1/* $Id: hfc_sx.c,v 1.12.2.5 2004/02/11 13:21:33 keil Exp $
2 *
3 * level driver for Cologne Chip Designs hfc-s+/sp based cards
4 *
5 * Author       Werner Cornelius
6 *              based on existing driver for CCD HFC PCI cards
7 * Copyright    by Werner Cornelius  <werner@isdn4linux.de>
8 *
9 * This software may be used and distributed according to the terms
10 * of the GNU General Public License, incorporated herein by reference.
11 *
12 */
13
14#include <linux/init.h>
15#include "hisax.h"
16#include "hfc_sx.h"
17#include "isdnl1.h"
18#include <linux/interrupt.h>
19#include <linux/isapnp.h>
20#include <linux/slab.h>
21
22static const char *hfcsx_revision = "$Revision: 1.12.2.5 $";
23
24/***************************************/
25/* IRQ-table for CCDs demo board       */
26/* IRQs 6,5,10,11,12,15 are supported  */
27/***************************************/
28
29/* Teles 16.3c Vendor Id TAG2620, Version 1.0, Vendor version 2.1
30 *
31 * Thanks to Uwe Wisniewski
32 *
33 * ISA-SLOT  Signal      PIN
34 * B25        IRQ3     92 IRQ_G
35 * B23        IRQ5     94 IRQ_A
36 * B4         IRQ2/9   95 IRQ_B
37 * D3         IRQ10    96 IRQ_C
38 * D4         IRQ11    97 IRQ_D
39 * D5         IRQ12    98 IRQ_E
40 * D6         IRQ15    99 IRQ_F
41 */
42
43#undef CCD_DEMO_BOARD
44#ifdef CCD_DEMO_BOARD
45static u_char ccd_sp_irqtab[16] = {
46	0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 3, 4, 5, 0, 0, 6
47};
48#else /* Teles 16.3c */
49static u_char ccd_sp_irqtab[16] = {
50	0, 0, 0, 7, 0, 1, 0, 0, 0, 2, 3, 4, 5, 0, 0, 6
51};
52#endif
53#define NT_T1_COUNT 20		/* number of 3.125ms interrupts for G2 timeout */
54
55#define byteout(addr, val) outb(val, addr)
56#define bytein(addr) inb(addr)
57
58/******************************/
59/* In/Out access to registers */
60/******************************/
61static inline void
62Write_hfc(struct IsdnCardState *cs, u_char regnum, u_char val)
63{
64	byteout(cs->hw.hfcsx.base + 1, regnum);
65	byteout(cs->hw.hfcsx.base, val);
66}
67
68static inline u_char
69Read_hfc(struct IsdnCardState *cs, u_char regnum)
70{
71	u_char ret;
72
73	byteout(cs->hw.hfcsx.base + 1, regnum);
74	ret = bytein(cs->hw.hfcsx.base);
75	return (ret);
76}
77
78
79/**************************************************/
80/* select a fifo and remember which one for reuse */
81/**************************************************/
82static void
83fifo_select(struct IsdnCardState *cs, u_char fifo)
84{
85	if (fifo == cs->hw.hfcsx.last_fifo)
86		return; /* still valid */
87
88	byteout(cs->hw.hfcsx.base + 1, HFCSX_FIF_SEL);
89	byteout(cs->hw.hfcsx.base, fifo);
90	while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
91	udelay(4);
92	byteout(cs->hw.hfcsx.base, fifo);
93	while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
94}
95
96/******************************************/
97/* reset the specified fifo to defaults.  */
98/* If its a send fifo init needed markers */
99/******************************************/
100static void
101reset_fifo(struct IsdnCardState *cs, u_char fifo)
102{
103	fifo_select(cs, fifo); /* first select the fifo */
104	byteout(cs->hw.hfcsx.base + 1, HFCSX_CIRM);
105	byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.cirm | 0x80); /* reset cmd */
106	udelay(1);
107	while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
108}
109
110
111/*************************************************************/
112/* write_fifo writes the skb contents to the desired fifo    */
113/* if no space is available or an error occurs 0 is returned */
114/* the skb is not released in any way.                       */
115/*************************************************************/
116static int
117write_fifo(struct IsdnCardState *cs, struct sk_buff *skb, u_char fifo, int trans_max)
118{
119	unsigned short *msp;
120	int fifo_size, count, z1, z2;
121	u_char f_msk, f1, f2, *src;
122
123	if (skb->len <= 0) return (0);
124	if (fifo & 1) return (0); /* no write fifo */
125
126	fifo_select(cs, fifo);
127	if (fifo & 4) {
128		fifo_size = D_FIFO_SIZE; /* D-channel */
129		f_msk = MAX_D_FRAMES;
130		if (trans_max) return (0); /* only HDLC */
131	}
132	else {
133		fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
134		f_msk = MAX_B_FRAMES;
135	}
136
137	z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
138	z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
139
140	/* Check for transparent mode */
141	if (trans_max) {
142		z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
143		z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
144		count = z2 - z1;
145		if (count <= 0)
146			count += fifo_size; /* free bytes */
147		if (count < skb->len + 1) return (0); /* no room */
148		count = fifo_size - count; /* bytes still not send */
149		if (count > 2 * trans_max) return (0); /* delay to long */
150		count = skb->len;
151		src = skb->data;
152		while (count--)
153			Write_hfc(cs, HFCSX_FIF_DWR, *src++);
154		return (1); /* success */
155	}
156
157	msp = ((struct hfcsx_extra *)(cs->hw.hfcsx.extra))->marker;
158	msp += (((fifo >> 1) & 3) * (MAX_B_FRAMES + 1));
159	f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
160	f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
161
162	count = f1 - f2; /* frame count actually buffered */
163	if (count < 0)
164		count += (f_msk + 1);	/* if wrap around */
165	if (count > f_msk - 1) {
166		if (cs->debug & L1_DEB_ISAC_FIFO)
167			debugl1(cs, "hfcsx_write_fifo %d more as %d frames", fifo, f_msk - 1);
168		return (0);
169	}
170
171	*(msp + f1) = z1; /* remember marker */
172
173	if (cs->debug & L1_DEB_ISAC_FIFO)
174		debugl1(cs, "hfcsx_write_fifo %d f1(%x) f2(%x) z1(f1)(%x)",
175			fifo, f1, f2, z1);
176	/* now determine free bytes in FIFO buffer */
177	count = *(msp + f2) - z1;
178	if (count <= 0)
179		count += fifo_size;	/* count now contains available bytes */
180
181	if (cs->debug & L1_DEB_ISAC_FIFO)
182		debugl1(cs, "hfcsx_write_fifo %d count(%u/%d)",
183			fifo, skb->len, count);
184	if (count < skb->len) {
