per_block; 1037 from.count = len; 1038 1039 to.bdev = tc->pool_dev->bdev; 1040 to.sector = data_dest * pool->sectors_per_block; 1041 to.count = len; 1042 1043 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1044 0, copy_complete, m); 1045 if (r < 0) { 1046 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1047 copy_complete(1, 1, m); 1048 1049 /* 1050 * We allow the zero to be issued, to simplify the 1051 * error path. Otherwise we'd need to start 1052 * worrying about decrementing the prepare_actions 1053 * counter. 1054 */ 1055 } 1056 1057 /* 1058 * Do we need to zero a tail region? 1059 */ 1060 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1061 atomic_inc(&m->prepare_actions); 1062 ll_zero(tc, m, 1063 data_dest * pool->sectors_per_block + len, 1064 (data_dest + 1) * pool->sectors_per_block); 1065 } 1066 } 1067 1068 complete_mapping_preparation(m); /* drop our ref */ 1069} 1070 1071static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1072 dm_block_t data_origin, dm_block_t data_dest, 1073 struct dm_bio_prison_cell *cell, struct bio *bio) 1074{ 1075 schedule_copy(tc, virt_block, tc->pool_dev, 1076 data_origin, data_dest, cell, bio, 1077 tc->pool->sectors_per_block); 1078} 1079 1080static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1081 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1082 struct bio *bio) 1083{ 1084 struct pool *pool = tc->pool; 1085 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1086 1087 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1088 m->tc = tc; 1089 m->virt_block = virt_block; 1090 m->data_block = data_block; 1091 m->cell = cell; 1092 1093 /* 1094 * If the whole block of data is being overwritten or we are not 1095 * zeroing pre-existing data, we can issue the bio immediately. 1096 * Otherwise we use kcopyd to zero the data first. 1097 */ 1098 if (!pool->pf.zero_new_blocks) 1099 process_prepared_mapping(m); 1100 1101 else if (io_overwrites_block(pool, bio)) 1102 remap_and_issue_overwrite(tc, bio, data_block, m); 1103 1104 else 1105 ll_zero(tc, m, 1106 data_block * pool->sectors_per_block, 1107 (data_block + 1) * pool->sectors_per_block); 1108} 1109 1110static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1111 dm_block_t data_dest, 1112 struct dm_bio_prison_cell *cell, struct bio *bio) 1113{ 1114 struct pool *pool = tc->pool; 1115 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1116 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1117 1118 if (virt_block_end <= tc->origin_size) 1119 schedule_copy(tc, virt_block, tc->origin_dev, 1120 virt_block, data_dest, cell, bio, 1121 pool->sectors_per_block); 1122 1123 else if (virt_block_begin < tc->origin_size) 1124 schedule_copy(tc, virt_block, tc->origin_dev, 1125 virt_block, data_dest, cell, bio, 1126 tc->origin_size - virt_block_begin); 1127 1128 else 1129 schedule_zero(tc, virt_block, data_dest, cell, bio); 1130} 1131 1132static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1133 1134static void check_for_space(struct pool *pool) 1135{ 1136 int r; 1137 dm_block_t nr_free; 1138 1139 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1140 return; 1141 1142 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1143 if (r) 1144 return; 1145 1146 if (nr_free) 1147 set_pool_mode(pool, PM_WRITE); 1148} 1149 1150/* 1151 * A non-zero return indicates read_only or fail_io mode. 1152 * Many callers don't care about the return value. 1153 */ 1154static int commit(struct pool *pool) 1155{ 1156 int r; 1157 1158 if (get_pool_mode(pool) >= PM_READ_ONLY) 1159 return -EINVAL; 1160 1161 r = dm_pool_commit_metadata(pool->pmd); 1162 if (r) 1163 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1164 else 1165 check_for_space(pool); 1166 1167 return r; 1168} 1169 1170static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1171{ 1172 unsigned long flags; 1173 1174 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1175 DMWARN("%s: reached low water mark for data device: sending event.", 1176 dm_device_name(pool->pool_md)); 1177 spin_lock_irqsave(&pool->lock, flags); 1178 pool->low_water_triggered = true; 1179 spin_unlock_irqrestore(&pool->lock, flags); 1180 dm_table_event(pool->ti->table); 1181 } 1182} 1183 1184static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1185{ 1186 int r; 1187 dm_block_t free_blocks; 1188 struct pool *pool = tc->pool; 1189 1190 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1191 return -EINVAL; 1192 1193 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1194 if (r) { 1195 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1196 return r; 1197 } 1198 1199 check_low_water_mark(pool, free_blocks); 1200 1201 if (!free_blocks) { 1202 /* 1203 * Try to commit to see if that will free up some 1204 * more space. 1205 */ 1206 r = commit(pool); 1207 if (r) 1208 return r; 1209 1210 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1211 if (r) { 1212 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1213 return r; 1214 } 1215 1216 if (!free_blocks) { 1217 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1218 return -ENOSPC; 1219 } 1220 } 1221 1222 r = dm_pool_alloc_data_block(pool->pmd, result); 1223 if (r) { 1224 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1225 return r; 1226 } 1227 1228 return 0; 1229} 1230 1231/* 1232 * If we have run out of space, queue bios until the device is 1233 * resumed, presumably after having been reloaded with more space. 1234 */ 1235static void retry_on_resume(struct bio *bio) 1236{ 1237 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1238 struct thin_c *tc = h->tc; 1239 unsigned long flags; 1240 1241 spin_lock_irqsave(&tc->lock, flags); 1242 bio_list_add(&tc->retry_on_resume_list, bio); 1243 spin_unlock_irqrestore(&tc->lock, flags); 1244} 1245 1246static int should_error_unserviceable_bio(struct pool *pool) 1247{ 1248 enum pool_mode m = get_pool_mode(pool); 1249 1250 switch (m) { 1251 case PM_WRITE: 1252 /* Shouldn't get here */ 1253 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1254 return -EIO; 1255 1256 case PM_OUT_OF_DATA_SPACE: 1257 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1258 1259 case PM_READ_ONLY: 1260 case PM_FAIL: 1261 return -EIO; 1262 default: 1263 /* Shouldn't get here */ 1264 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1265 return -EIO; 1266 } 1267} 1268 1269static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1270{ 1271 int error = should_error_unserviceable_bio(pool); 1272 1273 if (error) 1274 bio_endio(bio, error); 1275 else 1276 retry_on_resume(bio); 1277} 1278 1279static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1280{ 1281 struct bio *bio; 1282 struct bio_list bios; 1283 int error; 1284 1285 error = should_error_unserviceable_bio(pool); 1286 if (error) { 1287 cell_error_with_code(pool, cell, error); 1288 return; 1289 } 1290 1291 bio_list_init(&bios); 1292 cell_release(pool, cell, &bios); 1293 1294 while ((bio = bio_list_pop(&bios))) 1295 retry_on_resume(bio); 1296} 1297 1298static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1299{ 1300 int r; 1301 struct bio *bio = cell->holder; 1302 struct pool *pool = tc->pool; 1303 struct dm_bio_prison_cell *cell2; 1304 struct dm_cell_key key2; 1305 dm_block_t block = get_bio_block(tc, bio); 1306 struct dm_thin_lookup_result lookup_result; 1307 struct dm_thin_new_mapping *m; 1308 1309 if (tc->requeue_mode) { 1310 cell_requeue(pool, cell); 1311 return; 1312 } 1313 1314 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1315 switch (r) { 1316 case 0: 1317 /* 1318 * Check nobody is fiddling with this pool block. This can 1319 * happen if someone's in the process of breaking sharing 1320 * on this block. 1321 */ 1322 build_data_key(tc->td, lookup_result.block, &key2); 1323 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1324 cell_defer_no_holder(tc, cell); 1325 break; 1326 } 1327 1328 if (io_overlaps_block(pool, bio)) { 1329 /* 1330 * IO may still be going to the destination block. We must 1331 * quiesce before we can do the removal. 1332 */ 1333 m = get_next_mapping(pool); 1334 m->tc = tc; 1335 m->pass_discard = pool->pf.discard_passdown; 1336 m->definitely_not_shared = !lookup_result.shared; 1337 m->virt_block = block; 1338 m->data_block = lookup_result.block; 1339 m->cell = cell; 1340 m->cell2 = cell2; 1341 m->bio = bio; 1342 1343 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1344 pool->process_prepared_discard(m); 1345 1346 } else { 1347 inc_all_io_entry(pool, bio); 1348 cell_defer_no_holder(tc, cell); 1349 cell_defer_no_holder(tc, cell2); 1350 1351 /* 1352 * The DM core makes sure that the discard doesn't span 1353 * a block boundary. So we submit the discard of a 1354 * partial block appropriately. 1355 */ 1356 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1357 remap_and_issue(tc, bio, lookup_result.block); 1358 else 1359 bio_endio(bio, 0); 1360 } 1361 break; 1362 1363 case -ENODATA: 1364 /* 1365 * It isn't provisioned, just forget it. 1366 */ 1367 cell_defer_no_holder(tc, cell); 1368 bio_endio(bio, 0); 1369 break; 1370 1371 default: 1372 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1373 __func__, r); 1374 cell_defer_no_holder(tc, cell); 1375 bio_io_error(bio); 1376 break; 1377 } 1378} 1379 1380static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1381{ 1382 struct dm_bio_prison_cell *cell; 1383 struct dm_cell_key key; 1384 dm_block_t block = get_bio_block(tc, bio); 1385 1386 build_virtual_key(tc->td, block, &key); 1387 if (bio_detain(tc->pool, &key, bio, &cell)) 1388 return; 1389 1390 process_discard_cell(tc, cell); 1391} 1392 1393static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1394 struct dm_cell_key *key, 1395 struct dm_thin_lookup_result *lookup_result, 1396 struct dm_bio_prison_cell *cell) 1397{ 1398 int r; 1399 dm_block_t data_block; 1400 struct pool *pool = tc->pool; 1401 1402 r = alloc_data_block(tc, &data_block); 1403 switch (r) { 1404 case 0: 1405 schedule_internal_copy(tc, block, lookup_result->block, 1406 data_block, cell, bio); 1407 break; 1408 1409 case -ENOSPC: 1410 retry_bios_on_resume(pool, cell); 1411 break; 1412 1413 default: 1414 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1415 __func__, r); 1416 cell_error(pool, cell); 1417 break; 1418 } 1419} 1420 1421static void __remap_and_issue_shared_cell(void *context, 1422 struct dm_bio_prison_cell *cell) 1423{ 1424 struct remap_info *info = context; 1425 struct bio *bio; 1426 1427 while ((bio = bio_list_pop(&cell->bios))) { 1428 if ((bio_data_dir(bio) == WRITE) || 1429 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))) 1430 bio_list_add(&info->defer_bios, bio); 1431 else { 1432 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1433 