1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-cache-policy.h"
8#include "dm.h"
9
10#include <linux/hash.h>
11#include <linux/jiffies.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16
17#define DM_MSG_PREFIX "cache-policy-mq"
18
19static struct kmem_cache *mq_entry_cache;
20
21/*----------------------------------------------------------------*/
22
23static unsigned next_power(unsigned n, unsigned min)
24{
25	return roundup_pow_of_two(max(n, min));
26}
27
28/*----------------------------------------------------------------*/
29
30/*
31 * Large, sequential ios are probably better left on the origin device since
32 * spindles tend to have good bandwidth.
33 *
34 * The io_tracker tries to spot when the io is in one of these sequential
35 * modes.
36 *
37 * Two thresholds to switch between random and sequential io mode are defaulting
38 * as follows and can be adjusted via the constructor and message interfaces.
39 */
40#define RANDOM_THRESHOLD_DEFAULT 4
41#define SEQUENTIAL_THRESHOLD_DEFAULT 512
42
43enum io_pattern {
44	PATTERN_SEQUENTIAL,
45	PATTERN_RANDOM
46};
47
48struct io_tracker {
49	enum io_pattern pattern;
50
51	unsigned nr_seq_samples;
52	unsigned nr_rand_samples;
53	unsigned thresholds[2];
54
55	dm_oblock_t last_end_oblock;
56};
57
58static void iot_init(struct io_tracker *t,
59		     int sequential_threshold, int random_threshold)
60{
61	t->pattern = PATTERN_RANDOM;
62	t->nr_seq_samples = 0;
63	t->nr_rand_samples = 0;
64	t->last_end_oblock = 0;
65	t->thresholds[PATTERN_RANDOM] = random_threshold;
66	t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
67}
68
69static enum io_pattern iot_pattern(struct io_tracker *t)
70{
71	return t->pattern;
72}
73
74static void iot_update_stats(struct io_tracker *t, struct bio *bio)
75{
76	if (bio->bi_iter.bi_sector == from_oblock(t->last_end_oblock) + 1)
77		t->nr_seq_samples++;
78	else {
79		/*
80		 * Just one non-sequential IO is enough to reset the
81		 * counters.
82		 */
83		if (t->nr_seq_samples) {
84			t->nr_seq_samples = 0;
85			t->nr_rand_samples = 0;
86		}
87
88		t->nr_rand_samples++;
89	}
90
91	t->last_end_oblock = to_oblock(bio_end_sector(bio) - 1);
92}
93
94static void iot_check_for_pattern_switch(struct io_tracker *t)
95{
96	switch (t->pattern) {
97	case PATTERN_SEQUENTIAL:
98		if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
99			t->pattern = PATTERN_RANDOM;
100			t->nr_seq_samples = t->nr_rand_samples = 0;
101		}
102		break;
103
104	case PATTERN_RANDOM:
105		if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
106			t->pattern = PATTERN_SEQUENTIAL;
107			t->nr_seq_samples = t->nr_rand_samples = 0;
108		}
109		break;
110	}
111}
112
113static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
114{
115	iot_update_stats(t, bio);
116	iot_check_for_pattern_switch(t);
117}
118
119/*----------------------------------------------------------------*/
120
121
122/*
123 * This queue is divided up into different levels.  Allowing us to push
124 * entries to the back of any of the levels.  Think of it as a partially
125 * sorted queue.
126 */
127#define NR_QUEUE_LEVELS 16u
128#define NR_SENTINELS NR_QUEUE_LEVELS * 3
129
130#define WRITEBACK_PERIOD HZ
131
132struct queue {
133	unsigned nr_elts;
134	bool current_writeback_sentinels;
135	unsigned long next_writeback;
136	struct list_head qs[NR_QUEUE_LEVELS];
137	struct list_head sentinels[NR_SENTINELS];
138};
139
140static void queue_init(struct queue *q)
141{
142	unsigned i;
143
144	q->nr_elts = 0;
145	q->current_writeback_sentinels = false;
146	q->next_writeback = 0;
147	for (i = 0; i < NR_QUEUE_LEVELS; i++) {
148		INIT_LIST_HEAD(q->qs + i);
149		INIT_LIST_HEAD(q->sentinels + i);
150		INIT_LIST_HEAD(q->sentinels + NR_QUEUE_LEVELS + i);
151		INIT_LIST_HEAD(q->sentinels + (2 * NR_QUEUE_LEVELS) + i);
152	}
153}
154
155static unsigned queue_size(struct queue *q)
156{
157	return q->nr_elts;
158}
159
160static bool queue_empty(struct queue *q)
161{
162	return q->nr_elts == 0;
163}
164
165/*
166 * Insert an entry to the back of the given level.
167 */
168static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
169{
170	q->nr_elts++;
171	list_add_tail(elt, q->qs + level);
172}
173
174static void queue_remove(struct queue *q, struct list_head *elt)
175{
176	q->nr_elts--;
177	list_del(elt);
178}
179
180static bool is_sentinel(struct queue *q, struct list_head *h)
181{
182	return (h >= q->sentinels) && (h < (q->sentinels + NR_SENTINELS));
183}
184
185/*
186 * Gives us the oldest entry of the lowest popoulated level.  If the first
187 * level is emptied then we shift down one level.