185		if (cs->debug & L1_DEB_ISAC_FIFO)
186			debugl1(cs, "hfcsx_write_fifo %d no fifo mem", fifo);
187		return (0);
188	}
189
190	count = skb->len; /* get frame len */
191	src = skb->data;	/* source pointer */
192	while (count--)
193		Write_hfc(cs, HFCSX_FIF_DWR, *src++);
194
195	Read_hfc(cs, HFCSX_FIF_INCF1); /* increment F1 */
196	udelay(1);
197	while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
198	return (1);
199}
200
201/***************************************************************/
202/* read_fifo reads data to an skb from the desired fifo        */
203/* if no data is available or an error occurs NULL is returned */
204/* the skb is not released in any way.                         */
205/***************************************************************/
206static struct sk_buff *
207read_fifo(struct IsdnCardState *cs, u_char fifo, int trans_max)
208{       int fifo_size, count, z1, z2;
209	u_char f_msk, f1, f2, *dst;
210	struct sk_buff *skb;
211
212	if (!(fifo & 1)) return (NULL); /* no read fifo */
213	fifo_select(cs, fifo);
214	if (fifo & 4) {
215		fifo_size = D_FIFO_SIZE; /* D-channel */
216		f_msk = MAX_D_FRAMES;
217		if (trans_max) return (NULL); /* only hdlc */
218	}
219	else {
220		fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
221		f_msk = MAX_B_FRAMES;
222	}
223
224	/* transparent mode */
225	if (trans_max) {
226		z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
227		z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
228		z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
229		z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
230		/* now determine bytes in actual FIFO buffer */
231		count = z1 - z2;
232		if (count <= 0)
233			count += fifo_size;	/* count now contains buffered bytes */
234		count++;
235		if (count > trans_max)
236			count = trans_max; /* limit length */
237		skb = dev_alloc_skb(count);
238		if (skb) {
239			dst = skb_put(skb, count);
240			while (count--)
241				*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
242			return skb;
243		} else
244			return NULL; /* no memory */
245	}
246
247	do {
248		f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
249		f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
250
251		if (f1 == f2) return (NULL); /* no frame available */
252
253		z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
254		z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
255		z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
256		z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
257
258		if (cs->debug & L1_DEB_ISAC_FIFO)
259			debugl1(cs, "hfcsx_read_fifo %d f1(%x) f2(%x) z1(f2)(%x) z2(f2)(%x)",
260				fifo, f1, f2, z1, z2);
261		/* now determine bytes in actual FIFO buffer */
262		count = z1 - z2;
263		if (count <= 0)
264			count += fifo_size;	/* count now contains buffered bytes */
265		count++;
266
267		if (cs->debug & L1_DEB_ISAC_FIFO)
268			debugl1(cs, "hfcsx_read_fifo %d count %u)",
269				fifo, count);
270
271		if ((count > fifo_size) || (count < 4)) {
272			if (cs->debug & L1_DEB_WARN)
273				debugl1(cs, "hfcsx_read_fifo %d packet inv. len %d ", fifo , count);
274			while (count) {
275				count--; /* empty fifo */
276				Read_hfc(cs, HFCSX_FIF_DRD);
277			}
278			skb = NULL;
279		} else
280			if ((skb = dev_alloc_skb(count - 3))) {
281				count -= 3;
282				dst = skb_put(skb, count);
283
284				while (count--)
285					*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
286
287				Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 1 */
288				Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 2 */
289				if (Read_hfc(cs, HFCSX_FIF_DRD)) {
290					dev_kfree_skb_irq(skb);
291					if (cs->debug & L1_DEB_ISAC_FIFO)
292						debugl1(cs, "hfcsx_read_fifo %d crc error", fifo);
293					skb = NULL;
294				}
295			} else {
296				printk(KERN_WARNING "HFC-SX: receive out of memory\n");
297				return (NULL);
298			}
299
300		Read_hfc(cs, HFCSX_FIF_INCF2); /* increment F2 */
301		udelay(1);
302		while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
303		udelay(1);
304	} while (!skb); /* retry in case of crc error */
305	return (skb);
306}
307
308/******************************************/
309/* free hardware resources used by driver */
310/******************************************/
311static void
312release_io_hfcsx(struct IsdnCardState *cs)
313{
314	cs->hw.hfcsx.int_m2 = 0;	/* interrupt output off ! */
315	Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
316	Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET);	/* Reset On */
317	msleep(30);				/* Timeout 30ms */
318	Write_hfc(cs, HFCSX_CIRM, 0);	/* Reset Off */
319	del_timer(&cs->hw.hfcsx.timer);
320	release_region(cs->hw.hfcsx.base, 2); /* release IO-Block */
321	kfree(cs->hw.hfcsx.extra);
322	cs->hw.hfcsx.extra = NULL;
323}
324
325/**********************************************************/
326/* set_fifo_size determines the size of the RAM and FIFOs */
327/* returning 0 -> need to reset the chip again.           */
328/**********************************************************/
329static int set_fifo_size(struct IsdnCardState *cs)
330{
331
332	if (cs->hw.hfcsx.b_fifo_size) return (1); /* already determined */
333
334	if ((cs->hw.hfcsx.chip >> 4) == 9) {
335		cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_32K;
336		return (1);
337	}
338
339	cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_8K;
340	cs->hw.hfcsx.cirm |= 0x10; /* only 8K of ram */
341	return (0);
342
343}
344
345/********************************************************************************/
346/* function called to reset the HFC SX chip. A complete software reset of chip */
347/* and fifos is done.                                                           */
348/********************************************************************************/
349static void
350reset_hfcsx(struct IsdnCardState *cs)
351{
352	cs->hw.hfcsx.int_m2 = 0;	/* interrupt output off ! */
353	Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
354
