1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23
24#define DM_MSG_PREFIX "table"
25
26#define MAX_DEPTH 16
27#define NODE_SIZE L1_CACHE_BYTES
28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31struct dm_table {
32	struct mapped_device *md;
33	unsigned type;
34
35	/* btree table */
36	unsigned int depth;
37	unsigned int counts[MAX_DEPTH];	/* in nodes */
38	sector_t *index[MAX_DEPTH];
39
40	unsigned int num_targets;
41	unsigned int num_allocated;
42	sector_t *highs;
43	struct dm_target *targets;
44
45	struct target_type *immutable_target_type;
46	unsigned integrity_supported:1;
47	unsigned singleton:1;
48
49	/*
50	 * Indicates the rw permissions for the new logical
51	 * device.  This should be a combination of FMODE_READ
52	 * and FMODE_WRITE.
53	 */
54	fmode_t mode;
55
56	/* a list of devices used by this table */
57	struct list_head devices;
58
59	/* events get handed up using this callback */
60	void (*event_fn)(void *);
61	void *event_context;
62
63	struct dm_md_mempools *mempools;
64
65	struct list_head target_callbacks;
66};
67
68/*
69 * Similar to ceiling(log_size(n))
70 */
71static unsigned int int_log(unsigned int n, unsigned int base)
72{
73	int result = 0;
74
75	while (n > 1) {
76		n = dm_div_up(n, base);
77		result++;
78	}
79
80	return result;
81}
82
83/*
84 * Calculate the index of the child node of the n'th node k'th key.
85 */
86static inline unsigned int get_child(unsigned int n, unsigned int k)
87{
88	return (n * CHILDREN_PER_NODE) + k;
89}
90
91/*
92 * Return the n'th node of level l from table t.
93 */
94static inline sector_t *get_node(struct dm_table *t,
95				 unsigned int l, unsigned int n)
96{
97	return t->index[l] + (n * KEYS_PER_NODE);
98}
99
100/*
101 * Return the highest key that you could lookup from the n'th
102 * node on level l of the btree.
103 */
104static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105{
106	for (; l < t->depth - 1; l++)
107		n = get_child(n, CHILDREN_PER_NODE - 1);
108
109	if (n >= t->counts[l])
110		return (sector_t) - 1;
111
112	return get_node(t, l, n)[KEYS_PER_NODE - 1];
113}
114
115/*
116 * Fills in a level of the btree based on the highs of the level
117 * below it.
118 */
119static int setup_btree_index(unsigned int l, struct dm_table *t)
120{
121	unsigned int n, k;
122	sector_t *node;
123
124	for (n = 0U; n < t->counts[l]; n++) {
125		node = get_node(t, l, n);
126
127		for (k = 0U; k < KEYS_PER_NODE; k++)
128			node[k] = high(t, l + 1, get_child(n, k));
129	}
130
131	return 0;
132}
133
134void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135{
136	unsigned long size;
137	void *addr;
138
139	/*
140	 * Check that we're not going to overflow.
141	 */
142	if (nmemb > (ULONG_MAX / elem_size))
143		return NULL;
144
145	size = nmemb * elem_size;
146	addr = vzalloc(size);
147
148	return addr;
149}
150EXPORT_SYMBOL(dm_vcalloc);
151
152/*
153 * highs, and targets are managed as dynamic arrays during a
154 * table load.
155 */
156static int alloc_targets(struct dm_table *t, unsigned int num)
157{
158	sector_t *n_highs;
159	struct dm_target *n_targets;
160
161	/*
162	 * Allocate both the target array and offset array at once.
163	 * Append an empty entry to catch sectors beyond the end of
164	 * the device.
165	 */
166	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167					  sizeof(sector_t));
168	if (!n_highs)
169		return -ENOMEM;
170
171	n_targets = (struct dm_target *) (n_highs + num);
172
173	memset(n_highs, -1, sizeof(*n_highs) * num);
174	vfree(t->highs);
175
176	t->num_allocated = num;
177	t->highs = n_highs;
178	t->targets = n_targets;
179
180	return 0;
181}
182
183int dm_table_create(struct dm_table **result, fmode_t mode,
184		    unsigned num_targets, struct mapped_device *md)
185{
186	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188	if (!t)
189		return -ENOMEM;
190
191	INIT_LIST_HEAD(&t->devices);
192	INIT_LIST_HEAD(&t->target_callbacks);
193
194	if (!num_targets)
195		num_targets = KEYS_PER_NODE;
196
197	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199	if (!num_targets) {
200		kfree(t);
201		return -ENOMEM;
202	}
203
204	if (alloc_targets(t, num_targets)) {
205		kfree(t);
206		return -ENOMEM;
207	}
208
209	t->mode = mode;
210	t->md = md;
211	*result = t;
212	return 0;
213}
214
215static void free_devices(struct list_head *devices, struct mapped_device *md)
216{
217	struct list_head *tmp, *next;
218
219	list_for_each_safe(tmp, next, devices) {
220		struct dm_dev_internal *dd =
221		    list_entry(tmp, struct dm_dev_internal, list);
222		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223		       dm_device_name(md), dd->dm_dev->name);
224		dm_put_table_device(md, dd->dm_dev);
225		kfree(dd);
226	}
227}
228
229void dm_table_destroy(struct dm_table *t)
230{
231	unsigned int i;
232
233	if (!t)
234		return;
235
236	/* free the indexes */
237	if (t->depth >= 2)
238		vfree(t->index[t->depth - 2]);
239
240	/* free the targets */
241	for (i = 0; i < t->num_targets; i++) {
242		struct dm_target *tgt = t->targets + i;
243
244		if (tgt->type->dtr)
245			tgt->type->dtr(tgt);
246
247		dm_put_target_type(tgt->type);
248	}
249
250	vfree(t->highs);
251
252	/* free the device list */
253	free_devices(&t->devices, t->md);
254
255	dm_free_md_mempools(t->mempools);
256
257	kfree(t);
258}
259
260/*
261 * See if we've already got a device in the list.
