1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/log2.h>
16#include <linux/list.h>
17#include <linux/rculist.h>
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/sort.h>
23#include <linux/rbtree.h>
24
25#define	DM_MSG_PREFIX	"thin"
26
27/*
28 * Tunable constants
29 */
30#define ENDIO_HOOK_POOL_SIZE 1024
31#define MAPPING_POOL_SIZE 1024
32#define COMMIT_PERIOD HZ
33#define NO_SPACE_TIMEOUT_SECS 60
34
35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38		"A percentage of time allocated for copy on write");
39
40/*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47/*
48 * Device id is restricted to 24 bits.
49 */
50#define MAX_DEV_ID ((1 << 24) - 1)
51
52/*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data).  When you take an internal snapshot you clone the root node
59 * of the origin btree.  After this there is no concept of an origin or a
60 * snapshot.  They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic.  If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin.  The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block.  Obviously
72 * including all devices that share this block.  (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block.  This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping).  This act of inserting breaks some
79 * sharing of btree nodes between the two devices.  Breaking sharing only
80 * effects the btree of that specific device.  Btrees for the other
81 * devices that share the block never change.  The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues.  We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one).  This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block.  As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing.  I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block.  At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110/*----------------------------------------------------------------*/
111
112/*
113 * Key building.
114 */
115static void build_data_key(struct dm_thin_device *td,
116			   dm_block_t b, struct dm_cell_key *key)
117{
118	key->virtual = 0;
119	key->dev = dm_thin_dev_id(td);
120	key->block_begin = b;
121	key->block_end = b + 1ULL;
122}
123
124static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
125			      struct dm_cell_key *key)
126{
127	key->virtual = 1;
128	key->dev = dm_thin_dev_id(td);
129	key->block_begin = b;
130	key->block_end = b + 1ULL;
131}
132
133/*----------------------------------------------------------------*/
134
135#define THROTTLE_THRESHOLD (1 * HZ)
136
137struct throttle {
138	struct rw_semaphore lock;
139	unsigned long threshold;
140	bool throttle_applied;
141};
142
143static void throttle_init(struct throttle *t)
144{
145	init_rwsem(&t->lock);
146	t->throttle_applied = false;
147}
148
149static void throttle_work_start(struct throttle *t)
150{
151	t->threshold = jiffies + THROTTLE_THRESHOLD;
152}
153
154static void throttle_work_update(struct throttle *t)
155{
156	if (!t->throttle_applied && jiffies > t->threshold) {
157		down_write(&t->lock);
158		t->throttle_applied = true;
159	}
160}
161
162static void throttle_work_complete(struct throttle *t)
163{
164	if (t->throttle_applied) {
165		t->throttle_applied = false;
166		up_write(&t->lock);
167	}
168}
169
170static void throttle_lock(struct throttle *t)
171{
172	down_read(&t->lock);
173}
174
175static void throttle_unlock(struct throttle *t)
176{
177	up_read(&t->lock);
178}
179
180/*----------------------------------------------------------------*/
181
182/*
183 * A pool device ties together a metadata device and a data device.  It
184 * also provides the interface for creating and destroying internal
185 * devices.
186 */
187struct dm_thin_new_mapping;
188
189/*
190 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
191 */
192enum pool_mode {
193	PM_WRITE,		/* metadata may be changed */
194	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
195	PM_READ_ONLY,		/* metadata may not be changed */
196	PM_FAIL,		/* all I/O fails */
197};
198
199struct pool_features {
200	enum pool_mode mode;
201
202	bool zero_new_blocks:1;
203	bool discard_enabled:1;
204	bool discard_passdown:1;
205	bool error_if_no_space:1;
206};
207
208struct thin_c;
209typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
210typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
211typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
212
213#define CELL_SORT_ARRAY_SIZE 8192
214
215struct pool {
216	struct list_head list;
217	struct dm_target *ti;	/* Only set if a pool target is bound */
218
219	struct mapped_device *pool_md;
220	struct block_device *md_dev;
221	struct dm_pool_metadata *pmd;
222
223	dm_block_t low_water_blocks;
224	uint32_t sectors_per_block;
225	int sectors_per_block_shift;
226
227	struct pool_features pf;
228	bool low_water_triggered:1;	/* A dm event has been sent */
229	bool suspended:1;
230
231	struct dm_bio_prison *prison;
232	struct dm_kcopyd_client *copier;
233
234	struct workqueue_struct *wq;
235	struct throttle throttle;
236	struct work_struct worker;
237	struct delayed_work waker;
238	struct delayed_work no_space_timeout;
239
240	unsigned long last_commit_jiffies;
241	unsigned ref_count;
242
243	spinlock_t lock;
244	struct bio_list deferred_flush_bios;
245	struct list_head prepared_mappings;
246	struct list_head prepared_discards;
247	struct list_head active_thins;
248
249	struct dm_deferred_set *shared_read_ds;
250	struct dm_deferred_set *all_io_ds;
251
252	struct dm_thin_new_mapping *next_mapping;
253	mempool_t *mapping_pool;
254
255	process_bio_fn process_bio;
256	process_bio_fn process_discard;
257
258	process_cell_fn process_cell;
259	process_cell_fn process_discard_cell;
260
261	process_mapping_fn process_prepared_mapping;
262	process_mapping_fn process_prepared_discard;
263
264	struct dm_bio_prison_cell **cell_sort_array;
265};
266
267static enum pool_mode get_pool_mode(struct pool *pool);
268static void metadata_operation_failed(struct pool *pool, const char *op, int r);
269
270/*
271 * Target context for a pool.
272 */
273struct pool_c {
274	struct dm_target *ti;
275	struct pool *pool;
276	struct dm_dev *data_dev;
277	struct dm_dev *metadata_dev;
278	struct dm_target_callbacks callbacks;
279
280	dm_block_t low_water_blocks;
281	struct pool_features requested_pf; /* Features requested during table load */
282	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
283};
284
285/*
286 * Target context for a thin.
287 */
288struct thin_c {
289	struct list_head list;
290	struct dm_dev *pool_dev;
291	struct dm_dev *origin_dev;
292	sector_t origin_size;
293	dm_thin_id dev_id;
294
295	struct pool *pool;
296	struct dm_thin_device *td;
297	struct mapped_device *thin_md;
298
299	bool requeue_mode:1;
300	spinlock_t lock;
301	struct list_head deferred_cells;
302	struct bio_list deferred_bio_list;
303	struct bio_list retry_on_resume_list;
304	struct rb_root sort_bio_list; /* sorted list of deferred bios */
305
306	/*
307	 * Ensures the thin is not destroyed until the worker has finished
308	 * iterating the active_thins list.
309	 */
310	atomic_t refcount;
311	struct completion can_destroy;
312};
313
314/*----------------------------------------------------------------*/
315
316/*
317 * wake_worker() is used when new work is queued and when pool_resume is
318 * ready to continue deferred IO processing.
319 */
320static void wake_worker(struct pool *pool)
321{
322	queue_work(pool->wq, &pool->worker);
323}
324
325/*----------------------------------------------------------------*/
326
327static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
328		      struct dm_bio_prison_cell **cell_result)
329{
330	int r;
331	struct dm_bio_prison_cell *cell_prealloc;
332
333	/*
334	 * Allocate a cell from the prison's mempool.
335	 * This might block but it can't fail.
336	 */
337	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
338
339	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
340	if (r)
341		/*
342		 * We reused an old cell; we can get rid of
343		 * the new one.
344		 */
345		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
346
347	return r;
348}
349
350static void cell_release(struct pool *pool,
351			 struct dm_bio_prison_cell *cell,
352			 struct bio_list *bios)
353{
354	dm_cell_release(pool->prison, cell, bios);
355	dm_bio_prison_free_cell(pool->prison, cell);
356}
357
358static void cell_visit_release(struct pool *pool,
359			       void (*fn)(void *, struct dm_bio_prison_cell *),
360			       void *context,
361			       struct dm_bio_prison_cell *cell)
362{
363	dm_cell_visit_release(pool->prison, fn, context, cell);
364	dm_bio_prison_free_cell(pool->prison, cell);
365}
366
367static void cell_release_no_holder(struct pool *pool,
368				   struct dm_bio_prison_cell *cell,
369				   struct bio_list *bios)
370{
371	dm_cell_release_no_holder(pool->prison, cell, bios);
372	dm_bio_prison_free_cell(pool->prison, cell);
373}
374
375static void cell_error_with_code(struct pool *pool,
376				 struct dm_bio_prison_cell *cell, int error_code)
377{
378	dm_cell_error(pool->prison, cell, error_code);
379	dm_bio_prison_free_cell(pool->prison, cell);
380}
381
382static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
383{
384	cell_error_with_code(pool, cell, -EIO);
385}
386
387static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
388{
389	cell_error_with_code(pool, cell, 0);
390}
391
392static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
393{
394	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
395}
396
397/*----------------------------------------------------------------*/
398
399/*
400 * A global list of pools that uses a struct mapped_device as a key.
401 */
402static struct dm_thin_pool_table {
403	struct mutex mutex;
404	struct list_head pools;
405} dm_thin_pool_table;
406
407static void pool_table_init(void)
408{
409	mutex_init(&dm_thin_pool_table.mutex);
410	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
411}
412
413static void __pool_table_insert(struct pool *pool)
414{
415	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
416	list_add(&pool->list, &dm_thin_pool_table.pools);
417}
418
419static void __pool_table_remove(struct pool *pool)
420{
421	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
422	list_del(&pool->list);
423}
424
425static struct pool *__pool_table_lookup(struct mapped_device *md)
426{
427	struct pool *pool = NULL, *tmp;
428
429	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
430
431	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
432		if (tmp->pool_md == md) {
433			pool = tmp;
434			break;
435		}
436	}
437
438	return pool;
439}
440
441static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
442{
443	struct pool *pool = NULL, *tmp;
444
445	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
446
447	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
448		if (tmp->md_dev == md_dev) {
449			pool = tmp;
450			break;
451		}
452	}
453
454	return pool;
455}
456
457/*----------------------------------------------------------------*/
458
459struct dm_thin_endio_hook {
460	struct thin_c *tc;
461	struct dm_deferred_entry *shared_read_entry;
462	struct dm_deferred_entry *all_io_entry;
463	struct dm_thin_new_mapping *overwrite_mapping;
464	struct rb_node rb_node;
465};
466
467static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
468{
469	bio_list_merge(bios, master);
470	bio_list_init(master);
471}
472
473static void error_bio_list(struct bio_list *bios, int error)
474{
475	struct bio *bio;
476
477	while ((bio = bio_list_pop(bios)))
478		bio_endio(bio, error);
479}
480
481static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
482{
483	struct bio_list bios;
484	unsigned long flags;
485
486	bio_list_init(&bios);
487
488	spin_lock_irqsave(&tc->lock, flags);
489	__merge_bio_list(&bios, master);
490	spin_unlock_irqrestore(&tc->lock, flags);
491
492	error_bio_list(&bios, error);
493}
494
495static void requeue_deferred_cells(struct thin_c *tc)
496{
497	struct pool *pool = tc->pool;
498	unsigned long flags;
499	struct list_head cells;
500	struct dm_bio_prison_cell *cell, *tmp;
501
502	INIT_LIST_HEAD(&cells);
503
504	spin_lock_irqsave(&tc->lock, flags);
505	list_splice_init(&tc->deferred_cells, &cells);
506	spin_unlock_irqrestore(&tc->lock, flags);
507
508	list_for_each_entry_safe(cell, tmp, &cells, user_list)
509		cell_requeue(pool, cell);
510}
511
512static void requeue_io(struct thin_c *tc)
513{
514	struct bio_list bios;
515	unsigned long flags;
516
517	bio_list_init(&bios);
518
519	spin_lock_irqsave(&tc->lock, flags);
520	__merge_bio_list(&bios, &tc->deferred_bio_list);
521	__merge_bio_list(&bios, &tc->retry_on_resume_list);
522	spin_unlock_irqrestore(&tc->lock, flags);
523
524	error_bio_list(&bios, DM_ENDIO_REQUEUE);
525	requeue_deferred_cells(tc);
526}
527
528static void error_retry_list(struct pool *pool)
529{
530	struct thin_c *tc;
531
532	rcu_read_lock();
533	list_for_each_entry_rcu(tc, &pool->active_thins, list)
534		error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
535	rcu_read_unlock();
536}
537
538/*
539 * This section of code contains the logic for processing a thin device's IO.
540 * Much of the code depends on pool object resources (lists, workqueues, etc)
541 * but most is exclusively called from the thin target rather than the thin-pool
542 * target.
543 */
544
545static bool block_size_is_power_of_two(struct pool *pool)
546{
547	return pool->sectors_per_block_shift >= 0;
548}
549
550static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
551{
552	struct pool *pool = tc->pool;
553	sector_t block_nr = bio->bi_iter.bi_sector;
554
555	if (block_size_is_power_of_two(pool))
556		block_nr >>= pool->sectors_per_block_shift;
557	else
558		(void) sector_div(block_nr, pool->sectors_per_block);
559
560	return block_nr;
561}
562
563static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
564{
565	struct pool *pool = tc->pool;
566	sector_t bi_sector = bio->bi_iter.bi_sector;
567
568	bio->bi_bdev = tc->pool_dev->bdev;
569	if (block_size_is_power_of_two(pool))
570		bio->bi_iter.bi_sector =
571			(block << pool->sectors_per_block_shift) |
572			(bi_sector & (pool->sectors_per_block - 1));
573	else
574		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
575				 sector_div(bi_sector, pool->sectors_per_block);
576}
577
578static void remap_to_origin(struct thin_c *tc, struct bio *bio)
579{
580	bio->bi_bdev = tc->origin_dev->bdev;
581}
582
583static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
584{
585	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
586		dm_thin_changed_this_transaction(tc->td);
587}
588
589static void inc_all_io_entry(struct pool *pool, struct bio *bio)
590{
591	struct dm_thin_endio_hook *h;
592
593	if (bio->bi_rw & REQ_DISCARD)
594		return;
595
596	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
597	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
598}
599
600static void issue(struct thin_c *tc, struct bio *bio)
601{
602	struct pool *pool = tc->pool;
603	unsigned long flags;
604
605	if (!bio_triggers_commit(tc, bio)) {
606		generic_make_request(bio);
607		return;
608	}
609
610	/*
611	 * Complete bio with an error if earlier I/O caused changes to
612	 * the metadata that can't be committed e.g, due to I/O errors
613	 * on the metadata device.