355	printk(KERN_INFO "HFC_SX: resetting card\n");
356	while (1) {
357		Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET | cs->hw.hfcsx.cirm); /* Reset */
358		mdelay(30);
359		Write_hfc(cs, HFCSX_CIRM, cs->hw.hfcsx.cirm); /* Reset Off */
360		mdelay(20);
361		if (Read_hfc(cs, HFCSX_STATUS) & 2)
362			printk(KERN_WARNING "HFC-SX init bit busy\n");
363		cs->hw.hfcsx.last_fifo = 0xff; /* invalidate */
364		if (!set_fifo_size(cs)) continue;
365		break;
366	}
367
368	cs->hw.hfcsx.trm = 0 + HFCSX_BTRANS_THRESMASK;	/* no echo connect , threshold */
369	Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
370
371	Write_hfc(cs, HFCSX_CLKDEL, 0x0e);	/* ST-Bit delay for TE-Mode */
372	cs->hw.hfcsx.sctrl_e = HFCSX_AUTO_AWAKE;
373	Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);	/* S/T Auto awake */
374	cs->hw.hfcsx.bswapped = 0;	/* no exchange */
375	cs->hw.hfcsx.nt_mode = 0;	/* we are in TE mode */
376	cs->hw.hfcsx.ctmt = HFCSX_TIM3_125 | HFCSX_AUTO_TIMER;
377	Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
378
379	cs->hw.hfcsx.int_m1 = HFCSX_INTS_DTRANS | HFCSX_INTS_DREC |
380		HFCSX_INTS_L1STATE | HFCSX_INTS_TIMER;
381	Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
382
383	/* Clear already pending ints */
384	if (Read_hfc(cs, HFCSX_INT_S1));
385
386	Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 2);	/* HFC ST 2 */
387	udelay(10);
388	Write_hfc(cs, HFCSX_STATES, 2);	/* HFC ST 2 */
389	cs->hw.hfcsx.mst_m = HFCSX_MASTER;	/* HFC Master Mode */
390
391	Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
392	cs->hw.hfcsx.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
393	Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
394	cs->hw.hfcsx.sctrl_r = 0;
395	Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
396
397	/* Init GCI/IOM2 in master mode */
398	/* Slots 0 and 1 are set for B-chan 1 and 2 */
399	/* D- and monitor/CI channel are not enabled */
400	/* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
401	/* STIO2 is used as data input, B1+B2 from IOM->ST */
402	/* ST B-channel send disabled -> continuous 1s */
403	/* The IOM slots are always enabled */
404	cs->hw.hfcsx.conn = 0x36;	/* set data flow directions */
405	Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
406	Write_hfc(cs, HFCSX_B1_SSL, 0x80);	/* B1-Slot 0 STIO1 out enabled */
407	Write_hfc(cs, HFCSX_B2_SSL, 0x81);	/* B2-Slot 1 STIO1 out enabled */
408	Write_hfc(cs, HFCSX_B1_RSL, 0x80);	/* B1-Slot 0 STIO2 in enabled */
409	Write_hfc(cs, HFCSX_B2_RSL, 0x81);	/* B2-Slot 1 STIO2 in enabled */
410
411	/* Finally enable IRQ output */
412	cs->hw.hfcsx.int_m2 = HFCSX_IRQ_ENABLE;
413	Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
414	if (Read_hfc(cs, HFCSX_INT_S2));
415}
416
417/***************************************************/
418/* Timer function called when kernel timer expires */
419/***************************************************/
420static void
421hfcsx_Timer(struct IsdnCardState *cs)
422{
423	cs->hw.hfcsx.timer.expires = jiffies + 75;
424	/* WD RESET */
425/*      WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcsx.ctmt | 0x80);
426	add_timer(&cs->hw.hfcsx.timer);
427*/
428}
429
430/************************************************/
431/* select a b-channel entry matching and active */
432/************************************************/
433static
434struct BCState *
435Sel_BCS(struct IsdnCardState *cs, int channel)
436{
437	if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
438		return (&cs->bcs[0]);
439	else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
440		return (&cs->bcs[1]);
441	else
442		return (NULL);
443}
444
445/*******************************/
446/* D-channel receive procedure */
447/*******************************/
448static
449int
450receive_dmsg(struct IsdnCardState *cs)
451{
452	struct sk_buff *skb;
453	int count = 5;
454
455	if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
456		debugl1(cs, "rec_dmsg blocked");
457		return (1);
458	}
459
460	do {
461		skb = read_fifo(cs, HFCSX_SEL_D_RX, 0);
462		if (skb) {
463			skb_queue_tail(&cs->rq, skb);
464			schedule_event(cs, D_RCVBUFREADY);
465		}
466	} while (--count && skb);
467
468	test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
469	return (1);
470}
471
472/**********************************/
473/* B-channel main receive routine */
474/**********************************/
475static void
476main_rec_hfcsx(struct BCState *bcs)
477{
478	struct IsdnCardState *cs = bcs->cs;
479	int count = 5;
480	struct sk_buff *skb;
481
482Begin:
483	count--;
484	if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
485		debugl1(cs, "rec_data %d blocked", bcs->channel);
486		return;
487	}
488	skb = read_fifo(cs, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
489			HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX,
490			(bcs->mode == L1_MODE_TRANS) ?
491			HFCSX_BTRANS_THRESHOLD : 0);
492
493	if (skb) {
494		skb_queue_tail(&bcs->rqueue, skb);
495		schedule_event(bcs, B_RCVBUFREADY);
496	}
497
498	test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
499	if (count && skb)
500		goto Begin;
501	return;
502}
503
504/**************************/
505/* D-channel send routine */
506/**************************/
507static void
508hfcsx_fill_dfifo(struct IsdnCardState *cs)
509{
510	if (!cs->tx_skb)
511		return;
512	if (cs->tx_skb->len <= 0)
513		return;
514
515	if (write_fifo(cs, cs->tx_skb, HFCSX_SEL_D_TX, 0)) {
516		dev_kfree_skb_any(cs->tx_skb);
517		cs->tx_skb = NULL;
518	}
519	return;
520}
521
522/**************************/
523/* B-channel send routine */
524/**************************/
525static void
526hfcsx_fill_fifo(struct BCState *bcs)
527{
528	struct IsdnCardState *cs = bcs->cs;
529
530	if (!bcs->tx_skb)
531		return;
532	if (bcs->tx_skb->len <= 0)
533		return;
534
535	if (write_fifo(cs, bcs->tx_skb,
536		       ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
537		       HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX,
538		       (bcs->mode == L1_MODE_TRANS) ?