1434 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1435 inc_all_io_entry(info->tc->pool, bio); 1436 bio_list_add(&info->issue_bios, bio); 1437 } 1438 } 1439} 1440 1441static void remap_and_issue_shared_cell(struct thin_c *tc, 1442 struct dm_bio_prison_cell *cell, 1443 dm_block_t block) 1444{ 1445 struct bio *bio; 1446 struct remap_info info; 1447 1448 info.tc = tc; 1449 bio_list_init(&info.defer_bios); 1450 bio_list_init(&info.issue_bios); 1451 1452 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1453 &info, cell); 1454 1455 while ((bio = bio_list_pop(&info.defer_bios))) 1456 thin_defer_bio(tc, bio); 1457 1458 while ((bio = bio_list_pop(&info.issue_bios))) 1459 remap_and_issue(tc, bio, block); 1460} 1461 1462static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1463 dm_block_t block, 1464 struct dm_thin_lookup_result *lookup_result, 1465 struct dm_bio_prison_cell *virt_cell) 1466{ 1467 struct dm_bio_prison_cell *data_cell; 1468 struct pool *pool = tc->pool; 1469 struct dm_cell_key key; 1470 1471 /* 1472 * If cell is already occupied, then sharing is already in the process 1473 * of being broken so we have nothing further to do here. 1474 */ 1475 build_data_key(tc->td, lookup_result->block, &key); 1476 if (bio_detain(pool, &key, bio, &data_cell)) { 1477 cell_defer_no_holder(tc, virt_cell); 1478 return; 1479 } 1480 1481 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1482 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1483 cell_defer_no_holder(tc, virt_cell); 1484 } else { 1485 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1486 1487 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1488 inc_all_io_entry(pool, bio); 1489 remap_and_issue(tc, bio, lookup_result->block); 1490 1491 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1492 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1493 } 1494} 1495 1496static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1497 struct dm_bio_prison_cell *cell) 1498{ 1499 int r; 1500 dm_block_t data_block; 1501 struct pool *pool = tc->pool; 1502 1503 /* 1504 * Remap empty bios (flushes) immediately, without provisioning. 1505 */ 1506 if (!bio->bi_iter.bi_size) { 1507 inc_all_io_entry(pool, bio); 1508 cell_defer_no_holder(tc, cell); 1509 1510 remap_and_issue(tc, bio, 0); 1511 return; 1512 } 1513 1514 /* 1515 * Fill read bios with zeroes and complete them immediately. 1516 */ 1517 if (bio_data_dir(bio) == READ) { 1518 zero_fill_bio(bio); 1519 cell_defer_no_holder(tc, cell); 1520 bio_endio(bio, 0); 1521 return; 1522 } 1523 1524 r = alloc_data_block(tc, &data_block); 1525 switch (r) { 1526 case 0: 1527 if (tc->origin_dev) 1528 schedule_external_copy(tc, block, data_block, cell, bio); 1529 else 1530 schedule_zero(tc, block, data_block, cell, bio); 1531 break; 1532 1533 case -ENOSPC: 1534 retry_bios_on_resume(pool, cell); 1535 break; 1536 1537 default: 1538 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1539 __func__, r); 1540 cell_error(pool, cell); 1541 break; 1542 } 1543} 1544 1545static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1546{ 1547 int r; 1548 struct pool *pool = tc->pool; 1549 struct bio *bio = cell->holder; 1550 dm_block_t block = get_bio_block(tc, bio); 1551 struct dm_thin_lookup_result lookup_result; 1552 1553 if (tc->requeue_mode) { 1554 cell_requeue(pool, cell); 1555 return; 1556 } 1557 1558 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1559 switch (r) { 1560 case 0: 1561 if (lookup_result.shared) 1562 process_shared_bio(tc, bio, block, &lookup_result, cell); 1563 else { 1564 inc_all_io_entry(pool, bio); 1565 remap_and_issue(tc, bio, lookup_result.block); 1566 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1567 } 1568 break; 1569 1570 case -ENODATA: 1571 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1572 inc_all_io_entry(pool, bio); 1573 cell_defer_no_holder(tc, cell); 1574 1575 if (bio_end_sector(bio) <= tc->origin_size) 1576 remap_to_origin_and_issue(tc, bio); 1577 1578 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1579 zero_fill_bio(bio); 1580 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1581 remap_to_origin_and_issue(tc, bio); 1582 1583 } else { 1584 zero_fill_bio(bio); 1585 bio_endio(bio, 0); 1586 } 1587 } else 1588 provision_block(tc, bio, block, cell); 1589 break; 1590 1591 default: 1592 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1593 __func__, r); 1594 cell_defer_no_holder(tc, cell); 1595 bio_io_error(bio); 1596 break; 1597 } 1598} 1599 1600static void process_bio(struct thin_c *tc, struct bio *bio) 1601{ 1602 struct pool *pool = tc->pool; 1603 dm_block_t block = get_bio_block(tc, bio); 1604 struct dm_bio_prison_cell *cell; 1605 struct dm_cell_key key; 1606 1607 /* 1608 * If cell is already occupied, then the block is already 1609 * being provisioned so we have nothing further to do here. 1610 */ 1611 build_virtual_key(tc->td, block, &key); 1612 if (bio_detain(pool, &key, bio, &cell)) 1613 return; 1614 1615 process_cell(tc, cell); 1616} 1617 1618static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1619 struct dm_bio_prison_cell *cell) 1620{ 1621 int r; 1622 int rw = bio_data_dir(bio); 1623 dm_block_t block = get_bio_block(tc, bio); 1624 struct dm_thin_lookup_result lookup_result; 1625 1626 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1627 switch (r) { 1628 case 0: 1629 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1630 handle_unserviceable_bio(tc->pool, bio); 1631 if (cell) 1632 cell_defer_no_holder(tc, cell); 1633 } else { 1634 inc_all_io_entry(tc->pool, bio); 1635 remap_and_issue(tc, bio, lookup_result.block); 1636 if (cell) 1637 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1638 } 1639 break; 1640 1641 case -ENODATA: 1642 if (cell) 1643 cell_defer_no_holder(tc, cell); 1644 if (rw != READ) { 1645 handle_unserviceable_bio(tc->pool, bio); 1646 break; 1647 } 1648 1649 if (tc->origin_dev) { 1650 inc_all_io_entry(tc->pool, bio); 1651 remap_to_origin_and_issue(tc, bio); 1652 break; 1653 } 1654 1655 zero_fill_bio(bio); 1656 bio_endio(bio, 0); 1657 break; 1658 1659 default: 1660 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1661 __func__, r); 1662 if (cell) 1663 cell_defer_no_holder(tc, cell); 1664 bio_io_error(bio); 1665 break; 1666 } 1667} 1668 1669static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1670{ 1671 __process_bio_read_only(tc, bio, NULL); 1672} 1673 1674static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1675{ 1676 __process_bio_read_only(tc, cell->holder, cell); 1677} 1678 1679static void process_bio_success(struct thin_c *tc, struct bio *bio) 1680{ 1681 bio_endio(bio, 0); 1682} 1683 1684static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1685{ 1686 bio_io_error(bio); 1687} 1688 1689static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1690{ 1691 cell_success(tc->pool, cell); 1692} 1693 1694static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1695{ 1696 cell_error(tc->pool, cell); 1697} 1698 1699/* 1700 * FIXME: should we also commit due to size of transaction, measured in 1701 * metadata blocks? 1702 */ 1703static int need_commit_due_to_time(struct pool *pool) 1704{ 1705 return !time_in_range(jiffies, pool->last_commit_jiffies, 1706 pool->last_commit_jiffies + COMMIT_PERIOD); 1707} 1708 1709#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1710#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1711 1712static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1713{ 1714 struct rb_node **rbp, *parent; 1715 struct dm_thin_endio_hook *pbd; 1716 sector_t bi_sector = bio->bi_iter.bi_sector; 1717 1718 rbp = &tc->sort_bio_list.rb_node; 1719 parent = NULL; 1720 while (*rbp) { 1721 parent = *rbp; 1722 pbd = thin_pbd(parent); 1723 1724 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1725 rbp = &(*rbp)->rb_left; 1726 else 1727 rbp = &(*rbp)->rb_right; 1728 } 1729 1730 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1731 rb_link_node(&pbd->rb_node, parent, rbp); 1732 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1733} 1734 1735static void __extract_sorted_bios(struct thin_c *tc) 1736{ 1737 struct rb_node *node; 1738 struct dm_thin_endio_hook *pbd; 1739 struct bio *bio; 1740 1741 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1742 pbd = thin_pbd(node); 1743 bio = thin_bio(pbd); 1744 1745 bio_list_add(&tc->deferred_bio_list, bio); 1746 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1747 } 1748 1749 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1750} 1751 1752static void __sort_thin_deferred_bios(struct thin_c *tc) 1753{ 1754 struct bio *bio; 1755 struct bio_list bios; 1756 1757 bio_list_init(&bios); 1758 bio_list_merge(&bios, &tc->deferred_bio_list); 1759 bio_list_init(&tc->deferred_bio_list); 1760 1761 /* Sort deferred_bio_list using rb-tree */ 1762 while ((bio = bio_list_pop(&bios))) 1763 __thin_bio_rb_add(tc, bio); 1764 1765 /* 1766 * Transfer the sorted bios in sort_bio_list back to 1767 * deferred_bio_list to allow lockless submission of 1768 * all bios. 1769 */ 1770 __extract_sorted_bios(tc); 1771} 1772 1773static void process_thin_deferred_bios(struct thin_c *tc) 1774{ 1775 struct pool *pool = tc->pool; 1776 unsigned long flags; 1777 struct bio *bio; 1778 struct bio_list bios; 1779 struct blk_plug plug; 1780 unsigned count = 0; 1781 1782 if (tc->requeue_mode) { 1783 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 1784 return; 1785 } 1786 1787 bio_list_init(&bios); 1788 1789 spin_lock_irqsave(&tc->lock, flags); 1790 1791 if (bio_list_empty(&tc->deferred_bio_list)) { 1792 spin_unlock_irqrestore(&tc->lock, flags); 1793 return; 1794 } 1795 1796 __sort_thin_deferred_bios(tc); 1797 1798 bio_list_merge(&bios, &tc->deferred_bio_list); 1799 bio_list_init(&tc->deferred_bio_list); 1800 1801 spin_unlock_irqrestore(&tc->lock, flags); 1802 1803 blk_start_plug(&plug); 1804 while ((bio = bio_list_pop(&bios))) { 1805 /* 1806 * If we've got no free new_mapping structs, and processing 1807 * this bio might require one, we pause until there are some 1808 * prepared mappings to process. 