188 */
189static struct list_head *queue_peek(struct queue *q)
190{
191	unsigned level;
192	struct list_head *h;
193
194	for (level = 0; level < NR_QUEUE_LEVELS; level++)
195		list_for_each(h, q->qs + level)
196			if (!is_sentinel(q, h))
197				return h;
198
199	return NULL;
200}
201
202static struct list_head *queue_pop(struct queue *q)
203{
204	struct list_head *r = queue_peek(q);
205
206	if (r) {
207		q->nr_elts--;
208		list_del(r);
209	}
210
211	return r;
212}
213
214/*
215 * Pops an entry from a level that is not past a sentinel.
216 */
217static struct list_head *queue_pop_old(struct queue *q)
218{
219	unsigned level;
220	struct list_head *h;
221
222	for (level = 0; level < NR_QUEUE_LEVELS; level++)
223		list_for_each(h, q->qs + level) {
224			if (is_sentinel(q, h))
225				break;
226
227			q->nr_elts--;
228			list_del(h);
229			return h;
230		}
231
232	return NULL;
233}
234
235static struct list_head *list_pop(struct list_head *lh)
236{
237	struct list_head *r = lh->next;
238
239	BUG_ON(!r);
240	list_del_init(r);
241
242	return r;
243}
244
245static struct list_head *writeback_sentinel(struct queue *q, unsigned level)
246{
247	if (q->current_writeback_sentinels)
248		return q->sentinels + NR_QUEUE_LEVELS + level;
249	else
250		return q->sentinels + 2 * NR_QUEUE_LEVELS + level;
251}
252
253static void queue_update_writeback_sentinels(struct queue *q)
254{
255	unsigned i;
256	struct list_head *h;
257
258	if (time_after(jiffies, q->next_writeback)) {
259		for (i = 0; i < NR_QUEUE_LEVELS; i++) {
260			h = writeback_sentinel(q, i);
261			list_del(h);
262			list_add_tail(h, q->qs + i);
263		}
264
265		q->next_writeback = jiffies + WRITEBACK_PERIOD;
266		q->current_writeback_sentinels = !q->current_writeback_sentinels;
267	}
268}
269
270/*
271 * Sometimes we want to iterate through entries that have been pushed since
272 * a certain event.  We use sentinel entries on the queues to delimit these
273 * 'tick' events.
274 */
275static void queue_tick(struct queue *q)
276{
277	unsigned i;
278
279	for (i = 0; i < NR_QUEUE_LEVELS; i++) {
280		list_del(q->sentinels + i);
281		list_add_tail(q->sentinels + i, q->qs + i);
282	}
283}
284
285typedef void (*iter_fn)(struct list_head *, void *);
286static void queue_iterate_tick(struct queue *q, iter_fn fn, void *context)
287{
288	unsigned i;
289	struct list_head *h;
290
291	for (i = 0; i < NR_QUEUE_LEVELS; i++) {
292		list_for_each_prev(h, q->qs + i) {
293			if (is_sentinel(q, h))
294				break;
295
296			fn(h, context);
297		}
298	}
299}
300
301/*----------------------------------------------------------------*/
302
303/*
304 * Describes a cache entry.  Used in both the cache and the pre_cache.
305 */
306struct entry {
307	struct hlist_node hlist;
308	struct list_head list;
309	dm_oblock_t oblock;
310
311	/*
312	 * FIXME: pack these better
313	 */
314	bool dirty:1;
315	unsigned hit_count;
316};
317
318/*
319 * Rather than storing the cblock in an entry, we allocate all entries in
320 * an array, and infer the cblock from the entry position.
321 *
322 * Free entries are linked together into a list.
323 */
324struct entry_pool {
325	struct entry *entries, *entries_end;
326	struct list_head free;
327	unsigned nr_allocated;
328};
329
330static int epool_init(struct entry_pool *ep, unsigned nr_entries)
331{
332	unsigned i;
333
334	ep->entries = vzalloc(sizeof(struct entry) * nr_entries);
335	if (!ep->entries)
336		return -ENOMEM;
337
338	ep->entries_end = ep->entries + nr_entries;
339
340	INIT_LIST_HEAD(&ep->free);
341	for (i = 0; i < nr_entries; i++)
342		list_add(&ep->entries[i].list, &ep->free);
343
344	ep->nr_allocated = 0;
345
346	return 0;
347}
348
349static void epool_exit(struct entry_pool *ep)
350{
351	vfree(ep->entries);
352}
353
354static struct entry *alloc_entry(struct entry_pool *ep)
355{
356	struct entry *e;
357
358	if (list_empty(&ep->free))
359		return NULL;
360
361	e = list_entry(list_pop(&ep->free), struct entry, list);
362	INIT_LIST_HEAD(&e->list);
363	INIT_HLIST_NODE(&e->hlist);
364	ep->nr_allocated++;
365
366	return e;
367}
368
369/*
370 * This assumes the cblock hasn't already been allocated.
371 */
372static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock)
373{
374	struct entry *e = ep->entries + from_cblock(cblock);
375
376	list_del_init(&e->list);
377	INIT_HLIST_NODE(&e->hlist);
378	ep->nr_allocated++;
379
380	return e;
381}
382
383static void free_entry(struct entry_pool *ep, struct entry *e)
384{
385	BUG_ON(!ep->nr_allocated);
386	ep->nr_allocated--;
387	INIT_HLIST_NODE(&e->hlist);
388	list_add(&e->list, &ep->free);
389}
390
391/*
392 * Returns NULL if the entry is free.