539		       HFCSX_BTRANS_THRESHOLD : 0)) {
540
541		bcs->tx_cnt -= bcs->tx_skb->len;
542		if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
543		    (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
544			u_long	flags;
545			spin_lock_irqsave(&bcs->aclock, flags);
546			bcs->ackcnt += bcs->tx_skb->len;
547			spin_unlock_irqrestore(&bcs->aclock, flags);
548			schedule_event(bcs, B_ACKPENDING);
549		}
550		dev_kfree_skb_any(bcs->tx_skb);
551		bcs->tx_skb = NULL;
552		test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
553	}
554}
555
556/**********************************************/
557/* D-channel l1 state call for leased NT-mode */
558/**********************************************/
559static void
560dch_nt_l2l1(struct PStack *st, int pr, void *arg)
561{
562	struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
563
564	switch (pr) {
565	case (PH_DATA | REQUEST):
566	case (PH_PULL | REQUEST):
567	case (PH_PULL | INDICATION):
568		st->l1.l1hw(st, pr, arg);
569		break;
570	case (PH_ACTIVATE | REQUEST):
571		st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
572		break;
573	case (PH_TESTLOOP | REQUEST):
574		if (1 & (long) arg)
575			debugl1(cs, "PH_TEST_LOOP B1");
576		if (2 & (long) arg)
577			debugl1(cs, "PH_TEST_LOOP B2");
578		if (!(3 & (long) arg))
579			debugl1(cs, "PH_TEST_LOOP DISABLED");
580		st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
581		break;
582	default:
583		if (cs->debug)
584			debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
585		break;
586	}
587}
588
589
590
591/***********************/
592/* set/reset echo mode */
593/***********************/
594static int
595hfcsx_auxcmd(struct IsdnCardState *cs, isdn_ctrl *ic)
596{
597	unsigned long flags;
598	int i = *(unsigned int *) ic->parm.num;
599
600	if ((ic->arg == 98) &&
601	    (!(cs->hw.hfcsx.int_m1 & (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC + HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC)))) {
602		spin_lock_irqsave(&cs->lock, flags);
603		Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 0);	/* HFC ST G0 */
604		udelay(10);
605		cs->hw.hfcsx.sctrl |= SCTRL_MODE_NT;
606		Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);	/* set NT-mode */
607		udelay(10);
608		Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 1);	/* HFC ST G1 */
609		udelay(10);
610		Write_hfc(cs, HFCSX_STATES, 1 | HFCSX_ACTIVATE | HFCSX_DO_ACTION);
611		cs->dc.hfcsx.ph_state = 1;
612		cs->hw.hfcsx.nt_mode = 1;
613		cs->hw.hfcsx.nt_timer = 0;
614		spin_unlock_irqrestore(&cs->lock, flags);
615		cs->stlist->l2.l2l1 = dch_nt_l2l1;
616		debugl1(cs, "NT mode activated");
617		return (0);
618	}
619	if ((cs->chanlimit > 1) || (cs->hw.hfcsx.bswapped) ||
620	    (cs->hw.hfcsx.nt_mode) || (ic->arg != 12))
621		return (-EINVAL);
622
623	if (i) {
624		cs->logecho = 1;
625		cs->hw.hfcsx.trm |= 0x20;	/* enable echo chan */
626		cs->hw.hfcsx.int_m1 |= HFCSX_INTS_B2REC;
627		/* reset Channel !!!!! */
628	} else {
629		cs->logecho = 0;
630		cs->hw.hfcsx.trm &= ~0x20;	/* disable echo chan */
631		cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_B2REC;
632	}
633	cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
634	cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
635	cs->hw.hfcsx.conn |= 0x10;	/* B2-IOM -> B2-ST */
636	cs->hw.hfcsx.ctmt &= ~2;
637	spin_lock_irqsave(&cs->lock, flags);
638	Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
639	Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
640	Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
641	Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
642	Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
643	Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
644	spin_unlock_irqrestore(&cs->lock, flags);
645	return (0);
646}				/* hfcsx_auxcmd */
647
648/*****************************/
649/* E-channel receive routine */
650/*****************************/
651static void
652receive_emsg(struct IsdnCardState *cs)
653{
654	int count = 5;
655	u_char *ptr;
656	struct sk_buff *skb;
657
658	if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
659		debugl1(cs, "echo_rec_data blocked");
660		return;
661	}
662	do {
663		skb = read_fifo(cs, HFCSX_SEL_B2_RX, 0);
664		if (skb) {
665			if (cs->debug & DEB_DLOG_HEX) {
666				ptr = cs->dlog;
667				if ((skb->len) < MAX_DLOG_SPACE / 3 - 10) {
668					*ptr++ = 'E';
669					*ptr++ = 'C';
670					*ptr++ = 'H';
671					*ptr++ = 'O';
672					*ptr++ = ':';
673					ptr += QuickHex(ptr, skb->data, skb->len);
674					ptr--;
675					*ptr++ = '\n';
676					*ptr = 0;
677					HiSax_putstatus(cs, NULL, "%s", cs->dlog);
678				} else
679					HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", skb->len);
680			}
681			dev_kfree_skb_any(skb);
682		}
683	} while (--count && skb);
684
685	test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
686	return;
687}				/* receive_emsg */
688
689
690/*********************/
691/* Interrupt handler */
692/*********************/
693static irqreturn_t
694hfcsx_interrupt(int intno, void *dev_id)
695{
696	struct IsdnCardState *cs = dev_id;
697	u_char exval;
698	struct BCState *bcs;
699	int count = 15;
700	u_long flags;
701	u_char val, stat;
702
703	if (!(cs->hw.hfcsx.int_m2 & 0x08))
704		return IRQ_NONE;		/* not initialised */
705
706	spin_lock_irqsave(&cs->lock, flags);
707	if (HFCSX_ANYINT & (stat = Read_hfc(cs, HFCSX_STATUS))) {
708		val = Read_hfc(cs, HFCSX_INT_S1);
709		if (cs->debug & L1_DEB_ISAC)
710			debugl1(cs, "HFC-SX: stat(%02x) s1(%02x)", stat, val);
711	} else {
712		spin_unlock_irqrestore(&cs->lock, flags);
713		return IRQ_NONE;
714	}
715	if (cs->debug & L1_DEB_ISAC)
716		debugl1(cs, "HFC-SX irq %x %s", val,
717			test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
718			"locked" : "unlocked");
719	val &= cs->hw.hfcsx.int_m1;
720	if (val & 0x40) {	/* state machine irq */
721		exval = Read_hfc(cs, HFCSX_STATES) & 0xf;
722		if (cs->debug & L1_DEB_ISAC)
723			debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcsx.ph_state,
724				exval);
725		cs->dc.hfcsx.ph_state = exval;
726		schedule_event(cs, D_L1STATECHANGE);
727		val &= ~0x40;
728	}
729	if (val & 0x80) {	/* timer irq */
730		if (cs->hw.hfcsx.nt_mode) {
731			if ((--cs->hw.hfcsx.nt_timer) < 0)
732				schedule_event(cs, D_L1STATECHANGE);
733		}
734		val &= ~0x80;
735		Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
736	}
737	while (val) {
738		if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
739			cs->hw.hfcsx.int_s1 |= val;
740			spin_unlock_irqrestore(&cs->lock, flags);