262 */
263static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264{
265	struct dm_dev_internal *dd;
266
267	list_for_each_entry (dd, l, list)
268		if (dd->dm_dev->bdev->bd_dev == dev)
269			return dd;
270
271	return NULL;
272}
273
274/*
275 * If possible, this checks an area of a destination device is invalid.
276 */
277static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278				  sector_t start, sector_t len, void *data)
279{
280	struct request_queue *q;
281	struct queue_limits *limits = data;
282	struct block_device *bdev = dev->bdev;
283	sector_t dev_size =
284		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285	unsigned short logical_block_size_sectors =
286		limits->logical_block_size >> SECTOR_SHIFT;
287	char b[BDEVNAME_SIZE];
288
289	/*
290	 * Some devices exist without request functions,
291	 * such as loop devices not yet bound to backing files.
292	 * Forbid the use of such devices.
293	 */
294	q = bdev_get_queue(bdev);
295	if (!q || !q->make_request_fn) {
296		DMWARN("%s: %s is not yet initialised: "
297		       "start=%llu, len=%llu, dev_size=%llu",
298		       dm_device_name(ti->table->md), bdevname(bdev, b),
299		       (unsigned long long)start,
300		       (unsigned long long)len,
301		       (unsigned long long)dev_size);
302		return 1;
303	}
304
305	if (!dev_size)
306		return 0;
307
308	if ((start >= dev_size) || (start + len > dev_size)) {
309		DMWARN("%s: %s too small for target: "
310		       "start=%llu, len=%llu, dev_size=%llu",
311		       dm_device_name(ti->table->md), bdevname(bdev, b),
312		       (unsigned long long)start,
313		       (unsigned long long)len,
314		       (unsigned long long)dev_size);
315		return 1;
316	}
317
318	if (logical_block_size_sectors <= 1)
319		return 0;
320
321	if (start & (logical_block_size_sectors - 1)) {
322		DMWARN("%s: start=%llu not aligned to h/w "
323		       "logical block size %u of %s",
324		       dm_device_name(ti->table->md),
325		       (unsigned long long)start,
326		       limits->logical_block_size, bdevname(bdev, b));
327		return 1;
328	}
329
330	if (len & (logical_block_size_sectors - 1)) {
331		DMWARN("%s: len=%llu not aligned to h/w "
332		       "logical block size %u of %s",
333		       dm_device_name(ti->table->md),
334		       (unsigned long long)len,
335		       limits->logical_block_size, bdevname(bdev, b));
336		return 1;
337	}
338
339	return 0;
340}
341
342/*
343 * This upgrades the mode on an already open dm_dev, being
344 * careful to leave things as they were if we fail to reopen the
345 * device and not to touch the existing bdev field in case
346 * it is accessed concurrently inside dm_table_any_congested().
347 */
348static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349			struct mapped_device *md)
350{
351	int r;
352	struct dm_dev *old_dev, *new_dev;
353
354	old_dev = dd->dm_dev;
355
356	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357				dd->dm_dev->mode | new_mode, &new_dev);
358	if (r)
359		return r;
360
361	dd->dm_dev = new_dev;
362	dm_put_table_device(md, old_dev);
363
364	return 0;
365}
366
367/*
368 * Add a device to the list, or just increment the usage count if
369 * it's already present.
370 */
371int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372		  struct dm_dev **result)
373{
374	int r;
375	dev_t uninitialized_var(dev);
376	struct dm_dev_internal *dd;
377	struct dm_table *t = ti->table;
378	struct block_device *bdev;
379
380	BUG_ON(!t);
381
382	/* convert the path to a device */
383	bdev = lookup_bdev(path);
384	if (IS_ERR(bdev)) {
385		dev = name_to_dev_t(path);
386		if (!dev)
387			return -ENODEV;
388	} else {
389		dev = bdev->bd_dev;
390		bdput(bdev);
391	}
392
393	dd = find_device(&t->devices, dev);
394	if (!dd) {
395		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
396		if (!dd)
397			return -ENOMEM;
398
399		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
400			kfree(dd);
401			return r;
402		}
403
404		atomic_set(&dd->count, 0);
405		list_add(&dd->list, &t->devices);
406
407	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408		r = upgrade_mode(dd, mode, t->md);
409		if (r)
410			return r;
411	}
412	atomic_inc(&dd->count);
413
414	*result = dd->dm_dev;
415	return 0;
416}
417EXPORT_SYMBOL(dm_get_device);
418
419static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420				sector_t start, sector_t len, void *data)
421{
422	struct queue_limits *limits = data;
423	struct block_device *bdev = dev->bdev;
424	struct request_queue *q = bdev_get_queue(bdev);
425	char b[BDEVNAME_SIZE];
426
427	if (unlikely(!q)) {
428		DMWARN("%s: Cannot set limits for nonexistent device %s",
429		       dm_device_name(ti->table->md), bdevname(bdev, b));
430		return 0;
431	}
432
433	if (bdev_stack_limits(limits, bdev, start) < 0)
434		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435		       "physical_block_size=%u, logical_block_size=%u, "
436		       "alignment_offset=%u, start=%llu",
437		       dm_device_name(ti->table->md), bdevname(bdev, b),
438		       q->limits.physical_block_size,
439		       q->limits.logical_block_size,
440		       q->limits.alignment_offset,
441		       (unsigned long long) start << SECTOR_SHIFT);
442
443	/*
444	 * Check if merge fn is supported.
445	 * If not we'll force DM to use PAGE_SIZE or
446	 * smaller I/O, just to be safe.
447	 */
448	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
449		blk_limits_max_hw_sectors(limits,
450					  (unsigned int) (PAGE_SIZE >> 9));
451	return 0;
452}
453
454/*
455 * Decrement a device's use count and remove it if necessary.