614	 */
615	if (dm_thin_aborted_changes(tc->td)) {
616		bio_io_error(bio);
617		return;
618	}
619
620	/*
621	 * Batch together any bios that trigger commits and then issue a
622	 * single commit for them in process_deferred_bios().
623	 */
624	spin_lock_irqsave(&pool->lock, flags);
625	bio_list_add(&pool->deferred_flush_bios, bio);
626	spin_unlock_irqrestore(&pool->lock, flags);
627}
628
629static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
630{
631	remap_to_origin(tc, bio);
632	issue(tc, bio);
633}
634
635static void remap_and_issue(struct thin_c *tc, struct bio *bio,
636			    dm_block_t block)
637{
638	remap(tc, bio, block);
639	issue(tc, bio);
640}
641
642/*----------------------------------------------------------------*/
643
644/*
645 * Bio endio functions.
646 */
647struct dm_thin_new_mapping {
648	struct list_head list;
649
650	bool pass_discard:1;
651	bool definitely_not_shared:1;
652
653	/*
654	 * Track quiescing, copying and zeroing preparation actions.  When this
655	 * counter hits zero the block is prepared and can be inserted into the
656	 * btree.
657	 */
658	atomic_t prepare_actions;
659
660	int err;
661	struct thin_c *tc;
662	dm_block_t virt_block;
663	dm_block_t data_block;
664	struct dm_bio_prison_cell *cell, *cell2;
665
666	/*
667	 * If the bio covers the whole area of a block then we can avoid
668	 * zeroing or copying.  Instead this bio is hooked.  The bio will
669	 * still be in the cell, so care has to be taken to avoid issuing
670	 * the bio twice.
671	 */
672	struct bio *bio;
673	bio_end_io_t *saved_bi_end_io;
674};
675
676static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
677{
678	struct pool *pool = m->tc->pool;
679
680	if (atomic_dec_and_test(&m->prepare_actions)) {
681		list_add_tail(&m->list, &pool->prepared_mappings);
682		wake_worker(pool);
683	}
684}
685
686static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
687{
688	unsigned long flags;
689	struct pool *pool = m->tc->pool;
690
691	spin_lock_irqsave(&pool->lock, flags);
692	__complete_mapping_preparation(m);
693	spin_unlock_irqrestore(&pool->lock, flags);
694}
695
696static void copy_complete(int read_err, unsigned long write_err, void *context)
697{
698	struct dm_thin_new_mapping *m = context;
699
700	m->err = read_err || write_err ? -EIO : 0;
701	complete_mapping_preparation(m);
702}
703
704static void overwrite_endio(struct bio *bio, int err)
705{
706	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
707	struct dm_thin_new_mapping *m = h->overwrite_mapping;
708
709	m->err = err;
710	complete_mapping_preparation(m);
711}
712
713/*----------------------------------------------------------------*/
714
715/*
716 * Workqueue.
717 */
718
719/*
720 * Prepared mapping jobs.
721 */
722
723/*
724 * This sends the bios in the cell, except the original holder, back
725 * to the deferred_bios list.
726 */
727static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
728{
729	struct pool *pool = tc->pool;
730	unsigned long flags;
731
732	spin_lock_irqsave(&tc->lock, flags);
733	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
734	spin_unlock_irqrestore(&tc->lock, flags);
735
736	wake_worker(pool);
737}
738
739static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
740
741struct remap_info {
742	struct thin_c *tc;
743	struct bio_list defer_bios;
744	struct bio_list issue_bios;
745};
746
747static void __inc_remap_and_issue_cell(void *context,
748				       struct dm_bio_prison_cell *cell)
749{
750	struct remap_info *info = context;
751	struct bio *bio;
752
753	while ((bio = bio_list_pop(&cell->bios))) {
754		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
755			bio_list_add(&info->defer_bios, bio);
756		else {
757			inc_all_io_entry(info->tc->pool, bio);
758
759			/*
760			 * We can't issue the bios with the bio prison lock
761			 * held, so we add them to a list to issue on
762			 * return from this function.
763			 */
764			bio_list_add(&info->issue_bios, bio);
765		}
766	}
767}
768
769static void inc_remap_and_issue_cell(struct thin_c *tc,
770				     struct dm_bio_prison_cell *cell,
771				     dm_block_t block)
772{
773	struct bio *bio;
774	struct remap_info info;
775
776	info.tc = tc;
777	bio_list_init(&info.defer_bios);
778	bio_list_init(&info.issue_bios);
779
780	/*
781	 * We have to be careful to inc any bios we're about to issue
782	 * before the cell is released, and avoid a race with new bios
783	 * being added to the cell.
784	 */
785	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
786			   &info, cell);
787
788	while ((bio = bio_list_pop(&info.defer_bios)))
789		thin_defer_bio(tc, bio);
790
791	while ((bio = bio_list_pop(&info.issue_bios)))
792		remap_and_issue(info.tc, bio, block);
793}
794
795static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
796{
797	if (m->bio) {
798		m->bio->bi_end_io = m->saved_bi_end_io;
799		atomic_inc(&m->bio->bi_remaining);
800	}
801	cell_error(m->tc->pool, m->cell);
802	list_del(&m->list);
803	mempool_free(m, m->tc->pool->mapping_pool);
804}
805
806static void process_prepared_mapping(struct dm_thin_new_mapping *m)
807{
808	struct thin_c *tc = m->tc;
809	struct pool *pool = tc->pool;
810	struct bio *bio;
811	int r;
812
813	bio = m->bio;
814	if (bio) {
815		bio->bi_end_io = m->saved_bi_end_io;
816		atomic_inc(&bio->bi_remaining);
817	}
818
819	if (m->err) {
820		cell_error(pool, m->cell);
821		goto out;
822	}
823
824	/*
825	 * Commit the prepared block into the mapping btree.
826	 * Any I/O for this block arriving after this point will get
827	 * remapped to it directly.
828	 */
829	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
830	if (r) {
831		metadata_operation_failed(pool, "dm_thin_insert_block", r);
832		cell_error(pool, m->cell);
833		goto out;
834	}
835
836	/*
837	 * Release any bios held while the block was being provisioned.
838	 * If we are processing a write bio that completely covers the block,
839	 * we already processed it so can ignore it now when processing
840	 * the bios in the cell.
841	 */
842	if (bio) {
843		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
844		bio_endio(bio, 0);
845	} else {
846		inc_all_io_entry(tc->pool, m->cell->holder);
847		remap_and_issue(tc, m->cell->holder, m->data_block);
848		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
849	}
850
851out:
852	list_del(&m->list);
853	mempool_free(m, pool->mapping_pool);
854}
855
856static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
857{
858	struct thin_c *tc = m->tc;
859
860	bio_io_error(m->bio);
861	cell_defer_no_holder(tc, m->cell);
862	cell_defer_no_holder(tc, m->cell2);
863	mempool_free(m, tc->pool->mapping_pool);
864}
865
866static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
867{
868	struct thin_c *tc = m->tc;
869
870	inc_all_io_entry(tc->pool, m->bio);
871	cell_defer_no_holder(tc, m->cell);
872	cell_defer_no_holder(tc, m->cell2);
873
874	if (m->pass_discard)
875		if (m->definitely_not_shared)
876			remap_and_issue(tc, m->bio, m->data_block);
877		else {
878			bool used = false;
879			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
880				bio_endio(m->bio, 0);
881			else
882				remap_and_issue(tc, m->bio, m->data_block);
883		}
884	else
885		bio_endio(m->bio, 0);
886
887	mempool_free(m, tc->pool->mapping_pool);
888}
889
890static void process_prepared_discard(struct dm_thin_new_mapping *m)
891{
892	int r;
893	struct thin_c *tc = m->tc;
894
895	r = dm_thin_remove_block(tc->td, m->virt_block);
896	if (r)
897		DMERR_LIMIT("dm_thin_remove_block() failed");
898
899	process_prepared_discard_passdown(m);
900}
901
902static void process_prepared(struct pool *pool, struct list_head *head,
903			     process_mapping_fn *fn)
904{
905	unsigned long flags;
906	struct list_head maps;
907	struct dm_thin_new_mapping *m, *tmp;
908
909	INIT_LIST_HEAD(&maps);
910	spin_lock_irqsave(&pool->lock, flags);
911	list_splice_init(head, &maps);
912	spin_unlock_irqrestore(&pool->lock, flags);
913
914	list_for_each_entry_safe(m, tmp, &maps, list)
915		(*fn)(m);
916}
917
918/*
919 * Deferred bio jobs.
920 */
921static int io_overlaps_block(struct pool *pool, struct bio *bio)
922{
923	return bio->bi_iter.bi_size ==
924		(pool->sectors_per_block << SECTOR_SHIFT);
925}
926
927static int io_overwrites_block(struct pool *pool, struct bio *bio)
928{
929	return (bio_data_dir(bio) == WRITE) &&
930		io_overlaps_block(pool, bio);
931}
932
933static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
934			       bio_end_io_t *fn)
935{
936	*save = bio->bi_end_io;
937	bio->bi_end_io = fn;
938}
939
940static int ensure_next_mapping(struct pool *pool)
941{
942	if (pool->next_mapping)
943		return 0;
944
945	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
946
947	return pool->next_mapping ? 0 : -ENOMEM;
948}
949
950static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
951{
952	struct dm_thin_new_mapping *m = pool->next_mapping;
953
954	BUG_ON(!pool->next_mapping);
955
956	memset(m, 0, sizeof(struct dm_thin_new_mapping));
957	INIT_LIST_HEAD(&m->list);
958	m->bio = NULL;
959
960	pool->next_mapping = NULL;
961
962	return m;
963}
964
965static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
966		    sector_t begin, sector_t end)
967{
968	int r;
969	struct dm_io_region to;
970
971	to.bdev = tc->pool_dev->bdev;
972	to.sector = begin;
973	to.count = end - begin;
974
975	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
976	if (r < 0) {
977		DMERR_LIMIT("dm_kcopyd_zero() failed");
978		copy_complete(1, 1, m);
979	}
980}
981
982static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
983				      dm_block_t data_block,
984				      struct dm_thin_new_mapping *m)
985{
986	struct pool *pool = tc->pool;
987	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
988
989	h->overwrite_mapping = m;
990	m->bio = bio;
991	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
992	inc_all_io_entry(pool, bio);
993	remap_and_issue(tc, bio, data_block);
994}
995
996/*
997 * A partial copy also needs to zero the uncopied region.
998 */
999static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1000			  struct dm_dev *origin, dm_block_t data_origin,
1001			  dm_block_t data_dest,
1002			  struct dm_bio_prison_cell *cell, struct bio *bio,
1003			  sector_t len)
1004{
1005	int r;
1006	struct pool *pool = tc->pool;
1007	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1008
1009	m->tc = tc;
1010	m->virt_block = virt_block;
1011	m->data_block = data_dest;
1012	m->cell = cell;
1013
1014	/*
1015	 * quiesce action + copy action + an extra reference held for the
1016	 * duration of this function (we may need to inc later for a
1017	 * partial zero).
1018	 */
1019	atomic_set(&m->prepare_actions, 3);
1020
1021	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1022		complete_mapping_preparation(m); /* already quiesced */
1023
1024	/*
1025	 * IO to pool_dev remaps to the pool target's data_dev.
1026	 *
1027	 * If the whole block of data is being overwritten, we can issue the
1028	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1029	 */
1030	if (io_overwrites_block(pool, bio))
1031		remap_and_issue_overwrite(tc, bio, data_dest, m);
1032	else {
1033		struct dm_io_region from, to;
1034
1035		from.bdev = origin->bdev;
1036		from.sector = data_origin * pool->sectors_per_block;
1037		from.count = len;
1038
1039		to.bdev = tc->pool_dev->bdev;
1040		to.sector = data_dest * pool->sectors_per_block;
1041		to.count = len;
1042
1043		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1044				   0, copy_complete, m);
1045		if (r < 0) {
1046			DMERR_LIMIT("dm_kcopyd_copy() failed");
1047			copy_complete(1, 1, m);
1048
1049			/*
1050			 * We allow the zero to be issued, to simplify the
1051			 * error path.  Otherwise we'd need to start
1052			 * worrying about decrementing the prepare_actions
1053			 * counter.
1054			 */
1055		}
1056
1057		/*
1058		 * Do we need to zero a tail region?
1059		 */
1060		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1061			atomic_inc(&m->prepare_actions);
1062			ll_zero(tc, m,
1063				data_dest * pool->sectors_per_block + len,
1064				(data_dest + 1) * pool->sectors_per_block);
1065		}
1066	}
1067
1068	complete_mapping_preparation(m); /* drop our ref */
1069}
1070
1071static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1072				   dm_block_t data_origin, dm_block_t data_dest,
1073				   struct dm_bio_prison_cell *cell, struct bio *bio)
1074{
1075	schedule_copy(tc, virt_block, tc->pool_dev,
1076		      data_origin, data_dest, cell, bio,
1077		      tc->pool->sectors_per_block);
1078}
1079
1080static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1081			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1082			  struct bio *bio)
1083{
1084	struct pool *pool = tc->pool;
1085	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1086
1087	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1088	m->tc = tc;
1089	m->virt_block = virt_block;
1090	m->data_block = data_block;
1091	m->cell = cell;
1092
1093	/*
1094	 * If the whole block of data is being overwritten or we are not
1095	 * zeroing pre-existing data, we can issue the bio immediately.
1096	 * Otherwise we use kcopyd to zero the data first.
1097	 */
1098	if (!pool->pf.zero_new_blocks)
1099		process_prepared_mapping(m);
1100
1101	else if (io_overwrites_block(pool, bio))
1102		remap_and_issue_overwrite(tc, bio, data_block, m);
1103
1104	else
1105		ll_zero(tc, m,
1106			data_block * pool->sectors_per_block,
1107			(data_block + 1) * pool->sectors_per_block);
1108}
1109
1110static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1111				   dm_block_t data_dest,
1112				   struct dm_bio_prison_cell *cell, struct bio *bio)
1113{
1114	struct pool *pool = tc->pool;
1115	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1116	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1117
1118	if (virt_block_end <= tc->origin_size)
1119		schedule_copy(tc, virt_block, tc->origin_dev,
1120			      virt_block, data_dest, cell, bio,
1121			      pool->sectors_per_block);
1122
1123	else if (virt_block_begin < tc->origin_size)
1124		schedule_copy(tc, virt_block, tc->origin_dev,
1125			      virt_block, data_dest, cell, bio,
1126			      tc->origin_size - virt_block_begin);
1127
1128	else
1129		schedule_zero(tc, virt_block, data_dest, cell, bio);
1130}
1131
1132static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1133
1134static void check_for_space(struct pool *pool)
1135{
1136	int r;
1137	dm_block_t nr_free;
1138
1139	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1140		return;
1141
1142	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1143	if (r)
1144		return;
1145
1146	if (nr_free)
1147		set_pool_mode(pool, PM_WRITE);
1148}
1149
1150/*
1151 * A non-zero return indicates read_only or fail_io mode.