393 */
394static struct entry *epool_find(struct entry_pool *ep, dm_cblock_t cblock)
395{
396	struct entry *e = ep->entries + from_cblock(cblock);
397	return !hlist_unhashed(&e->hlist) ? e : NULL;
398}
399
400static bool epool_empty(struct entry_pool *ep)
401{
402	return list_empty(&ep->free);
403}
404
405static bool in_pool(struct entry_pool *ep, struct entry *e)
406{
407	return e >= ep->entries && e < ep->entries_end;
408}
409
410static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e)
411{
412	return to_cblock(e - ep->entries);
413}
414
415/*----------------------------------------------------------------*/
416
417struct mq_policy {
418	struct dm_cache_policy policy;
419
420	/* protects everything */
421	struct mutex lock;
422	dm_cblock_t cache_size;
423	struct io_tracker tracker;
424
425	/*
426	 * Entries come from two pools, one of pre-cache entries, and one
427	 * for the cache proper.
428	 */
429	struct entry_pool pre_cache_pool;
430	struct entry_pool cache_pool;
431
432	/*
433	 * We maintain three queues of entries.  The cache proper,
434	 * consisting of a clean and dirty queue, contains the currently
435	 * active mappings.  Whereas the pre_cache tracks blocks that
436	 * are being hit frequently and potential candidates for promotion
437	 * to the cache.
438	 */
439	struct queue pre_cache;
440	struct queue cache_clean;
441	struct queue cache_dirty;
442
443	/*
444	 * Keeps track of time, incremented by the core.  We use this to
445	 * avoid attributing multiple hits within the same tick.
446	 *
447	 * Access to tick_protected should be done with the spin lock held.
448	 * It's copied to tick at the start of the map function (within the
449	 * mutex).
450	 */
451	spinlock_t tick_lock;
452	unsigned tick_protected;
453	unsigned tick;
454
455	/*
456	 * A count of the number of times the map function has been called
457	 * and found an entry in the pre_cache or cache.  Currently used to
458	 * calculate the generation.
459	 */
460	unsigned hit_count;
461
462	/*
463	 * A generation is a longish period that is used to trigger some
464	 * book keeping effects.  eg, decrementing hit counts on entries.
465	 * This is needed to allow the cache to evolve as io patterns
466	 * change.
467	 */
468	unsigned generation;
469	unsigned generation_period; /* in lookups (will probably change) */
470
471	unsigned discard_promote_adjustment;
472	unsigned read_promote_adjustment;
473	unsigned write_promote_adjustment;
474
475	/*
476	 * The hash table allows us to quickly find an entry by origin
477	 * block.  Both pre_cache and cache entries are in here.
478	 */
479	unsigned nr_buckets;
480	dm_block_t hash_bits;
481	struct hlist_head *table;
482};
483
484#define DEFAULT_DISCARD_PROMOTE_ADJUSTMENT 1
485#define DEFAULT_READ_PROMOTE_ADJUSTMENT 4
486#define DEFAULT_WRITE_PROMOTE_ADJUSTMENT 8
487#define DISCOURAGE_DEMOTING_DIRTY_THRESHOLD 128
488
489/*----------------------------------------------------------------*/
490
491/*
492 * Simple hash table implementation.  Should replace with the standard hash
493 * table that's making its way upstream.
494 */
495static void hash_insert(struct mq_policy *mq, struct entry *e)
496{
497	unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
498
499	hlist_add_head(&e->hlist, mq->table + h);
500}
501
502static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
503{
504	unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
505	struct hlist_head *bucket = mq->table + h;
506	struct entry *e;
507
508	hlist_for_each_entry(e, bucket, hlist)
509		if (e->oblock == oblock) {
510			hlist_del(&e->hlist);
511			hlist_add_head(&e->hlist, bucket);
512			return e;
513		}
514
515	return NULL;
516}
517
518static void hash_remove(struct entry *e)
519{
520	hlist_del(&e->hlist);
521}
522
523/*----------------------------------------------------------------*/
524
525static bool any_free_cblocks(struct mq_policy *mq)
526{
527	return !epool_empty(&mq->cache_pool);
528}
529
530static bool any_clean_cblocks(struct mq_policy *mq)
531{
532	return !queue_empty(&mq->cache_clean);
533}
534
535/*----------------------------------------------------------------*/
536
537/*
538 * Now we get to the meat of the policy.  This section deals with deciding
539 * when to to add entries to the pre_cache and cache, and move between
540 * them.
541 */
542
543/*
544 * The queue level is based on the log2 of the hit count.
545 */
546static unsigned queue_level(struct entry *e)
547{
548	return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
549}
550
551static bool in_cache(struct mq_policy *mq, struct entry *e)
552{
553	return in_pool(&mq->cache_pool, e);
554}
555
556/*
557 * Inserts the entry into the pre_cache or the cache.  Ensures the cache
558 * block is marked as allocated if necc.  Inserts into the hash table.
559 * Sets the tick which records when the entry was last moved about.
560 */
561static void push(struct mq_policy *mq, struct entry *e)
562{
563	hash_insert(mq, e);
564
565	if (in_cache(mq, e))
566		queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
567			   queue_level(e), &e->list);
568	else
569		queue_push(&mq->pre_cache, queue_level(e), &e->list);
570}
571
572/*
573 * Removes an entry from pre_cache or cache.  Removes from the hash table.
574 */
575static void del(struct mq_policy *mq, struct entry *e)
576{
577	if (in_cache(mq, e))
578		queue_remove(e->dirty ? &mq->cache_dirty : &mq->cache_clean, &e->list);
579	else
580		queue_remove(&mq->pre_cache, &e->list);
581
582	hash_remove(e);
583}
584
585/*
586 * Like del, except it removes the first entry in the queue (ie. the least
587 * recently used).