456 */
457void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458{
459	int found = 0;
460	struct list_head *devices = &ti->table->devices;
461	struct dm_dev_internal *dd;
462
463	list_for_each_entry(dd, devices, list) {
464		if (dd->dm_dev == d) {
465			found = 1;
466			break;
467		}
468	}
469	if (!found) {
470		DMWARN("%s: device %s not in table devices list",
471		       dm_device_name(ti->table->md), d->name);
472		return;
473	}
474	if (atomic_dec_and_test(&dd->count)) {
475		dm_put_table_device(ti->table->md, d);
476		list_del(&dd->list);
477		kfree(dd);
478	}
479}
480EXPORT_SYMBOL(dm_put_device);
481
482/*
483 * Checks to see if the target joins onto the end of the table.
484 */
485static int adjoin(struct dm_table *table, struct dm_target *ti)
486{
487	struct dm_target *prev;
488
489	if (!table->num_targets)
490		return !ti->begin;
491
492	prev = &table->targets[table->num_targets - 1];
493	return (ti->begin == (prev->begin + prev->len));
494}
495
496/*
497 * Used to dynamically allocate the arg array.
498 *
499 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
500 * process messages even if some device is suspended. These messages have a
501 * small fixed number of arguments.
502 *
503 * On the other hand, dm-switch needs to process bulk data using messages and
504 * excessive use of GFP_NOIO could cause trouble.
505 */
506static char **realloc_argv(unsigned *array_size, char **old_argv)
507{
508	char **argv;
509	unsigned new_size;
510	gfp_t gfp;
511
512	if (*array_size) {
513		new_size = *array_size * 2;
514		gfp = GFP_KERNEL;
515	} else {
516		new_size = 8;
517		gfp = GFP_NOIO;
518	}
519	argv = kmalloc(new_size * sizeof(*argv), gfp);
520	if (argv) {
521		memcpy(argv, old_argv, *array_size * sizeof(*argv));
522		*array_size = new_size;
523	}
524
525	kfree(old_argv);
526	return argv;
527}
528
529/*
530 * Destructively splits up the argument list to pass to ctr.
531 */
532int dm_split_args(int *argc, char ***argvp, char *input)
533{
534	char *start, *end = input, *out, **argv = NULL;
535	unsigned array_size = 0;
536
537	*argc = 0;
538
539	if (!input) {
540		*argvp = NULL;
541		return 0;
542	}
543
544	argv = realloc_argv(&array_size, argv);
545	if (!argv)
546		return -ENOMEM;
547
548	while (1) {
549		/* Skip whitespace */
550		start = skip_spaces(end);
551
552		if (!*start)
553			break;	/* success, we hit the end */
554
555		/* 'out' is used to remove any back-quotes */
556		end = out = start;
557		while (*end) {
558			/* Everything apart from '\0' can be quoted */
559			if (*end == '\\' && *(end + 1)) {
560				*out++ = *(end + 1);
561				end += 2;
562				continue;
563			}
564
565			if (isspace(*end))
566				break;	/* end of token */
567
568			*out++ = *end++;
569		}
570
571		/* have we already filled the array ? */
572		if ((*argc + 1) > array_size) {
573			argv = realloc_argv(&array_size, argv);
574			if (!argv)
575				return -ENOMEM;
576		}
577
578		/* we know this is whitespace */
579		if (*end)
580			end++;
581
582		/* terminate the string and put it in the array */
583		*out = '\0';
584		argv[*argc] = start;
585		(*argc)++;
586	}
587
588	*argvp = argv;
589	return 0;
590}
591
592/*
593 * Impose necessary and sufficient conditions on a devices's table such
594 * that any incoming bio which respects its logical_block_size can be
595 * processed successfully.  If it falls across the boundary between
596 * two or more targets, the size of each piece it gets split into must
597 * be compatible with the logical_block_size of the target processing it.
598 */
599static int validate_hardware_logical_block_alignment(struct dm_table *table,
600						 struct queue_limits *limits)
601{
602	/*
603	 * This function uses arithmetic modulo the logical_block_size
604	 * (in units of 512-byte sectors).
605	 */
606	unsigned short device_logical_block_size_sects =
607		limits->logical_block_size >> SECTOR_SHIFT;
608
609	/*
610	 * Offset of the start of the next table entry, mod logical_block_size.
611	 */
612	unsigned short next_target_start = 0;
613
614	/*
615	 * Given an aligned bio that extends beyond the end of a
616	 * target, how many sectors must the next target handle?
617	 */
618	unsigned short remaining = 0;
619
620	struct dm_target *uninitialized_var(ti);
621	struct queue_limits ti_limits;
622	unsigned i = 0;
623
624	/*
625	 * Check each entry in the table in turn.
626	 */
627	while (i < dm_table_get_num_targets(table)) {
628		ti = dm_table_get_target(table, i++);
629
630		blk_set_stacking_limits(&ti_limits);
631
632		/* combine all target devices' limits */
633		if (ti->type->iterate_devices)
634			ti->type->iterate_devices(ti, dm_set_device_limits,
635						  &ti_limits);
636
637		/*
638		 * If the remaining sectors fall entirely within this
639		 * table entry are they compatible with its logical_block_size?
640		 */
641		if (remaining < ti->len &&
642		    remaining & ((ti_limits.logical_block_size >>
643				  SECTOR_SHIFT) - 1))
644			break;	/* Error */
645
646		next_target_start =
647		    (unsigned short) ((next_target_start + ti->len) &
648				      (device_logical_block_size_sects - 1));
649		remaining = next_target_start ?