1152 * Many callers don't care about the return value.
1153 */
1154static int commit(struct pool *pool)
1155{
1156	int r;
1157
1158	if (get_pool_mode(pool) >= PM_READ_ONLY)
1159		return -EINVAL;
1160
1161	r = dm_pool_commit_metadata(pool->pmd);
1162	if (r)
1163		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1164	else
1165		check_for_space(pool);
1166
1167	return r;
1168}
1169
1170static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1171{
1172	unsigned long flags;
1173
1174	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1175		DMWARN("%s: reached low water mark for data device: sending event.",
1176		       dm_device_name(pool->pool_md));
1177		spin_lock_irqsave(&pool->lock, flags);
1178		pool->low_water_triggered = true;
1179		spin_unlock_irqrestore(&pool->lock, flags);
1180		dm_table_event(pool->ti->table);
1181	}
1182}
1183
1184static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1185{
1186	int r;
1187	dm_block_t free_blocks;
1188	struct pool *pool = tc->pool;
1189
1190	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1191		return -EINVAL;
1192
1193	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1194	if (r) {
1195		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1196		return r;
1197	}
1198
1199	check_low_water_mark(pool, free_blocks);
1200
1201	if (!free_blocks) {
1202		/*
1203		 * Try to commit to see if that will free up some
1204		 * more space.
1205		 */
1206		r = commit(pool);
1207		if (r)
1208			return r;
1209
1210		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1211		if (r) {
1212			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1213			return r;
1214		}
1215
1216		if (!free_blocks) {
1217			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1218			return -ENOSPC;
1219		}
1220	}
1221
1222	r = dm_pool_alloc_data_block(pool->pmd, result);
1223	if (r) {
1224		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1225		return r;
1226	}
1227
1228	return 0;
1229}
1230
1231/*
1232 * If we have run out of space, queue bios until the device is
1233 * resumed, presumably after having been reloaded with more space.
1234 */
1235static void retry_on_resume(struct bio *bio)
1236{
1237	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1238	struct thin_c *tc = h->tc;
1239	unsigned long flags;
1240
1241	spin_lock_irqsave(&tc->lock, flags);
1242	bio_list_add(&tc->retry_on_resume_list, bio);
1243	spin_unlock_irqrestore(&tc->lock, flags);
1244}
1245
1246static int should_error_unserviceable_bio(struct pool *pool)
1247{
1248	enum pool_mode m = get_pool_mode(pool);
1249
1250	switch (m) {
1251	case PM_WRITE:
1252		/* Shouldn't get here */
1253		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1254		return -EIO;
1255
1256	case PM_OUT_OF_DATA_SPACE:
1257		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1258
1259	case PM_READ_ONLY:
1260	case PM_FAIL:
1261		return -EIO;
1262	default:
1263		/* Shouldn't get here */
1264		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1265		return -EIO;
1266	}
1267}
1268
1269static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1270{
1271	int error = should_error_unserviceable_bio(pool);
1272
1273	if (error)
1274		bio_endio(bio, error);
1275	else
1276		retry_on_resume(bio);
1277}
1278
1279static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1280{
1281	struct bio *bio;
1282	struct bio_list bios;
1283	int error;
1284
1285	error = should_error_unserviceable_bio(pool);
1286	if (error) {
1287		cell_error_with_code(pool, cell, error);
1288		return;
1289	}
1290
1291	bio_list_init(&bios);
1292	cell_release(pool, cell, &bios);
1293
1294	while ((bio = bio_list_pop(&bios)))
1295		retry_on_resume(bio);
1296}
1297
1298static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1299{
1300	int r;
1301	struct bio *bio = cell->holder;
1302	struct pool *pool = tc->pool;
1303	struct dm_bio_prison_cell *cell2;
1304	struct dm_cell_key key2;
1305	dm_block_t block = get_bio_block(tc, bio);
1306	struct dm_thin_lookup_result lookup_result;
1307	struct dm_thin_new_mapping *m;
1308
1309	if (tc->requeue_mode) {
1310		cell_requeue(pool, cell);
1311		return;
1312	}
1313
1314	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1315	switch (r) {
1316	case 0:
1317		/*
1318		 * Check nobody is fiddling with this pool block.  This can
1319		 * happen if someone's in the process of breaking sharing
1320		 * on this block.
1321		 */
1322		build_data_key(tc->td, lookup_result.block, &key2);
1323		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1324			cell_defer_no_holder(tc, cell);
1325			break;
1326		}
1327
1328		if (io_overlaps_block(pool, bio)) {
1329			/*
1330			 * IO may still be going to the destination block.  We must
1331			 * quiesce before we can do the removal.
1332			 */
1333			m = get_next_mapping(pool);
1334			m->tc = tc;
1335			m->pass_discard = pool->pf.discard_passdown;
1336			m->definitely_not_shared = !lookup_result.shared;
1337			m->virt_block = block;
1338			m->data_block = lookup_result.block;
1339			m->cell = cell;
1340			m->cell2 = cell2;
1341			m->bio = bio;
1342
1343			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1344				pool->process_prepared_discard(m);
1345
1346		} else {
1347			inc_all_io_entry(pool, bio);
1348			cell_defer_no_holder(tc, cell);
1349			cell_defer_no_holder(tc, cell2);
1350
1351			/*
1352			 * The DM core makes sure that the discard doesn't span
1353			 * a block boundary.  So we submit the discard of a
1354			 * partial block appropriately.
1355			 */
1356			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1357				remap_and_issue(tc, bio, lookup_result.block);
1358			else
1359				bio_endio(bio, 0);
1360		}
1361		break;
1362
1363	case -ENODATA:
1364		/*
1365		 * It isn't provisioned, just forget it.
1366		 */
1367		cell_defer_no_holder(tc, cell);
1368		bio_endio(bio, 0);
1369		break;
1370
1371	default:
1372		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1373			    __func__, r);
1374		cell_defer_no_holder(tc, cell);
1375		bio_io_error(bio);
1376		break;
1377	}
1378}
1379
1380static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1381{
1382	struct dm_bio_prison_cell *cell;
1383	struct dm_cell_key key;
1384	dm_block_t block = get_bio_block(tc, bio);
1385
1386	build_virtual_key(tc->td, block, &key);
1387	if (bio_detain(tc->pool, &key, bio, &cell))
1388		return;
1389
1390	process_discard_cell(tc, cell);
1391}
1392
1393static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1394			  struct dm_cell_key *key,
1395			  struct dm_thin_lookup_result *lookup_result,
1396			  struct dm_bio_prison_cell *cell)
1397{
1398	int r;
1399	dm_block_t data_block;
1400	struct pool *pool = tc->pool;
1401
1402	r = alloc_data_block(tc, &data_block);
1403	switch (r) {
1404	case 0:
1405		schedule_internal_copy(tc, block, lookup_result->block,
1406				       data_block, cell, bio);
1407		break;
1408
1409	case -ENOSPC:
1410		retry_bios_on_resume(pool, cell);
1411		break;
1412
1413	default:
1414		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1415			    __func__, r);
1416		cell_error(pool, cell);
1417		break;
1418	}
1419}
1420
1421static void __remap_and_issue_shared_cell(void *context,
1422					  struct dm_bio_prison_cell *cell)
1423{
1424	struct remap_info *info = context;
1425	struct bio *bio;
1426
1427	while ((bio = bio_list_pop(&cell->bios))) {
1428		if ((bio_data_dir(bio) == WRITE) ||
1429		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1430			bio_list_add(&info->defer_bios, bio);
1431		else {
1432			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1433
1434			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1435			inc_all_io_entry(info->tc->pool, bio);
1436			bio_list_add(&info->issue_bios, bio);
1437		}
1438	}
1439}
1440
1441static void remap_and_issue_shared_cell(struct thin_c *tc,
1442					struct dm_bio_prison_cell *cell,
1443					dm_block_t block)
1444{
1445	struct bio *bio;
1446	struct remap_info info;
1447
1448	info.tc = tc;
1449	bio_list_init(&info.defer_bios);
1450	bio_list_init(&info.issue_bios);
1451
1452	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1453			   &info, cell);
1454
1455	while ((bio = bio_list_pop(&info.defer_bios)))
1456		thin_defer_bio(tc, bio);
1457
1458	while ((bio = bio_list_pop(&info.issue_bios)))
1459		remap_and_issue(tc, bio, block);
1460}
1461
1462static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1463			       dm_block_t block,
1464			       struct dm_thin_lookup_result *lookup_result,
1465			       struct dm_bio_prison_cell *virt_cell)
1466{
1467	struct dm_bio_prison_cell *data_cell;
1468	struct pool *pool = tc->pool;
1469	struct dm_cell_key key;
1470
1471	/*
1472	 * If cell is already occupied, then sharing is already in the process
1473	 * of being broken so we have nothing further to do here.
1474	 */
1475	build_data_key(tc->td, lookup_result->block, &key);
1476	if (bio_detain(pool, &key, bio, &data_cell)) {
1477		cell_defer_no_holder(tc, virt_cell);
1478		return;
1479	}
1480
1481	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1482		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1483		cell_defer_no_holder(tc, virt_cell);
1484	} else {
1485		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1486
1487		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1488		inc_all_io_entry(pool, bio);
1489		remap_and_issue(tc, bio, lookup_result->block);
1490
1491		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1492		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1493	}
1494}
1495
1496static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1497			    struct dm_bio_prison_cell *cell)
1498{
1499	int r;
1500	dm_block_t data_block;
1501	struct pool *pool = tc->pool;
1502
1503	/*
1504	 * Remap empty bios (flushes) immediately, without provisioning.
1505	 */
1506	if (!bio->bi_iter.bi_size) {
1507		inc_all_io_entry(pool, bio);
1508		cell_defer_no_holder(tc, cell);
1509
1510		remap_and_issue(tc, bio, 0);
1511		return;
1512	}
1513
1514	/*
1515	 * Fill read bios with zeroes and complete them immediately.
1516	 */
1517	if (bio_data_dir(bio) == READ) {
1518		zero_fill_bio(bio);
1519		cell_defer_no_holder(tc, cell);
1520		bio_endio(bio, 0);
1521		return;
1522	}
1523
1524	r = alloc_data_block(tc, &data_block);
1525	switch (r) {
1526	case 0:
1527		if (tc->origin_dev)
1528			schedule_external_copy(tc, block, data_block, cell, bio);
1529		else
1530			schedule_zero(tc, block, data_block, cell, bio);
1531		break;
1532
1533	case -ENOSPC:
1534		retry_bios_on_resume(pool, cell);
1535		break;
1536
1537	default:
1538		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1539			    __func__, r);
1540		cell_error(pool, cell);
1541		break;
1542	}
1543}
1544
1545static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1546{
1547	int r;
1548	struct pool *pool = tc->pool;
1549	struct bio *bio = cell->holder;
1550	dm_block_t block = get_bio_block(tc, bio);
1551	struct dm_thin_lookup_result lookup_result;
1552
1553	if (tc->requeue_mode) {
1554		cell_requeue(pool, cell);
1555		return;
1556	}
1557
1558	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1559	switch (r) {
1560	case 0:
1561		if (lookup_result.shared)
1562			process_shared_bio(tc, bio, block, &lookup_result, cell);
1563		else {
1564			inc_all_io_entry(pool, bio);
1565			remap_and_issue(tc, bio, lookup_result.block);
1566			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1567		}
1568		break;
1569
1570	case -ENODATA:
1571		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1572			inc_all_io_entry(pool, bio);
1573			cell_defer_no_holder(tc, cell);
1574
1575			if (bio_end_sector(bio) <= tc->origin_size)
1576				remap_to_origin_and_issue(tc, bio);
1577
1578			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1579				zero_fill_bio(bio);
1580				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1581				remap_to_origin_and_issue(tc, bio);
1582
1583			} else {
1584				zero_fill_bio(bio);
1585				bio_endio(bio, 0);
1586			}
1587		} else
1588			provision_block(tc, bio, block, cell);
1589		break;
1590
1591	default:
1592		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1593			    __func__, r);
1594		cell_defer_no_holder(tc, cell);
1595		bio_io_error(bio);
1596		break;
1597	}
1598}
1599
1600static void process_bio(struct thin_c *tc, struct bio *bio)
1601{
1602	struct pool *pool = tc->pool;
1603	dm_block_t block = get_bio_block(tc, bio);
1604	struct dm_bio_prison_cell *cell;
1605	struct dm_cell_key key;
1606
1607	/*
1608	 * If cell is already occupied, then the block is already
1609	 * being provisioned so we have nothing further to do here.
1610	 */
1611	build_virtual_key(tc->td, block, &key);
1612	if (bio_detain(pool, &key, bio, &cell))
1613		return;
1614
1615	process_cell(tc, cell);
1616}
1617
1618static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1619				    struct dm_bio_prison_cell *cell)
1620{
1621	int r;
1622	int rw = bio_data_dir(bio);
1623	dm_block_t block = get_bio_block(tc, bio);
1624	struct dm_thin_lookup_result lookup_result;
1625
1626	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1627	switch (r) {
1628	case 0:
1629		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1630			handle_unserviceable_bio(tc->pool, bio);
1631			if (cell)
1632				cell_defer_no_holder(tc, cell);
1633		} else {
1634			inc_all_io_entry(tc->pool, bio);
1635			remap_and_issue(tc, bio, lookup_result.block);
1636			if (cell)
1637				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1638		}
1639		break;
1640
1641	case -ENODATA:
1642		if (cell)
1643			cell_defer_no_holder(tc, cell);
1644		if (rw != READ) {
1645			handle_unserviceable_bio(tc->pool, bio);
1646			break;
1647		}
1648
1649		if (tc->origin_dev) {
1650			inc_all_io_entry(tc->pool, bio);
1651			remap_to_origin_and_issue(tc, bio);
1652			break;
1653		}
1654
1655		zero_fill_bio(bio);
1656		bio_endio(bio, 0);
1657		break;
1658
1659	default:
1660		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1661			    __func__, r);
1662		if (cell)
1663			cell_defer_no_holder(tc, cell);
1664		bio_io_error(bio);
1665		break;
1666	}
1667}
1668
1669static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1670{
1671	__process_bio_read_only(tc, bio, NULL);
1672}
1673
1674static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1675{
1676	__process_bio_read_only(tc, cell->holder, cell);
1677}
1678
1679static void process_bio_success(struct thin_c *tc, struct bio *bio)
1680{
1681	bio_endio(bio, 0);
1682}
1683
1684static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1685{
1686	bio_io_error(bio);
1687}
1688
1689static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1690{
1691	cell_success(tc->pool, cell);
1692}
1693
1694static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1695{
1696	cell_error(tc->pool, cell);
1697}
1698
1699/*
1700 * FIXME: should we also commit due to size of transaction, measured in
1701 * metadata blocks?