588 */
589static struct entry *pop(struct mq_policy *mq, struct queue *q)
590{
591	struct entry *e;
592	struct list_head *h = queue_pop(q);
593
594	if (!h)
595		return NULL;
596
597	e = container_of(h, struct entry, list);
598	hash_remove(e);
599
600	return e;
601}
602
603static struct entry *pop_old(struct mq_policy *mq, struct queue *q)
604{
605	struct entry *e;
606	struct list_head *h = queue_pop_old(q);
607
608	if (!h)
609		return NULL;
610
611	e = container_of(h, struct entry, list);
612	hash_remove(e);
613
614	return e;
615}
616
617static struct entry *peek(struct queue *q)
618{
619	struct list_head *h = queue_peek(q);
620	return h ? container_of(h, struct entry, list) : NULL;
621}
622
623/*
624 * The promotion threshold is adjusted every generation.  As are the counts
625 * of the entries.
626 *
627 * At the moment the threshold is taken by averaging the hit counts of some
628 * of the entries in the cache (the first 20 entries across all levels in
629 * ascending order, giving preference to the clean entries at each level).
630 *
631 * We can be much cleverer than this though.  For example, each promotion
632 * could bump up the threshold helping to prevent churn.  Much more to do
633 * here.
634 */
635
636#define MAX_TO_AVERAGE 20
637
638static void check_generation(struct mq_policy *mq)
639{
640	unsigned total = 0, nr = 0, count = 0, level;
641	struct list_head *head;
642	struct entry *e;
643
644	if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) {
645		mq->hit_count = 0;
646		mq->generation++;
647
648		for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
649			head = mq->cache_clean.qs + level;
650			list_for_each_entry(e, head, list) {
651				nr++;
652				total += e->hit_count;
653
654				if (++count >= MAX_TO_AVERAGE)
655					break;
656			}
657
658			head = mq->cache_dirty.qs + level;
659			list_for_each_entry(e, head, list) {
660				nr++;
661				total += e->hit_count;
662
663				if (++count >= MAX_TO_AVERAGE)
664					break;
665			}
666		}
667	}
668}
669
670/*
671 * Whenever we use an entry we bump up it's hit counter, and push it to the
672 * back to it's current level.
673 */
674static void requeue(struct mq_policy *mq, struct entry *e)
675{
676	check_generation(mq);
677	del(mq, e);
678	push(mq, e);
679}
680
681/*
682 * Demote the least recently used entry from the cache to the pre_cache.
683 * Returns the new cache entry to use, and the old origin block it was
684 * mapped to.
685 *
686 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
687 * straight back into the cache if it's subsequently hit.  There are
688 * various options here, and more experimentation would be good:
689 *
690 * - just forget about the demoted entry completely (ie. don't insert it
691     into the pre_cache).
692 * - divide the hit count rather that setting to some hard coded value.
693 * - set the hit count to a hard coded value other than 1, eg, is it better
694 *   if it goes in at level 2?
695 */
696static int demote_cblock(struct mq_policy *mq,
697			 struct policy_locker *locker, dm_oblock_t *oblock)
698{
699	struct entry *demoted = peek(&mq->cache_clean);
700
701	if (!demoted)
702		/*
703		 * We could get a block from mq->cache_dirty, but that
704		 * would add extra latency to the triggering bio as it
705		 * waits for the writeback.  Better to not promote this
706		 * time and hope there's a clean block next time this block
707		 * is hit.
708		 */
709		return -ENOSPC;
710
711	if (locker->fn(locker, demoted->oblock))
712		/*
713		 * We couldn't lock the demoted block.
714		 */
715		return -EBUSY;
716
717	del(mq, demoted);
718	*oblock = demoted->oblock;
719	free_entry(&mq->cache_pool, demoted);
720
721	/*
722	 * We used to put the demoted block into the pre-cache, but I think
723	 * it's simpler to just let it work it's way up from zero again.
724	 * Stops blocks flickering in and out of the cache.
725	 */
726
727	return 0;
728}
729
730/*
731 * Entries in the pre_cache whose hit count passes the promotion
732 * threshold move to the cache proper.  Working out the correct
733 * value for the promotion_threshold is crucial to this policy.
734 */
735static unsigned promote_threshold(struct mq_policy *mq)
736{
737	struct entry *e;
738
739	if (any_free_cblocks(mq))
740		return 0;
741
742	e = peek(&mq->cache_clean);
743	if (e)
744		return e->hit_count;
745
746	e = peek(&mq->cache_dirty);
747	if (e)
748		return e->hit_count + DISCOURAGE_DEMOTING_DIRTY_THRESHOLD;
749
750	/* This should never happen */
751	return 0;
752}
753
754/*
755 * We modify the basic promotion_threshold depending on the specific io.
756 *
757 * If the origin block has been discarded then there's no cost to copy it
758 * to the cache.
759 *
760 * We bias towards reads, since they can be demoted at no cost if they
761 * haven't been dirtied.
762 */
763static unsigned adjusted_promote_threshold(struct mq_policy *mq,
764					   bool discarded_oblock, int data_dir)
765{
766	if (data_dir == READ)
767		return promote_threshold(mq) + mq->read_promote_adjustment;
768
769	if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) {
770		/*
771		 * We don't need to do any copying at all, so give this a
772		 * very low threshold.