650		    device_logical_block_size_sects - next_target_start : 0;
651	}
652
653	if (remaining) {
654		DMWARN("%s: table line %u (start sect %llu len %llu) "
655		       "not aligned to h/w logical block size %u",
656		       dm_device_name(table->md), i,
657		       (unsigned long long) ti->begin,
658		       (unsigned long long) ti->len,
659		       limits->logical_block_size);
660		return -EINVAL;
661	}
662
663	return 0;
664}
665
666int dm_table_add_target(struct dm_table *t, const char *type,
667			sector_t start, sector_t len, char *params)
668{
669	int r = -EINVAL, argc;
670	char **argv;
671	struct dm_target *tgt;
672
673	if (t->singleton) {
674		DMERR("%s: target type %s must appear alone in table",
675		      dm_device_name(t->md), t->targets->type->name);
676		return -EINVAL;
677	}
678
679	BUG_ON(t->num_targets >= t->num_allocated);
680
681	tgt = t->targets + t->num_targets;
682	memset(tgt, 0, sizeof(*tgt));
683
684	if (!len) {
685		DMERR("%s: zero-length target", dm_device_name(t->md));
686		return -EINVAL;
687	}
688
689	tgt->type = dm_get_target_type(type);
690	if (!tgt->type) {
691		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
692		      type);
693		return -EINVAL;
694	}
695
696	if (dm_target_needs_singleton(tgt->type)) {
697		if (t->num_targets) {
698			DMERR("%s: target type %s must appear alone in table",
699			      dm_device_name(t->md), type);
700			return -EINVAL;
701		}
702		t->singleton = 1;
703	}
704
705	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
706		DMERR("%s: target type %s may not be included in read-only tables",
707		      dm_device_name(t->md), type);
708		return -EINVAL;
709	}
710
711	if (t->immutable_target_type) {
712		if (t->immutable_target_type != tgt->type) {
713			DMERR("%s: immutable target type %s cannot be mixed with other target types",
714			      dm_device_name(t->md), t->immutable_target_type->name);
715			return -EINVAL;
716		}
717	} else if (dm_target_is_immutable(tgt->type)) {
718		if (t->num_targets) {
719			DMERR("%s: immutable target type %s cannot be mixed with other target types",
720			      dm_device_name(t->md), tgt->type->name);
721			return -EINVAL;
722		}
723		t->immutable_target_type = tgt->type;
724	}
725
726	tgt->table = t;
727	tgt->begin = start;
728	tgt->len = len;
729	tgt->error = "Unknown error";
730
731	/*
732	 * Does this target adjoin the previous one ?
733	 */
734	if (!adjoin(t, tgt)) {
735		tgt->error = "Gap in table";
736		r = -EINVAL;
737		goto bad;
738	}
739
740	r = dm_split_args(&argc, &argv, params);
741	if (r) {
742		tgt->error = "couldn't split parameters (insufficient memory)";
743		goto bad;
744	}
745
746	r = tgt->type->ctr(tgt, argc, argv);
747	kfree(argv);
748	if (r)
749		goto bad;
750
751	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
752
753	if (!tgt->num_discard_bios && tgt->discards_supported)
754		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
755		       dm_device_name(t->md), type);
756
757	return 0;
758
759 bad:
760	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
761	dm_put_target_type(tgt->type);
762	return r;
763}
764
765/*
766 * Target argument parsing helpers.
767 */
768static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
769			     unsigned *value, char **error, unsigned grouped)
770{
771	const char *arg_str = dm_shift_arg(arg_set);
772	char dummy;
773
774	if (!arg_str ||
775	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
776	    (*value < arg->min) ||
777	    (*value > arg->max) ||
778	    (grouped && arg_set->argc < *value)) {
779		*error = arg->error;
780		return -EINVAL;
781	}
782
783	return 0;
784}
785
786int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
787		unsigned *value, char **error)
788{
789	return validate_next_arg(arg, arg_set, value, error, 0);
790}
791EXPORT_SYMBOL(dm_read_arg);
792
793int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
794		      unsigned *value, char **error)
795{
796	return validate_next_arg(arg, arg_set, value, error, 1);
797}
798EXPORT_SYMBOL(dm_read_arg_group);
799
800const char *dm_shift_arg(struct dm_arg_set *as)
801{
802	char *r;
803
804	if (as->argc) {
805		as->argc--;
806		r = *as->argv;
807		as->argv++;
808		return r;
809	}
810
811	return NULL;
812}
813EXPORT_SYMBOL(dm_shift_arg);
814
815void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
816{
817	BUG_ON(as->argc < num_args);
818	as->argc -= num_args;
819	as->argv += num_args;
820}
821EXPORT_SYMBOL(dm_consume_args);
822
823static bool __table_type_request_based(unsigned table_type)
824{
825	return (table_type == DM_TYPE_REQUEST_BASED ||
826		table_type == DM_TYPE_MQ_REQUEST_BASED);
827}
828
829static int dm_table_set_type(struct dm_table *t)
830{
831	unsigned i;
832	unsigned bio_based = 0, request_based = 0, hybrid = 0;
833	bool use_blk_mq = false;
834	struct dm_target *tgt;
835	struct dm_dev_internal *dd;
836	struct list_head *devices;
837	unsigned live_md_type = dm_get_md_type(t->md);
838
839	for (i = 0; i < t->num_targets; i++) {
840		tgt = t->targets + i;
841		if (dm_target_hybrid(tgt))
842			hybrid = 1;
843		else if (dm_target_request_based(tgt))
844			request_based = 1;
845		else
846			bio_based = 1;
847
848		if (bio_based && request_based) {
849			DMWARN("Inconsistent table: different target types"
850			       " can't be mixed up");
851			return -EINVAL;
852		}
853	}
854
855	if (hybrid && !bio_based && !request_based) {
856		/*
857		 * The targets can work either way.
858		 * Determine the type from the live device.
859		 * Default to bio-based if device is new.
860		 */
861		if (__table_type_request_based(live_md_type))
862			request_based = 1;
863		else
864			bio_based = 1;
865	}
866
867	if (bio_based) {
868		/* We must use this table as bio-based */
869		t->type = DM_TYPE_BIO_BASED;
870		return 0;
871	}
872
873	BUG_ON(!request_based); /* No targets in this table */
874
875	/*
876	 * Request-based dm supports only tables that have a single target now.