1702 */
1703static int need_commit_due_to_time(struct pool *pool)
1704{
1705	return !time_in_range(jiffies, pool->last_commit_jiffies,
1706			      pool->last_commit_jiffies + COMMIT_PERIOD);
1707}
1708
1709#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1710#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1711
1712static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1713{
1714	struct rb_node **rbp, *parent;
1715	struct dm_thin_endio_hook *pbd;
1716	sector_t bi_sector = bio->bi_iter.bi_sector;
1717
1718	rbp = &tc->sort_bio_list.rb_node;
1719	parent = NULL;
1720	while (*rbp) {
1721		parent = *rbp;
1722		pbd = thin_pbd(parent);
1723
1724		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1725			rbp = &(*rbp)->rb_left;
1726		else
1727			rbp = &(*rbp)->rb_right;
1728	}
1729
1730	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1731	rb_link_node(&pbd->rb_node, parent, rbp);
1732	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1733}
1734
1735static void __extract_sorted_bios(struct thin_c *tc)
1736{
1737	struct rb_node *node;
1738	struct dm_thin_endio_hook *pbd;
1739	struct bio *bio;
1740
1741	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1742		pbd = thin_pbd(node);
1743		bio = thin_bio(pbd);
1744
1745		bio_list_add(&tc->deferred_bio_list, bio);
1746		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1747	}
1748
1749	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1750}
1751
1752static void __sort_thin_deferred_bios(struct thin_c *tc)
1753{
1754	struct bio *bio;
1755	struct bio_list bios;
1756
1757	bio_list_init(&bios);
1758	bio_list_merge(&bios, &tc->deferred_bio_list);
1759	bio_list_init(&tc->deferred_bio_list);
1760
1761	/* Sort deferred_bio_list using rb-tree */
1762	while ((bio = bio_list_pop(&bios)))
1763		__thin_bio_rb_add(tc, bio);
1764
1765	/*
1766	 * Transfer the sorted bios in sort_bio_list back to
1767	 * deferred_bio_list to allow lockless submission of
1768	 * all bios.
1769	 */
1770	__extract_sorted_bios(tc);
1771}
1772
1773static void process_thin_deferred_bios(struct thin_c *tc)
1774{
1775	struct pool *pool = tc->pool;
1776	unsigned long flags;
1777	struct bio *bio;
1778	struct bio_list bios;
1779	struct blk_plug plug;
1780	unsigned count = 0;
1781
1782	if (tc->requeue_mode) {
1783		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1784		return;
1785	}
1786
1787	bio_list_init(&bios);
1788
1789	spin_lock_irqsave(&tc->lock, flags);
1790
1791	if (bio_list_empty(&tc->deferred_bio_list)) {
1792		spin_unlock_irqrestore(&tc->lock, flags);
1793		return;
1794	}
1795
1796	__sort_thin_deferred_bios(tc);
1797
1798	bio_list_merge(&bios, &tc->deferred_bio_list);
1799	bio_list_init(&tc->deferred_bio_list);
1800
1801	spin_unlock_irqrestore(&tc->lock, flags);
1802
1803	blk_start_plug(&plug);
1804	while ((bio = bio_list_pop(&bios))) {
1805		/*
1806		 * If we've got no free new_mapping structs, and processing
1807		 * this bio might require one, we pause until there are some
1808		 * prepared mappings to process.
1809		 */
1810		if (ensure_next_mapping(pool)) {
1811			spin_lock_irqsave(&tc->lock, flags);
1812			bio_list_add(&tc->deferred_bio_list, bio);
1813			bio_list_merge(&tc->deferred_bio_list, &bios);
1814			spin_unlock_irqrestore(&tc->lock, flags);
1815			break;
1816		}
1817
1818		if (bio->bi_rw & REQ_DISCARD)
1819			pool->process_discard(tc, bio);
1820		else
1821			pool->process_bio(tc, bio);
1822
1823		if ((count++ & 127) == 0) {
1824			throttle_work_update(&pool->throttle);
1825			dm_pool_issue_prefetches(pool->pmd);
1826		}
1827	}
1828	blk_finish_plug(&plug);
1829}
1830
1831static int cmp_cells(const void *lhs, const void *rhs)
1832{
1833	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1834	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1835
1836	BUG_ON(!lhs_cell->holder);
1837	BUG_ON(!rhs_cell->holder);
1838
1839	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1840		return -1;
1841
1842	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1843		return 1;
1844
1845	return 0;
1846}
1847
1848static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1849{
1850	unsigned count = 0;
1851	struct dm_bio_prison_cell *cell, *tmp;
1852
1853	list_for_each_entry_safe(cell, tmp, cells, user_list) {
1854		if (count >= CELL_SORT_ARRAY_SIZE)
1855			break;
1856
1857		pool->cell_sort_array[count++] = cell;
1858		list_del(&cell->user_list);
1859	}
1860
1861	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1862
1863	return count;
1864}
1865
1866static void process_thin_deferred_cells(struct thin_c *tc)
1867{
1868	struct pool *pool = tc->pool;
1869	unsigned long flags;
1870	struct list_head cells;
1871	struct dm_bio_prison_cell *cell;
1872	unsigned i, j, count;
1873
1874	INIT_LIST_HEAD(&cells);
1875
1876	spin_lock_irqsave(&tc->lock, flags);
1877	list_splice_init(&tc->deferred_cells, &cells);
1878	spin_unlock_irqrestore(&tc->lock, flags);
1879
1880	if (list_empty(&cells))
1881		return;
1882
1883	do {
1884		count = sort_cells(tc->pool, &cells);
1885
1886		for (i = 0; i < count; i++) {
1887			cell = pool->cell_sort_array[i];
1888			BUG_ON(!cell->holder);
1889
1890			/*
1891			 * If we've got no free new_mapping structs, and processing
1892			 * this bio might require one, we pause until there are some
1893			 * prepared mappings to process.
1894			 */
1895			if (ensure_next_mapping(pool)) {
1896				for (j = i; j < count; j++)
1897					list_add(&pool->cell_sort_array[j]->user_list, &cells);
1898
1899				spin_lock_irqsave(&tc->lock, flags);
1900				list_splice(&cells, &tc->deferred_cells);
1901				spin_unlock_irqrestore(&tc->lock, flags);
1902				return;
1903			}
1904
1905			if (cell->holder->bi_rw & REQ_DISCARD)
1906				pool->process_discard_cell(tc, cell);
1907			else
1908				pool->process_cell(tc, cell);
1909		}
1910	} while (!list_empty(&cells));
1911}
1912
1913static void thin_get(struct thin_c *tc);
1914static void thin_put(struct thin_c *tc);
1915
1916/*
1917 * We can't hold rcu_read_lock() around code that can block.  So we
1918 * find a thin with the rcu lock held; bump a refcount; then drop
1919 * the lock.
1920 */
1921static struct thin_c *get_first_thin(struct pool *pool)
1922{
1923	struct thin_c *tc = NULL;
1924
1925	rcu_read_lock();
1926	if (!list_empty(&pool->active_thins)) {
1927		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1928		thin_get(tc);
1929	}
1930	rcu_read_unlock();
1931
1932	return tc;
1933}
1934
1935static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1936{
1937	struct thin_c *old_tc = tc;
1938
1939	rcu_read_lock();
1940	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1941		thin_get(tc);
1942		thin_put(old_tc);
1943		rcu_read_unlock();
1944		return tc;
1945	}
1946	thin_put(old_tc);
1947	rcu_read_unlock();
1948
1949	return NULL;
1950}
1951
1952static void process_deferred_bios(struct pool *pool)
1953{
1954	unsigned long flags;
1955	struct bio *bio;
1956	struct bio_list bios;
1957	struct thin_c *tc;
1958
1959	tc = get_first_thin(pool);
1960	while (tc) {
1961		process_thin_deferred_cells(tc);
1962		process_thin_deferred_bios(tc);
1963		tc = get_next_thin(pool, tc);
1964	}
1965
1966	/*
1967	 * If there are any deferred flush bios, we must commit
1968	 * the metadata before issuing them.
1969	 */
1970	bio_list_init(&bios);
1971	spin_lock_irqsave(&pool->lock, flags);
1972	bio_list_merge(&bios, &pool->deferred_flush_bios);
1973	bio_list_init(&pool->deferred_flush_bios);
1974	spin_unlock_irqrestore(&pool->lock, flags);
1975
1976	if (bio_list_empty(&bios) &&
1977	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1978		return;
1979
1980	if (commit(pool)) {
1981		while ((bio = bio_list_pop(&bios)))
1982			bio_io_error(bio);
1983		return;
1984	}
1985	pool->last_commit_jiffies = jiffies;
1986
1987	while ((bio = bio_list_pop(&bios)))
1988		generic_make_request(bio);
1989}
1990
1991static void do_worker(struct work_struct *ws)
1992{
1993	struct pool *pool = container_of(ws, struct pool, worker);
1994
1995	throttle_work_start(&pool->throttle);
1996	dm_pool_issue_prefetches(pool->pmd);
1997	throttle_work_update(&pool->throttle);
1998	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1999	throttle_work_update(&pool->throttle);
2000	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2001	throttle_work_update(&pool->throttle);
2002	process_deferred_bios(pool);
2003	throttle_work_complete(&pool->throttle);
2004}
2005
2006/*
2007 * We want to commit periodically so that not too much
2008 * unwritten data builds up.
2009 */
2010static void do_waker(struct work_struct *ws)
2011{
2012	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2013	wake_worker(pool);
2014	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2015}
2016
2017/*
2018 * We're holding onto IO to allow userland time to react.  After the
2019 * timeout either the pool will have been resized (and thus back in
2020 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2021 */
2022static void do_no_space_timeout(struct work_struct *ws)
2023{
2024	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2025					 no_space_timeout);
2026
2027	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2028		set_pool_mode(pool, PM_READ_ONLY);
2029}
2030
2031/*----------------------------------------------------------------*/
2032
2033struct pool_work {
2034	struct work_struct worker;
2035	struct completion complete;
2036};
2037
2038static struct pool_work *to_pool_work(struct work_struct *ws)
2039{
2040	return container_of(ws, struct pool_work, worker);
2041}
2042
2043static void pool_work_complete(struct pool_work *pw)
2044{
2045	complete(&pw->complete);
2046}
2047
2048static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2049			   void (*fn)(struct work_struct *))
2050{
2051	INIT_WORK_ONSTACK(&pw->worker, fn);
2052	init_completion(&pw->complete);
2053	queue_work(pool->wq, &pw->worker);
2054	wait_for_completion(&pw->complete);
2055}
2056
2057/*----------------------------------------------------------------*/
2058
2059struct noflush_work {
2060	struct pool_work pw;
2061	struct thin_c *tc;
2062};
2063
2064static struct noflush_work *to_noflush(struct work_struct *ws)
2065{
2066	return container_of(to_pool_work(ws), struct noflush_work, pw);
2067}
2068
2069static void do_noflush_start(struct work_struct *ws)
2070{
2071	struct noflush_work *w = to_noflush(ws);
2072	w->tc->requeue_mode = true;
2073	requeue_io(w->tc);
2074	pool_work_complete(&w->pw);
2075}
2076
2077static void do_noflush_stop(struct work_struct *ws)
2078{
2079	struct noflush_work *w = to_noflush(ws);
2080	w->tc->requeue_mode = false;
2081	pool_work_complete(&w->pw);
2082}
2083
2084static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2085{
2086	struct noflush_work w;
2087
2088	w.tc = tc;
2089	pool_work_wait(&w.pw, tc->pool, fn);
2090}
2091
2092/*----------------------------------------------------------------*/
2093
2094static enum pool_mode get_pool_mode(struct pool *pool)
2095{
2096	return pool->pf.mode;
2097}
2098
2099static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2100{
2101	dm_table_event(pool->ti->table);
2102	DMINFO("%s: switching pool to %s mode",
2103	       dm_device_name(pool->pool_md), new_mode);
2104}
2105
2106static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2107{
2108	struct pool_c *pt = pool->ti->private;
2109	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2110	enum pool_mode old_mode = get_pool_mode(pool);
2111	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2112
2113	/*
2114	 * Never allow the pool to transition to PM_WRITE mode if user
2115	 * intervention is required to verify metadata and data consistency.
2116	 */
2117	if (new_mode == PM_WRITE && needs_check) {
2118		DMERR("%s: unable to switch pool to write mode until repaired.",
2119		      dm_device_name(pool->pool_md));
2120		if (old_mode != new_mode)
2121			new_mode = old_mode;
2122		else
2123			new_mode = PM_READ_ONLY;
2124	}
2125	/*
2126	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2127	 * not going to recover without a thin_repair.	So we never let the
2128	 * pool move out of the old mode.