773		 */
774		return mq->discard_promote_adjustment;
775	}
776
777	return promote_threshold(mq) + mq->write_promote_adjustment;
778}
779
780static bool should_promote(struct mq_policy *mq, struct entry *e,
781			   bool discarded_oblock, int data_dir)
782{
783	return e->hit_count >=
784		adjusted_promote_threshold(mq, discarded_oblock, data_dir);
785}
786
787static int cache_entry_found(struct mq_policy *mq,
788			     struct entry *e,
789			     struct policy_result *result)
790{
791	requeue(mq, e);
792
793	if (in_cache(mq, e)) {
794		result->op = POLICY_HIT;
795		result->cblock = infer_cblock(&mq->cache_pool, e);
796	}
797
798	return 0;
799}
800
801/*
802 * Moves an entry from the pre_cache to the cache.  The main work is
803 * finding which cache block to use.
804 */
805static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
806			      struct policy_locker *locker,
807			      struct policy_result *result)
808{
809	int r;
810	struct entry *new_e;
811
812	/* Ensure there's a free cblock in the cache */
813	if (epool_empty(&mq->cache_pool)) {
814		result->op = POLICY_REPLACE;
815		r = demote_cblock(mq, locker, &result->old_oblock);
816		if (r) {
817			result->op = POLICY_MISS;
818			return 0;
819		}
820
821	} else
822		result->op = POLICY_NEW;
823
824	new_e = alloc_entry(&mq->cache_pool);
825	BUG_ON(!new_e);
826
827	new_e->oblock = e->oblock;
828	new_e->dirty = false;
829	new_e->hit_count = e->hit_count;
830
831	del(mq, e);
832	free_entry(&mq->pre_cache_pool, e);
833	push(mq, new_e);
834
835	result->cblock = infer_cblock(&mq->cache_pool, new_e);
836
837	return 0;
838}
839
840static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
841				 bool can_migrate, bool discarded_oblock,
842				 int data_dir, struct policy_locker *locker,
843				 struct policy_result *result)
844{
845	int r = 0;
846
847	if (!should_promote(mq, e, discarded_oblock, data_dir)) {
848		requeue(mq, e);
849		result->op = POLICY_MISS;
850
851	} else if (!can_migrate)
852		r = -EWOULDBLOCK;
853
854	else {
855		requeue(mq, e);
856		r = pre_cache_to_cache(mq, e, locker, result);
857	}
858
859	return r;
860}
861
862static void insert_in_pre_cache(struct mq_policy *mq,
863				dm_oblock_t oblock)
864{
865	struct entry *e = alloc_entry(&mq->pre_cache_pool);
866
867	if (!e)
868		/*
869		 * There's no spare entry structure, so we grab the least
870		 * used one from the pre_cache.
871		 */
872		e = pop(mq, &mq->pre_cache);
873
874	if (unlikely(!e)) {
875		DMWARN("couldn't pop from pre cache");
876		return;
877	}
878
879	e->dirty = false;
880	e->oblock = oblock;
881	e->hit_count = 1;
882	push(mq, e);
883}
884
885static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
886			    struct policy_locker *locker,
887			    struct policy_result *result)
888{
889	int r;
890	struct entry *e;
891
892	if (epool_empty(&mq->cache_pool)) {
893		result->op = POLICY_REPLACE;
894		r = demote_cblock(mq, locker, &result->old_oblock);
895		if (unlikely(r)) {
896			result->op = POLICY_MISS;
897			insert_in_pre_cache(mq, oblock);
898			return;
899		}
900
901		/*
902		 * This will always succeed, since we've just demoted.
903		 */
904		e = alloc_entry(&mq->cache_pool);
905		BUG_ON(!e);
906
907	} else {
908		e = alloc_entry(&mq->cache_pool);
909		result->op = POLICY_NEW;
910	}
911
912	e->oblock = oblock;
913	e->dirty = false;
914	e->hit_count = 1;
915	push(mq, e);
916
917	result->cblock = infer_cblock(&mq->cache_pool, e);
918}
919
920static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
921			  bool can_migrate, bool discarded_oblock,
922			  int data_dir, struct policy_locker *locker,
923			  struct policy_result *result)
924{
925	if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) <= 1) {
926		if (can_migrate)
927			insert_in_cache(mq, oblock, locker, result);
928		else
929			return -EWOULDBLOCK;
930	} else {
931		insert_in_pre_cache(mq, oblock);
932		result->op = POLICY_MISS;
933	}
934
935	return 0;
936}
937
938/*
939 * Looks the oblock up in the hash table, then decides whether to put in
940 * pre_cache, or cache etc.
941 */
942static int map(struct mq_policy *mq, dm_oblock_t oblock,
943	       bool can_migrate, bool discarded_oblock,
944	       int data_dir, struct policy_locker *locker,
945	       struct policy_result *result)
946{
947	int r = 0;
948	struct entry *e = hash_lookup(mq, oblock);
949
950	if (e && in_cache(mq, e))
951		r = cache_entry_found(mq, e, result);
952
953	else if (mq->tracker.thresholds[PATTERN_SEQUENTIAL] &&
954		 iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
955		result->op = POLICY_MISS;
956
957	else if (e)
958		r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
959					  data_dir, locker, result);
960
961	else
962		r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
963				   data_dir, locker, result);
964
965	if (r == -EWOULDBLOCK)
966		result->op = POLICY_MISS;
967
968	return r;
969}
970
971/*----------------------------------------------------------------*/
972
973/*
974 * Public interface, via the policy struct.  See dm-cache-policy.h for a
975 * description of these.