877	 * To support multiple targets, request splitting support is needed,
878	 * and that needs lots of changes in the block-layer.
879	 * (e.g. request completion process for partial completion.)
880	 */
881	if (t->num_targets > 1) {
882		DMWARN("Request-based dm doesn't support multiple targets yet");
883		return -EINVAL;
884	}
885
886	/* Non-request-stackable devices can't be used for request-based dm */
887	devices = dm_table_get_devices(t);
888	list_for_each_entry(dd, devices, list) {
889		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
890
891		if (!blk_queue_stackable(q)) {
892			DMERR("table load rejected: including"
893			      " non-request-stackable devices");
894			return -EINVAL;
895		}
896
897		if (q->mq_ops)
898			use_blk_mq = true;
899	}
900
901	if (use_blk_mq) {
902		/* verify _all_ devices in the table are blk-mq devices */
903		list_for_each_entry(dd, devices, list)
904			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
905				DMERR("table load rejected: not all devices"
906				      " are blk-mq request-stackable");
907				return -EINVAL;
908			}
909		t->type = DM_TYPE_MQ_REQUEST_BASED;
910
911	} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
912		/* inherit live MD type */
913		t->type = live_md_type;
914
915	} else
916		t->type = DM_TYPE_REQUEST_BASED;
917
918	return 0;
919}
920
921unsigned dm_table_get_type(struct dm_table *t)
922{
923	return t->type;
924}
925
926struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
927{
928	return t->immutable_target_type;
929}
930
931bool dm_table_request_based(struct dm_table *t)
932{
933	return __table_type_request_based(dm_table_get_type(t));
934}
935
936bool dm_table_mq_request_based(struct dm_table *t)
937{
938	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
939}
940
941static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
942{
943	unsigned type = dm_table_get_type(t);
944	unsigned per_bio_data_size = 0;
945	struct dm_target *tgt;
946	unsigned i;
947
948	if (unlikely(type == DM_TYPE_NONE)) {
949		DMWARN("no table type is set, can't allocate mempools");
950		return -EINVAL;
951	}
952
953	if (type == DM_TYPE_BIO_BASED)
954		for (i = 0; i < t->num_targets; i++) {
955			tgt = t->targets + i;
956			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
957		}
958
959	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
960	if (!t->mempools)
961		return -ENOMEM;
962
963	return 0;
964}
965
966void dm_table_free_md_mempools(struct dm_table *t)
967{
968	dm_free_md_mempools(t->mempools);
969	t->mempools = NULL;
970}
971
972struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
973{
974	return t->mempools;
975}
976
977static int setup_indexes(struct dm_table *t)
978{
979	int i;
980	unsigned int total = 0;
981	sector_t *indexes;
982
983	/* allocate the space for *all* the indexes */
984	for (i = t->depth - 2; i >= 0; i--) {
985		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
986		total += t->counts[i];
987	}
988
989	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
990	if (!indexes)
991		return -ENOMEM;
992
993	/* set up internal nodes, bottom-up */
994	for (i = t->depth - 2; i >= 0; i--) {
995		t->index[i] = indexes;
996		indexes += (KEYS_PER_NODE * t->counts[i]);
997		setup_btree_index(i, t);
998	}
999
1000	return 0;
1001}
1002
1003/*
1004 * Builds the btree to index the map.
1005 */
1006static int dm_table_build_index(struct dm_table *t)
1007{
1008	int r = 0;
1009	unsigned int leaf_nodes;
1010
1011	/* how many indexes will the btree have ? */
1012	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1013	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1014
1015	/* leaf layer has already been set up */
1016	t->counts[t->depth - 1] = leaf_nodes;
1017	t->index[t->depth - 1] = t->highs;
1018
1019	if (t->depth >= 2)
1020		r = setup_indexes(t);
1021
1022	return r;
1023}
1024
1025/*
1026 * Get a disk whose integrity profile reflects the table's profile.
1027 * If %match_all is true, all devices' profiles must match.
1028 * If %match_all is false, all devices must at least have an
1029 * allocated integrity profile; but uninitialized is ok.
1030 * Returns NULL if integrity support was inconsistent or unavailable.
1031 */
1032static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1033						    bool match_all)
1034{
1035	struct list_head *devices = dm_table_get_devices(t);
1036	struct dm_dev_internal *dd = NULL;
1037	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1038
1039	list_for_each_entry(dd, devices, list) {
1040		template_disk = dd->dm_dev->bdev->bd_disk;
1041		if (!blk_get_integrity(template_disk))
1042			goto no_integrity;
1043		if (!match_all && !blk_integrity_is_initialized(template_disk))
1044			continue; /* skip uninitialized profiles */
1045		else if (prev_disk &&
1046			 blk_integrity_compare(prev_disk, template_disk) < 0)
1047			goto no_integrity;
1048		prev_disk = template_disk;
1049	}
1050
1051	return template_disk;
1052
1053no_integrity:
1054	if (prev_disk)
1055		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1056		       dm_device_name(t->md),
1057		       prev_disk->disk_name,
1058		       template_disk->disk_name);
1059	return NULL;
1060}
1061
1062/*
1063 * Register the mapped device for blk_integrity support if
1064 * the underlying devices have an integrity profile.  But all devices
1065 * may not have matching profiles (checking all devices isn't reliable
1066 * during table load because this table may use other DM device(s) which
1067 * must be resumed before they will have an initialized integity profile).
1068 * Stacked DM devices force a 2 stage integrity profile validation:
1069 * 1 - during load, validate all initialized integrity profiles match
1070 * 2 - during resume, validate all integrity profiles match
1071 */
1072static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1073{
1074	struct gendisk *template_disk = NULL;
1075
1076	template_disk = dm_table_get_integrity_disk(t, false);
1077	if (!template_disk)
1078		return 0;
1079
1080	if (!blk_integrity_is_initialized(dm_disk(md))) {
1081		t->integrity_supported = 1;
1082		return blk_integrity_register(dm_disk(md), NULL);
1083	}
1084
1085	/*
1086	 * If DM device already has an initalized integrity
1087	 * profile the new profile should not conflict.