2129	 */
2130	if (old_mode == PM_FAIL)
2131		new_mode = old_mode;
2132
2133	switch (new_mode) {
2134	case PM_FAIL:
2135		if (old_mode != new_mode)
2136			notify_of_pool_mode_change(pool, "failure");
2137		dm_pool_metadata_read_only(pool->pmd);
2138		pool->process_bio = process_bio_fail;
2139		pool->process_discard = process_bio_fail;
2140		pool->process_cell = process_cell_fail;
2141		pool->process_discard_cell = process_cell_fail;
2142		pool->process_prepared_mapping = process_prepared_mapping_fail;
2143		pool->process_prepared_discard = process_prepared_discard_fail;
2144
2145		error_retry_list(pool);
2146		break;
2147
2148	case PM_READ_ONLY:
2149		if (old_mode != new_mode)
2150			notify_of_pool_mode_change(pool, "read-only");
2151		dm_pool_metadata_read_only(pool->pmd);
2152		pool->process_bio = process_bio_read_only;
2153		pool->process_discard = process_bio_success;
2154		pool->process_cell = process_cell_read_only;
2155		pool->process_discard_cell = process_cell_success;
2156		pool->process_prepared_mapping = process_prepared_mapping_fail;
2157		pool->process_prepared_discard = process_prepared_discard_passdown;
2158
2159		error_retry_list(pool);
2160		break;
2161
2162	case PM_OUT_OF_DATA_SPACE:
2163		/*
2164		 * Ideally we'd never hit this state; the low water mark
2165		 * would trigger userland to extend the pool before we
2166		 * completely run out of data space.  However, many small
2167		 * IOs to unprovisioned space can consume data space at an
2168		 * alarming rate.  Adjust your low water mark if you're
2169		 * frequently seeing this mode.
2170		 */
2171		if (old_mode != new_mode)
2172			notify_of_pool_mode_change(pool, "out-of-data-space");
2173		pool->process_bio = process_bio_read_only;
2174		pool->process_discard = process_discard_bio;
2175		pool->process_cell = process_cell_read_only;
2176		pool->process_discard_cell = process_discard_cell;
2177		pool->process_prepared_mapping = process_prepared_mapping;
2178		pool->process_prepared_discard = process_prepared_discard;
2179
2180		if (!pool->pf.error_if_no_space && no_space_timeout)
2181			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2182		break;
2183
2184	case PM_WRITE:
2185		if (old_mode != new_mode)
2186			notify_of_pool_mode_change(pool, "write");
2187		dm_pool_metadata_read_write(pool->pmd);
2188		pool->process_bio = process_bio;
2189		pool->process_discard = process_discard_bio;
2190		pool->process_cell = process_cell;
2191		pool->process_discard_cell = process_discard_cell;
2192		pool->process_prepared_mapping = process_prepared_mapping;
2193		pool->process_prepared_discard = process_prepared_discard;
2194		break;
2195	}
2196
2197	pool->pf.mode = new_mode;
2198	/*
2199	 * The pool mode may have changed, sync it so bind_control_target()
2200	 * doesn't cause an unexpected mode transition on resume.
2201	 */
2202	pt->adjusted_pf.mode = new_mode;
2203}
2204
2205static void abort_transaction(struct pool *pool)
2206{
2207	const char *dev_name = dm_device_name(pool->pool_md);
2208
2209	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2210	if (dm_pool_abort_metadata(pool->pmd)) {
2211		DMERR("%s: failed to abort metadata transaction", dev_name);
2212		set_pool_mode(pool, PM_FAIL);
2213	}
2214
2215	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2216		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2217		set_pool_mode(pool, PM_FAIL);
2218	}
2219}
2220
2221static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2222{
2223	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2224		    dm_device_name(pool->pool_md), op, r);
2225
2226	abort_transaction(pool);
2227	set_pool_mode(pool, PM_READ_ONLY);
2228}
2229
2230/*----------------------------------------------------------------*/
2231
2232/*
2233 * Mapping functions.
2234 */
2235
2236/*
2237 * Called only while mapping a thin bio to hand it over to the workqueue.
2238 */
2239static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2240{
2241	unsigned long flags;
2242	struct pool *pool = tc->pool;
2243
2244	spin_lock_irqsave(&tc->lock, flags);
2245	bio_list_add(&tc->deferred_bio_list, bio);
2246	spin_unlock_irqrestore(&tc->lock, flags);
2247
2248	wake_worker(pool);
2249}
2250
2251static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2252{
2253	struct pool *pool = tc->pool;
2254
2255	throttle_lock(&pool->throttle);
2256	thin_defer_bio(tc, bio);
2257	throttle_unlock(&pool->throttle);
2258}
2259
2260static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2261{
2262	unsigned long flags;
2263	struct pool *pool = tc->pool;
2264
2265	throttle_lock(&pool->throttle);
2266	spin_lock_irqsave(&tc->lock, flags);
2267	list_add_tail(&cell->user_list, &tc->deferred_cells);
2268	spin_unlock_irqrestore(&tc->lock, flags);
2269	throttle_unlock(&pool->throttle);
2270
2271	wake_worker(pool);
2272}
2273
2274static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2275{
2276	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2277
2278	h->tc = tc;
2279	h->shared_read_entry = NULL;
2280	h->all_io_entry = NULL;
2281	h->overwrite_mapping = NULL;
2282}
2283
2284/*
2285 * Non-blocking function called from the thin target's map function.
2286 */
2287static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2288{
2289	int r;
2290	struct thin_c *tc = ti->private;
2291	dm_block_t block = get_bio_block(tc, bio);
2292	struct dm_thin_device *td = tc->td;
2293	struct dm_thin_lookup_result result;
2294	struct dm_bio_prison_cell *virt_cell, *data_cell;
2295	struct dm_cell_key key;
2296
2297	thin_hook_bio(tc, bio);
2298
2299	if (tc->requeue_mode) {
2300		bio_endio(bio, DM_ENDIO_REQUEUE);
2301		return DM_MAPIO_SUBMITTED;
2302	}
2303
2304	if (get_pool_mode(tc->pool) == PM_FAIL) {
2305		bio_io_error(bio);
2306		return DM_MAPIO_SUBMITTED;
2307	}
2308
2309	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2310		thin_defer_bio_with_throttle(tc, bio);
2311		return DM_MAPIO_SUBMITTED;
2312	}
2313
2314	/*
2315	 * We must hold the virtual cell before doing the lookup, otherwise
2316	 * there's a race with discard.
2317	 */
2318	build_virtual_key(tc->td, block, &key);
2319	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2320		return DM_MAPIO_SUBMITTED;
2321
2322	r = dm_thin_find_block(td, block, 0, &result);
2323
2324	/*
2325	 * Note that we defer readahead too.
2326	 */
2327	switch (r) {
2328	case 0:
2329		if (unlikely(result.shared)) {
2330			/*
2331			 * We have a race condition here between the
2332			 * result.shared value returned by the lookup and
2333			 * snapshot creation, which may cause new
2334			 * sharing.
2335			 *
2336			 * To avoid this always quiesce the origin before
2337			 * taking the snap.  You want to do this anyway to
2338			 * ensure a consistent application view
2339			 * (i.e. lockfs).
2340			 *
2341			 * More distant ancestors are irrelevant. The
2342			 * shared flag will be set in their case.
2343			 */
2344			thin_defer_cell(tc, virt_cell);
2345			return DM_MAPIO_SUBMITTED;
2346		}
2347
2348		build_data_key(tc->td, result.block, &key);
2349		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2350			cell_defer_no_holder(tc, virt_cell);
2351			return DM_MAPIO_SUBMITTED;
2352		}
2353
2354		inc_all_io_entry(tc->pool, bio);
2355		cell_defer_no_holder(tc, data_cell);
2356		cell_defer_no_holder(tc, virt_cell);
2357
2358		remap(tc, bio, result.block);
2359		return DM_MAPIO_REMAPPED;
2360
2361	case -ENODATA:
2362	case -EWOULDBLOCK:
2363		thin_defer_cell(tc, virt_cell);
2364		return DM_MAPIO_SUBMITTED;
2365
2366	default:
2367		/*
2368		 * Must always call bio_io_error on failure.
2369		 * dm_thin_find_block can fail with -EINVAL if the
2370		 * pool is switched to fail-io mode.
2371		 */
2372		bio_io_error(bio);
2373		cell_defer_no_holder(tc, virt_cell);
2374		return DM_MAPIO_SUBMITTED;
2375	}
2376}
2377
2378static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2379{
2380	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2381	struct request_queue *q;
2382
2383	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2384		return 1;
2385
2386	q = bdev_get_queue(pt->data_dev->bdev);
2387	return bdi_congested(&q->backing_dev_info, bdi_bits);
2388}
2389
2390static void requeue_bios(struct pool *pool)
2391{
2392	unsigned long flags;
2393	struct thin_c *tc;
2394
2395	rcu_read_lock();
2396	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2397		spin_lock_irqsave(&tc->lock, flags);
2398		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2399		bio_list_init(&tc->retry_on_resume_list);
2400		spin_unlock_irqrestore(&tc->lock, flags);
2401	}
2402	rcu_read_unlock();
2403}
2404
2405/*----------------------------------------------------------------
2406 * Binding of control targets to a pool object
2407 *--------------------------------------------------------------*/
2408static bool data_dev_supports_discard(struct pool_c *pt)
2409{
2410	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2411
2412	return q && blk_queue_discard(q);
2413}
2414
2415static bool is_factor(sector_t block_size, uint32_t n)
2416{
2417	return !sector_div(block_size, n);
2418}
2419
2420/*
2421 * If discard_passdown was enabled verify that the data device
2422 * supports discards.  Disable discard_passdown if not.
2423 */
2424static void disable_passdown_if_not_supported(struct pool_c *pt)
2425{
2426	struct pool *pool = pt->pool;
2427	struct block_device *data_bdev = pt->data_dev->bdev;
2428	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2429	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2430	const char *reason = NULL;
2431	char buf[BDEVNAME_SIZE];
2432
2433	if (!pt->adjusted_pf.discard_passdown)
2434		return;
2435
2436	if (!data_dev_supports_discard(pt))
2437		reason = "discard unsupported";
2438
2439	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2440		reason = "max discard sectors smaller than a block";
2441
2442	else if (data_limits->discard_granularity > block_size)
2443		reason = "discard granularity larger than a block";
2444
2445	else if (!is_factor(block_size, data_limits->discard_granularity))
2446		reason = "discard granularity not a factor of block size";
2447
2448	if (reason) {
2449		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2450		pt->adjusted_pf.discard_passdown = false;
2451	}
2452}
2453
2454static int bind_control_target(struct pool *pool, struct dm_target *ti)
2455{
2456	struct pool_c *pt = ti->private;
2457
2458	/*
2459	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2460	 */
2461	enum pool_mode old_mode = get_pool_mode(pool);
2462	enum pool_mode new_mode = pt->adjusted_pf.mode;
2463
2464	/*
2465	 * Don't change the pool's mode until set_pool_mode() below.
2466	 * Otherwise the pool's process_* function pointers may
2467	 * not match the desired pool mode.
2468	 */
2469	pt->adjusted_pf.mode = old_mode;
2470
2471	pool->ti = ti;
2472	pool->pf = pt->adjusted_pf;
2473	pool->low_water_blocks = pt->low_water_blocks;
2474
2475	set_pool_mode(pool, new_mode);
2476
2477	return 0;
2478}
2479
2480static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2481{
2482	if (pool->ti == ti)
2483		pool->ti = NULL;
2484}
2485
2486/*----------------------------------------------------------------
2487 * Pool creation
2488 *--------------------------------------------------------------*/
2489/* Initialize pool features. */
2490static void pool_features_init(struct pool_features *pf)
2491{
2492	pf->mode = PM_WRITE;
2493	pf->zero_new_blocks = true;
2494	pf->discard_enabled = true;
2495	pf->discard_passdown = true;
2496	pf->error_if_no_space = false;
2497}
2498
2499static void __pool_destroy(struct pool *pool)
2500{
2501	__pool_table_remove(pool);
2502
2503	vfree(pool->cell_sort_array);
2504	if (dm_pool_metadata_close(pool->pmd) < 0)
2505		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2506
2507	dm_bio_prison_destroy(pool->prison);
2508	dm_kcopyd_client_destroy(pool->copier);
2509
2510	if (pool->wq)
2511		destroy_workqueue(pool->wq);
2512
2513	if (pool->next_mapping)
2514		mempool_free(pool->next_mapping, pool->mapping_pool);
2515	mempool_destroy(pool->mapping_pool);
2516	dm_deferred_set_destroy(pool->shared_read_ds);
2517	dm_deferred_set_destroy(pool->all_io_ds);
2518	kfree(pool);
2519}
2520
2521static struct kmem_cache *_new_mapping_cache;
2522
2523static struct pool *pool_create(struct mapped_device *pool_md,
2524				struct block_device *metadata_dev,
2525				unsigned long block_size,
2526				int read_only, char **error)
2527{
2528	int r;
2529	void *err_p;
2530	struct pool *pool;
2531	struct dm_pool_metadata *pmd;
2532	bool format_device = read_only ? false : true;
2533
2534	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2535	if (IS_ERR(pmd)) {
2536		*error = "Error creating metadata object";
2537		return (struct pool *)pmd;
2538	}
2539
2540	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2541	if (!pool) {
2542		*error = "Error allocating memory for pool";
2543		err_p = ERR_PTR(-ENOMEM);
2544		goto bad_pool;
2545	}
2546
2547	pool->pmd = pmd;
2548	pool->sectors_per_block = block_size;
2549	if (block_size & (block_size - 1))
2550		pool->sectors_per_block_shift = -1;
2551	else
2552		pool->sectors_per_block_shift = __ffs(block_size);
2553	pool->low_water_blocks = 0;
2554	pool_features_init(&pool->pf);
2555	pool->prison = dm_bio_prison_create();
2556	if (!pool->prison) {
2557		*error = "Error creating pool's bio prison";
2558		err_p = ERR_PTR(-ENOMEM);
2559		goto bad_prison;
2560	}
2561
2562	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2563	if (IS_ERR(pool->copier)) {
2564		r = PTR_ERR(pool->copier);
2565		*error = "Error creating pool's kcopyd client";
2566		err_p = ERR_PTR(r);
2567		goto bad_kcopyd_client;
2568	}
2569
2570	/*
2571	 * Create singlethreaded workqueue that will service all devices
2572	 * that use this metadata.