741			return IRQ_HANDLED;
742		}
743		if (cs->hw.hfcsx.int_s1 & 0x18) {
744			exval = val;
745			val = cs->hw.hfcsx.int_s1;
746			cs->hw.hfcsx.int_s1 = exval;
747		}
748		if (val & 0x08) {
749			if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
750				if (cs->debug)
751					debugl1(cs, "hfcsx spurious 0x08 IRQ");
752			} else
753				main_rec_hfcsx(bcs);
754		}
755		if (val & 0x10) {
756			if (cs->logecho)
757				receive_emsg(cs);
758			else if (!(bcs = Sel_BCS(cs, 1))) {
759				if (cs->debug)
760					debugl1(cs, "hfcsx spurious 0x10 IRQ");
761			} else
762				main_rec_hfcsx(bcs);
763		}
764		if (val & 0x01) {
765			if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
766				if (cs->debug)
767					debugl1(cs, "hfcsx spurious 0x01 IRQ");
768			} else {
769				if (bcs->tx_skb) {
770					if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
771						hfcsx_fill_fifo(bcs);
772						test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
773					} else
774						debugl1(cs, "fill_data %d blocked", bcs->channel);
775				} else {
776					if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
777						if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
778							hfcsx_fill_fifo(bcs);
779							test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
780						} else
781							debugl1(cs, "fill_data %d blocked", bcs->channel);
782					} else {
783						schedule_event(bcs, B_XMTBUFREADY);
784					}
785				}
786			}
787		}
788		if (val & 0x02) {
789			if (!(bcs = Sel_BCS(cs, 1))) {
790				if (cs->debug)
791					debugl1(cs, "hfcsx spurious 0x02 IRQ");
792			} else {
793				if (bcs->tx_skb) {
794					if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
795						hfcsx_fill_fifo(bcs);
796						test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
797					} else
798						debugl1(cs, "fill_data %d blocked", bcs->channel);
799				} else {
800					if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
801						if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
802							hfcsx_fill_fifo(bcs);
803							test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
804						} else
805							debugl1(cs, "fill_data %d blocked", bcs->channel);
806					} else {
807						schedule_event(bcs, B_XMTBUFREADY);
808					}
809				}
810			}
811		}
812		if (val & 0x20) {	/* receive dframe */
813			receive_dmsg(cs);
814		}
815		if (val & 0x04) {	/* dframe transmitted */
816			if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
817				del_timer(&cs->dbusytimer);
818			if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
819				schedule_event(cs, D_CLEARBUSY);
820			if (cs->tx_skb) {
821				if (cs->tx_skb->len) {
822					if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
823						hfcsx_fill_dfifo(cs);
824						test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
825					} else {
826						debugl1(cs, "hfcsx_fill_dfifo irq blocked");
827					}
828					goto afterXPR;
829				} else {
830					dev_kfree_skb_irq(cs->tx_skb);
831					cs->tx_cnt = 0;
832					cs->tx_skb = NULL;
833				}
834			}
835			if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
836				cs->tx_cnt = 0;
837				if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
838					hfcsx_fill_dfifo(cs);
839					test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
840				} else {
841					debugl1(cs, "hfcsx_fill_dfifo irq blocked");
842				}
843			} else
844				schedule_event(cs, D_XMTBUFREADY);
845		}
846	afterXPR:
847		if (cs->hw.hfcsx.int_s1 && count--) {
848			val = cs->hw.hfcsx.int_s1;
849			cs->hw.hfcsx.int_s1 = 0;
850			if (cs->debug & L1_DEB_ISAC)
851				debugl1(cs, "HFC-SX irq %x loop %d", val, 15 - count);
852		} else
853			val = 0;
854	}
855	spin_unlock_irqrestore(&cs->lock, flags);
856	return IRQ_HANDLED;
857}
858
859/********************************************************************/
860/* timer callback for D-chan busy resolution. Currently no function */
861/********************************************************************/
862static void
863hfcsx_dbusy_timer(struct IsdnCardState *cs)
864{
865}
866
867/*************************************/
868/* Layer 1 D-channel hardware access */
869/*************************************/
870static void
871HFCSX_l1hw(struct PStack *st, int pr, void *arg)
872{
873	struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
874	struct sk_buff *skb = arg;
875	u_long flags;
876
877	switch (pr) {
878	case (PH_DATA | REQUEST):
879		if (cs->debug & DEB_DLOG_HEX)
880			LogFrame(cs, skb->data, skb->len);
881		if (cs->debug & DEB_DLOG_VERBOSE)
882			dlogframe(cs, skb, 0);
883		spin_lock_irqsave(&cs->lock, flags);
884		if (cs->tx_skb) {
885			skb_queue_tail(&cs->sq, skb);
886#ifdef L2FRAME_DEBUG		/* psa */
887			if (cs->debug & L1_DEB_LAPD)
888				Logl2Frame(cs, skb, "PH_DATA Queued", 0);
889#endif
890		} else {
891			cs->tx_skb = skb;
892			cs->tx_cnt = 0;
893#ifdef L2FRAME_DEBUG		/* psa */
894			if (cs->debug & L1_DEB_LAPD)
895				Logl2Frame(cs, skb, "PH_DATA", 0);
896#endif
897			if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
898				hfcsx_fill_dfifo(cs);
899				test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
900			} else
901				debugl1(cs, "hfcsx_fill_dfifo blocked");
902
903		}
904		spin_unlock_irqrestore(&cs->lock, flags);
905		break;
906	case (PH_PULL | INDICATION):
907		spin_lock_irqsave(&cs->lock, flags);
908		if (cs->tx_skb) {
909			if (cs->debug & L1_DEB_WARN)
910				debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
911			skb_queue_tail(&cs->sq, skb);
912			spin_unlock_irqrestore(&cs->lock, flags);
913			break;
914		}
915		if (cs->debug & DEB_DLOG_HEX)
916			LogFrame(cs, skb->data, skb->len);
917		if (cs->debug & DEB_DLOG_VERBOSE)
918			dlogframe(cs, skb, 0);
919		cs->tx_skb = skb;
920		cs->tx_cnt = 0;
921#ifdef L2FRAME_DEBUG		/* psa */
922		if (cs->debug & L1_DEB_LAPD)
923			Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
924#endif
925		if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
926			hfcsx_fill_dfifo(cs);
927			test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
928		} else
929			debugl1(cs, "hfcsx_fill_dfifo blocked");
930		spin_unlock_irqrestore(&cs->lock, flags);
931		break;
932	case (PH_PULL | REQUEST):
933#ifdef L2FRAME_DEBUG		/* psa */
934		if (cs->debug & L1_DEB_LAPD)
935			debugl1(cs, "-> PH_REQUEST_PULL");
936#endif
937		if (!cs->tx_skb) {
938			test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
939			st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
940		} else
941			test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