976 */
977
978static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
979{
980	return container_of(p, struct mq_policy, policy);
981}
982
983static void mq_destroy(struct dm_cache_policy *p)
984{
985	struct mq_policy *mq = to_mq_policy(p);
986
987	vfree(mq->table);
988	epool_exit(&mq->cache_pool);
989	epool_exit(&mq->pre_cache_pool);
990	kfree(mq);
991}
992
993static void update_pre_cache_hits(struct list_head *h, void *context)
994{
995	struct entry *e = container_of(h, struct entry, list);
996	e->hit_count++;
997}
998
999static void update_cache_hits(struct list_head *h, void *context)
1000{
1001	struct mq_policy *mq = context;
1002	struct entry *e = container_of(h, struct entry, list);
1003	e->hit_count++;
1004	mq->hit_count++;
1005}
1006
1007static void copy_tick(struct mq_policy *mq)
1008{
1009	unsigned long flags, tick;
1010
1011	spin_lock_irqsave(&mq->tick_lock, flags);
1012	tick = mq->tick_protected;
1013	if (tick != mq->tick) {
1014		queue_iterate_tick(&mq->pre_cache, update_pre_cache_hits, mq);
1015		queue_iterate_tick(&mq->cache_dirty, update_cache_hits, mq);
1016		queue_iterate_tick(&mq->cache_clean, update_cache_hits, mq);
1017		mq->tick = tick;
1018	}
1019
1020	queue_tick(&mq->pre_cache);
1021	queue_tick(&mq->cache_dirty);
1022	queue_tick(&mq->cache_clean);
1023	queue_update_writeback_sentinels(&mq->cache_dirty);
1024	spin_unlock_irqrestore(&mq->tick_lock, flags);
1025}
1026
1027static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1028		  bool can_block, bool can_migrate, bool discarded_oblock,
1029		  struct bio *bio, struct policy_locker *locker,
1030		  struct policy_result *result)
1031{
1032	int r;
1033	struct mq_policy *mq = to_mq_policy(p);
1034
1035	result->op = POLICY_MISS;
1036
1037	if (can_block)
1038		mutex_lock(&mq->lock);
1039	else if (!mutex_trylock(&mq->lock))
1040		return -EWOULDBLOCK;
1041
1042	copy_tick(mq);
1043
1044	iot_examine_bio(&mq->tracker, bio);
1045	r = map(mq, oblock, can_migrate, discarded_oblock,
1046		bio_data_dir(bio), locker, result);
1047
1048	mutex_unlock(&mq->lock);
1049
1050	return r;
1051}
1052
1053static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1054{
1055	int r;
1056	struct mq_policy *mq = to_mq_policy(p);
1057	struct entry *e;
1058
1059	if (!mutex_trylock(&mq->lock))
1060		return -EWOULDBLOCK;
1061
1062	e = hash_lookup(mq, oblock);
1063	if (e && in_cache(mq, e)) {
1064		*cblock = infer_cblock(&mq->cache_pool, e);
1065		r = 0;
1066	} else
1067		r = -ENOENT;
1068
1069	mutex_unlock(&mq->lock);
1070
1071	return r;
1072}
1073
1074static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set)
1075{
1076	struct entry *e;
1077
1078	e = hash_lookup(mq, oblock);
1079	BUG_ON(!e || !in_cache(mq, e));
1080
1081	del(mq, e);
1082	e->dirty = set;
1083	push(mq, e);
1084}
1085
1086static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1087{
1088	struct mq_policy *mq = to_mq_policy(p);
1089
1090	mutex_lock(&mq->lock);
1091	__mq_set_clear_dirty(mq, oblock, true);
1092	mutex_unlock(&mq->lock);
1093}
1094
1095static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1096{
1097	struct mq_policy *mq = to_mq_policy(p);
1098
1099	mutex_lock(&mq->lock);
1100	__mq_set_clear_dirty(mq, oblock, false);
1101	mutex_unlock(&mq->lock);
1102}
1103
1104static int mq_load_mapping(struct dm_cache_policy *p,
1105			   dm_oblock_t oblock, dm_cblock_t cblock,
1106			   uint32_t hint, bool hint_valid)
1107{
1108	struct mq_policy *mq = to_mq_policy(p);
1109	struct entry *e;
1110
1111	e = alloc_particular_entry(&mq->cache_pool, cblock);
1112	e->oblock = oblock;
1113	e->dirty = false;	/* this gets corrected in a minute */
1114	e->hit_count = hint_valid ? hint : 1;
1115	push(mq, e);
1116
1117	return 0;
1118}
1119
1120static int mq_save_hints(struct mq_policy *mq, struct queue *q,
1121			 policy_walk_fn fn, void *context)
1122{
1123	int r;
1124	unsigned level;
1125	struct list_head *h;
1126	struct entry *e;
1127
1128	for (level = 0; level < NR_QUEUE_LEVELS; level++)
1129		list_for_each(h, q->qs + level) {
1130			if (is_sentinel(q, h))
1131				continue;
1132
1133			e = container_of(h, struct entry, list);
1134			r = fn(context, infer_cblock(&mq->cache_pool, e),
1135			       e->oblock, e->hit_count);
1136			if (r)
1137				return r;
1138		}
1139
1140	return 0;
1141}
1142
1143static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1144			    void *context)
1145{
1146	struct mq_policy *mq = to_mq_policy(p);
1147	int r = 0;
1148
1149	mutex_lock(&mq->lock);
1150
1151	r = mq_save_hints(mq, &mq->cache_clean, fn, context);
1152	if (!r)
1153		r = mq_save_hints(mq, &mq->cache_dirty, fn, context);
1154
1155	mutex_unlock(&mq->lock);
1156
1157	return r;
1158}
1159
1160static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
1161{
1162	struct entry *e;
1163
1164	e = hash_lookup(mq, oblock);
1165	BUG_ON(!e || !in_cache(mq, e));
1166
1167	del(mq, e);
1168	free_entry(&mq->cache_pool, e);
1169}
1170
1171static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1172{
1173	struct mq_policy *mq = to_mq_policy(p);
1174
1175	mutex_lock(&mq->lock);
1176	__remove_mapping(mq, oblock);
1177	mutex_unlock(&mq->lock);
1178}
1179
1180static int __remove_cblock(struct mq_policy *mq, dm_cblock_t cblock)
1181{
1182	struct entry *e = epool_find(&mq->cache_pool, cblock);
1183
1184	if (!e)
1185		return -ENODATA;
1186
1187	del(mq, e);
1188	free_entry(&mq->cache_pool, e);
1189
1190	return 0;
1191}
1192
1193static int mq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1194{
1195	int r;
1196	struct mq_policy *mq = to_mq_policy(p);
1197
1198	mutex_lock(&mq->lock);
1199	r = __remove_cblock(mq, cblock);
1200	mutex_unlock(&mq->lock);
1201
1202	return r;
1203}
1204
1205#define CLEAN_TARGET_PERCENTAGE 25
1206
1207static bool clean_target_met(struct mq_policy *mq)
1208{
1209	/*
1210	 * Cache entries may not be populated.  So we're cannot rely on the
1211	 * size of the clean queue.