2573	 */
2574	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2575	if (!pool->wq) {
2576		*error = "Error creating pool's workqueue";
2577		err_p = ERR_PTR(-ENOMEM);
2578		goto bad_wq;
2579	}
2580
2581	throttle_init(&pool->throttle);
2582	INIT_WORK(&pool->worker, do_worker);
2583	INIT_DELAYED_WORK(&pool->waker, do_waker);
2584	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2585	spin_lock_init(&pool->lock);
2586	bio_list_init(&pool->deferred_flush_bios);
2587	INIT_LIST_HEAD(&pool->prepared_mappings);
2588	INIT_LIST_HEAD(&pool->prepared_discards);
2589	INIT_LIST_HEAD(&pool->active_thins);
2590	pool->low_water_triggered = false;
2591	pool->suspended = true;
2592
2593	pool->shared_read_ds = dm_deferred_set_create();
2594	if (!pool->shared_read_ds) {
2595		*error = "Error creating pool's shared read deferred set";
2596		err_p = ERR_PTR(-ENOMEM);
2597		goto bad_shared_read_ds;
2598	}
2599
2600	pool->all_io_ds = dm_deferred_set_create();
2601	if (!pool->all_io_ds) {
2602		*error = "Error creating pool's all io deferred set";
2603		err_p = ERR_PTR(-ENOMEM);
2604		goto bad_all_io_ds;
2605	}
2606
2607	pool->next_mapping = NULL;
2608	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2609						      _new_mapping_cache);
2610	if (!pool->mapping_pool) {
2611		*error = "Error creating pool's mapping mempool";
2612		err_p = ERR_PTR(-ENOMEM);
2613		goto bad_mapping_pool;
2614	}
2615
2616	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2617	if (!pool->cell_sort_array) {
2618		*error = "Error allocating cell sort array";
2619		err_p = ERR_PTR(-ENOMEM);
2620		goto bad_sort_array;
2621	}
2622
2623	pool->ref_count = 1;
2624	pool->last_commit_jiffies = jiffies;
2625	pool->pool_md = pool_md;
2626	pool->md_dev = metadata_dev;
2627	__pool_table_insert(pool);
2628
2629	return pool;
2630
2631bad_sort_array:
2632	mempool_destroy(pool->mapping_pool);
2633bad_mapping_pool:
2634	dm_deferred_set_destroy(pool->all_io_ds);
2635bad_all_io_ds:
2636	dm_deferred_set_destroy(pool->shared_read_ds);
2637bad_shared_read_ds:
2638	destroy_workqueue(pool->wq);
2639bad_wq:
2640	dm_kcopyd_client_destroy(pool->copier);
2641bad_kcopyd_client:
2642	dm_bio_prison_destroy(pool->prison);
2643bad_prison:
2644	kfree(pool);
2645bad_pool:
2646	if (dm_pool_metadata_close(pmd))
2647		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2648
2649	return err_p;
2650}
2651
2652static void __pool_inc(struct pool *pool)
2653{
2654	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2655	pool->ref_count++;
2656}
2657
2658static void __pool_dec(struct pool *pool)
2659{
2660	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2661	BUG_ON(!pool->ref_count);
2662	if (!--pool->ref_count)
2663		__pool_destroy(pool);
2664}
2665
2666static struct pool *__pool_find(struct mapped_device *pool_md,
2667				struct block_device *metadata_dev,
2668				unsigned long block_size, int read_only,
2669				char **error, int *created)
2670{
2671	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2672
2673	if (pool) {
2674		if (pool->pool_md != pool_md) {
2675			*error = "metadata device already in use by a pool";
2676			return ERR_PTR(-EBUSY);
2677		}
2678		__pool_inc(pool);
2679
2680	} else {
2681		pool = __pool_table_lookup(pool_md);
2682		if (pool) {
2683			if (pool->md_dev != metadata_dev) {
2684				*error = "different pool cannot replace a pool";
2685				return ERR_PTR(-EINVAL);
2686			}
2687			__pool_inc(pool);
2688
2689		} else {
2690			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2691			*created = 1;
2692		}
2693	}
2694
2695	return pool;
2696}
2697
2698/*----------------------------------------------------------------
2699 * Pool target methods
2700 *--------------------------------------------------------------*/
2701static void pool_dtr(struct dm_target *ti)
2702{
2703	struct pool_c *pt = ti->private;
2704
2705	mutex_lock(&dm_thin_pool_table.mutex);
2706
2707	unbind_control_target(pt->pool, ti);
2708	__pool_dec(pt->pool);
2709	dm_put_device(ti, pt->metadata_dev);
2710	dm_put_device(ti, pt->data_dev);
2711	kfree(pt);
2712
2713	mutex_unlock(&dm_thin_pool_table.mutex);
2714}
2715
2716static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2717			       struct dm_target *ti)
2718{
2719	int r;
2720	unsigned argc;
2721	const char *arg_name;
2722
2723	static struct dm_arg _args[] = {
2724		{0, 4, "Invalid number of pool feature arguments"},
2725	};
2726
2727	/*
2728	 * No feature arguments supplied.
2729	 */
2730	if (!as->argc)
2731		return 0;
2732
2733	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2734	if (r)
2735		return -EINVAL;
2736
2737	while (argc && !r) {
2738		arg_name = dm_shift_arg(as);
2739		argc--;
2740
2741		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2742			pf->zero_new_blocks = false;
2743
2744		else if (!strcasecmp(arg_name, "ignore_discard"))
2745			pf->discard_enabled = false;
2746
2747		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2748			pf->discard_passdown = false;
2749
2750		else if (!strcasecmp(arg_name, "read_only"))
2751			pf->mode = PM_READ_ONLY;
2752
2753		else if (!strcasecmp(arg_name, "error_if_no_space"))
2754			pf->error_if_no_space = true;
2755
2756		else {
2757			ti->error = "Unrecognised pool feature requested";
2758			r = -EINVAL;
2759			break;
2760		}
2761	}
2762
2763	return r;
2764}
2765
2766static void metadata_low_callback(void *context)
2767{
2768	struct pool *pool = context;
2769
2770	DMWARN("%s: reached low water mark for metadata device: sending event.",
2771	       dm_device_name(pool->pool_md));
2772
2773	dm_table_event(pool->ti->table);
2774}
2775
2776static sector_t get_dev_size(struct block_device *bdev)
2777{
2778	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2779}
2780
2781static void warn_if_metadata_device_too_big(struct block_device *bdev)
2782{
2783	sector_t metadata_dev_size = get_dev_size(bdev);
2784	char buffer[BDEVNAME_SIZE];
2785
2786	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2787		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2788		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2789}
2790
2791static sector_t get_metadata_dev_size(struct block_device *bdev)
2792{
2793	sector_t metadata_dev_size = get_dev_size(bdev);
2794
2795	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2796		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2797
2798	return metadata_dev_size;
2799}
2800
2801static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2802{
2803	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2804
2805	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2806
2807	return metadata_dev_size;
2808}
2809
2810/*
2811 * When a metadata threshold is crossed a dm event is triggered, and
2812 * userland should respond by growing the metadata device.  We could let
2813 * userland set the threshold, like we do with the data threshold, but I'm
2814 * not sure they know enough to do this well.
2815 */
2816static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2817{
2818	/*
2819	 * 4M is ample for all ops with the possible exception of thin
2820	 * device deletion which is harmless if it fails (just retry the
2821	 * delete after you've grown the device).
2822	 */
2823	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2824	return min((dm_block_t)1024ULL /* 4M */, quarter);
2825}
2826
2827/*
2828 * thin-pool <metadata dev> <data dev>
2829 *	     <data block size (sectors)>
2830 *	     <low water mark (blocks)>
2831 *	     [<#feature args> [<arg>]*]
2832 *
2833 * Optional feature arguments are:
2834 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2835 *	     ignore_discard: disable discard
2836 *	     no_discard_passdown: don't pass discards down to the data device
2837 *	     read_only: Don't allow any changes to be made to the pool metadata.
2838 *	     error_if_no_space: error IOs, instead of queueing, if no space.
2839 */
2840static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2841{
2842	int r, pool_created = 0;
2843	struct pool_c *pt;
2844	struct pool *pool;
2845	struct pool_features pf;
2846	struct dm_arg_set as;
2847	struct dm_dev *data_dev;
2848	unsigned long block_size;
2849	dm_block_t low_water_blocks;
2850	struct dm_dev *metadata_dev;
2851	fmode_t metadata_mode;
2852
2853	/*
2854	 * FIXME Remove validation from scope of lock.
2855	 */
2856	mutex_lock(&dm_thin_pool_table.mutex);
2857
2858	if (argc < 4) {
2859		ti->error = "Invalid argument count";
2860		r = -EINVAL;
2861		goto out_unlock;
2862	}
2863
2864	as.argc = argc;
2865	as.argv = argv;
2866
2867	/*
2868	 * Set default pool features.
2869	 */
2870	pool_features_init(&pf);
2871
2872	dm_consume_args(&as, 4);
2873	r = parse_pool_features(&as, &pf, ti);
2874	if (r)
2875		goto out_unlock;
2876
2877	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2878	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2879	if (r) {
2880		ti->error = "Error opening metadata block device";
2881		goto out_unlock;
2882	}
2883	warn_if_metadata_device_too_big(metadata_dev->bdev);
2884
2885	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2886	if (r) {
2887		ti->error = "Error getting data device";
2888		goto out_metadata;
2889	}
2890
2891	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2892	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2893	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2894	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2895		ti->error = "Invalid block size";
2896		r = -EINVAL;
2897		goto out;
2898	}
2899
2900	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2901		ti->error = "Invalid low water mark";
2902		r = -EINVAL;
2903		goto out;
2904	}
2905
2906	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2907	if (!pt) {
2908		r = -ENOMEM;
2909		goto out;
2910	}
2911
2912	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2913			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2914	if (IS_ERR(pool)) {
2915		r = PTR_ERR(pool);
2916		goto out_free_pt;
2917	}
2918
2919	/*
2920	 * 'pool_created' reflects whether this is the first table load.
2921	 * Top level discard support is not allowed to be changed after
2922	 * initial load.  This would require a pool reload to trigger thin
2923	 * device changes.
2924	 */
2925	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2926		ti->error = "Discard support cannot be disabled once enabled";
2927		r = -EINVAL;
2928		goto out_flags_changed;
2929	}
2930
2931	pt->pool = pool;
2932	pt->ti = ti;
2933	pt->metadata_dev = metadata_dev;
2934	pt->data_dev = data_dev;
2935	pt->low_water_blocks = low_water_blocks;
2936	pt->adjusted_pf = pt->requested_pf = pf;
2937	ti->num_flush_bios = 1;
2938
2939	/*
2940	 * Only need to enable discards if the pool should pass
2941	 * them down to the data device.  The thin device's discard
2942	 * processing will cause mappings to be removed from the btree.
2943	 */
2944	ti->discard_zeroes_data_unsupported = true;
2945	if (pf.discard_enabled && pf.discard_passdown) {
2946		ti->num_discard_bios = 1;
2947
2948		/*
2949		 * Setting 'discards_supported' circumvents the normal
2950		 * stacking of discard limits (this keeps the pool and
2951		 * thin devices' discard limits consistent).
2952		 */
2953		ti->discards_supported = true;
2954	}
2955	ti->private = pt;
2956
2957	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2958						calc_metadata_threshold(pt),
2959						metadata_low_callback,
2960						pool);
2961	if (r)
2962		goto out_flags_changed;
2963
2964	pt->callbacks.congested_fn = pool_is_congested;
2965	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2966
2967	mutex_unlock(&dm_thin_pool_table.mutex);
2968
2969	return 0;
2970
2971out_flags_changed:
2972	__pool_dec(pool);
2973out_free_pt:
2974	kfree(pt);
2975out:
2976	dm_put_device(ti, data_dev);
2977out_metadata:
2978	dm_put_device(ti, metadata_dev);
2979out_unlock:
2980	mutex_unlock(&dm_thin_pool_table.mutex);
2981
2982	return r;
2983}
2984
2985static int pool_map(struct dm_target *ti, struct bio *bio)
2986{
2987	int r;
2988	struct pool_c *pt = ti->private;
2989	struct pool *pool = pt->pool;
2990	unsigned long flags;
2991
2992	/*
2993	 * As this is a singleton target, ti->begin is always zero.
2994	 */
2995	spin_lock_irqsave(&pool->lock, flags);
2996	bio->bi_bdev = pt->data_dev->bdev;
2997	r = DM_MAPIO_REMAPPED;
2998	spin_unlock_irqrestore(&pool->lock, flags);
2999
3000	return r;
3001}
3002
3003static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3004{
3005	int r;
3006	struct pool_c *pt = ti->private;
3007	struct pool *pool = pt->pool;
3008	sector_t data_size = ti->len;
3009	dm_block_t sb_data_size;
3010
3011	*need_commit = false;
3012
3013	(void) sector_div(data_size, pool->sectors_per_block);
3014
3015	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3016	if (r) {
3017		DMERR("%s: failed to retrieve data device size",
3018		      dm_device_name(pool->pool_md));
3019		return r;
3020	}
3021
3022	if (data_size < sb_data_size) {
3023		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3024		      dm_device_name(pool->pool_md),
3025		      (unsigned long long)data_size, sb_data_size);
3026		return -EINVAL;
3027
3028	} else if (data_size > sb_data_size) {
3029		if (dm_pool_metadata_needs_check(pool->pmd)) {
3030			DMERR("%s: unable to grow the data device until repaired.",
3031			      dm_device_name(pool->pool_md));
3032			return 0;
3033		}
3034
3035		if (sb_data_size)
3036			DMINFO("%s: growing the data device from %llu to %llu blocks",
3037			       dm_device_name(pool->pool_md),
3038			       sb_data_size, (unsigned long long)data_size);
3039		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3040		if (r) {
3041			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3042			return r;
3043		}
3044
3045		*need_commit = true;
3046	}
3047
3048	return 0;
3049}
3050
3051static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3052{
3053	int r;
3054	struct pool_c *pt = ti->private;
3055	struct pool *pool = pt->pool;
3056	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3057
3058	*need_commit = false;
3059
3060	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3061
3062	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3063	if (r) {
3064		DMERR("%s: failed to retrieve metadata device size",
3065		      dm_device_name(pool->pool_md));
3066		return r;
3067	}
3068
3069	if (metadata_dev_size < sb_metadata_dev_size) {
3070		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3071		      dm_device_name(pool->pool_md),
3072		      metadata_dev_size, sb_metadata_dev_size);
3073		return -EINVAL;
3074
3075	} else if (metadata_dev_size > sb_metadata_dev_size) {
3076		if (dm_pool_metadata_needs_check(pool->pmd)) {
3077			DMERR("%s: unable to grow the metadata device until repaired.",
3078			      dm_device_name(pool->pool_md));
3079			return 0;
3080		}
3081
3082		warn_if_metadata_device_too_big(pool->md_dev);
3083		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3084		       dm_device_name(pool->pool_md),
3085		       sb_metadata_dev_size, metadata_dev_size);
3086		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3087		if (r) {
3088			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3089			return r;
3090		}
3091
3092		*need_commit = true;
3093	}
3094
3095	return 0;
3096}
3097
3098/*
3099 * Retrieves the number of blocks of the data device from
3100 * the superblock and compares it to the actual device size,
3101 * thus resizing the data device in case it has grown.