1088	 */
1089	if (blk_integrity_is_initialized(template_disk) &&
1090	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1091		DMWARN("%s: conflict with existing integrity profile: "
1092		       "%s profile mismatch",
1093		       dm_device_name(t->md),
1094		       template_disk->disk_name);
1095		return 1;
1096	}
1097
1098	/* Preserve existing initialized integrity profile */
1099	t->integrity_supported = 1;
1100	return 0;
1101}
1102
1103/*
1104 * Prepares the table for use by building the indices,
1105 * setting the type, and allocating mempools.
1106 */
1107int dm_table_complete(struct dm_table *t)
1108{
1109	int r;
1110
1111	r = dm_table_set_type(t);
1112	if (r) {
1113		DMERR("unable to set table type");
1114		return r;
1115	}
1116
1117	r = dm_table_build_index(t);
1118	if (r) {
1119		DMERR("unable to build btrees");
1120		return r;
1121	}
1122
1123	r = dm_table_prealloc_integrity(t, t->md);
1124	if (r) {
1125		DMERR("could not register integrity profile.");
1126		return r;
1127	}
1128
1129	r = dm_table_alloc_md_mempools(t, t->md);
1130	if (r)
1131		DMERR("unable to allocate mempools");
1132
1133	return r;
1134}
1135
1136static DEFINE_MUTEX(_event_lock);
1137void dm_table_event_callback(struct dm_table *t,
1138			     void (*fn)(void *), void *context)
1139{
1140	mutex_lock(&_event_lock);
1141	t->event_fn = fn;
1142	t->event_context = context;
1143	mutex_unlock(&_event_lock);
1144}
1145
1146void dm_table_event(struct dm_table *t)
1147{
1148	/*
1149	 * You can no longer call dm_table_event() from interrupt
1150	 * context, use a bottom half instead.
1151	 */
1152	BUG_ON(in_interrupt());
1153
1154	mutex_lock(&_event_lock);
1155	if (t->event_fn)
1156		t->event_fn(t->event_context);
1157	mutex_unlock(&_event_lock);
1158}
1159EXPORT_SYMBOL(dm_table_event);
1160
1161sector_t dm_table_get_size(struct dm_table *t)
1162{
1163	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1164}
1165EXPORT_SYMBOL(dm_table_get_size);
1166
1167struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1168{
1169	if (index >= t->num_targets)
1170		return NULL;
1171
1172	return t->targets + index;
1173}
1174
1175/*
1176 * Search the btree for the correct target.
1177 *
1178 * Caller should check returned pointer with dm_target_is_valid()
1179 * to trap I/O beyond end of device.
1180 */
1181struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1182{
1183	unsigned int l, n = 0, k = 0;
1184	sector_t *node;
1185
1186	for (l = 0; l < t->depth; l++) {
1187		n = get_child(n, k);
1188		node = get_node(t, l, n);
1189
1190		for (k = 0; k < KEYS_PER_NODE; k++)
1191			if (node[k] >= sector)
1192				break;
1193	}
1194
1195	return &t->targets[(KEYS_PER_NODE * n) + k];
1196}
1197
1198static int count_device(struct dm_target *ti, struct dm_dev *dev,
1199			sector_t start, sector_t len, void *data)
1200{
1201	unsigned *num_devices = data;
1202
1203	(*num_devices)++;
1204
1205	return 0;
1206}
1207
1208/*
1209 * Check whether a table has no data devices attached using each
1210 * target's iterate_devices method.
1211 * Returns false if the result is unknown because a target doesn't
1212 * support iterate_devices.
1213 */
1214bool dm_table_has_no_data_devices(struct dm_table *table)
1215{
1216	struct dm_target *uninitialized_var(ti);
1217	unsigned i = 0, num_devices = 0;
1218
1219	while (i < dm_table_get_num_targets(table)) {
1220		ti = dm_table_get_target(table, i++);
1221
1222		if (!ti->type->iterate_devices)
1223			return false;
1224
1225		ti->type->iterate_devices(ti, count_device, &num_devices);
1226		if (num_devices)
1227			return false;
1228	}
1229
1230	return true;
1231}
1232
1233/*
1234 * Establish the new table's queue_limits and validate them.
1235 */
1236int dm_calculate_queue_limits(struct dm_table *table,
1237			      struct queue_limits *limits)
1238{
1239	struct dm_target *uninitialized_var(ti);
1240	struct queue_limits ti_limits;
1241	unsigned i = 0;
1242
1243	blk_set_stacking_limits(limits);
1244
1245	while (i < dm_table_get_num_targets(table)) {
1246		blk_set_stacking_limits(&ti_limits);
1247
1248		ti = dm_table_get_target(table, i++);
1249
1250		if (!ti->type->iterate_devices)
1251			goto combine_limits;
1252
1253		/*
1254		 * Combine queue limits of all the devices this target uses.
1255		 */
1256		ti->type->iterate_devices(ti, dm_set_device_limits,
1257					  &ti_limits);
1258
1259		/* Set I/O hints portion of queue limits */
1260		if (ti->type->io_hints)
1261			ti->type->io_hints(ti, &ti_limits);
1262
1263		/*
1264		 * Check each device area is consistent with the target's
1265		 * overall queue limits.
1266		 */
1267		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1268					      &ti_limits))
1269			return -EINVAL;
1270
1271combine_limits:
1272		/*
1273		 * Merge this target's queue limits into the overall limits
1274		 * for the table.