942		break;
943	case (HW_RESET | REQUEST):
944		spin_lock_irqsave(&cs->lock, flags);
945		Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 3);	/* HFC ST 3 */
946		udelay(6);
947		Write_hfc(cs, HFCSX_STATES, 3);	/* HFC ST 2 */
948		cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
949		Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
950		Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
951		spin_unlock_irqrestore(&cs->lock, flags);
952		l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
953		break;
954	case (HW_ENABLE | REQUEST):
955		spin_lock_irqsave(&cs->lock, flags);
956		Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
957		spin_unlock_irqrestore(&cs->lock, flags);
958		break;
959	case (HW_DEACTIVATE | REQUEST):
960		spin_lock_irqsave(&cs->lock, flags);
961		cs->hw.hfcsx.mst_m &= ~HFCSX_MASTER;
962		Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
963		spin_unlock_irqrestore(&cs->lock, flags);
964		break;
965	case (HW_INFO3 | REQUEST):
966		spin_lock_irqsave(&cs->lock, flags);
967		cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
968		Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
969		spin_unlock_irqrestore(&cs->lock, flags);
970		break;
971	case (HW_TESTLOOP | REQUEST):
972		spin_lock_irqsave(&cs->lock, flags);
973		switch ((long) arg) {
974		case (1):
975			Write_hfc(cs, HFCSX_B1_SSL, 0x80);	/* tx slot */
976			Write_hfc(cs, HFCSX_B1_RSL, 0x80);	/* rx slot */
977			cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~7) | 1;
978			Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
979			break;
980		case (2):
981			Write_hfc(cs, HFCSX_B2_SSL, 0x81);	/* tx slot */
982			Write_hfc(cs, HFCSX_B2_RSL, 0x81);	/* rx slot */
983			cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~0x38) | 0x08;
984			Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
985			break;
986		default:
987			spin_unlock_irqrestore(&cs->lock, flags);
988			if (cs->debug & L1_DEB_WARN)
989				debugl1(cs, "hfcsx_l1hw loop invalid %4lx", (unsigned long)arg);
990			return;
991		}
992		cs->hw.hfcsx.trm |= 0x80;	/* enable IOM-loop */
993		Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
994		spin_unlock_irqrestore(&cs->lock, flags);
995		break;
996	default:
997		if (cs->debug & L1_DEB_WARN)
998			debugl1(cs, "hfcsx_l1hw unknown pr %4x", pr);
999		break;
1000	}
1001}
1002
1003/***********************************************/
1004/* called during init setting l1 stack pointer */
1005/***********************************************/
1006static void
1007setstack_hfcsx(struct PStack *st, struct IsdnCardState *cs)
1008{
1009	st->l1.l1hw = HFCSX_l1hw;
1010}
1011
1012/**************************************/
1013/* send B-channel data if not blocked */
1014/**************************************/
1015static void
1016hfcsx_send_data(struct BCState *bcs)
1017{
1018	struct IsdnCardState *cs = bcs->cs;
1019
1020	if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
1021		hfcsx_fill_fifo(bcs);
1022		test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
1023	} else
1024		debugl1(cs, "send_data %d blocked", bcs->channel);
1025}
1026
1027/***************************************************************/
1028/* activate/deactivate hardware for selected channels and mode */
1029/***************************************************************/
1030static void
1031mode_hfcsx(struct BCState *bcs, int mode, int bc)
1032{
1033	struct IsdnCardState *cs = bcs->cs;
1034	int fifo2;
1035
1036	if (cs->debug & L1_DEB_HSCX)
1037		debugl1(cs, "HFCSX bchannel mode %d bchan %d/%d",
1038			mode, bc, bcs->channel);
1039	bcs->mode = mode;
1040	bcs->channel = bc;
1041	fifo2 = bc;
1042	if (cs->chanlimit > 1) {
1043		cs->hw.hfcsx.bswapped = 0;	/* B1 and B2 normal mode */
1044		cs->hw.hfcsx.sctrl_e &= ~0x80;
1045	} else {
1046		if (bc) {
1047			if (mode != L1_MODE_NULL) {
1048				cs->hw.hfcsx.bswapped = 1;	/* B1 and B2 exchanged */
1049				cs->hw.hfcsx.sctrl_e |= 0x80;
1050			} else {
1051				cs->hw.hfcsx.bswapped = 0;	/* B1 and B2 normal mode */
1052				cs->hw.hfcsx.sctrl_e &= ~0x80;
1053			}
1054			fifo2 = 0;
1055		} else {
1056			cs->hw.hfcsx.bswapped = 0;	/* B1 and B2 normal mode */
1057			cs->hw.hfcsx.sctrl_e &= ~0x80;
1058		}
1059	}
1060	switch (mode) {
1061	case (L1_MODE_NULL):
1062		if (bc) {
1063			cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
1064			cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
1065		} else {
1066			cs->hw.hfcsx.sctrl &= ~SCTRL_B1_ENA;
1067			cs->hw.hfcsx.sctrl_r &= ~SCTRL_B1_ENA;
1068		}
1069		if (fifo2) {
1070			cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1071		} else {
1072			cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1073		}
1074		break;
1075	case (L1_MODE_TRANS):
1076		if (bc) {
1077			cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
1078			cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
1079		} else {
1080			cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
1081			cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
1082		}
1083		if (fifo2) {
1084			cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1085			cs->hw.hfcsx.ctmt |= 2;
1086			cs->hw.hfcsx.conn &= ~0x18;
1087		} else {
1088			cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1089			cs->hw.hfcsx.ctmt |= 1;
1090			cs->hw.hfcsx.conn &= ~0x03;
1091		}
1092		break;
1093	case (L1_MODE_HDLC):
1094		if (bc) {
1095			cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
1096			cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
1097		} else {
1098			cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
1099			cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
1100		}
1101		if (fifo2) {
1102			cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1103			cs->hw.hfcsx.ctmt &= ~2;
1104			cs->hw.hfcsx.conn &= ~0x18;
1105		} else {
1106			cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1107			cs->hw.hfcsx.ctmt &= ~1;
1108			cs->hw.hfcsx.conn &= ~0x03;
1109		}
1110		break;
1111	case (L1_MODE_EXTRN):
1112		if (bc) {
1113			cs->hw.hfcsx.conn |= 0x10;
1114			cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
1115			cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
1116			cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
1117		} else {
1118			cs->hw.hfcsx.conn |= 0x02;
1119			cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
1120			cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
1121			cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
1122		}
1123		break;
1124	}
1125	Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);