3102 *
3103 * This both copes with opening preallocated data devices in the ctr
3104 * being followed by a resume
3105 * -and-
3106 * calling the resume method individually after userspace has
3107 * grown the data device in reaction to a table event.
3108 */
3109static int pool_preresume(struct dm_target *ti)
3110{
3111	int r;
3112	bool need_commit1, need_commit2;
3113	struct pool_c *pt = ti->private;
3114	struct pool *pool = pt->pool;
3115
3116	/*
3117	 * Take control of the pool object.
3118	 */
3119	r = bind_control_target(pool, ti);
3120	if (r)
3121		return r;
3122
3123	r = maybe_resize_data_dev(ti, &need_commit1);
3124	if (r)
3125		return r;
3126
3127	r = maybe_resize_metadata_dev(ti, &need_commit2);
3128	if (r)
3129		return r;
3130
3131	if (need_commit1 || need_commit2)
3132		(void) commit(pool);
3133
3134	return 0;
3135}
3136
3137static void pool_suspend_active_thins(struct pool *pool)
3138{
3139	struct thin_c *tc;
3140
3141	/* Suspend all active thin devices */
3142	tc = get_first_thin(pool);
3143	while (tc) {
3144		dm_internal_suspend_noflush(tc->thin_md);
3145		tc = get_next_thin(pool, tc);
3146	}
3147}
3148
3149static void pool_resume_active_thins(struct pool *pool)
3150{
3151	struct thin_c *tc;
3152
3153	/* Resume all active thin devices */
3154	tc = get_first_thin(pool);
3155	while (tc) {
3156		dm_internal_resume(tc->thin_md);
3157		tc = get_next_thin(pool, tc);
3158	}
3159}
3160
3161static void pool_resume(struct dm_target *ti)
3162{
3163	struct pool_c *pt = ti->private;
3164	struct pool *pool = pt->pool;
3165	unsigned long flags;
3166
3167	/*
3168	 * Must requeue active_thins' bios and then resume
3169	 * active_thins _before_ clearing 'suspend' flag.
3170	 */
3171	requeue_bios(pool);
3172	pool_resume_active_thins(pool);
3173
3174	spin_lock_irqsave(&pool->lock, flags);
3175	pool->low_water_triggered = false;
3176	pool->suspended = false;
3177	spin_unlock_irqrestore(&pool->lock, flags);
3178
3179	do_waker(&pool->waker.work);
3180}
3181
3182static void pool_presuspend(struct dm_target *ti)
3183{
3184	struct pool_c *pt = ti->private;
3185	struct pool *pool = pt->pool;
3186	unsigned long flags;
3187
3188	spin_lock_irqsave(&pool->lock, flags);
3189	pool->suspended = true;
3190	spin_unlock_irqrestore(&pool->lock, flags);
3191
3192	pool_suspend_active_thins(pool);
3193}
3194
3195static void pool_presuspend_undo(struct dm_target *ti)
3196{
3197	struct pool_c *pt = ti->private;
3198	struct pool *pool = pt->pool;
3199	unsigned long flags;
3200
3201	pool_resume_active_thins(pool);
3202
3203	spin_lock_irqsave(&pool->lock, flags);
3204	pool->suspended = false;
3205	spin_unlock_irqrestore(&pool->lock, flags);
3206}
3207
3208static void pool_postsuspend(struct dm_target *ti)
3209{
3210	struct pool_c *pt = ti->private;
3211	struct pool *pool = pt->pool;
3212
3213	cancel_delayed_work_sync(&pool->waker);
3214	cancel_delayed_work_sync(&pool->no_space_timeout);
3215	flush_workqueue(pool->wq);
3216	(void) commit(pool);
3217}
3218
3219static int check_arg_count(unsigned argc, unsigned args_required)
3220{
3221	if (argc != args_required) {
3222		DMWARN("Message received with %u arguments instead of %u.",
3223		       argc, args_required);
3224		return -EINVAL;
3225	}
3226
3227	return 0;
3228}
3229
3230static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3231{
3232	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3233	    *dev_id <= MAX_DEV_ID)
3234		return 0;
3235
3236	if (warning)
3237		DMWARN("Message received with invalid device id: %s", arg);
3238
3239	return -EINVAL;
3240}
3241
3242static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3243{
3244	dm_thin_id dev_id;
3245	int r;
3246
3247	r = check_arg_count(argc, 2);
3248	if (r)
3249		return r;
3250
3251	r = read_dev_id(argv[1], &dev_id, 1);
3252	if (r)
3253		return r;
3254
3255	r = dm_pool_create_thin(pool->pmd, dev_id);
3256	if (r) {
3257		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3258		       argv[1]);
3259		return r;
3260	}
3261
3262	return 0;
3263}
3264
3265static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3266{
3267	dm_thin_id dev_id;
3268	dm_thin_id origin_dev_id;
3269	int r;
3270
3271	r = check_arg_count(argc, 3);
3272	if (r)
3273		return r;
3274
3275	r = read_dev_id(argv[1], &dev_id, 1);
3276	if (r)
3277		return r;
3278
3279	r = read_dev_id(argv[2], &origin_dev_id, 1);
3280	if (r)
3281		return r;
3282
3283	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3284	if (r) {
3285		DMWARN("Creation of new snapshot %s of device %s failed.",
3286		       argv[1], argv[2]);
3287		return r;
3288	}
3289
3290	return 0;
3291}
3292
3293static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3294{
3295	dm_thin_id dev_id;
3296	int r;
3297
3298	r = check_arg_count(argc, 2);
3299	if (r)
3300		return r;
3301
3302	r = read_dev_id(argv[1], &dev_id, 1);
3303	if (r)
3304		return r;
3305
3306	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3307	if (r)
3308		DMWARN("Deletion of thin device %s failed.", argv[1]);
3309
3310	return r;
3311}
3312
3313static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3314{
3315	dm_thin_id old_id, new_id;
3316	int r;
3317
3318	r = check_arg_count(argc, 3);
3319	if (r)
3320		return r;
3321
3322	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3323		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3324		return -EINVAL;
3325	}
3326
3327	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3328		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3329		return -EINVAL;
3330	}
3331
3332	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3333	if (r) {
3334		DMWARN("Failed to change transaction id from %s to %s.",
3335		       argv[1], argv[2]);
3336		return r;
3337	}
3338
3339	return 0;
3340}
3341
3342static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3343{
3344	int r;
3345
3346	r = check_arg_count(argc, 1);
3347	if (r)
3348		return r;
3349
3350	(void) commit(pool);
3351
3352	r = dm_pool_reserve_metadata_snap(pool->pmd);
3353	if (r)
3354		DMWARN("reserve_metadata_snap message failed.");
3355
3356	return r;
3357}
3358
3359static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3360{
3361	int r;
3362
3363	r = check_arg_count(argc, 1);
3364	if (r)
3365		return r;
3366
3367	r = dm_pool_release_metadata_snap(pool->pmd);
3368	if (r)
3369		DMWARN("release_metadata_snap message failed.");
3370
3371	return r;
3372}
3373
3374/*
3375 * Messages supported:
3376 *   create_thin	<dev_id>
3377 *   create_snap	<dev_id> <origin_id>
3378 *   delete		<dev_id>
3379 *   set_transaction_id <current_trans_id> <new_trans_id>
3380 *   reserve_metadata_snap
3381 *   release_metadata_snap
3382 */
3383static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3384{
3385	int r = -EINVAL;
3386	struct pool_c *pt = ti->private;
3387	struct pool *pool = pt->pool;
3388
3389	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3390		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3391		      dm_device_name(pool->pool_md));
3392		return -EINVAL;
3393	}
3394
3395	if (!strcasecmp(argv[0], "create_thin"))
3396		r = process_create_thin_mesg(argc, argv, pool);
3397
3398	else if (!strcasecmp(argv[0], "create_snap"))
3399		r = process_create_snap_mesg(argc, argv, pool);
3400
3401	else if (!strcasecmp(argv[0], "delete"))
3402		r = process_delete_mesg(argc, argv, pool);
3403
3404	else if (!strcasecmp(argv[0], "set_transaction_id"))
3405		r = process_set_transaction_id_mesg(argc, argv, pool);
3406
3407	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3408		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3409
3410	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3411		r = process_release_metadata_snap_mesg(argc, argv, pool);
3412
3413	else
3414		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3415
3416	if (!r)
3417		(void) commit(pool);
3418
3419	return r;
3420}
3421
3422static void emit_flags(struct pool_features *pf, char *result,
3423		       unsigned sz, unsigned maxlen)
3424{
3425	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3426		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3427		pf->error_if_no_space;
3428	DMEMIT("%u ", count);
3429
3430	if (!pf->zero_new_blocks)
3431		DMEMIT("skip_block_zeroing ");
3432
3433	if (!pf->discard_enabled)
3434		DMEMIT("ignore_discard ");
3435
3436	if (!pf->discard_passdown)
3437		DMEMIT("no_discard_passdown ");
3438
3439	if (pf->mode == PM_READ_ONLY)
3440		DMEMIT("read_only ");
3441
3442	if (pf->error_if_no_space)
3443		DMEMIT("error_if_no_space ");
3444}
3445
3446/*
3447 * Status line is:
3448 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3449 *    <used data sectors>/<total data sectors> <held metadata root>
3450 */
3451static void pool_status(struct dm_target *ti, status_type_t type,
3452			unsigned status_flags, char *result, unsigned maxlen)
3453{
3454	int r;
3455	unsigned sz = 0;
3456	uint64_t transaction_id;
3457	dm_block_t nr_free_blocks_data;
3458	dm_block_t nr_free_blocks_metadata;
3459	dm_block_t nr_blocks_data;
3460	dm_block_t nr_blocks_metadata;
3461	dm_block_t held_root;
3462	char buf[BDEVNAME_SIZE];
3463	char buf2[BDEVNAME_SIZE];
3464	struct pool_c *pt = ti->private;
3465	struct pool *pool = pt->pool;
3466
3467	switch (type) {
3468	case STATUSTYPE_INFO:
3469		if (get_pool_mode(pool) == PM_FAIL) {
3470			DMEMIT("Fail");
3471			break;
3472		}
3473
3474		/* Commit to ensure statistics aren't out-of-date */
3475		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3476			(void) commit(pool);
3477
3478		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3479		if (r) {
3480			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3481			      dm_device_name(pool->pool_md), r);
3482			goto err;
3483		}
3484
3485		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3486		if (r) {
3487			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3488			      dm_device_name(pool->pool_md), r);
3489			goto err;
3490		}
3491
3492		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3493		if (r) {
3494			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3495			      dm_device_name(pool->pool_md), r);
3496			goto err;
3497		}
3498
3499		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3500		if (r) {
3501			DMERR("%s: dm_pool_get_free_block_count returned %d",
3502			      dm_device_name(pool->pool_md), r);
3503			goto err;
3504		}
3505
3506		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3507		if (r) {
3508			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3509			      dm_device_name(pool->pool_md), r);
3510			goto err;
3511		}
3512
3513		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3514		if (r) {
3515			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3516			      dm_device_name(pool->pool_md), r);
3517			goto err;
3518		}
3519
3520		DMEMIT("%llu %llu/%llu %llu/%llu ",
3521		       (unsigned long long)transaction_id,
3522		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3523		       (unsigned long long)nr_blocks_metadata,
3524		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3525		       (unsigned long long)nr_blocks_data);
3526
3527		if (held_root)
3528			DMEMIT("%llu ", held_root);
3529		else
3530			DMEMIT("- ");
3531
3532		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3533			DMEMIT("out_of_data_space ");
3534		else if (pool->pf.mode == PM_READ_ONLY)
3535			DMEMIT("ro ");
3536		else
3537			DMEMIT("rw ");
3538
3539		if (!pool->pf.discard_enabled)
3540			DMEMIT("ignore_discard ");
3541		else if (pool->pf.discard_passdown)
3542			DMEMIT("discard_passdown ");
3543		else
3544			DMEMIT("no_discard_passdown ");
3545
3546		if (pool->pf.error_if_no_space)
3547			DMEMIT("error_if_no_space ");
3548		else
3549			DMEMIT("queue_if_no_space ");
3550
3551		break;
3552
3553	case STATUSTYPE_TABLE:
3554		DMEMIT("%s %s %lu %llu ",
3555		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3556		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3557		       (unsigned long)pool->sectors_per_block,
3558		       (unsigned long long)pt->low_water_blocks);
3559		emit_flags(&pt->requested_pf, result, sz, maxlen);
3560		break;
3561	}
3562	return;
3563
3564err:
3565	DMEMIT("Error");
3566}
3567
3568static int pool_iterate_devices(struct dm_target *ti,
3569				iterate_devices_callout_fn fn, void *data)
3570{
3571	struct pool_c *pt = ti->private;
3572
3573	return fn(ti, pt->data_dev, 0, ti->len, data);
3574}
3575
3576static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3577		      struct bio_vec *biovec, int max_size)
3578{
3579	struct pool_c *pt = ti->private;
3580	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3581
3582	if (!q->merge_bvec_fn)
3583		return max_size;
3584
3585	bvm->bi_bdev = pt->data_dev->bdev;
3586
3587	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3588}
3589
3590static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3591{
3592	struct pool *pool = pt->pool;
3593	struct queue_limits *data_limits;
3594
3595	limits->max_discard_sectors = pool->sectors_per_block;
3596
3597	/*
3598	 * discard_granularity is just a hint, and not enforced.
3599	 */
3600	if (pt->adjusted_pf.discard_passdown) {
3601		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3602		limits->discard_granularity = max(data_limits->discard_granularity,
3603						  pool->sectors_per_block << SECTOR_SHIFT);
3604	} else
3605		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3606}
3607
3608static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3609{
3610	struct pool_c *pt = ti->private;
3611	struct pool *pool = pt->pool;
3612	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3613
3614	/*
3615	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3616	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3617	 * This is especially beneficial when the pool's data device is a RAID
3618	 * device that has a full stripe width that matches pool->sectors_per_block
3619	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3620	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3621	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3622	 */
3623	if (limits->max_sectors < pool->sectors_per_block) {
3624		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3625			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3626				limits->max_sectors--;
3627			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3628		}
3629	}
3630
3631	/*
3632	 * If the system-determined stacked limits are compatible with the
3633	 * pool's blocksize (io_opt is a factor) do not override them.