1809 */ 1810 if (ensure_next_mapping(pool)) { 1811 spin_lock_irqsave(&tc->lock, flags); 1812 bio_list_add(&tc->deferred_bio_list, bio); 1813 bio_list_merge(&tc->deferred_bio_list, &bios); 1814 spin_unlock_irqrestore(&tc->lock, flags); 1815 break; 1816 } 1817 1818 if (bio->bi_rw & REQ_DISCARD) 1819 pool->process_discard(tc, bio); 1820 else 1821 pool->process_bio(tc, bio); 1822 1823 if ((count++ & 127) == 0) { 1824 throttle_work_update(&pool->throttle); 1825 dm_pool_issue_prefetches(pool->pmd); 1826 } 1827 } 1828 blk_finish_plug(&plug); 1829} 1830 1831static int cmp_cells(const void *lhs, const void *rhs) 1832{ 1833 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 1834 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 1835 1836 BUG_ON(!lhs_cell->holder); 1837 BUG_ON(!rhs_cell->holder); 1838 1839 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 1840 return -1; 1841 1842 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 1843 return 1; 1844 1845 return 0; 1846} 1847 1848static unsigned sort_cells(struct pool *pool, struct list_head *cells) 1849{ 1850 unsigned count = 0; 1851 struct dm_bio_prison_cell *cell, *tmp; 1852 1853 list_for_each_entry_safe(cell, tmp, cells, user_list) { 1854 if (count >= CELL_SORT_ARRAY_SIZE) 1855 break; 1856 1857 pool->cell_sort_array[count++] = cell; 1858 list_del(&cell->user_list); 1859 } 1860 1861 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 1862 1863 return count; 1864} 1865 1866static void process_thin_deferred_cells(struct thin_c *tc) 1867{ 1868 struct pool *pool = tc->pool; 1869 unsigned long flags; 1870 struct list_head cells; 1871 struct dm_bio_prison_cell *cell; 1872 unsigned i, j, count; 1873 1874 INIT_LIST_HEAD(&cells); 1875 1876 spin_lock_irqsave(&tc->lock, flags); 1877 list_splice_init(&tc->deferred_cells, &cells); 1878 spin_unlock_irqrestore(&tc->lock, flags); 1879 1880 if (list_empty(&cells)) 1881 return; 1882 1883 do { 1884 count = sort_cells(tc->pool, &cells); 1885 1886 for (i = 0; i < count; i++) { 1887 cell = pool->cell_sort_array[i]; 1888 BUG_ON(!cell->holder); 1889 1890 /* 1891 * If we've got no free new_mapping structs, and processing 1892 * this bio might require one, we pause until there are some 1893 * prepared mappings to process. 1894 */ 1895 if (ensure_next_mapping(pool)) { 1896 for (j = i; j < count; j++) 1897 list_add(&pool->cell_sort_array[j]->user_list, &cells); 1898 1899 spin_lock_irqsave(&tc->lock, flags); 1900 list_splice(&cells, &tc->deferred_cells); 1901 spin_unlock_irqrestore(&tc->lock, flags); 1902 return; 1903 } 1904 1905 if (cell->holder->bi_rw & REQ_DISCARD) 1906 pool->process_discard_cell(tc, cell); 1907 else 1908 pool->process_cell(tc, cell); 1909 } 1910 } while (!list_empty(&cells)); 1911} 1912 1913static void thin_get(struct thin_c *tc); 1914static void thin_put(struct thin_c *tc); 1915 1916/* 1917 * We can't hold rcu_read_lock() around code that can block. So we 1918 * find a thin with the rcu lock held; bump a refcount; then drop 1919 * the lock. 1920 */ 1921static struct thin_c *get_first_thin(struct pool *pool) 1922{ 1923 struct thin_c *tc = NULL; 1924 1925 rcu_read_lock(); 1926 if (!list_empty(&pool->active_thins)) { 1927 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 1928 thin_get(tc); 1929 } 1930 rcu_read_unlock(); 1931 1932 return tc; 1933} 1934 1935static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 1936{ 1937 struct thin_c *old_tc = tc; 1938 1939 rcu_read_lock(); 1940 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 1941 thin_get(tc); 1942 thin_put(old_tc); 1943 rcu_read_unlock(); 1944 return tc; 1945 } 1946 thin_put(old_tc); 1947 rcu_read_unlock(); 1948 1949 return NULL; 1950} 1951 1952static void process_deferred_bios(struct pool *pool) 1953{ 1954 unsigned long flags; 1955 struct bio *bio; 1956 struct bio_list bios; 1957 struct thin_c *tc; 1958 1959 tc = get_first_thin(pool); 1960 while (tc) { 1961 process_thin_deferred_cells(tc); 1962 process_thin_deferred_bios(tc); 1963 tc = get_next_thin(pool, tc); 1964 } 1965 1966 /* 1967 * If there are any deferred flush bios, we must commit 1968 * the metadata before issuing them. 1969 */ 1970 bio_list_init(&bios); 1971 spin_lock_irqsave(&pool->lock, flags); 1972 bio_list_merge(&bios, &pool->deferred_flush_bios); 1973 bio_list_init(&pool->deferred_flush_bios); 1974 spin_unlock_irqrestore(&pool->lock, flags); 1975 1976 if (bio_list_empty(&bios) && 1977 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1978 return; 1979 1980 if (commit(pool)) { 1981 while ((bio = bio_list_pop(&bios))) 1982 bio_io_error(bio); 1983 return; 1984 } 1985 pool->last_commit_jiffies = jiffies; 1986 1987 while ((bio = bio_list_pop(&bios))) 1988 generic_make_request(bio); 1989} 1990 1991static void do_worker(struct work_struct *ws) 1992{ 1993 struct pool *pool = container_of(ws, struct pool, worker); 1994 1995 throttle_work_start(&pool->throttle); 1996 dm_pool_issue_prefetches(pool->pmd); 1997 throttle_work_update(&pool->throttle); 1998 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1999 throttle_work_update(&pool->throttle); 2000 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2001 throttle_work_update(&pool->throttle); 2002 process_deferred_bios(pool); 2003 throttle_work_complete(&pool->throttle); 2004} 2005 2006/* 2007 * We want to commit periodically so that not too much 2008 * unwritten data builds up. 2009 */ 2010static void do_waker(struct work_struct *ws) 2011{ 2012 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2013 wake_worker(pool); 2014 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2015} 2016 2017/* 2018 * We're holding onto IO to allow userland time to react. After the 2019 * timeout either the pool will have been resized (and thus back in 2020 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. 2021 */ 2022static void do_no_space_timeout(struct work_struct *ws) 2023{ 2024 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2025 no_space_timeout); 2026 2027 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) 2028 set_pool_mode(pool, PM_READ_ONLY); 2029} 2030 2031/*----------------------------------------------------------------*/ 2032 2033struct pool_work { 2034 struct work_struct worker; 2035 struct completion complete; 2036}; 2037 2038static struct pool_work *to_pool_work(struct work_struct *ws) 2039{ 2040 return container_of(ws, struct pool_work, worker); 2041} 2042 2043static void pool_work_complete(struct pool_work *pw) 2044{ 2045 complete(&pw->complete); 2046} 2047 2048static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2049 void (*fn)(struct work_struct *)) 2050{ 2051 INIT_WORK_ONSTACK(&pw->worker, fn); 2052 init_completion(&pw->complete); 2053 queue_work(pool->wq, &pw->worker); 2054 wait_for_completion(&pw->complete); 2055} 2056 2057/*----------------------------------------------------------------*/ 2058 2059struct noflush_work { 2060 struct pool_work pw; 2061 struct thin_c *tc; 2062}; 2063 2064static struct noflush_work *to_noflush(struct work_struct *ws) 2065{ 2066 return container_of(to_pool_work(ws), struct noflush_work, pw); 2067} 2068 2069static void do_noflush_start(struct work_struct *ws) 2070{ 2071 struct noflush_work *w = to_noflush(ws); 2072 w->tc->requeue_mode = true; 2073 requeue_io(w->tc); 2074 pool_work_complete(&w->pw); 2075} 2076 2077static void do_noflush_stop(struct work_struct *ws) 2078{ 2079 struct noflush_work *w = to_noflush(ws); 2080 w->tc->requeue_mode = false; 2081 pool_work_complete(&w->pw); 2082} 2083 2084static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2085{ 2086 struct noflush_work w; 2087 2088 w.tc = tc; 2089 pool_work_wait(&w.pw, tc->pool, fn); 2090} 2091 2092/*----------------------------------------------------------------*/ 2093 2094static enum pool_mode get_pool_mode(struct pool *pool) 2095{ 2096 return pool->pf.mode; 2097} 2098 2099static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2100{ 2101 dm_table_event(pool->ti->table); 2102 DMINFO("%s: switching pool to %s mode", 2103 dm_device_name(pool->pool_md), new_mode); 2104} 2105 2106static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2107{ 2108 struct pool_c *pt = pool->ti->private; 2109 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2110 enum pool_mode old_mode = get_pool_mode(pool); 2111 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2112 2113 /* 2114 * Never allow the pool to transition to PM_WRITE mode if user 2115 * intervention is required to verify metadata and data consistency. 2116 */ 2117 if (new_mode == PM_WRITE && needs_check) { 2118 DMERR("%s: unable to switch pool to write mode until repaired.", 2119 dm_device_name(pool->pool_md)); 2120 if (old_mode != new_mode) 2121 new_mode = old_mode; 2122 else 2123 new_mode = PM_READ_ONLY; 2124 } 2125 /* 2126 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2127 * not going to recover without a thin_repair. So we never let the 2128 * pool move out of the old mode. 2129 */ 2130 if (old_mode == PM_FAIL) 2131 new_mode = old_mode; 2132 2133 switch (new_mode) { 2134 case PM_FAIL: 2135 if (old_mode != new_mode) 2136 notify_of_pool_mode_change(pool, "failure"); 2137 dm_pool_metadata_read_only(pool->pmd); 2138 pool->process_bio = process_bio_fail; 2139 pool->process_discard = process_bio_fail; 2140 pool->process_cell = process_cell_fail; 2141 pool->process_discard_cell = process_cell_fail; 2142 pool->process_prepared_mapping = process_prepared_mapping_fail; 2143 pool->process_prepared_discard = process_prepared_discard_fail; 2144 2145 error_retry_list(pool); 2146 break; 2147 2148 case PM_READ_ONLY: 2149 if (old_mode != new_mode) 2150 notify_of_pool_mode_change(pool, "read-only"); 2151 dm_pool_metadata_read_only(pool->pmd); 2152 pool->process_bio = process_bio_read_only; 2153 pool->process_discard = process_bio_success; 2154 pool->process_cell = process_cell_read_only; 2155 pool->process_discard_cell = process_cell_success; 2156 pool->process_prepared_mapping = process_prepared_mapping_fail; 2157 pool->process_prepared_discard = process_prepared_discard_passdown; 2158 2159 error_retry_list(pool); 2160 break; 2161 2162 case PM_OUT_OF_DATA_SPACE: 2163 /* 2164 * Ideally we'd never hit this state; the low water mark 2165 * would trigger userland to extend the pool before we 2166 * completely run out of data space. However, many small 2167 * IOs to unprovisioned space can consume data space at an 2168 * alarming rate. Adjust your low water mark if you're 2169 * frequently seeing this mode. 2170 */ 2171 if (old_mode != new_mode) 2172 notify_of_pool_mode_change(pool, "out-of-data-space"); 2173 pool->process_bio = process_bio_read_only; 2174 pool->process_discard = process_discard_bio; 2175 pool->process_cell = process_cell_read_only; 2176 pool->process_discard_cell = process_discard_cell; 2177 pool->process_prepared_mapping = process_prepared_mapping; 2178 pool->process_prepared_discard = process_prepared_discard; 2179 2180 if (!pool->pf.error_if_no_space && no_space_timeout) 2181 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2182 break; 2183 2184 case PM_WRITE: 2185 if (old_mode != new_mode) 2186 notify_of_pool_mode_change(pool, "write"); 2187 dm_pool_metadata_read_write(pool->pmd); 2188 pool->process_bio = process_bio; 2189 pool->process_discard = process_discard_bio; 2190 pool->process_cell = process_cell; 2191 pool->process_discard_cell = process_discard_cell; 2192 pool->process_prepared_mapping = process_prepared_mapping; 2193 pool->process_prepared_discard = process_prepared_discard; 2194 break; 2195 } 2196 2197 pool->pf.mode = new_mode; 2198 /* 2199 * The pool mode may have changed, sync it so bind_control_target() 2200 * doesn't cause an unexpected mode transition on resume. 