1126	Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1127	Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
1128	Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
1129	Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
1130	Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
1131	if (mode != L1_MODE_EXTRN) {
1132		reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX);
1133		reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX);
1134	}
1135}
1136
1137/******************************/
1138/* Layer2 -> Layer 1 Transfer */
1139/******************************/
1140static void
1141hfcsx_l2l1(struct PStack *st, int pr, void *arg)
1142{
1143	struct BCState *bcs = st->l1.bcs;
1144	struct sk_buff *skb = arg;
1145	u_long flags;
1146
1147	switch (pr) {
1148	case (PH_DATA | REQUEST):
1149		spin_lock_irqsave(&bcs->cs->lock, flags);
1150		if (bcs->tx_skb) {
1151			skb_queue_tail(&bcs->squeue, skb);
1152		} else {
1153			bcs->tx_skb = skb;
1154//                              test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
1155			bcs->cs->BC_Send_Data(bcs);
1156		}
1157		spin_unlock_irqrestore(&bcs->cs->lock, flags);
1158		break;
1159	case (PH_PULL | INDICATION):
1160		spin_lock_irqsave(&bcs->cs->lock, flags);
1161		if (bcs->tx_skb) {
1162			printk(KERN_WARNING "%s: this shouldn't happen\n",
1163			       __func__);
1164		} else {
1165//				test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
1166			bcs->tx_skb = skb;
1167			bcs->cs->BC_Send_Data(bcs);
1168		}
1169		spin_unlock_irqrestore(&bcs->cs->lock, flags);
1170		break;
1171	case (PH_PULL | REQUEST):
1172		if (!bcs->tx_skb) {
1173			test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
1174			st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
1175		} else
1176			test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
1177		break;
1178	case (PH_ACTIVATE | REQUEST):
1179		spin_lock_irqsave(&bcs->cs->lock, flags);
1180		test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
1181		mode_hfcsx(bcs, st->l1.mode, st->l1.bc);
1182		spin_unlock_irqrestore(&bcs->cs->lock, flags);
1183		l1_msg_b(st, pr, arg);
1184		break;
1185	case (PH_DEACTIVATE | REQUEST):
1186		l1_msg_b(st, pr, arg);
1187		break;
1188	case (PH_DEACTIVATE | CONFIRM):
1189		spin_lock_irqsave(&bcs->cs->lock, flags);
1190		test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
1191		test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
1192		mode_hfcsx(bcs, 0, st->l1.bc);
1193		spin_unlock_irqrestore(&bcs->cs->lock, flags);
1194		st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
1195		break;
1196	}
1197}
1198
1199/******************************************/
1200/* deactivate B-channel access and queues */
1201/******************************************/
1202static void
1203close_hfcsx(struct BCState *bcs)
1204{
1205	mode_hfcsx(bcs, 0, bcs->channel);
1206	if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
1207		skb_queue_purge(&bcs->rqueue);
1208		skb_queue_purge(&bcs->squeue);
1209		if (bcs->tx_skb) {
1210			dev_kfree_skb_any(bcs->tx_skb);
1211			bcs->tx_skb = NULL;
1212			test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
1213		}
1214	}
1215}
1216
1217/*************************************/
1218/* init B-channel queues and control */
1219/*************************************/
1220static int
1221open_hfcsxstate(struct IsdnCardState *cs, struct BCState *bcs)
1222{
1223	if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
1224		skb_queue_head_init(&bcs->rqueue);
1225		skb_queue_head_init(&bcs->squeue);
1226	}
1227	bcs->tx_skb = NULL;
1228	test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
1229	bcs->event = 0;
1230	bcs->tx_cnt = 0;
1231	return (0);
1232}
1233
1234/*********************************/
1235/* inits the stack for B-channel */
1236/*********************************/
1237static int
1238setstack_2b(struct PStack *st, struct BCState *bcs)
1239{
1240	bcs->channel = st->l1.bc;
1241	if (open_hfcsxstate(st->l1.hardware, bcs))
1242		return (-1);
1243	st->l1.bcs = bcs;
1244	st->l2.l2l1 = hfcsx_l2l1;
1245	setstack_manager(st);
1246	bcs->st = st;
1247	setstack_l1_B(st);
1248	return (0);
1249}
1250
1251/***************************/
1252/* handle L1 state changes */
1253/***************************/
1254static void
1255hfcsx_bh(struct work_struct *work)
1256{
1257	struct IsdnCardState *cs =
1258		container_of(work, struct IsdnCardState, tqueue);
1259	u_long flags;
1260
1261	if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
1262		if (!cs->hw.hfcsx.nt_mode)
1263			switch (cs->dc.hfcsx.ph_state) {
1264			case (0):
1265				l1_msg(cs, HW_RESET | INDICATION, NULL);
1266				break;
1267			case (3):
1268				l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
1269				break;
1270			case (8):
1271				l1_msg(cs, HW_RSYNC | INDICATION, NULL);
1272				break;
1273			case (6):
1274				l1_msg(cs, HW_INFO2 | INDICATION, NULL);
1275				break;
1276			case (7):
1277				l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
1278				break;
1279			default:
1280				break;
1281			} else {
1282			switch (cs->dc.hfcsx.ph_state) {
1283			case (2):
1284				spin_lock_irqsave(&cs->lock, flags);
1285				if (cs->hw.hfcsx.nt_timer < 0) {
1286					cs->hw.hfcsx.nt_timer = 0;
1287					cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
1288					Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1289					/* Clear already pending ints */
1290					if (Read_hfc(cs, HFCSX_INT_S1));
1291
1292					Write_hfc(cs, HFCSX_STATES, 4 | HFCSX_LOAD_STATE);
1293					udelay(10);
1294					Write_hfc(cs, HFCSX_STATES, 4);
1295					cs->dc.hfcsx.ph_state = 4;
1296				} else {
1297					cs->hw.hfcsx.int_m1 |= HFCSX_INTS_TIMER;
1298					Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1299					cs->hw.hfcsx.ctmt &= ~HFCSX_AUTO_TIMER;
1300					cs->hw.hfcsx.ctmt |= HFCSX_TIM3_125;
1301					Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
1302					Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
1303					cs->hw.hfcsx.nt_timer = NT_T1_COUNT;
1304					Write_hfc(cs, HFCSX_STATES, 2 | HFCSX_NT_G2_G3);	/* allow G2 -> G3 transition */
1305				}
1306				spin_unlock_irqrestore(&cs->lock, flags);
1307				break;
1308			case (1):
1309			case (3):
1310			case (4):
1311				spin_lock_irqsave(&cs->lock, flags);
1312				cs->hw.hfcsx.nt_timer = 0;
1313				cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
1314				Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1315				spin_unlock_irqrestore(&cs->lock, flags);
1316				break;
1317			default:
1318				break;
1319			}
1320		}
1321	}