1275		 */
1276		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1277			DMWARN("%s: adding target device "
1278			       "(start sect %llu len %llu) "
1279			       "caused an alignment inconsistency",
1280			       dm_device_name(table->md),
1281			       (unsigned long long) ti->begin,
1282			       (unsigned long long) ti->len);
1283	}
1284
1285	return validate_hardware_logical_block_alignment(table, limits);
1286}
1287
1288/*
1289 * Set the integrity profile for this device if all devices used have
1290 * matching profiles.  We're quite deep in the resume path but still
1291 * don't know if all devices (particularly DM devices this device
1292 * may be stacked on) have matching profiles.  Even if the profiles
1293 * don't match we have no way to fail (to resume) at this point.
1294 */
1295static void dm_table_set_integrity(struct dm_table *t)
1296{
1297	struct gendisk *template_disk = NULL;
1298
1299	if (!blk_get_integrity(dm_disk(t->md)))
1300		return;
1301
1302	template_disk = dm_table_get_integrity_disk(t, true);
1303	if (template_disk)
1304		blk_integrity_register(dm_disk(t->md),
1305				       blk_get_integrity(template_disk));
1306	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1307		DMWARN("%s: device no longer has a valid integrity profile",
1308		       dm_device_name(t->md));
1309	else
1310		DMWARN("%s: unable to establish an integrity profile",
1311		       dm_device_name(t->md));
1312}
1313
1314static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1315				sector_t start, sector_t len, void *data)
1316{
1317	unsigned flush = (*(unsigned *)data);
1318	struct request_queue *q = bdev_get_queue(dev->bdev);
1319
1320	return q && (q->flush_flags & flush);
1321}
1322
1323static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1324{
1325	struct dm_target *ti;
1326	unsigned i = 0;
1327
1328	/*
1329	 * Require at least one underlying device to support flushes.
1330	 * t->devices includes internal dm devices such as mirror logs
1331	 * so we need to use iterate_devices here, which targets
1332	 * supporting flushes must provide.
1333	 */
1334	while (i < dm_table_get_num_targets(t)) {
1335		ti = dm_table_get_target(t, i++);
1336
1337		if (!ti->num_flush_bios)
1338			continue;
1339
1340		if (ti->flush_supported)
1341			return true;
1342
1343		if (ti->type->iterate_devices &&
1344		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1345			return true;
1346	}
1347
1348	return false;
1349}
1350
1351static bool dm_table_discard_zeroes_data(struct dm_table *t)
1352{
1353	struct dm_target *ti;
1354	unsigned i = 0;
1355
1356	/* Ensure that all targets supports discard_zeroes_data. */
1357	while (i < dm_table_get_num_targets(t)) {
1358		ti = dm_table_get_target(t, i++);
1359
1360		if (ti->discard_zeroes_data_unsupported)
1361			return false;
1362	}
1363
1364	return true;
1365}
1366
1367static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1368			    sector_t start, sector_t len, void *data)
1369{
1370	struct request_queue *q = bdev_get_queue(dev->bdev);
1371
1372	return q && blk_queue_nonrot(q);
1373}
1374
1375static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1376			     sector_t start, sector_t len, void *data)
1377{
1378	struct request_queue *q = bdev_get_queue(dev->bdev);
1379
1380	return q && !blk_queue_add_random(q);
1381}
1382
1383static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1384				   sector_t start, sector_t len, void *data)
1385{
1386	struct request_queue *q = bdev_get_queue(dev->bdev);
1387
1388	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1389}
1390
1391static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1392				  sector_t start, sector_t len, void *data)
1393{
1394	struct request_queue *q = bdev_get_queue(dev->bdev);
1395
1396	return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1397}
1398
1399static bool dm_table_all_devices_attribute(struct dm_table *t,
1400					   iterate_devices_callout_fn func)
1401{
1402	struct dm_target *ti;
1403	unsigned i = 0;
1404
1405	while (i < dm_table_get_num_targets(t)) {
1406		ti = dm_table_get_target(t, i++);
1407
1408		if (!ti->type->iterate_devices ||
1409		    !ti->type->iterate_devices(ti, func, NULL))
1410			return false;
1411	}
1412
1413	return true;
1414}
1415
1416static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1417					 sector_t start, sector_t len, void *data)
1418{
1419	struct request_queue *q = bdev_get_queue(dev->bdev);
1420
1421	return q && !q->limits.max_write_same_sectors;
1422}
1423
1424static bool dm_table_supports_write_same(struct dm_table *t)
1425{
1426	struct dm_target *ti;
1427	unsigned i = 0;
1428
1429	while (i < dm_table_get_num_targets(t)) {
1430		ti = dm_table_get_target(t, i++);
1431
1432		if (!ti->num_write_same_bios)
1433			return false;
1434
1435		if (!ti->type->iterate_devices ||
1436		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1437			return false;
1438	}
1439
1440	return true;
1441}
1442
1443static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1444				  sector_t start, sector_t len, void *data)
1445{
1446	struct request_queue *q = bdev_get_queue(dev->bdev);
1447
1448	return q && blk_queue_discard(q);
1449}
1450
1451static bool dm_table_supports_discards(struct dm_table *t)
1452{
1453	struct dm_target *ti;
1454	unsigned i = 0;
1455
1456	/*
1457	 * Unless any target used by the table set discards_supported,
1458	 * require at least one underlying device to support discards.
1459	 * t->devices includes internal dm devices such as mirror logs
1460	 * so we need to use iterate_devices here, which targets
1461	 * supporting discard selectively must provide.