2201 */ 2202 pt->adjusted_pf.mode = new_mode; 2203} 2204 2205static void abort_transaction(struct pool *pool) 2206{ 2207 const char *dev_name = dm_device_name(pool->pool_md); 2208 2209 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2210 if (dm_pool_abort_metadata(pool->pmd)) { 2211 DMERR("%s: failed to abort metadata transaction", dev_name); 2212 set_pool_mode(pool, PM_FAIL); 2213 } 2214 2215 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2216 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2217 set_pool_mode(pool, PM_FAIL); 2218 } 2219} 2220 2221static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2222{ 2223 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2224 dm_device_name(pool->pool_md), op, r); 2225 2226 abort_transaction(pool); 2227 set_pool_mode(pool, PM_READ_ONLY); 2228} 2229 2230/*----------------------------------------------------------------*/ 2231 2232/* 2233 * Mapping functions. 2234 */ 2235 2236/* 2237 * Called only while mapping a thin bio to hand it over to the workqueue. 2238 */ 2239static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2240{ 2241 unsigned long flags; 2242 struct pool *pool = tc->pool; 2243 2244 spin_lock_irqsave(&tc->lock, flags); 2245 bio_list_add(&tc->deferred_bio_list, bio); 2246 spin_unlock_irqrestore(&tc->lock, flags); 2247 2248 wake_worker(pool); 2249} 2250 2251static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2252{ 2253 struct pool *pool = tc->pool; 2254 2255 throttle_lock(&pool->throttle); 2256 thin_defer_bio(tc, bio); 2257 throttle_unlock(&pool->throttle); 2258} 2259 2260static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2261{ 2262 unsigned long flags; 2263 struct pool *pool = tc->pool; 2264 2265 throttle_lock(&pool->throttle); 2266 spin_lock_irqsave(&tc->lock, flags); 2267 list_add_tail(&cell->user_list, &tc->deferred_cells); 2268 spin_unlock_irqrestore(&tc->lock, flags); 2269 throttle_unlock(&pool->throttle); 2270 2271 wake_worker(pool); 2272} 2273 2274static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2275{ 2276 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2277 2278 h->tc = tc; 2279 h->shared_read_entry = NULL; 2280 h->all_io_entry = NULL; 2281 h->overwrite_mapping = NULL; 2282} 2283 2284/* 2285 * Non-blocking function called from the thin target's map function. 2286 */ 2287static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2288{ 2289 int r; 2290 struct thin_c *tc = ti->private; 2291 dm_block_t block = get_bio_block(tc, bio); 2292 struct dm_thin_device *td = tc->td; 2293 struct dm_thin_lookup_result result; 2294 struct dm_bio_prison_cell *virt_cell, *data_cell; 2295 struct dm_cell_key key; 2296 2297 thin_hook_bio(tc, bio); 2298 2299 if (tc->requeue_mode) { 2300 bio_endio(bio, DM_ENDIO_REQUEUE); 2301 return DM_MAPIO_SUBMITTED; 2302 } 2303 2304 if (get_pool_mode(tc->pool) == PM_FAIL) { 2305 bio_io_error(bio); 2306 return DM_MAPIO_SUBMITTED; 2307 } 2308 2309 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 2310 thin_defer_bio_with_throttle(tc, bio); 2311 return DM_MAPIO_SUBMITTED; 2312 } 2313 2314 /* 2315 * We must hold the virtual cell before doing the lookup, otherwise 2316 * there's a race with discard. 2317 */ 2318 build_virtual_key(tc->td, block, &key); 2319 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2320 return DM_MAPIO_SUBMITTED; 2321 2322 r = dm_thin_find_block(td, block, 0, &result); 2323 2324 /* 2325 * Note that we defer readahead too. 2326 */ 2327 switch (r) { 2328 case 0: 2329 if (unlikely(result.shared)) { 2330 /* 2331 * We have a race condition here between the 2332 * result.shared value returned by the lookup and 2333 * snapshot creation, which may cause new 2334 * sharing. 2335 * 2336 * To avoid this always quiesce the origin before 2337 * taking the snap. You want to do this anyway to 2338 * ensure a consistent application view 2339 * (i.e. lockfs). 2340 * 2341 * More distant ancestors are irrelevant. The 2342 * shared flag will be set in their case. 2343 */ 2344 thin_defer_cell(tc, virt_cell); 2345 return DM_MAPIO_SUBMITTED; 2346 } 2347 2348 build_data_key(tc->td, result.block, &key); 2349 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2350 cell_defer_no_holder(tc, virt_cell); 2351 return DM_MAPIO_SUBMITTED; 2352 } 2353 2354 inc_all_io_entry(tc->pool, bio); 2355 cell_defer_no_holder(tc, data_cell); 2356 cell_defer_no_holder(tc, virt_cell); 2357 2358 remap(tc, bio, result.block); 2359 return DM_MAPIO_REMAPPED; 2360 2361 case -ENODATA: 2362 case -EWOULDBLOCK: 2363 thin_defer_cell(tc, virt_cell); 2364 return DM_MAPIO_SUBMITTED; 2365 2366 default: 2367 /* 2368 * Must always call bio_io_error on failure. 2369 * dm_thin_find_block can fail with -EINVAL if the 2370 * pool is switched to fail-io mode. 2371 */ 2372 bio_io_error(bio); 2373 cell_defer_no_holder(tc, virt_cell); 2374 return DM_MAPIO_SUBMITTED; 2375 } 2376} 2377 2378static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2379{ 2380 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2381 struct request_queue *q; 2382 2383 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2384 return 1; 2385 2386 q = bdev_get_queue(pt->data_dev->bdev); 2387 return bdi_congested(&q->backing_dev_info, bdi_bits); 2388} 2389 2390static void requeue_bios(struct pool *pool) 2391{ 2392 unsigned long flags; 2393 struct thin_c *tc; 2394 2395 rcu_read_lock(); 2396 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2397 spin_lock_irqsave(&tc->lock, flags); 2398 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2399 bio_list_init(&tc->retry_on_resume_list); 2400 spin_unlock_irqrestore(&tc->lock, flags); 2401 } 2402 rcu_read_unlock(); 2403} 2404 2405/*---------------------------------------------------------------- 2406 * Binding of control targets to a pool object 2407 *--------------------------------------------------------------*/ 2408static bool data_dev_supports_discard(struct pool_c *pt) 2409{ 2410 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2411 2412 return q && blk_queue_discard(q); 2413} 2414 2415static bool is_factor(sector_t block_size, uint32_t n) 2416{ 2417 return !sector_div(block_size, n); 2418} 2419 2420/* 2421 * If discard_passdown was enabled verify that the data device 2422 * supports discards. Disable discard_passdown if not. 2423 */ 2424static void disable_passdown_if_not_supported(struct pool_c *pt) 2425{ 2426 struct pool *pool = pt->pool; 2427 struct block_device *data_bdev = pt->data_dev->bdev; 2428 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2429 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 2430 const char *reason = NULL; 2431 char buf[BDEVNAME_SIZE]; 2432 2433 if (!pt->adjusted_pf.discard_passdown) 2434 return; 2435 2436 if (!data_dev_supports_discard(pt)) 2437 reason = "discard unsupported"; 2438 2439 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2440 reason = "max discard sectors smaller than a block"; 2441 2442 else if (data_limits->discard_granularity > block_size) 2443 reason = "discard granularity larger than a block"; 2444 2445 else if (!is_factor(block_size, data_limits->discard_granularity)) 2446 reason = "discard granularity not a factor of block size"; 2447 2448 if (reason) { 2449 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2450 pt->adjusted_pf.discard_passdown = false; 2451 } 2452} 2453 2454static int bind_control_target(struct pool *pool, struct dm_target *ti) 2455{ 2456 struct pool_c *pt = ti->private; 2457 2458 /* 2459 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2460 */ 2461 enum pool_mode old_mode = get_pool_mode(pool); 2462 enum pool_mode new_mode = pt->adjusted_pf.mode; 2463 2464 /* 2465 * Don't change the pool's mode until set_pool_mode() below. 2466 * Otherwise the pool's process_* function pointers may 2467 * not match the desired pool mode. 2468 */ 2469 pt->adjusted_pf.mode = old_mode; 2470 2471 pool->ti = ti; 2472 pool->pf = pt->adjusted_pf; 2473 pool->low_water_blocks = pt->low_water_blocks; 2474 2475 set_pool_mode(pool, new_mode); 2476 2477 return 0; 2478} 2479 2480static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2481{ 2482 if (pool->ti == ti) 2483 pool->ti = NULL; 2484} 2485 2486/*---------------------------------------------------------------- 2487 * Pool creation 2488 *--------------------------------------------------------------*/ 2489/* Initialize pool features. */ 2490static void pool_features_init(struct pool_features *pf) 2491{ 2492 pf->mode = PM_WRITE; 2493 pf->zero_new_blocks = true; 2494 pf->discard_enabled = true; 2495 pf->discard_passdown = true; 2496 pf->error_if_no_space = false; 2497} 2498 2499static void __pool_destroy(struct pool *pool) 2500{ 2501 __pool_table_remove(pool); 2502 2503 vfree(pool->cell_sort_array); 2504 if (dm_pool_metadata_close(pool->pmd) < 0) 2505 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2506 2507 dm_bio_prison_destroy(pool->prison); 2508 dm_kcopyd_client_destroy(pool->copier); 2509 2510 if (pool->wq) 2511 destroy_workqueue(pool->wq); 2512 2513 if (pool->next_mapping) 2514 mempool_free(pool->next_mapping, pool->mapping_pool); 2515 mempool_destroy(pool->mapping_pool); 2516 dm_deferred_set_destroy(pool->shared_read_ds); 2517 dm_deferred_set_destroy(pool->all_io_ds); 2518 kfree(pool); 2519} 2520 2521static struct kmem_cache *_new_mapping_cache; 2522 2523static struct pool *pool_create(struct mapped_device *pool_md, 2524 struct block_device *metadata_dev, 2525 unsigned long block_size, 2526 int read_only, char **error) 2527{ 2528 int r; 2529 void *err_p; 2530 struct pool *pool; 2531 struct dm_pool_metadata *pmd; 2532 bool format_device = read_only ? false : true; 2533 2534 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2535 if (IS_ERR(pmd)) { 2536 *error = "Error creating metadata object"; 2537 return (struct pool *)pmd; 2538 } 2539 2540 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2541 if (!pool) { 2542 *error = "Error allocating memory for pool"; 2543 err_p = ERR_PTR(-ENOMEM); 2544 goto bad_pool; 2545 } 2546 2547 pool->pmd = pmd; 2548 pool->sectors_per_block = block_size; 2549 if (block_size & (block_size - 1)) 2550 pool->sectors_per_block_shift = -1; 2551 else 2552 pool->sectors_per_block_shift = __ffs(block_size); 2553 pool->low_water_blocks = 0; 2554 pool_features_init(&pool->pf); 2555 pool->prison = dm_bio_prison_create(); 2556 if (!pool->prison) { 2557 *error = "Error creating pool's bio prison"; 2558 err_p = ERR_PTR(-ENOMEM); 2559 goto bad_prison; 2560 } 2561 2562 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2563 if (IS_ERR(pool->copier)) { 2564 r = PTR_ERR(pool->copier); 2565 *error = "Error creating pool's kcopyd client"; 2566 err_p = ERR_PTR(r); 2567 goto bad_kcopyd_client; 2568 } 2569 2570 /* 2571 * Create singlethreaded workqueue that will service all devices 2572 * that use this metadata. 