1212	 */
1213	unsigned nr_clean = from_cblock(mq->cache_size) - queue_size(&mq->cache_dirty);
1214	unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_PERCENTAGE / 100;
1215
1216	return nr_clean >= target;
1217}
1218
1219static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
1220			      dm_cblock_t *cblock)
1221{
1222	struct entry *e = pop_old(mq, &mq->cache_dirty);
1223
1224	if (!e && !clean_target_met(mq))
1225		e = pop(mq, &mq->cache_dirty);
1226
1227	if (!e)
1228		return -ENODATA;
1229
1230	*oblock = e->oblock;
1231	*cblock = infer_cblock(&mq->cache_pool, e);
1232	e->dirty = false;
1233	push(mq, e);
1234
1235	return 0;
1236}
1237
1238static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1239			     dm_cblock_t *cblock)
1240{
1241	int r;
1242	struct mq_policy *mq = to_mq_policy(p);
1243
1244	mutex_lock(&mq->lock);
1245	r = __mq_writeback_work(mq, oblock, cblock);
1246	mutex_unlock(&mq->lock);
1247
1248	return r;
1249}
1250
1251static void __force_mapping(struct mq_policy *mq,
1252			    dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1253{
1254	struct entry *e = hash_lookup(mq, current_oblock);
1255
1256	if (e && in_cache(mq, e)) {
1257		del(mq, e);
1258		e->oblock = new_oblock;
1259		e->dirty = true;
1260		push(mq, e);
1261	}
1262}
1263
1264static void mq_force_mapping(struct dm_cache_policy *p,
1265			     dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1266{
1267	struct mq_policy *mq = to_mq_policy(p);
1268
1269	mutex_lock(&mq->lock);
1270	__force_mapping(mq, current_oblock, new_oblock);
1271	mutex_unlock(&mq->lock);
1272}
1273
1274static dm_cblock_t mq_residency(struct dm_cache_policy *p)
1275{
1276	dm_cblock_t r;
1277	struct mq_policy *mq = to_mq_policy(p);
1278
1279	mutex_lock(&mq->lock);
1280	r = to_cblock(mq->cache_pool.nr_allocated);
1281	mutex_unlock(&mq->lock);
1282
1283	return r;
1284}
1285
1286static void mq_tick(struct dm_cache_policy *p)
1287{
1288	struct mq_policy *mq = to_mq_policy(p);
1289	unsigned long flags;
1290
1291	spin_lock_irqsave(&mq->tick_lock, flags);
1292	mq->tick_protected++;
1293	spin_unlock_irqrestore(&mq->tick_lock, flags);
1294}
1295
1296static int mq_set_config_value(struct dm_cache_policy *p,
1297			       const char *key, const char *value)
1298{
1299	struct mq_policy *mq = to_mq_policy(p);
1300	unsigned long tmp;
1301
1302	if (kstrtoul(value, 10, &tmp))
1303		return -EINVAL;
1304
1305	if (!strcasecmp(key, "random_threshold")) {
1306		mq->tracker.thresholds[PATTERN_RANDOM] = tmp;
1307
1308	} else if (!strcasecmp(key, "sequential_threshold")) {
1309		mq->tracker.thresholds[PATTERN_SEQUENTIAL] = tmp;
1310
1311	} else if (!strcasecmp(key, "discard_promote_adjustment"))
1312		mq->discard_promote_adjustment = tmp;
1313
1314	else if (!strcasecmp(key, "read_promote_adjustment"))
1315		mq->read_promote_adjustment = tmp;
1316
1317	else if (!strcasecmp(key, "write_promote_adjustment"))
1318		mq->write_promote_adjustment = tmp;
1319
1320	else
1321		return -EINVAL;
1322
1323	return 0;
1324}
1325
1326static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
1327{
1328	ssize_t sz = 0;
1329	struct mq_policy *mq = to_mq_policy(p);
1330
1331	DMEMIT("10 random_threshold %u "
1332	       "sequential_threshold %u "
1333	       "discard_promote_adjustment %u "
1334	       "read_promote_adjustment %u "
1335	       "write_promote_adjustment %u",
1336	       mq->tracker.thresholds[PATTERN_RANDOM],
1337	       mq->tracker.thresholds[PATTERN_SEQUENTIAL],
1338	       mq->discard_promote_adjustment,
1339	       mq->read_promote_adjustment,
1340	       mq->write_promote_adjustment);
1341
1342	return 0;
1343}
1344
1345/* Init the policy plugin interface function pointers. */
1346static void init_policy_functions(struct mq_policy *mq)
1347{
1348	mq->policy.destroy = mq_destroy;
1349	mq->policy.map = mq_map;
1350	mq->policy.lookup = mq_lookup;
1351	mq->policy.set_dirty = mq_set_dirty;
1352	mq->policy.clear_dirty = mq_clear_dirty;
1353	mq->policy.load_mapping = mq_load_mapping;