1322	if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
1323		DChannel_proc_rcv(cs);
1324	if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
1325		DChannel_proc_xmt(cs);
1326}
1327
1328
1329/********************************/
1330/* called for card init message */
1331/********************************/
1332static void inithfcsx(struct IsdnCardState *cs)
1333{
1334	cs->setstack_d = setstack_hfcsx;
1335	cs->BC_Send_Data = &hfcsx_send_data;
1336	cs->bcs[0].BC_SetStack = setstack_2b;
1337	cs->bcs[1].BC_SetStack = setstack_2b;
1338	cs->bcs[0].BC_Close = close_hfcsx;
1339	cs->bcs[1].BC_Close = close_hfcsx;
1340	mode_hfcsx(cs->bcs, 0, 0);
1341	mode_hfcsx(cs->bcs + 1, 0, 1);
1342}
1343
1344
1345
1346/*******************************************/
1347/* handle card messages from control layer */
1348/*******************************************/
1349static int
1350hfcsx_card_msg(struct IsdnCardState *cs, int mt, void *arg)
1351{
1352	u_long flags;
1353
1354	if (cs->debug & L1_DEB_ISAC)
1355		debugl1(cs, "HFCSX: card_msg %x", mt);
1356	switch (mt) {
1357	case CARD_RESET:
1358		spin_lock_irqsave(&cs->lock, flags);
1359		reset_hfcsx(cs);
1360		spin_unlock_irqrestore(&cs->lock, flags);
1361		return (0);
1362	case CARD_RELEASE:
1363		release_io_hfcsx(cs);
1364		return (0);
1365	case CARD_INIT:
1366		spin_lock_irqsave(&cs->lock, flags);
1367		inithfcsx(cs);
1368		spin_unlock_irqrestore(&cs->lock, flags);
1369		msleep(80);				/* Timeout 80ms */
1370		/* now switch timer interrupt off */
1371		spin_lock_irqsave(&cs->lock, flags);
1372		cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
1373		Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1374		/* reinit mode reg */
1375		Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
1376		spin_unlock_irqrestore(&cs->lock, flags);
1377		return (0);
1378	case CARD_TEST:
1379		return (0);
1380	}
1381	return (0);
1382}
1383
1384#ifdef __ISAPNP__
1385static struct isapnp_device_id hfc_ids[] = {
1386	{ ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
1387	  ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
1388	  (unsigned long) "Teles 16.3c2" },
1389	{ 0, }
1390};
1391
1392static struct isapnp_device_id *ipid = &hfc_ids[0];
1393static struct pnp_card *pnp_c = NULL;
1394#endif
1395
1396int setup_hfcsx(struct IsdnCard *card)
1397{
1398	struct IsdnCardState *cs = card->cs;
1399	char tmp[64];
1400
1401	strcpy(tmp, hfcsx_revision);
1402	printk(KERN_INFO "HiSax: HFC-SX driver Rev. %s\n", HiSax_getrev(tmp));
1403#ifdef __ISAPNP__
1404	if (!card->para[1] && isapnp_present()) {
1405		struct pnp_dev *pnp_d;
1406		while (ipid->card_vendor) {
1407			if ((pnp_c = pnp_find_card(ipid->card_vendor,
1408						   ipid->card_device, pnp_c))) {
1409				pnp_d = NULL;
1410				if ((pnp_d = pnp_find_dev(pnp_c,
1411							  ipid->vendor, ipid->function, pnp_d))) {
1412					int err;
1413
1414					printk(KERN_INFO "HiSax: %s detected\n",
1415					       (char *)ipid->driver_data);
1416					pnp_disable_dev(pnp_d);
1417					err = pnp_activate_dev(pnp_d);
1418					if (err < 0) {
1419						printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
1420						       __func__, err);
1421						return (0);
1422					}
1423					card->para[1] = pnp_port_start(pnp_d, 0);
1424					card->para[0] = pnp_irq(pnp_d, 0);
1425					if (!card->para[0] || !card->para[1]) {
1426						printk(KERN_ERR "HFC PnP:some resources are missing %ld/%lx\n",
1427						       card->para[0], card->para[1]);
1428						pnp_disable_dev(pnp_d);
1429						return (0);
1430					}
1431					break;
1432				} else {
1433					printk(KERN_ERR "HFC PnP: PnP error card found, no device\n");
1434				}
1435			}
1436			ipid++;
1437			pnp_c = NULL;
1438		}
1439		if (!ipid->card_vendor) {
1440			printk(KERN_INFO "HFC PnP: no ISAPnP card found\n");
1441			return (0);
1442		}
1443	}
1444#endif
1445	cs->hw.hfcsx.base = card->para[1] & 0xfffe;
1446	cs->irq = card->para[0];
1447	cs->hw.hfcsx.int_s1 = 0;
1448	cs->dc.hfcsx.ph_state = 0;
1449	cs->hw.hfcsx.fifo = 255;
1450	if ((cs->typ == ISDN_CTYPE_HFC_SX) ||
1451	    (cs->typ == ISDN_CTYPE_HFC_SP_PCMCIA)) {
1452		if ((!cs->hw.hfcsx.base) || !request_region(cs->hw.hfcsx.base, 2, "HFCSX isdn")) {
1453			printk(KERN_WARNING
1454			       "HiSax: HFC-SX io-base %#lx already in use\n",
1455			       cs->hw.hfcsx.base);
1456			return (0);
1457		}
1458		byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.base & 0xFF);
1459		byteout(cs->hw.hfcsx.base + 1,
1460			((cs->hw.hfcsx.base >> 8) & 3) | 0x54);
1461		udelay(10);
1462		cs->hw.hfcsx.chip = Read_hfc(cs, HFCSX_CHIP_ID);
1463		switch (cs->hw.hfcsx.chip >> 4) {
1464		case 1:
1465			tmp[0] = '+';
1466			break;
1467		case 9:
1468			tmp[0] = 'P';
1469			break;
1470		default:
1471			printk(KERN_WARNING
1472			       "HFC-SX: invalid chip id 0x%x\n",
1473			       cs->hw.hfcsx.chip >> 4);
1474			release_region(cs->hw.hfcsx.base, 2);
1475			return (0);
1476		}
1477		if (!ccd_sp_irqtab[cs->irq & 0xF]) {
1478			printk(KERN_WARNING
1479			       "HFC_SX: invalid irq %d specified\n", cs->irq & 0xF);
1480			release_region(cs->hw.hfcsx.base, 2);
1481			return (0);
1482		}
1483		if (!(cs->hw.hfcsx.extra =
1484		      kmalloc(sizeof(struct hfcsx_extra), GFP_ATOMIC))) {
1485			release_region(cs->hw.hfcsx.base, 2);
1486			printk(KERN_WARNING "HFC-SX: unable to allocate memory\n");
1487			return (0);
1488		}
1489		printk(KERN_INFO "HFC-S%c chip detected at base 0x%x IRQ %d HZ %d\n",
1490		       tmp[0], (u_int) cs->hw.hfcsx.base, cs->irq, HZ);
1491		cs->hw.hfcsx.int_m2 = 0;	/* disable alle interrupts */
1492		cs->hw.hfcsx.int_m1 = 0;
1493		Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
1494		Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
1495	} else
1496		return (0);	/* no valid card type */
1497
1498	cs->dbusytimer.function = (void *) hfcsx_dbusy_timer;
1499	cs->dbusytimer.data = (long) cs;
1500	init_timer(&cs->dbusytimer);
1501	INIT_WORK(&cs->tqueue, hfcsx_bh);
1502	cs->readisac = NULL;
1503	cs->writeisac = NULL;
1504	cs->readisacfifo = NULL;
1505	cs->writeisacfifo = NULL;
1506	cs->BC_Read_Reg = NULL;
1507	cs->BC_Write_Reg = NULL;
1508	cs->irq_func = &hfcsx_interrupt;
1509
1510	cs->hw.hfcsx.timer.function = (void *) hfcsx_Timer;
1511	cs->hw.hfcsx.timer.data = (long) cs;
1512	cs->hw.hfcsx.b_fifo_size = 0; /* fifo size still unknown */
1513	cs->hw.hfcsx.cirm = ccd_sp_irqtab[cs->irq & 0xF]; /* RAM not evaluated */
1514	init_timer(&cs->hw.hfcsx.timer);
1515
1516	reset_hfcsx(cs);
1517	cs->cardmsg = &hfcsx_card_msg;
1518	cs->auxcmd = &hfcsx_auxcmd;
1519	return (1);
1520}
1521