2573 */ 2574 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2575 if (!pool->wq) { 2576 *error = "Error creating pool's workqueue"; 2577 err_p = ERR_PTR(-ENOMEM); 2578 goto bad_wq; 2579 } 2580 2581 throttle_init(&pool->throttle); 2582 INIT_WORK(&pool->worker, do_worker); 2583 INIT_DELAYED_WORK(&pool->waker, do_waker); 2584 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2585 spin_lock_init(&pool->lock); 2586 bio_list_init(&pool->deferred_flush_bios); 2587 INIT_LIST_HEAD(&pool->prepared_mappings); 2588 INIT_LIST_HEAD(&pool->prepared_discards); 2589 INIT_LIST_HEAD(&pool->active_thins); 2590 pool->low_water_triggered = false; 2591 pool->suspended = true; 2592 2593 pool->shared_read_ds = dm_deferred_set_create(); 2594 if (!pool->shared_read_ds) { 2595 *error = "Error creating pool's shared read deferred set"; 2596 err_p = ERR_PTR(-ENOMEM); 2597 goto bad_shared_read_ds; 2598 } 2599 2600 pool->all_io_ds = dm_deferred_set_create(); 2601 if (!pool->all_io_ds) { 2602 *error = "Error creating pool's all io deferred set"; 2603 err_p = ERR_PTR(-ENOMEM); 2604 goto bad_all_io_ds; 2605 } 2606 2607 pool->next_mapping = NULL; 2608 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2609 _new_mapping_cache); 2610 if (!pool->mapping_pool) { 2611 *error = "Error creating pool's mapping mempool"; 2612 err_p = ERR_PTR(-ENOMEM); 2613 goto bad_mapping_pool; 2614 } 2615 2616 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE); 2617 if (!pool->cell_sort_array) { 2618 *error = "Error allocating cell sort array"; 2619 err_p = ERR_PTR(-ENOMEM); 2620 goto bad_sort_array; 2621 } 2622 2623 pool->ref_count = 1; 2624 pool->last_commit_jiffies = jiffies; 2625 pool->pool_md = pool_md; 2626 pool->md_dev = metadata_dev; 2627 __pool_table_insert(pool); 2628 2629 return pool; 2630 2631bad_sort_array: 2632 mempool_destroy(pool->mapping_pool); 2633bad_mapping_pool: 2634 dm_deferred_set_destroy(pool->all_io_ds); 2635bad_all_io_ds: 2636 dm_deferred_set_destroy(pool->shared_read_ds); 2637bad_shared_read_ds: 2638 destroy_workqueue(pool->wq); 2639bad_wq: 2640 dm_kcopyd_client_destroy(pool->copier); 2641bad_kcopyd_client: 2642 dm_bio_prison_destroy(pool->prison); 2643bad_prison: 2644 kfree(pool); 2645bad_pool: 2646 if (dm_pool_metadata_close(pmd)) 2647 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2648 2649 return err_p; 2650} 2651 2652static void __pool_inc(struct pool *pool) 2653{ 2654 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2655 pool->ref_count++; 2656} 2657 2658static void __pool_dec(struct pool *pool) 2659{ 2660 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2661 BUG_ON(!pool->ref_count); 2662 if (!--pool->ref_count) 2663 __pool_destroy(pool); 2664} 2665 2666static struct pool *__pool_find(struct mapped_device *pool_md, 2667 struct block_device *metadata_dev, 2668 unsigned long block_size, int read_only, 2669 char **error, int *created) 2670{ 2671 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2672 2673 if (pool) { 2674 if (pool->pool_md != pool_md) { 2675 *error = "metadata device already in use by a pool"; 2676 return ERR_PTR(-EBUSY); 2677 } 2678 __pool_inc(pool); 2679 2680 } else { 2681 pool = __pool_table_lookup(pool_md); 2682 if (pool) { 2683 if (pool->md_dev != metadata_dev) { 2684 *error = "different pool cannot replace a pool"; 2685 return ERR_PTR(-EINVAL); 2686 } 2687 __pool_inc(pool); 2688 2689 } else { 2690 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2691 *created = 1; 2692 } 2693 } 2694 2695 return pool; 2696} 2697 2698/*---------------------------------------------------------------- 2699 * Pool target methods 2700 *--------------------------------------------------------------*/ 2701static void pool_dtr(struct dm_target *ti) 2702{ 2703 struct pool_c *pt = ti->private; 2704 2705 mutex_lock(&dm_thin_pool_table.mutex); 2706 2707 unbind_control_target(pt->pool, ti); 2708 __pool_dec(pt->pool); 2709 dm_put_device(ti, pt->metadata_dev); 2710 dm_put_device(ti, pt->data_dev); 2711 kfree(pt); 2712 2713 mutex_unlock(&dm_thin_pool_table.mutex); 2714} 2715 2716static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2717 struct dm_target *ti) 2718{ 2719 int r; 2720 unsigned argc; 2721 const char *arg_name; 2722 2723 static struct dm_arg _args[] = { 2724 {0, 4, "Invalid number of pool feature arguments"}, 2725 }; 2726 2727 /* 2728 * No feature arguments supplied. 2729 */ 2730 if (!as->argc) 2731 return 0; 2732 2733 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2734 if (r) 2735 return -EINVAL; 2736 2737 while (argc && !r) { 2738 arg_name = dm_shift_arg(as); 2739 argc--; 2740 2741 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2742 pf->zero_new_blocks = false; 2743 2744 else if (!strcasecmp(arg_name, "ignore_discard")) 2745 pf->discard_enabled = false; 2746 2747 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2748 pf->discard_passdown = false; 2749 2750 else if (!strcasecmp(arg_name, "read_only")) 2751 pf->mode = PM_READ_ONLY; 2752 2753 else if (!strcasecmp(arg_name, "error_if_no_space")) 2754 pf->error_if_no_space = true; 2755 2756 else { 2757 ti->error = "Unrecognised pool feature requested"; 2758 r = -EINVAL; 2759 break; 2760 } 2761 } 2762 2763 return r; 2764} 2765 2766static void metadata_low_callback(void *context) 2767{ 2768 struct pool *pool = context; 2769 2770 DMWARN("%s: reached low water mark for metadata device: sending event.", 2771 dm_device_name(pool->pool_md)); 2772 2773 dm_table_event(pool->ti->table); 2774} 2775 2776static sector_t get_dev_size(struct block_device *bdev) 2777{ 2778 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2779} 2780 2781static void warn_if_metadata_device_too_big(struct block_device *bdev) 2782{ 2783 sector_t metadata_dev_size = get_dev_size(bdev); 2784 char buffer[BDEVNAME_SIZE]; 2785 2786 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2787 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2788 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2789} 2790 2791static sector_t get_metadata_dev_size(struct block_device *bdev) 2792{ 2793 sector_t metadata_dev_size = get_dev_size(bdev); 2794 2795 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2796 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2797 2798 return metadata_dev_size; 2799} 2800 2801static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2802{ 2803 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2804 2805 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2806 2807 return metadata_dev_size; 2808} 2809 2810/* 2811 * When a metadata threshold is crossed a dm event is triggered, and 2812 * userland should respond by growing the metadata device. We could let 2813 * userland set the threshold, like we do with the data threshold, but I'm 2814 * not sure they know enough to do this well. 2815 */ 2816static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2817{ 2818 /* 2819 * 4M is ample for all ops with the possible exception of thin 2820 * device deletion which is harmless if it fails (just retry the 2821 * delete after you've grown the device). 2822 */ 2823 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2824 return min((dm_block_t)1024ULL /* 4M */, quarter); 2825} 2826 2827/* 2828 * thin-pool <metadata dev> <data dev> 2829 * <data block size (sectors)> 2830 * <low water mark (blocks)> 2831 * [<#feature args> [<arg>]*] 2832 * 2833 * Optional feature arguments are: 2834 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2835 * ignore_discard: disable discard 2836 * no_discard_passdown: don't pass discards down to the data device 2837 * read_only: Don't allow any changes to be made to the pool metadata. 2838 * error_if_no_space: error IOs, instead of queueing, if no space. 2839 */ 2840static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2841{ 2842 int r, pool_created = 0; 2843 struct pool_c *pt; 2844 struct pool *pool; 2845 struct pool_features pf; 2846 struct dm_arg_set as; 2847 struct dm_dev *data_dev; 2848 unsigned long block_size; 2849 dm_block_t low_water_blocks; 2850 struct dm_dev *metadata_dev; 2851 fmode_t metadata_mode; 2852 2853 /* 2854 * FIXME Remove validation from scope of lock. 2855 */ 2856 mutex_lock(&dm_thin_pool_table.mutex); 2857 2858 if (argc < 4) { 2859 ti->error = "Invalid argument count"; 2860 r = -EINVAL; 2861 goto out_unlock; 2862 } 2863 2864 as.argc = argc; 2865 as.argv = argv; 2866 2867 /* 2868 * Set default pool features. 2869 */ 2870 pool_features_init(&pf); 2871 2872 dm_consume_args(&as, 4); 2873 r = parse_pool_features(&as, &pf, ti); 2874 if (r) 2875 goto out_unlock; 2876 2877 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2878 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2879 if (r) { 2880 ti->error = "Error opening metadata block device"; 2881 goto out_unlock; 2882 } 2883 warn_if_metadata_device_too_big(metadata_dev->bdev); 2884 2885 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2886 if (r) { 2887 ti->error = "Error getting data device"; 2888 goto out_metadata; 2889 } 2890 2891 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2892 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2893 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2894 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2895 ti->error = "Invalid block size"; 2896 r = -EINVAL; 2897 goto out; 2898 } 2899 2900 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2901 ti->error = "Invalid low water mark"; 2902 r = -EINVAL; 2903 goto out; 2904 } 2905 2906 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2907 if (!pt) { 2908 r = -ENOMEM; 2909 goto out; 2910 } 2911 2912 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2913 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2914 if (IS_ERR(pool)) { 2915 r = PTR_ERR(pool); 2916 goto out_free_pt; 2917 } 2918 2919 /* 2920 * 'pool_created' reflects whether this is the first table load. 2921 * Top level discard support is not allowed to be changed after 2922 * initial load. This would require a pool reload to trigger thin 2923 * device changes. 