3634	 */
3635	if (io_opt_sectors < pool->sectors_per_block ||
3636	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3637		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3638			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3639		else
3640			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3641		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3642	}
3643
3644	/*
3645	 * pt->adjusted_pf is a staging area for the actual features to use.
3646	 * They get transferred to the live pool in bind_control_target()
3647	 * called from pool_preresume().
3648	 */
3649	if (!pt->adjusted_pf.discard_enabled) {
3650		/*
3651		 * Must explicitly disallow stacking discard limits otherwise the
3652		 * block layer will stack them if pool's data device has support.
3653		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3654		 * user to see that, so make sure to set all discard limits to 0.
3655		 */
3656		limits->discard_granularity = 0;
3657		return;
3658	}
3659
3660	disable_passdown_if_not_supported(pt);
3661
3662	set_discard_limits(pt, limits);
3663}
3664
3665static struct target_type pool_target = {
3666	.name = "thin-pool",
3667	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3668		    DM_TARGET_IMMUTABLE,
3669	.version = {1, 14, 0},
3670	.module = THIS_MODULE,
3671	.ctr = pool_ctr,
3672	.dtr = pool_dtr,
3673	.map = pool_map,
3674	.presuspend = pool_presuspend,
3675	.presuspend_undo = pool_presuspend_undo,
3676	.postsuspend = pool_postsuspend,
3677	.preresume = pool_preresume,
3678	.resume = pool_resume,
3679	.message = pool_message,
3680	.status = pool_status,
3681	.merge = pool_merge,
3682	.iterate_devices = pool_iterate_devices,
3683	.io_hints = pool_io_hints,
3684};
3685
3686/*----------------------------------------------------------------
3687 * Thin target methods
3688 *--------------------------------------------------------------*/
3689static void thin_get(struct thin_c *tc)
3690{
3691	atomic_inc(&tc->refcount);
3692}
3693
3694static void thin_put(struct thin_c *tc)
3695{
3696	if (atomic_dec_and_test(&tc->refcount))
3697		complete(&tc->can_destroy);
3698}
3699
3700static void thin_dtr(struct dm_target *ti)
3701{
3702	struct thin_c *tc = ti->private;
3703	unsigned long flags;
3704
3705	spin_lock_irqsave(&tc->pool->lock, flags);
3706	list_del_rcu(&tc->list);
3707	spin_unlock_irqrestore(&tc->pool->lock, flags);
3708	synchronize_rcu();
3709
3710	thin_put(tc);
3711	wait_for_completion(&tc->can_destroy);
3712
3713	mutex_lock(&dm_thin_pool_table.mutex);
3714
3715	__pool_dec(tc->pool);
3716	dm_pool_close_thin_device(tc->td);
3717	dm_put_device(ti, tc->pool_dev);
3718	if (tc->origin_dev)
3719		dm_put_device(ti, tc->origin_dev);
3720	kfree(tc);
3721
3722	mutex_unlock(&dm_thin_pool_table.mutex);
3723}
3724
3725/*
3726 * Thin target parameters:
3727 *
3728 * <pool_dev> <dev_id> [origin_dev]
3729 *
3730 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3731 * dev_id: the internal device identifier
3732 * origin_dev: a device external to the pool that should act as the origin
3733 *
3734 * If the pool device has discards disabled, they get disabled for the thin
3735 * device as well.
3736 */
3737static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3738{
3739	int r;
3740	struct thin_c *tc;
3741	struct dm_dev *pool_dev, *origin_dev;
3742	struct mapped_device *pool_md;
3743	unsigned long flags;
3744
3745	mutex_lock(&dm_thin_pool_table.mutex);
3746
3747	if (argc != 2 && argc != 3) {
3748		ti->error = "Invalid argument count";
3749		r = -EINVAL;
3750		goto out_unlock;
3751	}
3752
3753	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3754	if (!tc) {
3755		ti->error = "Out of memory";
3756		r = -ENOMEM;
3757		goto out_unlock;
3758	}
3759	tc->thin_md = dm_table_get_md(ti->table);
3760	spin_lock_init(&tc->lock);
3761	INIT_LIST_HEAD(&tc->deferred_cells);
3762	bio_list_init(&tc->deferred_bio_list);
3763	bio_list_init(&tc->retry_on_resume_list);
3764	tc->sort_bio_list = RB_ROOT;
3765
3766	if (argc == 3) {
3767		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3768		if (r) {
3769			ti->error = "Error opening origin device";
3770			goto bad_origin_dev;
3771		}
3772		tc->origin_dev = origin_dev;
3773	}
3774
3775	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3776	if (r) {
3777		ti->error = "Error opening pool device";
3778		goto bad_pool_dev;
3779	}
3780	tc->pool_dev = pool_dev;
3781
3782	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3783		ti->error = "Invalid device id";
3784		r = -EINVAL;
3785		goto bad_common;
3786	}
3787
3788	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3789	if (!pool_md) {
3790		ti->error = "Couldn't get pool mapped device";
3791		r = -EINVAL;
3792		goto bad_common;
3793	}
3794
3795	tc->pool = __pool_table_lookup(pool_md);
3796	if (!tc->pool) {
3797		ti->error = "Couldn't find pool object";
3798		r = -EINVAL;
3799		goto bad_pool_lookup;
3800	}
3801	__pool_inc(tc->pool);
3802
3803	if (get_pool_mode(tc->pool) == PM_FAIL) {
3804		ti->error = "Couldn't open thin device, Pool is in fail mode";
3805		r = -EINVAL;
3806		goto bad_pool;
3807	}
3808
3809	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3810	if (r) {
3811		ti->error = "Couldn't open thin internal device";
3812		goto bad_pool;
3813	}
3814
3815	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3816	if (r)
3817		goto bad;
3818
3819	ti->num_flush_bios = 1;
3820	ti->flush_supported = true;
3821	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3822
3823	/* In case the pool supports discards, pass them on. */
3824	ti->discard_zeroes_data_unsupported = true;
3825	if (tc->pool->pf.discard_enabled) {
3826		ti->discards_supported = true;
3827		ti->num_discard_bios = 1;
3828		/* Discard bios must be split on a block boundary */
3829		ti->split_discard_bios = true;
3830	}
3831
3832	mutex_unlock(&dm_thin_pool_table.mutex);
3833
3834	spin_lock_irqsave(&tc->pool->lock, flags);
3835	if (tc->pool->suspended) {
3836		spin_unlock_irqrestore(&tc->pool->lock, flags);
3837		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3838		ti->error = "Unable to activate thin device while pool is suspended";
3839		r = -EINVAL;
3840		goto bad;
3841	}
3842	atomic_set(&tc->refcount, 1);
3843	init_completion(&tc->can_destroy);
3844	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3845	spin_unlock_irqrestore(&tc->pool->lock, flags);
3846	/*
3847	 * This synchronize_rcu() call is needed here otherwise we risk a
3848	 * wake_worker() call finding no bios to process (because the newly
3849	 * added tc isn't yet visible).  So this reduces latency since we
3850	 * aren't then dependent on the periodic commit to wake_worker().
3851	 */
3852	synchronize_rcu();
3853
3854	dm_put(pool_md);
3855
3856	return 0;
3857
3858bad:
3859	dm_pool_close_thin_device(tc->td);
3860bad_pool:
3861	__pool_dec(tc->pool);
3862bad_pool_lookup:
3863	dm_put(pool_md);
3864bad_common:
3865	dm_put_device(ti, tc->pool_dev);
3866bad_pool_dev:
3867	if (tc->origin_dev)
3868		dm_put_device(ti, tc->origin_dev);
3869bad_origin_dev:
3870	kfree(tc);
3871out_unlock:
3872	mutex_unlock(&dm_thin_pool_table.mutex);
3873
3874	return r;
3875}
3876
3877static int thin_map(struct dm_target *ti, struct bio *bio)
3878{
3879	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3880
3881	return thin_bio_map(ti, bio);
3882}
3883
3884static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3885{
3886	unsigned long flags;
3887	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3888	struct list_head work;
3889	struct dm_thin_new_mapping *m, *tmp;
3890	struct pool *pool = h->tc->pool;
3891
3892	if (h->shared_read_entry) {
3893		INIT_LIST_HEAD(&work);
3894		dm_deferred_entry_dec(h->shared_read_entry, &work);
3895
3896		spin_lock_irqsave(&pool->lock, flags);
3897		list_for_each_entry_safe(m, tmp, &work, list) {
3898			list_del(&m->list);
3899			__complete_mapping_preparation(m);
3900		}
3901		spin_unlock_irqrestore(&pool->lock, flags);
3902	}
3903
3904	if (h->all_io_entry) {
3905		INIT_LIST_HEAD(&work);
3906		dm_deferred_entry_dec(h->all_io_entry, &work);
3907		if (!list_empty(&work)) {
3908			spin_lock_irqsave(&pool->lock, flags);
3909			list_for_each_entry_safe(m, tmp, &work, list)
3910				list_add_tail(&m->list, &pool->prepared_discards);
3911			spin_unlock_irqrestore(&pool->lock, flags);
3912			wake_worker(pool);
3913		}
3914	}
3915
3916	return 0;
3917}
3918
3919static void thin_presuspend(struct dm_target *ti)
3920{
3921	struct thin_c *tc = ti->private;
3922
3923	if (dm_noflush_suspending(ti))
3924		noflush_work(tc, do_noflush_start);
3925}
3926
3927static void thin_postsuspend(struct dm_target *ti)
3928{
3929	struct thin_c *tc = ti->private;
3930
3931	/*
3932	 * The dm_noflush_suspending flag has been cleared by now, so
3933	 * unfortunately we must always run this.
3934	 */
3935	noflush_work(tc, do_noflush_stop);
3936}
3937
3938static int thin_preresume(struct dm_target *ti)
3939{
3940	struct thin_c *tc = ti->private;
3941
3942	if (tc->origin_dev)
3943		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3944
3945	return 0;
3946}
3947
3948/*
3949 * <nr mapped sectors> <highest mapped sector>
3950 */
3951static void thin_status(struct dm_target *ti, status_type_t type,
3952			unsigned status_flags, char *result, unsigned maxlen)
3953{
3954	int r;
3955	ssize_t sz = 0;
3956	dm_block_t mapped, highest;
3957	char buf[BDEVNAME_SIZE];
3958	struct thin_c *tc = ti->private;
3959
3960	if (get_pool_mode(tc->pool) == PM_FAIL) {
3961		DMEMIT("Fail");
3962		return;
3963	}
3964
3965	if (!tc->td)
3966		DMEMIT("-");
3967	else {
3968		switch (type) {
3969		case STATUSTYPE_INFO:
3970			r = dm_thin_get_mapped_count(tc->td, &mapped);
3971			if (r) {
3972				DMERR("dm_thin_get_mapped_count returned %d", r);
3973				goto err;
3974			}
3975
3976			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3977			if (r < 0) {
3978				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3979				goto err;
3980			}
3981
3982			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3983			if (r)
3984				DMEMIT("%llu", ((highest + 1) *
3985						tc->pool->sectors_per_block) - 1);
3986			else
3987				DMEMIT("-");
3988			break;
3989
3990		case STATUSTYPE_TABLE:
3991			DMEMIT("%s %lu",
3992			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3993			       (unsigned long) tc->dev_id);
3994			if (tc->origin_dev)
3995				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3996			break;
3997		}
3998	}
3999
4000	return;
4001
4002err:
4003	DMEMIT("Error");
4004}
4005
4006static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4007		      struct bio_vec *biovec, int max_size)
4008{
4009	struct thin_c *tc = ti->private;
4010	struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4011
4012	if (!q->merge_bvec_fn)
4013		return max_size;
4014
4015	bvm->bi_bdev = tc->pool_dev->bdev;
4016	bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4017
4018	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4019}
4020
4021static int thin_iterate_devices(struct dm_target *ti,
4022				iterate_devices_callout_fn fn, void *data)
4023{
4024	sector_t blocks;
4025	struct thin_c *tc = ti->private;
4026	struct pool *pool = tc->pool;
4027
4028	/*
4029	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4030	 * we follow a more convoluted path through to the pool's target.
4031	 */
4032	if (!pool->ti)
4033		return 0;	/* nothing is bound */
4034
4035	blocks = pool->ti->len;
4036	(void) sector_div(blocks, pool->sectors_per_block);
4037	if (blocks)
4038		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4039
4040	return 0;
4041}
4042
4043static struct target_type thin_target = {
4044	.name = "thin",
4045	.version = {1, 14, 0},
4046	.module	= THIS_MODULE,
4047	.ctr = thin_ctr,
4048	.dtr = thin_dtr,
4049	.map = thin_map,
4050	.end_io = thin_endio,
4051	.preresume = thin_preresume,
4052	.presuspend = thin_presuspend,
4053	.postsuspend = thin_postsuspend,
4054	.status = thin_status,
4055	.merge = thin_merge,
4056	.iterate_devices = thin_iterate_devices,
4057};
4058
4059/*----------------------------------------------------------------*/
4060
4061static int __init dm_thin_init(void)
4062{
4063	int r;
4064
4065	pool_table_init();
4066
4067	r = dm_register_target(&thin_target);
4068	if (r)
4069		return r;
4070
4071	r = dm_register_target(&pool_target);
4072	if (r)
4073		goto bad_pool_target;
4074
4075	r = -ENOMEM;
4076
4077	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4078	if (!_new_mapping_cache)
4079		goto bad_new_mapping_cache;
4080
4081	return 0;
4082
4083bad_new_mapping_cache:
4084	dm_unregister_target(&pool_target);
4085bad_pool_target:
4086	dm_unregister_target(&thin_target);
4087
4088	return r;
4089}
4090
4091static void dm_thin_exit(void)
4092{
4093	dm_unregister_target(&thin_target);
4094	dm_unregister_target(&pool_target);
4095
4096	kmem_cache_destroy(_new_mapping_cache);
4097}
4098
4099module_init(dm_thin_init);
4100module_exit(dm_thin_exit);
4101
4102module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4103MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4104
4105MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4106MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4107MODULE_LICENSE("GPL");
4108