1354	mq->policy.walk_mappings = mq_walk_mappings;
1355	mq->policy.remove_mapping = mq_remove_mapping;
1356	mq->policy.remove_cblock = mq_remove_cblock;
1357	mq->policy.writeback_work = mq_writeback_work;
1358	mq->policy.force_mapping = mq_force_mapping;
1359	mq->policy.residency = mq_residency;
1360	mq->policy.tick = mq_tick;
1361	mq->policy.emit_config_values = mq_emit_config_values;
1362	mq->policy.set_config_value = mq_set_config_value;
1363}
1364
1365static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1366					 sector_t origin_size,
1367					 sector_t cache_block_size)
1368{
1369	struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1370
1371	if (!mq)
1372		return NULL;
1373
1374	init_policy_functions(mq);
1375	iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
1376	mq->cache_size = cache_size;
1377
1378	if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) {
1379		DMERR("couldn't initialize pool of pre-cache entries");
1380		goto bad_pre_cache_init;
1381	}
1382
1383	if (epool_init(&mq->cache_pool, from_cblock(cache_size))) {
1384		DMERR("couldn't initialize pool of cache entries");
1385		goto bad_cache_init;
1386	}
1387
1388	mq->tick_protected = 0;
1389	mq->tick = 0;
1390	mq->hit_count = 0;
1391	mq->generation = 0;
1392	mq->discard_promote_adjustment = DEFAULT_DISCARD_PROMOTE_ADJUSTMENT;
1393	mq->read_promote_adjustment = DEFAULT_READ_PROMOTE_ADJUSTMENT;
1394	mq->write_promote_adjustment = DEFAULT_WRITE_PROMOTE_ADJUSTMENT;
1395	mutex_init(&mq->lock);
1396	spin_lock_init(&mq->tick_lock);
1397
1398	queue_init(&mq->pre_cache);
1399	queue_init(&mq->cache_clean);
1400	queue_init(&mq->cache_dirty);
1401
1402	mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
1403
1404	mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
1405	mq->hash_bits = ffs(mq->nr_buckets) - 1;
1406	mq->table = vzalloc(sizeof(*mq->table) * mq->nr_buckets);
1407	if (!mq->table)
1408		goto bad_alloc_table;
1409
1410	return &mq->policy;
1411
1412bad_alloc_table:
1413	epool_exit(&mq->cache_pool);
1414bad_cache_init:
1415	epool_exit(&mq->pre_cache_pool);
1416bad_pre_cache_init:
1417	kfree(mq);
1418
1419	return NULL;
1420}
1421
1422/*----------------------------------------------------------------*/
1423
1424static struct dm_cache_policy_type mq_policy_type = {
1425	.name = "mq",
1426	.version = {1, 3, 0},
1427	.hint_size = 4,
1428	.owner = THIS_MODULE,
1429	.create = mq_create
1430};
1431
1432static struct dm_cache_policy_type default_policy_type = {
1433	.name = "default",
1434	.version = {1, 3, 0},
1435	.hint_size = 4,
1436	.owner = THIS_MODULE,
1437	.create = mq_create,
1438	.real = &mq_policy_type
1439};
1440
1441static int __init mq_init(void)
1442{
1443	int r;
1444
1445	mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
1446					   sizeof(struct entry),
1447					   __alignof__(struct entry),
1448					   0, NULL);
1449	if (!mq_entry_cache)
1450		goto bad;
1451
1452	r = dm_cache_policy_register(&mq_policy_type);
1453	if (r) {
1454		DMERR("register failed %d", r);
1455		goto bad_register_mq;
1456	}
1457
1458	r = dm_cache_policy_register(&default_policy_type);
1459	if (!r) {
1460		DMINFO("version %u.%u.%u loaded",
1461		       mq_policy_type.version[0],
1462		       mq_policy_type.version[1],
1463		       mq_policy_type.version[2]);
1464		return 0;
1465	}
1466
1467	DMERR("register failed (as default) %d", r);
1468
1469	dm_cache_policy_unregister(&mq_policy_type);
1470bad_register_mq:
1471	kmem_cache_destroy(mq_entry_cache);
1472bad:
1473	return -ENOMEM;
1474}
1475
1476static void __exit mq_exit(void)
1477{
1478	dm_cache_policy_unregister(&mq_policy_type);
1479	dm_cache_policy_unregister(&default_policy_type);
1480
1481	kmem_cache_destroy(mq_entry_cache);
1482}
1483
1484module_init(mq_init);
1485module_exit(mq_exit);
1486
1487MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1488MODULE_LICENSE("GPL");
1489MODULE_DESCRIPTION("mq cache policy");
1490
1491MODULE_ALIAS("dm-cache-default");
1492