2924 */ 2925 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2926 ti->error = "Discard support cannot be disabled once enabled"; 2927 r = -EINVAL; 2928 goto out_flags_changed; 2929 } 2930 2931 pt->pool = pool; 2932 pt->ti = ti; 2933 pt->metadata_dev = metadata_dev; 2934 pt->data_dev = data_dev; 2935 pt->low_water_blocks = low_water_blocks; 2936 pt->adjusted_pf = pt->requested_pf = pf; 2937 ti->num_flush_bios = 1; 2938 2939 /* 2940 * Only need to enable discards if the pool should pass 2941 * them down to the data device. The thin device's discard 2942 * processing will cause mappings to be removed from the btree. 2943 */ 2944 ti->discard_zeroes_data_unsupported = true; 2945 if (pf.discard_enabled && pf.discard_passdown) { 2946 ti->num_discard_bios = 1; 2947 2948 /* 2949 * Setting 'discards_supported' circumvents the normal 2950 * stacking of discard limits (this keeps the pool and 2951 * thin devices' discard limits consistent). 2952 */ 2953 ti->discards_supported = true; 2954 } 2955 ti->private = pt; 2956 2957 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2958 calc_metadata_threshold(pt), 2959 metadata_low_callback, 2960 pool); 2961 if (r) 2962 goto out_flags_changed; 2963 2964 pt->callbacks.congested_fn = pool_is_congested; 2965 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2966 2967 mutex_unlock(&dm_thin_pool_table.mutex); 2968 2969 return 0; 2970 2971out_flags_changed: 2972 __pool_dec(pool); 2973out_free_pt: 2974 kfree(pt); 2975out: 2976 dm_put_device(ti, data_dev); 2977out_metadata: 2978 dm_put_device(ti, metadata_dev); 2979out_unlock: 2980 mutex_unlock(&dm_thin_pool_table.mutex); 2981 2982 return r; 2983} 2984 2985static int pool_map(struct dm_target *ti, struct bio *bio) 2986{ 2987 int r; 2988 struct pool_c *pt = ti->private; 2989 struct pool *pool = pt->pool; 2990 unsigned long flags; 2991 2992 /* 2993 * As this is a singleton target, ti->begin is always zero. 2994 */ 2995 spin_lock_irqsave(&pool->lock, flags); 2996 bio->bi_bdev = pt->data_dev->bdev; 2997 r = DM_MAPIO_REMAPPED; 2998 spin_unlock_irqrestore(&pool->lock, flags); 2999 3000 return r; 3001} 3002 3003static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3004{ 3005 int r; 3006 struct pool_c *pt = ti->private; 3007 struct pool *pool = pt->pool; 3008 sector_t data_size = ti->len; 3009 dm_block_t sb_data_size; 3010 3011 *need_commit = false; 3012 3013 (void) sector_div(data_size, pool->sectors_per_block); 3014 3015 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3016 if (r) { 3017 DMERR("%s: failed to retrieve data device size", 3018 dm_device_name(pool->pool_md)); 3019 return r; 3020 } 3021 3022 if (data_size < sb_data_size) { 3023 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3024 dm_device_name(pool->pool_md), 3025 (unsigned long long)data_size, sb_data_size); 3026 return -EINVAL; 3027 3028 } else if (data_size > sb_data_size) { 3029 if (dm_pool_metadata_needs_check(pool->pmd)) { 3030 DMERR("%s: unable to grow the data device until repaired.", 3031 dm_device_name(pool->pool_md)); 3032 return 0; 3033 } 3034 3035 if (sb_data_size) 3036 DMINFO("%s: growing the data device from %llu to %llu blocks", 3037 dm_device_name(pool->pool_md), 3038 sb_data_size, (unsigned long long)data_size); 3039 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3040 if (r) { 3041 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3042 return r; 3043 } 3044 3045 *need_commit = true; 3046 } 3047 3048 return 0; 3049} 3050 3051static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3052{ 3053 int r; 3054 struct pool_c *pt = ti->private; 3055 struct pool *pool = pt->pool; 3056 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3057 3058 *need_commit = false; 3059 3060 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3061 3062 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3063 if (r) { 3064 DMERR("%s: failed to retrieve metadata device size", 3065 dm_device_name(pool->pool_md)); 3066 return r; 3067 } 3068 3069 if (metadata_dev_size < sb_metadata_dev_size) { 3070 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3071 dm_device_name(pool->pool_md), 3072 metadata_dev_size, sb_metadata_dev_size); 3073 return -EINVAL; 3074 3075 } else if (metadata_dev_size > sb_metadata_dev_size) { 3076 if (dm_pool_metadata_needs_check(pool->pmd)) { 3077 DMERR("%s: unable to grow the metadata device until repaired.", 3078 dm_device_name(pool->pool_md)); 3079 return 0; 3080 } 3081 3082 warn_if_metadata_device_too_big(pool->md_dev); 3083 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3084 dm_device_name(pool->pool_md), 3085 sb_metadata_dev_size, metadata_dev_size); 3086 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3087 if (r) { 3088 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3089 return r; 3090 } 3091 3092 *need_commit = true; 3093 } 3094 3095 return 0; 3096} 3097 3098/* 3099 * Retrieves the number of blocks of the data device from 3100 * the superblock and compares it to the actual device size, 3101 * thus resizing the data device in case it has grown. 3102 * 3103 * This both copes with opening preallocated data devices in the ctr 3104 * being followed by a resume 3105 * -and- 3106 * calling the resume method individually after userspace has 3107 * grown the data device in reaction to a table event. 3108 */ 3109static int pool_preresume(struct dm_target *ti) 3110{ 3111 int r; 3112 bool need_commit1, need_commit2; 3113 struct pool_c *pt = ti->private; 3114 struct pool *pool = pt->pool; 3115 3116 /* 3117 * Take control of the pool object. 3118 */ 3119 r = bind_control_target(pool, ti); 3120 if (r) 3121 return r; 3122 3123 r = maybe_resize_data_dev(ti, &need_commit1); 3124 if (r) 3125 return r; 3126 3127 r = maybe_resize_metadata_dev(ti, &need_commit2); 3128 if (r) 3129 return r; 3130 3131 if (need_commit1 || need_commit2) 3132 (void) commit(pool); 3133 3134 return 0; 3135} 3136 3137static void pool_suspend_active_thins(struct pool *pool) 3138{ 3139 struct thin_c *tc; 3140 3141 /* Suspend all active thin devices */ 3142 tc = get_first_thin(pool); 3143 while (tc) { 3144 dm_internal_suspend_noflush(tc->thin_md); 3145 tc = get_next_thin(pool, tc); 3146 } 3147} 3148 3149static void pool_resume_active_thins(struct pool *pool) 3150{ 3151 struct thin_c *tc; 3152 3153 /* Resume all active thin devices */ 3154 tc = get_first_thin(pool); 3155 while (tc) { 3156 dm_internal_resume(tc->thin_md); 3157 tc = get_next_thin(pool, tc); 3158 } 3159} 3160 3161static void pool_resume(struct dm_target *ti) 3162{ 3163 struct pool_c *pt = ti->private; 3164 struct pool *pool = pt->pool; 3165 unsigned long flags; 3166 3167 /* 3168 * Must requeue active_thins' bios and then resume 3169 * active_thins _before_ clearing 'suspend' flag. 3170 */ 3171 requeue_bios(pool); 3172 pool_resume_active_thins(pool); 3173 3174 spin_lock_irqsave(&pool->lock, flags); 3175 pool->low_water_triggered = false; 3176 pool->suspended = false; 3177 spin_unlock_irqrestore(&pool->lock, flags); 3178 3179 do_waker(&pool->waker.work); 3180} 3181 3182static void pool_presuspend(struct dm_target *ti) 3183{ 3184 struct pool_c *pt = ti->private; 3185 struct pool *pool = pt->pool; 3186 unsigned long flags; 3187 3188 spin_lock_irqsave(&pool->lock, flags); 3189 pool->suspended = true; 3190 spin_unlock_irqrestore(&pool->lock, flags); 3191 3192 pool_suspend_active_thins(pool); 3193} 3194 3195static void pool_presuspend_undo(struct dm_target *ti) 3196{ 3197 struct pool_c *pt = ti->private; 3198 struct pool *pool = pt->pool; 3199 unsigned long flags; 3200 3201 pool_resume_active_thins(pool); 3202 3203 spin_lock_irqsave(&pool->lock, flags); 3204 pool->suspended = false; 3205 spin_unlock_irqrestore(&pool->lock, flags); 3206} 3207 3208static void pool_postsuspend(struct dm_target *ti) 3209{ 3210 struct pool_c *pt = ti->private; 3211 struct pool *pool = pt->pool; 3212 3213 cancel_delayed_work_sync(&pool->waker); 3214 cancel_delayed_work_sync(&pool->no_space_timeout); 3215 flush_workqueue(pool->wq); 3216 (void) commit(pool); 3217} 3218 3219static int check_arg_count(unsigned argc, unsigned args_required) 3220{ 3221 if (argc != args_required) { 3222 DMWARN("Message received with %u arguments instead of %u.", 3223 argc, args_required); 3224 return -EINVAL; 3225 } 3226 3227 return 0; 3228} 3229 3230static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3231{ 3232 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3233 *dev_id <= MAX_DEV_ID) 3234 return 0; 3235 3236 if (warning) 3237 DMWARN("Message received with invalid device id: %s", arg); 3238 3239 return -EINVAL; 3240} 3241 3242static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3243{ 3244 dm_thin_id dev_id; 3245 int r; 3246 3247 r = check_arg_count(argc, 2); 3248 if (r) 3249 return r; 3250 3251 r = read_dev_id(argv[1], &dev_id, 1); 3252 if (r) 3253 return r; 3254 3255 r = dm_pool_create_thin(pool->pmd, dev_id); 3256 if (r) { 3257 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3258 argv[1]); 3259 return r; 3260 } 3261 3262 return 0; 3263} 3264 3265static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3266{ 3267 dm_thin_id dev_id; 3268 dm_thin_id origin_dev_id; 3269 int r; 3270 3271 r = check_arg_count(argc, 3); 3272 if (r) 3273 return r; 3274 3275 r = read_dev_id(argv[1], &dev_id, 1); 3276 if (r) 3277 return r; 3278 3279 r = read_dev_id(argv[2], &origin_dev_id, 1); 3280 if (r) 3281 return r; 3282 3283 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3284 if (r) { 3285 DMWARN("Creation of new snapshot %s of device %s failed.", 3286 argv[1], argv[2]); 3287 return r; 3288 } 3289 3290 return 0; 3291} 3292 3293static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3294{ 3295 dm_thin_id dev_id; 3296 int r; 3297 3298 r = check_arg_count(argc, 2); 3299 if (r) 3300 return r; 3301 3302 r = read_dev_id(argv[1], &dev_id, 1); 3303 if (r) 3304 return r; 3305 3306 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3307 if (r) 3308 DMWARN("Deletion of thin device %s failed.", argv[1]); 3309 3310 return r; 3311} 3312 3313static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3314{ 3315 dm_thin_id old_id, new_id; 3316 int r; 3317 3318 r = check_arg_count(argc, 3); 3319 if (r) 3320 return r; 3321 3322 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3323 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3324 return -EINVAL; 3325 } 3326 3327 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3328 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3329 return -EINVAL; 3330 } 3331 3332 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3333 if (r) { 3334 DMWARN("Failed to change transaction id from %s to %s.", 3335 argv[1], argv[2]); 3336 return r; 3337 } 3338 3339 return 0; 3340} 3341 3342static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3343{ 3344 int r; 3345 3346 r = check_arg_count(argc, 1); 3347 if (r) 3348 return r; 3349 3350 (void) commit(pool); 