1462	 */
1463	while (i < dm_table_get_num_targets(t)) {
1464		ti = dm_table_get_target(t, i++);
1465
1466		if (!ti->num_discard_bios)
1467			continue;
1468
1469		if (ti->discards_supported)
1470			return true;
1471
1472		if (ti->type->iterate_devices &&
1473		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1474			return true;
1475	}
1476
1477	return false;
1478}
1479
1480void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1481			       struct queue_limits *limits)
1482{
1483	unsigned flush = 0;
1484
1485	/*
1486	 * Copy table's limits to the DM device's request_queue
1487	 */
1488	q->limits = *limits;
1489
1490	if (!dm_table_supports_discards(t))
1491		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1492	else
1493		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1494
1495	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1496		flush |= REQ_FLUSH;
1497		if (dm_table_supports_flush(t, REQ_FUA))
1498			flush |= REQ_FUA;
1499	}
1500	blk_queue_flush(q, flush);
1501
1502	if (!dm_table_discard_zeroes_data(t))
1503		q->limits.discard_zeroes_data = 0;
1504
1505	/* Ensure that all underlying devices are non-rotational. */
1506	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1507		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1508	else
1509		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1510
1511	if (!dm_table_supports_write_same(t))
1512		q->limits.max_write_same_sectors = 0;
1513
1514	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1515		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1516	else
1517		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1518
1519	if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1520		queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1521	else
1522		queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1523
1524	dm_table_set_integrity(t);
1525
1526	/*
1527	 * Determine whether or not this queue's I/O timings contribute
1528	 * to the entropy pool, Only request-based targets use this.
1529	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1530	 * have it set.
1531	 */
1532	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1533		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1534
1535	/*
1536	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1537	 * visible to other CPUs because, once the flag is set, incoming bios
1538	 * are processed by request-based dm, which refers to the queue
1539	 * settings.
1540	 * Until the flag set, bios are passed to bio-based dm and queued to
1541	 * md->deferred where queue settings are not needed yet.
1542	 * Those bios are passed to request-based dm at the resume time.
1543	 */
1544	smp_mb();
1545	if (dm_table_request_based(t))
1546		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1547}
1548
1549unsigned int dm_table_get_num_targets(struct dm_table *t)
1550{
1551	return t->num_targets;
1552}
1553
1554struct list_head *dm_table_get_devices(struct dm_table *t)
1555{
1556	return &t->devices;
1557}
1558
1559fmode_t dm_table_get_mode(struct dm_table *t)
1560{
1561	return t->mode;
1562}
1563EXPORT_SYMBOL(dm_table_get_mode);
1564
1565enum suspend_mode {
1566	PRESUSPEND,
1567	PRESUSPEND_UNDO,
1568	POSTSUSPEND,
1569};
1570
1571static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1572{
1573	int i = t->num_targets;
1574	struct dm_target *ti = t->targets;
1575
1576	while (i--) {
1577		switch (mode) {
1578		case PRESUSPEND:
1579			if (ti->type->presuspend)
1580				ti->type->presuspend(ti);
1581			break;
1582		case PRESUSPEND_UNDO:
1583			if (ti->type->presuspend_undo)
1584				ti->type->presuspend_undo(ti);
1585			break;
1586		case POSTSUSPEND:
1587			if (ti->type->postsuspend)
1588				ti->type->postsuspend(ti);
1589			break;
1590		}
1591		ti++;
1592	}
1593}
1594
1595void dm_table_presuspend_targets(struct dm_table *t)
1596{
1597	if (!t)
1598		return;
1599
1600	suspend_targets(t, PRESUSPEND);
1601}
1602
1603void dm_table_presuspend_undo_targets(struct dm_table *t)
1604{
1605	if (!t)
1606		return;
1607
1608	suspend_targets(t, PRESUSPEND_UNDO);
1609}
1610
1611void dm_table_postsuspend_targets(struct dm_table *t)
1612{
1613	if (!t)
1614		return;
1615
1616	suspend_targets(t, POSTSUSPEND);
1617}
1618
1619int dm_table_resume_targets(struct dm_table *t)
1620{
1621	int i, r = 0;
1622
1623	for (i = 0; i < t->num_targets; i++) {
1624		struct dm_target *ti = t->targets + i;
1625
1626		if (!ti->type->preresume)
1627			continue;
1628
1629		r = ti->type->preresume(ti);
1630		if (r) {
1631			DMERR("%s: %s: preresume failed, error = %d",
1632			      dm_device_name(t->md), ti->type->name, r);
1633			return r;
1634		}
1635	}
1636
1637	for (i = 0; i < t->num_targets; i++) {
1638		struct dm_target *ti = t->targets + i;
1639
1640		if (ti->type->resume)
1641			ti->type->resume(ti);
1642	}
1643
1644	return 0;
1645}
1646
1647void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1648{
1649	list_add(&cb->list, &t->target_callbacks);
1650}
1651EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1652
1653int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1654{
1655	struct dm_dev_internal *dd;
1656	struct list_head *devices = dm_table_get_devices(t);
1657	struct dm_target_callbacks *cb;
1658	int r = 0;
1659
1660	list_for_each_entry(dd, devices, list) {
1661		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1662		char b[BDEVNAME_SIZE];
1663
1664		if (likely(q))
1665			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1666		else
1667			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1668				     dm_device_name(t->md),
1669				     bdevname(dd->dm_dev->bdev, b));
1670	}
1671
1672	list_for_each_entry(cb, &t->target_callbacks, list)
1673		if (cb->congested_fn)
1674			r |= cb->congested_fn(cb, bdi_bits);
1675
1676	return r;
1677}
1678
1679struct mapped_device *dm_table_get_md(struct dm_table *t)
1680{
1681	return t->md;
1682}
1683EXPORT_SYMBOL(dm_table_get_md);
1684
1685void dm_table_run_md_queue_async(struct dm_table *t)
1686{
1687	struct mapped_device *md;
1688	struct request_queue *queue;
1689	unsigned long flags;
1690
1691	if (!dm_table_request_based(t))
1692		return;
1693
1694	md = dm_table_get_md(t);
1695	queue = dm_get_md_queue(md);
1696	if (queue) {
1697		if (queue->mq_ops)
1698			blk_mq_run_hw_queues(queue, true);
1699		else {
1700			spin_lock_irqsave(queue->queue_lock, flags);
1701			blk_run_queue_async(queue);
1702			spin_unlock_irqrestore(queue->queue_lock, flags);
1703		}
1704	}
1705}
1706EXPORT_SYMBOL(dm_table_run_md_queue_async);
1707
1708