3351 3352 r = dm_pool_reserve_metadata_snap(pool->pmd); 3353 if (r) 3354 DMWARN("reserve_metadata_snap message failed."); 3355 3356 return r; 3357} 3358 3359static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3360{ 3361 int r; 3362 3363 r = check_arg_count(argc, 1); 3364 if (r) 3365 return r; 3366 3367 r = dm_pool_release_metadata_snap(pool->pmd); 3368 if (r) 3369 DMWARN("release_metadata_snap message failed."); 3370 3371 return r; 3372} 3373 3374/* 3375 * Messages supported: 3376 * create_thin <dev_id> 3377 * create_snap <dev_id> <origin_id> 3378 * delete <dev_id> 3379 * set_transaction_id <current_trans_id> <new_trans_id> 3380 * reserve_metadata_snap 3381 * release_metadata_snap 3382 */ 3383static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3384{ 3385 int r = -EINVAL; 3386 struct pool_c *pt = ti->private; 3387 struct pool *pool = pt->pool; 3388 3389 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3390 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3391 dm_device_name(pool->pool_md)); 3392 return -EINVAL; 3393 } 3394 3395 if (!strcasecmp(argv[0], "create_thin")) 3396 r = process_create_thin_mesg(argc, argv, pool); 3397 3398 else if (!strcasecmp(argv[0], "create_snap")) 3399 r = process_create_snap_mesg(argc, argv, pool); 3400 3401 else if (!strcasecmp(argv[0], "delete")) 3402 r = process_delete_mesg(argc, argv, pool); 3403 3404 else if (!strcasecmp(argv[0], "set_transaction_id")) 3405 r = process_set_transaction_id_mesg(argc, argv, pool); 3406 3407 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3408 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3409 3410 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3411 r = process_release_metadata_snap_mesg(argc, argv, pool); 3412 3413 else 3414 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3415 3416 if (!r) 3417 (void) commit(pool); 3418 3419 return r; 3420} 3421 3422static void emit_flags(struct pool_features *pf, char *result, 3423 unsigned sz, unsigned maxlen) 3424{ 3425 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3426 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3427 pf->error_if_no_space; 3428 DMEMIT("%u ", count); 3429 3430 if (!pf->zero_new_blocks) 3431 DMEMIT("skip_block_zeroing "); 3432 3433 if (!pf->discard_enabled) 3434 DMEMIT("ignore_discard "); 3435 3436 if (!pf->discard_passdown) 3437 DMEMIT("no_discard_passdown "); 3438 3439 if (pf->mode == PM_READ_ONLY) 3440 DMEMIT("read_only "); 3441 3442 if (pf->error_if_no_space) 3443 DMEMIT("error_if_no_space "); 3444} 3445 3446/* 3447 * Status line is: 3448 * <transaction id> <used metadata sectors>/<total metadata sectors> 3449 * <used data sectors>/<total data sectors> <held metadata root> 3450 */ 3451static void pool_status(struct dm_target *ti, status_type_t type, 3452 unsigned status_flags, char *result, unsigned maxlen) 3453{ 3454 int r; 3455 unsigned sz = 0; 3456 uint64_t transaction_id; 3457 dm_block_t nr_free_blocks_data; 3458 dm_block_t nr_free_blocks_metadata; 3459 dm_block_t nr_blocks_data; 3460 dm_block_t nr_blocks_metadata; 3461 dm_block_t held_root; 3462 char buf[BDEVNAME_SIZE]; 3463 char buf2[BDEVNAME_SIZE]; 3464 struct pool_c *pt = ti->private; 3465 struct pool *pool = pt->pool; 3466 3467 switch (type) { 3468 case STATUSTYPE_INFO: 3469 if (get_pool_mode(pool) == PM_FAIL) { 3470 DMEMIT("Fail"); 3471 break; 3472 } 3473 3474 /* Commit to ensure statistics aren't out-of-date */ 3475 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3476 (void) commit(pool); 3477 3478 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3479 if (r) { 3480 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3481 dm_device_name(pool->pool_md), r); 3482 goto err; 3483 } 3484 3485 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3486 if (r) { 3487 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3488 dm_device_name(pool->pool_md), r); 3489 goto err; 3490 } 3491 3492 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3493 if (r) { 3494 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3495 dm_device_name(pool->pool_md), r); 3496 goto err; 3497 } 3498 3499 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3500 if (r) { 3501 DMERR("%s: dm_pool_get_free_block_count returned %d", 3502 dm_device_name(pool->pool_md), r); 3503 goto err; 3504 } 3505 3506 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3507 if (r) { 3508 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3509 dm_device_name(pool->pool_md), r); 3510 goto err; 3511 } 3512 3513 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3514 if (r) { 3515 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3516 dm_device_name(pool->pool_md), r); 3517 goto err; 3518 } 3519 3520 DMEMIT("%llu %llu/%llu %llu/%llu ", 3521 (unsigned long long)transaction_id, 3522 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3523 (unsigned long long)nr_blocks_metadata, 3524 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3525 (unsigned long long)nr_blocks_data); 3526 3527 if (held_root) 3528 DMEMIT("%llu ", held_root); 3529 else 3530 DMEMIT("- "); 3531 3532 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3533 DMEMIT("out_of_data_space "); 3534 else if (pool->pf.mode == PM_READ_ONLY) 3535 DMEMIT("ro "); 3536 else 3537 DMEMIT("rw "); 3538 3539 if (!pool->pf.discard_enabled) 3540 DMEMIT("ignore_discard "); 3541 else if (pool->pf.discard_passdown) 3542 DMEMIT("discard_passdown "); 3543 else 3544 DMEMIT("no_discard_passdown "); 3545 3546 if (pool->pf.error_if_no_space) 3547 DMEMIT("error_if_no_space "); 3548 else 3549 DMEMIT("queue_if_no_space "); 3550 3551 break; 3552 3553 case STATUSTYPE_TABLE: 3554 DMEMIT("%s %s %lu %llu ", 3555 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3556 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3557 (unsigned long)pool->sectors_per_block, 3558 (unsigned long long)pt->low_water_blocks); 3559 emit_flags(&pt->requested_pf, result, sz, maxlen); 3560 break; 3561 } 3562 return; 3563 3564err: 3565 DMEMIT("Error"); 3566} 3567 3568static int pool_iterate_devices(struct dm_target *ti, 3569 iterate_devices_callout_fn fn, void *data) 3570{ 3571 struct pool_c *pt = ti->private; 3572 3573 return fn(ti, pt->data_dev, 0, ti->len, data); 3574} 3575 3576static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3577 struct bio_vec *biovec, int max_size) 3578{ 3579 struct pool_c *pt = ti->private; 3580 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3581 3582 if (!q->merge_bvec_fn) 3583 return max_size; 3584 3585 bvm->bi_bdev = pt->data_dev->bdev; 3586 3587 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3588} 3589 3590static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 3591{ 3592 struct pool *pool = pt->pool; 3593 struct queue_limits *data_limits; 3594 3595 limits->max_discard_sectors = pool->sectors_per_block; 3596 3597 /* 3598 * discard_granularity is just a hint, and not enforced. 3599 */ 3600 if (pt->adjusted_pf.discard_passdown) { 3601 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3602 limits->discard_granularity = max(data_limits->discard_granularity, 3603 pool->sectors_per_block << SECTOR_SHIFT); 3604 } else 3605 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3606} 3607 3608static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3609{ 3610 struct pool_c *pt = ti->private; 3611 struct pool *pool = pt->pool; 3612 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3613 3614 /* 3615 * If max_sectors is smaller than pool->sectors_per_block adjust it 3616 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3617 * This is especially beneficial when the pool's data device is a RAID 3618 * device that has a full stripe width that matches pool->sectors_per_block 3619 * -- because even though partial RAID stripe-sized IOs will be issued to a 3620 * single RAID stripe; when aggregated they will end on a full RAID stripe 3621 * boundary.. which avoids additional partial RAID stripe writes cascading 3622 */ 3623 if (limits->max_sectors < pool->sectors_per_block) { 3624 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3625 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3626 limits->max_sectors--; 3627 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3628 } 3629 } 3630 3631 /* 3632 * If the system-determined stacked limits are compatible with the 3633 * pool's blocksize (io_opt is a factor) do not override them. 3634 */ 3635 if (io_opt_sectors < pool->sectors_per_block || 3636 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3637 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3638 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3639 else 3640 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3641 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3642 } 3643 3644 /* 3645 * pt->adjusted_pf is a staging area for the actual features to use. 3646 * They get transferred to the live pool in bind_control_target() 3647 * called from pool_preresume(). 3648 */ 3649 if (!pt->adjusted_pf.discard_enabled) { 3650 /* 3651 * Must explicitly disallow stacking discard limits otherwise the 3652 * block layer will stack them if pool's data device has support. 3653 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3654 * user to see that, so make sure to set all discard limits to 0. 3655 */ 3656 limits->discard_granularity = 0; 3657 return; 3658 } 3659 3660 disable_passdown_if_not_supported(pt); 3661 3662 set_discard_limits(pt, limits); 3663} 3664 3665static struct target_type pool_target = { 3666 .name = "thin-pool", 3667 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3668 DM_TARGET_IMMUTABLE, 3669 .version = {1, 14, 0}, 3670 .module = THIS_MODULE, 3671 .ctr = pool_ctr, 3672 .dtr = pool_dtr, 3673 .map = pool_map, 3674 .presuspend = pool_presuspend, 3675 .presuspend_undo = pool_presuspend_undo, 3676 .postsuspend = pool_postsuspend, 3677 .preresume = pool_preresume, 3678 .resume = pool_resume, 3679 .message = pool_message, 3680 .status = pool_status, 3681 .merge = pool_merge, 3682 .iterate_devices = pool_iterate_devices, 3683 .io_hints = pool_io_hints, 3684}; 3685 3686/*---------------------------------------------------------------- 3687 * Thin target methods 3688 *--------------------------------------------------------------*/ 3689static void thin_get(struct thin_c *tc) 3690{ 3691 atomic_inc(&tc->refcount); 3692} 3693 3694static void thin_put(struct thin_c *tc) 3695{ 3696 if (atomic_dec_and_test(&tc->refcount)) 3697 complete(&tc->can_destroy); 3698} 3699 3700static void thin_dtr(struct dm_target *ti) 3701{ 3702 struct thin_c *tc = ti->private; 3703 unsigned long flags; 3704 3705 spin_lock_irqsave(&tc->pool->lock, flags); 3706 list_del_rcu(&tc->list); 3707 spin_unlock_irqrestore(&tc->pool->lock, flags); 3708 synchronize_rcu(); 3709 3710 thin_put(tc); 3711 wait_for_completion(&tc->can_destroy); 3712 3713 mutex_lock(&dm_thin_pool_table.mutex); 3714 3715 __pool_dec(tc->pool); 3716 dm_pool_close_thin_device(tc->td); 3717 dm_put_device(ti, tc->pool_dev); 3718 if (tc->origin_dev) 3719 dm_put_device(ti, tc->origin_dev); 3720 kfree(tc); 3721 3722 mutex_unlock(&dm_thin_pool_table.mutex); 3723} 3724 3725/* 3726 * Thin target parameters: 3727 * 3728 * <pool_dev> <dev_id> [origin_dev] 3729 * 3730 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3731 * dev_id: the internal device identifier 3732 * origin_dev: a device external to the pool that should act as the origin 3733 * 3734 * If the pool device has discards disabled, they get disabled for the thin 3735 * device as well. 3736 */ 3737static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3738{ 3739 int r; 3740 struct thin_c *tc; 3741 struct dm_dev *pool_dev, *origin_dev; 3742 struct mapped_device *pool_md; 3743 unsigned long flags; 3744 3745 mutex_lock(&dm_thin_pool_table.mutex); 3746 3747 if (argc != 2 && argc != 3) { 3748 ti->error = "Invalid argument count"; 3749 r = -EINVAL; 3750 goto out_unlock; 3751 } 3752 3753 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3754 if (!tc) { 3755 ti->error = "Out of memory"; 3756 r = -ENOMEM; 3757 goto out_unlock; 3758 } 3759 tc->thin_md = dm_table_get_md(ti->table); 3760 spin_lock_init(&tc->lock); 3761 INIT_LIST_HEAD(&tc->deferred_cells); 3762 bio_list_init(&tc->deferred_bio_list); 3763 bio_list_init(&tc->retry_on_resume_list); 3764 tc->sort_bio_list = RB_ROOT; 3765 3766 if (argc == 3) { 3767 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3768 if (r) { 3769 ti->error = "Error opening origin device"; 3770 goto bad_origin_dev; 3771 } 3772 tc->origin_dev = origin_dev; 3773 } 3774 3775 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3776 if (r) { 3777 ti->error = "Error opening pool device"; 3778 goto bad_pool_dev; 3779 } 3780 tc->pool_dev = pool_dev; 3781 3782 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3783 ti->error = "Invalid device id"; 3784 r = -EINVAL; 3785 goto bad_common; 3786 } 3787 3788 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3789 if (!pool_md) { 3790 ti->error = "Couldn't get pool mapped device"; 3791 r = -EINVAL; 3792 goto bad_common; 3793 } 3794 3795 tc->pool = __pool_table_lookup(pool_md); 3796 if (!tc->pool) { 3797 ti->error = "Couldn't find pool object"; 3798 r = -EINVAL; 3799 goto bad_pool_lookup; 3800 } 3801 __pool_inc(tc->pool); 3802 3803 if (get_pool_mode(tc->pool) == PM_FAIL) { 3804 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3805 r = -EINVAL; 3806 goto bad_pool; 3807 } 3808 3809 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3810 if (r) { 3811 ti->error = "Couldn't open thin internal device"; 3812 goto bad_pool; 3813 } 3814 3815 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3816 if (r) 3817 goto bad; 3818 3819 ti->num_flush_bios = 1; 3820 ti->flush_supported = true; 3821 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3822 3823 /* In case the pool supports discards, pass them on. */ 3824 ti->discard_zeroes_data_unsupported = true; 3825 if (tc->pool->pf.discard_enabled) { 3826 ti->discards_supported = true; 3827 ti->num_discard_bios = 1; 3828 /* Discard bios must be split on a block boundary */ 3829 ti->split_discard_bios = true; 3830 } 3831 3832 mutex_unlock(&dm_thin_pool_table.mutex); 3833 3834 spin_lock_irqsave(&tc->pool->lock, flags); 3835 if (tc->pool->suspended) { 3836 spin_unlock_irqrestore(&tc->pool->lock, flags); 3837 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 3838 ti->error = "Unable to activate thin device while pool is suspended"; 3839 r = -EINVAL; 3840 goto bad; 3841 } 3842 atomic_set(&tc->refcount, 1); 3843 init_completion(&tc->can_destroy); 3844 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3845 spin_unlock_irqrestore(&tc->pool->lock, flags); 3846 /* 3847 * This synchronize_rcu() call is needed here otherwise we risk a 3848 * wake_worker() call finding no bios to process (because the newly 3849 * added tc isn't yet visible). So this reduces latency since we 3850 * aren't then dependent on the periodic commit to wake_worker(). 3851 */ 3852 synchronize_rcu(); 3853 3854 dm_put(pool_md); 3855 3856 return 0; 3857 3858bad: 3859 dm_pool_close_thin_device(tc->td); 3860bad_pool: 3861 __pool_dec(tc->pool); 3862bad_pool_lookup: 3863 dm_put(pool_md); 3864bad_common: 3865 dm_put_device(ti, tc->pool_dev); 3866bad_pool_dev: 3867 if (tc->origin_dev) 3868 dm_put_device(ti, tc->origin_dev); 3869bad_origin_dev: 3870 kfree(tc); 3871out_unlock: 3872 mutex_unlock(&dm_thin_pool_table.mutex); 3873 3874 return r; 3875} 3876 3877static int thin_map(struct dm_target *ti, struct bio *bio) 3878{ 3879 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3880 3881 return thin_bio_map(ti, bio); 3882} 3883 3884static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3885{ 3886 unsigned long flags; 3887 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3888 struct list_head work; 3889 struct dm_thin_new_mapping *m, *tmp; 3890 struct pool *pool = h->tc->pool; 3891 3892 if (h->shared_read_entry) { 3893 INIT_LIST_HEAD(&work); 3894 dm_deferred_entry_dec(h->shared_read_entry, &work); 3895 3896 spin_lock_irqsave(&pool->lock, flags); 3897 list_for_each_entry_safe(m, tmp, &work, list) { 3898 list_del(&m->list); 3899 __complete_mapping_preparation(m); 3900 } 3901 spin_unlock_irqrestore(&pool->lock, flags); 3902 } 3903 3904 if (h->all_io_entry) { 3905 INIT_LIST_HEAD(&work); 3906 dm_deferred_entry_dec(h->all_io_entry, &work); 3907 if (!list_empty(&work)) { 3908 spin_lock_irqsave(&pool->lock, flags); 3909 list_for_each_entry_safe(m, tmp, &work, list) 3910 list_add_tail(&m->list, &pool->prepared_discards); 3911 spin_unlock_irqrestore(&pool->lock, flags); 3912 wake_worker(pool); 3913 } 3914 } 3915 3916 return 0; 3917} 3918 3919static void thin_presuspend(struct dm_target *ti) 3920{ 3921 struct thin_c *tc = ti->private; 3922 3923 if (dm_noflush_suspending(ti)) 3924 noflush_work(tc, do_noflush_start); 3925} 3926 3927static void thin_postsuspend(struct dm_target *ti) 3928{ 3929 struct thin_c *tc = ti->private; 3930 3931 /* 3932 * The dm_noflush_suspending flag has been cleared by now, so 3933 * unfortunately we must always run this. 3934 */ 3935 noflush_work(tc, do_noflush_stop); 3936} 3937 3938static int thin_preresume(struct dm_target *ti) 3939{ 3940 struct thin_c *tc = ti->private; 3941 3942 if (tc->origin_dev) 3943 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 3944 3945 return 0; 3946} 3947 3948/* 3949 * <nr mapped sectors> <highest mapped sector> 3950 */ 3951static void thin_status(struct dm_target *ti, status_type_t type, 3952 unsigned status_flags, char *result, unsigned maxlen) 3953{ 3954 int r; 3955 ssize_t sz = 0; 3956 dm_block_t mapped, highest; 3957 char buf[BDEVNAME_SIZE]; 3958 struct thin_c *tc = ti->private; 3959 3960 if (get_pool_mode(tc->pool) == PM_FAIL) { 3961 DMEMIT("Fail"); 3962 return; 3963 } 3964 3965 if (!tc->td) 3966 DMEMIT("-"); 3967 else { 3968 switch (type) { 3969 case STATUSTYPE_INFO: 3970 r = dm_thin_get_mapped_count(tc->td, &mapped); 3971 if (r) { 3972 DMERR("dm_thin_get_mapped_count returned %d", r); 3973 goto err; 3974 } 3975 3976 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3977 if (r < 0) { 3978 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3979 goto err; 3980 } 3981 3982 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3983 if (r) 3984 DMEMIT("%llu", ((highest + 1) * 3985 tc->pool->sectors_per_block) - 1); 3986 else 3987 DMEMIT("-"); 3988 break; 3989 3990 case STATUSTYPE_TABLE: 3991 DMEMIT("%s %lu", 3992 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3993 (unsigned long) tc->dev_id); 3994 if (tc->origin_dev) 3995 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3996 break; 3997 } 3998 } 3999 4000 return; 4001 4002err: 4003 DMEMIT("Error"); 4004} 4005 4006static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 4007 struct bio_vec *biovec, int max_size) 4008{ 4009 struct thin_c *tc = ti->private; 4010 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev); 4011 4012 if (!q->merge_bvec_fn) 4013 return max_size; 4014 4015 bvm->bi_bdev = tc->pool_dev->bdev; 4016 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector); 4017 4018 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 4019} 4020 4021static int thin_iterate_devices(struct dm_target *ti, 4022 iterate_devices_callout_fn fn, void *data) 4023{ 4024 sector_t blocks; 4025 struct thin_c *tc = ti->private; 4026 struct pool *pool = tc->pool; 4027 4028 /* 4029 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4030 * we follow a more convoluted path through to the pool's target. 4031 */ 4032 if (!pool->ti) 4033 return 0; /* nothing is bound */ 4034 4035 blocks = pool->ti->len; 4036 (void) sector_div(blocks, pool->sectors_per_block); 4037 if (blocks) 4038 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4039 4040 return 0; 4041} 4042 4043static struct target_type thin_target = { 4044 .name = "thin", 4045 .version = {1, 14, 0}, 4046 .module = THIS_MODULE, 4047 .ctr = thin_ctr, 4048 .dtr = thin_dtr, 4049 .map = thin_map, 4050 .end_io = thin_endio, 4051 .preresume = thin_preresume, 4052 .presuspend = thin_presuspend, 4053 .postsuspend = thin_postsuspend, 4054 .status = thin_status, 4055 .merge = thin_merge, 4056 .iterate_devices = thin_iterate_devices, 4057}; 4058 4059/*----------------------------------------------------------------*/ 4060 4061static int __init dm_thin_init(void) 4062{ 4063 int r; 4064 4065 pool_table_init(); 4066 4067 r = dm_register_target(&thin_target); 4068 if (r) 4069 return r; 4070 4071 r = dm_register_target(&pool_target); 4072 if (r) 4073 goto bad_pool_target; 4074 4075 r = -ENOMEM; 4076 4077 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4078 if (!_new_mapping_cache) 4079 goto bad_new_mapping_cache; 4080 4081 return 0; 4082 4083bad_new_mapping_cache: 4084 dm_unregister_target(&pool_target); 4085bad_pool_target: 4086 dm_unregister_target(&thin_target); 4087 4088 return r; 4089} 4090 4091static void dm_thin_exit(void) 4092{ 4093 dm_unregister_target(&thin_target); 4094 dm_unregister_target(&pool_target); 4095 4096 kmem_cache_destroy(_new_mapping_cache); 4097} 4098 4099module_init(dm_thin_init); 4100module_exit(dm_thin_exit); 4101 4102module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4103MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4104 4105MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4106MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4107MODULE_LICENSE("GPL"); 4108